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A SOBOLEV ESTIMATE FOR RADIAL Lp-MULTIPLIERS ON A 

CLASS OF SEMI-SIMPLE LIE GROUPS 

 

MARTIJN CASPERS 

Abstract. Let G be a semi-simple Lie group in the Harish-Chandra class 

with maximal compact subgroup K. Let ΩK be minus the radial Casimir 

operator. Let 1 dim(G/K) < SG < 1 dim(G/K),s ∈ (0, SG] and p ∈ (1, ∞) 
4 2 

be such that 
I 1 1 I s 
I p 

− 
2 I 

< 
2S 

.
 

Then, there exists a constant CG,s,p > 0 such that for every m ∈ L∞(G) ∩ 
L2(G) bi-K-invariant with m ∈ Dom(Ωs ) and Ωs (m) ∈ L2SG/s(G) we have, 

K K 

(0.1) \Tm : Lp (G�) → Lp(G�)\ ≤ CG,s,p\Ωs (m)\ 2S /s , 
K L  G  (G) 

where Tm is the Fourier multiplier with symbol m acting on the non- 

commutative Lp-space of the group von Neumann algebra of G. This gives 

new examples of Lp-Fourier multipliers with decay rates becoming slower when 

p approximates 2. 
 
 
 

1. Introduction 

Finding sharp norm estimates of Fourier multipliers is a central and intriguingly 
delicate theme in Euclidean harmonic analysis. Nowadays several multiplier the- 
orems are known including the celebrated Hörmander-Mikhlin multiplier theorem 

that estimates the bound of an Lp-multiplier in terms of differentiability and regu- 
larity properties of the symbol. This is just one of the many theorems in harmonic 
analysis and we refer to the monographs [Gra14], [Gra09], [Ste70] for a broader 
treatment of the subject. 

Over the past decade there has been an increasing interest in the construction 
of Lp-multipliers on a non-abelian locally compact group G. Here the group plays 
the role of the frequency side. For a symbol m ∈ L∞(G) the central question is for 
which 1 < p < ∞ the Fourier multiplier 

Tm : L2(G) → L2(G) : λG(f ) 7→ λG(mf ), 

extends to a bounded map Lp(G) → Lp(G). Here λG is the left regular repre- 

sentation and Lp(G) is the non-commutative Lp-space of the group von Neumann 

algebra L∞(G) of G. Moreover, ideally one would have sharp bounds on the norms 

of such multipliers and understand their regularity properties. 
Recently, a number of such multiplier theorems have been obtained. In the 

realm of discrete groups Mei and Ricard [MeRi17] gave a free analogue of the 
Hilbert transform through Cotlar’s identity yielding multipliers on free groups. The 
techniques were exploited further in [MRX22], [GPX22] for free (amalgamated) 
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products of groups and groups acting on tree-like structures. In [JMP14] (see 
further [GJP17], [JMP18]) a very effective method based on cocycles was introduced 
to construct a wide class of multipliers. Some of the results we mentioned so far 
also yield multipliers for non-discrete groups. 

In the case of semi-simple Lie groups the main achievements that have been 

made are contained in [PRS22] and [CGPT22]. In particular for SL(n, R), the 

group of n × n-matrices over R with determinant 1, an analogue of the classical 
Hörmander-Mikhlin multiplier theorem is obtained [PRS22]. The differentiability 
properties of the symbol are then described in terms of Lie derivatives. The methods 
from [PRS22], [CGPT22] rely on a local transference from Schur multipliers and 
local approximations of the Lie group with Euclidean spaces. The main theorem 
[PRS22, Theorem A] is extremely effective and close to sharp for symbols that 
are supported on a small enough neighbourhood of the identity. Moreover, these 
Hörmander-Mikhlin type conditions automatically imply certain integrability of the 
symbol and therefore the theorem in fact extends from a small neighbourhood to 
symbols on the entire Lie group. Such symbols thus have a fast decay; fast enough 
to assure integrability properties of the symbol [PRS22, Remark 3.8]. Concerning 
the behavior of (radial) multipliers away from the identity the rigidity theorem 

[PRS22, Theorem B] shows that symbols of Lp-multipliers in fact must necessarily 
have a sufficient amount of decay. The fundament of this phenomenon stems from 
[LaSa11], [Laa13], [LaSa18]. In the degree of decay there is a gap between the 
multiplier theorems [PRS22, Theorem A], [CGPT22, Theorem A2] and the rigidity 

theorem [PRS22, Theorem B] in case p is close to 2. The current paper provides a 
new viewpoint on this gap. 

We also mention that connections between discrete and locally compact groups 
have been made through noncommutative versions of De Leeuw theorems [CPPR15], 
[CJKM22]. 

The main result of this paper obtains a new multiplier theorem that is applicable 
to a natural class of semi-simple Lie groups. Our main result is Theorem 1.1 as an- 
nounced in the abstract. The theorem provides a Sobolev type estimate for Fourier 

multipliers. The regularity properties are formulated in terms of the distance of p 

from 2. 

Theorem 1.1. Let G be a semi-simple Lie group in the Harish-Chandra class with 

maximal compact subgroup K. Let ΩK be minus the radial Casimir operator. Let 
1 dim(G/K) < SG < 1 dim(G/K),s ∈ (0, SG] and p ∈ (1, ∞) be such that 
4 2 

1 1  s  − < . 
1 p 21 2SG 

Then, there exists a constant CG,s,p > 0 such that for every m ∈ L∞(G) ∩ L2(G) 
bi-K-invariant with m ∈ Dom(Ωs ) and Ωs (m) ∈ L2SG/s(G) we have, 

K K 

(1.1) \Tm : Lp (G� ) → Lp(G�)\ ≤ CG,s,p\Ωs (m)\ 2S /s . 

There are several novelties in our approach compared to earlier multiplier the- 
orems on non-abelian groups, in particular Lie groups. Firstly it is the first time 
that differentiability properties with respect to the Casimir operator are used in 
estimates on Lp-multipliers. As the Casimir operator equals the Laplace-Beltrami 

operator on the homogeneous space G/K the estimate (1.1) should be understood 
as a Sobolev norm estimate. Secondly, our proof uses the representation theory of 

http://www.ams.org/journal-terms-of-use
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G to construct Lp-multipliers. In this case we use the spherical dual of the group 

to construct bi-K-invariant multipliers. This makes a link to Harish-Chandra’s 
Plancherel theorem for spherical functions. Most notably, we establish a link be- 
tween the construction of Lp-multipliers and Heat kernel estimates of the Casimir 
operator which are well-studied in the literature. For the Heat kernel estimates 
and consequent estimates for Bessel-Green-Riesz potentials we shall mostly rely 
ourselves on Anker-Ji [AnJi99] (see Section 3); though in many cases such esti- 

mates were obtained earlier, see [Gan68], [Ank87], or for SL(n, R), see [Saw97]. 
Theorem 1.1 is very much in the spirit of the Calder ón-Torchinsky theorem 

[CaTo75], [CaTo77] in Euclidean analysis, see also the more recent papers [GrSl19], 
[Graf21], but there are several fundamental differences too. For instance we do 
not have a Littlewood-Payley theory at our disposal and neither we are able to 
control the volumes of translations of areas. Secondly, the classical results on Bessel 
potentials that are used in [Graf21] (see [Gra09, Section 6.1.2]) need to be replaced 
by the much deeper results of Anker and Ji. 

We shall show in Section 6 that Theorem 1.1 leads to several new classes of 
Fourier multipliers that are fundamentally beyond the reach of the earlier theo- 
rems from [PRS22], [CGPT22]. For instance, the following question seems to be 
unknown. Suppose we have a symbol m that is smooth in a neighbourhood of the 

origin of G and of the form m(k1 exp(H)k2) = e−Apl/Hl/, k1, k2 ∈ K, H ∈ a outside 

that neighbourhood for some constant Ap > 0. Determine for which Ap > 0 and 
which 1 <  p  < ∞ such a symbol can be an Lp-Fourier multipler. The rigidity 

theorem [PRS22, Theorem B] puts a lower bound on Ap whereas [PRS22, Remark 

3.8], which is fundamental to [PRS22, Theorem A], yields an upper bound on Ap. 
This paper improves on this upper bound as explained in Section 6, where we also 
explain that our theorem reaches beyond [CGPT22, Theorem A2]. This gives a 
negative answer to the question at the end of [CGPT22, Remark 4.2] if one is 
allowed to differentiate in p. 

Structure of the paper. Section 2 contains preliminaries on Lie groups, von 
Neumann algebras and non-commutative Lp-spaces. In Section 3 we prove an 
important direct consequence of the results of Anker-Ji [AnJi99]. Section 4 contains 
the core of this paper and provides a first estimate for Lp-multipliers. Section 5 

interpolates between Lp and L2 to conclude the main theorem. Finally Section 6 
contains important and surprising new examples of multipliers. We also specialize 
the case of SL(n, R). 

 
2. Preliminaries 

For expressions A and B we write A ≈ B if there exists two absolute constants 

c1, c2 > 0 such that c1A ≤ B ≤ c2A. We write A ::: B if only c1A ≤ B. The 
symbol ⊗ will denote the tensor product. In case we take a tensor product of von 
Neumann algebras we mean the von Neumann algebraic tensor product, i.e. the 
strong operator topology closure of their vector space tensor product. In case of 

a tensor product of Lp-spaces we mean the Lp-norm closure of that vector space 
tensor product. 

2.1. Lie groups and Lie algebras. For standard references on Lie groups and Lie 
algebras we refer to [Hel78], [Kna02], [Hum72] and for spherical functions to [Hel00] 
and [JoLa01]. This paper crucially relies on [AnJi99, Section 4] and therefore from 

http://www.ams.org/journal-terms-of-use
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this point onwards we assume that G is semi-simple and in the Harish-Chandra 

class, see [Kna02]. This includes all semi-simple, connected, linear Lie groups. In 
particular G has finite center and finitely many connected components. Let K 

be a maximal compact subgroup of G which is unique up to conjugation. Let 
G = KAN be the Iwasawa decomposition where A is abelian and N is nilpotent. 
Let G = KAK be the Cartan decomposition of G. Let g, a and n be the Lie 

algebras of respectively G, A and N . 

We let Σ ∈ a∗ be the set of roots and by fixing a positive Weyl chamber a+ we 

let Σ+ be the set of positive roots. We let Σ++ be the set of positive indivisible 
roots; recall that this means that α ∈ Σ++ if α is a positive root and 1 α is not a 
root. If G is complex then Σ+ = Σ++ (see [Hum72, Section II.8.4]); otherwise if 
α ∈ Σ++ the only scalar multiples of α that are possibly roots are −2α, −α, α, and 
2α (see [Hum72, Exercise III.9]) . Let mα be the multiplicity of a root. Recall that 

1 
2 

 

2.2. Killing form. Let (·, ·) be the Killing form on g which is a non-degenerate 
bilinear form. The Killing form restricts to a positive definite non-degenerate form 

1 

on a. For H ∈ a we set \H\ = (H, H) 2 . The Killing form linearly identifies 
the dual a∗ with a by identifying H ∈ a with αH ( · ) := (H, ·) ∈ a∗. Under this 
identification the pairing ( ·  , · )  and corresponding norm are thus defined on a∗ as 
well; this also defines the pairing between a and a∗. 

2.3. Haar measure. We denote μG for the Haar meausure of G which is both 

left- and right-invariant as G is semi-simple hence unimodular. The Haar measure 
decomposes with respect to the Cartan decomposition (see [Hel78, Theorem I.5.8] 
or [AnJi99, Eqn. (2.1.5)]) as 

 
(2.1) 

G 

 

f (g)dμG(g) = |K/M| 
K 

Z

a+

 
 

f (k1 exp(H)k2)δ(H)dk1dHdk2, 
K 

where M is group of elements in K that commute with A (i.e. the centralizer) and 

 
(2.2) δ(H) =  

α

Y

∈Σ+ 

 
sinhmα (α, H)≈  

α

Y

∈Σ+ 

  (α, H)    mα
 

1+ (α, H) 

 

e2(ρ,H). 

The volume of the quotient |K/M| will not play a very significant role in our paper 
and can be regarded as a constant. We let (f1 ∗ f2)(g) = 

J
G f1(h)f2(h g)dμG(h) 

−1 

be the convolution product for suitable C-valued functions f1 and f2 on G. 

2.4. Function spaces and K-invariance. Let F be either C∞,C∞, C, Lp so that 
we mean by F (G) either C∞(G),C∞(G),C(G), Lp(G) which are respectively the 
functions G → C that are smooth, smooth with compact support, continuous and 
p-integrable with respect to μG. We use the notation F (K\G),F (G/K),F (K\G/ 

K) to denote the space of functions in F (G) that are K-invariant from the left, 
right or both left and right respectively. 

 

2.5. Casimir operator. Let Ω ∈ U (g) be the Casimir element of G where U (g) is 
the universal enveloping algebra of g. Ω acts as a second order differential operator 
on C∞(G) (see [JoLa01, Section II.1]) and we let Ω0 be the restriction of −Ω to 
C∞(K\G/K).  On the domain 

Dom(Ω0 ) = {f ∈ C∞(K\G/K) ∩ L2(K\G/K) | ΩK(f ) ∈ L2(K\G/K)}, 

Z Z Z 
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the operator Ω0 is essentially self-adjoint; in fact its restriction to the Harish- 
Chandra Schwartz space is well-known to be essentially self-adjoint. So the closure 
ΩK of Ω0 is an unbounded self-adjoint operator on L2(K\G/K).  Then ΩK is 
positive and the spectrum of ΩK is the interval [(ρ, ρ), ∞).  We may therefore 
consider fractional powers Ωs with s ∈ R; these fractional powers are bounded 
operators in case s ≤ 0. 

 

2.6. Von Neumann algebras. We denote B(H) for the bounded operators on a 
Hilbert space H and for B ⊆ B(H) we set B1 = {x ∈ B(H) | ∀b ∈ B : xb = bx} 
for the commutant. For von Neumann algebras we refer to [Tak79] as a standard 
work and for non-commutative Lp-spaces to [Nel74], [PiXu03]. 

Let M be a semi-finite von Neumann algebra with normal semi-finite faithful 
trace τ . By Lp(M, τ ), 1 ≤ p < ∞ we denote the Banach space consisting of all closed 

densely defined operators x affiliated with M such that \x\ := τ (|x|p)1/p < ∞. The 
set M ∩Lp(M, τ ) is dense in Lp(M, τ ); so that alternatively Lp(M, τ ) can be defined 
as the abstract completion of this intersection. We set L∞(M, τ ) = M . 

 
2.7. Group von Neumann algebras. Let G be a locally compact unimodular 
group; in particular any semi-simple Lie group. We let (λG(g)f )(h) = f (g−1h) 
and (λ1 (g)f )(h) = f (hg), g,h ∈ G be the left- and right regular representation 

of G on L2(G). Let L∞(G) = {λG(g) | g ∈ G}11 (double commutant of the 
set) be the left group von Neumann algebra of G. For f ∈ L1(G) set λG(f )  =  

J 
f (g)λG(g)dμG(g) ∈ L∞ (G�). L∞ (G� ) can be equipped with the Plancherel trace 

τG� : L∞ (G�)+ → [0, ∞] given by  
τ �(x∗x) = \f\2, 

G 2 

in case there is f ∈ L2(G) such that xh = f ∗ h for all h ∈ Cc(G). We set 

τG� (x∗x) = ∞ otherwise. Briefly set Lp(G) = Lp(L∞(G), τG� ). Then, by definition, 

λG extends to an isometry L2(G) → L2(G) (Plancherel identity). 
There exists a normal ∗-homomorphism called the comultiplication 

 
∞ ∞ ∞ 

G 
 

that is determined by ΔG� (λG(g)) = λG(g) ⊗ λG(g),g ∈ G. 

 
2.8. Fourier multipliers. Let 1 <  p  < ∞. We call a function m ∈ L∞(G) an 

Lp-Fourier multiplier if there is a bounded map Tm : Lp(G) → Lp(G) that is 

determined by λG(f ) 1→ λG(mf ) for f ∈ Cc(G) ∗ Cc(G). 

 
2.9. Vector-valued L2-spaces. Let (X, μX) be a regular Borel measure space and 
X be a Banach space. We write L2(X; X ) for the Banach space of locally Bochner 

J 2
 1

 
 

 

Remark 2.1. Let ϕ ∈ L2(X, μX). Then the map (ϕ ⊗ id) : L2(X; X ) → X : f 1→ 

X f (x)ϕ(x)dμX(x) is bounded with the same norm as ϕ as easily follows from the 

Cauchy-Schwartz inequality. 

integrable functions f : X →X  such that \f\L2 (X;X ) := 

http://www.ams.org/journal-terms-of-use
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3. Kernel estimates 

In [AnJi99] Anker and Ji showed that the fractional powers of the Casimir oper- 
ator are represented by convolution kernels and they determined their asymptotic 
behavior. Consequently we can easily determine when these kernels are contained 

in Lp(G). These results from [AnJi99] follow from rather deep estimates on the 
Heat kernel associated with the Casimir operator that were conjectured in [Ank87] 
and proved in several special cases before [AnJi99]. We give some precise defini- 
tions borrowing some notation from [AnJi99]; but what really matters for us is 
(3.1). Define the Heat kernel, for g ∈ G, t > 0, 

k (g) = 
CSF 

r

 |c(λ)|−2e−t(l/λl/2+l/ρl/2)ϕ 
 

(g)dλ. 
 

 

Here W is the Weyl group, CSF > 0 a normalisation constant in the spherical 
Fourier transform, c the Harish-Chandra c-function and ϕλ the spherical function 
indexed by λ ∈ a as in [AnJi99]. Then for s  > 0 we set the Bessel-Green-Riesz 
kernel using the Γ-function identity 

κs := Γ(s)−1 
∞ 

ts−1ktdt. 
0 

These kernels are bi-K-invariant, as so is the spherical function ϕλ, and satisfy 

(3.1) e−tΩK f = kt ∗ f, Ω−sf = κs ∗ f f ∈ Cc(K\G/K). 

Theorem 3.1 is essentially proved in [AnJi99]. 

Theorem 3.1. For 0 < 2s < dim(G/K) and 

dim(G/K) 
1 < q < , 

dim(G/K) − 2s 

with moreover q ≤ 2 we have that κs is contained in Lq(K\G/K). 

Proof. By the integral decomposition (2.1) it suffices to show that κa

 := κs ◦ exp |a+ 

is contained in Lq(a+, δ(H)dH). We first consider the behavior of κa

 on B+ := 
s ≥1 

{H ∈ a+ | \H\ ≥ 1}, i.e. away from the origin. By [AnJi99, Theorem 4.2.2] 
combined with [AnJi99, Proposition 2.2.12 or Remark 4.2.3.(i)] for H ∈ B+ , 

|κa(H)| :::\H\s− l+1 −|Σ++|e−l/ρl/l/Hl/−(ρ,H) 
IT

 (1 + (α, H)) . 
s 

α∈Σ++ 

Recall the asymptotic behavior of the Haar measure δ(H)dH from (2.2). It follows 
that there exists a polynomial P in H such that 

(3.2) 
B≥1 

a q e−q(l/ρl/l/Hl/+(ρ,H))+2(ρ,H)P  (\H\)dH. 
+ 
≥1 

As long as q ≤ 2 we have for the exponent of the exponential function in the latter 
expression that 

−q(\ρ\\H\ + (ρ, H))+ 2(ρ, H )≤  (2 − 2q)\ρ\\H\. 

And therefore as long as 1 < q ≤ 2 we have that the integral (3.2) is finite. 
Next we consider the behavior of κa

 on the region B+ := {H ∈ a+ | \H\ ≤ 1} 
s ≤1 

in order to have κa

 ∈ Lq(B+ , μA). By [AnJi99, Remark 4.2.3.(iii)] for H ∈ B+ 

we have 
s ≤1 ≤1 

|κs(exp(H))|≈ \H\2s−dim(G/K), 0 < 2s < dim(G/K). 

a 

B 

λ 

http://www.ams.org/journal-terms-of-use
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It therefore follows, using again the expression of the Haar measure (2.1), that κs 

is in Lq(B≤1, dμa) if and only if 

q(2s − dim(G/K)) + dim(N ) > − dim(A). 

This is equivalent to q <  dim(G/K)  . □ 

Recall that Ω−s with s  > 0 is a bounded operator on L2(K\G/K). Corollary 
3.2 concerns its extension to Lp-spaces of bi-K-invariant functions. 

Corollary 3.2. For every 0 < 2s < dim(G/K) and dim(G/K) < p < ∞ with 

moreover 2 ≤ p, we have 

(3.3) \Ω−s : Lp(K\G/K) → L∞(K\G/K)\ < ∞. 

Proof. By Theorem 3.1 the operator Ω−s is a convolution operator with kernel 
κs ∈ Lq(K\G/K) where 1 + 1 = 1. By Young’s inequality for convolutions, 

p q 

\κs ∗ f\L∞ (G) ≤ \κs\Lq (G)\f\Lp (G), 

for any f ∈ Lp(G). So the corollary follows from Theorem 3.1. □ 

Corollary 3.3 is a special case of Theorem 3.1 in case moreover s < 1 dim(G/K); 
this extra condition is however not needed by Remark 3.4. 

Corollary 3.3. For s > 1 dim(G/K) we have that κs ∈ L2(K\G/K). 

Remark 3.4. Corollary 3.3 does not necessarily require the results from [AnJi99] 
but may also be derived more directly from the asymptotic behavior of the Harish- 
Chandra c-function as obtained in [DKV79, Eqn (3.44)] by showing that the spher- ical Fourier transform of κ , given by κ (λ) = (\ρ\2 + \λ\2)−s,λ ∈ a, is in 

 
2 −2 

s ---s 

 

Remark 3.5. As observed in [Gan68, Proposition 3.1, Eqn. (3.12)] we have that 
the Heat kernel kt is the fundamental solution of the parabolic differential equation 
−ΩKu = ∂t u and as such \kt\L1 (K\G/K) = 1 for t  > 0 [Ito53]; note that [Gan68] 
assumes G is complex but here it is not relevant. Therefore by Young’s inequality 

\kt ∗ f\Lp (G) ≤ \f\Lp (G) f ∈ L (G), 1 ≤ p ≤ ∞,t > 0. 

We already noted that ΩK is a positive (unbounded) operator on L2(K\G/K). In 
particular we are in the setting of [Cow83] and we will apply a result from [Cow83] 
below. 

 
4. Lp-estimates for radial multipliers 

In this section we prove Theorem 4.6 which gives a first estimate for the norm 
of Fourier multipliers in terms of smoothness and regularity of the symbol with 
respect to the Casimir operator. 

We set 

PK = 
K 

λG(k)dμK (k), P 1 = λ1 (k)dμK(k), 
K 

as the orthogonal projection of L2(G) onto L2(K\G) and L2(G/K), respectively. 
We define 

L∞(K-\G/K) := {λG(f ) | f ∈ L1(K\G/K)}11, 

(λ)dλ). 
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If for x ∈ M1 we have that xP 1 = 0 then it follows that 

8926 MARTIJN CASPERS 
 

which is a von Neumann algebra acting on L2(G). As (G, K) forms a Gelfand pair 

L∞(K-\G/K) is commutative. Set further 

EK(x) = PKxPK, x ∈ L∞(G), 

which we view as an operator on L2(G). Note that for f ∈ L1(G) we have 

EK(λG(f )) = λG(f-), where f-(g) = 

r

 
 

f (k1gk2)dk1dk2, 
K 

and hence we see that EK is a normal τG� -preserving conditional expectation of ∞ ∞ - p - p 

L ( G� )  onto L (K\G/K). We denote L (K\G/K) for the L -space constructed 

from L  (K\G/K) with trace τG� . Then L (K\G/K) is a closed subspace of L (G� ) .  

All von Neumann algebras we defined above act on L2(G) whereas the Casmir 
operator acts on L2(K\G/K). Through Lemma 4.1 we show that it naturally acts 
on L2(G) as well. 

Lemma 4.1. The map π : λG(f ) 1→ λG(f )P 1 extends to an isomorphism of von 
Neumann algebras M1 → M2 where 

M1 := L∞(K-\G/K), and M2 = M1P 1 . 

Proof. As P 1 commutes with M1 we have that π is a normal ∗-homomorphism and 
it remains to show that it is injective. Set A+ = exp(a+) and consider 

ϕ : K × A+ × K → G : (k1, a, k2) 1→ k1ak2. 

The complement of the range of ϕ in G has measure 0 [JoLa01, Section xix]; note 

that the map is generally not injective as M (the centralizer of A in K, see Section 
2) is usually non-trivial. Then the pullback map 

U := ϕ∗ : L2(G) → L2(K × A+ × K) ~ L2(K × A+) ⊗ L2(K) 

is isometric by (2.1) if we equip K with its Haar measure and A+ with the pullback 
along exp : a+ → A+ of the measure |K/M|δ(H)dH on a+. Let PU = UU∗ be the 
range projection of U . Set 

P-K = 

r

 

 

λK(k)dμK (k) =  
K 

1 (k)dμK(k), 

which is the projection of L2(K) onto the constant functions. 
We have (1 ⊗ λ1 (k))U = Uλ1 (k) for all k ∈ K. It follows that 

UP 1 = (1 ⊗ P-K )U and so (1 ⊗ P-K )PU = PU (1 ⊗ P-K ). 

Take x ∈ M1. As x commutes with every λ1 (k),k ∈ K we find that 

(4.1) UxU∗ ∈ B(L2(K × A+)) ⊗ L∞ (K�  ). 

0 = UxP 1 = UxU∗UP 1 = UxU∗(1 ⊗ P-K )U. 

But, multiplying with U∗ from the right, this means that 

0 = UxU∗(1 ⊗ PK)PU = UxU∗PU (1 ⊗ PK) = UxU∗(1 ⊗ PK). 

So the range of 1 ⊗ PK given by L2(K × A+) ⊗ C1 is in the kernel of UxU∗ and 
hence, by (4.1), we have UxU∗ = 0. This yields that x = U∗UxU∗U = 0. This 
shows that π is injective. □ 

K 

K 

λ 
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It follows in particular that π in Lemma 4.1 restricts to an isomorphism π1 of 

L∞(K\G/K) onto its image. As this image consists of bi-K-invariant functions 
we see that π1(x) = xPKP 1 for x ∈ L∞(K\G/K).  Thus the restriction map 

πK : x 1→ x|L2 (K\G/K) yields an isomorphism of L∞ (K-\G/K) onto its image. Now 

the Casimir operator ΩK is affiliated with πK (L∞(K-\G/K)); indeed all its finite 
spectral projections are in this von Neumann algebra, see [AnJi99, Eqn. (4.2.1)], 

[Hel00]. There we may see ΩK as an operator affiliated with L∞(K-\G/K) and 
thus acting on L2(G) as well. We note that formally ΩK is equal to the Casimir 
operator restricted to the bi-K-invariant functions. 

The following is now a consequence of Corollary 3.3, the spectral theorem for 
the Casimir operator [AnJi99, Eqn. (4.2.1)] and the Plancherel identity/unitarity 
of the spherical Fourier transform. 

Corollary 4.2. For s > 1 dim(G/K) we have that Ω−s ∈ L2(K-\G/K). 
4 K 

Now for s > 0 consider the following completely positive map, 

- 
(4.2) Ts = (Ω−s ⊗ 1)(EK ⊗ id) ◦ Δ� : L∞ (G� ) → L∞(K\G/K) ⊗ L∞(G�).  

We will need vector valued Lp-spaces in case the measure space is the underlying 

measure space of the commutative von Neumann algebra L∞(K-\G/K). Definition 
4.3 is rather explicit for p = 1 and p = 2 and all our other results will follow from 
complex interpolation between these cases. It agrees with the one in Section 2.9 if 

one identifies L∞(K-\G/K) with L∞(X, μX) for suitable X; in fact one may take 
(X, μX) = (a, c(λ)−2dλ) where c is the Harish-Chandra c-function. 

p 2 2 - p 

Definition 4.3. We define the L (G)-valued L -space L (K\G/K; L (G)) as fol- 
lows. For p = 1, 2 it is the completion of 

∞ - ∞ 1 - 1 

L (K\G/K) ⊗ L  ( G� )  ∩ L (K\G/K) ⊗ L (G� )  

with respect to the respective norms: 

\y\ 2 

(4.3) L2 (K\\G/ K ;L 1  (G�)) 
=τG� (|(id ⊗τG� )(|y|)| ) 2 . 

1 
\y\ =(τ � ⊗ τ �)(y∗y) 2 = \y\ . 

L2 (K\\G/K ;L 2  (G�)) G G L2 (K\\G/K )⊗L2  (G�) 

Further, through complex interpolation we may isometrically identify 

2 - p 2 - 1 2 - 2 

L (K\G/K; L (G)) ~ [L (K\G/K; L (G)),L (K\G/K; L (G))]θ, 

where θ is such that 1 = 1−θ + θ . 
p 2 1 

Typically we want SG in the next lemma to be very close to 1 dim(G/K) to get 
sharp estimates. 

Lemma 4.4. Let SG > 1 dim(G/K). Then, for 1 ≤ p ≤ 2, 

p 2 - p −SG 
(4.4) \TSG : L (G� ) → L (K\G/K; L (G�))\ ≤2\ΩK \ 2 \ < ∞. 

L (K\G/K) 

Proof. That the right hand side of (4.4) is finite follows from Corollary 4.2. We 
prove this for p = 1 and p = 2 so that the lemma follows from complex interpolation. 
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For p = 2 we find for x ∈ L2 (G� ) ∩ L∞ (G� ) by the Kadison-Schwarz inequality, 
 

= (τ � ⊗ τ �)(TS (x)∗TS (x)) 
G G G G 

= (τ � ⊗ τ �)
 

(Ω−SG ⊗ 1)(EK ⊗ id)(Δ �(x))∗(EK ⊗ id)(Δ �(x))(Ω−SG ⊗ 1)
 
 

≤ (τ � ⊗ τ �)
 

(Ω−SG ⊗ 1)(EK ⊗ id)(Δ �(x∗x))(Ω−SG ⊗ 1)
 

. 
 

Then by left invariance of the Plancherel trace τG� on L∞(G) (see [KuVa03, Defini- 
tion 1.1]), 

\TS (x)\2 ≤ τ �(Ω−2SG EK(1))τ �(x∗x) 
G L2(K \G/K;L2 (G� )) G K G 

= τ �(Ω−2SG )τ �(x∗x) 
G K G 

= τ �(Ω−2SG )\x\2 . 

 
This proves the L2-estimate. 

G K L2 (G�) 

For the p = 1 estimate, take x ∈ L1(G) positive so that TS 

(4.3) and using left-invariance of τG� twice, 
(x) is positive. By 

\TSG 
2 
L2(K \G/K;L1 (G�)) 

= τ � 
 

Ω−SG |(EK ⊗ τ �)Δ �(x)|2Ω−SG

 
 

 

(4.5) ≤ τ �
  

Ω−SG EK

  
(id ⊗τ �)(Δ �(x∗))(id ⊗τ �)(Δ �(x))

 
Ω−SG

 
 

= τ �
 

Ω−SG (EK ⊗ τ �)(Δ(x∗))Ω−SG

 
τ �(x) 

= τ �(Ω−2SG )|τ �(x)|2 = τ �(Ω−2SG )\x\2. 
G K G G K 1 

For general (non-positive) self-adjoint x ∈ L1(G) we use the fact that it can be 

written as x = x1 − x2 with xi positive and \x1\1 + \x2\1 = \x\1 to conclude the 

same estimate (4.5). For general x ∈ L1(G) we use the fact that it can be written 

as x = x1 + ix2 with xi self-adjoint and \xi\1 ≤ \x\1 and conclude 
\T (x)\ ≤ 2τ (Ω−2SG 1 

SG L2(K \G/K;L1(G�)) G� K ) 2 \x\1. 

This concludes the proof. □ 

Lemma 4.5. Let s  > 0. For m ∈ L1(K\G/K) ∩ L2(K\G/K) in the domain of 
s such that Ωs (m) ∈ L1(K\G/K) we have 

Ωs λG(m) = λG(Ωs (m)), 
K K 

and in particular for every ξ ∈ L2(G) we have that λG(m)ξ is in the domain of 

Ωs . 

Proof. Take f ∈ Cc(G). As Ωs is affiliated with L∞(K-\G/K) it commutes with 
right convolutions and so we have 

Ωs λG(m)f = Ωs (m ∗ f ) = Ωs (m) ∗ f = λG(Ωs (m))f. 
K K K K 

Now Ωs λ(m) is a closed operator; this follows from the general fact that if d 

is closed and x is bounded then dx with domain {ξ | xξ ∈ Dom(d)} is closed. 
The assumption that Ωs (m) ∈ L1(K\G/K) assures that λG(Ωs (m)) is bounded. 

K K 

(x)\ 

(x)\ 

Ω 

G 
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Further, as we have shown that λG(Ωs (m)) equals Ωs λG(m) on the domain Cc(G) 

K K 
it follows that Ωs λG(m) = λG(Ωs (m)) as operators on L2(G). □ 

K K 

 

Theorem 4.6. Let 1 ≤ p ≤ 2. Let m ∈ L2(K\G/K) ∩ L∞(K\G/K) with m ∈ 
Dom(ΩSG ). Then, for SG > 1 dim(G/K), 

K 4 

\Tm : Lp (G� ) → Lp(G�)\ ≤ 2\ΩSG (m)\L2(G)\Ω−SG \ . 

Proof. Let (Ui)i be shrinking bi-K-invariant neighbourhoods of the identity of G 
such that ∩iUi = K and U−1 = Ui. Let mi = m ∗ Ii where Ii = |Ui|−11U is an 

i i 

L1(G)-normalisation of the indicator function on Ui. As 
 

(4.6) ΩSG (mi) = ΩSG (m ∗ Ii) = ΩSG (m) ∗ Ii, 
K K K 

 

it follows that mi satisfies the same assumptions as made on m in the statement 
of the proposition. Suppose that we have proved the proposition for mi then by 
taking limits in i it also follows for m. Now mi has the additional property that it 
is contained in the Fourier algebra A(G) of G (see Eymard [Eym64]) meaning that 

 
(4.7) ϕmi : λG(f ) 1→   mi(g)f (g)dμG(g), 

G 
 

extends to a normal bounded functional on L∞ (G�). The equation (4.6) similarly 

bounded functional on L∞(G) by replacing mi by ΩSG (mi) in (4.7). We first derive 
a number of properties for our setup that shall be used in the core of our proof. 

(1) Note that as mi is bi-K-invariant, for f ∈ L1(G) we have, using the left and 
right invariance of the Haar measure, 

 
ϕmi (EK(λG(f ))) = 

K 

r

K 

r

G

  
mi(g)f (k1gk2)dμG(g)dμK(k1)dμK(k2) 

 
 

So ϕmi ◦ EK = ϕmi . 

= mi(g)f (g)dμG(g) = ϕmi (λG(f )). 
G 

(2) We have by Lemma 4.5 for f ∈ L1(K\G/K) ∩ L2(K\G/K) in the domain of 
ΩSG such that ΩSG (f ) ∈ L1(K\G/K) that 

K K 

ϕm (ΩSG λG(f )) =ϕm (λG(ΩSG f )) = 

r  

mi(g)(ΩSG f )(g)dμG(g) 

 

= (ΩSG mi)(g)f (g)dμG(g) = ϕ 
G 

Ω
SG (m ) 

(λG(f )). 

 

In particular, λG(f ) 1→ ϕm (ΩSG λG(f )) extends to a normal map on L∞(K-/G\K). 
i K 

(3) As mi ∈ L2(K\G/K) it follows directly from (4.6) that 
 

(4.8) \ϕ
Ω

SG (m )
\ 2 ∗ ≤ \ΩK (mi)\L2 (G). 

K i  L (K\G/K) 
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We now come to the main part of the proof. Now take f ∈ Cc(G)∗2. Then, 
 

Tmi (λG(f )) = mi(g)f (g)λG(g)dμG(g) 
G 

 
(4.9) = (ϕmi ⊗ id) 

(r

 f (g)λG(g) ⊗ λG(g)dμG(g)

î

 

 

= (ϕmi ⊗ id) ◦ ΔG� (λG(f )) 

= (ϕmi ◦ EK ⊗ id) ◦ ΔG� (λG(f )). 

Note that (ΩSG ⊗ 1)(Ω−SG ⊗ 1) equals the unit of L∞(K\G/K), in particular with 
K K 

equality of domains. Therefore we get, and this is the most crucial equality in this 
paper, 

(4.10) 

Tm =(ϕm ⊗ id)
 

(ΩSG ⊗ 1)(Ω−SG ⊗ 1)(EK ⊗ id)Δ �
 
 

=(ϕ S ⊗ id)
 

(Ω−SG ⊗ 1)(EK ⊗ id)Δ �
 

= (ϕ S 

 

 

⊗ id) ◦ TS . 

It follows by this equation, Remark 2.1, (4.8) and Lemma 4.4 that 

\Tmi : Lp (G�) → Lp (G�)\ 
 

 
p 2 - p 

≤ \ϕ
Ω

SG (m )
\ 2 ∗ \TSG : L ( G� )  → L (K\G/K; L (G� ))\ 

 

L (K\G/K) 

The theorem now follows by taking limits in i as justified in the beginning of the 
proof. 

□ 

 
5. Interpolation between Lp and L2 and conclusion of the main 

theorem 

The result in this section should be seen as a complex interpolation result be- 
tween the estimate from Theorem 4.6 and the bound obtained in Corollary 3.2 that 
followed from the analysis by Anker and Ji [AnJi99]. Similar results can be found 
in the literature (see [Tri10], [GrSl19]) but we have not found a theorem that was 
directly applicable and therefore we provide a self-contained proof. We use the fol- 
lowing variation of the three lines lemma which can be found in [Gra14] or [Hir53]. 
We define the usual strip 

S = {z ∈ C | 0 ≤ 8'(z) ≤ 1}. 

Lemma 5.1. Let F : S → C be continuous and analytic on the interior of S. 

Assume that for every 0 ≤ β ≤ 1 there exists a function Aβ : R → R>0 and scalars 
A > 0 and 0 < a < π such that such that for all t ∈ R we have 

F (β + it) ≤ A (t) ≤ eAe
a|t| 

. 

Then for 0 < β < 1 we have |F (β)|≤ eDβ where 

sin(πθ) 
r ∞

 
 

 log(|A0(t)|)   log |A1(t)|  

G 

K 

≤ 2\ΩK (mi)\L2 (G)\ΩK \ . 

Dβ = 
−∞ 
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To apply this lemma it is crucial to realize that 

sin(πθ) 
r ∞

  dt  
 
= 1 − θ, 

sin(πθ) 
r ∞

  dt  
. 

2 −∞ cosh(πt) − cos(πβ) 2 −∞ cosh(πt)+ cos(πβ) 

The following is now the main theorem of this paper. 

Theorem 5.2. Let 1 dim(G/K) < SG < 1 dim(G/K).  Let p ∈ (1, ∞).  Let 
4 

s ∈ (0, SG] be such that 
2 

 

1 1  s  − < . 
1 p 21 2SG 

Then, there exists a constant CG,s,p > 0 only depending on the group G and the 

exponents s and p, such that for every m ∈ L2(K\G/K) ∩ L∞(K\G/K) with 
m ∈ Dom(Ωs ) and Ωs (m) ∈ L2SG/s(G) we have, 

K K 

(5.1) \Tm : Lp (G� ) → Lp(G�)\ ≤ CG,s,p\Ωs (m)\ 2S /s . 

Proof. For completeness we mention that for p = 2 this result is Theorem 4.6 in 
combination with Corollary 3.3; of course for p = 2 the estimate in the theorem is 
very crude as \m\L∞ (G) is the norm of Tm in (5.1). Assume p /= 2. By duality it 

suffices to treat the case p ∈ (1, 2). Take α ∈ (0, 1) such that 

1 1 αs 
− < . 

p 2 2SG 

Set p1 =  2  and s1 = SG. Set p0 = 2. Set 

(5.2) θ := 

( 
1 

− 
1 
î 

2 
< 

 s  
≤ 1. 

 

Hence θ ∈ [0, 1] and further 1 = 1−θ +  θ ; in particular p1 < p < 2. In (5.2) we 
p 2 p1 

have already noted that θSG <  s ≤ SG. Therefore we may pick s0 ∈ (0, s) such 
that 

s = (1 − θ)s0 + θSG = (1 − θ)s0 + θs1. 

Note that 
1 1 

(5.3) s0 < s ≤ SG < 
2 

dim(G/K) and s1 = SG < 
2 

dim(G/K). 

The idea of the rest of the proof is to interpolate between (p0, s0) and (p1, s1) by 
means of Lemma 5.1. 

Step 1: Defining the function F . Recall that s was fixed in the statement of the 
theorem and set, 

 
For z ∈ S  set 

ms = Ωs (m) ∈ L2SG/s(K\G/K). 

Mz = Ω−(1−z)s0−zs1 (ms|ms|
 −s+(1−z)s0+zs1 

s ); 

we need to argue how the application of Ω−(1−z)s0−zs1 is interpreted, and we shall 
do that in Step 1a where we show that it is a bounded operator from Lqβ to L∞ 
(notation below) and at the same time we show that Mz is a function in L∞(G). 
At this point we observe already that 

(5.4) Mθ = Ω−s(ms) = m. 

Let p1, p1 and p1 be the conjugate exponents of respectively p, p0 and p1. Take f1 ∈ 
Cc(G)∗2 and set f = f∗∗f1. Similarly, take g1 ∈ Cc(G) and set g = g∗∗g1∗.. .∗g∗∗g1 

1 1 1 
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i with k ∈ N occurrences of g∗ ∗ g where k ≥ p . Set a = λ (f ),b ∈ λ (g) which 
1 1 i G G 

1 

are positive and contained in L∞(G) ∩ L1(G). Our assumptions moreover imply 

that az ∈ L∞(G) ∩ L2(G) as long as SJ(z) ≥ 1 . Further, bz ∈ L∞(G) ∩ L2(G) as 

long as SJ(z) ≥  1 . So surely all complex powers of a and b in the expression (5.5) 

below are contained in L∞(G) ∩ L2(G). Further, the application of TM 

justified as it is a bounded map on L2 (G�). So we define, 

in (5.5) is 

 

(5.5) F (z) = τG� (TMz (a
(1−z) p0 

+z p1 )b i 
1 ). 

Then F is continuous on S and analytic on the interior of S. We now require 3 
estimates on F . 

 

Step 1a: Estimating F on the strip S. For any z ∈ S  we have, 
p p (1−z) p

i 
+z p

i
 

|F (z)|≤ \Mz\L∞ (G)\a 

Here the terms 

(1−z) p0 
+z p1

 \
L2 (G�)

\b 
0 1 \

L2 (G�)
. 

p p (1−z) p
i 
+z p

i
 

\a(1−z) p0 
+z p1 \ , and \b pi pi 

\ ,
 

L2 (G�) 0 1  L2 (G�) 

are uniformly bounded in z ∈ S. Now write z = β + it, β ∈ [0, 1],t ∈ R. Set 

sβ = (1 − β)s0 + βs1 and then qβ = 2SG/sβ. Set q = 2SG/s. So s = sθ and q = qθ. 

By (5.3) we have sβ < 1 dim(G/K). We estimate, 

−sβ+it(s0−s1) s 
s 

−s+(1−z)s0+zs1 

\Mz\L∞ (G) = \ΩK (ΩK (m)|ΩK (m)| s )\L∞(G) 

 
(5.6) 

≤\Ω−sβ : Lqβ (K\G/K) → L∞(K\G/K)\ 

× \Ωit(s0−s1) : Lqβ (K\G/K) → Lqβ (K\G/K)\ 

s 
sβ 

× \|ΩK(m)| s \Lqβ (K\G/K). 

By Corollary 3.2 and using that qβ = 2SG/sβ > dim(G/K)/2sβ, we have 

(5.7) Cβ := \Ω−sβ : Lqβ (K\G/K) → L∞(K\G/K)\ < ∞. 

By Remark 3.5 the Heat semi-group is a contractive semi-group with positive gen- 
erator and hence falls within the setting of [Cow83]. By [Cow83, Corollary 1] there 
exists a constant C1 > 0 only depending on β such that 

 
it(s0−s1) q q 

 
1 3 2 

 
| 1 − 1 | 

(5.8) \ΩK : L β (K\G/K) → L β (K\G/K)\≤ Cβ (1 + |t| log (|t|)) qβ  2 . 

Finally note that 

sβ 
q 

(5.9) \|Ωs (m)| s \ q = \Ωs (m)\ 
qβ 

. 
K L β (K\G/K) K Lq (K\G/K) 

Combining (5.6) with (5.7), (5.8) and (5.9) yields 
q | 1 − 1 | 

 |F (z)| ≤C C1 (1 + |t|3 log2(|t|)) qβ  2 \Ωs (m)\ 
qβ

 
β  β 

(5.10) 
K Lq (K\G/K) 
i i p p (1−z) p +z p 

× \a(1−z) p0 
+z p1 \ \b pi pi 

\ . 
L2 (G�) 0 1  L2 (G�) 

We see that for any z ∈S  we have |F (z)|≤ eAe
Bt 

for suitable constants A > 0 and 
0 < B < π. 

p 

z 

http://www.ams.org/journal-terms-of-use


Licensed to Technical University of Delft. Prepared on Thu Jan 4 09:20:04 EST 2024 for download from IP 131.180.130.128. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 
 

0 

K 

s1 p pi 

s1 

1  1 1 3 2 

s 

F0(t)+ q0 
log(\ΩK (m)\Lq (G ))+ 2 log(\a\Lp(G�)) + 2 log(\b\Lpi G�)) 

cosh(πt) − cos(πβ) 

i 

| − | 

≤ dt 
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Step 1b: Estimating F on iR. By (5.10) and recalling that p0 = p1 = 2 we have in 
particular that 

 
|F (it)| ≤C 

 

 
 

1 1 q 
C1 (1 + |t|3 log2(|t|)) qβ  2 \Ωs (m)\ 

q0
 

 

 
p pi 

\a\ 2 \b\ 2 . 
β  β K Lq (K\G/K) Lp (G�) Lpi 

(G� )  

 

Step 1c: Estimating F on 1+iR. We apply Theorem 4.6 to the symbol M1+it. This 

is possible as we have ms = Ωs (m) ∈ L2SG/s(K\G/K) and therefore, recalling that 
s1 = SG,  

m |m |
−s−its0+(1+it)s1 

= m |m |−1+ it(s1−s0)+s1 

∈ L2(K\G/K).
 

s s s s s s 

 
So that M = Ω−its0 −(1+it)s1 (m |m |−1+ 

it(s1−s0)+s1 
) lies in L2(K\G/K) as neg- 

1+it K s s s 

ative powers of ΩK are bounded operators. Further in Step 1a we already justified 
that M1+it also lies in L∞(K\G/K). Hence we can apply Theorem 4.6. Together 
with Corollary 4.2 it gives that there exists a constant CG > 0 such that 

p p it p
i 
+(1+it) p

i
 

|F (1 + it)| ≤CG\ΩK (M1+it)\L2(G)\a −itp0 
+(1+it) p1

 \Lp1 (G�)
\b 0

 1 \ pi  � 
 

 
p 

 

=CG\ΩK (M1+it)\L2(G)\a\ 

 
pi 

pi \b\ 1 
i . 

L 1 (G) 

 
Further, recalling that s1 = SG, 

Lp(G�) Lp (G�) 

 
s1 it(s1−s0) s 

 

s −1+ 
it(s1−s0)+s1 

\ΩK (M1+it)\L2 (G) =\ΩK (ΩK (m)|ΩK (m)| s )\L2(G) 

=\|Ωs s1 (m)| s )\ 2 = \Ωs 
SG 

(m)\ s
 = \Ωs 

q 
(m)\ 2 

q . 
K L (G) K 2SG 

L s (G) 
K L (G) 

 

Step 2: Remainder of the proof. We apply Lemma 5.1. The assumptions are met 
by Steps 1a, 1b and 1c. Further we find that 

2 

sin(πβ) 
Dβ

 

r ∞  q s p pi 
 

 
r ∞ q s  p pi 

+ 

 
where 

2 log(\ΩK (m)\Lq (G))+ p1 
log(\a\Lp(G�)) + pi log(\b\Lpi (G� ) ) 

 1  dt 
−∞ cosh(πt)+ cos(πβ) 

F (t) = log(C C )+  1 −  1 log(1 + |t| log (|t|)). 
0 β  β 1 qβ 21 

Recall from (5.4) that Mθ = m. It follows by the remarks after Lemma 5.1 that for 
some constant CG,p,p0 ,p1 > 0 we have 

τG� (Tm(a)b) = |F (θ)|≤ exp(Dθ) ≤ CG,p,p0 ,p1 \ΩK (m)\Lq (G)\a\Lp(G�)\b\Lpi G� ) .  

Since this holds for all possible a and b as defined in the beginning of the proof a 
density argument concludes the proof. □ 

−∞ 

p1 
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6. Examples: multipliers with slow decay 

The aim of this section is to illustrate that Theorem 5.2 provides new examples 
of Fourier multipliers on a wide class of Lie groups. To the knowledge of the author 
the only examples of Lp-multipliers on classes of semi-simple Lie groups come from 
the two papers [PRS22], [CGPT22]. The method of proof [PRS22], [CGPT22] is 

very effective to find bounds of Lp-multipliers for symbols m that are supported on 

some neighbourhood of the identity of G. Then in [PRS22] a patching argument 
[PRS22, Proof of Theorem A] is used to provide bounds of sums of translates of 
such multipliers. Due to this patching argument, or a simple and crude triangle 

inequality, the norms grow with the L1-norm of such a multiplier. Hence these 
multipliers have a local behavior. The method was improved upon in [CGPT22] 
yielding also multipliers without such an integrability property. Here we show that 
for p closer to 2 even less conditions are needed and we get multipliers with an even 
slower decay rate, see Remark 6.4. 

For f : a → [0, 1] a C∞-function that is invariant under the action of the Weyl 
group we define 

(Ψf )(k1 exp(H)k2) = f (H), H ∈ a, k1, k2 ∈ K. 

The Weyl group invariance assures that this function is well-defined. Then Ψf is a 
bi-K-invariant smooth function on G = K exp(a)K. 

Theorem 6.1. Let 1 dim(G/K) < SG < 1 dim(G/K), s ∈ N≥1 ∩ [1, SG] and 
4 2 

p ∈ (1, ∞) with | 1 − 1 | <  s  .  Let Adec > sl/ρl/ and let f : a → [0, 1] be a 
2 p 2SG SG 

C∞-function that is invariant under the Weyl group such that 

(6.1) f (H) = e−Adec l/Hl/, in case H ∈ a, \H \≥  1. 

Then 

(6.2) \TΨf : Lp(G) → Lp(G)\ < ∞. 

Proof. By [Hel00, Proposition II.3.9] there exists a second order Weyl group invari- 
ant linear diffential operator D acting on C∞(a) such that ΩK(Ψf ) = Ψ(Df ) and 
therefore Ωs (Ψf ) = Ψ(Dsf ). We emphasize that D contains differential operators 
of lower order as well. Then, by the explicit form of f in (6.1) we have for H ∈ a 

with \H\ > 1 that |(Dsf )(H)|≤ Dse−Adec l/Hl/ for some constant Ds > 0. It follows 
that, 

\Ωs (Ψf )\ 2S /s = \Ψ(Dsf )\ 2S /s 
K L  G (G) L G  (G) 

(6.3)  
≤ Ds|K/M| 

(r

a+

 
 

e−l/Hl/Adec2SG/sδ(H)dH 
s 

 

2SG 

. 

As by (2.2) we have δ(H) ≤ e−2l/Hl/l/ρl/ we see that this integral is finite by our 
choice of Adec. We now apply Theorem 5.2. We cannot do this directly as Ψf is 
not in L2(G) but we can use an approximation. Let BR := {H ∈ a | \H\ < R} 
where R > 1 and let 1BR be the indicator function on BR. Set fR = f 1R. Let ϕi : 

G → [0, ∞),i ∈ I be a net of symmetric bi-K-invariant C∞-functions with compact 
supports shrinking to K and normalized by \ϕi\L1 (G) = 1. Set fR,i = (ΨfR) ∗ ϕi. 

Then fR,i ∈ L2(G) as fR,i has compact support and further fR,i → Ψf uniformly as 
R →∞  and taking the limit in i ∈ I. Further, as ΩK is a left-invariant differential 
operator we have Ωs (fR,i) = (ΨfR)∗Ωs (ϕi) and so certainly fR,i ∈ Dom(Ωs ) and 

K K K 

î 
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R,i 

s 

s s 

= \(Ω (Ψf ) ∗ ϕ )1 \ + \((Ψf )1V 
s 

V 

V 

p 
V 

2n 

n 

    

4 

(n − k)2 − 
k=1 r 
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Ωs (fR,i) ∈ L2SG/s(G) as Ωs (fR,i) has compact support. It follows from Theorem 

K K 

5.2 that there is a constant CG,s,p > 0 such that 

\TΨf : Lp (G� )  → Lp (G� )\ ≤ lim sup lim sup \Tf 

 
 
 
 

R,i : Lp (G�) → Lp (G�)\ 
(6.4) i∈I R→∞ 

≤CG,s,p lim sup lim sup \Ωs (fR,i)\ 2S /s . 

i∈I 
K 

R→∞ 
L G  (G) 

We show that for each individual i ∈ I the limsup over R → ∞ of the latter 
expression is bounded by \Ωs (Ψf )\ 2S /s . Indeed, let Ui be the symmetric 

K L  G  (G) 

compact support of ϕi which is left and right K-invariant. The support of Ωs(ϕi) 
is then still contained in Ui. Let SR = {H ∈ a | \H\ = R} and set VR,i := 
K exp(SR)KUi = K exp(SR)Ui ⊆ G. Also set V + = VR,iUi. We have that, 

\Ω (ΨfR ∗ ϕi)\Lp (G) 

≤ \Ω (ΨfR ∗ ϕi)1G\VR,i 
\Lp (G) + \Ω (ΨfR ∗ ϕi)1VR,i \Lp (G) 

s 
i  G\VR,i Lp (G) R + 

R,i 
s 

∗ Ω (ϕi))1VR,i \Lp(G) 

s 

≤ \Ω (Ψf )\Lp(G)\ϕi\L1 (G) + \(ΨfR)1 + \Lp (G)\Ω (ϕi)\L1 (G) 
R,i 

s s 

≤ \Ω (Ψf )\Lp(G) + \(Ψf )1 + \Lp (G)\Ω (ϕi)\L1 (G). 
R,i 

Note that Ψf is in L (G) and therefore it follows that limR→∞ \(Ψf )1 + \Lp(G) = 
R,i 

0 and so 
s s 

lim sup \Ω (ΨfR ∗ ϕi)\Lp(G) ≤ \Ω (Ψf )\Lp(G). 
R→∞ 

It follows that (6.4) is finite. □ 

Remark 6.2. In Theorem 6.1 the closer p is to 2, the smaller we may take s ∈ 
N≥1 ∩ [1, SG] and the slower the decay rate Adec of the symbol m := Ψf becomes. 

Remark 6.3. Suppose that G = SL(n, R) so that K = SO(n, R) and A consists of 
diagonal matrices with trace 1. Then a are the diagonal matrices with trace 0. We 
have that 

dim(G/K) =  
1 

n(n + 1) − 1. 
2 

And we recall that we typically chose SG = 1 dim(G/K)+ ε for some ε > 0 small. 
4 

The Killing form is given by (X, Y ) = 2n Tr(XY ) and ρ = 1≤i<j≤n αi,j where 
α i,j(H) = Hi − Hj for H = Diag(H1,..., Hn) ∈ a the diagonal trace 0 matrix 
with diagonal entries Hi ∈ R. Then αi,j ∈ a∗ is identified with 1 (Eii − Ejj) ∈ a 
through the Killing form. Therefore, 

\ρ\2 = (ρ, ρ) 

1 
Ã
Xn X 

!
  

 

1 n 
≈ (n − x)(n − 2x + 1)dx 

n  0 

1 
= n(n + 3). 

6 
Therefore, for n large enough 

\ρ\2 
 

 

dim(G/K)2 

 
1 n(n + 3) 

≈  6  ≈ 
1 n2(n + 1)2 

 
2 

3n2 
.
 

n = (n − k)(k − 1) 
k=1 
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Therefore, take 1 dim(G/K) < SG < 1 dim(G/K), s ∈ N≥1 ∩ [1, SG] and 
 

Adec 

4 

s\ρ\ 
> 

SG 

 
 

≈ 4 
2 s

 
3 n 

2 

 

for n large and SG & 
1 

dim(G/K)  . 
4 

We have that for f : a → C smooth with 

f (H) = e−Adec l/Hl/, in case \H\≥ 1, 

that Ψf is the symbol of an Lp-Fourier multiplier for | 1 − 1 | <  s  . 
2 p 2SG 

Remark 6.4. Let us argue that the multipliers we have constructed here for p close 
to 2 are new compared to what is known from the results in [PRS22] and [CGPT22]. 
Remark [PRS22, Remark 3.8] excludes the symbol m = Ψf we have constructed 
from the class of multipliers obtained in [PRS22, Theorem A] as [PRS22, Re- 
mark 3.8] implies that the symbols are integrable. Our symbols are not neces- 
sarily integrable as can easily be seen from (2.1). The multipliers we construct 
here are also out of reach of the theorem [CGPT22, Theorem A2]. Indeed, as- 
sume G = SL(n, R),n ≥ 3; if n = 2 [CGPT22, Theorem A2] is not applica- 
ble in the first place as the discussion following that theorem shows. Then for 
H = Diag(H , . . .  ,H ) ∈ a set \H\ = max |H | and \H\ = Tr(H2) 

1 

= 
1 n ∞ 1≤i≤n i 2 2 

(2n)− 
1 

\H\. We have (see [CGPT22] for the adjoint representation and its norm), 

\Ad \≥  exp(\H\ ) ≥ exp(n− 
1 

\H\ ) ≥ exp(2−1/2n−1\H\). 
exp(H) ∞ 2 2 

So that [CGPT22, Equation following Theorem A2] yields that 

|(Ψf )(exp(H))| ::: \Adexp(H)\−dG  ≤ exp(−2−1/2dGn−1\H\), 

where dG = ln2/4J (see [CJKM22, Example 3.14], [Mau07]). So as dG increases as n 

increases we see that the decay of these multipliers is faster than in our examples. Of 
course [CGPT22] considers symbols that are multipliers in the full range p ∈ (1, ∞) 
whereas our methods yield the sharper estimates only when p approximates 2. 
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