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EdgeBOL: A Bayesian Learning Approach for the
Joint Orchestration of vRANs and

Mobile Edge AI
Jose A. Ayala-Romero , Andres Garcia-Saavedra , Xavier Costa-Pérez , Senior Member, IEEE,

and George Iosifidis

Abstract— Future mobile networks need to support intelligent
services which collect and process data streams at the network
edge, so as to offer real-time and accurate inferences to users.
However, the widespread deployment of these services is hindered
by the unprecedented energy cost they induce to the network,
and by the difficulties in optimizing their end-to-end operation.
To address these challenges, we propose a Bayesian learning
framework for jointly configuring the service and the Radio
Access Network (RAN), aiming to minimize the total energy con-
sumption while respecting accuracy and latency service require-
ments. Using a fully-fledged prototype with a software-defined
base station (vBS) and a GPU-enabled edge server, we profile
a typical video analytics service and identify new performance
trade-offs and optimization opportunities. Accordingly, we tailor
the proposed learning framework to account for the (possibly
varying) network conditions, user needs, and service metrics,
and apply it to a range of experiments with real traces. Our
findings suggest that this approach effectively adapts to different
hardware platforms and service requirements, and outperforms
state-of-the-art benchmarks based on neural networks.

Index Terms— Energy efficiency, edge computing, network vir-
tualization, Bayesian online learning, machine learning, wireless
testbeds.

I. INTRODUCTION

A. Background and Motivation

THERE is a growing consensus that the next generation of
mobile networks need to support AI and other intelligent

services at the edge. These services typically require the col-
lection, transfer, and processing of data flows in near-real time,
with the aim to provide data operations, e.g., inferences, to end
users such as small IoT devices, drones, or smartphones on
the go. A representative example of these services are mobile
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video analytics (MVA), which are used in AR/VR services [1],
cognitive assistance applications [2], surveillance systems [3],
among other similar AI services. The core task of MVA is that
user devices send video frames to the network, which needs to
process them and transmit back accurately-detected depicted
objects, or extract other important information [4].

While MVA-like services are already considered a utility
that each user should be able to enjoy, their wide deployment
requires a fundamental shift in the way we manage mobile net-
works. Namely, in these services, the network’s role is not con-
fined to transferring data from one point to another, nor even
in processing the data en route. Instead, the network needs to
directly optimize the service performance, which involves the
criteria of accuracy (confident inferences), end-to-end latency
(fast inferences), and task throughput (inferences/sec) in a
resource-efficient fashion. This latter requirement is crucial
since such services create voluminous data flows, involve
heavy computations, and consume large amounts of energy [5].
In fact, energy consumption is not only one of the most
prevalent operating expenditures for mobile networks [6]1 but
has been also identified as the main blocker for the success of
these inherently energy-demanding services. Besides, energy
is the common resource consumed by all network operations
(e.g., data transmissions, transfer, or computing) and its effi-
cient management is imperative also from a performance
point-of-view.

Clearly, in order to deploy these services we need to develop
a systematic methodology for energy-aware control of the
involved communication and computing network resources.
To that end, it is imperative first to understand how these
services perform; which system parameters shape their per-
formance and resource requirements; if there are sweat spots
in the performance/cost function; and how to optimize the net-
work and the service so as to exploit these opportunities. Our
goal in this work is exactly this: to assess experimentally these
effects and design a learning-based orchestration framework
that manages the resources of base stations and intelligent
services following two joint optimization goals: (i) minimize
the energy toll associated with the service and network; and
(ii) meet service performance targets.

In particular, we face several challenges when addressing
this problem. First, there is a strong coupling among the

1For instance, China Mobile committed to reduce the overall energy
consumption per unit of telecom business by no less than 6% in 2021 [7],
and Verizon and Vodafone have set targets to reach net zero energy emissions
by 2040 [8].
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Fig. 1. Scenario and System Architecture. Virtualized base stations
are configured jointly with the computing infrastructure hosting the service.
in order to optimize its performance (accuracy and delay) and reduce the
aggregate (vBS and server) energy costs.

elements of our system (user device, base station, and edge
server) shown in Fig. 1. Both the base station and the server
have an individual energy cost for the service provider.2
Moreover, the configuration of these three elements has a joint
impact on service performance. If we focus on one element
and minimize the power consumption of the base station, for
example, we would need to increase the computing capacity
of the edge server to compensate for the network delay, which
incurs higher overall energy consumption. For that reason, it is
very important to consider the system as a whole. Note that
his particular setting, which is enabled by the new O-RAN
architecture, is not standard in the literature.

Second, there is no unique optimal configuration for the
system. Instead, the optimal configuration depends on the
context (e.g., wireless channel conditions, number of users)
and changes over time. For example, poorer wireless links can
increase the delay (due to the need for lower modulation levels
that render lower data rates) and the system needs to compen-
sate for this by allocating more radio resources (bandwidth
or channel time), which increases the computational power in
the base station. Another option to compensate for the delay
is to increase the computational capacity in the edge server so
the processing time is reduced. In consequence, we need to
find the mapping between contexts and optimal configurations.
This is not straightforward because the relationship between
configurations and performance indicators is both highly non-
linear and unknown a priori. We show this in our experimental
analysis in Section III.

Third, the many parameters involved in our system render
a high-dimensional solution space, which also depends on
the contextual information. The exploration of this context-
dependent solution space may not be efficient enough for
most of the previous machine learning solutions (e.g., deep
reinforcement learning). For that reason, we rely on Bayesian
online learning, which is intrinsically data efficient and
can handle high dimensional context and solution spaces.
However, Bayesian online learning solutions are relatively
unexplored in the context of mobile networks. Moreover,
the Bayesian online learning literature considering contextual
information and constraints in the objective function is very
limited and cannot be directly applied to this problem.

Finally, the considered system needs to handle a variable
number of users. A variation in the number of users usually
implies a change in the dimensionality of the problem, which

2Note that, in contrast to most previous works focused on the energy
consumed by the user device (e.g., [9], [10]), we focus on the energy
consumption at the network infrastructure (base station and edge server).

is very challenging for ML models. Besides, an increase in
the dimensionality of the problem can reduce the convergence
time due to the curse of dimensionality. Thus, a novel strategy
to handle the number of users needs to be proposed.

B. Methodology and Contributions

We have built a fully-fledged prototype system with a
software-defined base station (vBS) (using srsRAN suite [11])
and a GPU-enabled edge server that offers an MVA service
to mobile users. We measure the joint impact that resource
control policies at the user device (video frame resolution), the
vBS (radio configuration), and the server (GPU speed) have
on the service accuracy and end-to-end latency (QoS metrics),
and on the overall power consumption (cost metric).

Our experiments show that, unlike other services, the service
performance is highly volatile and depends on the platform
hardware (hosting the vBS and the server), the service con-
figuration parameters, and even the actual user data. This
renders previous model-based optimization approaches prac-
tically inefficient (details in §II). Furthermore, these services
include a wide range of configuration options, e.g., selecting
different service models (e.g., neural network architecture),
different processing equipment, or adjusting the data sources
(e.g., image frame sizes). All these parameters affect in an
unknown way the latency and accuracy performance, and
hence cannot be optimized in a static and a priori fashion.
Finally, our experiments show non-trivial and non-linear trade-
offs between the configuration parameters and the performance
indicators (details in §III) and are also platform-dependent,
making it impractical for model-based solutions.

In order to overcome these challenges, we propose an
optimization framework for orchestrating jointly the edge
service and the RAN. Our solution is not bound to any
specific application or underlying technology, i.e., it is agnos-
tic to the RAN technology (e.g., 4G, 5G), the hardware
in the edge server, the image recognition model (Faster
R-CNN, RetinaNet, YOLOv3, etc.) or the edge service. For
that purpose, we propose a non-parametric Bayesian online
learning algorithm, named EdgeBOL (Edge Bayesian Online
Learning).

Our solution relies on the use of Gaussian Processes (GPs)
as non-parametric function approximators. We use different
GPs for the objective and constraint functions and they intrin-
sically handle noisy observations. Then, we make decisions
based not only on the estimated value of the functions but also
on the uncertainties of the estimations. This allows us, on the
one hand, to efficiently handle the exploration-exploitation
trade-off toward finding the optimal configurations and, on the
other hand, to provide safety in the decision-making in order
to meet the performance targets. This strategy also exhibits
extraordinary data efficiency compared to other approaches
based on neural networks. To make our solution work in
practice, we introduced two main modifications with respect
to previous works. First, we propose an acquisition function
that finds higher performance configurations and at the same
time expands the safe set (collection of configurations meeting
the constraints) by exploiting the structure of our problem.
In contrast, previous works propose acquisition functions that
explicitly expand the safe set with theoretical guarantees but
obtain poor performance in practice. Second, we propose a
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statistical characterization of the channel states of the users
as input contexts. Thus, we mitigate several problems such as
the dimension explosion of the input as the number of users
increases and the variability of the input size as a function of
the number of users. We evaluate empirically this statistical
characterization showing near-optimal performance.

The architecture of our solution is shown in Fig. 1.
EdgeBOL selects the configuration policies to be used at the
vBS and the edge server. The objective is to minimize the
power consumption of the overall system while satisfying hard
service accuracy and latency requirements. Finally, we verify
the efficacy of EdgeBOL using a prototype, real datasets,
and compare EdgeBOL with state-of-the-art (SoA) bench-
marks [12]. Our solution shows an unprecedented convergence
speed and satisfies the service (stochastic) constraints with a
very high probability.

To summarize, the key contributions of this paper are:
• We propose the new problem of jointly controlling RAN

resources and intelligent edge service parameters, aiming
to minimize the overall energy cost while meeting hard
performance targets.

• We build a prototype and conduct extensive experiments
with a representative MVA application that reveal new
trade-offs about the service performance and the system
energy consumption.

• We design a Bayesian learning framework that learns
in real time the optimal configuration of the system,
adapting to different contexts, user needs, and services.

• Finally, we evaluate EdgeBOL using our experimental
platform and actual datasets, and compare it with SoA
neural network-based reinforcement learning algorithms.

This work has been partially published in a preliminary
conference version [13].

Paper Organization. §II discusses related works; §III
presents motivating experimental findings; in §IV we formu-
late the orchestration problem and in §V introduce the learning
algorithm which is evaluated in §VI. We conclude in §VII.

II. RELATED WORK

Edge services & MVA. Some recent works study the
deployment of AI services, specifically, MVA at the net-
work edge. Some of them focus on performance optimiza-
tion by using different strategies such as variable encoding,
caching, visual tracking, or adaptive compression [14], [15],
[16], [17]; or study the trade-off between accuracy and
latency [18], [19], [20]. Other works, in turn, address the
resource orchestration in MVA systems. For example, [21]
and [22] search greedily in real-time for the most resource-
prudent configuration; [23] and [24] allocate computing
resources and decide the image compression (or, video quality)
and neural network model; Although some works like [9],
[10], and [25] consider the energy in MVA services, all of
them only account for the energy consumption at the user
device. In contrast, we address the orchestration of O-RAN
systems (vBS and edge server) to minimize their consumed
power.

Mobile network orchestration. There are some works
that study network orchestration in mobile networks. For
example, [26] select the modulation and coding scheme (MCS)
and airtime to maximize throughput, using predetermined

models for the operation functions. Other studies propose
model-free approaches, e.g., for slicing [27], throughput fore-
casting [28], and energy cost reduction [29]; but suffer from
the lack of (accurate) training data. Reinforcement learning
(RL) is also used for interference coordination [30], network
diagnostics [31], or SDN control optimization [32]. However,
RL lacks convergence guarantees. Finally, the authors in [33]
present a reliable virtualized base station design. However,
none of these works account for the coupling of the mobile
network with the edge servers. Our experiments reveal that
their joint orchestration is imperative.

Bayesian online learning in networking. In this paper,
we propose a fundamentally different approach for control-
ling the virtualized Base Station (vBS) and the edge server,
as it relies on Bayesian contextual bandit algorithms. Such
techniques have been employed to adjust video streaming in
mobile networks [34], to minimize the power consumption
in vBS [35], to optimize BS handovers [36], and to control
mmWave networks [37]. Perhaps the most closely related work
to ours is [12], which assigns CPU time to virtualized BSs,
but this focuses on data transfers (not accuracy or end-to-end
latency). Besides, we follow a different algorithmic approach
based on the contextual Bayesian online optimization [38]
that combines bandit exploration with Gaussian Processes
(GPs) [39]. Thus, we use the uncertainty in the estimations
provided by the GPs to efficiently explore new configurations.
We extend this approach here by including service-related
quality of service constraints and accounting for the vBS and
server power consumption.

III. EXPERIMENTAL ANALYSIS

We have performed an exhaustive set of experiments using
the testbed described in detail in §VI-A. In a nutshell, the
testbed is comprised of a 3GPP R10-compliant LTE base sta-
tion (BS), a user equipment (UE) generating service requests
via the BS to a well-known object recognition service, and an
off-the-shelf server with an NVIDIA GPU running the service.
Each request consists of an image with a variable number
of objects from the COCO dataset [40]. The images are sent
to the service via the uplink channel of the LTE interface,
and the service returns to the user a bounding box and a
classification label for each identified object in the image.
This information is sent via the downlink channel of the LTE
interface. Each measurement shown as a dot in the figures of
this section is an average of 150 images. The dataset collecting
the measurements of this section is available online.3 Note
that, although our testbed implements an MVA application,
our framework is flexible enough to be used with any other
edge service non-related to image processing. See Appendix C
for more details.

Motivated by O-RAN specifications [41], we focus on
configuration policies set by an orchestrator that operates
at a second-level timescale (Non-Real-Time RAN Intelli-
gent Controller in O-RAN). These policies decide rules that
must be respected by lower-level controllers that operate at
millisecond-level timescale — and which are orthogonal to
our study. In the following, we analyze the trade-offs between
different configuration policies and performance indicators:

3https://github.com/jaayala/energy_edge_AI_dataset
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Fig. 2. Mean average precision (mAP) vs. service delay for images with
different resolutions.

(i) QoS experienced by users; (ii) the energy associated with
the service; and (iii) the network energy cost.

Precision, delay and image resolution. We start analyzing
two metrics of interest for QoS: the service performance to
recognize objects and the service delay, formally introduced
in Performance Indicator 1 and 2, respectively.

Performance Indicator 1 (Service Delay): End-to-end
delay that includes the image pre-processing at the user side,
its transmission, the processing at the server (GPU delay),
and the return of the bounding boxes and labels.

Performance Indicator 2 (Mean Average Precision): The
service accuracy is quantified using the Mean Average Preci-
sion (mAP) [42]. On the one hand, precision is defined as the
ratio of true positives over all positive classifications. On the
other hand, the recall measures how well these positives are
identified by calculating the ratio between true positives over
the sum of true positives and false negatives. The Intersection
over Union (IoU) measures the overlap between the calculated
bounding box and the ground truth. IoU values above a
threshold (set to 0.5 here) trigger a true positive. Then, for a
given set of images, the Average Precision (AP) corresponds
to the area below the precision-recall curve. Finally, mAP is
the mean AP over all object categories, hence ranging from
0 (worst performance) to 1 (best performance).

Based on our measurements, the most relevant feature that
affects the mAP is the image resolution, see Policy 1.

Policy 1 (Image Resolution): This policy sets the average
encoding of every image (number of pixels) which can be
enforced by the service. In our experiments, the maximum
(100%) resolution is 640× 480 pixels. Note that, at any given
time, the resolution of an image may be actually larger or
smaller than the policy, as long as the average across the whole
period and users respects the threshold.

We illustrate this in Fig. 2, which shows the trade-off
between delay and mAP for the COCO dataset images encoded
with different resolutions. The remaining configuration poli-
cies (described later) are fixed. The findings reveal interesting
and quantifiable trade-offs: (i) Higher-resolution images carry
more pixels encoded in a larger amount of data; thus, they
incur a higher delay due to longer transmission time over
the radio interface. (ii) Lower-resolution images cause the
service to provide lower mAP performance because they carry
less information for the object detection engine. Specifically,
we measured a 72% improvement in delay at the expense of
precision reduction ranging between 10% to 50%.

Delay, energy consumption, and radio policies. There
also exists a trade-off, which naturally appears in many
resource control problems [43], between QoS and overall
energy costs. To explore this trade-off, we introduce a policy
that governs the allocation of radio resources (Policy 2); and an

Fig. 3. Service delay vs. server’s power consumption for images with
different resolutions and radio policies.

additional metric that assesses part of the aforementioned cost:
the server’s power consumption (Performance Indicator 3).

Policy 2 (Radio Airtime): This radio policy imposes a con-
straint on the radio resources (duty cycle) the vBS allocates
to the service traffic. The MAC layer radio scheduler, which
operates at msec granularity then must allocate radio resources
(which may vary across users based on their channels) such
that the threshold set by the policy is respected. Due to the
nature of this service, we focus on uplink communication.

Performance Indicator 3 (Server Power Consumption):
Power cost associated with the computational load of the
service’s requests, which is dominated by the GPU power
consumption.

Fig. 3 depicts the service delay vs the server power con-
sumption, for different airtime radio policies and image resolu-
tions. As before, higher-res images increase service delay due
to the longer transmission time of requests. We now observe
that this occurs irrespective of the radio policy configuration.
However, the radio policy has an important impact on delay as
well. This is rather expected since lower airtime implies lower
usage of radio resources, which further increases the transmis-
sion time of the requests at the radio interface. Specifically,
our experiments show that an 80% increase in the airtime
improves the delay between 65% and 80%. Concerning the
server’s power consumption, lower-res images and lower radio
resource allocations increase this cost. Specifically, there is a
56% increase in power consumption for an 80% increase in
radio time resource; a similar increase is attained when there
is a 75% increase in image resolution. This is due to the fact
that increasing the radio resources allows the user to send a
higher rate of requests in a similar way than low-res images
do, which ultimately increases the workload assigned to the
service’s resources (the GPU, in this case). Note that this is
a consequence of the variable frame rate considered in our
testbed. A fixed frame rate is a particular case that simplifies
the complexity and the coupling among the parameters of the
system.

Delay, energy costs, and service policies. We study the
impact of the computing allocation policies on QoS. To this
end, we define an additional configuration policy.

Policy 3 (GPU Speed): The server’s policy is a GPU power
limit that adapts the processing speed of a GPU (or a pool of
GPUs) in a slice to meet the adopted power constraint. The
GPU controller (e.g., NVIDIA driver) may change the GPU
speed at any given time (e.g., for different video frames) as
long as the GPU power set by this policy is respected.

In our experimental setup, the GPU speed can be set
through a configuration parameter available in Nvidia GPU
drivers. Fig. 4 (top) depicts the service delay and the server’s
power consumption for several image resolution configura-
tions. We now fix the airtime to 100% and vary the policy
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Fig. 4. Delay vs. server’s power consumption for images with different
resolutions and GPU policies.

Fig. 5. Mean average precision vs. server’s power consumption for images
with different resolutions. The radio and computing resources are allocated
so as to minimize the delay.

allocating computing resources. A higher amount of com-
puting resources increases the server’s power consumption,
as we are relaxing the power limit imposed to the GPU.
We observe that low-res images contribute to increasing the
server’s power consumption as the rate of requests also grows.
However, it is interesting to note that higher-res images ease
the work on the GPU, as evidenced by Fig. 4 (bottom), which
shows the delay associated with the GPU tasks only. All in all,
despite this improvement in the GPU delay, the corresponding
increase in transmission delay when using higher-res images
dominates. It is important to observe that, while this is true in
our experimental testbed, it may well be different for diverse
deployments (e.g. a more energy-efficient GPU, or a higher-
bandwidth radio access network). This motivates the need for
learning algorithms that adapt to the different deployments.

Precision, energy consumption, and image resolution.
The above trade-off between service delay and the server
power consumption, certainly appears for other performance
metrics, such as the mAP. To assess this, Fig. 5 shows the
mAP achieved by the service as a function of the server’s
power consumption for various image resolutions. The findings
confirm the service cost depends on the mAP. Importantly,
however, the relationship with mAP is substantially different
from that with the service delay. In this case, higher mAP
performance actually requires less server power consumption.
The reason lies in the fact that higher-res images (which render
higher mAP) facilitate object detection and hence require less
computation, see Fig. 4 (bottom).

BS power cost, radio policies, and image resolution.
Finally, the costs associated with the network operator are
necessarily driven by the amount of radio resources invested
into the service’s pipeline. To analyze this, we introduce
an additional policy, motivated by [12] in the context of

Fig. 6. BS power consumption vs. radio policies for images with different
resolutions.

Fig. 7. BS power consumption vs. radio policies for images with different
resolutions and 10x higher load.

virtualized RANs, which is defined as Policy 4, and Perfor-
mance Indicator III, reflecting part of operational costs of the
network operator.

Policy 4 (Radio MCS): This policy imposes a constraint
on the maximum MCS eligible by the vBS to transport the
service’s data over the air. And we note that the MCS selected
by the MAC layer may be lower than this bound for some users
depending on their channel state.

Performance Indicator 4 (Base Station Power Consump-
tion): Power consumption associated with processing the base-
band unit in a virtualized RAN environment.

To analyze these, we plot in Fig. 6 the power consumption
measured at the baseband unit of the vBS for various airtime
and MCS policies and image resolutions. We first observe
that lower-resolution images consume less radio resources and
hence less vBS power. Second, using larger radio resources
(airtime) actually induces higher power costs because it allows
the user to transmit images at a higher rate. Finally, and
perhaps surprisingly, higher MCS policies cause lower BS
power consumption. The reason is the data load at the BS
is relatively low compared to the bandwidth available at the
vBS, e.g., higher-res images with 100% airtime generate up
to 2.8 Mb/s, compared to a capacity of around 50Mb/s (SISO
LTE @ 20MHz bandwidth). In this scenario, despite the fact
that LTE subframes modulated with higher MCS incur higher
instantaneous power consumption, they process the load faster,
which pays off in terms of long-term power consumption.

From these results and the BS’s point of view, there is
no reason to use MCS lower than the maximum possible.
However, this depends also on the network load, which may
be very different for, e.g., multiple users or other services.
To demonstrate this, we emulate a scenario with 10x more
load, and present the same plot in Fig. 7. Differently now,
we observe that the MCS policy has a negative impact on the
BS power consumption for higher-resolution images whereas
lower-resolution images cause lower power consumption for
higher MCS policies. This motivates the need for learning
algorithms that adapt the system to the service requirements.

Conclusion: Our system consists of a large number of
intertwined parameters with non-trivial effects on the perfor-
mance and energy consumption. As a consequence, we resort
to model-free contextual bandit methods to design a controller
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TABLE I
SUMMARY OF EXPERIMENTAL FINDINGS

Fig. 8. O-RAN compliant system architecture.

that adapts autonomously to context changes and the vBS and
server hosting platforms. We have summarized the experimen-
tal findings from this section in Table I.

IV. SYSTEM AND PROBLEM FORMULATION

A. System Set Up
We consider a GPU-powered edge server providing an

AI service through a radio access network. Specifically,
we consider an object recognition service that can be used,
for instance, for security surveillance or fault detection in
industrial chains. We assume that a slice dedicated to this
service is created including virtualized Base Station (vBS) and
the edge server [44], [45]. This is illustrated by the orange
boxes in Fig. 8. The service operation is as follows: users
capture images that are sent to the edge server through the
uplink of the radio interface of the vBS. Then, the server’s
GPU processes the incoming data and generates a response,
which is sent back to the users through the vBS downlink.

The workflow of EdgeBOL is also simple: EdgeBOL peri-
odically observes the context (we provide an appropriate defi-
nition later), orchestrates the resources assigned to the wireless
access and the GPU-powered service via a set of control
policies, and uses a cost metric aggregating key performance
indicators of the system to make better decisions over time.
To this end, we follow closely the framework of O-RAN [46],
a carrier-led alliance of operators and manufacturers to build
open and intelligent RAN solutions [41].

As shown in Fig. 8, EdgeBOL interacts with O-RAN’s Non-
Real-Time RAN Intelligent Controller (RIC) to enforce radio
control policies in O-RAN compliant eNBs or gNBs:
• An rApp (within O-RAN’s non-RT RIC), as defined

in [47], interacts with the learning agent and handles
O-RAN’s A1 interface (specifically, the A1’s Policy Man-
agement Service) as specified in [48] to deploy the MCS
and radio airtime policies defined above.

• An xApp handles the A1-P service from O-RAN’s near-
RT RIC side, and uses an E2 interface to forward radio
policies to the base station, including O-DU, O-CU, and
O-RU in case of 5G (see Sections 4.3.4-4.3.6 in [46]),
and O-eNB in case of 4G (see Section 4.3.7 in [46]).

• The E2 interface, defined in [49], is also used to gather
vBS KPIs (power consumption, in our case), which is
forwarded to the non-RT RIC through the O1 interface.
Then, a second xApp manages data KPIs received from
the vBS, which in our case consists of samples of its
power consumption, and forwards it to the learning agent.

We assume that both the O-eNB/O-gNB and the GPU server
can implement the configured policies, namely through radio
scheduling at the MAC layer for the former, and a driver such
as NVIDIA’s for the latter. Note that our objective is to propose
a solution that is agnostic to the implementation detail of the
underlying system. For example, the RAN technology (4G or
5G), the image recognition model (Faster R-CNN, RetinaNet,
YOLOv3, etc.), the fixed/variable frame rate, or even the
specific application (security cameras, defect detection in
production lines, etc). Next, we formulate the problem as a
contextual multi-armed bandit or contextual bandit.

B. Definitions
Let us formally define the elements needed to formulate the

online learning problem in the next section. These elements
are the contexts, actions, and performance indicators.

Contexts. We define the context at each time period t as
ct := [nt, c̄t, c̃t] ∈ C, where nt is the number of users in
the slice, and c̄t and c̃t are the mean and the variance of
the UL CQI across all users in the slice during the previous
period, and C is the context space. Note that we consider a
statistical characterization of the channel states of the users,
which avoids dimensionality problems for the learning algo-
rithms. This design decision is detailed in Appendix A and
experimentally evaluated in §VI-D

Control policies. Let H denote the set of possible image
resolutions; A the set of possible airtime configurations (uplink
radio resources) that can be assigned; Γ the possible GPU
speed configurations; andM the set of all possible MCS poli-
cies (characterizing the data rates) as defined above. Hence,
we let:

xt := [ηt, at, γt, mt] ∈ X := H× A × Γ×M
denote the control policy selected at time period t. The GPU
speed is configured in the same machine where the learning
agent runs, the airtime and the MCS policies can be sent to the
vBS through the A1-P interface of O-RAN architecture [46],
and the image resolution is indicated to the user using the
application of the service. We assume that the RAN technology
can be configured in terms of time domain and data rate (air-
time and MCS in this formulation, respectively). Other radio
technologies are out of the scope of this paper. We focus on
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uplink radio policies because, as our experiments confirm,
such AI services have little impact on the downlink as the
data surge goes usually upstream with only simple information
(bounding boxes, labels) flowing downstream. Note that the
policies in X jointly control parameters from the user device,
the vBS, and the edge server. These three elements are highly
coupled (as we show in §III) and for that reason should be
configured at once.

Performance indicators. Similarly, our performance indi-
cators were introduced in §III. The service delay experienced
by user i is denoted by Di(c, x), and the mAP is denoted by
Qi(c, x). We then define:

d(c, x) := max
i

Di(c, x), and ρ(c, x) := min
i

Qi(c, x),

to be the highest delay and lowest mAP, respectively, across
all users. The consumed power at the edge server is denoted
by ps(c, x), and the consumed power at the vBS is denoted
by pb(c, x). Besides, the observation of the performance
indicators is noisy in practice due to, for instance, random
perturbations of the equipment or transient periods in the
network. Importantly, as we detail in the next section, our
solution intrinsically handles this noise. Henceforth, we denote
by dt(ct, xt), ρt(ct, xt), ps

t (ct, xt), and pb
t(ct, xt) the noisy

observations of our performance indicators at time period t.
Feedback from the data plane components including all these
performance metrics is received by EdgeBOL at the end of
each time period t, as explained above. We assume EdgeBOL
is working in a pre-production phase where the labels of the
images are available for training. Alternatively, we can easily
integrate other real-time precision metrics that consider the
confidence output of the object recognition algorithms [50].

C. Online Learning Problem Formulation
Energy consumption is one of the main operational cost

components of mobile networks, and its impact is only
expected to grow further with the deployment of AI/ML
services that raise further this toll. This has been made explicit
in a number of reports from vendors, manufacturers, and
operators [7], [8]. Hence, our goal is to minimize the power
consumption of the whole system (vBS and edge server) sub-
ject to the performance constraints of the service. Depending
on the form factor of the vBS and the configuration of the
server (i.e., GPU model, motherboard, etc.) the consumed
energy of each entity may have a different order of magnitude.
Moreover, the cost associated with energy consumption may
vary depending on the scenario. In regular small-cell based
scenarios, such cost may be related to the price of electricity,
which may vary between day and night depending on the
rates set by the power suppliers in each country. In other
scenarios, such as those based on Power over Ethernet (PoE)
or a solar-powered vBS, this cost may reflect the scarcity of
the energy resource for the RAN. In order to capture these
different scenarios, we define the following cost function:

u(c, x) = δ1p
s(c, x) + δ2p

b(c, x) (1)

where δ1 and δ2 are the costs of the power at the edge server
and the vBS, respectively, in monetary units per watt (mu/W).

On the other hand, we consider performance constraints at
the service level, going a step beyond other works considering
lower-level performance requirements (e.g., [12]) such as data

rate or delay. The mapping between context-action pairs and
the service-level performance indicators is very complex and
there are no available models, as we detailed in the experi-
mental results of §III. For that reason, we learn them from
observations. For our object recognition service, we consider
two constraints: (i) a maximum service delay denoted by
dmax, which is directly related to the frame rate4 (number
of images per second) that the user is going to process, and
(ii) a minimum mAP denoted by ρmin which indicates a lower
bound on how accurate is the service in detecting the objects.
We formulate the problem as follows:

min
{xt}T

t=1∈X
lim

T→∞

1
T

T∑
t=1

ut(ct, xt)

s.t. dt(ct, xt) ≤ dmax, ∀t ≤ T

ρt(xt) ≥ ρmin, ∀t ≤ T. (2)
Note that the service constraints are satisfied for the user

experiencing the worst service as d(c, x) := maxi Di(c, x) and
ρ(c, x) := mini Qi(c, x). It is worth mentioning that these
functions are unknown beforehand and platform-dependent.
That is, the values of performance indicators may change with
the software implementing the vBS, the hardware of the server
and vBS, and the service running at the edge server. In §III we
show that the trade-offs between the control policies and the
performance indicators for one user are non-trivial and non-
linear. With a larger number of users, these relations can be
even more complex and exhibit different behavior, making it
essential the use of online learning.

For that reason, we use online learning in order to learn
how to configure the system based on the observations (data-
driven). Moreover, there is no unique optimal configuration,
as it depends on the context. This renders a very challenging
problem as the set of contexts is not finite and the observed
contexts change over time. In order to learn the mapping
between the context and the optimal configuration, we for-
mulate the problem as a contextual bandit with constraints
detailed in the next section.

We would like to remark that other alternative formulations
can be considered in eq. 2. For instance, we could consider
power-constrained vBSs or an edge computing power budget
by including the power consumption targets as constraints,
while minimizing latency and maximizing accuracy. The flex-
ibility of our framework allows us to implement any of these
different formulations with minimal changes.

D. Contextual Bandit Formulation
The contextual bandit formulation is a particularization

of the well-known Reinforcement Learning (RL) formulation
with several differences:

First, RL formulation considers that the probability distri-
bution of the state/context at t+1 depends on the state/context
and the selected action at t. Conversely, the contextual bandit
formulation considers that the context does not depend on
the selected actions. Note that the contexts in our problem
(number of users and channel quality) cannot be affected by
the configuration of the system.

4We consider a scenario with variable frame rates as some works show that
this can provide substantial benefits to the performance of the service [51],
[52], [53]. However, we can also consider a fixed frame rate as a particular
case of this formulation.
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Second, RL formulation considers that reward can be sparse
or delayed, i.e., the selected actions will affect the reward
an arbitrary number of time steps later. In some cases, the
reward is only revealed at the end of the episode and the
algorithm should distribute the credit of this outcome across all
the actions in the episode. In contrast, the contextual bandit
formulation considers that the reward is instantaneous, i.e.,
for a given state-action pair at time t, we can observe the
associated reward instantaneously. Furthermore, the decisions
made at time t will not have an impact on future time steps.
This property holds in our problem due to the timescale of the
decision-making process. Recall that our solution operates in
the Non-Real Time RIC of the O-RAN architecture (timescale
of seconds). Based on this time scale, the performance obser-
vation at each time t is independent of previous time steps as
the system becomes stationary.

Finally, it is worth mentioning that the contextual bandit
approach does not need to estimate the accumulated rewards
until the end of the episode as it is needed in RL (using
Temporal-Difference Learning, Monte Carlo Methods, etc.).
These simplifications in the formulation make our solution
simpler and more effective.

The contextual bandit πt(ct; Bt−1) : C → X is an
algorithm that maps contexts to actions, where Bt−1 =
[c1, x1, u1, d1, ρ1, . . . , ct−1, xt−1, ut−1, dt−1, ρt−1] is the set
of historical observations at t − 1 (i.e., triples of contexts,
actions, and performance metrics). At each time period t,
a context ct is observed and an action xt = πt(ct; Bt−1) is
computed and applied to the system. At the end of the time
period t the performance indicators associated with the pair
(ct, xt) are measured to update Bt and consequently πt. The
contextual bandit πt is sequentially updated with each new
measurement from the system towards solving the problem in
eq. (2). In §V, we detail the contextual bandit algorithm and
its updates.

V. BAYESIAN ONLINE LEARNING IN PRACTICE

EdgeBOL is an online learning algorithm that solves the
problem defined in §IV-C and formulated as a contextual
bandit in §IV-D. Most of the existing contextual bandit algo-
rithms assume a linear relationship between the contexts-
control space and the associated reward [54]; or assume a
certain structure in the reward function [55]. However, as the
measurements in §III reveal, our performance metrics have
a non-linear and unknown curvature, but we do observe a
high correlation with the control policies. That is, a small
change in one of the policies (e.g., image resolution) will
produce a small change in delay and power. This allows us to
get information about unobserved context-control points via
nearby points, hence reducing the exploration time.

Based on the above points, we propose a Bayesian online
learning method that models the cost and constraint functions
as samples of Gaussian Processes (GPs) over the joint context-
control space. This non-parametric estimator deals with the
aforementioned non-linearities and correlations, and quantifies
the function estimation uncertainty, addressing effectively the
exploration vs. exploitation trade-off.

Function approximator. In order to estimate the cost
and constraint functions we use GPs, which consist of a
collection of random variables that follow joint Gaussian

distributions [39]. Let z ∈ Z = C × X denote a context-
control pair. We model each of the unknown functions as
a sample from GP (µ(z), k(z, z′)), where µ(z) is its mean
function and k(z, z′) denotes its kernel or covariance function.
W.l.o.g., we assume µ := 0 and k(z, z′) < 1, which we refer
to as the prior distribution, not conditioned on data. Given
the prior distribution and a set of observations, the posterior
distribution can be computed using closed-form formulas.

The sets of observations of the cost and constraint functions
at points ZT = [z1, . . . , zT ] up to time period T are denoted by
y
(0)
T = [u1, . . . , uT ], y

(1)
T = [d1, . . . , dT ], y

(2)
T = [ρ1, . . . , ρT ],

respectively, assuming i.i.d. Gaussian noise, N (0, ζ2
(i)). The

posterior distribution of these functions follows a GP distribu-
tion with mean and covariance:

µ
(i)
T (z) = k

(i)
T (z)⊤

(
K

(i)
T + ζ2

(i)IT

)−1

y
(i)
T (3)

k
(i)
T (z, z′) = k(i)(z, z′)− k

(i)
T (z)⊤

(
K

(i)
T + ζ2

(i)IT

)−1

k
(i)
T (z′)

(4)

where k
(i)
T (z) = [k(i)(z1, z), . . . , k(i)(zT , z)]⊤, K

(i)
T (z) is a

kernel matrix defined as [k(i)(z, z′)]z,z′∈ZT
, IT is the T -

dimension identity matrix, and ζ2
(i) the variance of noise in

observations. Index i denotes the objective function, with
i = 0 for the cost function, i = 1 for the delay, and i = 2 for
the mAP. The distribution of unobserved values of z ∈Z for
function i is computed from the prior distribution, vector ZT

and the observed values y
(i)
T using (3) and (4).

Kernel selection. The kernel shapes the GP’s prior and
posterior distributions, and thus encodes the correlation of
the function values for every pair of context-control points.
In other words, the kernel characterizes the smoothness of the
functions [56]. The properties of the kernel should be thor-
oughly selected for each specific application and the functions
to be learned. We observe in our experimental data analyzed in
§III that the performance indicator functions exhibit different
smoothness for each dimension (control policy). In order to
approximate these functions accurately, we select our kernel
function satisfying two properties: stationarity and anisotrop-
icity. This means that k(z, z′) is invariant to translations in
Z but not invariant to rotations in Z. The kernel smoothness
for each dimension of function i is encoded in the length-
scale vector L(i) = [l(i)1 , . . . , l

(i)
N ], where N is the number of

dimensions of Z. The distance between two points based on
the length-scale vector is:

d(i)(z, z′) =
√

(z − z′)⊤(L(i))−2(z − z′), (5)

where L(i) = diag(L(i)) is a diagonal matrix of the length-
scale vector. In order to satisfy the properties stated above,
we select the Matérn kernel on its anisotropic version [39].
Moreover, following standard practice, we particularize it with
parameter ν = 3

2 (details in [39]), indicating that the function
is at least once differentiable. Thus, the expression of the
kernel can be particularized as follows:

k(i)(z, z′) = (1 +
√

3d(i)(z, z′)) exp(−
√

3d(i)(z, z′)). (6)

Note that although we are using the same kernel for all
cost and constraint functions, their hyperparameters differ and
depend on each function’s shape. In fact, L(i) and noise vari-
ance ζ2

(i) (eq. (3)-(4)) should be optimized for each function
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i before running the algorithm, by maximizing the likelihood
estimation over prior data. During execution, the hyperparam-
eters remain constant, since otherwise (optimized with newly
acquired data) it is not guaranteed the GPs’ confidence interval
will cover the actual function within, causing the optimization
to fall into poor local optima [57].

Safe set. It is crucial to identify first which controls satisfy
the constraints, which, however, depends also on the context.
For instance, when the user’s channel quality decreases (the
context changes), the user uses a lower MCS, which increases
the transmission time hence increasing the service delay.
Therefore, the controls that are suitable for high channel
quality may not meet the delay constraint with low channel
quality. We define the safe set as the set of policies that satisfy
all the constraints for a given context c:

S(c) =
{

x ∈ X | d(c, x) ≤ dmax ∧ ρ(x) ≥ ρmin
}

. (7)

Nevertheless, the computation of the safe set is challenging.
Firstly, the observations of the performance metrics are noisy
due to the stochastic nature of the system (e.g., noise in the
measurements, random variations in the performance), as we
observed in §III. And secondly, the number of controls |X |
is very large in practice, making it unattainable to explore
all possible configurations, for all possible contexts. For these
reasons, we use GPs to compute an estimation of the safe set:

St =
{

x ∈ X
∣∣∣ µ

(1)
t−1

(
ct, x

)
+ βσ

(1)
t−1(ct, x) ≤ dmax

∧ µ
(2)
t−1(ct, x)− βσ

(2)
t−1

(
ct, x

)
≥ ρmin

}
(8)

where
(
σ

(i)
t (z)

)2

= k
(i)
t (z, z) (eq. (4)) and β is a weight

parameter. Note that the safe set changes over time for two
reasons. First, it is a function of the context and, therefore,
when the context changes, the set of control policies meeting
the constraints varies. Second, as we get more observations
of the constraint functions their estimated values and uncer-
tainties also change according to eq. (3)-(4), allowing us to
compute the safe set more precisely. In other words, at each
period t, point zt is observed and vectors Zt and y

(i)
t ∀i are

updated. Due to their correlation, the posterior distribution of
points near zt will be updated, hence affecting which controls
will be included in the safe set.

Acquisition function. It indicates, at each time period t,
which control xt shall be used in the system given context ct.
This task is crucial for the convergence of the algorithm and
needs to interleave an exploration process in order to expand
the safe set while seeking a safe control with high perfor-
mance. Many previous works have proposed acquisition func-
tions for constrained Bayesian optimization [58], [59], [60],
but they do not consider contexts. To the best of our knowl-
edge, SafeOpt [59] is the only work using contexts. However,
while SafeOpt provides theoretical performance guarantees,
we found in our experiments that its acquisition function has
overly slow convergence; an issue that has been reported in
other works as well, e.g., [61]. Therefore, we expand this
approach by using the contextual Lower Confidence Bound
(LCB) proposed in [38] as an acquisition function, but con-
strained to safe set, i.e.:

xt = argmin
x∈St

{
µ

(0)
t−1(ct, x)−

√
βσ

(0)
t−1(ct, x)

}
. (9)

Algorithm 1 EdgeBOL

1: Inputs: Control Space X , kernel k, S0, β, δ1, δ2, ρmin,
dmax

2: Initialize: Z0 = ∅, y
(i)
0 = ∅,∀i.

3: for t = 1, 2, . . . do
4: Observe the context ct

5: Compute µ
(i)
t−1, σ

(i)
t−1 ∀i using eq. (3)-(4)

6: Estimate the safe set: St = S0 ∪ {x ∈ X |µ(1)
t−1(ct, x) +

βσ
(1)
t−1(ct, x) ≤ dmax ∧ µ

(2)
t−1(ct, x) − βσ

(2)
t−1(ct, x) ≥

ρmin}
7: xt = argminx∈St

µ
(0)
t−1(ct, x)−

√
βtσ

(0)
t−1(ct, x)

8: Observe dt(ct, xt), ρt(ct, xt), ps
t (ct, xt), and pb

t(ct, xt)
at the end of the time period t

9: Compute the cost ut(ct, xt) = δ1p
s
t (c, x) + δ2p

b
t(c, x)

10: Update Zt ← Zt−1 ∪ [ct, xt]
11: Update y

(0)
t ← y

(0)
t−1 ∪ ut(ct, xt)

12: Update y
(1)
t ← y

(1)
t−1 ∪ dt(ct, xt)

13: Update y
(2)
t ← y

(2)
t−1 ∪ ρt(ct, xt)

14: end for

Algorithm 1 summarizes the whole workflow EdgeBOL.
At the beginning of the time period t, the context ct is observed
(line 4). Based on the observed context ct and the vectors
Zt−1 and y

(i)
t−1∀i from the previous time period, the posterior

distribution of all the functions is computed using eq. (3)-(4)
(line 5). Note that when we do not have observations (Z0 = ∅,
y
(i)
0 = ∅,∀i) the posterior distribution is equal to the prior

distribution. Using the expectation and uncertainty of the
constraint functions and eq. (8), the safe set St is built (line 6).
The control xt is selected from the safe set St based on the
posterior distribution of the cost function and the acquisition
function (line 7). At the end of the time period t, all the
performance indicators are observed. Then, the cost function
is computed using eq. (1). Finally, the new context-control pair
zt, the value of the cost function ut(ct, xt) and the value of
the constraint functions (dt(ct, xt) and pt(ct, xt)) are added to
their respective vectors to generate Zt and y

(i)
t ∀i (lines 10-13).

The source code of EdgeBOL is publicly available online.5
Note that EdgeBOL does not expand explicitly the safe set

like in other works such as [58] and [59]. These works propose
an explicit expansion of the safe set by intentionally exploring
controls in the boundary. The objective is to converge to the
true safe set and therefore to reach the optimal safe control.
However, we found that our acquisition function can both
minimize the cost function and expand the safe set. The
reason is that control policies with lower values of power
consumption are usually in the boundary of the constraint
(e.g., they are associated with higher service delay). Hence,
when the acquisition function explores lower power controls
it is indirectly exploring the boundaries of the constraint,
reducing its uncertainty and thus expanding the safe set.
In other words, the acquisition function exploits the problem
structure to efficiently expand the safe set, see §VI.

Practical Issues. It is interesting to note that, if the perfor-
mance bounds (constraints) are very tight and the problem
is infeasible, the safe set will converge to the initial safe

5https://github.com/jaayala/constrained_bayes_opt
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Fig. 9. Experimental testbed.

set, that is, lim
t→∞

St = S0 (since S0 is always included in
St, Algorithm 1 line 5). This might happen only for certain
contexts, e.g., for very low channel quality. In any case,
EdgeBOL will select control policies from the initial safe
set S0, which are intentionally selected to be the ones with
the lowest delay, the highest mAP and, therefore, the highest
consumed power. On top of that, EdgeBOL is robust to
changes in the constraint settings, and hence can adapt if, for
example, the operator decides to relax them during the system
runtime in order to avoid such infeasibilities. We demonstrate
this in the next section. Finally, it is worth mentioning that
the computation of the posterior distribution in eq. (3)-(4) is
O(N3). However, we found in our experiments that this does
not introduce any delay since we have a wide enough time
window to update the control policy, according to O-RAN
specifications.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
Our prototype consists of a vBS, a user equipment (UE),

a digital power meter, and an edge server, Fig. 9. The
vBS and UE include an NI USRP B210 as radio unit
(RU) and a general-purpose computer (Intel NUCs with CPU
i7-8559U@2.70GHz) deploying the near-RT RIC (for the
vBS) and the baseband unit (BBU), implemented with the
srsRAN suite [11] (which emulates an O-eNB for experimen-
tation). The vBS and UE are connected through SMA cables
with 20 dB attenuators, and we adjust the transmission gain
of the RU’s RF chains to attain different uplink SNR values.
Without loss of generality, we set 20 MHz bandwidth for the
LTE interface.

Our edge server is equipped with a CPU Intel i7-8700K
@ 3.70GHz and a GPU Nvidia GeForce RTX 2080 Ti. The
vBS and server are connected using a switch with Giga-
bit Ethernet technology. To measure the power consump-
tion at the BBU and the server, we use the digital power
meter GW-Instek GPM-8213 with the GW-Instek Measuring
adapter GPM-001. The evaluated AI service is implemented
using Detectron2 [62], developed by Facebook, which per-
forms object recognition. Specifically, Detectron2 is config-
ured with a region-based convolutional neural network (Faster
R-CNN) [63] comprising a ResNet backbone with conv4

layers and a conv5 head with a total of 101 layers. The UE
sends to server images from the COCO data set we used in
§III through the LTE uplink. The images are resized at the
user side using the OpenCV library in Python. The bounding
boxes and object classes are computed by Detectron2 and sent
back to the UEs (LTE downlink).

We introduced two key srseNB modifications. First,
we modified the radio MAC scheduler to implement the two
radio policies of §III. Secondly, we integrated the O-RAN
E2 interface as defined in [49] to enforce the radio control
policies (MCS and airtime) on the fly and send consumed
power consumption samples to the corresponding xApp. For
the latter, we have added code into srsRAN to collect this
information from the power meter. We have also implemented
a proof-of-concept Near-RT RIC and Non-RT RIC with the
interfaces mentioned in §IV and as defined in [47] and [48].
We configure the GPU speed by using the Nvidia driver
that allows us to set the maximum power management limit,
ranging between 100 and 280W. This runtime configuration
does not affect the GPU operation. Note that the actual GPU
consumed power depends on its duty cycle.

We consider |H| = |A| = |Γ| = |M| = 11; hence there is a
large number of |X | = 114 ≃ 14.6·103 control policies, which,
in combination with the effect of the possible contexts, high-
lights the need for a data-efficient learning mechanism. Given
the complexity of running experiments with multiple users,
we rely on a single user in most of our experiments (which
render trivial low-layer controllers). However, whenever
needed (we test out multiple heterogeneous users in §VI-D),
we adopt simple controllers (e.g. MAC layer scheduling)
that are detailed where relevant. In line with previous works
[59], [61], we select β1/2 = 2.5, which shows good perfor-
mance in our evaluations. We configure the duration of the
time periods to 2 seconds. Finally, unless otherwise stated,
we will plot our results with lines and shadowed areas repre-
senting, respectively, the median value and the 10th and 90th

percentiles, across 10 independent repetitions.

B. Convergence
To evaluate the convergence of EdgeBOL, we consider

a single context and a certain constraint set with ρmin

(minimum mAP performance) and dmax (maximum service
delay). Dynamic context changes and different constraints are
evaluated later. Namely, we set the mean SNR to 35 dB
(good wireless conditions), δ1 = 1 mu/W, ρmin = 0.5, and
dmax = 0.4 s. Fig. 10 plots the evolution over time of the
cost (ut), mAP performance (ρt), delay (dt), and server and
BS power consumption (ps

t and pb
t) as a function of δ2. The

first observation is that the cost ut (top plot) converges within
roughly 25 periods across all δ2 = {1, 2, 4, 8, 32}. Higher
δ2 values induce higher cost as the Watt price for the BS,
grows. Remarkably, both the mAP performance and delay fall
within the selected system constraints upon convergence with
high probability. In fact, we observed consistent results (con-
verge speed, satisfaction of system constraints) irrespectively
of the context and system constraints.

The system power consumption presents interesting trade-
offs with δ2. Small δ2 (e.g., 1) induces high power
consumption at the BS but low at the server. This is
because the maximum net power consumption of our vBS
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Fig. 10. Convergence evaluation. A scenario with steady channel conditions
(no context changes), δ1 = 1 mu/W, ρmin = 0.5, and dmax = 0.4 s. The
dotted black line indicates the service constraint.

(around 7.25 W) is much smaller than that of the server
(between 85 to 180 W). Therefore, if the associated cost
(mu/W) is similar for both the vBS and server, EdgeBOL will
minimize the power consumption of the server at the expense
of a small vBS energy toll. However, when δ2 is relatively
high (e.g., 64), the actual cost associated with the vBS energy
footprint becomes comparable, or even higher, to the server.
Hence, EdgeBOL drives the system to configurations that
minimize vBS power consumption at the expense of more
server energy. This latter case is relevant for situations when
a small cell has a stringent power budget or cooling restric-
tions. Indeed, different types of vBS have different energy
footprints, which motivates the need for approaches that learn
the relationship between power consumption, performance,
and configuration policies.

C. Static Scenarios
Let us now take a closer look at the power consumption

and the respective EdgeBOL’s policies for different constraints
and values of δ2. Fig. 11 shows the power consumption and
normalized cost once EdgeBOL has converged for δ1 = 1
and δ2 = {1, 2, 4, 8, 16, 32, 64} mu/W. We compute the
normalized cost independently for each δ2 so we can compare
across different δ2 values. We now test different constraint
settings: (i) dmax = 0.5 s, ρmin = 0.4 (lax constraints),
(ii) dmax = 0.4 s, ρmin = 0.5 (medium constraints), and
(iii) dmax = 0.3 s, ρmin = 0.6 (stringent constraints),
represented in red, green, and blue in the figure. In addition,

Fig. 11. Power consumption and normalized cost for a single context as a
function of δ2, with δ1 = 1 mu/W. Dashed lines represent our exhaustive
search approach.

we represent with dashed lines the cost attainable by an offline
oracle, which we obtained using a time-consuming exhaustive
search procedure over the whole control space. Though this
approach is unfeasible in practice, it is a good benchmark to
empirically assess the optimality of EdgeBOL.

Ignoring, for now, the differences across different constraint
settings (different colors in the plots), we can make two
observations. First, we can confirm our earlier observation that
higher values of δ2 (compared to δ1) steer EdgeBOL to shift
power consumption from the server to the BS (and vice versa).
Second, EdgeBOL is able to drive the system to near-optimal
points of operation, when comparing the cost of EdgeBOL
with that obtained by our oracle.

In more detail, the figure renders very different behavior
across different constraint settings (colors in the plot). In the
case of dmax = 0.5 s, ρmin = 0.4 (lax constraints, in red
in the plot), there is a drastic change in the selected policies
and resulting power consumption as we increase δ2. Because
these settings are rather lax, EdgeBOL has more leeway to
explore (and then select a policy from) a larger space of
feasible policies. This is made evident when we compare
its normalized cost with that of the most stringent settings
(dmax = 0.3 s, ρmin = 0.6, blue line in the figure): for
δ2 = 1, the minimum cost attained by EdgeBOL is 25%
larger for the latter, and 10% for δ2 = 64. Moreover, the
normalized cost consistently grows, though with a shrinking
gap in cost across constraint settings, as we increase δ2. This
occurs because, in our testbed, the range of power values that
the BS can consume (across all policies) goes between 4 and
8 W, which is substantially smaller than that of the server
(between 50 and 200 W). As a result, when we increase δ2,
i.e., when we increase the importance given to reducing BS
power, the cost variance across policies reduces. Needless to
say, this may be different with different types of BS such as
macro cells.

Finally, Fig. 12 shows the corresponding control policies for
the same scenarios shown in Fig. 11. Let us first take a look at
the lax settings (dmax = 0.5 s, ρmin = 0.4, depicted with red
lines in the figure). When δ2 is small, EdgeBOL imposes low-
consuming server-side policies, i.e., low GPU speed policies.
This certainly helps to reduce the server consumption, and
the overall cost as a consequence. However, to meet the
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Fig. 12. Policies for a single context as a function of δ2, with δ1 = 1 mu/W.

performance constraints, EdgeBOL has to compensate for
low GPU speed policies with higher image resolutions and
higher radio policies that ease the job of the service while
minimizing delay, which comes at the expense of higher BS
power consumption. Conversely, when δ2 increases, EdgeBOL
selects low-consuming radio policies and, to compensate,
lower image resolutions and higher GPU speed policies that
help reduce service delay. On the other side, for the scenario
with the most stringent constraints (dmax = 0.3 s, ρmin = 0.6,
blue lines), EdgeBOL is forced to deal with a smaller space of
feasible policies. Therefore, all policies are roughly consistent
across different δ2 values (with mild differences for the highest
settings).

D. Heterogeneous Users
In an effort to reduce the problem of the dimensionality,

we aggregate statistics of individual users (mean SNR, vari-
ance SNR, etc.) when describing the context. See Appendix A
for a discussion on this issue. To validate that this design
choice does not compromise optimality, we have performed
a series of experiments with multiple heterogeneous users.
Without loss of generality, we adopt a simple low-level control
mechanism to enforce the selected policies when allocated
resources to individual users: (i) a round-robin radio schedul-
ing approach at the MAC layer of the BS, (ii) equal image
resolution across users, (iii) MCS selection approach legacy of
srsRAN [11] (upper bounded by the policy), and (iv) highest
GPU speed to handle individual video frames allowed by the
policy.

We train the algorithm with a variable number of hetero-
geneous users with changing channel quality. Once trained,
we evaluate the performance of EdgeBOL in scenarios with
a fixed number N of heterogeneous users. The first user has
the best channel conditions (SNR = 30 dB on average) and
every additional user has 20% lower SNR.6 We trivially choose
dmax = 2 and ρmin = 0.6 so the system has a feasible
solution in the worst case (with 6 users). Fig. 13 depicts
the mean cost of the system (as defined in eq. (1)) and all
performance indicators for scenarios with different values of
N . We do this for different weights δ2 in the trade-off between
the server’s power consumption and that of the vBS (δ1 = 1 in
all scenarios). In turn, Fig. 14 shows the selected policies
selected in average.

6Our experimental setup is constrained to scenarios with N < 7.

Fig. 13. Empirical optimality gap in scenarios with multiple heterogeneous
users. Each scenario has N users with different SNR conditions: user 1 has
the best channel conditions (SNR = 30 dB on average) and every additional
user has 20% lower SNR. We evaluate different values of δ2. δ1 = 1. The
dotted black line indicates the service constraint.

Fig. 14. Optimal and EdgeBOL policies with multiple heterogeneous users.
Each scenario has N users with different SNR conditions: user 1 has the best
channel conditions (SNR = 30 dB in average) and every additional user has
20% lower SNR. We evaluate different values of δ2. δ1 = 1.

We compare the performance of EdgeBOL with that of
an optimal oracle that finds the best possible combination of
policies offline after an exhaustive search where all the system
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Fig. 15. Evolution of policies for dynamic contexts (δ = 8).

dynamics are known. Hence, though it is unfeasible to use in
practice, it provides a lower bound cost that helps us assess the
optimality gap of EdgeBOL empirically. The results show that
the performance attained by EdgeBOL is remarkably close
to that of the oracle, well within 2%. Moreover, EdgeBOL
satisfies the service constraints (represented in Fig. 13 with
dashed dark lines) with probability 0.98. This validates that
aggregated statistics across users suffice to provide good per-
formance while keeping the problem’s complexity tractable.
We can also observe that the overall cost increases with the
number of users. The reason is that, as each additional user has
lower SNR, its transmission time is higher. As a consequence,
EdgeBOL is forced to invest more resources (i.e., airtime,
GPU speed) in the system to compensate for this degradation
of mean wireless conditions.

E. Dynamic Scenarios

We now test the performance of EdgeBOL in the presence
of fast context dynamics and sudden constraint changes. Let
us start with the former. To this end, we deploy an untrained
EdgeBOL in an environment where the wireless conditions
quickly vary between 5 and 38 dB, as depicted by the first
plot in Fig. 15, and set δ1 = 1 and δ2 = 8. The top part of
the plot depicts the size of the safe control set over time.
As expected, the safe set quickly reduces within roughly

Fig. 16. Evolution of delay and mAP upon changes on the constraint settings
for EdgeBOL and a DDPG approach implemented with neural networks
(δ = 8).

25 time periods and then adapts to the eventual contextual
changes, with fluctuations matching the context changes.
Remarkably, EdgeBOL convergences upon only 3 cycles
across all contexts under evaluation. This is possible because
the knowledge acquired by EdgeBOL for one context is actu-
ally transferred across similar contexts. That is, EdgeBOL is
able to select judicious policies, shown in the remaining plots
of the figure, even for unseen contexts. Specifically, for this
choice of δ parameters, the GPU speed policy and the MCS
policy highly vary upon context dynamics, whereas the image
resolution and the airtime policy remain consistently high. It is
worth mentioning that these policy dynamics are substantially
different for diverse values of δ (not shown due to space
constraints).

The above illustrates one of the major advantages of our
approach, which makes appropriate decisions—even for con-
texts unseen before—by inferring correlations between the cost
function and the context-control space. Conventional neural
network-based approaches are substantially less efficient in
doing so, which renders EdgeBOL a particularly data-efficient
solution.

To assess this, we implement a customized version of
the deep deterministic policy gradient (DDPG) [64]. This
benchmark is inspired by [12], which is the most related work
to ours. Since the DDPG is designed to address the full-RL
problem, we need to adapt it to address a contextual bandit
problem, according to our formulation (Sec. IV). The DDPG
algorithm uses an actor-critic neural network architecture, but
the critic, instead of approximating the Q function (full-RL
problem), learns a new cost function referred to as DDPG
cost. The DDPG cost takes the value of (1) when all the
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constraints in (2) are satisfied, and the maximum cost value
otherwise. Note that the DDPG does not handle constraints
naturally and by using the DDPG cost function we allow the
algorithm to do it. DDPG is particularly appealing for this type
of problem because it operates with continued-valued control
spaces. Conversely, value-based approaches (such as Deep
Q-Networks) are impractical for large control spaces, such
as ours [65]. We mildly modified the architecture presented
in [12] with a sigmoid function for the actor’s output and
optimized all the hyper-parameters (such as the decay) to
minimize convergence time and performance.

We then test EdgeBOL and DDPG in a dynamic scenario
where the constraint settings change over time: (i) dmax =
0.5 s, ρmin = 0.4 from t = 0 through t = 1000; (ii) dmax =
0.4 s, ρmin = 0.6 from t = 1000 through t = 2000; and
(iii) dmax = 0.5 s, ρmin = 0.5 from t = 2000 on.
Fig. 16 depicts the evolution over time of the service delay
and the mAP performance for both approaches. Not surpris-
ingly, EdgeBOL rapidly converges to policies that respect the
performance constraints, even when they suddenly change.
The non-parametric nature of our approach and the fact that
we can compute safe control sets for any constrained setting
based on prior data, allows EdgeBOL to drive the system to
the new optimal points of operations almost instantaneously.
In marked contrast, the neural network-based benchmark takes
a substantially higher number of time periods to find the new
optimal—it is actually unable to converge prior to the con-
straint changes—and fails to adapt graciously upon constraint
changes because neural networks are parametric models that
need to re-learn upon such changes.

VII. CONCLUSION

The energy-aware implementation of AI services at the
network edge is increasingly important for performance, eco-
nomic and environmental reasons [5], [6]. Our measurements
showed non-trivial trade-offs between the delay and accuracy
of such services, and revealed how these metrics are shaped
by the base station and edge server control policies. Using a
Bayesian learning algorithm we automated the identification
of a policy that minimizes the aggregate energy costs while
adhering to predetermined performance criteria. Remarkably,
this framework comes with minimal assumptions and is proved
particularly effective in exploring the huge system configu-
ration space. The proposed resource control mechanism is
fully compliant with O-RAN and particularly promising for
enabling edge AI services, as we verify experimentally using
a prototype.

APPENDIX

A. Statistical Characterization of Contexts
Let us discuss the statistical characterization of the channel

states of users as input context, defined in Sec. IV-B. This
design decision is made in order to make EdgeBOL work
better in practice. The context comprises the number of users
and the mean and variance of uplink CQIs. The straightforward
approach is to use the full context, i.e., the CQI of each
active user. However, this has several disadvantages. First,
the problem dimension grows with the number of users.
The higher the number of users, the larger the dimension
of context space, and therefore the more data are needed by

the algorithm to converge. And secondly, the context space
dimension changes with the number of users (e.g., 4 dimen-
sions for 3 users, 7 dimensions for 6 users, etc). To solve
this, we would need to run a different instance of EdgeBOL
for each context space dimension, increasing even more the
data requirements for convergence. Our approach, instead,
is to handle multiple users by aggregating statistics, and this
overcomes these disadvantages with a negligible impact on
performance, as we empirically validate in Sec. VI-D.

B. Multiple Edge Services
In this work, we assume a pre-configured slice hosting the

edge service. This allows us to decouple the impairments and
couplings across different services. Nevertheless, EdgeBOL
may be extended to jointly optimize multiple services concur-
rently with a few changes: (i) expand the context and action
space for all services; (ii) add the KPI constraints for each
service; and (iii) add constraints on the coupled resources
(i.e., GPU and radio). Although this modeling approach seems
promising performance-wise, the dimension of the extended
problem endangers its practical performance. Specifically, the
dimension of the context-action space becomes 4S +3, where
S is the number of services; and the number of constraints
raises to 2S + 2 – assuming each service requires two
performance constraints. This dimension expansion increases
exponentially the required amount of observation data –
hence introducing convergence delays – and therefore must
be employed with caution and in small-scale settings only.

In contrast, EdgeBOL is aimed to be a general-purpose
practical solution. To that end, we focus on the case where
each service is hosted by pre-configured network slices
[66], [67]. This approach addresses the scalability issue men-
tioned above (we only have to deal with one service) and is
in line with recent standardization activities of 3GPP [68].
Note that network slices can be re-configured in the timescale
of hours or minutes [69]. For that reason, our solution (that
operates in the timescale of seconds) does not modify the
slice configuration, but instead jointly optimizes the service
parameters and resource allocation within the slices, a problem
that is faced by the industry today when using network slicing.
Hence, we consider this solution to be a flexible approach that
addresses the efficiency vs. scalability challenges at hand.

C. Heterogeneous Edge Services
In this paper, we selected the object recognition service

because it is among the most challenging ones to optimize
(i.e., there are many involved parameters, it is very resource-
intensive, etc). Moreover, it is very representative of mod-
ern AI services that rely on computer vision applications
(e.g., vehicle navigation, surveillance systems, mobile health
apps [70], etc.). It is important to highlight that Policy 1 (img.
resolution), defined in Sec. III seems to be very specific and
bound to a computer vision application. However, we can
define it in a more general way as Policy 1 indicates the
amount of data sent from the user to the service. This
general definition can be transferable to other domains and
applications. To illustrate that, let us consider another service
of different nature.

Let us consider that our solution is used for predictive
maintenance. In this setting, there are many vibration and
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audio sensors deployed in a factory that collect and send
data to an anomaly detection model. When the model predicts
an anomaly, contingency measures can be taken in real-time
avoiding future breakdowns [71], [72]. In this example, the
sensors collect continuous values that should be pre-processed
(sampled, quantified, and compressed) before sending them
to the AI service. We can observe the same trade-off as
in our application example. Higher compression reduces the
transmission delay but can worsen the accuracy of the model,
and vice versa. Although we cannot directly transfer the
measurement findings in Sec. III to very different applications,
the fundamental trade-offs and the need for joint, data-driven,
optimization of performance and energy still hold.
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