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Summary

Wind energy plays an essential role in the transition to renewable energy sources
as it provides a cost-effective alternative to fossil fuels. In that energy transi-
tion, the required growth of wind energy development means utilisation of the
available wind resource should be maximised. This leads to the construction of
large wind farms with densely spaced wind turbines to efficiently use the allo-
cated space. Wind turbines operating in such close proximity inevitably experi-
ence losses in power production as aerodynamic wakes from upstream turbines
impinge on downstream rotors. Part of this detrimental aerodynamic interaction
is minimised through the optimisation of wind farm topology, which is, however,
inflexible after construction and therefore has limited use inmitigatingwake losses
under time-varying conditions.

Wind farm flow control aims to control wind turbines in wind farms to reduce
power losses and fatigue loading from wake effects to improve farm performance,
whereas wind turbines are conventionally operated to maximise individual power
production. One such strategy for cooperative control is wake steering, which
makes use of the existing yaw degree of freedom that determines rotor alignment.
Operation of the wind turbine rotor under intentional misalignment with the in-
flow reduces power production on that turbine but also leads to a lateral deflection
of the wake. This allows redirecting the wind turbine wake away from down-
stream turbines, resulting in gains in wind farm power production.

The current state-of-the-art on wake steering control makes use of look-up
tables based on prior optimisation with steady-state models. The validity of the
models underlying these control strategies is limited under realistic, time-varying
atmospheric conditions. Therefore, to assess the potential for improved power
production from wake steering in wind farms under time-varying conditions, this
thesis develops an economic model-predictive wind farm flow control strategy.

A control-oriented model of the wind turbine wake is formulated based on
an actuator-disc rotor model and simulation with free-vortex wake methods. The
associated novel derivation of the adjoint system enables gradient-based control
optimisation for efficient implementation in an economic model-predictive con-
trol setting. The model captures the curled-wake dynamics that are essential to
modelling wake deflection. Additionally, the control test cases achieve dynamic
control results and wake steering under a time-varying inflow direction.



x Summary

The free-vortex methods used in the model development have generally been
used for rotor aerodynamics and near-wake predictions, with limited validation in
the mid to far wake. We assess the accuracy of power predictions with the control-
oriented wake model for wind turbines operating under yaw misalignment using
three sets of data from wind tunnel experiments. The model achieves considerable
accuracy in power predictions with steady misalignment and under dynamic con-
trol variations. The level of accuracy combined with the achieved computational
efficiency demonstrates that the dynamic model has potential for integration in a
wake steering controller.

Subsequently, model-based control optimisation with the free-vortex wake
model is extended to the wind-farm scale by constructing a distributed optimi-
sation approach. A network of free-vortex wake models is formed to parallelise
control optimisation and account for the cumulative effects of wake steering in
rows of wind turbines. The novel controller is tested in a large-eddy simulation
environment and compared against a state-of-the-art look-up table approach based
on steady-state model optimisation and an extension with wind direction preview.
Under realistic variations in wind direction and wind speed, the preview-enabled
look-up table controller yielded the largest gains in power production. The novel
controller based on the free-vortex wake produced smaller gains in these condi-
tions, while yielding more power under large changes in wind direction. Addi-
tionally, the novel controller demonstrated potential for a substantial reduction in
the increased demands on yaw actuator usage from wake steering.

The control strategy and model development presented in this thesis advance
the state-of-the-art on wake steering control, demonstrating that accounting for
the temporal dynamics of wake propagation can improve the power production
of wind farms under realistic inflow conditions. This contributes to the efficient
operation of current and future wind farms by making effective use of existing
control degrees of freedom.



Samenvatting

Windenergie speelt een centrale rol in de transitie naar hernieuwbare energiebron-
nen omdat het een kostenefficiënt alternatief is voor fossiele brandstoffen. In die
energietransitie betekent de benodigde groei in de ontwikkeling van windenergie
dat benutting van de beschikbare windbron gemaximaliseerd moet worden. Dit
leidt tot constructie van grote windparken waar windturbines dicht op elkaar ge-
plaatst worden om efficiënt de beschikbare ruimte te gebruiken. Windturbines die
zo dicht bij elkaar staan ervaren onvermijdelijke verliezen in vermogensproductie
omdat het aerodynamische zog van bovenwindse turbines benedenwindse rotors
raakt. Deel van deze nadelige aerodynamische interactie wordt geminimaliseerd
door de optimalisatie van de windparktopologie, welke echter inflexibel is na de
constructie en daardoor beperkt bruikbaar is in het verminderen van de zogverlie-
zen onder tijdsvariërende omstandigheden.

Windparkstromingsregelingen streven ernaarwindturbines inwindparken aan
te sturen om de vermogensverliezen en vermoeiingsbelastingen door zogeffecten
te verminderen en de prestatie van het park te verbeteren, terwijl windturbines
conventioneel aangestuurd worden om individuele vermogensproductie te maxi-
maliseren. Een strategie voor coöperatieve aansturing is zogsturing, waarbij de
gierbewegingsvrijheid benut wordt die de oriëntatie van de rotor bepaalt. De ex-
ploitatie van een windturbinerotor met scheefstand ten opzichte van de instroom
vermindert de vermogensproductie van de turbine, maar leidt ook tot een laterale
afbuiging van het zog. Dit maakt het mogelijk om het windturbinezog om een
benedenwindse turbine heen te sturen, wat resulteert in een toename van de ver-
mogensproductie van het windpark.

De huidige, meest geavanceerde, zogsturingsregelingen maken gebruik van
opzoektabellen gebaseerd op voorgaande optimalisatie met tijdsonafhankelijke
modellen. De validiteit van de modellen onderliggend aan deze regelingen is be-
perkt onder realistische, tijdsvariërende omstandigheden. Om het potentieel vast
te stellen voor een toename in vermogensproductie door zogsturing inwindparken
onder tijdsvariërende atmosferische omstandigheden, ontwikkelt dit proefschrift
een economische modelvoorspellende windparkstromingsregeling.

Een regelingsgericht model van het windturbinezog wordt geformuleerd op
basis van model van de rotor als remmende schijf en simulatie met vrije-wervel-
methoden. De bijbehorende nieuwe afleiding van het adjuncte systeem maakt
gradiëntgebaseerde regelingsoptimalisatie mogelijk voor efficiënte implementatie
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in een economische modelvoorspellende regelstructuur. Het model beschrijft de
gekrulde zogdynamica die essentieel zijn voor hetmodelleren van de afbuiging van
het zog. Daarbij worden in testscenario’s dynamische regelsignalen gevonden en
wordt zogsturing onder tijdsvariërende instroom bereikt.

De vrije-wervelmethoden die gebruikt zijn voor de modelontwikkeling zijn al-
gemeen gebruikt voor rotoraerodynamica en voorspellingen in het zog nabij de ro-
tor, met beperkte validatie voor het midden- tot verre deel van het zog. We stellen
de nauwkeurigheid vast van vermogensvoorspellingen met het regelingsgerichte
zogmodel voor windturbines geëxploiteerd met gierscheefstand met drie verzame-
lingen data van windtunnelexperimenten. Het model bereikt noemenswaardige
precisie in vermogensvoorspellingen met constante scheefstand en met dynami-
sche variatie van de aansturing. De mate van nauwkeurigheid gecombineerd met
de bereikte computationele efficiëntie demonstreert dat het dynamische model po-
tentieel heeft voor integratie in een zogsturingsregeling.

Daaropvolgendwordt demodelgebaseerde regelingsoptimalisatiemet het vrije-
wervelmodel uitgebreid naar de windparkschaal door het construeren van een ge-
distribueerde optimalisatiemethode. Een netwerk van vrije-wervelmodellenwordt
gevormd om de regelingsoptimalisatie te parallelliseren en daarbij rekening te hou-
den met de cumulatieve effecten van zogsturing in rijen van wind turbines. De
nieuwe regelaar wordt getest in een grote-wervelsimulatieomgeving en vergele-
ken met een geavanceerde benadering gebaseerd op opzoektabellen met tijdson-
afhankelijke modeloptimalisatie en een uitbreiding met vooruitblik op de wind-
richting. Bij realistische variaties in windrichting en windsnelheid levert de op-
zoektabelregelaar met windrichtingsvooruitblik de grootste winst in vermogens-
opbrengst. De nieuwe regelaar gebaseerd op het vrije-wervelmodel levert kleinere
winsten in deze omstandigheden, maar brengt meer vermogen op bij grote wind-
richtingsveranderingen. Daarbij demonstreert de nieuwe regelaar het potentieel
voor een substantiële vermindering van de toegenomen eisen aan de gieraandrij-
ving door zogsturing.

De regelingsstrategie enmodelontwikkeling die zijn gepresenteerd in dit proef-
schrift bevorderen de huidige staat van zogsturingsregelingen, waarbij gedemon-
streerd wordt dat het rekening houden met de tijdsdynamica van het zog kan zor-
gen voor een toename van de vermogensproductie in windparken onder realisti-
sche instroomcondities. Dit draagt bij aan de efficiënte exploitatie van huidige en
toekomstige windparken door effectief gebruik te maken van bestaande graden
van vrijheid.



1
Introduction

The impact of climate change necessitates drastic action. Wind energy development
is one aspect of the shift to renewable energy that is required. Wind farm flow control
aims to improve the efficiency of wind farms, effectively using available degrees of
freedom for improving power production and decreasing the cost of energy. Wake
steering is a control strategy that makes use of intentional yaw misalignment to redi-
rect wakes away from downstream turbines. This cooperative control strategy for
wind farms has been demonstrated in simulation, wind tunnel studies, and field ex-
periments. Existing literature and the industry state-of-the-art focus on steady-state
results, whereas, in reality, the wind is naturally time-varying in both speed and di-
rection. This thesis works towards wind farm flow control, using wake steering, under
time-varying atmospheric conditions.
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1.1 In the face of climate change
Climate change should need no introduction. The average global temperature has
already risen by 1.1 °C in 2011-2020 compared to 1850-1900, which is fast approach-
ing the 1.5 °C limit to warming that is targeted in global policy. Furthermore, cli-
mate change is not just about average warming – extremes in terms of heat and
drought, as well as heavy rains and flooding are increasingly common. This im-
pacts global populations from agriculture and changing ecosystems to infrastruc-
ture and displacement of people [1].

Now, climate change can be concluded with high confidence to be caused by
human activity – primarily from greenhouse gas emissions – and it is likely that
the 1.5 °C limit will be exceeded in the coming years [1]. Figure 1.1 depicts the
sharp decrease in net emissions that is required to achieve this goal. Systemic
change is required – on all levels from individuals to sovereign nation-states and
global corporations – as a species we must lower our footprint on the planet.

This means efficiently using available resources and reducing consumption, as
well as coordinating a global effort to transition from fossil fuels to renewable
energy to limit anthropogenic sources of climate change [3]. As an example of
united efforts for change, the European Union committed to transitioning to 40 %
of energy from renewable sources by 2030, coming from less than 20 % in 2019 [4].
Photovoltaics, wave energy, hydropower, and wind energy are just a few of the
possible alternatives to fossil fuels. Each has their own strengths and limitations
and they should be distributed based on local resource availability to form a robust,
reliable, efficient renewable energy system.
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Figure 1.1: CO2-equivalent global emissions of greenhouse gases as presented by the IPCC [1],
comparing modelled pathways that limit warming to 1.5 °C with limited or no overshoot to the
modelled trajectories assuming policies implemented by the end of 2020. Major reductions in net
emissions are required to reach the targets for limiting the rise of global average temperature to
1.5 °C. Data from [2].
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1.2 On the growth of wind energy
One part of the transition to renewable energy sources is the expansion of wind
utilisation. As an alternative to fossil fuels, the EU has set out to achieve more
than 300GW of installed offshore renewable energy by 2050 to move towards net
zero emissions [4]. The Netherlands alone has committed to installing 21GW of
offshore wind power generation capacity by 2030 [5], for which the majority still
needs to be constructed as illustrated in Figure 1.2. Thesemay be ambitious targets,
but without ambitious goals sufficient impact will not be achieved – they reflect
the urgency of taking deliberate action.

“Offshore renewable energy is one of the most promising routes to increase
future power generation in the coming years in a way that meets Europe’s
decarbonisation objectives and expected rise in electricity demand in an af-
fordable manner.” – European Commission [4]

Economically, both onshore and offshore wind are viable alternatives to fossil
fuels. Onshore wind is one of the most cost-effective sources of energy and, al-
though offshore wind energy is more expensive in terms of installation costs and
maintenance, the drive to realise cost-effectivewind power has driven the levelised
cost-of-energy for offshore wind down by 59 % in the time from 2010 to 2022 [6].

As the wind industry has matured, tenders for wind farm construction have
become highly competitive, putting pressure on developers and wind turbine man-
ufacturers to operate on tight margins. In this competitive market, investments
are required to build the necessary infrastructure for constructing wind turbines
and developing wind farms. Raw materials such as steel and rare-earth metals
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Figure 1.2: Development of wind energy capacity for power generation in the Netherlands [7].
With an installed offshorewind capacity of 4.7GW by the end of 2023, another 17.9GW of additional
offshore wind power is planned to reach the Dutch 2030 targets [5].
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are sensitive to inflation and geopolitical stresses, production facilities need to
be constantly adjusted to ever-larger wind turbine rotors, and installation vessels
and port facilities need to grow to provide sufficient capacity for offshore installa-
tion [8]. Protectionist laws such as the US Jones’ act hamper international cooper-
ation and limit the global developments of offshore wind [9].

Another side of infrastructure for a renewable energy system is the electrical
grid. New connections are required for wind farms and stability needs to be guar-
anteed under varying loads. Consumer demandwill need to be flexible to deal with
periods of over- and undercapacity in renewable energy production due toweather
variations. Price incentives can drive demand to balance supply and power-to-x
solutions can provide storage of excess power for later use, for example by driving
hydrogen production on surplus power.

Next to the infrastructure requirements, the wind industry is in dire need of
personnel. By 2026, the wind industry is expected to need over half a million
qualified technicians, for which the majority still need to be trained [10]. Labour
shortages lead to a lack of employees, from technicians for construction and main-
tenance to highly-educated scientists and engineers for developing robust wind
power systems and advancing the state-of-the-art.

The development of wind energy also places increasing demands on available

Figure 1.3: Terrain elevation [11] and mean wind speed at 100m above sea level [12]. The combi-
nation of higher mean wind speeds offshore and relatively shallow water depths in the North Sea
and the Baltic Sea make these areas particularly suitable for offshore wind energy.
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space. The North Sea and Baltic Sea are particularly suited for offshore wind en-
ergy given low water depth and higher average wind speeds offshore as shown in
Figure 1.3, which means that conventional bottom-fixed wind turbines are a suit-
able option here. However, even on the sea, space is not unlimited as illustrated in
Figure 1.4, showing the current operational and planned wind farms in the Dutch
North Sea. These plans need to consider other stakeholders such as shipping, min-
ing, oil and gas, and fishing, as well as the protection of natural areas.

1.3 Wind turbine wakes in wind farms
The motivation for the work in this dissertation is in efficiently making use of
the space that is available. For that, we need to go a little bit deeper into the
aerodynamics of wind turbines, where the effects that matter range from global
weather patterns all the way down to the aerofoils of wind turbine blades [13].

Wind turbine blades generate lift to drive rotation of the wind turbine rotor. In
turn, this drives the generator for conversion of aerodynamic torque to electrical
power. The aerodynamic power 𝑝 extracted by a wind turbine is calculated as,

𝑝 = 𝑐p
1
2𝜌𝐴r𝑢3∞ . (1.1)

which scales linearly with rotor area 𝐴r and with the cube of inflow velocity 𝑢∞.
The power coefficient 𝑐p is a measure of the efficiency of the rotor in extracting
aerodynamic power. For modern wind turbines, individual turbine performance is
approaching the theoretical limits in turbine efficiency – the Betz limit [14]. The
natural way forward is then an increase in size to generate more power per turbine,
as a larger swept area directly yields larger aerodynamic power. Additionally, the
cubic scaling with inflow velocity means that slightly higher wind speeds lead to
significantly larger wind resource in terms of power.

As energy is extracted from the air, wind turbines leave behind a wake – a
region of lower wind speed with higher turbulence levels. Turbines operating in
waked conditions experience a reduction in power production and higher fatigue
loads. These aerodynamic wake interactions lead to large losses in wind farms.

Figure 1.4 illustrates how wind turbine wakes affect wind farms. The available
space is densely filled with wind turbines for maximal power extraction. For the
dominant wind direction, the layout designed is such that aerodynamic interac-
tion is minimal. However, major losses in power production appear as the wind
direction changes and aligns with rows of wind turbines, such that wakes impinge
on downstream rotors.



1.3 Wind turbine wakes in wind farms

Ch. 1

7

Figure 1.4: Overview of current and planned offshore wind farms in the Dutch North Sea, adapted
from [5]. Wind farm layouts are designed to minimise wake interaction for the dominant wind
directions and given space constraints. For dominant wind direction, wake interaction is minimal.
However, fixed-bottom wind turbines are inflexible to adjust for time-varying atmospheric condi-
tions leading to wake losses when the wind aligns with rows of wind turbines. Space allocated to
offshore wind is limited so wind farms need to be designed and operated efficiently considering
intra-farm wakes. Due to close proximity, inter-farm wakes are likely to have considerable impact
on prospective energy yield.
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1.4 Wind farm flow control
The control of wind turbines in wind farms is a broad field, for which a useful
distinction can be made between wind farm control and wind farm flow control,
where the former is concerned mostly with the electrical grid and the latter deals
with mitigation of wake effects in wind farms. While layouts may be optimised to
minimise the detrimental effects of aerodynamic interaction under the most com-
mon wind directions, they are inflexible to deal with time-varying atmospheric
conditions [15]. Repositioning of floating wind turbines to avoid wake impinge-
ment [16] is, as of now, still a thing of the future.

Wind farm flow control techniques can be roughly divided in three categories:
wake steering, induction control, and wake mixing techniques [17]. Induction
control utilises lowering of the wind turbine thrust to reduce power extraction. In
theory, this leaves more aerodynamic power for downstream turbines to improve
farm production. However, the impact on annual energy production was minimal
in wind tunnel testing and field experiments [18–20].

Wake mixing strategies are based on dynamic thrust variations to stimulate
breakdown of the wind turbine wake and improve mixing with the free-stream
flow. These are realised either through collective pitch variations [21, 22] or by
individual pitch control [23]. The potential of these dynamic control strategies

Figure 1.5: Conventional greedy control focuses on individual wind turbine performance, control-
ling them to alignment with the inflow. Wake steering makes use of an intentional yaw misalign-
ment 𝛾 with the free-stream wind direction to redirect to wake around downstream turbines. For
wind directions with a lot of wake interaction, a small sacrifice in terms of power on misaligned
turbines yields a net gain in wind farm production.
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was demonstrated in wind tunnel experiments [24, 25], but not yet tested in the
field.

The most mature of the three flow control techniques is wake steering, which
uses intentional misalignment of the rotor with the free-stream flow to redirect
the wake away from downstream turbines. When operating under yaw misalign-
ment, the wake from the wind turbine is deflected laterally. This lateral movement
induces the formation of a counter-rotating vortex pair, which produces a charac-
teristic ‘kidney-shaped’ cross-section of the wake deficit [26–30], as illustrated in
Figure 1.6.

Effective use of wake redirection has been demonstrated to increase wind farm
power production and reduce fatigue loads on downstream turbines in simulation
studies [31, 32] andwind tunnel experiments [33–35]. A series of field experiments
have shown situational gains in power production from wake steering [36–41], al-
though estimated improvements in annual energy production were inconclusive
until demonstrated by Howland et al. [42]. Siemens-Gamesa have even imple-
mented the technique in a commercially available product, Wake Adapt, claiming
up to 1 % improvement in annual energy production [43], which supports confi-
dence in the strategy. The added economic value from wake steering control may
even be higher than the increase in energy production during low wind speed
situations when electricity prices tend to be higher [44].

Figure 1.6: Operation under yawmisalignment produces a counter-rotating vortex pair that yields
a characteristic ‘kidney-shaped’ cross section of the wake. The free-vortex wake model (Chapter 2)
captures these curled wake dynamics and models the wake deflection that occurs from operation
under yaw misalignment.
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1.5 Control for wake steering
The control strategies for wind farm flow control can be roughly divided in two
groups: model-based and model-free control. The model-free approaches to con-
trol usemeasurements of flow andwind turbine outputs to identify optimal control
strategies. A closed-loop, model-free yaw controller [33] and extremum-seeking
control [45] have been demonstrated to produce power gains from wake steer-
ing under steady flow conditions. Recently, a closed-loop controller based on re-
inforcement learning achieved gains in wind farm power production from wake
steering under steady conditions [46]. These fully data-driven techniques have
only been demonstrated under quasi-steady flow conditions. They generalise poorly
to other operating conditions and the rate of convergence is generally slow, limit-
ing implementation in field experiments.

On the other hand, model-based approaches make use of prior knowledge of
the underlying physics and empirical engineering approximations to model wake
effects and optimise for optimal control set-points. The most common approach
to wake steering uses steady-state engineering wake models, such as those in
the FLORIS toolbox [47], e.g. the Gaussian wake model [48] or the curled wake
model [49]. These steady-state models provide an approximation of the time-
averaged wake deficits to pre-optimise yaw angle for quasi-steady inflow condi-
tions. Look-up tables with steady-state optimal set-points are then used for imple-
mentation in wind farms [31, 35, 42, 50, 51].

These strategies based on look-up tables are efficient from a computational
perspective and predictable for analysis of applied control signals. However, wind
directions and wind speeds vary over time and inclusion of wake propagation dy-
namics have a significant impact on performance of the wind farm [52]. Con-
trol optimisation needs to consider the dynamics of realistic wind direction vari-
ations [51]. Additionally, higher wind direction variability at lower wind speeds
– where wake steering is most valuable – has contributed to poor performance of
wake steering control [41].

A challenging time-varying control problem has to be solved for wake steering
under realistic inflow conditions [53]. Given the efficiency and widespread adop-
tion of the engineering wake models, one approach to accommodate dynamics in
model-based control is the extension of steady-state models to incorporate wake
propagation over time [54–56].

On the other hand, physics-based numerical models of wind farm flows may
also be applied for control optimisation. These often naturally include the time-
varying dynamics that are required to account for wake propagation through the
wind farm. Large-eddy simulation has been used for wind farm flow control,
making use of the adjoint formulation to enable gradient-based control optimisa-
tion [57–59]. Although the potential gains from flow control were demonstrated,
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this was far from real-time control application. Recent work has reduced the com-
putational cost of LES-based optimisation towards real-time performance by coars-
ening the mesh and adjusting control parameters [60].

Approaches such asWFSim [61] and FRED [62–64] have attempted to use two-
dimensional fluid dynamics to reduce model complexity for control optimisation,
which has been shown to be effective for induction-based active power control [65]
and for power maximisation through induction control with the derivation of the
adjoints [66]. However, these models are unsuitable for wake steering as the wake
dynamics of wake steering are fundamentally three-dimensional [63].

Themodels based on conventional computational fluid dynamics calculate flow
on a dense grid, where not all states are controllable. Free-vortex wake (FVW)
methods, on the contrary, simulate flow dynamics based on vortex elements con-
vected as Lagrangian particles, potentially reducing the number of states simulated
to a skeletal representation of the wake – only those states the are actually affected
by the wind turbine rotor are simulated. These FVWmethods are based on the vor-
ticity formulation of the Navier-Stokes equations and require the assumption of
inviscid, potential flow [67, 68].

The FVW method has been initially applied to wake modelling for helicopter
rotors with a focus on tip vortices [69]. From there, it was adapted to application
for unsteady aerodynamics in wakes of wind turbine rotors [70] and demonstrated
in several studies of rotor aerodynamics and wake stability [71–73]. The flexibility
of a meshless formulation is especially relevant for studies on floating wind tur-
bines, where the rotor is not stationary [74–76]. Of particular note for this thesis
is the demonstration of the formation of a curled wake with a simple actuator-disc
model simulated using the FVW [77], which has the potential to be implemented
as a control-oriented model of the wind turbine wake.

The control-oriented wind farm flow model is a core element of an economic
model-predictive control (EMPC) framework as illustrated in Figure 1.7. In this
framework, the wind farm model provides predictions of the impact of control sig-
nals on future wind farm performance. These predictions are used to find optimal
controls on a finite prediction horizon and implemented in a receding horizon set-
ting – the first (set of) control(s) is then implemented, after which the problem is
shifted in time and solved again [78]. Economic model-predictive control consid-
ers an objective such as power maximisation, where the extremum is not known
a priori. On the other hand, conventional model-predictive control aims to drive
an objective functional to zero, such as for tracking a reference signal for active
power control.

The framework illustrated in Figure 1.7 is closed-loop; it shows how measure-
ments from the wind farm feed back into the controller. This is essential for im-
plementation of such a control strategy, as the model state may diverge from the



Ch. 1

12 1 Introduction

Figure 1.7: The closed-loop economic model-predictive control framework. The wind farm model
is used for control optimisation to maximise power production in the wind farm. State estimation
provides updates the model state and parameters based on measurements.

real wind farm state if left uncorrected. A state estimation strategy assimilates the
data from wind farm measurements and provides corrections to the model state
to avoid this divergence. Additionally, model parameters may be adapted to ad-
just for changing atmospheric conditions or variations in plant performance. This
closed-loop implementation may be achieved by means of an Ensemble Kalman
filter [50, 79, 80] or other data assimilation techniques.

1.6 This thesis
In the current state of model-based wind farm flow control, the implementation of
yaw-basedwake steering based on steady-statemodels has demonstrated potential
for improving wind farm power production. However, for realistic, time-varying
wind directions, the dynamics of wake propagation may impact the effectiveness
of wake redirection. In order to further advance the power gains that may be
achieved with wake steering control, we formulate the following objective:

Thesis objective: Develop an economic model-predictive wind farm flow
control strategy and assess the potential for improved power production
from wake steering in wind farms under time-varying conditions.
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At the core of such a model-based control strategy is a control-oriented model
of the wind farm flow. Physics-based models may naturally include the tempo-
ral dynamics of wake propagation. The free-vortex wake is a simplified, skeletal
model for wake simulation that has been shown to capture curled wake dynamics
with a limited number of states. Given the potential of the model formulation and
the previous results on adjoint optimisation for wind farm flow control, the first
contribution concerns development of a control-oriented wake model:

Contribution I: Formulation of a free-vortex wake model for gradient-
based control optimisation and demonstration in an economicmodel-predictive
control setting.

This control-oriented wakemodel should provide power predictions in themid
to far wake at a low computational cost to enable real-time control optimisation
in wind farms. However, free-vortex methods have mostly been applied with a
focus on rotor aerodynamics and flow in the near wake. Therefore, this thesis con-
tributes to the validation of the free-vortex wake model for its intended purpose
of control optimisation for power maximisation:

Contribution II: Assessment of the accuracy of power predictions with
the dynamic free-vortex wake model in the mid to far wake of wind tur-
bines operating under yaw misalignment.

Finally, assessing accuracy does not necessarily prove suitability for control
optimisation. In the end, a demonstration in a realistic wind farm scenario against
a proper reference controller is necessary to evaluate performance of the model in
a controller. As initial results with the free-vortex wake consider individual wakes,
this requires a strategy for scaling the model-predictive control optimisation to
large wind farms. This leads to the final contribution of this thesis – advancing
wake steering under realistic conditions:

Contribution III: Development of a distributed economicmodel-predictive
control strategy with a network of free-vortex wake models to provide a
scalable solution for wake steering in large wind farms under time-varying
conditions.

1.6.1 Outline
This chapter has introduced the overarching objective for this thesis and the con-
tributions made within, which will be presented in the subsequent chapters. The
contents of the chapters have been written as independent articles and, therefore,
each contains its own individual introduction and conclusions.
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Firstly,Chapter 2 develops a control-orientedmodel of the wind turbine wake
based on free-vortex methods. The associated derivation of the adjoint equations
enables gradient-based optimisation, which provides the basis for using the model
in an economic model-predictive control strategy. Two test cases demonstrate the
potential of this approach for generating dynamic control solutions and realising
wake steering subject to a changing wind direction.

Secondly, Chapter 3 evaluates the suitability of the level of model simplifica-
tions for power predictions downstream from wind turbines operating under yaw
misalignment. Three different models of the wind turbine rotor are implemented
using free-vortex wakemethods to simulate the wake, one of which is the actuator-
disc model from Chapter 2. The accuracy of these models is validated with three
sets of data fromwind tunnel experiments for steady conditions and with dynamic
control variations.

Lastly, Chapter 4 describes the construction of a distributed strategy for dy-
namic wake steering control. Individual free-vortex wake models are connected
into a network to represent the total wind farm flow. The distribution of the op-
timisation problem over all turbines in the farm enables parallel optimisation of
wind turbine controls. The novel control strategy is tested in a large-eddy simula-
tion environment and compared against the state-of-the-art for wake steering.

Finally,Chapter 5 gathers the general conclusions that can be drawn from the
preceding chapters and provides recommendations for future research.



2
Free-vortex wake model

Wind farm flow control aims to improve wind turbine performance by reducing aero-
dynamic wake interaction between turbines. Dynamic, physics-based models of wind
farm flows have been essential for exploring control strategies such as wake redirec-
tion and dynamic induction control. Free-vortex methods can provide a computation-
ally efficient way to model wind turbine wake dynamics for control optimisation. We
present a control-oriented free-vortex wake model of a 2D and 3D actuator disc to
represent wind turbine wakes. The novel derivation of the discrete adjoint equations
allows efficient gradient evaluation for gradient-based optimisation in an economic
model-predictive control algorithm. Initial results are presented for mean power max-
imisation in a two-turbine case study. An induction control signal is found using the
2D model that is roughly periodic and supports previous results on dynamic induc-
tion control to stimulate wake mixing. The 3D model formulation effectively models
a curled wake under yaw misalignment. Under time-varying wind direction, the
optimisation finds solutions demonstrating both wake steering and a smooth transi-
tion to greedy control. The free-vortex wake model with gradient information shows
potential for efficient optimisation and provides a promising way to further explore
dynamic wind farm flow control.
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2.1 Introduction
Large, densely spaced wind farms are designed and constructed to make use of
limited offshore parcels. Within these farms, aerodynamic interaction between
wind turbines reduces power production and increases fatigue loading as turbu-
lent, low-energy wakes travel through the farm and negatively affect downstream
turbines. Wind farm topology is designed to minimise these interactions, but is
inflexible to cope with dynamic, varying atmospheric conditions [15]. The pur-
pose of wind farm control is to minimise the detrimental effects of aerodynamic
interaction between wind turbines in a wind farm.

Control strategies for wind farm control can be roughly divided in three cate-
gories: wake redirection by yaw misalignment, induction control, and wake mix-
ing strategies [17]. First, the use of yaw misalignment with respect to the free-
stream wind direction to redirect wakes downstream has been shown to effec-
tively improve performance under steady conditions in both wind tunnel experi-
ments [33–35] and field studies [36, 38–41]. Second, sinusoidal thrust variations,
and consequent induction variations, through collective pitch control have been
found to improve wake recovery in an LES study [22] and in wind tunnel experi-
ments [21]. Finally, recent developments in stimulating wake mixing have shown
the potential to improve upon collective pitch variations with the helix approach,
an individual pitch control strategy [23].

Control-oriented models are often at the core of wind farm control algorithms.
Steady-state engineering wake models, such as those that have been implemented
in FLORIS [47], are the current industry standard. These include, for example, the
Gaussian model [48] or a steady representation of curled wake dynamics [49]. As
steady-state wake representations are limited in realistic time-varying conditions,
dynamic effects have been added to these engineering wake models to improve
upon the steady-state results by including dynamic wakemeandering [84] or using
Lagrangian particles to incorporate wake dynamics [56].

Several studies have also developed physics-based dynamic models for wind
farm flow control, especially using the adjoint method to efficiently calculate gradi-
ent information for a scalar objective function with a large number of parameters.
The patterns found through optimal control studies with adjoint large-eddy simula-
tions [57, 58] provided the basis for dynamic induction control methods, although
these simulations are too computationally expensive for real-time control applica-
tions [22, 59]. WFSim provides a 2D Navier-Stokes based wind-farm flow model
for control [61], which has then been used for adjoint optimisation of induction
control [66]. FRED [64] builds on the results from WFSim to simulate wind farm
performance with the adjoint for gradient calculation [62, 63]. However, the 2D
physics inherent in this model lack the curled wake dynamics of a wind turbine
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under yaw misalignment [26–29] and could not accurately model the effects of
wake redirection [63].

In contrast to conventional computational fluid dynamic approaches, free-vortex
methods use the vorticity formulation of the Navier-Stokes equations to model
wind turbine wakes with Lagrangian elements [68]. Within the field of wind en-
ergy, free-vortex wake models have been used to study floating wind turbines
and wake dynamics [75] and to study dynamic wake control methods and analyse
wake stability [73]. The latter uses the CACTUS code which has been shown to
be mostly accurate for near-wake regions [85]. Even though vortex methods are
generally more accurate in near-wake regions, a free-vortex ring method has been
used to model far wake dynamics for both fixed-bottom and floating wind tur-
bines [74]. Additionally, an actuator-disc model based on discretised vortex rings
has been shown to capture the 3D dynamics of the kidney-shaped wake under yaw
misalignment [77].

In this chapter, we propose the use of the free-vortex wake method as a compu-
tationally efficient, physics-based wake model for control optimisation, especially
coupled with the adjoint for efficient evaluation of the gradient. This work aims to
extend the possibilities for optimisation of induction and yaw signals for dynamic
wind farm flow control. For that purpose, the contribution of this chapter is three-
fold: (i) a control-oriented free-vortex wake model of an actuator disc in 2D and
3D with the discrete adjoint for gradient computation, (ii) an economic model-
predictive control implementation for dynamic wind farm flow control, and (iii)
initial results that demonstrate dynamic induction control and yaw control under
time-varying wind direction.

The remainder of the chapter is structured as follows. A 2D and 3D free-
vortex model of an actuator disc to represent a wind turbine wake is presented in
Section 2.2. The non-linear optimisation problem for economic model-predictive
control is formulated in Section 2.3 together with the discrete adjoint method for
calculating the gradient. Results are discussed in Section 2.4, which provides an
overview of operation under steady conditions followed by receding horizon con-
trol optimisation of time-varying axial induction and yaw signals. Finally, conclu-
sions are presented in Section 2.5.

2.2 Control-oriented free-vortex wake model
The general formulation for the control-oriented free-vortex wake (FVW) repre-
sentation is described in Section 2.2.1. Aspects specific to the 2D and 3D imple-
mentations are then defined in Section 2.2.2 and Section 2.2.3, respectively. The
convergence and validation of the method for the numerical parameters used in
this chapter is provided in 2.B.
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2.2.1 General formulation
An actuator-disc representation of a wind turbine is implemented with the free-
vortex method in both a two-dimensional (2D) and three-dimensional (3D) for-
mulation. The free-vortex method is based on Lagrangian particles that advect
downstream. These particles induce a velocity based on their associated vorticity.
The resultant flow velocity may be calculated at any position based on the free-
stream velocity and the sum of induced velocities. For a further description of the
fundamentals, the reader is referred to aerodynamic literature, such as [68].

The use of the free-vortex wake method requires the assumption of inviscid
and incompressible flow. The actuator disc is assumed to be uniformly loaded so
it only releases vorticity along its edge [68]. For the 2D model, the wake is mod-
elled by releasing pairs of vortex points at the edge of the actuator disc at every
simulation time-step. The 3D code is based on the simulation of discretised vor-
tex rings with vortex filaments, adapted from the model described by Berdowski
et al. [77]. For convenience, all units have been non-dimensionalised by the rotor
diameter and inflow speed.

A systemwith fixed dimensionality is preferred for control optimisation, there-
fore the wake models are set up with 𝑛e elements per vortex ring and a fixed num-
ber of vortex rings 𝑛r. The number of points to define the vortex elements 𝑛p
equals 𝑛e in 2D and 𝑛e + 1 in 3D. The spatial dimension of the simulation is 𝑛d,
which equals either two or three. The number of turbines modelled is 𝑛t and the
number of control parameters per turbine is 𝑛c. For example, the total number of
states is 𝑛s = 2𝑛r𝑛p𝑛d+𝑛r𝑛e+𝑛t𝑛c for a single wakemodelled with the FVW, where
additional virtual turbines are evaluated using the flow velocity without including
their effect on the wake.

We set up the model as a non-linear state-space system in discrete time,

𝒒𝑘+1 = 𝑓 (𝒒𝑘 , 𝒎𝑘) , (2.1)
𝒚𝑘 = 𝑔(𝒒𝑘 , 𝒎𝑘) , (2.2)

where for every discrete time step 𝑘 the updated state 𝒒𝑘+1 ∈ ℝ𝑛s and the output
vector 𝒚𝑘 ∈ ℝ𝑛t are a function of the current state 𝒒𝑘 ∈ ℝ𝑛s and the control inputs
𝒎𝑘 ∈ ℝ𝑛t𝑛c . The state vector is built up as

𝒒 =
⎡⎢⎢⎢
⎣

𝑿
𝜞
𝑼
𝑴

⎤⎥⎥⎥
⎦
, (2.3)

from the vortex element positions 𝑿 ∈ ℝ𝑛r𝑛p𝑛d , the vortex element circulations
𝜞 ∈ ℝ𝑛r𝑛e , the stored free-stream velocity 𝑼 ∈ ℝ𝑛r𝑛p𝑛d , and the control inputs from
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the previous time step 𝑴 ∈ ℝ𝑛t𝑛c . The full control vector 𝒎 is defined as

𝒎 =
⎡⎢⎢⎢
⎣

𝑎0
𝜓0
𝑎1
𝜓1

⎤⎥⎥⎥
⎦
, (2.4)

for a two-turbine configuration with axial induction 𝑎 and turbine yaw angle 𝜓 .
States corresponding to a ring are indicated with a subscript, rings are indexed

with a superscript starting from 0. This allows, for example, the convenient rela-
tion of a point 𝒙(𝑏)𝑖 ∈ ℝ𝑛d to the point in the same position in the previous ring
𝒙(𝑏−1)𝑖 , or all points in a ring 𝑿 (𝑏) ∈ ℝ𝑛p𝑛d to all points in the previous ring 𝑿 (𝑏−1).

For all rings except the first (𝑏 ≥ 1), the position update is calculated from
the position of the previous ring with simulation time step ℎ, the stored inflow
velocity 𝒖∞ ∈ ℝ𝑛d , and the total induced velocity 𝒖ind ∈ ℝ𝑛d ,

𝒙(𝑏)𝑖 ||𝑘+1 = 𝒙(𝑏−1)𝑖 ||𝑘 + ℎ (𝒖(𝑏−1)∞,𝑖 + 𝒖ind(𝒙(𝑏−1)𝑖 , 𝒒))||𝑘 . (2.5)

The velocity 𝒖ind induced at any point 𝒙 is the sum of the contribution from all
vortex elements in the system

𝒖ind(𝒙, 𝒒) =
𝑛r−1
∑
𝑏=0

𝑛e
∑
𝑗=1

𝒖i
(𝑏)
𝑗 , (2.6)

where 𝒖i ∈ ℝ𝑛d is the velocity induced by a single vortex element. The generation
of new vortex elements in the first ring 𝑿 (0) and the velocity induced by a sin-
gle vortex element 𝒖i is defined for 2D and 3D in Section 2.2.2 and Section 2.2.3,
respectively.

The vector 𝜞 contains the vortex strength Γ for all elements in all rings . The
vortex strength of the first ring is given according to

Γ(0)𝑖 (𝒒,𝒎) = dΓ
d𝑡 ℎ = 𝑐′t (𝑎)

1
2(𝒖r ⋅ 𝒏(𝜓))2ℎ for 𝑖 = 1, 2, … , 𝑛e . (2.7)

In this expression, 𝒖r is the average wind speed at the rotor. The vector 𝒏 ∈ ℝ𝑛d is
a unit vector orthogonal to the rotor disc, pointing in the downstream direction,
with the rotation matrix 𝑹𝑧 ∈ ℝ𝑛d×𝑛d and axis-aligned unit vector 𝒆𝑥 ∈ ℝ𝑛d ,

𝒏(𝜓) = 𝑹𝑧(𝜓)𝒆𝑥 . (2.8)

The local thrust coefficient 𝑐′t , is calculated from the axial induction 𝑎 as

𝑐′t (𝑎) = {
4𝑎(1−𝑎)
(1−𝑎)2 = 4𝑎

1−𝑎 if 𝑎 ≤ 𝑎t ,
𝑐t1−4(√𝑐t1−1)(1−𝑎)

(1−𝑎)2 if 𝑎 > 𝑎t ,
(2.9)
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where the induction 𝑎t at the transition point is

𝑎t = 1 − 1
2√𝑐t1 , (2.10)

and the parameter 𝑐t1 = 2.3. The thrust coefficient calculation is based on mo-
mentum theory with a transition to a linear approximation for high induction
values that is an empirical correction based on the Glauert correction [86]. Vortex
strength of subsequent rings is inherited downstream,

Γ(𝑏)𝑖 ||𝑘+1 = Γ(𝑏−1)𝑖 ||𝑘 for 𝑖 = 1, 2, … , 𝑛e and 𝑏 = 1, 2, … , 𝑛r − 1 . (2.11)

Ring zero is initialised at the turbine position with the free-stream velocity,
which may vary over space and simulation time,

𝑼 (0)||𝑘+1 = 𝒖∞(𝑿 (0), 𝑘) . (2.12)

The inflow velocity is then propagated downstream with the state update

𝑼 (𝑏)||𝑘+1 = 𝑼 (𝑏−1)||𝑘 for 𝑏 = 1, 2, … , 𝑛r − 1 . (2.13)

The vector𝑴 is an augmentation of the system state to store controls for power
calculation at the next time-step,

𝑴|𝑘+1 = 𝒎𝑘 . (2.14)

This avoids a direct feed-through of control actions to the output function.
The output vector 𝒚 contains the power of all turbines as

𝒚 = [𝑃0𝑃1] , (2.15)

for a two-turbine case. The power 𝑃 at turbine 𝑖 is calculated as

𝑃𝑖 =
1
2𝑐

′
p(𝑎)𝐴r(𝒖r ⋅ 𝒏(𝜓))3 , (2.16)

with the local power coefficient 𝑐′p, rotor area 𝐴r, the disc-averaged velocity 𝒖r ∈
ℝ𝑛d , and the yaw angle 𝜓 . The local power coefficient is calculated with the induc-
tion factor 𝑎 as

𝑐′p(𝑎) =
4𝑎(1 − 𝑎)2
(1 − 𝑎)3 = 4𝑎

1 − 𝑎 . (2.17)
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For the disc-averaged velocity, we distribute 𝑛u points over a disc representing the
turbine according to an equal-area distribution [87] and rotate the disc over the
yaw angle. The rotor-disc averaged velocity is then

𝒖r =
1
𝑛u

𝑛u
∑
𝑖=1

(𝒖∞(𝒙𝑖 , 𝒒) + 𝒖ind(𝒙𝑖 , 𝒒)) , (2.18)

where the local free-stream flow is calculated as an average from neighbouring
points weighted by distance,

𝒖∞(𝒙, 𝒒) =
𝑛p
∑
𝑖=0

𝑛r
∑
𝑏=0

�̄�(𝑏)
𝑖 𝒖(𝑏)∞,𝑖 , (2.19)

with normalised weights �̄�(𝑏)
𝑖 ,

𝑤(𝑏)
𝑖 = exp(−10||𝒙 − 𝒙(𝑏)𝑖 ||) , (2.20)

�̄�(𝑏)
𝑖 = 𝑤𝑖 (𝑏)

∑𝑛p
𝑖=0∑𝑛r−1

𝑏=0 𝑤(𝑏)
𝑖

. (2.21)

For the calculation of the power of a virtual turbine – one that does not act on the
flow simulation, but is included for the purposes of optimisation – we lower the
disc-averaged velocity by the induction factor

𝒖∗r = (1 − 𝑎)𝒖r . (2.22)

2.2.2 Two-dimensional model specifics
The 𝑛e = 2 vortex elements of the first ring are initiated at the edge of the rotor
disc with radius 𝑟

𝒙(0)0 (𝜓)||𝑘+1 = 𝑹𝑧(𝜓𝑘) [0𝑟] , 𝒙(0)1 (𝜓)||𝑘+1 = 𝑹𝑧(𝜓𝑘) [ 0−𝑟] , (2.23)

where 𝑹𝑧(𝜓) is the rotation matrix for a rotation of an angle 𝜓 around the 𝑧-axis,

𝑹𝑧(𝜓) = [ cos𝜓 sin𝜓
− sin𝜓 cos𝜓] . (2.24)

The velocity 𝒖i induced at point 𝒙0 by a single vortex element located at 𝒙1 in 2D
is calculated with the Biot-Savart law as

𝒖i(𝒙0, 𝒙1) = [−𝑟𝑦𝑟𝑥 ] ( Γ
2𝜋

1
||𝒓||2 ) (1 − exp (−||𝒓||

2

𝜎2 )) , (2.25)
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where the relative position 𝒓 is

𝒓 = 𝒙1 − 𝒙0 . (2.26)

A Gaussian core with core size 𝜎 is included to regularise singular behaviour of
the induced velocity close to the vortex element.

2.2.3 Three-dimensional model specifics
At every time-step, the vortex filaments that make up a new vortex ring discretised
with 𝑛e elements are distributed over a circle with radius 𝑟 , with yaw angle 𝜓 ,

𝒙(0)𝑖 (𝜓)||𝑘+1 = 𝑹𝑧(𝜓𝑘)
⎡⎢⎢⎢
⎣

0
𝑟 cos(2𝜋 𝑖

𝑛e
)

𝑟 sin(2𝜋 𝑖
𝑛e
)

⎤⎥⎥⎥
⎦

for 𝑖 = 0, 1, … , 𝑛e , (2.27)

where 𝑹𝑧(𝜓) is the rotation matrix for a rotation of an angle 𝜓 around the 𝑧-axis,

𝑹𝑧(𝜓) = [
cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1
] . (2.28)

The induced velocity 𝒖i at a point 𝒙0 is calculated with the Biot-Savart law from a
single vortex element starting at 𝒙1 and ending at 𝒙2, with vortex strength Γ,

𝒖i(𝒙0, 𝒙1, 𝒙2) = ( Γ
4𝜋

𝒓1 × 𝒓2
||𝒓1 × 𝒓2||2

) (𝒓0 ⋅ (
𝒓1
||𝒓1||

− 𝒓2
||𝒓2||

)) (1 − exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

)) ,
(2.29)

where the relative positions 𝒓 are defined as

𝒓0 = 𝒙2 − 𝒙1 , (2.30)
𝒓1 = 𝒙1 − 𝒙0 , (2.31)
𝒓2 = 𝒙2 − 𝒙0 . (2.32)

A Gaussian core with core size 𝜎 is included to regularise singular behaviour of
the induced velocity close to the vortex filament.
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2.3 Optimisation for power maximisation
The free-vortex wake model described in the previous section is implemented as
a novel control-oriented model for dynamic wind farm flow control. Wind tur-
bine power maximisation is introduced in Section 2.3.1 in an economic model-
predictive control setting. The associated non-linear optimisation problem is for-
mulated in Section 2.3.2. The derivation of the discrete adjoint for calculation of
the gradient is described in Section 2.3.3, followed by the choice of a gradient-based
optimisation method to solve the non-linear problem in Section 2.3.4.

2.3.1 Economic model-predictive control
The conventional model-predictive control (MPC) approach is a model-based opti-
misation of control signals to drive an objective functional to zero, for example for
optimal tracking of a reference signal. However, for maximisation of wind farm
power production, the optimal objective value is not known a priori, leading to an
economic problem formulation. The economic MPC (EMPC) approach considers
optimisation of an objective to an unknown extremum. This optimisation prob-
lem is conventionally solved in a receding horizon setting with a finite prediction
horizon. After optimisation, the first (set of) control(s) is implemented and the
problem is shifted and solved again up to the new horizon [78].

One problem with optimisation to a finite horizon is that the optimisation con-
siders the prediction horizon as the end of time. Therefore, control actions that
prioritise gain within the horizonmay be optimal, although they would have unde-
sired consequences post-horizon. This is known as the turnpike effect [88], where
a solution stays close to the optimal trajectory for most of the window but diverges
towards the horizon. These finite horizon effects may be treated by terminal con-
straints or terminal conditions [78]. For example, the control signal has been kept
constant towards the end of the horizon to limit undesired effects in wind farm
control [66] or a terminal condition on rotor kinetic energy has been used to regu-
larise optimisation results for wind turbine control [89]. Given a sufficiently long
prediction horizon, EMPC has been shown to also converge without terminal con-
straints [90].

In this chapter, the turnpike effects are treated by considering sufficiently long
prediction horizons within the receding horizon setting, so as not to require termi-
nal constraints. The control problem is formulated in a non-linear EMPC setting
without terminal conditions with the goal of maximising mean power production
over time.

2.3.2 Objective function definition
Anon-linearminimisation problemwith a scalar objective function 𝐽 is constructed
to find the set of optimal controls𝒎𝑘0+𝑖 ∈ ℝ𝑛m , with 𝑛m ≤ 𝑛t𝑛c the number of free
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controls and 𝑖 = 0, 1, … , 𝑁h. The objective is the total power output over the pre-
diction horizon of 𝑁h steps from the current step 𝑘0,

min𝒎𝑘

𝑘0+𝑁h

∑
𝑘=𝑘0

𝐽 (𝒒𝑘 , 𝒎𝑘) = min𝒎𝑘

𝑘0+𝑁h

∑
𝑘=𝑘0

𝑸𝒚𝑘(𝒒𝑘 , 𝒎𝑘) + 𝜟𝒎T𝑘𝑹𝜟𝒎𝑘 , (2.33)

where 𝒚𝑘 contains the power of modelled and virtual turbines, 𝜟𝒎𝑘 = 𝒎𝑘−𝒎𝑘−1 is
the change in control value between time steps, and𝑸 ∈ ℝ1×𝑛t and 𝑹 ∈ ℝ𝑛m×𝑛m are
weights to balance power output and actuation cost. A linear sum of power is cho-
sen for mean power maximisation because power is already a positive objective
function. A quadratic functional would more heavily weight peaks in power pro-
duction and be suboptimal for maximisation of mean power. The output weight is
chosen negative (𝑸 < 0) so that power is maximised for minimisation of the objec-
tive. The input weight 𝑹 functions as a regularisation term and aids convergence
to suitable control solutions by smoothing the optimisation landscape.

2.3.3 Discrete adjoint method for constructing the gradient
The gradient of the objective function is calculated following the discrete adjoint
method [91] because the method scales well for a large number of input sensitiv-
ities. We take the non-linear state-space system in (2.1) and define the objective
function 𝐽𝑘 = 𝐽 (𝒒𝑘 , 𝒎𝑘) at time-step 𝑘, such that the total objective function 𝐽total
is accumulated over a number of steps 𝑁h,

𝐽total = 𝐽𝑁h +
𝑁h−1
∑
𝑖=0

𝐽𝑖 , (2.34)

where 𝑖 = 0 at the current time-step 𝑘 = 𝑘0. This is the total objective function to
be minimised in the optimisation problem in (2.33).

To derive the adjoint system, we extend the objective function with adjoint
states and system constraint,

̄𝐽total = 𝐽𝑁h +
𝑁h−1
∑
𝑖=0

(𝐽𝑖 + 𝝀T𝑖+1 (𝑓𝑖 − 𝒒𝑖+1)) , (2.35)

where the adjoint states 𝝀 can be chosen freely because 𝑓𝑖 − 𝒒𝑖+1 = 0. Since 𝐽𝑘 =
𝐽 (𝒒𝑘 , 𝒎𝑘), a differential change 𝛿 ̄𝐽total can be expanded in terms of changes in 𝒒
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and 𝒎 as:

𝛿 ̄𝐽total = (
𝜕𝐽𝑁h

𝜕𝒒𝑁h

− 𝝀T𝑁h
) 𝛿𝒒𝑁h +

𝜕𝐽𝑁h

𝜕𝒎𝑁h

𝛿𝒎𝑁h

+
𝑁h−1
∑
𝑖=0

(( 𝜕𝐽𝑖
𝜕𝒒𝑖

+ 𝝀T𝑖+1
𝜕𝑓𝑖
𝜕𝒒𝑖

− 𝝀T𝑖 ) 𝛿𝒒𝑖 + ( 𝜕𝐽𝑖
𝜕𝒎𝑖

+ 𝝀T𝑖+1
𝜕𝑓𝑖
𝜕𝒎𝑖

) 𝛿𝒎𝑖) , (2.36)

We then choose the adjoint states to be

𝝀T𝑁h
= 𝜕𝐽𝑁h

𝜕𝒒𝑁h

, 𝝀T𝑖 = 𝜕𝐽𝑖
𝜕𝒒𝑖

+ 𝝀T𝑖+1
𝜕𝑓𝑖
𝜕𝒒𝑖

, 𝝀T0 = 𝟎 , (2.37)

such that the variations due to 𝒒 in (2.36) are cancelled out. The adjoint states are
solved for by propagation backwards in time, starting from the final adjoint state.
The gradient of the objective function parts 𝐽𝑘 to the input can then be calculated
from these adjoint states

∇𝐽𝑁h = 𝛿𝐽𝑁h

𝛿𝒎𝑁h

, ∇𝐽𝑖 =
𝜕𝐽𝑖
𝜕𝒎𝑖

+ ( 𝜕𝑓𝑖
𝜕𝒎𝑖

)
T
𝝀𝑖+1 . (2.38)

The total gradient ∇ ̄𝐽total with respect to all control parameters 𝒎𝑖 is then con-
structed as

∇ ̄𝐽total =
𝑁h

∑
𝑖=0

∇𝐽𝑖 . (2.39)

The partial derivatives of the state update and output function with respect to the
full model state and controls are stored in memory during the forward simulation
of the model. These partial derivatives are provided for the given model and ob-
jective function in 2.A.

The evaluation of the gradient thus requires a single forward simulation with
evaluation of the partial derivatives and a single backward pass to solve for the
adjoint states and construct the gradient. In that sense, this method of gradient
evaluation is considerably more efficient than finite differencemethods as the com-
putational cost of the discrete adjoint increases only minimally with the number
of control parameters for which the derivative is required. The computational cost
of gradient evaluation with the discrete adjoint primarily scales with the expense
of the forward simulation and the associated partial derivatives.
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2.3.4 Gradient-based optimisation methods
The availability of the gradient allows the use of gradient-based optimisation tech-
niques for control optimisation. Exploration of the objective function shows that
it is non-linear and non-convex, with almost flat regions and numerous local min-
ima. Initial experiments were run with L-BFGS-B optimisation [92] as was also
used in the work by Munters and Meyers [59]. However, this optimiser appeared
sensitive to initialisation at local maxima and to convergence to local minima.

The Adam optimiser [93] is a gradient-based method often used in machine
learning for optimisation of neural network weights, where it is applied for gra-
dient descent with noisy gradients in complex optimisation landscapes. It uses a
momentum approach to accelerate gradient descent and has proven to be less sen-
sitive to the choice of initial guess and local minima. Within this work, we use the
Adam optimiser with the default parameters; a maximum step size 𝛼 = 0.001 and
the default decay rates 𝛽1 = 0.9 and 𝛽2 = 0.999. Tuning of these parameters may
still improve performance. The yaw angle is on a different order of magnitude
than axial induction. Therefore, it is scaled by a factor 10−2 in the optimisation, so
that the step size covers a similar range of the allowable range of induction value
and yaw angle.

2.4 Results and discussion
A brief overview of the 2D and 3D FVW under steady conditions is given in Sec-
tion 2.4.1 to illustrate the test case configuration and provide a steady baseline for
control performance. This is followed by two example cases to demonstrate the
use of the FVW as a novel dynamic model for control optimisation in the receding
horizon setting described previously; a 2D case with induction control is provided
in Section 2.4.2 and a 3D case for yaw control under time-varying wind direction
in Section 2.4.3. Finally, Section 2.4.4 discusses finite horizon effects in EMPC for
wind farm control.

2.4.1 Steady-state operation
We define a two-turbine case for evaluating control optimisation with the FVW,
starting with steady-state control characteristics. The two turbines are spaced 5D
apart, where 𝐷 is the rotor diameter, aligned with the uniform unit inflow. The
upstream turbine is modelled with the FVW and the virtual downstream turbine
performance is evaluated using the flow velocity over the rotor area at the down-
stream position. The parameters for the FVW are provided in Table 2.1. An explo-
ration of parameter sensitivity is supplied in 2.B.

Figure 2.1 shows a 2D FVW simulation with an induction factor 𝑎 = 0.33 and
without yaw misalignment. The pairs of vortex points provide the basis for the
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Table 2.1: FVW parameters for 2D and 3D case

2D 3D

time-step ℎ 0.2 0.3
core size 𝜎 0.1 0.16
number of rings 𝑛r 60 40
elements per ring 𝑛e 2 16

1
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Figure 2.1: Illustration of the 2D FVW for uniform unit inflow without yawmisalignment and with
a constant induction factor 𝑎 = 0.33. The pairs of vortex points (top) can be used to calculate the
velocity at any point, allowing visualisation of a dense velocity field (bottom). The figure illustrates
the two-turbine case where the second turbine performance is calculated from the flow velocity 5D
downstream.

simulation and allow calculation of a dense velocity field. Disturbances in the far
wake are the result of numerical instabilities. It is also notable that the wake is
quite wide as is expected for planar flow.

The 3D FVW produces a vortex ring structure as shown in Figure 2.2 for a
simulation with yaw heading of 𝜓 = 30° and induction factor 𝑎 = 0.33. The figure
shows the dense velocity field with the wake deficit calculated from the skeleton of
vortex filaments. A kidney-shaped wake appears from the pair of counter-rotating
vortices that are generated by a turbine operating under yaw misalignment, as
shown in [77].

The model response to control signal variation is verified by examining power
production in steady state. First, Figure 2.3 shows the 2D and 3D FVWpower curve
for a variation in axial induction from 𝑎 = 0 to 𝑎 = 0.5. The maximum individual
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Figure 2.2: The 3D FVW models the wake from a series of vortex rings discretised into vortex
elements (top), allowing calculation of a velocity field showing the wake deficit (bottom). The
kidney-shaped wake appears as a pair of counter-rotating vortices is formed under yaw misalign-
ment. Simulation under uniform inflow with a yaw heading of 𝜓 = 30° and induction 𝑎 = 0.33. The
figure illustrates the case where the upstream turbine is modelled with the 3D FVW and the down-
stream turbine performance is calculated from the flow velocity over a rotor disc 5D downstream.

turbine power matches the expectation frommomentum theory for the chosen pa-
rameters at the theoretical optimum induction of 𝑎 = 0.33. Steady under-induction
provides a power gain of 3.6 % over greedy control. The 2D and 3D FVW show re-
markably similar behaviour in terms of power production for varying induction
factor on the upstream turbine. The similarity in the power estimate shows an op-
portunity for doing induction control in 2D model studies. Additionally, 2D wind
farm flowmodels have already been used for studies of induction control in a wind
farm setting [65, 66].

Second, a yaw sweep from 𝜓 = −45° to 𝜓 = 45° is illustrated in Figure 2.4. This
steady sweep shows a demonstrable lack of power gain from yaw misalignment
in the 2D FVW. However, in 3D, yaw misalignment does lead to wake redirection
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Figure 2.3: Power production in steady state for varying induction on the upstream turbine, in 2D
(left) and 3D (right), with turbine configuration as in Figures 2.1 and 2.2, respectively. Total power
is the sum of the powers from turbine 0 and turbine 1. Maximum greedy power production occurs
for 𝑎 = 0.33. Within this model, lowering the induction on the upstream turbine to 𝑎 = 0.27 leads
to a 3.6 % gain in total power.

and the maximum power achieved in steady state is 0.313 for a yaw angle of 34°,
providing a gain of 26.1 % over greedy control.

The 3D FVW shows the formation of a kidney-shaped wake from a counter-
rotating vortex pair when the turbine is operated under yaw misalignment. The
subsequent deflection of the turbine wake leads to an increase of the combined
power production. These dynamics are not present in 2D, which may explain the
lack of wake redirection. This supports previous results that found 2D flow mod-
elling ineffective in capturing the essential effects of wake steering [63].

Themodel is currently symmetric, which means there is no difference between
positive or negative yaw misalignment. Experimental studies have found wake
steering to be asymmetric due to the rotation induced by the rotor [27–29]. A
normal actuator disc was chosen for simplicity, but a root vortex could be included
to model the turbine as a rotating actuator disc to model the asymmetric aspect of
wake redirection.

2.4.2 Induction control in two-dimensional flow
Given the similarity between 2D and 3D in power curves for variation of axial
induction, an optimisation case for induction control is set up in 2D with a config-
uration as in Figure 2.1 and parameters as in Table 2.1. Both turbines are aligned
with the inflow wind direction and set to a 𝜓 = 0° yaw angle. The downstream
turbine is assumed to be performing at its greedy optimum with an induction fac-
tor 𝑎 = 0.33, whereas the induction control signal of the upstream turbine is to be
found by solving the optimisation problem.
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Figure 2.4: Power production in steady state for varying yaw on the upstream turbine, in 2D (left)
and 3D (right), with turbine configuration as in Figures 2.1 and 2.2, respectively. The downstream
turbine power is calculated from the flow velocity 5D downstream from the first turbine. Total
power is the sum of the powers from turbine 0 and turbine 1. The 2D FVW does not include the
dynamics tomodel wake steering effectively. In the 3D FVW, a 26.1 % gain in total power is observed
for a yaw angle of 𝜓 = 34° compared to greedy control where 𝜓 = 0°.

The objective function (2.33) is constructed with the control signal 𝒎𝑘 = [𝑎𝑘],
over a prediction horizon of 𝑁h = 100 samples. The output contains the power
of both turbines, 𝒚𝑘 = [𝑝0 𝑝1]

T
. The objective function weights are set to 𝑸 =

[−1 −1] and𝑹 = [10]. This choice of inputweight resulted in an adequate balance
between input action and power production in an exploratory parameter sweep.
At every time step, the optimisation is run for 50 iterations, after which the first
value of the control signal from the optimisation is implemented in the receding
horizon control scheme. Further iterations have not lead to consistently better
performance in terms of objective function value given the current optimiser con-
figuration. The starting state for the optimisation case is the result of a steady
simulation under greedy operating conditions to remove transient effects. This
initial condition is shown in the first frame of Figure 2.6.

The control signal produced in this economic MPC framework is illustrated
in Figure 2.5. The optimisation converges to a roughly periodic excitation with a
dominant frequency of approximately 𝑓 = 0.20. The signal features sharp down-
ward peaks where the induction is lowered, thus reducing thrust and allowing
more flow to pass through the rotor disc. In addition to the periodic excitation,
the mean induction factor is lowered to ̄𝑎 = 0.30 below the greedy optimum of
𝑎 = 0.33. The mean power produced in the final two-thirds of the simulation
(𝑡 > 20) is 0.283, which is an increase of 6.0 % over the maximum power achieved
with steady induction control.

A series of snapshots of the wake produced with this control signal is shown
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Figure 2.5: Receding horizon optimisation of the axial induction control signal for total power
yields dynamic behaviour that stimulates wake breakdown and improves time-average power pro-
duction by 6.0 % over steady under-induction. Control signal for turbine 0 is optimised whilst tur-
bine 1 is virtually modelled to be operating at its greedy optimum, positioned 5D downstream in
fully waked conditions. Total power is the sum of power from turbine 0 and turbine 1. Snapshots
of the flow field at times 𝑡0 to 𝑡7 are illustrated in Figure 2.6.

in Figure 2.6. The effects of periodic induction excitation are apparent in the flow
field of the wake as coherent structures are formed that travel downstream.

We observe that optimisation with the 2D FVW leads to induction control
signals that combine static under-induction with a strong dynamic component.
Within the current model, this combination of periodic excitation and lowering of
themean induction factor outperforms a simple steady induction decrease in terms
of mean power production. The sharp downward peaks in induction signal appear
to stimulate breakdown of the wake and mixing with the free-stream flow. Note
that mixing here does not refer to turbulent mixing as no turbulence is present in
the FVW model.

The use of purely static induction control was previously shown not to be a
very effective solution for improving wind farm power production [18, 20]. These
results are supported as, within the 2D FVW, the use of under-induction on its
own is less effective than the dynamic induction signal acquired through optimi-
sation. Further studywill need to find outwhether the combination of slight under-
induction and periodic excitation is effective in a realistic wind farm scenario.

The periodic aspect of this control signal resembles the sinusoidal thrust sig-
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Figure 2.6: Snapshots of the flow field from the 2D free-vortex wake simulation under uniform
inflow in positive 𝑥 direction with the induction signal applied to the turbine as shown in Figure 2.5.
The effects of the periodic induction excitation can be seen in the structure of the wake and appear
to enhance wake breakdown.
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nals that Munters and Meyers [22] found to improve wake mixing by stimulating
shedding of vortex rings from the wind turbine. They find sinusoidal actuation at
a non-dimensionalised frequency of 𝑓 = 0.25 with a mean local thrust coefficient
𝑐′t = 2.0 and amplitude 𝐴 = 1.5 to be optimal for turbines operating in a small farm
at 5D spacing. The signal found in the current work has a slightly lower frequency
at 𝑓 = 0.20, and the induction signal corresponds to a lowermean thrust coefficient
𝑐′t = 1.75 with amplitude 𝐴 = 0.87. Their optimisation in a 3D LES environment
with turbulent inflow is considerably more complex and more expensive than the
2D FVW, which runs well on a regular laptop. It is interesting to note that both
studies consider a non-rotating actuator-disc wind turbine model. The differences
between the two signals are worth exploring further and will be investigated in
future work.

2.4.3 Yaw control with wind direction variation
Optimisation for yaw control requires the 3D FVW model because it captures the
dynamics of the curled wake and therefore shows demonstrable power gain from
wake steering, as shown in Figure 2.4. The set-up for the optimisation case is as
illustrated in Figure 2.2 with the parameters listed in Table 2.1. A smooth wind di-
rection change with unit velocity magnitude from 0° to −20° is implemented to test
the capabilities for yaw control under time-varying conditions. The downstream
turbine is assumed to be performing at its greedy optimum with an induction fac-
tor 𝑎 = 0.33 and a yaw angle that perfectly tracks the inflow direction. The yaw
control signal of the upstream turbine is found as the solution of the optimisation
problem.

The objective function (2.33) is constructed with the control signal 𝒎𝑘 = [𝜓𝑘],
over a prediction horizon of 𝑁h = 60 samples. The output contains the power
of both turbines, 𝒚𝑘 = [𝑝0 𝑝1]

T
. The objective function weights are set to 𝑸 =

[−1 −1] and 𝑹 = [0.025]. This choice of input weight resulted in an adequate
balance between input action and power production in an exploratory parameter
sweep. It differs from the 2D case because the yaw control signal has a different
magnitude than the induction signal. At every time step, the optimisation is run
for 10 iterations, after which the first value of the control signal is implemented
in the receding horizon control scheme. Given the slower variations in yaw angle
compared to induction control, fewer iterations were required before further iter-
ations no longer yielded consistent improvement in objective function with the
current optimiser. The starting state for the yaw optimisation case is the result
of a steady simulation with a 30° yaw heading on the upstream turbine to reach
steady conditions with wake redirection. This initial condition is illustrated in the
first frame of Figure 2.8.

The control signal implemented in the receding horizon control is shown in
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Figure 2.7: Optimisation of the yaw control signal for total power maximisation finds a solution
that utilises yaw misalignment to redirect the wake away from the downstream turbine. As the
wind direction changes, the turbine is aligned with the flow to perform at its greedy optimum as the
wake no longer impinges on the downstream turbine. Control signal for turbine 0 is optimisedwhilst
turbine 1 is virtually modelled to be operating at its greedy optimum, positioned 5D downstream
in fully waked conditions. Total power is the sum of power from turbine 0 and turbine 1. Snapshots
of the flow field at times 𝑡0 to 𝑡5 are illustrated in Figure 2.8.

Figure 2.7 together with the inflow and the associated power production for both
turbines. The result shows wake redirection through yaw misalignment is main-
tained for the first section where the wind direction has not yet changed. The tur-
bine is slowly aligned with the inflow in anticipation of the wind direction change.
As the wind direction changes, the upstream turbine is rotated into the wind until
it is aligned with the free-stream inflow direction. The wake no longer interacts
with the downstream turbine which makes its greedy optimum a good control
solution.

A series of snapshots of the flow field averaged over the rotor height are shown
in Figure 2.8. The snapshots illustrate how the change inwind direction propagates
through the wake. It is visible that the turbine control transitions fromwake steer-
ing with yaw misalignment to greedy control and alignment with the new wind
direction.

The use of the 3D FVW as a novel dynamic model for online control optimi-
sation adds to previous work under time-varying wind directions, where Cam-
pagnolo et al. [35] applied pre-optimised set-points in wind tunnel experiments
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Figure 2.8: A series of snapshots of the flow field averaged over rotor height for 3D free-vortex
wake simulation under a changing inflow direction. The black arrow indicates the wind direction
and the yaw signal applied to the turbine is shown in Figure 2.7. This case illustrates a transition
from wake steering to greedy control as the optimal operating point changes with inflow variation.
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and Doekemeijer et al. [50] used FLORIS to generate steady-state optimal yaw set-
points in an online closed-loop controller. Howland et al. [79] presented dynamic
yaw control using another, more simplified, physics-based model – a lifting line
model with a Gaussian wake. They operated under unsteady inflow, but with an in-
variant mean wind direction. Similarly, unsteady flow without direction changes
was considered in the model-free yaw control work by Ciri et al. [94].

Especially for yaw control, the initial guess is critical for attaining good results
with the optimisation algorithm. The optimiser struggles to find good solutions
with an initial guess at zero misalignment from a configuration with greedy yaw
control and two turbines with full wake interaction. This seems to be the result of a
rather flat optimisation landscape in that configuration. Given somemisalignment
in the initial guess for the control signal, the optimiser will tend to find a wake
steering solution. However, when the turbine is currently misaligned to one side,
while the other is more effective, the controller is unlikely to switch because the
gradient-based optimisation does not cover a large enough search space. A multi-
start optimisation may be a solution to avoid having to predetermine which side
to initialise.

Further work is required to validate the effectiveness of the dynamic yaw con-
trol results under realistic conditions and investigate whether these solutions im-
prove upon wind farm control strategies with steady control-oriented models. Ad-
ditionally, a combination of yaw-based control and over-induction has been shown
to improve wake steering results [95], which could be further explored in optimi-
sation with the 3D FVW.

2.4.4 Finite horizon effects in economic MPC
In addition to the EMPC results in Sections 2.4.2 and 2.4.3, we illustrate the interme-
diate results that show the effects of optimisation on a finite horizon. Figure 2.9
illustrates the optimisation result for a single optimisation window for both the
induction control and the yaw control case. It illustrates the executed signal, the
result of optimisation with a finite horizon at the current time step, and the actual
future control signal that is applied in the receding horizon setting. Towards the
finite horizon, the induction returns towards the greedy optimum as the effects
no longer reach the downstream turbine. Right at the horizon, a final peak in
induction occurs as the optimiser tries to generate a little more power with over-
inductive behaviour. The effect of optimisation on a finite horizon for yaw control
means that the turbine will rotate back to alignment with the inflow when the
wake effects no longer propagate to the downstream turbine within the optimisa-
tion window.

For the cases presented in this chapter, the horizon length is long enough that
these end-of-window effects do not affect the control solution as the receding hori-
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Figure 2.9: The control signal for the finite horizon is found through optimisation at every time-
step. The executed signal is the past control input leading up to the current state. An optimisation
result is found up to the prediction horizon. The first step of the optimised signal is implemented,
after which it is shifted and re-used at the next time-step to start re-optimisation. The future signal
is the actual control input that ends up being applied in this receding horizon approach.

zon control scheme prevents these finite horizon effects from being implemented.
However, especially in optimisation cases where the window is relatively short
and input cost is high, the horizon effect needs to be properly treated.

Horizon length for single wind turbine optimisation should be long enough to
push turnpike effects away from the signal to be executed. In a multiple-turbine
setting, horizon length should be chosen at least long enough such that the ef-
fects of control signal variation are observed at the downstream turbine for long
enough such that the optimiser finds a balanced control solution. Shorter horizons
converge to greedy solutions because the effects do not propagate to downstream
turbines within the optimisation window.
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2.5 Conclusions
This work presents a control-oriented free-vortex wake (FVW) model of an ac-
tuator disc in 2D and 3D to represent a wind turbine wake. A main novelty in
our work is the derivation of the discrete adjoint equations associated with the
FVW model, which allows efficient gradient evaluation for use in gradient-based
optimisation methods. The FVW model is computationally efficient enough that
the experiments in this chapter could be run on a regular laptop, without requir-
ing high performance computing clusters. The evaluation of the gradient requires
only a single forward simulation and backward integration of the adjoint states,
which is on the order of ten times slower than a simple simulation in the current
implementation due to the calculation and storage of all partial derivatives.

The FVW model is implemented as a novel dynamic model for gradient-based
control optimisation in an economic model-predictive control setting for maximis-
ing mean power production by reducing the negative effects of wind turbine wake
interaction. This implementation allows generation of optimal control solutions
and exploration of dynamical wake behaviour.

In a 2D simulationwith receding horizon optimisation, dynamic induction con-
trol signals are found that combine slight under-induction with a roughly periodic
excitation at a frequency of 𝑓 = 0.20. This results in a 6.0 % gain over the max-
imum power generated with optimised steady induction control. The FVW pro-
vides a new, efficient model for exploring dynamic induction control, which has
previously been studied in comparatively expensive LES studies.

The 3D free-vortex wake model exhibits curled wake dynamics under yaw
misalignment and is therefore suitable as a novel physics-based control-oriented
model for dynamic wake steering control. The economic model-predictive control
strategy finds yaw signals under time-varyingwind direction that show bothwake
redirection and a smooth return to greedy control. This adds to the existing litera-
ture that bases yaw control on steady model results or considers dynamic control
with unsteady flow, but invariant mean wind directions.

Future work will include validation of the model response, exploration of the
dynamics of the optimisation problem, and further experiments with the optimi-
sation of induction control and wake redirection.
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2.A Partial derivatives
This section presents the partial derivatives required for the calculation of the gra-
dient with the discrete adjoint. Derivatives of the model state update from Sec-
tion 2.2 are provided in 2.A.1 and those of the output and objective function from
Section 2.3 are provided in 2.A.2.

2.A.1 State update
The Jacobian matrix of the state update with respect to the previous state can be
written as

𝜕𝑓 (𝒒𝑘 , 𝒎𝑘)
𝜕𝒒𝑘

= 𝜕𝒒𝑘+1
𝜕𝒒𝑘

= 𝜕
𝜕𝒒𝑘

⎡⎢⎢⎢
⎣

𝑿
𝜞
𝑼
𝑴

⎤⎥⎥⎥
⎦𝑘+1

=
⎡⎢⎢⎢⎢⎢
⎣

𝜕𝑿𝑘+1
𝜕𝑿𝑘

𝜕𝑿𝑘+1
𝜕𝜞𝑘

𝜕𝑿𝑘+1
𝜕𝑼𝑘

𝟎
𝜕𝜞𝑘+1
𝜕𝑿𝑘

𝜕𝜞𝑘+1
𝜕𝜞𝑘

𝜕𝜞𝑘+1
𝜕𝑼𝑘

𝟎
𝟎 𝟎 𝜕𝑼𝑘+1

𝜕𝑼𝑘
𝟎

𝟎 𝟎 𝟎 𝟎

⎤⎥⎥⎥⎥⎥
⎦

, (2.40)

where those derivatives that are zero have been removed, leaving a number of
sub-matrices to be constructed.

First, take the partial derivatives of the induced velocity of a single vortex ele-
ment 𝒖i in 2D, which is divided in three parts (𝒖0, 𝑢1 and 𝑢2) to simplify calculation,

𝒖i(𝒙0, 𝒙1) = [−𝑟𝑦𝑟𝑥 ]
⏟
𝒖0

( Γ
2𝜋

1
||𝒓||2 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑢1

(1 − exp (−||𝒓||
2

𝜎2 ))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢2

. (2.41)

For clarity, this section will refer to 𝒖i as 𝒖.
The derivative of induced velocity with respect to positions is

𝜕𝒖
𝜕𝒙0

= −𝜕𝒖𝜕𝒓 , 𝜕𝒖
𝜕𝒙1

= 𝜕𝒖
𝜕𝒓 , (2.42)

where the derivative to the relative position can be expanded as
𝜕𝒖
𝜕𝒓 = 𝜕𝒖0

𝜕𝒓 𝑢1𝑢2 + 𝒖0
𝜕𝑢1
𝜕𝒓 𝑢2 + 𝒖0𝑢1

𝜕𝑢2
𝜕𝒓 . (2.43)

The required partial derivatives are
𝜕𝒖0
𝜕𝒓 = [0 −1

1 0 ] , (2.44)

𝜕𝑢1
𝜕𝒓 = − Γ𝜋 ( 𝒓T

||𝒓||4) , (2.45)

𝜕𝑢2
𝜕𝒓 = 2𝒓T

𝜎2 exp (−||𝒓||
2

𝜎2 ) . (2.46)
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For all rings 𝑏 > 0, the Jacobian matrix from element positions to positions is filled
with the partial derivatives as

[𝜕𝑿 (𝑏)

𝜕𝑿 (𝑎) ]𝑖𝑗 = ℎ𝜕𝒖
(𝑏)
𝑖

𝜕𝒙(𝑎)𝑗
(𝒙(𝑏)𝑖 , 𝒙(𝑎)𝑗 ) (2.47)

for 𝑖, 𝑗 = 0, 1 , 𝑎 = 1, 2, … , 𝑛r and 𝑏 = 1, 2, … , 𝑛r − 1 .

If 𝑎 + 1 = 𝑏, then the diagonal elements are substituted as

[ 𝜕𝑿 (𝑏)
𝑘+1

𝜕𝑿 (𝑏−1)
𝑘

]
𝑖𝑖
← 1 + ℎ

𝑛r−1
∑
𝑚=1

1
∑
𝑛=0

𝜕𝒖(𝑏−1)𝑖
𝜕𝒙(𝑏−1)𝑗

(𝒙(𝑏−1)𝑖 , 𝒙(𝑚)𝑛 ) . (2.48)

The induced velocity 𝒖i in 3D is similarly divided into three parts 𝒖0, 𝑢1, and
𝑢2,

𝒖i(𝒙0, 𝒙1, 𝒙2) = ( Γ
4𝜋

𝒓1 × 𝒓2
||𝒓1 × 𝒓2||2

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒖0

(𝒓0 ⋅ (
𝒓1
||𝒓1||

− 𝒓2
||𝒓2||

))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢1

(1 − exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢2

.

(2.49)

The required full derivatives of induced velocity with respect to the position
inputs can be expanded as

𝜕𝒖
𝜕𝒙0

= − 𝜕𝒖
𝜕𝒓1

− 𝜕𝒖
𝜕𝒓2

, (2.50)

𝜕𝒖
𝜕𝒙1

= 𝜕𝒖
𝜕𝒓1

− 𝜕𝒖
𝜕𝒓0

, (2.51)

𝜕𝒖
𝜕𝒙2

= 𝜕𝒖
𝜕𝒓2

+ 𝜕𝒖
𝜕𝒓0

. (2.52)

We expand the required derivatives according to the product rule into manageable
parts,

𝜕𝒖
𝜕𝒓0

= 𝜕𝒖0
𝜕𝒓0

𝑢1𝑢2 + 𝒖0
𝜕𝑢1
𝜕𝒓0

𝑢2 + 𝒖0𝑢1
𝜕𝑢2
𝜕𝒓0

, (2.53)

𝜕𝒖
𝜕𝒓1

= 𝜕𝒖0
𝜕𝒓1

𝑢1𝑢2 + 𝒖0
𝜕𝑢1
𝜕𝒓1

𝑢2 + 𝒖0𝑢1
𝜕𝑢2
𝜕𝒓1

, (2.54)

𝜕𝒖
𝜕𝒓2

= 𝜕𝒖0
𝜕𝒓2

𝑢1𝑢2 + 𝒖0
𝜕𝑢1
𝜕𝑟2

𝑢2 + 𝒖0𝑢1
𝜕𝑢2
𝜕𝒓2

. (2.55)
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The partial derivatives of 𝒖0 are

𝜕𝒖0
𝜕𝒓0

= 𝟎 , (2.56)

𝜕𝒖0
𝜕𝒓1

= Γ
4𝜋 (||𝒓1 × 𝒓2||2𝑰3 − 2 (𝒓1 × 𝒓2) (𝒓1 × 𝒓2)T

||𝒓1 × 𝒓2||4
) [𝒓2]T× , (2.57)

𝜕𝒖0
𝜕𝒓2

= Γ
4𝜋 (||𝒓1 × 𝒓2||2𝑰3 − 2 (𝒓1 × 𝒓2) (𝒓1 × 𝒓2)T

||𝒓1 × 𝒓2||4
) [𝒓1]× . (2.58)

Here, [𝒂]× indicates the skew-symmetric constructed from a vector 𝒂, such that
the cross product can be written in the form

𝒂 × 𝒃 = [𝒂]×𝒃 = [
0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] [
𝑏1
𝑏2
𝑏3
] , (2.59)

allowing compact notation of the derivative

𝜕𝒂 × 𝒃
𝜕𝒃 = [𝒂]× . (2.60)

The partial derivatives of 𝑢1 are

𝜕𝑢1
𝜕𝒓0

= ( 𝒓1
||𝒓1||

− 𝒓2
||𝒓2||

)
T
, (2.61)

𝜕𝑢1
𝜕𝒓1

= ||𝒓1||2𝒓T0 − (𝒓0 ⋅ 𝒓1)𝒓T1
||𝒓1||3

, (2.62)

𝜕𝑢1
𝜕𝒓2

= −||𝒓2||
2𝒓T0 − (𝒓0 ⋅ 𝒓2)𝒓T2

||𝒓2||3
. (2.63)

Finally, the partial derivatives of 𝑢2 are

𝜕𝑢2
𝜕𝒓0

= − exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

) (2 ||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||4

) 𝒓T0 , (2.64)

𝜕𝑢2
𝜕𝒓1

= exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

) (2 (𝒓1 × 𝒓𝟐)T
𝜎2||𝒓0||2

) [𝒓2]T× , (2.65)

𝜕𝑢2
𝜕𝒓2

= exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

) (2 (𝒓1 × 𝒓𝟐)T
𝜎2||𝒓0||2

) [𝒓1]× . (2.66)
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For all rings 𝑏 > 0, the Jacobian matrix is filled with the partial derivatives as

[𝜕𝑿 (𝑏)

𝜕𝑿 (𝑎) ]𝑖𝑗 =

⎧⎪⎪
⎨⎪⎪
⎩

ℎ𝜕𝒖(𝑏)𝑖
𝜕𝒙(𝑎)𝑗

(𝒙(𝑏)𝑖 , 𝒙(𝑎)𝑗 , 𝒙(𝑎)𝑗+1) if 𝑗 = 0 ,

ℎ𝜕𝒖(𝑏)𝑖
𝜕𝒙(𝑎)𝑗

(𝒙(𝑏)𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) if 𝑗 = 𝑛e ,

ℎ𝜕𝒖(𝑏)𝑖
𝜕𝒙(𝑎)𝑗

(𝒙(𝑏)𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) + ℎ𝜕𝒖(𝑏)𝑖
𝜕𝒙(𝑎)𝑗

(𝒙(𝑏)𝑖 , 𝒙(𝑎)𝑗 , 𝒙(𝑎)𝑗+1) otherwise ,
(2.67)

for 𝑖, 𝑗 = 0, 1, … , 𝑛e , 𝑎 = 0, 1, … , 𝑛r − 1 and 𝑏 = 1, 2, … , 𝑛r − 1 .

If 𝑎 + 1 = 𝑏, then the diagonal elements are substituted as

[ 𝜕𝑿 (𝑏)
𝑘+1

𝜕𝑿 (𝑏−1)
𝑘

]
𝑖𝑖
← 1 + ℎ

𝑛r−1
∑
𝑚=1

𝑛e
∑
𝑛=1

𝜕𝒖(𝑏−1)𝑖
𝜕𝒙(𝑏−1)𝑗

(𝒙(𝑏−1)𝑖 , 𝒙(𝑚)
𝑛−1 , 𝒙(𝑚)𝑛 ) . (2.68)

The position of the first ring depends only on the yaw angle, therefore

𝜕𝑿 (0)

𝜕𝑿 (𝑎) = 𝟎 . (2.69)

Further derivatives are mostly independent from the dimension of the FVW
model used.

The position update for all rings 𝑏 > 0 depends on the vortex strength of all
elements as

[𝜕𝑿
(𝑏)
𝑘+1

𝜕𝜞(𝑎)
𝑘

]
𝑖𝑗
= 𝜕𝒙(𝑏)𝑖
𝜕𝒖(𝑏−1)𝑖

𝜕𝒖(𝑏−1)𝑖
𝜕Γ(𝑎)𝑛

= ℎ𝜕𝒖
(𝑏−1)
𝑖

𝜕Γ(𝑎)𝑗
(𝒙(𝑏−1)𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) (2.70)

for 𝑖 = 0, 1, … , 𝑛e , 𝑗 = 1, 2, … , 𝑛e and 𝑎 = 0, 1, … , 𝑛r − 1 ,

where the partial derivative of induced velocity to vortex strength is

𝜕𝒖𝑖
𝜕Γ𝑗

= 1
Γ 𝑗𝒖𝑖 . (2.71)

The points defining the vortex filament travel based on their stored free-stream
velocity, so for all rings 𝑏 > 0,

𝜕𝑿 (𝑏)
𝑘+1

𝜕𝑼 (𝑏−1)
𝑘

= ℎ𝑰𝑛p . (2.72)
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Vortex strength and free-stream velocity are passed from one ring to the next for
all rings 𝑏 > 0,

𝜕𝜞(𝑏)𝑘+1
𝜕𝜞(𝑏−1)𝑘

= 𝑰𝑛e , (2.73)

𝜕𝑼 (𝑏)
𝑘+1

𝜕𝑼 (𝑏−1)
𝑘

= 𝑰𝑛p . (2.74)

The initialisation of a new ring depends on the entire state of themodel through
the rotor velocity,

𝜕𝜞(0)𝑘+1
𝜕𝑿𝑘

= 𝜕𝜞(0)
𝜕𝒖r

𝜕𝒖r
𝜕𝑿 , (2.75)

𝜕𝜞(0)𝑘+1
𝜕𝜞𝑘

= 𝜕𝜞(0)
𝜕𝒖r

𝜕𝒖r
𝜕𝜞 , (2.76)

𝜕𝜞(0)𝑘+1
𝜕𝑼𝑘

= 𝜕𝜞(0)
𝜕𝒖r

𝜕𝒖r
𝜕𝑼 , (2.77)

where

𝜕𝜞
𝜕𝒖r

= ℎ𝑐′𝑡 (𝑎)𝒏(𝜓)(𝒖T
r 𝒏(𝜓)) . (2.78)

The Jacobian of rotor speed with respect to all element positions is calculated as

𝜕𝒖𝑟
𝜕𝑿𝑘

= 1
𝑛u

𝑛u−1
∑
𝑖=0

( 𝜕
𝜕𝑿𝑘

(𝒖∞(𝒙𝑖 , 𝒒)) +
𝜕

𝜕𝑿𝑘
(𝒖ind(𝒙𝑖 , 𝒒))) , (2.79)

with

𝜕𝒖∞(𝒙𝑖 , 𝒒)
𝜕𝑿 = 20(𝒙 − 𝒙(𝑏)𝑖 )�̄�(𝑏)

𝑖 − �̄�(𝑏)
𝑖

𝑛u−1
∑
𝑖=0

𝑛r
∑
𝑏=0

20(𝒙 − 𝒙(𝑏)𝑖 )�̄�(𝑏)
𝑖 , (2.80)

with the partial derivatives placed in 2D as

[𝜕𝒖ind(𝒙𝑖 ,𝒒)
𝜕𝑿 (𝑎) ]

0𝑗 =
𝜕𝒖

𝜕𝒙(𝑎)𝑗
(𝒙𝑖 , 𝒙(𝑎)𝑗 ) (2.81)

for 𝑗 = 0, 1 , 𝑎 = 0, 1, … , 𝑛r − 1 ,
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and for the 3D FVW as

[𝜕𝒖ind(𝒙𝑖 ,𝒒)
𝜕𝑿 (𝑎) ]

0𝑗 =
⎧⎪
⎨⎪
⎩

𝜕𝒖
𝜕𝒙(𝑎)𝑗

(𝒙𝑖 , 𝒙(𝑎)𝑗 , 𝒙(𝑎)𝑗+1) if 𝑗 = 0 ,
𝜕𝒖
𝜕𝒙(𝑎)𝑗

(𝒙𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) if 𝑗 = 𝑛e ,
𝜕𝒖
𝜕𝒙(𝑎)𝑗

(𝒙𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) + 𝜕𝒖
𝜕𝒙(𝑎)𝑗

(𝒙𝑖 , 𝒙(𝑎)𝑗 , 𝒙(𝑎)𝑗+1) otherwise ,
(2.82)

for 𝑗 = 0, 1, … , 𝑛e , 𝑎 = 0, 1, … , 𝑛r − 1 .

The Jacobian with respect to all vortex strengths is calculated as

𝜕𝒖r
𝜕𝜞𝑘

= 1
𝑛u

𝑛u−1
∑
𝑖=0

𝜕
𝜕𝜞𝑘

(𝒖ind(𝒙𝑖 , 𝒒)) , (2.83)

with the partial derivatives

[𝜕𝒖ind(𝒙𝑖 ,𝒒)
𝜕𝜞(𝑎)

𝑘
]
1𝑗

= 𝜕𝒖
𝜕Γ(𝑎)𝑗

(𝒙𝑖 , 𝒙(𝑎)𝑗−1, 𝒙(𝑎)𝑗 ) (2.84)

for 𝑗 = 1, 2, … , 𝑛e and 𝑎 = 0, 1, … , 𝑛r − 1 .

The derivative of the free-stream contribution to the disc-averaged velocity over
the rotor is

𝜕𝒖r

𝜕𝒖(𝑏)∞,𝑖
= 1
𝑛u

𝑛u−1
∑
𝑖=0

�̄�(𝑏)
𝑖 (𝒙𝑖 , 𝒒) . (2.85)

The Jacobian matrix of the state update with respect to the inputs is defined as

𝜕𝒒𝑘+1
𝜕𝒎𝑘

= 𝜕
𝜕𝒎𝑘

⎡⎢⎢⎢
⎣

𝑿
𝜞
𝑼
𝑴

⎤⎥⎥⎥
⎦𝑘+1

=
⎡⎢⎢⎢⎢⎢
⎣

𝜕𝑿𝑘+1
𝜕𝒎𝑘𝜕𝜞𝑘+1
𝜕𝒎𝑘𝟎
𝜕𝑴𝑘+1
𝜕𝒎𝑘

⎤⎥⎥⎥⎥⎥
⎦

. (2.86)

The position of the first ring is directly controlled with the yaw angle

[𝜕𝑿 (0)

𝜕𝜓 ]
𝑖
= 𝜕𝒙(0)𝑖

𝜕𝜓 for 𝑖 = 0, 1, … , 𝑛e , (2.87)
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which in 2D yields

𝜕𝒙(0)0
𝜕𝜓 = 𝜕𝑹𝑧(𝜓𝑘)

𝜕𝜓 [0𝑟] , 𝜕𝒙(0)1
𝜕𝜓 = 𝜕𝑹𝑧(𝜓𝑘)

𝜕𝜓 (𝜓𝑘) [ 0−𝑟] , (2.88)

and in 3D yields

𝜕𝒙(0)𝑖 (𝜓)
𝜕𝜓 = 𝜕𝑹𝑧(𝜓𝑘)

𝜕𝜓
⎡⎢⎢⎢
⎣

0
𝑟 cos(2𝜋 𝑖

𝑛e
)

𝑟 sin(2𝜋 𝑖
𝑛e
)

⎤⎥⎥⎥
⎦

for 𝑖 = 0, 1, … , 𝑛e , (2.89)

given the derivative of the rotation matrix in the relevant dimension,

𝜕𝑹𝑧(𝜓)
𝜕𝜓 = [− sin𝜓 cos𝜓

− cos𝜓 − sin𝜓] , 𝜕𝑹𝑧(𝜓)
𝜕𝜓 = [

− sin𝜓 cos𝜓 0
− cos𝜓 − sin𝜓 0

0 0 0
] . (2.90)

The vortex strength of the first ring depends on the yaw angle as

[𝜕𝜞(0)

𝜕𝜓 ]
𝑖
= 𝜕Γ(0)𝑖

𝜕𝜓 (𝑎, 𝜓) for 𝑖 = 1, 2, … , 𝑛e , (2.91)

where

𝜕Γ(0)𝑖
𝜕𝜓 = ℎ𝑐′t (𝑎)(𝒖T𝑟 𝒏(𝜓)) (𝒖T

r
𝜕𝒏(𝜓)
𝜕𝜓 ) . (2.92)

The vortex strength of the first ring depends on the thrust coefficient as

[𝜕𝜞(0)

𝜕𝑎 ]
𝑖
= 𝜕Γ(0)𝑖

𝜕𝑎 (𝑎, 𝜓) for 𝑖 = 1, 2, … , 𝑛e , (2.93)

where

𝜕Γ(0)𝑖
𝜕𝑎 = (ℎ12(𝒖r ⋅ 𝒏(𝜓))2)

𝜕𝑐′t
𝜕𝑎 , (2.94)

𝜕𝑐′t
𝜕𝑎 = {

4
(1−𝑎)2 if 𝑎 ≤ 𝑎t ,
2𝑐t1

(1−𝑎)3 −
4(√𝑐t1−1)
(1−𝑎)2 if 𝑎 > 𝑎t .

(2.95)

The derivative of saved controls is identity,

𝜕𝑴𝑘+1
𝜕𝒎𝑘

= 𝑰𝑛c . (2.96)
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2.A.2 Output and objective function
The input sensitivity of the objective function is calculated as

𝜕𝐽𝑘
𝜕𝒒𝑘

= 𝑸 𝜕𝒚𝑘
𝜕𝒒𝑘

− 2𝜟𝒎T𝑘𝑹 , (2.97)

𝜕𝐽𝑘
𝜕𝒎𝑘

= 𝑸 𝜕𝒚𝑘
𝜕𝒎𝑘

+ 2𝜟𝒎T𝑘𝑹 . (2.98)

The partial derivative of the output to the controls is 𝜕𝒚𝑘/𝜕𝒎𝑘 = 0 because the
power is calculated with controls saved in the state vector 𝒒𝑘 . The Jacobian of the
output to the states is given as

𝜕𝒚𝑘
𝜕𝒒𝑘

= [𝜕𝒚𝑘𝜕𝒖r
] [ 𝜕𝒖r

𝜕𝑿𝑘
𝜕𝒖r
𝜕𝜞𝑘

𝜕𝒖r
𝜕𝑼𝑘

𝜕𝒖r
𝜕𝑴𝑘

] + [𝟎 𝟎 𝟎 𝜕𝒚𝑘
𝜕𝑴𝑘

] .

The Jacobian of the power output to the saved control inputs for the two-
turbine case presented in this chapter is constructed as

𝜕𝒚𝑘
𝜕𝑴𝑘

= [
𝜕𝑃0
𝜕𝑎0

𝜕𝑃0
𝜕𝜓0

0 0
0 0 𝜕𝑃1

𝜕𝑎1
𝜕𝑃1
𝜕𝜓1

] , (2.99)

with the partial derivatives with respect to the axial induction
𝜕𝑃0
𝜕𝑎0

= 1
2𝐴r(𝒖r0 ⋅ 𝒏(𝜓0))3

4
(1 − 𝑎0)2

, (2.100)

𝜕𝑃1
𝜕𝑎1

= 1
2𝐴r(𝒖r1 ⋅ 𝒏(𝜓1))3(−8𝑎1(1 − 𝑎1) + 4(1 − 𝑎1)2) , (2.101)

and the partial derivatives with respect to the yaw angle
𝜕𝑃0
𝜕𝜓0

= 3
2𝑐

′
P(𝑎0)𝐴r(𝒖r0 ⋅ 𝒏(𝜓0))2(𝒖T

r0
𝜕𝒏(𝜓0)
𝜕𝜓0

) , (2.102)

𝜕𝑃1
𝜕𝜓1

= 3
2𝑐

′
P(𝑎1)𝐴r(𝒖∗r1 ⋅ 𝒏(𝜓1))2(𝒖∗Tr1

𝜕𝒏(𝜓1)
𝜕𝜓1

) . (2.103)

Taking the derivative of the output with respect to the rotor velocity yields

[𝜕𝒚𝑘𝜕𝒖r
] = [

𝜕𝑃0
𝜕𝒖r0

0
0 𝜕𝑃1

𝜕𝒖r1

] , (2.104)

𝜕𝑃0
𝜕𝒖r0

= 3
2𝑐

′
P(𝑎0)𝐴r(𝒖r0 ⋅ 𝒏(𝜓0))2𝒏(𝜓0)T , (2.105)

𝜕𝑃1
𝜕𝒖r1

= 3
2𝑐

′
P(𝑎1)𝐴r(𝒖r1 ⋅ 𝒏(𝜓1))2𝒏(𝜓1)T(1 − 𝑎1) . (2.106)
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2.B Convergence study for numerical methods
A variation of model parameters for the numerical methods was performed to
show convergence for the model configuration chosen in this chapter as presented
in Section 2.4.1. The power output under steady conditions is compared to the
reference power from momentum theory for validation, calculated as

𝑝0,ref = 𝑐′p(𝑎0)𝐴r(𝑢∞(1 − 𝑎0))3 , (2.107)
𝑝1,ref = 𝑐′p(𝑎1)𝐴r(𝑢∞(1 − 2𝑎0)(1 − 𝑎1))3 , (2.108)

and normalised as ̄𝑝 = 𝑝/𝑝ref. Turbine configuration is chosen with a 5D spacing
as used in this chapter and illustrated in Figure 2.1.

The normalised power for a parameter sweep around the operating point from
Table 2.1 is shown in Figure 2.10, evaluating combinations of time step ℎ, vortex
core size 𝜎 , and number of rings 𝑛r. The chosen parameters appear to be a good
match for the normalised power of the upstream turbine, ̄𝑝0. There is a depen-
dency between time step and core size, so they need to be chosen together. The
combination of number of rings to model the wake needs to be chosen together
with the time-step such that the wake covers the downstream turbine. As long
as the wake adequately covers the downstream turbine position, the power es-
timate is not very sensitive to variations in the parameters observed here. The
2D FVW does not exactly represent momentum theory, so it is unsurprising that
downstream power is overestimated.

A similar sweep with the 3D FVW is shown in Figure 2.11. The trends in the
results are similar to those shown in the parameter variations for the 2D FVW. For
this configuration without yaw misalignment, results appeared not very sensitive
to the number of elements used in the discretisation of the vortex rings.

The number of elements in ring discretisation is important for dynamics of
wake redirection under yaw misalignment because finer discretisations better rep-
resent the curled wake. Figure 2.12 shows that power gain from yawmisalignment
is observed even for coarse discretisations of the vortex filament rings. In the
trade-off between computational limits and better convergence of the dynamics, a
number of elements 𝑛e = 16 was chosen for use in this chapter.
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Figure 2.10: Variation of power for 2D FVWnormalised by power estimate frommomentum theory,
for upstream (top) and downstream (bottom) turbine in a configuration as in Figure 2.1. The cross
indicates the parameter choice used in this chapter. The base settings for this parameter sweep are:
axial induction 𝑎0 = 0.3 and 𝑎1 = 0.33, number of rings 𝑛r = 60, time step ℎ = 0.2, and core size
𝜎 = 0.1.
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Figure 2.11: Variation of power for 3D FVWnormalised by power estimate frommomentum theory,
for upstream (top) and downstream (bottom) turbine in a configuration as in Figure 2.2. The cross
indicates parameter choice used in this chapter. The base settings for this parameter sweep are:
axial induction 𝑎0 = 0.3 and 𝑎1 = 0.33, number of rings 𝑛r = 40, number of elements per ring 𝑛e = 16,
time step ℎ = 0.3, and core size 𝜎 = 0.16.
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Figure 2.12: Total power estimate with the 3D FVW under yaw misalignment for varying number
of vortex filaments in vortex ring discretisation. The dashed line indicates the number of elements
used in this chapter. Configuration as in Figure 2.2.



3
Validation with wind tunnel data

Near-wake effects of wind turbine models using the free-vortex wake have been stud-
ied extensively, but there is a lack of validation for such predictions in the mid to
far wake. This chapter presents a novel validation study using three free-vortex wake
models of increasing complexity: an actuator disc, an actuator disc with rotation, and
a lifting-line model. We emphasise the application for dynamic wind farm flow con-
trol optimisation with a focus on wake redirection using yaw misalignment. For this
purpose, wake models should provide sufficiently accurate power predictions at low
computational expense to enable real-time control optimisation. Three sets of wind
tunnel data are used for validation: flow measurements under steady yaw misalign-
ment, time-resolved flow measurements for a step change in yaw, and turbine output
measurements with yaw control and simulated wind direction variation. Results in-
dicate that the actuator-disc model provides the best balance of computational cost
and accuracy in power predictions for the mid to far wake, which is not significantly
improved upon by the addition of rotation. In the near wake, the added complexity of
the lifting-line model may provide value as it models blade loading and individual tip
vortices. Altogether, this study provides important validation for further studies into
optimisation of wake steering under time-varying conditions and suggests that the
actuator-disc model is a suitable candidate for use in a model-predictive wind farm
flow control framework.
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3.1 Introduction
The limited availability of offshore and onshore parcels for wind energy produc-
tion means that large, densely spaced wind farms are commonly used. However,
in these farms, wake effects can lead to a significant decrease in power production
and an increase in fatigue loading. While farm topology is typically optimised to
minimise aerodynamic interaction, it lacks flexibility for time-varying wind con-
ditions [15]. Under those conditions, wind farm flow control uses existing control
degrees of freedom to reduce aerodynamic interaction betweenwind turbines with
methods such as wake redirection through yaw misalignment, dynamic induction
control with collective pitch control, and wake mixing strategies with individual
pitch control [17].

This chapter focuses on the use of yaw misalignment for wake steering, where
an intentional misalignment in the yaw angle with respect to the dominant wind
direction is used to deflect the low-energy, turbulent wake behind the turbine. Af-
ter demonstrations of effectiveness in both simulation and wind tunnel experi-
ments, wake steering has been shown to yield power gains in wind farms for pre-
defined yaw-angle offsets under steady conditions in field studies [36, 38–41]. An
important aspect of the wind turbine wake under yaw misalignment is the forma-
tion of a counter-rotating vortex pair which generates a curled, or kidney-shaped,
wake [26–30].

Wind turbine wake models are essential tools for developing and implement-
ing wake steering control strategies. Accurate predictions of wake behaviour al-
low for optimisation of wind turbine controls for objectives such as power pro-
duction and reduction of fatigue loading. Current control strategies are mostly
based on look-up tables generated by steady-state optimisation with engineering
wake models, such as those in the FLORIS toolbox [47]. This includes, for exam-
ple, the curled wake model [49], which has been extended with dynamics [101] as
the steady-state models are limited for use in time-varying conditions. Another
approach is the use of Lagrangian particle methods to use the wake models within
FLORIS for dynamic wake prediction [55, 56].

Instead of implementing the dynamics into steady-state models, physics-based
approaches attempt to simplify first principles to reduce complexity while main-
taining essential dynamics. Studies with large-eddy simulation have been success-
ful in control optimisation [102] and recent work has moved towards real-time
control by coarsening mesh resolution and adjusting control parameters [60]. On
the other hand, simplified flow models based on two-dimensional Navier-Stokes
equations, such as WFSim [61] and FRED [62], were developed in an attempt to
provide computationally efficient flow estimates for control. However, these have
been shown to be unsuitable for yaw control as the wake dynamics under yawmis-
alignment are fundamentally three-dimensional [63]. A physics-based model for
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efficient control optimisation was introduced by van den Broek et al. [81] (Chap-
ter 2), modelling the wind turbine wake with an actuator-disc model based on
free-vortex methods and representing the curled wake dynamics.

Free-vortex wake (FVW) methods are meshless methods, using Lagrangian
elements to model flow dynamics based on the vorticity formulation of the Navier-
Stokes equations [67, 68]. This leads to an efficient, skeletal representation of the
wind turbine wake. The FVW method was initially applied to wake modelling
for helicopter rotors with a focus on tip vortices in studies [69]. From there, it
was adapted to application for unsteady aerodynamics in wakes of wind turbine
rotors [70].

Several studies have applied FVWmethods to model wind turbine wakes, such
as a lattice method [71], axisymmetric vortex rings for the near wake under yaw
misalignment [72], and the study of the effectiveness of dynamic induction con-
trol for near-wake breakdown [73]. The latter model has been shown to only be
accurate within the near wake in a comparison with data from large-eddy simu-
lations [85]. Other studies utilise the flexibility of the meshless formulation for
the study of wind turbines on floating platforms. These consider, for example, the
effects of platform motion on rotor induction [103], unsteady aerodynamics in the
near wake [104], rotor performance on a moving platform [74], wake dynamics
for specific motions [75], and control optimisation for a coupled aero- and hydro-
dynamic model [105].

Most FVW models focus on wake dynamics close to the rotor and, to the best
of our knowledge, little validation has been done for the mid to far wake. We
define the mid wake from 1𝐷 to 4𝐷 and the far wake beyond 4𝐷 downstream
from the rotor, where𝐷 is the rotor diameter. Therefore, this study aims to validate
the applicability of FVWmodels for dynamic wind farm flow control optimisation,
especially focusing on wake steering through yawmisalignment. For this purpose,
we consider three different turbine model formulations: the three-dimensional
actuator-disc model, an extension of the actuator disc with a root vortex to model
wake rotation, and an extension to a lifting-linemodel [106]. This simplified lifting-
line model is also known as the Joukowsky rotor.

The validity of these models for wake predictions under yaw misalignment is
evaluated with three sets of experimental data from wind tunnel measurements;
first, a set of data that consists of lidar measurements of wind turbine wakes un-
der steady yaw misalignment [30]; second, a set of time-resolved particle-image
velocimetry measurements of the wake following a step change in yaw angle [25];
third, turbine output measurements from an experiment for yaw-based wake steer-
ing with wind direction variation [100].

The contribution of this chapter is twofold: (i) an analysis of model param-
eter choice and suitable levels of simplification of the turbine representation for
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modelling the wind turbine wake, and (ii) a validation of free-vortex wake models
for mid- to far-wake power predictions with wind tunnel data, in light of control
optimisation for yaw control.

The remainder of this chapter is structured as follows. Section 3.2 presents the
free-vortex method and develops the three different models of the wind turbine
wake, followed by a study of parameter sensitivity and convergence in Section 3.3.
The data sets from the wind tunnel experiments and methods for validation are
presented in Section 3.4. The results are discussed in Section 3.5, and, finally, the
conclusions are shown in Section 3.6.

3.2 Free-vortex wake models
First, we construct the models of the wind turbine wake that are studied in this
chapter. The free-vortex methods and straight-line vortex filament definition are
introduced in Section 3.2.1. Using these filaments as building blocks, the three
wind turbine representations for wake modelling for control optimisation are then
described in Section 3.2.2.

3.2.1 Free-vortex wake
The basis of the vortex methods is the vorticity formulation of the Navier-Stokes
equations. The FVW method is based on Lagrangian particles that advect down-
stream. These particles induce a velocity based on their associated circulation
strength. The resultant flow velocity may be calculated at any position based on
the free-stream velocity and the sum of induced velocities. The vorticity formu-
lation requires the assumption of inviscid and incompressible flow, although dif-
fusion may be approximated. For a further description of the fundamentals, the
reader is referred to aerodynamic literature, such as Leishman [67] or Katz and
Plotkin [68].

Vortex filaments
The three-dimensional model formulations in this study are based on straight-line
vortex filaments. The induced velocity 𝒖i ∈ ℝ3 at a point 𝒙0 ∈ ℝ3 is calculated with
the Biot-Savart law from a single vortex filament starting at 𝒙1 ∈ ℝ3 and ending
at 𝒙2 ∈ ℝ3, with vortex strength Γ,

𝒖i(𝒙0, 𝒙1, 𝒙2) =
Γ
4𝜋

𝒓1 × 𝒓2
||𝒓1 × 𝒓2||2

𝒓0 ⋅ (
𝒓1
||𝒓1||

− 𝒓2
||𝒓2||

) , (3.1)
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where the relative positions 𝒓 ∈ ℝ3 are defined as

𝒓0 = 𝒙2 − 𝒙1 , (3.2)
𝒓1 = 𝒙1 − 𝒙0 , (3.3)
𝒓2 = 𝒙2 − 𝒙0 . (3.4)

A Gaussian core with core size 𝜎 is included to regularise singular behaviour of
the induced velocity close to the vortex filament.

𝒖i,𝜎 (𝒙0, 𝒙1, 𝒙2) = 𝒖i (1 − exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

)) . (3.5)

Convection of vortex filaments
Vortex filaments are convected over time according to the combination of the free-
stream velocity 𝒖∞ ∈ ℝ3 and the total velocity induced by all filaments 𝒖ind ∈ ℝ3
at the vortex position 𝒙 ∈ ℝ3,

̇𝒙 = 𝒖ind(𝒙) + 𝒖∞(𝒙) , (3.6)

where ̇𝒙 ∈ ℝ3 is the time derivative of the vortex position. At fixed intervals,
a new set of vortex filaments is released from the rotor according to the wind
turbine model definition. The oldest set of vortex filaments is then discarded from
the simulation, such that a fixed number of sets of filaments 𝑛r is maintained.

Modelling viscous diffusion
Turbulence is not explicitly accounted for when using the FVW to construct mod-
els of wind turbine wakes. However, growth of the vortex core may be used to
approximate the effects of turbulent and viscous diffusion as

𝜎𝑘+1 = √4𝛼𝛿𝜈Δ𝑡 + 𝜎2𝑘 , (3.7)

which is Squire’s modification of the diffusive growth of the Lamb-Oseen vortex
core [107], with the discrete time step 𝑘, constant 𝛼 = 1.25643, effective tur-
bulent viscosity coefficient 𝛿 to tune the core growth, kinematic viscosity 𝜈 =
1.5 × 10−5 m2 s−1, and time step Δ𝑡 .

3.2.2 Wind turbine models
The wind turbine models used for this study are the three-dimensional actuator
disc as used by van den Broek et al. [81] (Chapter 2), an extension with rotation,
and a lifting-line model. These three concepts are illustrated in Figure 3.1. Note
that a two-dimensional actuator disc could be considered as a further simplifica-
tion of the wind turbine wake under axisymmetric conditions. It is however not
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considered in the current study because it has already been shown to be ineffec-
tive in modelling the wind turbine wake under yaw misalignment due to a lack of
axisymmetry [81] (Chapter 2).

Coefficients for wind turbine modelling
The turbine thrust 𝑇 is calculated according to the magnitude of the free-stream
inflow velocity 𝑢∞,

𝑇 = 𝑐t ⋅
1
2𝜌𝐴r𝑢2∞ cos𝛽t(𝛾) , (3.8)

with thrust coefficient 𝑐t, air density 𝜌, and rotor swept area 𝐴r. The thrust is
assumed to vary over yaw misalignment 𝛾 with a cosine exponent 𝛽t which may
be adjusted to represent experimental data. Similarly, aerodynamic power 𝑝a is
calculated with the power coefficient 𝑐p as

𝑝a = 𝑐p ⋅
1
2𝜌𝐴r𝑢3∞ cos𝛽p(𝛾 ) , (3.9)

where the exponent 𝛽p can be used to tune power variation over yawmisalignment,
as seen in Hulsman et al. [108]. The thrust and power coefficient are assumed to be
a function of the axial induction factor 𝑎 normal to the rotor based on momentum
theory,

𝑐t(𝑎) = { 4𝑎(1 − 𝑎) if 𝑎 ≤ 𝑎t ,
𝑐t1 − 4(√𝑐t1 − 1)(1 − 𝑎) if 𝑎 > 𝑎t , (3.10)

𝑐p(𝑎) = 4𝑎(1 − 𝑎)2 , (3.11)

with the parameter 𝑐t1 = 2.3 and the induction at the transition point 𝑎t = 1− 1
2√𝑐t1.

The thrust coefficient calculation is based on momentum theory with a transition
to a linear approximation for high induction values, which is an empirical correc-
tion based on the Glauert correction [86]. The induction factor is used as a control
input to determine thrust and power; it is assumed uniform over the rotor disc.

Actuator disc model (ADM)
An actuator-disc representation of a wind turbine is implemented with the free-
vortex method and illustrated in Figure 3.1(a). The actuator disc is assumed to be
uniformly loaded so it only sheds vorticity along its edge [68].

At fixed time intervals Δ𝑡 , a vortex ring discretised in 𝑛e vortex filaments is
generated at the edge of the rotor. The vorticity Γ generated along the edge of
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Figure 3.1: The vortex filament structures and the direction of circulation for the three different
free-vortex wind turbine representations under consideration: (a) the actuator disc model (ADM)
builds up a wake with discretised vortex rings, (b) the actuator disc model with rotation (ADMR)
adds a root vortex along the wake centre to model swirl due to turbine rotation, and (c) the lifting-
line model (LLM) models individual blade circulation, tip vortices, and a combined root vortex. In
(c), the vortex structure from a single blade is highlighted for clarity.
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an actuator disc is directly related to the pressure differential generated by the
disc [106],

Γ = Δ𝑡 𝜕Γ𝜕𝑡 = Δ𝑡 1𝜌
𝑇
𝐴r

, (3.12)

where this pressure jump is due to the thrust force. The vortex system is a finite
cylinder because a finite number of vortex rings 𝑛r are released. This approxi-
mates the theoretical semi-infinite vortex system. The numerical parameters for
the model are listed in Table 3.1.

The vorticity generated by the ADM is purely azimuthal as long as the turbine
is yaw-aligned with the free-stream wind direction. Under yaw misalignment, the
vortex rings deform into the characteristic curled shape of the wake as a counter-
rotating vortex pair is formed.

Actuator disc model with rotation (ADMR)
An extension of the ADM is the actuator disc with rotation (ADMR). A root vor-
tex is released along the centre-line of the wake as shown in Figure 3.1(b). Note
that the associated distributed vorticity over the disc and the wake boundary is
neglected. This root vortex models the swirl in the wake induced by the rotation
of the wind turbine rotor. The inclusion of rotation may contribute to modelling
asymmetry in wake steering.

Assuming again that the rotor is uniformly loaded, the thrust force is equally
distributed over each of the blades,

𝐿 = 𝑇
𝑛b

, (3.13)

where 𝐿 is the individual blade loading and 𝑛b is the number of blades. The bound
vorticity at the blade Γb is then calculated according to the Kutta-Joukowsky the-
orem,

𝜕𝐿
𝜕𝑟 = −𝜌𝑢rel(𝑟)Γb = −𝜌𝑢∞𝜔𝑟Γb , (3.14)

with the relative velocity 𝑢rel along the blade 𝑟 with rotational velocity 𝜔. Integra-
tion over the blade length then yields

𝐿 = 𝜌𝜆𝑢∞
1
2𝑅Γb , (3.15)

where 𝜆 is the tip-speed ratio and 𝑅 the rotor radius. The bound vortex strength
of a single blade is then

Γb = 𝑐t𝑢∞𝜋𝑅
𝑛b𝜆

. (3.16)
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Combining circulation of the bound vortices of each blade yields the root vortex
strength Γr,

Γr = 𝑛bΓb. (3.17)

Lifting-line model (LLM)
The Joukowsky rotor model is a lifting-line model (LLM) that assumes uniform
blade loading, forming a rotating horseshoe vortex system for each blade [106].
The vortex filament structure is shown in Figure 3.1(c), where the vortex system
from a single blade is highlighted. Each blade is modelled with a bound vorticity Γb
as in Eq. (3.16). The tip vortices coming off from each of the blades have the same
vorticity, Γt = Γb. The root vortex is the combination of the bound vorticity of each
of the blades, Γr = 𝑛bΓb, which is equivalent to the one previously introduced in
the ADMR.

3.3 Parameter study and convergence
An important aspect of thewind turbinemodels from Section 3.2.2 is the sensitivity
to parameter changes. This section explores the convergence behaviour of the
ADM with the aim of finding a set of suitable parameters in terms of numerical
convergence. These parameters are then used for the comparisonwithwind tunnel
data in Section 3.4. For brevity, the convergence behaviour of the ADMR and LLM
is performed but not included, as the results are similar to the ADM.The reference
parameter values for all three models are listed in Table 3.1. The study is split into
four parts: first, the effect of the streamwise spatial discretisation in Section 3.3.1,
second, time discretisation in Section 3.3.2, third, the sensitivity to the azimuthal
spatial discretisation of the vortex rings in Section 3.3.3, and, fourth, the effect of
the core size in Section 3.3.4.

Table 3.1: Numerical parameters for the FVW models as used for this validation study.

ADM ADMR LLM

time step Δ𝑡 ⋅ 𝑢∞ /𝐷 0.3 0.3 0.033
number of rings 𝑛r 40 40 360
elements per ring 𝑛e 16 17 7
initial core size 𝜎 /𝐷 0.16 0.16 0.16
turbulent growth 𝛿 100 100 100
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Figure 3.2: Relative error in the velocity deficit at the rotor plane 𝑥/𝐷 = 0 and at a downstream
distance 𝑥/𝐷 = 3. The spacing between the vortex rings is varied and circulation strength of the
filaments is adjusted accordingly. The reference solution for spacing Δ𝑥/𝐷 = 5 × 10−4. The crosses
‘+’ mark the approximate streamwise spacing produced for Δ𝑡 ⋅ 𝑢∞/𝐷 = 0.3 as used throughout this
chapter.

3.3.1 Streamwise spatial discretisation
The streamwise spatial discretisation of the ADM is studied by constructing a cylin-
drical vortex tube of length 12𝐷 from discretised vortex rings, approximating the
ADM wake. The spacing between vortex rings is varied to study the effect on the
wake deficit without the effects of temporal evolution. The number of rings is ad-
justed accordingly to maintain a constant wake length and the circulation of the
vortex filaments is adjusted to maintain the same distribution of total circulation.
The velocity error 𝜀u is defined as

𝜀u(𝑥) = |𝑢(𝑥) − 𝑢ref(𝑥)| , (3.18)

where 𝑢 is the induced velocity on the wake centre line and 𝑢ref is a reference
value, which is generated for a spacing of Δ𝑥/𝐷 = 5 × 10−4.

The convergence behaviour of the velocity deficit with an increasing number
of rings is first order as is illustrated in Figure 3.2. The variation in error over
filament spacing within the wake, at 𝑥/𝐷 = 3, is small compared to the variation
in error at the entry of the tube, which corresponds to the rotor plane, 𝑥/𝐷 = 0.
The sharp increase in error for 𝑥/𝐷 = 3 for the coarsest spacing is caused by an
insufficiently large core size, which produces an oscillating velocity profile in the
wake. This is not an issue as the core size 𝜎/𝐷 = 0.16 used in the rest of this chapter
produces a smooth velocity deficit profile for the chosen numerical settings, i.e.,
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there are no significant oscillations in velocity magnitude along the wake centre
streamline. The inflow at the rotor disc varies a lot for different filament spacing
values, which limits the consistency of using local velocity measurements at the
rotor plane.

It is important to note that streamwise spatial discretisation is directly con-
nected to the time discretisation and the computational complexity. The largest
possible time step is such that a vortex ring is released at every time step. High
spatial resolution is thus only possible for small time steps. Additionally, the large
number of elements required to generate a wake of sufficient length with high
streamwise resolution leads to large increases in the computational cost of the
induced velocity calculation; the cost of the induced velocity evaluation increases
quadratically with the number of vortex filaments. Small time steps and expensive
induced velocity calculation both contribute to a significant increase in computa-
tional cost for a given prediction horizon. Therefore, a relatively large time step
and coarse spatial resolution are chosen for the purpose of efficient optimisation
of wind turbine controls.

The ADMR introduces a single extra vortex filament per time step compared to
the ADM, which makes it about 1.1× more expensive with the current numerical
settings. The LLM requires four times as many filaments as the ADM for a wake
of the same length, which makes a single time step sixteen times more expensive.
Accounting for the smaller time steps, simulating a given time with the LLM is
theoretically about 140× more expensive than the ADM.

A small benchmark is run on a regular laptop running Windows 10 on an i7-
8650 CPU at 1.90GHz with 8GB RAM. The benchmark is run in Julia 1.8.0 using
the BenchmarkTools module. For comparison to real-time flow, a rotor diameter
of 𝐷 = 200m and inflow wind speed 𝑢∞ = 8ms−1 are used. The ADM simulates a
single wake for 600 s of real-time flow in 0.9 s, or 670× faster than real-time. The
same simulation takes 1.1 s with the ADMR and 85 s with the LLM, approximately
550× and 7× faster than real-time, respectively.

To put these numbers into perspective, evaluating a single wake in FLORIS
with the cumulative-curl model [49] takes about 2ms on the same laptop. How-
ever, this is a steady-state, time-averaged engineering approximation of the wake
– it includes no dynamics. A large-eddy simulation of the wake would include dy-
namics, but requires at least several hours on a computing cluster and is infeasible
to run on a regular laptop.

3.3.2 Time discretisation
The time discretisation of the FVW is studied by examining convergence for a
first- and second-order integration scheme. In order to perform this convergence
experiment, it is necessary to decouple streamwise spatial discretisation and time
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Figure 3.3: Relative error in the position of the vortex filaments for varying time discretisation,
comparing the first-order explicit Euler method and the second-order explicit Heun method in sim-
ulating thewake of a yaw-misaligned rotor. The reference solution for time stepΔ𝑡⋅𝑢∞/𝐷 = 1.5×10−3.
The cross ‘+’ marks Δ𝑡 ⋅ 𝑢∞/𝐷 = 0.3 as used throughout this chapter.

discretisation. We reformulate the problem such that a number of sub-steps may
be taken between releasing vortex rings.

The largest time step considered is Δ𝑡 ⋅𝑢∞/𝐷 = 3×10−1, where one set of vortex
filaments is released at every step. From there, the time step is reduced to 5 × 10−3
and a reference solution is generated with a step size of Δ𝑡 ⋅ 𝑢∞/𝐷 = 1.5 × 10−3.
The convergence is then quantified using the mean position error 𝜀x of all vortex
filaments with respect to the reference solution,

𝜀x = mean (||𝒙𝑖 − 𝒙ref,𝑖 ||2) for 𝑖 = {1, 2, … , 𝑛p} , (3.19)

where 𝒙𝑖 are the 𝑛p coordinates defining the positions of the vortex filaments, and
𝒙ref,𝑖 is the reference solution.

Figure 3.3 shows the convergence of time integration of the wake from a yaw-
misaligned rotor for decreasing step size with the first-order explicit Euler method
as used in this chapter and with the second-order explicit Heun method for com-
parison. The convergence for a yaw-aligned rotor exhibits similar trends and has
been omitted for conciseness. For the numerical parameters presented here, the
methods converge as expected. The chosen time step Δ𝑡 ⋅ 𝑢∞/𝐷 = 0.3 is rather
large because of the emphasis on computational efficiency for control optimisa-
tion. This is also the reason for choosing explicit Euler, as it requires only a single
function evaluation per time step. If a higher degree of convergence is required
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Figure 3.4: Relative error in the cross-stream rotor-averaged velocity profile at 5D downstream
for the ADM under a yaw misalignment of 𝛾 = 30°. The azimuthal discretisation is 360°/𝑛e and the
reference is at 0.7° for 𝑛e = 512 elements. The cross ‘+’ marks 22.5° for 𝑛e = 16 as used throughout
this chapter.

from the time integration, a change of integration method is more efficient than a
reduction in time step.

3.3.3 Azimuthal spatial discretisation
The convergence of azimuthal discretisation is tested by varying the number of
elements in the vortex rings. A simulation with a yaw misalignment of 30° under
steady inflow is performed for the different discretisation steps. When the initial
transient of the developingwake is passed, a cross-stream profile of rotor-averaged
velocity is recorded. The rotor-averaged quantity is chosen because of the intended
application for power predictions, where downstream turbines inherently average
flow quantities over the rotor area in the power output. The error norm of this
deficit profile 𝜀d is

𝜀d = mean(|𝑢r(𝑦) − 𝑢r,ref(𝑦)|) for − 2 < 𝑦/𝐷 < 2 , (3.20)

where 𝑢r(𝑦) is the rotor-averaged velocity at cross-stream position 𝑦 and the ref-
erence solution is generated for 𝑛e = 512 elements in the ring discretisation.

Figure 3.4 shows that the velocity deficit profile converges for increasing num-
ber of vortex filaments in the vortex ring discretisation. The azimuthal discretisa-
tion in the current study is for 𝑛e = 16.

The time discretisation of the LLM is chosen such that it achieves the same
azimuthal resolution, which is for Δ𝑡 ⋅ 𝑢∞/𝐷 = 0.033. A time step that is nine
times smaller implies nine times as many vortex rings – the set of vortex filaments
released at one time step – are necessary to model a wake of the same length
as the ADM. The LLM thus combines a smaller time step and a more expensive
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Figure 3.5: Illustration of vortex particle/filament trajectories for varying initial core sizes. Larger
core sizes produce more stable, i.e. less unstable, trajectories. The results in this chapter are pro-
duced for an initial core size 𝜎/𝐷 = 0.16.

velocity calculation due to the larger number of vortex filaments, which makes it
less attractive for control optimisation for long wakes.

3.3.4 Vortex core size
The choice of vortex core size 𝜎 plays a major role in the stability of the FVWmod-
els as illustrated for the ADM in Figure 3.5 for different sizes of the Gaussian vortex
core. For small constant core sizes, the wake structure transitions into instability,
leading to chaotic development of the wake downstream. For larger core sizes, this
disturbance growth is smoothed out and the wake structure appears more stable.
The size of the vortex core needs to be tuned to the streamwise spatial resolution
of the wake. It should at least be large enough to guarantee a smooth velocity
profile between vortex filaments, avoiding oscillations in the wake deficit. On the
other hand, it should be small enough not to lose information.

Variation in the vortex core size has very little influence on the initial wake
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Figure 3.6: Introducing vortex core growth using the Lamb-Oseen model allows tuning of the
diffusion to approximately match turbulent mixing in the wake. Slices at 𝑥/𝐷 = 5 downstream for
turbulent growth parameter 𝛿 from 1 to 500, with an initial core size 𝜎/𝐷 = 0.16.

depth. However, the wake recovery can be tuned with vortex growth, imple-
mented with Eq. (3.7). Figure 3.6 shows how increasing the turbulent core growth
parameter 𝛿 impacts the recovery of the wake and allows for tuning the represen-
tation of turbulent mixing. The validation simulations run in this chapter are for
𝛿 = 100, which is chosen to model some wake recovery.

3.4 Validation with wind tunnel data
Following the study of numerical model parameters, it is essential to validate the
wake flow and power predictions of the FVW model for yaw control optimisation.
This section first presents the available data from the three wind tunnel experi-
ments in Section 3.4.1. The performance measures used to quantify performance
are introduced in Section 3.4.2, followed by details on the replication of the exper-
iments with the FVW models in Section 3.4.3.

3.4.1 Wind tunnel experiments
Three sets of experimental data are used in this chapter for the model validation
study. The first is a set of steady-state flow measurements for the wind turbine
wake under yaw misalignment [30]. The second is a dynamic experiment with
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high temporal resolution of a step change in yaw angle [25]. The third is a longer
set of turbine output measurements for wake redirection with wind direction vari-
ation [100].

The wind direction 𝜃 is defined clockwise positive, with 0° along the positive
𝑥-axis pointing downstream. The yaw angle 𝜓 is clockwise positive with a 180°
shift such that the rotor is fully aligned with the wind direction if 𝜓 = 𝜃 . The yaw
misalignment 𝛾 = 𝜃 − 𝜓 such that a counter-clockwise misalignment is positive.

All experiments used the MoWiTO 0.6 turbine with a rotor diameter 𝐷 =
0.58m [109]. The model turbine has pitch control and the generator can be used
for torque control to regulate rotor speed.

Steady yaw misalignment – WTA
The first set of experimental data (labelled WTA) was recorded in the wind tunnel
at ForWind, University of Oldenburg and has been published in [30]. The wind
tunnel has a 3m × 3m test section with an active grid, used passively, to control
inflow turbulence and boundary layer profiles. It may be operated as an open jet,
but for this experiment three movable test sections are installed to form a closed
section 18m in length. The flow circulates in a closed circuit. The experimental
data provides measurements of wind turbine wakes under yawmisalignment with
steady flow conditions.

The data contains measurements of wakes for yaw misalignment angles 𝛾 =
{−30°, 0°, 30°}. The turbines were mounted at a hub height of 0.77m. Operation was
at a tip-speed ratio of 𝜆 = 5.7 for aligned flow and 𝜆 = 5.3 when misaligned. The
cross-sectional averaged flow measurements were obtained with a WindScanner
lidar performing a Lissajous scan within a 3𝐷 × 3𝐷 area, for uniform and sheared
inflow with a turbulence intensity of around 1 %. Wind speed was 7.5ms−1 at hub
height. Only the uniform inflow data is analysed in the current study, primarily
the vertical measurement planes at downstream distances from 𝑥/𝐷 = 1 to 7.

Step change in yaw – WTB
The second set of experimental data (labelled WTB) was recorded in the Open
Jet Facility (OJF) at the TU Delft, with the same set-up as used in [25]. The OJF
is a wind tunnel with an open jet that runs in a closed circuit with turbulence
intensities between 0.5 % and 2 %. A step change in yaw was measured at high
temporal resolution using tomographic particle-image velocimetry (PIV).

A PIV set-up with four cameras was used to measure the flow velocity at down-
stream distances 𝑥/𝐷 = {1, 2, 3, 4} using helium-filled soap bubbles as flow tracers.
The seeding rake for these bubbles was placed at the outlet of the open jet. The
measurements were recorded at 500Hz for a 5 s duration. The step change was
initiated 1 s after a trigger signal. This trigger also initiated the PIV measurements
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and was used to synchronise the data at the four downstream distances. The tur-
bine yawed from a 𝛾 = 0° to a 𝛾 = 20° misalignment with the inflow, at a yaw rate
of approximately ̇𝜓 = 16 ° s−1. The turbine operated at a tip-speed ratio of 𝜆 = 5.5
for an inflow velocity 𝑢∞ = 4.7ms−1.

Wind direction variation – WTC
The third set of experimental data (labelled WTC) was again recorded in the wind
tunnel at ForWind, University of Oldenburg [100]. Instead of steady yaw mis-
alignment, it provides turbine output measurements of a dynamic yaw experiment.
Two turbines were used to test open-loop yaw control strategies under a simulated
time-varying wind direction.

The upstream turbinewas stationary and yaw-controlled to achievewake steer-
ing. The second turbine was placed 2.66 𝐷 downstream with an increased hub
height of 0.16 𝐷. The downstream turbine is mounted on an 𝑥-𝑦 traverse sys-
tem which models wind direction variation by translating the downstream tur-
bine along a circular path around the upstream turbine. Effectively, this rotates
the wind farm layout in the constant wind tunnel inflow, thus changing the wind
direction relative to the turbine alignment. The active grid was used passively
to generate inflow with a turbulence intensity TI < 1% and a shear profile with
shear exponent 𝛼 = 0.28, where the wind speed was 7.3ms−1 at hub height for the
upstream turbine.

The yaw setpoints for the upstream turbine were stored in a look-up table
and applied differently for each control experiment. The experiments are labelled
BW30, BW60, BW120, BW300, and BW600 based on the length of the wind direc-
tion averaging window used in the controller, with shorter windows leading to
more frequent yaw variations. Figure 3.7 illustrates the variation in yaw angle
and relative wind direction for the BW30 experiment. Each controller experiment
yielded 10min of turbine data, such as generator power, torque, and rotor speed,
recorded with a 5 kHz sampling frequency. The raw data has been filtered with a
low-pass filter with a cut-off frequency at 20Hz for noise reduction before use in
the current study.

3.4.2 Performance measures
The performance measures in this study reflect the purpose of this model. It is ori-
ented towards control for power maximisation and therefore the predictive qual-
ities for wake deflection and downstream aerodynamic power availability are im-
portant aspects to measure.

Wake deflection is determined according to the wake centre position, which
is defined as the cross-stream position where aerodynamic power available for a
virtual rotor at hub height is minimal. The potential power follows quite directly
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Figure 3.7: Time series data from WTC showing yaw misalignment on the upstream turbine and
the wind direction variation for the BW30 experiment. The changes in wind direction are achieved
by translation of the downstream turbine on an 𝑥-𝑦 traverse system.

from the measured or simulated flow field and is directly related to downstream
turbine performance as available aerodynamic power 𝑝∗ is calculated from the
rotor-averaged velocity 𝒖r,

𝑝∗ = 𝑐∗p
1
2𝜌𝐴r (𝒏 ⋅ 𝒖r)3 (3.21)

where 𝑐∗p is the theoretical maximum power coefficient and 𝒏 is the unit vector
orthogonal to the rotor plane. This is similar to the potential power method intro-
duced in [110].

For statistical analysis, the fits of the power predictions are evaluated with the
variance accounted for (VAF),

VAF = (1 − var(𝑝 − ̂𝑝)
var(𝑝) ) ⋅ 100 % , (3.22)

and the normalised mean absolute error (NMAE),

NMAE = mean(|𝑝 − ̂𝑝|)
max(𝑝) ⋅ 100 % , (3.23)

where ̂𝑝 is the predicted power from the FVWmodel, and 𝑝 is the measured power
from the wind tunnel. Note that VAF values closer to 100 % indicate better perfor-
mance, whereas NMAE values closer to 0 % represent a close fit.
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A total comparison of power at different yaw angles is performed by binning
the results according to wind direction and yaw angle bins and calculating the
mean and standard deviation of the power in each bin. The analysis is the same
for both model and experimental data, thus allowing equivalent comparison.

3.4.3 Experiment replication
A visual, qualitative comparison of the available flow measurements provides a
general overview of the strengths and weaknesses of each of the models. These are
provided for steady-state measurements from WTA and WTB. The cross-stream
planes of the flow are considered to be more important than hub height planes
because of the three-dimensional nature of wind turbine wakes under yaw mis-
alignment.

A quantitative analysis of the steady-state wake deflection from WTA is per-
formed by analysis of the flow cross-sections for the cross-stream position where
potential power is minimal. This is considered to be the wake centre and ameasure
for predictive power for wake deflection under steady-state conditions.

The WTB experiment is replicated with all three FVW models to analyse the
temporal dynamics of the model at high time resolution. The time series of poten-
tial power production provide insight into the propagation of yaw effects down-
stream through the wake.

Finally, the dynamic experiment in WTC is fully replicated with the ADM
free-vortex wake model. The upstream turbine is set to the specified yaw angle
as recorded in the experiment data and operated under a constant thrust coeffi-
cient. The downstream turbine performance is evaluated from the rotor-averaged
velocity over a rotor disc at the downstream turbine position. This position varies
over time as the turbine is translated to track the specified wind direction from
the experiment. For both upstream and downstream turbines, the rotor-averaged
velocity is recorded. The downstream velocity is increased by 2.5 % to account
for the increased velocity due to the higher hub height in the shear profile of the
inflow.

The wake model provides an estimate of the velocity, but the experimental
data records generator power. A simple turbine model is specified to account for
inertial dynamics,

𝜔𝑘+1 = 𝜔𝑘 +
Δ𝑡
𝐽 (𝑝a − 𝜏𝜔𝑘) , (3.24)

where 𝜔𝑘 is the angular velocity of the rotor at time step 𝑘, Δ𝑡 is the time step size,
𝐽 is the rotor inertia, 𝑝a is the available aerodynamic power and 𝜏 is the generator
torque. The generator torque 𝜏 is calculated from the angular velocity of the rotor
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𝜔 as

𝜏 = 𝑘1𝜔 + 𝑘2𝜔2 , (3.25)

with the gains 𝑘1 and 𝑘2. The form of this control law is based on the turbine
controller used in the experiment, which was developed by Petrović et al. [111].
Generator torque and angular velocity are multiplied by an efficiency 𝜂 to obtain
a generator power estimate,

𝑝g = 𝜂𝜏𝜔 . (3.26)

The efficiency term is there to capture all inefficiencies in converting aerodynamic
power to electrical power, such as a suboptimal power coefficient and drive train
losses. The parameters for the turbine model and controller polynomial are found
through a least-squares estimate. The controller gains are first estimated using
measured rotor speed and generator torque. The rotor inertia and power con-
version efficiency are then estimated using the torque controller, modelled wind
speed, and measured power at the upstream turbine. The yaw dependency of
thrust and power is tuned with respective cosine exponents 𝛽t = 1 and 𝛽p = 3. The
yaw-aligned thrust coefficient for all experiments is set to 𝑐t = 0.91 for 𝑎 = 0.33.
The final power estimate is filtered with the same low-pass filter that is applied to
the experimental data.

3.5 Results and discussion
This section presents the core results of this chapter, the comparison of the model
predictions with wind tunnel data for validation. Yaw misalignment under steady
conditions is discussed in Section 3.5.1, followed by the time-resolved step change
in yaw in Section 3.5.2. Finally, analysis of the wake steering experiment with
wind direction variation is provided in Section 3.5.3.

3.5.1 Steady yaw misalignment – WTA
A visual comparison of cross-stream wake velocity profiles is provided in Fig-
ure 3.8, illustratingwake development under yawmisalignment angles 𝛾 = {−30°, 0°, 30°}
for experimental data from WTA and simulation results with the ADM, ADMR,
and LLM.

For yaw-aligned flow (𝛾 = 0°), the wake is almost axisymmetric, both in the
wind tunnel and in the FVW models. The wakes in the FVW are stable with a con-
sistentwake deficit. There is some underestimation ofwake depth in the nearwake
with the current numerical parameter choice as listed in Table 3.1. Some recovery
is modelled through the growth of the Gaussian core, as descibed in Section 3.3.4,
to represent the turbulent mixing that is visible in the wind tunnel measurements.
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Figure 3.8: A comparison of normalised streamwise velocity for wind turbines under yaw mis-
alignment. The experimental data fromWTA are compared to model results with the ADM, ADMR,
and LLM with slices at 𝑥/𝐷 = {1, 3, 5, 7} for yaw misalignment angles 𝛾 = {−30°, 0°, 30°}. All three
models represent the curled shape of the wake under yaw misalignment. The inclusion of rotation
(ADMR, LLM) improves the qualitative representation of the asymmetry and vertical displacement
that is observed in the wind tunnel. The deformation of the vortex filament structure with the LLM
beyond 𝑥/𝐷 = 5 becomes too large to provide useful predictions.
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Both positive and negative yaw misalignment angles result in the generation
of a counter-rotating vortex pair and subsequently a curled wake shape, which be-
comes apparent from 3𝐷 downstream. TheADMproduces wakes that are symmet-
ric between positive and negative yaw misalignment, as expected. The inclusion
of the root vortex in the ADMRmodels some of the asymmetry in wake shape that
is also present in the experimental data. The LLM produces a similar asymmetric
deformation of the wake.

A large deformation of the wake is visible from 5𝐷 onwards for the wake
under yawmisalignment. In the FVWmodels, this leads to stretching of the vortex
filaments and unstable wake structures. Thewake of the LLM breaks down beyond
5𝐷 downstream because of the large number of vortex filaments in close proximity.
The ADMR still demonstrates similar stability in wake structure as the ADM at 7𝐷
downstream, although resemblance of the wind tunnel data is reduced.

Finally, some of the details of the experimental data are not represented in the
FVW models. The effect of the wake from the turbine tower on power predictions
is assumed to be minor and therefore it is not considered in the FVW models,
although it is present in the wind tunnel measurements. Furthermore, the models
assume the rotor to be uniformly loaded, which is not the case in the experiment.
The inclusion of non-uniform rotor loading would increase the model complexity
but might improve the modelling of wake deflection [112]. Additionally, the effect
of the ground is neglected, whereas the experimental data shows a thin boundary
layer near the bottom of the wind tunnel. Ground effects in FVW models may be
modelled using a mirrored vortex structure [67]. An initial experiment showed
that some asymmetry in wake deflection may be achieved this way. However, for
the sake of limiting computational complexity, this option is not presented in this
study.

The displacement of the wake centre is evaluated according to the cross-stream
position where available aerodynamic power is minimal. Figure 3.9 compares the
wake deflection for the data from WTA and the three FVW models. This corre-
sponds to the wakes shown in Figure 3.8.

The ADM appears to have the best fit to the experimental data over the mea-
sured downstream distances. The ADMR and LLM show a similar deflection pro-
file, which only shows good agreement with the experimental data up to 𝑥/𝐷 = 5,
whichmatches the visual analysis of the wake structure. Towards 7𝐷 downstream
in particular, the wake centre predictions diverge. This is related to the large defor-
mation of the wake under these high yaw angles and the numerical stability of the
FVW wake structures. The lack of rotation in the ADM allows for a more stable
wake structure and a better prediction of the wake deflection further downstream.
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Figure 3.9: Wake centre deflection over downstream distance calculated from the flow slices illus-
trated in Figure 3.8, where the wake centre position is defined as the cross-stream position with
minimal available aerodynamic power. The ADM provides the best estimate of wake centre de-
flection, whereas the rotation in the ADMR and LLM models leads to divergence of the deflection
estimate by 𝑥 /𝐷 = 7.

3.5.2 Step change in yaw – WTB
Experiment WTB recorded wake development at downstream distances 𝑥/𝐷 =
{1, 2, 3, 4} for a turbine yawing from 𝛾 = 0° to 𝛾 = 20°. The cross-stream wake
velocity profiles for 𝑥/𝐷 = {2, 3, 4} are shown in Figure 3.10 when the wake has
settled after the step change. The comparison with the ADM supports the qualita-
tive correspondence under steady-state conditions that was found in comparison
with WTA. The good quality of the fit follows expectations because the wind tun-
nel has uniform inflow and a low turbulence intensity.

More importantly, this experiment can provide insight into the wake dynam-
ics for changes in yaw misalignment with a high temporal resolution. The rotor-
averaged wind speed for a virtual rotor is evaluated based on the PIV snapshots
and is shown in Figure 3.11, together with the realised yaw angle. The actual yaw
signal is used to replicate the experiment with the three dynamic FVW models.
Additionally, a look-up table is constructed with steady results from the ADM to
illustrate the added value of including time-resolved wake dynamics. The down-
stream available power in steady state is recorded for a yaw misalignment vary-
ing in 1° increments and is linearly interpolated to produce the illustrated results.
This approach yields results similar to the steady-state engineering models in the
FLORIS toolbox.

The value of VAF and NMAE for the three dynamic model simulations is listed
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Figure 3.10: Flow slices showing streamwise velocity for yaw misalignment 𝛾 = 20°, comparing
experimental measurements from WTB with ADM results.

in Table 3.2, as well as the steady results with the ADM look-up table. The use
of precomputed steady results with the ADM performs considerably worse than
the dynamic model in terms of accounting for wake dynamics, especially further
downstream where the delays for transients propagating through the wake grow
larger. The comparison highlights the motivation for implementing a dynamic
wake model to be able to account for such wake dynamics in a model-predictive
control strategy.

The dynamic ADM and ADMR perform to a similar level of accuracy in this
mid-wake region. They are marginally outperformed by the LLM, which is consid-
erably more computationally expensive. These results support the findings from
Section 3.5.1 that the inclusion of rotation may improve the qualitative flow rep-
resentation in the mid to far wake, but the added complexity does not appear nec-
essary for control purposes.

The replication of the yaw step experiment with the ADM in Figure 3.11 shows
that the ADM estimates a potential power improvement of similar magnitude as
a result of the wake deflection by yaw misalignment. The low-frequency changes
show the delays of control effects propagating downstream through the wake.
These slow dynamics are also well represented in the dynamic model estimate,
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Figure 3.11: The realisation of the 𝛾 = 20° step in yaw angle measured in WTB is shown in the
top graph. The rotor-averaged potential power is calculated directly downstream of the turbine
for 𝑥/𝐷 = {1, 2, 3, 4}, comparing the experimental data and a simulation with the ADM. The model
estimates a power improvement of similar magnitude, although it lacks turbulent disturbances. The
transient effects of the change in yaw angle propagating downstream through the wake are well
represented in the dynamic FVW implementation of the ADM. These are not accounted for when
using a steady-state look-up table with ADM results, which assumes a fully developed wake at
every instant.
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Table 3.2: Fit quality of the time series of potential power estimates from the replication of the
WTB experiment, listing VAF (V) and NMAE (N). The experimental data and ADM estimate, both
using steady-state assumptions and dynamic simulation, are illustrated in Figure 3.11.

ADM (steady) ADM (dynamic) ADMR LLM

𝑥 V (%) N (%) V (%) N (%) V (%) N (%) V (%) N (%)

1D 90.7 3.9 90.8 4.3 90.7 4.4 92.0 3.8
2D 86.8 6.8 92.1 5.6 92.2 5.6 94.7 4.3
3D 74.9 9.2 91.5 6.3 91.6 6.5 95.3 4.2
4D 70.8 10.1 92.8 5.2 92.6 5.5 94.4 4.4

whereas they are not accounted for in a steady-state wake modelling approach.
Some turbulence develops in the wake in the wind tunnel that causes variations
in the velocity deficit which are not accounted for in the FVW. Considering yaw
control is quite slow to actuate, it is more important that the slower dynamics are
properly represented than the resolution of turbulence at smaller timescales.

3.5.3 Wind direction variation – WTC
The WTC dataset provides many performance measurements for varying yaw an-
gle and wind direction. It is replicated only with the ADM, as it appears to perform
similarly to the ADMR and the LLM yields only minor improvements at a compu-
tational expense which is prohibitive for control optimisation in the mid to far
wake.

The replication of the experiment with the BW30 controller settings with the
ADMyields a power estimate for which the time series is shown in Figure 3.12. The
conversion from available aerodynamic power to generator power is performed
with a first-order rotor model for which the inertia and controller settings are es-
timated based on the upstream turbine measurements. The downstream power
estimate is then computed using the same turbine model. The turbine model fit
has an inertia 𝐽 = 0.6 kgm2. The gains for the torque controller polynomial are
estimated to be 𝑘1 = −3.7 × 10−5 Nms rad−1 and 𝑘2 = 6.8 × 10−6 Nms2 rad−2 for the
upstream turbine and 𝑘1 = −2.1 × 10−5 Nms rad−1 and 𝑘2 = 5.5 × 10−6 Nms2 rad−2
for the downstream turbine. The estimated efficiency in converting potential aero-
dynamic power to generator power is 𝜂 = 54%.

The upstream turbine power is estimated with a NMAE of 1.7 % and a VAF of
92.1 %. However, the downstream turbine power estimate is primarily relevant for
evaluation of the performance of the wake model. The downstream power series
estimate achieves a NMAE of 8.8 % and VAF of 93.3 %, which indicates most of the
wake dynamics are accounted for. A similar fit quality is achieved for the power
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Figure 3.12: Power predictions with the ADM are compared with experimental data from WTC
for the BW30 control setting. The time series fit VAF is 92.1 % for the upstream turbine and 93.3 %
for the downstream turbine. The power curves for wind direction and yaw misalignment show the
mean and standard deviation in 3° bins. The power variation of the upstream turbine is completely
due to variation in yaw misalignment from the open-loop yaw controller. The downstream power
is affected both by yaw control on the upstream turbine and by translation for modelling wind
direction variation. For larger wind direction magnitudes, the downstream turbine is no longer in
waked conditions. The downstream effects of yaw misalignment are clouded by the variation in
wind direction and therefore the power-yaw curves filtered for alignment with the wind direction
are presented in Figure 3.13.

estimates with the other control settings from [100], which are listed in Table 3.3.
The first-order rotor model appears to be adequate in accounting for the delays
due to rotor dynamics and the efficiency term captures most of the losses in power
conversion.

Figure 3.12 also presents a statistical analysis of these power signals, where
the mean and standard deviation are illustrated based on 3° wind direction bins.
As expected from the time series, there is a close fit for the upstream power esti-
mate. The variation in power over wind direction is due to changes in yaw angle
based on the control strategy. The downstream power estimate matches well for
wind directions close to 0°. For wind directions away from 0°, where the down-
stream turbine is translated out of the waked conditions, the FVW underpredicts
the power production on the downstream turbine. It is noteworthy that, in the
wind tunnel, the downstream power exceeds the upstream power generated by
about 6 % for wind directions where there is no aerodynamic wake interaction.

Besides possible differences between the model turbines themselves, this in-
crease in power is likely due to a combination of two effects. First, the inflow has
a shear profile with a power-law exponent of 0.28 and the downstream turbine has
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Table 3.3: Fit quality of the time series of generator power estimates from replication of the WTC
experiment with the ADM, listing VAF (V) and NMAE (N). The experimental data and power esti-
mate for the BW30 control strategy are illustrated in Figure 3.12.

upstream downstream

control V (%) N (%) V (%) N (%)

BW600 92.7 3.7 95.2 7.6
BW300 92.5 1.7 93.5 8.7
BW120 93.0 1.5 93.7 8.7
BW60 92.6 1.7 92.9 9.1
BW30 92.1 1.7 93.3 8.8

a higher hub height by 0.16 𝐷. Consequently, it experiences a higher rotor-average
velocity in unwaked conditions. This shear layer is unaccounted for in the FVW
which assumes uniform inflow. Second, the wind tunnel has a limited 3m × 3m
cross-section, which means there are blockage and speed-up effects due to the
presence of the upstream turbine. These effects are especially amplified when the
modelled wind direction |𝜃 | > 20°. The lateral flow component due to translation
of the downstream turbine is neglected.

The impact of wake steering through yawmisalignment on downstream power
production is clouded in Figure 3.12 because of the variation in wind direction.
In order to analyse the model representation of wakes under yaw misalignment,
the power signals are filtered for wind directions with fully waked conditions, i.e.
−3° < 𝜃 < 3°. The mean and standard deviation of power are calculated for 3° yaw
angle bins and are shown in Figure 3.13.

The power-yaw curve of the upstream turbine is slightly asymmetric in the
wind tunnel experiment due to the operation under sheared inflow conditions.
This asymmetric power profile is not represented in the ADMbecause of themodel
symmetry and uniform inflow. The downstream expected power productionmatches
well given the model simplicity. The benefit of wake redirection is slightly under-
estimated for large misalignment angles.

The important aspect of the ADM estimate of power for these two turbines is
that the trends are captured well. In the end, what matters for control optimisa-
tion of wake steering is accuracy in representing the optimal operating point more
so than exactness in the predicted power. The presented data indicate that there
is a considerable correspondence between the model and experiment, but model
implementation in a control strategy will have to point out whether that is suffi-
cient. Additional error integration and state estimation could always be included
if required, such as for tracking a power reference.
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Figure 3.13: Wind turbine power curve for the modelled yaw misalignment distribution, show-
ing the mean and standard deviation of power in 3° yaw angle bins for the power data shown in
Figure 3.12. Data has been filtered to only consider those sections where the turbines are aligned
with the wind direction, i.e. |𝜃 | < 3°. The wind tunnel power-yaw curve of the upstream turbine is
slightly asymmetric due to sheared inflow. The predicted downstream power matches quite well
for these aligned conditions.

3.6 Conclusions
Three free-vortex wake wind turbine models (ADM, ADMR, LLM) are presented
in this work for the prediction of wake dynamics under yaw misalignment for
control optimisation. The two highlights in this work are (i) a study of parameter
sensitivity and convergence and (ii) a comparison with three sets of experimental
data from wind tunnel measurements in order to validate the power predictions
in the far wake.

The parameter and convergence study indicated that the best results for mid-
to far-wake predictions are achieved with the ADM, i.e. when the wake model
has minimum complexity. The addition of rotation does improve qualitative agree-
ment of flow fields with experimental data but does not necessarily improve power
predictions under yaw misalignment. The LLM may generate a slightly more ac-
curate response, but the computational cost is prohibitive for use in online control
optimisation for wake redirection.

The comparison with experimental data illustrates to what extent the FVW
models can provide predictions for available power when utilising wake steering
control. Even under the assumptions of uniform inflow and uniform rotor loading,
there is considerable agreement with experimental data in terms of steady-state
wake deflection, dynamic response to yaw change, and power estimates with yaw
control andwind direction variation. However, implementation in a control frame-
work will have to point out whether the accuracy is sufficient for the intended
purpose of yaw control for power maximisation.
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In conclusion, the ADM appears to be a suitable candidate for efficiently pre-
dicting the dynamic mid- to far-wake effects of wake steering, a range from ap-
proximately 1𝐷 to 7𝐷. As such, it could play a central role in the development of
novel model-based strategies for wind farm flow control. These new controllers
could further improve wind farm energy yield as more accurate wake dynamics
are included in control optimisation for wake redirection.

For near-wake stability and rotor-plane effects, the LLM has added value as
it models individual blades and tip vortices. Further downstream, large wake de-
formations under yaw misalignment limit the usefulness of the vortex filament
approach. A transition to vortex particles or engineering wake models may be a
suitable option to continue wake predictions further downstream.





4
Distributed wind farm control

A novel dynamic economic model-predictive control strategy is presented that im-
proves wind farm power production and reduces the additional demands of wake
steering on yaw actuation when compared to an industry state-of-the-art reference
controller. The novel controller takes a distributed approach to yaw control optimi-
sation using a free-vortex wake model. An actuator-disc representation of the wind
turbine is employed and adapted to the wind-farm scale by modelling secondary ef-
fects of wake steering and connecting individual turbines through a directed graph
network. The economic model-predictive control problem is solved on a receding hori-
zon using gradient-based optimisation, demonstrating sufficient performance for re-
alising real-time control. The novel controller is tested in a large-eddy simulation en-
vironment and compared against a state-of-the-art look-up table approach based on
steady-state model optimisation and an extension with wind direction preview. Under
realistic variations in wind direction and wind speed, the preview-enabled look-up ta-
ble controller yielded the largest gains in power production. The novel controller based
on the free-vortex wake produced smaller gains in these conditions, while yielding
more power under large changes in wind direction. Additionally, the novel controller
demonstrated potential for a substantial reduction in yaw actuator usage.
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4.1 Introduction
Wind farm flow control aims to improve wind turbine performance by reducing
aerodynamic wake interaction between turbines which are often placed in large,
densely spaced wind farms to effectively make use of limited available space [15].
Strategies such aswake redirection through yawmisalignment and dynamic induc-
tion control with blade pitch variations have been shown to achieve improvements
in power production and reductions in fatigue loading [17].

Wake redirection makes use of intentional yaw misalignment to steer wakes
away from downstream turbines. When effectively applied, a small power loss is
incurred on the upstreamwind turbine which results in a larger power gain on the
downstream turbine. This has been demonstrated in wind tunnel experiments [33–
35] and several field studies [36, 38–42].

The control strategies to apply wake steering in wind farms may be roughly
divided into model-based and model-free approaches. The latter attempts to syn-
thesise control signals directly from measurements of the wind farm. In wind
tunnel experiments, a closed-loop, model-free yaw controller [33] and extremum-
seeking control [45] have been demonstrated to produce power gains from wake
steering under steady flow conditions. Extremum-seeking control has also been
demonstrated in large-eddy simulation (LES) [94]. These data-driven methods
have not been tested under realistic time-varying wind direction variations. To
improve interpretability of these methods, Sengers et al. [115] introduces a purely
data-driven wake model with physically explainable parameters. However, it still
requires wake measurements which are not generally available in the field.

Recent work on wake steering uses a model-based approach that embeds prior
knowledge and allows better generalisation to different operating conditions. The
steady-state models in the FLORIS toolbox [47], such as the cumulative curl [49]
andGauss-curl hybrid [116]models, provide an approximation for the time-averaged
velocity profiles in the wake. These models allow efficient optimisation of steady-
state optimal yaw angles for wake steering to generate look-up tables (LUT) with
yaw offsets for varying wind directions. These LUT approaches have been used,
for example, for yaw control under steady conditions in LES [31], in a wind tunnel
setting with simulated wind direction changes [35], and in a closed-loop control
framework with model adaptation under time-varying inflow in LES [50]. How-
land et al. [42] most recently demonstrates the effective use of a tuned steady-state
model for wake steering in a field experiment.

However, the validity of steady-state models may be limited under realistic,
time-varying inflow conditions. The inclusion of wake dynamics is essential for ac-
tive power control in wind farms [52] and the dynamics of realistic wind direction
variations need to be accounted for in control optimisation [51]. For that purpose,
some studies have adapted the steady-state engineering wake models to include
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dynamics [55, 56, 101] or investigated wind direction preview to account for the
dynamics of wake propagation [117, 118]. On the other hand, a physics-based
approach may naturally include the dynamics of wake propagation. The use of
LES for control optimisation showed promising results [59] and recent work has
approached real-time control by coarsening mesh resolution and adjusting con-
trol parameters [60]. An approximation of wind farm flow using two-dimensional
computational fluid dynamics [61, 62] has been attempted and proven useful for
induction control [65, 66], but inherently lacks the wake dynamics required to
capture the wake deflection under yaw misalignment [63].

A dynamic, control-oriented free-vortex wake model (FVW) of the wind tur-
bine wake was developed for gradient-based control optimisation and shown to
capture sufficient wake flow dynamics to model wake deflection for control [81]
(Chapter 2). The economicmodel-predictive control implementation yielded promis-
ing results for wake steering under time-varying inflow conditions. The model
formulation based on Lagrangian particles allows greater flexibility compared to
mesh-based flow calculations [76]. Additionally, the model has been validated
for power predictions for wind turbines operating under yaw misalignment [96]
(Chapter 3). Despite its flexibility, the optimisation with the FVW is currently lim-
ited to single wakes by the stability of the free-vortex methods and the exponential
increase in computational complexity with larger numbers of vortex elements.

To extend economic model-predictive control with the FVW to larger wind
farms, this chapter develops a distributed approach to control optimisation for
wake steering under time-varying inflow conditions. The performance of the novel
control strategy will then be evaluated in LES against the greedy control baseline,
and, more importantly, a reference controller based on the industry state-of-the-
art use of a LUT with steady-state optimised yaw offsets as well as an extension
with wind direction preview. In addition to synthetic wind signals, a set of mea-
sured wind direction and wind speed variations will be used to evaluate perfor-
mance in a simulated section of the Hollandse Kust Noord (HKN) wind farm.

The contribution of this chapter is twofold: (i) development of a distributed
approach to dynamic economic model-predictive control for wake steering with
a free-vortex wake model, (ii) validation of the control strategy under realistic,
turbulent inflow conditions with wind direction and wind speed variation.

The remainder of this chapter is structured as follows. Section 4.2 introduces
the FVWmodel for the wind turbine wake and the coupling to facilitate farm-scale
optimisation. The model-predictive control strategy is developed in Section 4.3.
The reference controllers and simulation test cases for validation are defined in
Section 4.4. The results are then discussed in Section 4.5 and, finally, the conclu-
sions are shown in Section 4.6.
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Table 4.1: Numerical parameters for the FVW actuator-disc model.

time step Δ𝑡 ⋅ 𝑢∞/𝐷 0.3
number of rings 𝑛r 40
elements per ring 𝑛e 16
initial core size 𝜎/𝐷 0.16
turbulent growth 𝛿 100
yaw exponent - thrust 𝛽t 1
yaw exponent - power 𝛽p 3

4.2Model development
The core of the novel dynamicmodel-predictive control strategy is the FVWmodel,
briefly described in Section 4.2.1. In order to implement this model in a farm-scale
controller, Section 4.2.2 presents a strategy for incorporating secondary steering
effects when a turbine operates in the wake of a yaw-misaligned turbine. Sec-
tion 4.2.3 then illustrates the strategy for connectingwind turbines intowind farms
by constructing a directed graph connecting upstream and downstreamneighbour-
ing turbines.

4.2.1 Wake model for control optimisation
The wake model used for yaw control optimisation is an actuator-disc representa-
tion of the wind turbine modelled with the free-vortex wake as developed in [81]
(Chapter 2) and validated for power predictions for wake steering control with yaw
misalignment [96] (Chapter 3), which yielded the current model parameters listed
in Table 4.1. The model, illustrated in Figure 4.1, assumes a uniformly loaded actu-
ator disc that sheds vorticity from its edge. These rings of vorticity are discretised
in straight-line vortex filaments and advected downstream as Lagrangian particles,
forming a skeletal representation of the wind turbine wake.

A non-linear state-space system is defined for the model dynamics which up-
dates the model state vector 𝒒𝑘 ∈ ℝ𝑛s , with the number of states 𝑛s, at discrete
time-step 𝑘 as

𝒒𝑘+1 = 𝑓 (𝒒𝑘 , 𝜓𝑘 , 𝑎𝑘 , 𝒖∞) , (4.1)

where the state vector contains the start and end points, vorticity, and core size
for all vortex filaments. The turbine yaw heading 𝜓𝑘 and the induction factor 𝑎𝑘
are control inputs and 𝒖∞ is the free-stream velocity. The yawmisalignment angle
𝛾 = 𝜃 − 𝜓 is the difference between turbine heading 𝜓 and wind direction 𝜃 .

At fixed time intervals Δ𝑡 , a vortex ring discretised in 𝑛e vortex filaments is
generated at the edge of the rotor. At the same time, a vortex ring at the end of the
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Figure 4.1: Free-vortex wake model of the wind turbine wake. Rings of vorticity discretised in
straight-line vortex filaments are shed from the wind turbine rotor modelled as an actuator disc
forming a skeletal representation of the wake. The wake develops the characteristic curled shape
for turbine operation under yaw misalignment.

wake is removed to maintain a finite wake with 𝑛r rings. The vorticity Γ generated
along the edge of an actuator disc is directly related to the pressure differential
generated by the disc [106],

Γ = Δ𝑡 𝜕Γ𝜕𝑡 = Δ𝑡 1𝜌
𝑇
𝐴r

, (4.2)

where 𝜌 is the air density, 𝐴r is the area swept by the rotor, and 𝑇 is the thrust
force. The vortex filaments are convected over time with a rate ̇𝒙 ∈ ℝ3

̇𝒙 = 𝒖ind(𝒙) + 𝒖∞(𝒙) , (4.3)

which is the combination of the free-stream velocity 𝒖∞ ∈ ℝ3 and the total velocity
induced by all filaments 𝒖ind ∈ ℝ3 at the vortex position 𝒙 ∈ ℝ3.

The induced velocity of an individual vortex filament 𝒖i ∈ ℝ3 at a point 𝒙0 ∈ ℝ3
according to the Biot-Savart law [67, 68],

𝒖i(𝒙0) =
Γ
4𝜋

𝒓1 × 𝒓2
||𝒓1 × 𝒓2||2

𝒓0 ⋅ (
𝒓1
||𝒓1||

− 𝒓2
||𝒓2||

) , (4.4)

where the relative positions 𝒓 ∈ ℝ3 for a vortex filament starting at 𝒙1 ∈ ℝ3 and
ending at 𝒙2 ∈ ℝ3, with vortex strength Γ, are defined as

𝒓0 = 𝒙2 − 𝒙1 , (4.5)
𝒓1 = 𝒙1 − 𝒙0 , (4.6)
𝒓2 = 𝒙2 − 𝒙0 . (4.7)



4.2 Model development

Ch. 4

89

A Gaussian core with core size 𝜎 is included to regularise singular behaviour of
the induced velocity close to the vortex filament,

𝒖i,𝜎 (𝒙0) = 𝒖i(𝒙0) (1 − exp (−||𝒓1 × 𝒓𝟐||2
𝜎2||𝒓0||2

)) . (4.8)

The effects of turbulent and viscous diffusion are approximated using the growth
of the vortex core

𝜎𝑘+1 = √4𝛼𝛿𝜈Δ𝑡 + 𝜎2𝑘 , (4.9)

which is Squire’s modification of the diffusive growth of the Lamb-Oseen vor-
tex core [107], with the discrete time step 𝑘, the constant 𝛼 = 1.25643, effec-
tive turbulent viscosity coefficient 𝛿 to tune core growth, kinematic viscosity 𝜈 =
1.5 × 10−5 m2 s−1, and time step Δ𝑡 .

The thrust 𝑇 and aerodynamic power 𝑝a for the rotor model are calculated as

𝑇 = 𝑐t ⋅
1
2𝜌𝐴r𝑢2∞ cos𝛽t(𝛾) , (4.10)

𝑝a = 𝑐p ⋅
1
2𝜌𝐴r𝑢3∞ cos𝛽p(𝛾 ) , (4.11)

where 𝑐t and 𝑐p are, respectively, the thrust and power coefficient and 𝑢∞ is the
magnitude of the free-stream inflow velocity. For performance evaluation in terms
of available power for downstream turbines, the free-stream velocity 𝑢∞ in (4.11)
is replaced by the rotor-averaged velocity 𝑢r at the position of the downstream
rotor, which includes the velocity deficit from the aerodynamic wake. This rotor-
averaged velocity is calculated as

𝑢r =
||||
||||
1
𝑛u

𝑛u
∑
𝑖=1

𝒖∞(𝒑𝑖) + 𝒖ind(𝒑𝑖)
||||
||||2
, (4.12)

where 𝑛u sampling points 𝒑𝑖 ∈ ℝ3 are evenly distributed over the rotor area.
The yaw dependence of the coefficients can be tuned with the cosine expo-

nents 𝛽t and 𝛽p for thrust and power, respectively, such as seen in Hulsman et al.
[108]. The current values for these exponents are based on work by van den Broek
et al. [96] (Chapter 3), although they may differ in reality [79, 119] and, thus, may
require tuning for different turbine types or atmospheric conditions. Additionally,
a dependence on thrust force [120] or on wind field heterogeneity [121] is not
included in the current work.



Ch. 4

90 4 Distributed wind farm control

The induction factor is used to calculate the thrust coefficient and power coef-
ficient for the model as

𝑐t(𝑎) = { 4𝑎(1 − 𝑎) if 𝑎 ≤ 𝑎t ,
𝑐t1 − 4(√𝑐t1 − 1)(1 − 𝑎) if 𝑎 > 𝑎t , (4.13)

𝑐p(𝑎) = 4𝑎(1 − 𝑎)2 , (4.14)

with parameter 𝑐t1 = 2.3 and the induction at the transition point 𝑎t = 1− 1
2√𝑐t1 [86].

In the current study, the induction factor is fixed to the optimumvalue known from
momentum theory, 𝑎 = 0.33, however it may also be used as a degree of freedom
for induction control or to adapt the model to above-rated operating conditions.

4.2.2 Modelling secondary steering
One important effect that is not immediately accounted for in the FVW is the
cumulative effect of wake steering. Wind turbines in thewake of a yaw-misaligned
turbine need to yaw less to achieve the samewake deflection as an isolated turbine,
as shown in simulation [122] and wind tunnel experiments [34]. This cumulative
effect of wake deflection is attributed to cross-flow on the waked rotor and the
trailing vortices from the yaw-misaligned turbine. The secondary steering effects
have been accounted for in a control-oriented model in FLORIS by calculation of
an effective yaw angle [116].

A simulation study is used to develop a method for incorporating these sec-
ondary steering effects in the current wake model. The study is performed with
LES using settings as described in Section 4.4.6. The turbulent inflow has an av-
erage speed of 9ms−1. The effects of yaw misalignment are measured for 1, 2,
3, and 5 turbines with a 5𝐷 inter-turbine spacing, where 𝐷 is the rotor diame-
ter. The layout is aligned with the wind direction. For three, and fewer, turbines,
the domain size is 4 km × 2 km × 1 km. The five-turbine test is performed on a
6 km × 2 km × 1 km domain. Cross-stream flow slices are recorded at 1𝐷 intervals
downstream from the first turbine. The wake deflection, illustrated in Figure 4.2, is
calculated based on the average flow over the final 1500 s of the 2000 s simulations.

Based on these simulation results, we present a method for calculation of an
induced yaw angle which is used to propagate the effects of secondary steering to
downstream turbines with minimal additional complexity. It differs from the solu-
tion proposed by King et al. [116] because the induced yaw effects are calculated
directly from the sampled velocity.

For downstream neighbours, the velocity is sampled over a rotor-disc area.
The effective flow direction 𝜃eff is calculated from the velocity components in the
horizontal plane. We take the root-mean-square of the wind direction 𝜽u ∈ ℝ𝑛u
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sampled over 𝑛u points to get one effective flow direction,

𝜃eff = RMS(𝜽u) . (4.15)

The proposed induced yaw angle 𝛾ind is then the difference between the effective
inflow and the nominal wind direction,

𝛾ind = 𝜃eff − 𝜃 . (4.16)

The optimised yaw offset 𝛾⋆ is the result of the optimisation with the FVW model.
The new induced yaw angle reduces this optimised yaw offset to yield the com-
manded yaw angle 𝛾ref, which is sent to the wind turbine

𝛾ref = 𝛾⋆ − 𝛾i (4.17)

with {𝛾i = max(min(𝛾⋆, 𝛾ind), 0) if 𝛾⋆ > 0 ,
𝛾i = min(max(𝛾⋆, 𝛾ind), 0) otherwise.

The conditional application of the induced yaw ensures the yaw reference does
not compensate for induced yaw to achieve zero offset.

Figure 4.2 shows how this induced yaw angle contributes to approximating the
secondary steering effects. Thewake deflection is defined as the positionwhere po-
tential power from a virtual rotor placed in the stream would be minimal, as used
in e.g. [96, 110]. The FVW results are based on individually simulatedwakeswhich
have been combined using root-sum-square superposition of the wake deficit. The
induced yaw angles from the first two upstream turbines for each turbine are added
to the actual yaw misalignment with respect to the free-stream inflow. The down-
stream turbines operate at a smaller yaw offset magnitude, but achieve similar
levels of wake redirection. This captures the secondary steering effects for imple-
mentation in the control optimisation strategy. Note that the induced yaw effects
are not applied on turbines that are operating without yaw offset, as it would lead
to unwanted offsets.

The downstream deflection from the second turbine onwards is captured bet-
ter for negative yaw misalignments. Wake redirection with positive yaw offsets
appears to lead to more deflection on downstream turbines in the LES simulations
due to rotating flow in the wake and ground effects, but modelling this asymmetry
is out of scope of this chapter. In future work, an asymmetric thrust-yaw curve
could be implemented or further refinements could be incorporated in a model
adaptation stage in a closed-loop control implementation.

4.2.3 Directed graph network
The communication protocol between upstream and downstream neighbours is
constructed based on a directed graph network, similar to, for example, the work
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Figure 4.2: Deflection of the wake centre comparing the FVW modelling of induced yaw effects
with time-averaged flow from LES. The individual FVW wakes have been combined for this com-
parison using a root-sum-square superposition of the wake deficit. The cumulative effect of wake
steering is captured as a reduced yaw offset is required for similar levels of wake deflection when
operating in the wake of yaw-misaligned turbines. The model is symmetric, whereas the LES data
shows greater wake deflection from the second turbine onwards when implementing positive yaw
misalignments.

by Starke et al. [123]. The structure of this network naturally changes with the
wind direction as wakes propagate with the flow through the farm. The relevant
neighbouring turbines are selected based on arc sectors around the wind turbine
as illustrated in Figure 4.3. The arc sectors are defined by a radius of influence
and a spreading angle around the predicted inflow. Separate directed graphs are
constructed for the upstream and downstream connection, although they may be
symmetric.

The upstream graph is used for propagating the induced yaw effects to account
for the secondary effects of wake steering. The downstream graph is used to deter-
mine which turbines are relevant in the optimisation for wake redirection control.
Simulated wake length and prediction horizon are both important in determining
suitable arc radius settings; downstream turbines, for example, should only be in-
cluded in the optimisation problem if adequately covered by the simulated wake
length and the prediction horizon. The spreading angle limits the connection to
only those wakes that may actually interact through the streamwise wake propa-
gation. It should be wide enough to cover the width of the wake and possible de-
flection due to yaw misalignment. An example network of FVW models is shown
in Figure 4.4 using a symmetric upstream and downstream graph, illustrating how
the wake models are connected along the flow direction through the farm.
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Figure 4.3: Selection of up- and downstream neighbours based on arc sectors around the inflow
wind direction. The resulting directed graph connects the wind turbine in the farm in the direction
of flow.

Figure 4.4: Representation of the wakes in a wind farm using a network of FVW models, with
an indication of the graph connecting the wakes which have been individually simulated. The
highlighted wakes show a wake and its immediate upstream and downstream neighbours. The
upstream wake simulation provides induced yaw estimates for incorporating secondary steering in
the control signal for the downstream turbine. The downstream neighbour is accounted for in the
optimisation for wake steering to minimise negative effects from wake interaction.



Ch. 4

94 4 Distributed wind farm control

4.3 Controller synthesis
In this section we develop an economic model-predictive wind farm controller
around the network of FVW models. Section 4.3.1 describes a reduction of the di-
mensionality of the optimisation using a B-spline basis. The optimisation problem
for the open-loop receding horizon control strategy is then defined in Section 4.3.2.

4.3.1 Basis functions for control signal
Previous work [76, 81] uses a control signal that may be freely chosen at every
simulation time step. However, the current implementation of the model uses
forward-mode automatic differentiation for constructing the gradients for optimi-
sation, as opposed to the manual derivation of the adjoint method developed by
van den Broek et al. [81] (Chapter 2). The automatic differentiation framework
yields additional flexibility in model development and facilitates improvements in
computational performance by minimising code complexity. Furthermore, it dras-
tically reduces the memory requirements for gradient calculation compared to the
manual adjoint derivation, which required storing all partial derivatives at every
time step. As a trade-off, it comes with a computational cost that scales linearly
with the number of control degrees of freedom. For that reason, the current work
aims to limit the possible search space to improve optimisation performance.

The dimensionality of the problem is reduced by constructing the control sig-
nal using B-splines. For the optimisation, the control signal needs to be defined
over a prediction horizon of 𝑁h steps from the current step 𝑘 = 𝑘0. The reference
turbine yaw heading 𝜓 is calculated from a spline 𝑠(𝑘, 𝒄) defined on the range
𝑘 ∈ [𝑘0; 𝑘0 + 𝑁h] as

𝜓𝑘 = 𝑠(𝑘, 𝒄) , (4.18)

at time step 𝑘 with 𝑛b the number of B-spline basis functions with the correspond-
ing coefficients 𝒄 ∈ ℝ𝑛b . Figure 4.5 illustrates the construction of a control signal
from an example B-spline basis with 𝑛b = 7 splines, starting at 𝑘0 = 0 and with a
prediction horizon 𝑁h = 80 steps.

To further reduce the dimensionality, not all coefficients are left to be free
variables in the optimisation problem. The first coefficient is chosen equal to the
current yaw angle to ensure a continuous yaw signal, 𝑐1 = 𝜓𝑘0 . The turnpike
effect [88], also illustrated by [81] (Chapter 2), leads turbines to always return to
greedy control towards the finite optimisation horizon. Therefore, in the example
illustrated in Figure 4.5, the final three coefficients, 𝑐5, 𝑐6, 𝑐7, are chosen equal to
the wind direction which leaves the remaining coefficients, 𝑐2, 𝑐3, 𝑐4, free as the
control parameters for the optimisation problem.

The smoothness of the B-spline basis improved the behaviour of the gradient
for optimisation with the FVW in trial optimisations. The basis functions average
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Figure 4.5: B-spline basis with 𝑛b = 7 splines for constructing a yaw control signal over the predic-
tion horizon. The first coefficient is fixed to the preceding yaw reference for continuity, 𝑐1 = 𝜓𝑘0 .
The final three coefficients, 𝑐5, 𝑐6, 𝑐7, are set equal to the wind direction 𝜃 at the associated time
steps because the optimisation returns to greedy control towards the finite horizon. The remaining
three coefficients, 𝑐2, 𝑐3, 𝑐4, are free in the optimisation.

out noisy contributions to the gradient and smoothen the optimisation landscape.
This allows the optimisation problem in the current work to be defined with a
lower input regularisation cost while still yielding smooth control signals. The
dimensionality reduction from the use of basis functions does limit some of the
flexibility in the control solutions that can be found compared to fully free optimi-
sation.

4.3.2 Distributed optimisation
In order to scale the model-based control approach with the FVW to the wind-
farm scale, a distributed approach is implemented as illustrated in Figure 4.6 and
described in Algorithm 1. In this approach, each individual turbine has its own
wake model. The optimisations for all turbines are then performed in parallel,
where each of the turbines attempts to optimise its control signal consideringwake
effects on its immediate downstream neighbours given an expected inflow over the
prediction horizon that is kept fixed during the iterations of the non-linear solver.
This is an economic model-predictive control problem because the extremum for
powermaximisation is not known a priori, whereas conventionalmodel-predictive
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control is concernedwith driving an objective function to zero, such as for tracking
a power reference [78].

The full control optimisation problem is solved in a receding horizon control
scheme, in which 𝑁c ≥ 1 is defined to be the number of samples executed before
re-optimisation. Larger values reduce the computational requirements, but reduce
flexibility under changing predictions as the control signal is re-optimised less
frequently. At every re-optimisation step, information is shared between turbines
in the farm.

The yaw reference for each individual turbine is defined by the coefficients of
the spline basis, of which several are fixed and the 𝑛m free coefficients gathered in
the control vector 𝒎 ∈ ℝ𝑛m . For every turbine, we construct the scalar objective
function 𝐽 ∶ ℝ𝑛m → ℝ to optimise the mean power production over the prediction
horizon for the current turbine and its immediate downstream neighbours

𝐽 (𝒎) =
𝑘0+𝑁h

∑
𝑘=𝑘0

(𝑅(𝜓𝑘 − 𝜓𝑘−1)2 +
𝑛t,sub
∑
𝑖=1

𝑄𝑝𝑘,𝑖) . (4.19)

The objective function uses an initial condition 𝒒𝑘0 for the wake model at the
current time step 𝑘 = 𝑘0 with the state update according to (4.1) using a set of
free-stream velocity predictions 𝒖∞ over the horizon. The power 𝑝 of turbine 𝑖
at time step 𝑘 is calculated following (4.11) and the yaw heading reference 𝜓 fol-
lowing (4.18). The output weight 𝑄 < 0 such that minimisation of the objective
maximises mean power production over the horizon and the input weight 𝑅 ≥ 0
balances the output and actuation cost. The number of turbines 𝑛t,sub is size of
the subset of the wind farm consisting of the current turbine and its immediate
downstream neighbours in the directed graph.

The objective function is then implemented in the optimisation problem

min𝒎 𝐽 (𝒎) subject to |𝛾𝑘 | ≤ 𝛾max , (4.20)

where themaximumyaw offsets 𝛾max are enforced as hard limits relative to the pre-
dicted inflow. The optimised yaw signal does not include the induced yaw effects,
these are taken into account before sending the control signals to the wind turbine
yaw controller for implementation in the wind farm. The problem is solved with
the BFGS optimisation algorithm [92] although this approach was ineffective in
previous work [81] (Chapter 2) because of the noisy optimisation landscape. The
smoothing effect of the B-spline basis enabled better convergence trial optimisa-
tions.

The controller framework presented here is operated in open loop as data as-
similation for state estimation and parameter updates are beyond the scope of the
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Figure 4.6: The finite-horizon optimisation problem for economic model-predictive control is
solved in parallel with a wake model for each turbine. A central controller communicates with
the wind farm to update control set-points and incorporates the predicted inflow. It updates the
graphs connecting upstream and downstream neighbours and distributes information. The current
control framework is open loop and does not utilise wind farm measurements for state estimation
or parameter updates.
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current work. Additionally, management of fatigue loading is important for tur-
bine operation, but left out of the control objective. Minimisation of fatigue loads
could be achieved by integrating a surrogate model for turbine loads [124, 125],
adding an associated cost to the objective function, and subsequently appropri-
ately balancing objective weights.

Algorithm 1 Free-vortex wake controller
initialise wind farm from configuration
for turbine in wind farm do

construct free-vortex wake model
𝒒0 ← run transient with initial inflow

end for
𝑘 ← 0
𝑘final ← 𝑡final/Δ𝑡
while 𝑘 < 𝑘final do

𝒖∞ ← inflow over prediction horizon
graphs ← update graphs with 𝒖∞
for turbine in wind farm do

position, controls ← downstream neighbours from graphs
𝒎 ← minimise 𝐽 (𝒎) with 𝒖∞, position, controls
𝒄 ← combine fixed and optimised coefficients
𝜓⋆ ← spline with coefficients 𝒄
for 𝑖 in 1 to 𝑁c do

𝒒𝑘+𝑖 ← update model State 𝒒𝑘 with 𝜓⋆, 𝒖∞
𝛾ind ← calculate induced yaw at position

end for
𝛾ind ← upstream neighbours (≤ 2) from graphs
𝛾ref ← reduce 𝛾⋆ with 𝛾ind

end for
𝑘 ← 𝑘 + 𝑁c

end while

4.4 Methods for controller validation
Given the novel control strategy constructed around the FVW model, it is imper-
ative to validate its control performance with a suitable reference controller and
realistic operating conditions. Section 4.4.1 describes the turbine yaw controller
used to implement the reference signals from the wind farm controllers. The ref-
erence wind farm controllers are introduced in Section 4.4.2, followed by the set-
tings for the FVW controller in Section 4.4.3. The wind farms for the test cases
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are defined in Section 4.4.4 and a realistic time-varying wind signal for driving the
simulation study is provided in Section 4.4.5. Finally, Section 4.4.6 describes the
simulation environment that is used to measure controller performance.

4.4.1 Turbine yaw controller
The first aspect of testing the control strategy in a realistic wind farm setting is
the implementation of a local turbine yaw controller. This yaw controller is used
for all control strategies to follow the specified reference signal. The basic yaw
controller is implemented based on a dead-band control strategy [51] with an 8°
dead band. When the magnitude of the yaw error exceeds the dead band, the
turbine will yaw with a constant 0.3 ° s−1 yaw rate until the error reaches zero. Ad-
ditionally, to avoid persistent unintentional yaw misalignment, error integration
is implemented similar to Kragh and Fleming [126]. The turbine will yaw until the
error reaches zero if the cumulative error exceeds the equivalent of five degrees of
misalignment for five minutes. This is set more strict than in the original work to
facilitate a fair comparison of the control strategies.

4.4.2 Reference wind farm controllers
The standard baseline control strategy for wind farm control is greedy control,
where each turbine operates individually to track the inflow wind direction with-
out considering collective wind farm performance. This baseline is used in the
current study to provide normalised output measures and quantify relative gains.
However, a reference wake steering controller is necessary to assess the potential
for dynamic model-predictive control.

The current industry state-of-the-art for implementingwake steering uses look-
up tables with yaw angles optimised using steady-state engineeringmodels. There-
fore, we use FLORIS [47] with the cumulative curl model [49] and the serial-refine
optimisation strategy [127] to generate a look-up table with yaw angle offsets opti-
mised for power production in steady-state. A 2° hysteresis is applied on the wind
direction signal to avoid excessive yaw actuation around wind directions where
the yaw offset in the look-up table changes sign [51]

The model-predictive controller assumes a preview of the inflow over the op-
timisation horizon. For fair comparison, the greedy controller and the LUT con-
troller use the same inflow information. However, these controllers lack preview
and therefore utilise only the instantaneous flow conditions.

Recent work by Simley et al. [117] and Sengers et al. [118] explores LUT control
with preview of the wind direction, selecting yaw offsets from the look-up table
based on the inflow direction at a time in the future. With these studies in mind,
we implement a preview-enabled look-up table (PLUT) controller to studywhether
results similar to the economic model-predictive controller might be realised by
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utilising a simple control strategy. To do so, we use the same pre-optimised yaw
offsets and hysteresis strategy that the LUT controller is based on. However, the
yaw reference is selected based on the inflow direction 𝜃 at a time 𝑡preview = 𝑡+Δ𝑡 .

We relate the preview time to the time it takes for the effects of control actions
to propagate to downstream turbines. A simple formulation relates the preview
window Δ𝑡 to turbine spacing Δ𝑥 and the free-stream wind speed 𝑢∞ as

Δ𝑡 = Δ𝑥
𝑓w ⋅ 𝑢∞

, (4.21)

where 𝑓w ≤ 1 is an approximate fraction of the free-stream wind speed at which
the wake propagates. Simley et al. [117] and Sengers et al. [118] find an optimal
preview window which, for their configuration, is equivalent to 𝑓w = 0.9 and
𝑓w = 1.0, respectively. For now, we implement the control strategy with 𝑓w = 1
and an inter-turbine spacing of Δ𝑥/𝐷 = 5 which corresponds with the spacing
along the main rows of wind turbines where wake steering will be applied for the
layouts presented in Section 4.4.4. Note that this a rough preview implementation;
further exploration and refinement is outside the scope of the current work.

4.4.3 FVW controller settings
In the current study, the optimisation problem at the core of the FVW controller is
solved over a prediction horizon of 𝑁h = 80 steps. In order to save some computa-
tional expense, the first𝑁c = 5 samples of the optimised control signal are executed
before re-optimisation, which is the first 6 % of the prediction horizon. The output
weight is set to 𝑄 = −1 and the input weight 𝑅 = 0.001 balances the output and
actuation cost. The optimisation parameters were chosen based on results of ex-
ploratory parameter variations. The yaw offset results from the optimisation are
limited to maximum yaw offsets 𝛾max = 30°.

A B-spline basis with seven coefficients is chosen to provide enough degrees
of freedom for control on the given prediction horizon, which corresponds to the
example illustrated in Figure 4.5. The first coefficient is chosen equal to the current
yaw angle at time step 𝑘0 to ensure a continuous yaw signal, 𝑐1 = 𝜓𝑘0 , and the final
three coefficients, 𝑐5, 𝑐6, 𝑐7, are chosen equal to the predicted wind direction at the
associated time steps. The middle three coefficients remain free as the control
parameters for the optimisation problem and are used to define the control vector
𝒎 = [𝑐2 𝑐3 𝑐4]T.

The directed graph network is constructed using a spreading angle of 30° and
a range of 8𝐷 for both the upstream and downstream connections. The 8𝐷 range
is the limit for consistent power predictions with the current settings of the FVW
model because a finite-length wake is simulated.
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4.4.4 Wind farm definitions
The test wind farms use the DTU 10MW reference turbine [128] with a rotor di-
ameter 𝐷 = 178.3m and a hub height of 119m.

The first test case is a three-turbine wind farm (TTWF), illustrated in Figure 4.7,
is a relatively simple proof-of-concept to test the novel control strategy under a
synthetic time-varying wind direction. The turbines are aligned with a 240° wind
direction and spaced 5𝐷 apart. The case provides room for transitions between
greedy control and wake steering. It also requires the controller to account for
secondary steering effects to avoid excessive yaw misalignment.

The second wind farm test case is a subset of the Hollandse Kust Noord (HKN)
wind farm, scaled by rotor diameter from the actual turbine to the DTU 10MW
reference turbine. The ten turbines in the South-West corner are selected as illus-
trated in Figure 4.7. For the first HKN test case, labelled HKNA, a synthetic wind
direction signal is constructed to test controller performance for several transients
and steady-state wind directions. The wind direction signals for the TTWF and
HKNA cases are designed specifically to test the controller performance in the
respective wind farm layouts.

4.4.5 Real-world wind signal
In order to set up realistic wind variations for the wind farm, we make use of
publicly available wind measurements. The raw data from a ZephIR 300m wind
lidar at the HKN location is adapted from the KNMI Data Platform [129].

Two seven-hour time series of wind speed andwind direction are selected from
the available measurements and illustrated in Figure 4.8. These time series drive
the LES for test cases HKNB and HKNC. The selected data have wind directions
180° ≤ 𝜃 ≤ 270° such that the South-West inflow boundaries can be used for driv-
ing the LES domain. Furthermore, the wind speeds are such that the wind turbines
operate in region II, below-rated conditions. The measurements record wind con-
ditions at 133m above sea-level, which is close to the 119m hub height of the DTU
10MW reference turbine.

The raw data is cleaned up and interpolated from the original samples at ap-
proximately 17 s intervals to 1 s samples with cubic splines. A low-pass filter with
a 1/600Hz cut-off frequency is applied to generate a suitable signal for driving
the LES. Higher frequency variations are naturally reintroduced in the turbulent
variations of the simulation.

4.4.6 Simulation environment
The controllers are tested in large-eddy simulations (LES) with turbulent precur-
sors using SOWFA [130]. Turbines are modelled with a rotating actuator-disc
model of the DTU 10MW reference turbine [128].
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Figure 4.7: Layout of the wind farm test cases and simulation domains, and angle definitions for
wind direction 𝜃 , turbine heading 𝜓 , and yawmisalignment 𝛾 = 𝜃 −𝜓 . The three-turbine wind farm
has a 5𝐷 spacing and is aligned along 𝜃 = 240°. The ten-turbine subset of Hollandse Kust Noord
(HKN) is the South-West corner of the wind farm, scaled to the 10MW reference turbine.

The three-turbine wind farm is simulated in a 4 km × 2 km × 1 km domain.
The HKN cases are run in a 5 km × 5 km × 1 km domain. The positioning of the
turbines in the domains is illustrated in Figure 4.7. The base cell size is set to 20m
in all directions. A single refinement is applied to the bottom layer (𝑧 < 300m) to
10m cells. This yields a total of approximately 9.7 × 106 grid cells. The simulations
are run with a 0.5 s time step.

Turbulent precursors are prepared before the controller simulations by simu-
lating for 20 000 s to develop turbulence and then forcing the specified wind direc-
tion and wind speed variations. The wind direction and speed appear to change
almost uniformly throughout the flow field. The use of the same precursor data
for all control strategies allows a comparison of the differences in output measures
originating from control.
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Figure 4.8: Time series of lidar measurements of wind direction and wind speed at the HKN loca-
tion [129]. The raw data is post-processed and low-pass filtered with a 1/600Hz cut-off frequency.
Two seven-hour time series with wind direction 180° ≤ 𝜃 ≤ 270° and below-rated wind speeds are
selected for driving the realistic wind variations in the LES.

4.5 Results and discussion
Theperformance of the novel FVWcontroller is first evaluated on the three-turbine
wind farm in Section 4.5.1. Subsequently, it is tested on the ten-turbine subset of
HKN with synthetic wind direction variation in Section 4.5.2 and with realistic
wind variations in Section 4.5.3. Section 4.5.4 comments on the limitations of op-
timisation with finite-length wakes on a finite horizon and Section 4.5.5 provides
a perspective towards closed-loop control. A benchmark of computational perfor-
mance is presented in Section 4.5.6 to discuss the steps towards real-time optimi-
sation. Finally, Section 4.5.7 discusses the potential for preview-enabled look-up
table control.

4.5.1 Three-turbine wind farm
The three-turbine test case is a relatively simple proof-of-concept to test the novel
control strategy. The yaw offsets implemented by the three controllers are illus-
trated in Figure 4.9. Intentional yaw misalignment is applied to turbines 1 and 2
in all control strategies. The maximum offsets utilise the ±30° bounds applied to
the optimisation problem. No offsets are applied to turbine 3, which is the most
downstream turbine. It is always controlled towards alignment with the local free-
stream wind direction for the range of wind directions studied here. The magni-
tude of yaw misalignment on turbine 2 is lower than on turbine 1 for both FVW
and LUT controllers. This is the result of accommodating for secondary steering
effects in the yaw control strategy. The induced yaw effect from operating in the
wake of the yaw-misaligned turbine 1 lowers the required angle of misalignment
for a similar level of wake redirection.



Ch. 4

104 4 Distributed wind farm control

20
0

20
 (°

)

TTWFturbine 1

20
0

20

 (°
)

turbine 2

600 1500 2400 3600
time (s)

20
0

20

 (°
)

turbine 3
LUT
PLUT
FVW

Figure 4.9: Yaw offsets realised for the three-turbine test case. Turbines 1 and 2 implement inten-
tional yaw misalignment for wake steering around turbine 3. The FVW controller anticipates wind
direction changes and accounts for secondary steering effects.

An important feature of the yaw reference generated by the novel FVW con-
troller is the anticipation of changes in wind direction – the turbines yaw before
the wind has actually rotated. The LUT controller, on the other hand, reacts to
changes as they happen. The basic PLUT implementation realises an effect on the
yaw reference for turbines 1 and 2 that is similar to the FVW controller behaviour
by anticipating the transients. However, turbine 3, which is most downstream,
tracks the instantaneous wind direction in the FVW controller, but yaws in ad-
vance of the transients with the PLUT approach. This leads to a longer time spent
in misaligned operation, where yaw-aligned operation would be optimal.

The gains in power production of the FVW controller over the LUT appear
mainly during the transients in wind direction as illustrated in Figure 4.10, with
the PLUT controller achieving similar results. The power lost due to misaligned
operation is initially sacrificed as the controller anticipates changes, which results
in a gain in production following the transient. The FVW controller makes use of
the dynamics of propagation of thewakes for long-term gains in power production,
which can be seen in the normalised energy 𝐸 produced since the start of the simu-
lation. The power gains with FVW and PLUT controllers highlight the importance
of considering the wake propagation dynamics when dealing with time-varying
inflow conditions. The optimisation over future inflow conditions with the FVW,
as well as the inclusion of preview in the LUT can both produce control signals
that provide better performance than the LUT based on steady-state assumptions.
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Figure 4.10: Wind farm performance for the three-turbine test case, where the top two plots show
the driving wind direction andwind speed for the simulation. The third row shows energy produced
relative to greedy control and the bottom row shows relative power production. The FVW controller
improved power generation during and following transients by anticipating changes and performs
approximately equivalent to the LUT in steady state.

The performance in steady-state is approximately equivalent between the three
wake steering controllers.

The cumulative results for the TTWF are shown in Figure 4.11 and listed in
Table 4.2. In terms of power production with respect to greedy control, the imple-
mentations of wake redirection with the FVW and the PLUT controllers yield a
3.8 % gain which exceeds the 2.7 % achieved with the LUT approach. The demand
on the yaw actuators is measured using the yaw travel Δ𝜓 , which is the total angu-
lar distance covered during the length of the simulation. The power improvements
with the FVW are achieved with only a slightly increased demand on the yaw ac-
tuators as the total yaw travel increase compared to the greedy baseline is 58.1 %
for the LUT and 69.3 % for the FVW controller. The yaw travel for the LUT and
PLUT controllers is identical as they are based on the same wind direction signal
and yaw offsets.

4.5.2 Ten-turbine subset of HKN
We expand the results from the three-turbine case by considering the ten-turbine
subset of the South-West corner of the HKN wind farm with a synthetic wind
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Figure 4.11: Cumulative results for the three-turbine test case in terms of total relative power
production and yaw travel. The FVW controller improved power production at a slight increase in
yaw travel compared to the LUT controller. In this case, the PLUT achieves the same improvement
in power production as the FVW.

direction variation defined in Figure 4.15. A series of flow snapshots from the LES
are provided in Figure 4.12 to illustrate the discussion of controller performance.

The cumulative performance of the FVW with respect to the LUT and PLUT
is illustrated in Figure 4.13 and listed in Table 4.2. The FVW controller produces a
3.2 % gain in mean power production which exceeds the gain of 2.5 % from the LUT
controller. This gain is consistent with the improvement over the LUT controller
found in the TTWF case. The PLUT controller only realises a 2.6 % power gain,
which is a slight improvement over the LUT, but much less than is achieved with
the FVW.The FVW notably reduces the yaw travel demand, increasing 41.5 % over
greedy control, whereas the LUT and PLUT controllers lead to a 55.4 % increase.
This contrasts the results from the TTWF casewhere a slight increase in yaw travel
was observed.

Turbine 1, which is upstream in all simulated wind directions, loses a bit more
power comparing the FVW to the LUT as it operates under yaw-misaligned con-
ditions for longer. However, this is offset by the power gain coming mostly from
turbines 2 to 7, which are relatively close together along the wind directions con-
sidered. Unlike the TTWF case, the power gains form the PLUT controller are not
equivalent to that of the FVW controller.

Turbines 8 to 10 are further downstream and are therefore not always ac-
counted for in the optimisation with the FVW as, for the wind directions con-
sidered, they are often beyond the finite length of the simulated wakes given the
current controller settings. The implementation of preview on these downstream
turbines leads to a slight loss in performance comparing the PLUT to the LUT
controller.
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Figure 4.12: Series of hub height flow snapshots from LES of the HKNA test case with the FVW
controller. In the initial transient, (a) all wind turbines are aligned with the mean inflow direction.
Wake steering solutions are illustrated in (d) and (e) for the southern row of wind turbines 1 − 3 − 5
and (k) and (l) for the western row of wind turbines 1 − 2 − 4− 6− 8. Waked turbines have a reduced
yaw offset because of the modelling of secondary steering effects. For certain wind directions,
long wakes impact farm performance which are not accounted for in the FVW due to the limited
prediction horizon. For example, (d) and (e) show the wake from turbine 4 impinging on turbine 9
and (h) and (i) show turbine 8 operating in the wake from turbine 3.
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Figure 4.13: The FVW controller improves power production with respect to the LUT and PLUT
approach and reduces the increase in total yaw actuation required. The gain comes mostly from
turbines 2 to 7, whereas turbines 1 and 8 to 10 lose some power with respect to the LUT and PLUT
controllers.

Table 4.2: Mean power production and cumulative yaw travel for the four test cases, where HKNA,
HKNB, andHKNC feature the same ten-turbine wind farm and TTWF features a three-turbine wind
farm. Increases are noted relative to the greedy control baseline.

power (MW) yaw travel (∘)
HKNA greedy 61.23 1247

LUT +1.51 +2.5% +691 +55.4%
PLUT +1.59 +2.6% +691 +55.4%
FVW +1.96 +3.2% +518 +41.5%

HKNB greedy 22.79 1749
LUT +0.49 +2.2% +2928 +167.4%
PLUT +0.59 +2.6% +2788 +159.4%
FVW +0.53 +2.3% +615 +35.1%

HKNC greedy 27.86 2052
LUT +1.46 +5.2% +4232 +206.3%
PLUT +1.85 +6.6% +4237 +206.5%
FVW +1.58 +5.7% +2780 +135.5%

TTWF greedy 16.36 364
LUT +0.44 +2.7% +211 +58.1%
PLUT +0.63 +3.8% +211 +58.1%
FVW +0.63 +3.8% +252 +69.3%
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This lack of wake redirection away from far downstream turbines is also ap-
parent in the yaw offsets applied as illustrated in Figure 4.14. Turbines 1, 3, and
4 have steady-state segments where no yaw misalignment is applied in the FVW
controller, even though the LUT prescribes offsets for these wind directions. Their
downstream neighbours are beyond the length of the simulated wakes with the
FVW and can therefore not be accounted for in the model-predictive control opti-
misation with the current controller configuration.

The power generation over time for this test case is illustrated in Figure 4.15.
The underperformance of the FVW controller in the initial segment is due to the
lack of yaw misalignment on turbines 1 and 4, which leads their wake to im-
pinge on turbines 9 and 10, whereas the yaw misalignment specified by the LUT
controller minimises this negative aerodynamic interaction. The final segment
of the simulation shows particular benefit from wake steering as the wind direc-
tion is aligned with the western row of turbines 1–2–4–6–8. The gains in power
for the FVW controller over the LUT controller emerge during the transients in
wind direction. Accounting for the propagation dynamics of the wakes leads to
fewer instances of loss compared to greedy control. In steady state, the FVW con-
troller with the current controller settings performs approximately equivalent to,
or slightly worse than the LUT controller.

The PLUT controller notably underperforms even with respect to the LUT con-
troller for a large part of this simulation. The simple preview implementation pro-
duces some gains following the transients, but sacrifices more power to achieve
this. These losses may be due to the large wind direction variations and the wind
farm layout, in addition to the implementation of preview on turbines that should
be in yaw-aligned operation.

4.5.3 Realistic wind variations
The previous two cases highlighted the potential for the gains in terms of power
generation and yaw travel reductions that may be achieved with the FVW con-
troller. The wind direction variations were, however, specifically designed to test
the added value of the dynamic model-predictive control framework and therefore
lack realism. The two cases HKNB and HKNC are simulated using measured wind
data to demonstrate controller performance under real variations in wind speed
and direction.

Figure 4.16 summarises the total improvement in power production with re-
spect to greedy control, which is also listed in Table 4.2. In case HKNB, the in-
crease in power generation by wake redirection is improved from 2.2 % with the
LUT to 2.3 % with the FVW controller and 2.6 % with the PLUT. The increased
yaw travel is limited to only 35.1 % with the FVW compared to the 167.4 % with
the LUT approach. The minor differences in yaw travel between LUT and PLUT
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Figure 4.14: Realised yaw offsets for LUT and FVW controllers for the HKNA test case. Notably,
there are some steady-state segments where turbines 1, 3, and 4 are not misaligned by the FVW
controller where the LUT does prescribe a yaw offset. This is due to the limitations of the simulated
wake length and prediction horizon in the current settings of the FVW controller.
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Figure 4.15: Relative energy produced and power production for the HKNA test case. During
transients in wind direction, the LUT approach loses power with respect to greedy control. The
FVW controller loses a bit as it anticipates changes, but then gains power over the LUT controller.
The initial steady-state segment also shows underperformance with respect to the LUT approach.
The PLUT controller appears less effective during transients and only slightly improves over the
LUT approach.

controllers are due to the treatment of the end of the time-series simulation. Case
HKNC shows an increase of power production of 5.7 % with the FVW compared
to 5.2 %with the LUT and 6.6 %with the PLUT, as well as a reduction of additional
yaw travel from 206.3 % to 135.5 %. The losses of the FVW with respect to the
LUT controller appear on turbines 9 and 10, which are far downstream from their
upstream neighbours, beyond 12𝐷 downstream for most of the simulated wind
directions.

These results show that some of the improvement in wind farm performance
from a dynamic economic model-predictive control approach is maintained un-
der realistic, time-varying wind conditions, where both wind direction and speed
change over time. However, under certain conditions, unnecessary losses are in-
curred with respect to the LUT controller due to the limitations of the FVW con-
troller with the current settings. A simple preview implementation appears more
effective in accounting for the effects of wake propagation, while not being limited
by finite wake length simulation and receding horizon predictions.

The performance over time is shown in Figure 4.17. The relative energy pro-
duction over time shows that the power gains from the FVW controller over the
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Figure 4.16: Controller performance relative to greedy control in terms of power production. In
both cases, the PLUT controller yields the biggest increase in power production compared to greedy
control, although the FVW controller also outperforms the LUT approach. Additionally, the FVW
achieves these gains with a lower total cost in terms of yaw actuator duty. The FVW controller
shows a tendency to underperform compared to the LUT for turbines 9, and 10 which are more
than 12𝐷 away from their upstream neighbours for most of the simulated wind directions.
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LUT controller are consistent throughout most of the simulated time series. The
performance of the FVW and PLUT controller is equivalent for large parts of the
simulation. The energy production with the PLUT sometimes exceeds the FVW,
but some additional losses are incurred that bring it back to the same level.

The final segment of the HKNC test case exhibits a pattern with some large
performance differences between the LUT and FVW controllers. This is where the
PLUT controller achieves a large gain with respect to the FVW controller, whereas
they realised similar production until that point in time. This segment is illustrated
in more detail in Figure 4.18 with relative power production and the yaw heading
of turbine 1. The wind direction oscillates slightly around 𝜃 = 201.5°, which is
aligned with the western row of turbines 1 − 2 − 4 − 6 − 8. The yaw action of
turbine 1 is representative of the control signal applied to turbines 2, 4, and 6
further downstream.

Due to the limits of the prediction horizon in the FVW controller, the FVW
controller produces a control signal that switches the direction of wake steering
with the oscillations in the wind direction. On the contrary, the implementation of
hysteresis in the LUT controllers produces a consistent yaw offset reference to one
side when combined with the local turbine yaw controller. Without hysteresis, the
LUT controllers would present the same switching behaviour currently observed
in the FVW controller.

This difference in control signal leads to significant variations in relative power
production. For this wind direction variation from approximately 𝑡 = 22 000 s to
23 700 s, the predictive action of the FVW controller anticipates gains that are not
fully realised. The losses from the yawmovements exceed the gains from the wake
steering in the optimal direction. The final segment from 𝑡 = 23 700 s onwards
shows how the predictive controller anticipates the wind direction variation to
yield a net gain in power production compared to the LUT.The PLUT controller is
able to realise these gains without the losses incurred with the FVW control signal
and ends up with the largest average power production.

4.5.4 On wake length and the prediction horizon
The results from the control test cases show some of the limitations of the pro-
posed model-predictive control approach. The finite-horizon optimisation can not
account for turbines that are outside the simulated wake length or beyond the
prediction horizon.

If wind turbines are placed along a straight line, the simulated wake and op-
timisation horizon only needs to be long enough to cover optimisation from one
turbine to the next downstream neighbour to trigger wake steering. However, for
longer rows of turbines, the segment from HKNC shown in Figure 4.18 demon-
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Figure 4.17: Relative energy produced and power over time for the two data-driven test cases,
HKNB and HKNC. The driving wind direction and wind speed are shown in the top two rows. The
third row shows the cumulative energy time series normalised with respect to the greedy baseline
controller. Both the LUT, PLUT, and the FVW controller exhibit significant improvements over
greedy control. The fourth, bottom row shows the power production of the controllers normalised
by the greedy baseline.
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Figure 4.18: Segment of the HKNC test case shown in Figure 4.17. The inflow wind direction
oscillates around the western row of turbines 1 − 2 − 4 − 6 − 8, which is aligned at 𝜃 = 201.5°. The
yaw heading of turbine 1, 𝜓1, is representative of that applied to turbines 2, 4, and 6. The FVW
controller switches wake steering directions from 𝑡 = 22 000 s to 23 700 s, whereas the hysteresis in
the LUT controller produces a constant yaw offset. The excessive yaw action in the FVW results in
underperformance for this segment. Beyond 𝑡 = 23 700 s, the FVW correctly anticipates the wind
direction variation producing a net gain in power production.

strates that longer horizons will probably be beneficial to avoid excessive switch-
ing of the wake steering direction.

For large inter-turbine spacingwithout intermediate downstream turbines, long
wakes will need to be simulated with long prediction horizons to be able to prop-
erly account for the downstream effects and reach wake steering yaw control so-
lutions. This limitation is apparent in the lack of performance improvement for
turbines 9 and 10 in all the HKN cases. For most of the wind directions under con-
sideration, they are too far downstream to be accounted for in the finite-horizon
optimisation with the FVW. Very long prediction horizons would be necessary to
account for downstream effects, but long prediction horizons come at consider-
able computational cost as both simulating longer wakes and longer prediction
horizons increase computational expense. Doubling both the length of the wake
and the prediction horizon would lead to roughly an eightfold increase in compu-
tation time. Maintaining a similar degree of freedom in the control signal by also
doubling the number of free spline coefficients then yields an optimisation prob-
lem that is approximately 16×more expensive. Additionally, longer wakes stretch
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the limits of what can be predicted with the physical model due to inherent insta-
bilities in the free-vortex methods.

The steady-state optimisation with FLORIS does include these long wakes be-
cause it essentially solves a mean-flow, infinite horizon version of the control prob-
lem. For steadywind directions, the optimal yaw angles for wake steering from the
steady optimisation can yield higher power production than those found through
receding horizon control with finite-horizon optimisation.

Furthermore, due to the bimodal nature of wake steering, the receding hori-
zon controller may end up implementing yaw offsets in the suboptimal direction,
where the cost to switch directions may not outweigh the gain in power over the
finite horizon, even though that may be optimal in an infinite-horizon sense. The
steady-state optimisation does not suffer from this limitation, but will lose power
when atmospheric conditions violate themean steady-state assumptions toomuch.
The LUT approach might then apply yaw misalignment to redirect wakes around
turbines which will not propagate there due to variations in wind direction. This
sacrifices power generated for an expected return that is never achieved. This is
the result of a lack of inclusion of dynamic effects such as continuously varying
wind conditions and propagation of wakes.

The optimal control approach might combine aspects from both receding hori-
zon control and infinite horizon optimisation. This could enable synthesis of a
controller that consistently converges to optimal solutions in steady state, while
incorporating the dynamics of wake propagation for power gains during inflow
transients.

4.5.5 Closing the loop
The current performance achievements are realised with an open-loop controller
architecture by assuming a reasonably accurate model and wind speed and veloc-
ity predictions. However, Figure 4.2 already highlights differences between the
simulation framework and modelled wake deflection. It shows that the incorpora-
tion of secondary effects of wake steering is only an approximation. Furthermore,
the modelled deflection is symmetric for positive and negative yaw misalignment,
whereas a clear asymmetry appears in the LES data.

For adaptation of model errors and incorporation of measurements into the
model state, a closed-loop control framework is required. This would allow the
control strategy to adapt to varying atmospheric conditions such as veer, shear,
and turbulence intensity, as well as tune model parameters such as the turbulent
growth parameter 𝛿 or the yaw exponents 𝛽p or 𝛽t.

One strategy that is promising for closing the loop is the Ensemble Kalman
filter (EnKF), which has previously been developed for state estimation adaptation
of steady-state models [50, 79]. Becker et al. [80] developed the EnKF for wind
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Figure 4.19: The benchmark for the computational cost of control optimisation shows how the
optimisation time scales approximately linearly with the number of steps in the prediction horizon.
The computational expense scales quadratically with the wake length, determined by the number
of rings 𝑛r in the wake simulation. The horizontal lines provide an indication of the level below
which real-time control optimisation is achieved for 𝑢∞ = 4ms−1 and 𝑢∞ = 9ms−1 with an update
every five discrete time steps.

field estimation in a model-based setting with a dynamic engineering wake model.
Additionally, Shapiro et al. [131] showed that closing the loop allows inclusion of
unmodelled dynamics.

4.5.6 Towards real-time control
In order to verify the potential for real-time control, a small benchmark is run on
a regular laptop running Windows 10 on an i7-8650 CPU at 1.90GHz with 8GB
RAM. The benchmark is run in Julia 1.8.0 using the BenchmarkTools module.

The results of the benchmark are shown in Figure 4.19 to illustrate the scaling
of the computational cost for solving the optimisation problem. The optimisation
time scales linearly with the length of the prediction horizon and quadratically
with the wake length, which is determined by the number of rings 𝑛r in the wake
simulation. The cost of the optimisation also scales linearly with the number of
control degrees of freedom, which is set to three as is done throughout the current
work.

The non-dimensionalisation of the FVW by rotor diameter and wind speed
leads to a dependency on wind speed in measuring the performance relative to
real-time. Therefore, we report values for rotor diameter 𝐷 = 178.3m, and relative
to the inflow wind speeds 𝑢∞ = 4ms−1 and 𝑢∞ = 9ms−1. With the configuration
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as used in the current work, a simple forward run of the wake model with power
predictions for two downstream neighbours over the full prediction horizon re-
quires approximately 0.7 s. This means predictions can be made 1528× faster than
real-time at 4ms−1 and 679× faster than real-time at 9ms−1. The current update
rate in the model-predictive controller is fixed at every five discrete time steps; this
is equivalent to an update every 67 s at 4ms−1 or 30 s at 9ms−1. With the current
optimiser settings, every re-optimisation step takes about 21 s per wake, which is,
respectively, 3.2× or 1.4× faster than real-time for optimising control updates.

This means that the current optimisation set-up realises real-time optimisa-
tion for model-predictive wind farm flow control in below-rated conditions. For
that, a single processor per wake needs to be available to distribute the optimisa-
tion problems. Faster wind speeds require faster optimisation to achieve real-time
model-predictive control. This might be within reach with improvements in the
numerical algorithm or using a more performant processor.

4.5.7 Preview-enabled look-up table control
Under the realistic wind variations that drive the HKNB and HKNC cases, our
simple preview implementation combines the effectiveness of the steady-state op-
timal yaw offsets with a simple strategy for accounting for wake propagation. The
PLUT controller achieves a further increase in power production over the FVW
controller, whereas, in the HKNA case, it underperforms significantly. The dif-
ference between these cases appears to originate from the magnitude of wind di-
rection changes, where the FVW controller is more flexible to adapt to a broader
range of circumstances.

Despite the lack of flexibility, the results demonstrate that a simple preview
approach may realise power gains equal to, or greater than a more complex, eco-
nomic model-predictive controller with limited simulated wake length and predic-
tion horizon. Further refinement is required to maximise the gains that may be
achieved by preview-enabled look-up table control and realise consistent perfor-
mance, avoiding the losses on downstream turbines and for large magnitude wind
direction variations.

Such further refinements should consider tuning the preview window to the
wind farm layout, where a dependence on the wind direction would allow the pre-
view controller to account for variable turbine spacing along different rows. Addi-
tionally, the LUT should be referenced without preview for turbines whose wake
does not impinge on downstream rotors, which means that yaw-aligned opera-
tion is optimal. These adjustments are already naturally included in the economic
model-predictive control optimisation, whichmay, therefore, provide a foundation
for refining preview control.
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4.6 Conclusions
A novel distributed, model-based approach to dynamic wind farm flow control is
presented with a focus on yaw control for wake redirection. Previous optimisation
results with the FVW are extended to economic model-predictive control at the
wind-farm scale by parallelising optimisation, connecting individual models into
a directed graph network, and incorporating secondary steering effects. The low
computational cost enables real-time optimisation in below-rated conditions.

The novel controller is tested in a large-eddy simulation environment and com-
pared against the industry state-of-the-art approach to wake steering, which is
based on look-up tables, as well as an extension with wind direction preview.
Given two wind farm configurations under synthetic wind direction variations,
the FVW controller achieves improvements in power production during wind di-
rection transients. In the simple three-turbine wind farm, equivalent gains are
achieved by the PLUT, whereas it underperforms in a ten-turbine subset of the
HKN wind farm. Under realistic inflow variations, the PLUT controller yields the
largest improvement in power production over the LUT.The FVW yields a smaller
power gain because some undesired effects still appear in the control signal. How-
ever, in most cases, the FVW controller reduces the increased demand on yaw ac-
tuation for wake steering which is advantageous for practical application in large
wind farms.

The results with the FVW and PLUT both emphasise the value of including
the dynamics of wake propagation for wake steering control. Further refinements
in preview-enabled control are worth investigating and perhaps insights from the
model-predictive control solutions can guide the development of preview strate-
gies for look-up table controllers.

Improvements in the FVW control strategy could be achieved by considering
longer prediction horizons to accommodate wake steering for longer wakes. How-
ever, this comes at a significant computational cost for the receding horizon opti-
misation. The FVW dynamics are a simplified representation of reality, in this case
the LES, resulting in model errors that may be minimised. For example, the inclu-
sion of asymmetry in wake steering is also important for maximising the potential
gains in wind farm power production.

Lastly, closing the loop with state feedback is an essential next step to real-
ising dynamic yaw control in a realistic setting as it enables adaptation of model
parameters to changing environmental conditions. Furhermore, the results should
be extended to use realistic forecasting of future inflow conditions.





5
Conclusions and recommendations

The results in this thesis demonstrate that dynamic wind farm flow control can im-
prove wind farm power production under realistic, time-varying conditions, as well
as reduce demands on yaw actuation. The economic model-predictive approach to
achieving these gains in power relies on non-linear control optimisation with a sim-
plified flow model for predicting the dynamics of the wind turbine wake. This flow
model, being a free-vortex wake model with an actuator-disc representation of the
wind turbine, is demonstrated to be suitable for gradient-based control optimisation.
This physics-based model is validated under steady and dynamic conditions using
data from wind tunnel experiments. A distributed approach to optimisation allows
scaling of economic model-predictive control to the wind-farm scale. Experiments in
large-eddy simulation show that the novel controller outperforms the state-of-the-art
reference controller. Future work should consider extending the dynamic controller
with state estimation to close the feedback loop. Control algorithms can be further
refined towards real-time control and a hybrid approach combining dynamic and
steady model results may treat finite-horizon effects in control optimisation. Finally,
the development of realistic simulation environments is essential for the validation of
wind farm flow control, combined with a reference wind farm controller that imple-
ments wake steering.
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5.1 Conclusions
The results in this thesis demonstrate that dynamic wind farm flow control can
improve wind farm power production under transient inflow, as well as reduce
demands on yaw actuation. The economicmodel-predictive approach to achieving
these gains in power relies on non-linear control optimisation with a simplified
flow model for predicting the dynamics of the wind turbine wake. The distributed,
parallel solution of the optimisation problem is essential for real-time performance
and scaling to large wind farms. This is a major step towards practical dynamic
flow control implementation in wind farms, contributing to efficient use of the
wind resource and existing infrastructure.

One drawback to the non-linear model-predictive control approach is the sig-
nificant investment in terms of development time and the learning curve required
to synthesise such a control strategy. Upon proof-of-concept demonstration, con-
siderable effort will be necessary to make the model and optimisation sufficiently
fast and reliable. Additionally, rigorous testing needs to be undertaken to ensure
robust behaviour in all conditions which is non-trivial for a controller based on
online non-linear optimisation. Therefore, although the results in this dissertation
demonstrate the potential benefits of dynamic wind farm control, the development
of the current research line to industrial applications is not straightforward.

5.1.1 Flow modelling for control
The free-vortex wake model presented in Chapter 2 is at the core of realising the
performance gains in dynamic wake steering. The wake simulation based on an
actuator-disc representation of the wind turbine rotor exhibits the characteristic
curled wake dynamics for a rotor operating under yaw misalignment. The com-
parison of a two-dimensional and three-dimensional model further reinforces that
the inclusion of curled-wake dynamics is essential for predicting power gains from
wake steering

Gradient calculation based on the adjoint demonstrates the potential for effi-
cient optimisation. The initial results on simple test cases show that the economic
model-predictive control framework achieves power gains with dynamic control
signals and under time-varying conditions. However, the manual derivation of
the adjoint system is cumbersome and prone to errors – it demands a lot of devel-
opment time and is inflexible to model updates or adjustments. Next to that, the
associated demands on memory usage are high for storing all the partial deriva-
tives necessary for constructing the gradient.

5.1.2 Wake model validation
Validation of the free-vortex wake model demonstrates the effectiveness of the
control-oriented model for predicting available power in the mid to far wake. In
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comparison with three sets of data from wind tunnel experiments, we find a good
correspondence in steady state and under dynamic variations in yaw misalign-
ment. These results show the strength of the physics-based modelling approach,
although there is a limit to the wake length that can be predicted because of the
numerical instabilities that occur.

The actuator-disc model provided a good balance between accuracy and com-
putational complexity. The further model extensions – a rotating actuator disc
and a lifting-line model – showed limited improvement, whereas the additional
complexity from two- to three-dimensional flow simulation was essential for mod-
elling wake deflection under yaw misalignment. The addition of rotation to the
actuator-disc model did not significantly improve accuracy of power predictions,
and neither did the modelling of individual blades with a lifting-line model. Ini-
tial results indicated that the inclusion of ground effects may contribute to better
modelling asymmetry for rotors close to the ground.

5.1.3 Wind farm flow control
Finally, optimisation with the free-vortex wakemodel is integrated in a distributed
wind farm flow control strategy. The economic model-predictive controller is
tested in a large-eddy simulation environment and compared with an industry
state-of-the-art reference controller based on steady-state look-up tables, as well
as an extension with wind direction preview. The novel controller anticipates the
wind direction changes and yields improved power production during these tran-
sients. It does so with a reduction in the additional demand on yaw actuation from
wake steering. The preview-enabled look-up table controller yields further gains
in power production under realistic conditions. However, it does not reduce yaw
actuator usage compared to the look-up table controller.

The physics-based model allows the generalisation of the control strategy to
multiple scenarios with varying wind speeds and wind directions, where data-
driven control methods would be limited to the scope of training data. The connec-
tion of individual models to a wind farm does require accounting for secondary
steering effects, for which an approximation of the cumulative effects of wake
steering is proposed. The presented results demonstrate the potential for dis-
tributed solution of the wind farm flow control problem, enabling the scaling to
large wind farms.

The transition from the initial manual derivation of the adjoint to automatic
derivation of the gradients has allowed more flexibility in model development
and reduced code complexity, facilitating improvements in computational perfor-
mance. These improvements enabled the demonstration of the potential for real-
time optimisation of yaw misalignments for wake steering in wind farms.
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5.2 Recommendations
This thesis has demonstrated the potential gains that arise from accounting for the
dynamics of wake propagation in wake steering control for large wind farms. The
physics-based model is an attractive approach to dynamic power predictions in
the wake of wind turbines operating under yaw misalignment. However, as the
development of a complete closed-loop control approach remains an open chal-
lenge, we make several recommendations for further research based on the work
in this thesis.

5.2.1 Closed-loop wind farm flow control
The final economic model-predictive controller presented in Chapter 4 is still an
open-loop implementation. An essential next step is closed-loop control as state
estimation andmodel adaptation are essential to realistic control performance eval-
uation. The Ensemble Kalman filter [50, 79, 80] is one possible candidate, but code
suitable for automatic differentiation also enables optimisation-based approaches
to data assimilation.

Closed-loop control strategies should be developedwith realisticmeasurements
and flow predictions. If using only the standard wind turbine measurements of
local wind conditions and power, the wind farm flow is poorly observable and
the bandwidth of feedback control on the scale of wind farms is limited due to
the delays in wake propagation between turbines. Including lidar measurements
increases observability and improves the potential performance of a feedback con-
troller. The investment required for lidar installation should be offset against ad-
ditional gains from predictive wake steering control.

Given the power of feedback in control, perhaps simpler models could be
formulated that contain sufficient fundamental dynamics of wake deflection and
wake propagation for dynamic wake steering control. The larger model mismatch
with reality could be accommodated by means of data assimilation to provide on-
line updates of parameters and state estimates. Furthermore, the model adaptation
may account for variations in wake dynamics under changing environmental con-
ditions.

5.2.2 Real-time control
The wind farm flow control results demonstrated real-time optimisation perfor-
mance. However, further developments are required to provide more frequent
control updates or potentially include state estimation in the same framework. In
addition to the simple use of faster processors, further increases of computational
efficiency in the model simulations and optimisation strategy could be achieved
by specific algorithm development. For example, the specific design of optimisers
for receding horizon control to reuse information from previous time steps.
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5.2.3 Horizon effects in predictive control
The economic model-predictive control optimisation demonstrates potential gains
in power production during transients. However, the limitations of prediction
horizons and simulated wake length also lead to losses compared to the state-of-
the-art reference controller for wake steering. A hybrid approach may combine
the strengths of both approaches. Particularly, finite-horizon effects in the dy-
namic model-based approach may be addressed by utilising pre-optimised steady-
state controls.

Alternatively, further refinements in preview-enabled look-up table control
may account for sufficient wake propagation dynamics to achieve power gains
during wind direction transients with yaw offsets that are steady-state optimal.
These preview strategies can be guided by the yaw reference signals found through
dynamic optimisation and economic model-predictive control.

5.2.4 Validation of wind farm flow control
A major remaining challenge is testing of effectiveness of wind farm flow control
strategies in real wind farms through field experiments. Switching between a new
control strategy and a baseline controller takes a long time to acquire sufficient
data for generating statistically significant results as gains may be small and the
wind farm environment is uncertain with a large variability in conditions. Addi-
tionally, it is infeasible to be toggling control throughout the entire year for entire
farms. Thus, the question remains; how do we discern small improvements in
wind farm performance in the real world, where there is no control experiment?

For this reason, simulation studies and wind tunnel experiments need to be
combined as they allow repeatable experiments and comparison of control strate-
gies under similar conditions. Specific attention should go towards the replication
of realistic atmospheric conditions with variations in wind speed and wind direc-
tion for the validation of control strategy performance.

A reliable reference control strategy is necessary for comparing novel con-
trollers against a suitable baseline. Such a reference controller already exists for
turbine-level control in the form of the Reference Open Source Controller [132],
developed from the Delft Research Controller [133]. On the farm scale, greedy
control is no longer a suitable benchmark given the industry adoption of wake
steering control. Therefore, a reference wind farm controller should provide a
solution to wake steering that is easily adopted to different layouts and environ-
mental conditions.
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