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Aeroelastic Model for Design of Composite Propellers

Carlo Rotundo ∗, Tomas Sinnige †, and Jurĳ Sodja ‡

Delft University of Technology, Delft, South Holland, 2629 HS, Netherlands.

A tightly coupled aeroelastic design code for composite propeller blades was developed, verified, and used to perform
design sensitivity studies. The design code features a structural model that accounts for geometric nonlinearities through
the application of a corotational framework, nonlinear responses to loads, and a cross-sectional modelling approach to
accurately represent the detailed 3D blade structure as a reduced-order Timoshenko beam element model. Blade element
momentum (BEM) theory was used to evaluate aerodynamic loads, which are mapped onto the structural mesh. The
nonlinear aeroelastic analysis routine uses Newton’s method to converge on a solution, with analytical derivatives for all
applied loads. Excellent agreement with other analysis methods was shown during verification studies for all developed models.
During validation, performance trends obtained from BEM were consistent with experimental results, with a maximum
error of 20% at operating conditions under consideration during this research. The use of either symmetric-unbalanced
or symmetric-balanced laminates was considered during sensitivity studies. Small variations in performance compared to
the rigid propeller were observed from blades constructed out of symmetric-balanced laminates, as the minimal amount
of bend-twist and extension-shear coupling resulted in small twist deformations. Conversely, propellers constructed out
of symmetric-unbalanced laminates were shown to yield a noticeable variation in thrust and power compared to the rigid
propeller due to the presence of bend-twist and extension-shear coupling, which results in coupling between twist and blade
axis deformations. The presence of an aerodynamic wash-out effect was also found to alleviate blade loads, resulting in a
lower power requirement at a given thrust setting, and an opposite trend was observed in the presence of a wash-in effect. The
proposed analysis framework may be applied towards more extensive design studies or optimization in future projects.

Nomenclature

𝐶𝑃 = Power coefficient; 𝐶𝑃 = 𝑃/(𝜌∞𝑛3𝐷5) 𝑇𝐶 = Thrust coefficient; 𝑇𝐶 = 𝐶𝑇 𝐽
−2

𝐶𝑄 = Torque coefficient; 𝐶𝑄 = 𝑄/(𝜌∞𝑛2𝐷5) 𝑉eff = Resultant flow velocity at the blade section
𝐶𝑇 = Thrust coefficient; 𝐶𝑇 = 𝑇/(𝜌∞𝑛2𝐷4) 𝑉∞ = Resultant freestream flow velocity
𝐶𝑑 = Sectional drag coefficient 𝑎 = Axial induction factor
𝐶𝑙 = Sectional lift coefficient 𝑎′ = Azimuthal induction factor
𝐶𝑚 = Sectional moment coefficient 𝑐 = Chord length
𝐶𝑞 = Sectional torque coefficient

¯
𝑓a = Aerodynamic load vector

𝐶𝑡 = Sectional thrust coefficient
¯
𝑓c = Centrifugal force vector

𝐶𝑥 = Sectional tangential force coefficient
¯
𝑓e = Vector of externally applied loads

𝐶𝑧 = Sectional axial force coefficient
¯
𝑓s = Internal structural load vector

𝐷 = Propeller diameter 𝑛 = Rotation rate of propeller (rev. / s)
𝐽 = Advance Ratio

¯
𝑝 = Structural degree of freedom deformations

𝐾a𝐾a𝐾a = Aerodynamic stiffness matrix 𝑞∞ = Dynamic pressure at propeller disk
𝐾c𝐾c𝐾c = Centrifugal stiffness matrix 𝑟 = Blade radial position
𝐾e𝐾e𝐾e = Stiffness matrix for eccentric loads

¯
𝑟 = Blade radial position in vector form

𝐾s𝐾s𝐾s = Structural stiffness matrix Δ𝑆 = Surface area of blade section
𝑀𝑀𝑀 = Mass matrix of beam element

¯
Ω = Vector form of rotation speed (rev. / s)

𝑃 = Consumed Power Θ = Ply orientation for sensitivity studies
𝑃𝐶 = Power coefficient; 𝑃𝐶 = 𝐶𝑃 𝐽

−3 𝛼 = Angle of attack of blade section
𝑄 = Propeller Torque 𝛽 = Twist angle of blade section
𝑄𝐶 = Torque coefficient; 𝑄𝐶 = 𝐶𝑄 𝐽−2 𝜂e.h = Energy-harvesting efficiency; 𝜂e.h = −8𝑃𝐶/𝜋

¯
𝑅 = Residual vector of aeroelastic system 𝜂P = Propeller efficiency; 𝜂P = 𝑇𝐶/𝑃𝐶 = 𝐽𝐶𝑇/𝐶𝑃

S∗ = Ply stacking sequence set (design study) 𝜂T = Turbine efficiency; 𝜂T = 𝑃𝐶/𝑇𝐶 = 𝐶𝑃/(𝐽𝐶𝑇 )
Sv = Ply stacking sequence set (verification) 𝜑 = Incoming flow angle at the propeller disk
𝑇 = Propeller Thrust 𝜌∞ = Freestream air density

∗MS Student, Faculty of Aerospace Engineering, Flight Performance and Propulsion, Kluyverweg 1, 2629 HS Delft, Member AIAA.
†Assistant Professor, Faculty of Aerospace Engineering, Flight Performance and Propulsion, Kluyverweg 1, 2629 HS Delft, Member AIAA.
‡Assistant Professor, Faculty of Aerospace Engineering, Aerospace Structures and Materials, Kluyverweg 1, 2629 HS Delft, Member AIAA.
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I. Introduction

Recent interest in the development of hybrid- or fully electric propulsion systems has resulted from the imperative
to mitigate greenhouse gas emissions within the rapidly expanding aerospace industry. This focus on electrified

propulsion systems has prompted a resurgence in research towards the application of propeller-based propulsion systems.
Furthermore, with batteries being used for energy storage and electric motors for supplying power, the electrification of
aircraft enables the possibility for energy to be recovered during phases of flight where no power input is required.

Novel propeller design strategies are being explored to meet the growing demands for decreases in energy consumption
and noise emissions of propeller-driven aircraft. One design approach that has been of interest recently is the application
of aeroelastic tailoring towards the improvement of performance. Indeed, it has been shown by Dwyer and Rogers
[1], Yamamoto and August [2], Khan [3, 4], Sandak and Rosen [5], Sodja et al. [6], and Möhren et al. [7], among
others, that structural deformations of a propeller blade can noticeably affect aerodynamic performance at both on- and
off-design conditions. In particular, coupling between bending and twisting deformations has been used to improve
propeller performance through geometry modification in [5, 6] and through structural modifications in [3, 8, 9]. This
effect can cause the propeller performance to either improve or deteriorate, depending on the operating conditions
and the blade structural or geometric design. Moreover, Sandak and Rosen [5] and Sodja et al. [6] were successful in
using bend-twist coupling to improve propeller performance at off-design conditions, as they showed that a blade with
backward sweep and lean will deform favourably under load to broaden the range of advance ratio values corresponding
to high-efficiency operation. Additionally, it was shown by Khan [3] that the introduction of bend-twist coupling can be
used to satisfy several design objectives, such as to increase the thrust coefficient with constraints on deformations, or to
increase efficiency with constraints on the thrust coefficient. These results indicate that the performance of a flexible
propeller is sensitive to the presence of structural coupling, which may be exploited for improving performance. Thus, a
composite propeller design and analysis framework has been developed during this research, to enable the inclusion of
blade flexibility during the assessment of propeller performance. Computational efficiency and robustness have been
prioritized during the development of this framework so that it may be used during optimization.

Static aeroelastic analysis procedures for flexible propellers have previously been developed or applied by other
researchers, including Möhren et al. [7] and Gur and Rosen [10]. At the Delft University of Technology, an aeroelastic
analysis framework, PROTEUS, was developed by Werter and De Breuker [11] and applied towards the conceptual
design of aircraft wings in [12, 13] and wind turbine blades in [9, 14]. The structural model of PROTEUS is similar to
the method applied in [7], as both models apply the finite-element method to solve deformations on a reduced-order
Timoshenko finite element model, obtained from the 3D blade structure using a cross-sectional modeller. In PROTEUS,
the cross-sectional modeller was developed by Ferede and Abdalla [15] and was shown to perform similarly to VABS
(Variable Asymptotic Beam Section analysis), which is a commercial cross-sectional modelling program that was
developed by Hodges [16]. During this research, the original version of PROTEUS (intended for the analysis of aircraft
wings) has been modified to be applicable to propellers by implementing changes to the aerodynamic, structural,
and aeroelastic models. The result of this work is an analysis routine with a medium-fidelity structural model and a
low-fidelity aerodynamic model that may also be used during the optimization of composite dual-role propellers.

Another way of decreasing the overall energy consumption of propeller-driven aircraft is through the use of the
propeller to generate energy during phases of flight where positive thrust is not required. In these cases, the propeller
operates in its so-called energy-harvesting mode. Sinnige et al. [17] have shown that a propeller that is designed
exclusively for propulsive operation will have a maximum energy harvesting efficiency of approximately 10% [17].
Conversely, Erzen et al. [18] saw a 19% decrease in energy consumption during the ascend/descend flight pattern
and a 27% increase in the number of traffic pattern circuits performed with a dual-role propeller in comparison to a
conventional propeller design when used during flight patterns that are conducive to regeneration during descent [18].
These results indicate that considering both positive-thrust and energy-harvesting mode during the design of propellers
has the potential to yield at least a small decrease in energy consumption due to potential energy balance improvements
that may be attained in descending flight, although poor performance during energy-harvesting mode should be expected.

Propellers that are designed for both positive-thrust and energy-harvesting conditions are called dual-role propellers,
and may exhibit a compromise in performance between the two operating regimes because they are fundamentally
opposite. Indeed, the design and operation of dual-role propellers involves considering two opposing load cases as shown
in Fig. 1: positive thrust and torque during propulsive operation, and negative thrust and torque in energy-harvesting
mode. This suggests that a propeller that is designed exclusively for propulsive operation will perform poorly in
energy-harvesting conditions. Moreover, Sinnige et al. [17] have shown that a conventional propeller will exhibit a blade
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loading distribution during energy-harvesting mode that does not resemble that of a typical minimum-induced-loss
blade design. Several authors have shown that the decline in performance during energy-harvesting mode is largely due
to the flow separation and associated viscous losses at the negative angles of attack at which the blade sections operate
in this condition [19–21]. The application of aeroelastic tailoring towards the design of dual-role propellers may enable
an improvement in performance at the two opposing operating conditions.

(a) propulsive mode. (b) Energy-harvesting mode.

Fig. 1 Velocity triangles for a propeller operating in propulsive and energy-harvesting modes [17].

This research builds upon the work of Sodja et al. [6, 22], Khan et al. [3, 4], and Möhren et al. [7] through the
introduction of a computationally efficient flexible composite propeller design framework, featuring a closely coupled
aeroelastic analysis that is capable of accurately assessing performance during positive-thrust and energy-harvesting
conditions. The analysis framework that was developed is capable of assessing the impact on performance of composite
propeller blades constructed out of symmetric laminates. After completing the development and verification/validation
of the aeroelastic analysis routine, sensitivity studies were performed both to demonstrate its capabilities and to
provide preliminary structural design trends for propeller blades that are constructed out of symmetric-unbalanced or
symmetric-balanced laminates. Lastly, due to its low computational cost, combined with its ability to evaluate any
arbitrary blade geometric or structural design, the static aeroelastic design framework that was developed will be used in
future projects towards optimization or more comprehensive design studies for composite propeller blades.

This paper is organized as follows: First, a summary of the propeller aeroelastic model that was developed is provided
in Section II. Next, verification and validation of the developed models are provided in Section III. The proposed
aeroelastic analysis routine was then used to perform design sensitivity studies, and the result of this investigation is
presented in Section IV. A discussion on the main conclusions from this paper is then presented in Section V.

II. Propeller Analysis Overview
A schematic diagram of the analysis procedure that was developed is provided in Fig. 2, starting from the definition

of inputs and ending at the post-processing of results. In the first step, the blade geometry and structural design data
are read by the program. The geometry input is defined by spanwise airfoil coordinates, chord lengths, twist angles,
leading edge locations, reference axis locations, and composite skin configurations. For each spanwise laminate of
the structural design, eight lamination parameters and a constant thickness are defined. With the provided lamination
parameters and thicknesses, the program calculates the structural properties of each laminate over the span of the blade.
The analysis program then interpolates the geometric and structural information to spanwise locations defining the
nodes of the structural mesh. Lastly, airfoil polar plots are generated, and aerodynamic coefficients are interpolated
over the span of the blade before the analysis begins. After processing all the inputs and storing information on the
operating conditions to be studied, the interpolated laminate properties and cross-sectional geometry are processed by
the cross-sectional modeller to represent the structure as an equivalent finite element beam model. The static aeroelastic
analysis is then performed, which couples a geometrically nonlinear Timoshenko beam model expressed using the
co-rotational formulation to a BEM aerodynamic model. the results are post-processed after completing the analysis.
For example, the cross-sectional modeller is used again to recover strains over the 3D geometry and performance trends
are evaluated, as required during optimization to evaluate objectives and constraints. The structural, aerodynamic, and
aeroelastic models are respectively discussed in more detail in Sections II.A, II.B, and II.C.
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Post-processing step: normalize
all design variables, objectives,
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Proceed with optimization:
Update the design variables and
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Preprocessing step: convert
normalized design variables to
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Analysis
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Cross-sectional
modeller
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Input

Blade properties and
load case details

Post-processing

Strength and
deformations

Performance

Is convergence met?

Timoshenko
cross-sectional
stiffness matrix

A, B, D
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response

Static structural
response and
blade loads

Timoshenko
cross-sectional
stiffness matrix

A, B, D
matrices
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and load cases
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geometry

Material data
and lamination
parameters

NOYES

Powered By�Visual Paradigm Community Edition

Fig. 2 A schematic representation of the static aeroelastic analysis routine.

A. Structural Model
The structural model that was used during this research is explained in detail by Werter [12], only the key aspects of

this model are summarized in this section for brevity. The PROTEUS finite element model was extended to perform the
structural analysis of composite propeller blades; this model receives inputs corresponding to the blade structural design
(geometry, materials, laminate details) and outputs deformations, stresses, and strains. The properties of each laminate
of the propeller blade are expressed in terms of lamination parameters, which are used to provide their corresponding
{𝐴𝐴𝐴, 𝐵𝐵𝐵,𝐷𝐷𝐷} matrices according to classical laminated plate theory [23]. The cross-sectional modelling approach of
Ferede [8] was used to calculate mass and stiffness matrices for the Timoshenko beam elements, as defined within the
corotational framework that was formulated by Battini and Pacoste [24] and implemented by de Breuker [25] to account
for geometric nonlinearities of the structure. The advantage of this approach is that it enables the blade structure to be
equivalently represented using a significantly reduced number of degrees of freedom in comparison to the 3D model.

To enable the structural analysis to be suitable for propellers, the calculation of centrifugal forces and their derivatives
must be added because the original implementation of PROTEUS was developed for aircraft wings. Centrifugal forces
may be calculated using either the consistent or lumped mass matrix of each element, as shown in Eq. (1) and Eq. (2) The
consistent mass matrix is used in cases that are not limited by computational cost, where greater precision is required,
such as for individual analyses. The lumped mass matrix is used instead for cases that are limited by computational cost,
where the decreased computational cost resulting from its use compensates for any losses in precision, such as during
optimization. The derivative of centrifugal forces with respect to structural deformations, computed using Eq. (2), is
required to solve the aeroelastic system of equations shown in Eq. (5):

¯
𝑓c = −𝑀𝑀𝑀 ·

[
¯
Ω ×

[
¯
Ω ×

(
¯
𝑟 +

¯
𝑝

)] ]
= −𝑀𝑀𝑀 ·ΩΩΩ ·ΩΩΩ ·

(
¯
𝑟 +

¯
𝑝

)
(1)

𝜕
¯
𝑓c

𝜕
¯
𝑝

= −𝑀𝑀𝑀 ·ΩΩΩ ·ΩΩΩ = 𝐾c𝐾c𝐾c (2)

where 𝑀𝑀𝑀 is either the consistent or lumped mass matrix, and ΩΩΩ is the skew-symmetric form of
¯
Ω.

B. Aerodynamic Model
The aerodynamic design and optimization of propellers has been under investigation for over a century, and a

detailed history concerning the development of aerodynamic models for propellers has been provided by Wald [26]. It
has been observed by Gur and Rosen [27] that blade element momentum (BEM) theory provides the best compromise
between computational cost and precision in comparison to other aerodynamic modelling methods. For this reason,
most aerodynamic analysis tools that are applied towards the conceptual design of propeller blades rely on BEM theory
[26, 28]. The most notable open-source programs include CCBlade from Ning [29], QPROP and XROTOR from Drela
[30], JavaProp from Hepperle [31], and JBLADE from Morgado [32–34]. In most cases, a variation of the theory of
Adkins and Liebeck [35] is applied. A BEM code has accordingly been developed and applied during this project.
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The advantage of using BEM to evaluate propeller aerodynamics is that it has a very low computational cost, whilst
also being capable of accounting for all aerodynamic phenomena of interest to this study (i.e. root and tip losses, the
stall-delay effect, and the turbulent wake state) when appropriate corrections are applied. With blade element momentum
theory, the propeller blade aerodynamic loads are evaluated iteratively using both momentum theory and blade element
theory, correcting the axial and tangential induced velocities until the loads evaluated with momentum theory are equal
to the loads obtained from blade element theory. Thus, the 3D characteristic of the propeller flowfield is decomposed
into a 1D conservation of momentum and 2D sectional aerodynamics. The BEM model that was developed is based on
the theory of Adkins and Liebeck [35]. During analysis and optimization, propeller performance is evaluated using
thrust (𝐶𝑇 and 𝑇𝐶 ), torque (𝐶𝑄 and 𝑄𝐶 ), and power (𝐶𝑃 and 𝑃𝐶 ) coefficients as well as efficiencies (𝜂P, 𝜂T, and 𝜂e.h).
The so-called energy harvesting efficiency, 𝜂e.h, is defined by Sinnige et al. [17] as the ratio between the power recovered
by the propeller and the power available in the flow, and has a maximum theoretical value of 59.3% [36]. This metric
is also used to assess the performance of wind turbines. In the context of wind turbine performance analyses, 𝜂e.h is
typically referred to as the power coefficient, 𝑃𝐶 . Engineering correction models have been applied as follows:

• Root and tip losses have been corrected for using the well-known Prandtl tip loss factor [37]
• The rotational velocity of the propeller blade results in Coriolis and centrifugal forces that act on fluid particles in

the boundary layer to delay the onset of separation to even higher angles of attack [38]. This has been accounted
for using a modified version of XFOIL called RFOIL, which is documented by Bosschers et al. [39].

• At large negative axial induction factors (given by 𝑎 < −0.5), axial momentum theory will return a negative
velocity downstream of the propeller. This flow reversal is non-physical, as the actual flow entrains momentum
from outside the wake [29]. The expression that was proposed by Burton et al. [40] is used to correct this. These
conditions are unlikely to be encountered due to the low negative thrust settings that characterize energy-harvesting
conditions, although this correction was applied to improve robustness of the proposed analysis method.

C. Aeroelastic Model
The primary objective of the aeroelastic analysis and optimization framework is to improve the conceptual design of

composite propeller blades by including aeroelastic effects when evaluating performance. The resulting aeroelastic
analysis is nonlinear, as nonlinear aerodynamic forces are permitted, and the structural model is capable of representing
geometrical nonlinearities in addition to nonlinear structural responses to loads (such as the centrifugal stiffening effect).
A schematic process-flow diagram of the nonlinear aeroelastic analysis procedure is shown in Fig. 3.

Compile model inputs

Store deformations, deformed
geometry, loads, and sensitivities

Assemble global stiffness matrix and
calculate internal loads

Calculate scaled aerodynamic and centrifugal
loads, as well as their sensitivities

Construct the residual
vector and Jacobian matrix

Calculate deformations

Increase scale factor or set equal to 1

Activity

Are residuals
below tolerance?

Is the scale
factor equal to 1?NO

NO

YES

YES

Powered By�Visual Paradigm Community Edition

Fig. 3 A process-flow diagram indicating the nonlinear aeroelastic analysis procedure.

During the aeroelastic analysis, aerodynamic forces and moments are evaluated at the quarter-chord of each blade
element. These loads are passed to the structural model, which projects the loads evaluated at each blade element
onto the structural mesh. The aeroelastic analysis couples the aerodynamic and structural models using analytically
calculated derivatives of each load vector in terms of the structural degrees of freedom. In this way, a tightly coupled
aeroelastic model is established, which minimizes the residual function shown in Eq. (3). When the internal forces
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are equal to the external forces, the residual function is exactly zero and energy is conserved at the fluid-structure
interface. PROTEUS can also model constant external forces at eccentric nodes that are rigidly attached to the blade
structure (denoted by

¯
𝑓e). The eccentric forces either maintain a constant orientation or follow the blade’s deformations.

Externally applied eccentric forces were only required in Section III.A,
¯
𝑓e = ¯

0 for analyses shown in all other sections.

¯
𝑅

(
¯
𝑝

)
=

[
¯
𝑓s

(
¯
𝑝

)]
︸   ︷︷   ︸

internal

−
[
¯
𝑓a

(
¯
𝑝

)
+

¯
𝑓c

(
¯
𝑝

)
+

¯
𝑓e

(
¯
𝑝

)]
︸                            ︷︷                            ︸

external

(3)

The external and internal forces encountered by the structure are purely dependent on structural deformations, as
operating conditions and initial geometric parameters are otherwise fixed during the analysis. Eq. (3) is nonlinear, and a
Newton-Raphson root finding algorithm is used to calculate deformations that minimize R in this work, as shown in
Eq. (4) for the 𝑖th iteration. In this way, the aeroelastic system of equations is provided in Eq. (5), where the derivative of
each load vector is computed using analytical expressions.

¯
𝑅

(
¯
𝑝𝑖+1

)
≈

¯
𝑅

(
¯
𝑝𝑖

)
+

[
𝜕

¯
𝑅

𝜕
¯
𝑝

(
¯
𝑝𝑖

)]
·
(
¯
𝑝𝑖+1 −

¯
𝑝𝑖

)
:= 0 (4)

=⇒ −
¯
𝑅

(
¯
𝑝𝑖

)
=

[
𝜕

¯
𝑓s

𝜕
¯
𝑝
−
𝜕

¯
𝑓a

𝜕
¯
𝑝
−
𝜕

¯
𝑓c

𝜕
¯
𝑝
−
𝜕

¯
𝑓e

𝜕
¯
𝑝

] �����
¯
𝑝𝑖

(
¯
𝑝𝑖+1 −

¯
𝑝𝑖

)
= [𝐾s𝐾s𝐾s −𝐾a𝐾a𝐾a −𝐾c𝐾c𝐾c −𝐾e𝐾e𝐾e]

(
¯
𝑝𝑖+1 −

¯
𝑝𝑖

)
(5)

To stabilize the numerical solution process, a scale factor, 𝜆s, is applied as shown in Eq. (6) and gradually increased
from zero to one. The nonlinear analysis proceeds as follows. First, the scale factor is initialized between zero and one,
the residual function is then minimized for the system with scaled loads. After convergence is reached, the scale factor
is increased and the residual function is minimized again. This process is repeated until convergence is reached with a
scale factor that has a value of one, thus being equivalent to Eq. (5). Values for the scale factor and its step size were
determined heuristically. Fast convergence was observed with an initial 𝜆s value of 0.5 and a step size of 0.5.(

¯
𝑓a

(
¯
𝑝𝑖

)
+

¯
𝑓c

(
¯
𝑝𝑖

))
𝜆s −

¯
𝑓s

(
¯
𝑝𝑖

)
=

[
𝜕

¯
𝑓s

𝜕
¯
𝑝
−

(
𝜕

¯
𝑓a

𝜕
¯
𝑝
+
𝜕

¯
𝑓c

𝜕
¯
𝑝

)
𝜆s

] �����
¯
𝑝𝑖

(
¯
𝑝𝑖+1 −

¯
𝑝𝑖

)
(6)

As required to solve Eq. (5) and Eq. (6), derivatives of the aerodynamic loads were computed analytically according
to Eq. (7). For the derivative calculation only, it has been assumed that static aerodynamic loads are only sensitive
to twist deformations because deformations in the remaining five structural degrees of freedom yield relatively small
changes in aerodynamic loads and the BEM model is insensitive to changes in sweep and lean. The full expression for
the derivative of aerodynamic forces and moments with respect to twist deformations is shown in Eq. (8). The method
that was applied to map derivatives from aerodynamic grid points to structural grid points is outlined in Appendix A.(

𝑑

𝑑
¯
𝑝a

[
¯
𝑓a

¯
𝑚̃a

])
=

¯
0

¯
0

¯
0

¯
0 𝑑

𝑑𝛽 ¯
𝑓a ¯

0

¯
0

¯
0

¯
0

¯
0 𝑑

𝑑𝛽 ¯
𝑚̃a ¯

0

 (7)


𝑑 ˜

¯
𝑓

a
𝑑𝛽

𝑑 ˜
¯
𝑚a
𝑑𝛽

 = 𝑞∞ Δ𝑆

( [
𝐶𝑥 0 𝐶𝑧 0 𝐶𝑚𝑐 0

]𝑇 (
2𝑉eff

𝑉2
∞

) (
𝑑𝑉eff

𝑑𝛽

)
+

[
𝐶𝑥𝛼 0 𝐶𝑧𝛼 0 𝐶𝑚𝛼

𝑐 0
]𝑇 (

𝑑𝛼

𝑑𝛽

) (
𝑉2

eff

𝑉2
∞

))
(8)

After evaluating propeller performance using blade element momentum theory, the only unknown quantity contained
within the first term of Eq. (8) is 𝑑𝑉eff/𝑑𝛽, which is computed using Eq. (9). Additionally, the only unknown quantities
in Eq. (9) are the derivatives of the induction factors with respect to the pitch setting, 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽.

𝑉eff =

√︃
(𝑉∞ (1 + 𝑎))2 + (𝑛 𝑟 (1 − 𝑎′))2 =⇒ 𝑑𝑉eff

𝑑𝛽
=
𝑉2
∞ (1 + 𝑎) 𝑑𝑎

𝑑𝛽
− (𝑛𝑟)2 (1 − 𝑎′) 𝑑𝑎′

𝑑𝛽

𝑉eff
(9)

To evaluate the second term of Eq. (8), the normal and tangential force coefficients, 𝐶𝑧 and 𝐶𝑥 , are first differentiated
with respect to 𝛼 using Eq. (10). These derivatives depend on the angle of attack, Reynolds number, and Mach number.[

𝐶𝑧𝛼

𝐶𝑥𝛼

]
=

[
cos (𝜑) − sin (𝜑)
sin (𝜑) cos (𝜑)

] [
𝐶𝑙𝛼 (𝛼,Re,Ma)
𝐶𝑑𝛼

(𝛼,Re,Ma)

]
(10)
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Derivatives of the lift, drag, and moment coefficients with respect to the angle of attack can be easily obtained
numerically using polar data, and all aerodynamic performance quantities are already known from the BEM solution.
Thus, the only term that is missing is the derivative of the angle of attack with respect to changes in twist angle, 𝑑𝛼/𝑑𝛽.
An expression for this derivative is shown in Eq. (13) using the relationship between 𝛼, 𝛽, and 𝜑.

𝛼 = 𝛽 − 𝜑 =⇒ 𝑑𝛼

𝑑𝛽
=
𝑑𝛽

𝑑𝛽
− 𝑑𝜑

𝑑𝛽
= 1 − 𝑑𝜑

𝑑𝛽
(11)

𝑑𝜑

𝑑𝛽
=
𝑑

𝑑𝛽

(
arctan

(
𝑉∞ (1 + 𝑎)
𝑛 𝑟 (1 − 𝑎′)

))
=

𝑉∞ 𝑛 𝑟
(
𝑑𝑎
𝑑𝛽

(1 − 𝑎′) + 𝑑𝑎′

𝑑𝛽
(1 + 𝑎)

)
(𝑛 𝑟 (1 − 𝑎′))2 + (𝑉∞ (1 + 𝑎))2 (12)

=⇒ 𝑑𝛼

𝑑𝛽
= 1 − 𝑉∞

𝑉eff

𝑛 𝑟

𝑉eff

(
𝑑𝑎

𝑑𝛽
(1 − 𝑎′) + 𝑑𝑎

′

𝑑𝛽
(1 + 𝑎)

)
(13)

With this derivation, all quantities are known except for the derivatives, 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽. Values for these terms
are obtained through the use of an iterative process, according to the method presented in Appendix B.

III. Verification and Validation
Verification and validation of the proposed aeroelastic model is provided in this section. First, results verifying that

the structural model is performing correctly are shown in Section III.A. Second, Section III.B contains results for the
verification and validation of the aerodynamic analysis routine Verification of the complete aeroelastic analysis routine,
including the analytical derivatives of aerodynamic loads with respect to changes in twist distribution, are provided
in Section III.C. Validation of the structural and aeroelastic analysis routines has not been provided due to a lack of
experimental data, it would be useful to provide validation for the aeroelastic analysis routine in a future project.

A. Structural Model Verification
To verify that the structural model was set up correctly, comparisons were made between the proposed model and a

nonlinear ABAQUS finite element model. An aluminium cantilever box beam (60 mm height, 110 mm width, 1200 mm
length, and 10 mm wall thickness) featuring centrifugal loads and a transverse distributed applied load of 5 N/mm over
its full length was analysed, with results shown in Fig. 4. In ABAQUS, the structure was modelled using Timoshenko
beam elements, and material properties used in ABAQUS and PROTEUS are shown in Appendix C. For the centrifugal
force, a rotation rate of 100 RPS was applied, and the distributed load was set to follow the deformations of the beam so
that it always acts orthogonally to the structural axis. The beam was also analysed without the centrifugal force. The
maximum difference between the two sets of results is below 0.01%, thus verifying the proposed structural model.

(a) Loads encountered by the beam (b) Full beam deformations

Fig. 4 Results for the analysis of a beam model, providing verification for the structural analysis.

B. Aerodynamic Model Verification and Validation
The aerodynamic model has been validated through comparisons with the experimental results obtained by Nederlof

et al. [20] for the 3-bladed version of the TUD-XPROP propeller (see Appendix C and [41] for details on the XPROP-3),
and information on the experimental setup that was used to collect the data for comparison is provided in [20]. All
results have been collected at sea-level for a fixed freestream velocity of 𝑉∞ = 30 m/s. All BEM calculations were
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performed using 50 cosine-spaced elements. Fig. 5 shows plots of the calculated power and thrust coefficient of the
propeller at varying pitch angles, in comparison to the experimental results collected by Nederlof et al. [20] and the
calculated results (using BEM with rotational effects included) from Goyal et al. [19]. Corresponding efficiency trends
are subsequently plotted in Fig. 6 in comparison to the experimental results of Nederlof et al. [20].

(a) 𝐶𝑃 vs. 𝐽 . (b) 𝐶𝑇 vs. 𝐽 .

Fig. 5 Plots of the calculated power and thrust coefficient for varying blade pitch settings in comparison to
experimental results from Nederlof et al. [20] and calculated results from Goyal et al. [19].

(a) 𝜂P vs. 𝐽 . (b) 𝜂T vs. 𝐽 .

Fig. 6 Calculated efficiency curves in comparison to experimental results from Nederlof et al. [20].

At all pitch settings that were considered, Fig. 5 indicates that the calculated power and thrust coefficients appear to
exhibit the same trends as the experimental data at operating conditions corresponding to positive and low negative
power coefficients. For an increasing negative thrust setting, corresponding to large advance ratio values, the BEM
model tends to overpredict the amount of power that is recovered by the propeller. This is most likely caused by an
incorrect prediction in the lift and drag coefficients at large negative angles of attack. These discrepancies grow as
the amount of flow separation increases since RFOIL cannot accurately predict the lift and drag in regions with large
amounts of separated flow, and generally can only provide an acceptable result for fully attached flows or flows with
moderate amounts of separation [39]. Furthermore, in regions of separated flow, the assumption of zero aerodynamic
interaction between neighbouring blade elements also becomes invalid [17]. Thus, the prediction of performance may
be further improved by providing more accurate lift and drag polar input data at large negative angles of attack. This is
currently not possible for the propeller model under consideration, as experimental data for the airfoils of the XPROP-3
do not exist. Although it is not possible to accurately predict performance at very high negative thrust settings, an
acceptable range of advance ratio values may be considered for each pitch setting to limit the amount of blade loading,
guaranteeing that the calculated𝐶𝑇 or𝐶𝑃 is not more than 20% greater than or less than the value obtained from physical
tests. In Fig. 6, trends in both propeller and turbine efficiency are consistent between calculated and experimental results,
although calculated efficiency curves are offset to the right of measured efficiency curves, indicating that the calculated
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peak efficiency occurs at a higher advance ratio in comparison to the measured peak efficiency. The magnitude of this
offset appears to grow with increasing pitch setting. This trend emerges primarily as a result of BEM overpredicting the
thrust coefficient, and differences in the prediction of the power coefficient also contribute to this. This offset is not
expected to have an effect on any of the conclusions that are reached during this research. Excellent agreement with the
calculated results from Goyal et al. [19] has lastly been demonstrated, which shows that the BEM model is performing
as expected despite its differences in comparison to the experimental results.

C. Aeroelastic Model Verification
Verification for the method that was applied to compute derivatives of aerodynamic loads is presented first in

Section III.C.1, and verification for the complete aeroelastic analysis method is provided second in Section III.C.2.

1. Derivatives of Aerodynamic Loads
To verify that the method of evaluating derivatives of aerodynamic quantities from Section II.C was implemented

correctly, results obtained using the proposed method were compared with results obtained from central differences,
evaluated using Eq. (14):

𝑑ℎ

𝑑𝛽
(𝛽) ≈ ℎ (𝛽 + Δ𝛽) − ℎ (𝛽 − Δ𝛽)

2Δ𝛽
(14)

where ℎ is the aerodynamic quantity being differentiated and Δ𝛽 is the step size in twist angle.
To demonstrate differences observed between the sensitivities evaluated analytically and numerically, the unscaled

TUD-XPROP-3 propeller (with geometry information provided in Appendix C) was analysed at a pitch setting of 20◦
over a range of advance ratio values between 0.6 and 1.5. Results for selected quantities, force and moment coefficients,
as well as flow angles, are shown in Fig. 7. The absolute difference plots shown in Fig. 7 were calculated by taking the
absolute value of the difference between derivatives from finite differences and from the proposed calculation.

(a) Radial 𝑑𝐶𝑥/𝑑𝛽 distribution. (b) Radial 𝑑𝐶𝑧/𝑑𝛽 distribution.

(c) Radial 𝑑𝐶𝑚/𝑑𝛽 distribution. (d) Radial 𝑑𝜑/𝑑𝛽 distribution.

Fig. 7 A comparison between derivatives computed numerically and analytically for the TUD-XPROP-3.
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The step size used for the numerical calculation is given by Δ𝛽 = 10−4, whilst the step size for the lift and drag
curve slopes used with the analytical calculation is given by Δ𝛼 = 10−4. Values for the step sizes, Δ𝛽 and Δ𝛼, were
determined heuristically, as smaller step sizes were found to yield negligible differences in results that are obtained.

The results indicate that the quantities 𝑑𝐶𝑚/𝑑𝛽 and 𝑑𝜑/𝑑𝛽 are nearly identical between the two methods. Near the
root section, somewhat noticeable uncertainties are observed in results for the derivatives of the normal and tangential
force coefficients, respectively 𝑑𝐶𝑧/𝑑𝛽 and 𝑑𝐶𝑥/𝑑𝛽. This also affects results obtained for derivatives of the dimensional
forces, although these differences will not noticeably affect the overall performance or structural deformation due to the
low dynamic pressure in this region, leading to small dimensional loads. The moment arm is also inherently small near
the root section, which further suggests that uncertainties in this region will not have a noticeable effect on deformations.
The derivative of the pitching moment coefficient is predicted with more precision than derivatives of the thrust and
torque coefficients because it is not evaluated using an iterative method. The close agreement between the two methods
lastly indicates that trends are predicted correctly using the proposed analytical approach, which verifies this method.

2. Aeroelastic Analysis
Due to a shortage of available experimental results to compare with during the validation of the aeroelastic analysis,

verification was performed through comparisons to a loosely coupled method that proceeds by iteratively running
the structural and aerodynamic analyses separately until the difference between deformations computed during two
subsequent iterations is sufficiently small. This approach to providing validation for the aeroelastic analysis was
considered sufficient because both the aerodynamic and structural models have already been validated, and thus the final
remaining step is to demonstrate that the iterative scheme discussed in Section II.C is performing as intended. The
loosely coupled method is very similar to the methods applied by Khan [3] and Sodja et al. [6], which do not require
derivatives of aerodynamic forces with respect to structural degrees of freedom, and it proceeds as outlined below.

(1) Provide model inputs and initial conditions.
(2) Calculate aerodynamic and centrifugal loads.
(3) Apply loads to nodes of the structural mesh.
(4) Compute deformations using the finite element method.
(5) Modify the geometry input to the aerodynamic model (twist distribution and blade axis).
(6) If differences in deformations between subsequent iterations are above the defined tolerance, recompute

aerodynamic loads. Otherwise, evaluate performance and end calculations.

A scaled version of the TUD-XPROP-3 was analysed, as shown in Fig. 8. Details on the structure and load cases
that were considered are provided in Table 1. Ply angles are defined relative to the spanwise axis of the blade, positive
towards the trailing edge for the upper and lower surfaces, and positive downwards for spar webs. Spar webs have been
set as quasi-isotropic. The ply stacking sequence used for the upper and lower surfaces is shown in Eq. (15).

Fig. 8 A visual depiction of the blade geometry that was used during verification of the aeroelastic analysis.
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Sv =

{
0◦ −15◦ −30◦ −30◦ −45◦ −45◦ −60◦ −60◦ −75◦ 90◦

}
s

(15)

As shown above in Eq. (15), the ply stacking sequence that was selected for this case features only forward plies.
This decision was made to ensure that a noticeable amount of bend-twist and extension-shear coupling is present,
intending to introduce an aerodynamic wash-out effect. In this way, blade deformations will have a noticeable effect
on performance and a correct solution can only be reached through the use of a nonlinear aeroelastic analysis. Front
and rear spars were placed as near as possible to the leading and trailing edges whilst avoiding numerical difficulties,
ensuring that the upper and lower surface skins are the primary load-carrying components of the structure. Moreover,
each surface of the structure was parametrized with 1 spanwise laminate, meaning that 4 laminates of constant thickness
were used to describe the blade. For the spacial discretization scheme, 75 linearly spaced beam elements were used for
the structural analysis, 50 cosine spaced elements were used for the BEM model, and each structural cross-section was
represented with 100 elements. Information on the propeller geometry and material properties considered during this
study are provided in Appendix C. The blade dimensions were scaled up by a factor of 4.5 during this analysis to yield a
blade of representative scale for application on a general aviation aircraft. Finally, a reference altitude of sea level was
used for determining all required air properties, and the blade pitch setting was set to 25◦.

Table 1 Structural information for the cases analysed to verify the aeroelastic model.

Case Material Geometry Spars (%𝑐%𝑐%𝑐)a Laminate Thickness (mm) Rotor Speed (RPS) Advance Ratio

1 AS4 / APC2 TUD-XPROP-3 0.02, 0.90 0.75 40 0.75
2 AS4 / APC2 TUD-XPROP-3 0.02, 0.90 0.75 20 2.00

a Front and rear spars have been added because the cross-sectional modeller could not represent the stiffness properties of the leading and trailing
edge sections. This change should not have any noticeable influence on general design trends.

As shown in Table 1, two cases were considered for this investigation. Case 1 corresponds to operation in propulsive
mode, and thus an advance ratio representing propulsive operation was selected. Case 2 represents operation in
energy-harvesting mode, and thus an advance ratio representing negative-power operation was selected. A higher rotor
speed was used for case 1 in comparison to case 2 because the propeller will typically rotate slower in energy-harvesting
mode in comparison to propulsive mode. A pitch setting of 25◦ was selected because comparisons with experimental
data have been computed at this angle for the propeller under consideration (at a scale factor of 1.0), although any other
realistic choice of pitch setting or rotor speed will yield the same level of agreement between the two considered analysis
routines. Diagrams of the loading encountered by the blade in both the energy-harvesting and propulsive modes are
shown in Fig. 9. For Fig. 9 only, loads have been scaled for visibility, and mapped onto the deformed blade geometry.
The same scale factors have been used for the loads in both images, and thus it is possible to visually compare the
magnitudes and directions of the loads between the two cases, although the numerical values do not have any physical
meaning. The shapes of the force distributions and directions of the forces have thus been represented accurately.

(a) Case 1 (propulsive operation) (b) Case 2 (energy-harvesting operation)

Fig. 9 Blade models that were analysed to provide verification for the aeroelastic analysis.
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In propulsive mode, the magnitude of the loads are greater than the magnitude of the loads in energy-harvesting
mode. This is expected because a considerably higher thrust setting is being considered during propulsive mode in
comparison to energy-harvesting mode. The blade also has a higher loading around its tip region in propulsive mode,
whereas the load is more evenly distributed along the span of the blade in energy-harvesting conditions. Lastly, the loads
act in opposite directions between the two operating conditions, as positive thrust and power characterize propulsive
mode, whereas negative thrust and power characterize energy-harvesting mode.

Deformations and performance characteristics were compared between the loosely coupled and tightly coupled
analysis methods. Translational and rotational degree of freedom deformations are plotted in Fig. 10, in the coordinates
shown in Fig. 8. A very good level of agreement is demonstrated between deformation results obtained using the two
analysis methods. Table 2 contains a summary of the overall propeller performance metrics for each case, including
the percent difference between the results from each method. Excellent agreement was obtained between the two
analysis methods, with a maximum difference that is below 0.01% for all quantities of interest. This level of agreement
for both performance and deformation results verifies that the proposed analysis method is performing as expected.
Three-dimensional plots of the blade deformations are additionally shown in Fig. 11 to indicate how deformations in
each degree of freedom are represented on the three-dimensional structure. Lastly, plots of performance trends as a
function of advance ratio are shown in Fig. 12, to demonstrate how the flexible propeller performs in comparison to the
rigid propeller over a range of advance ratio values. Constant rotor speeds of 40 and 20 RPS were used respectively in
positive and negative thrust conditions to maintain consistency with the two verification cases that were investigated.

Although there appears to be almost no difference between performance and deformation results obtained from the
two analysis methods, the proposed tightly coupled method is more robust in comparison to the loosely coupled method,
particularly for cases involving an aerodynamic wash-in effect, where structural deformations result in an increase in
loading. To alleviate this concern, under-relaxation must be applied during the loosely coupled analysis, which results
in a greater computational cost by at least an order of magnitude in comparison to the proposed tightly coupled method.
The proposed tightly coupled method was found to converge on a solution in under 10 iterations.

(a) Case 1: Translational deformations. (b) Case 2: Translational deformations.

(c) Case 1: Rotational deformations. (d) Case 2: Rotational deformations.

Fig. 10 Translational and rotational deformations obtained for the two cases under consideration.

12

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
26

77
 



Table 2 Performance results obtained for cases 1 and 2.

Case Method 𝐶𝑇𝐶𝑇𝐶𝑇 𝐶𝑄𝐶𝑄𝐶𝑄 𝐶𝑃𝐶𝑃𝐶𝑃 𝜂P𝜂P𝜂P 𝜂T𝜂T𝜂T 𝜂e.h𝜂e.h𝜂e.h

1 Tightly Coupled 0.100 0.014 0.088 0.816 N/A N/A
Loosely Coupled

(Percent Difference)
0.100

(0.001%)
0.014

(0.001%)
0.088

(0.001%)
0.816

(0.001%) N/A N/A

2 Tightly Coupled -0.194 -0.048 -0.303 N/A 0.817 0.111
Loosely Coupled

(Percent Difference)
-0.194

(0.010%)
-0.048

(0.010%)
-0.303

(0.010%) N/A 0.817
(0.010%)

0.111
(0.010%)

Fig. 11 Three-dimensional deformation plots obtained during verification studies.

(a) Case 1 (propulsive operation), 𝑛 = 40 RPS (b) Case 2 (energy-harvesting operation), 𝑛 = 20 RPS

Fig. 12 Plots of performance curves obtained during verification of the aeroelastic analysis.

With both the thrust and power coefficients of the flexible propeller showing decreased magnitudes in comparison to
the rigid propeller in Fig. 12, an aerodynamic wash-out effect is clearly present in both propulsive and energy-harvesting
conditions. The presence of an aerodynamic wash-out effect is also made clear in Fig. 10c and Fig. 10d, as torsional
deformations that reduce the twist angle are shown in propulsive mode and torsional deformations that increase the twist
angle are shown in energy-harvesting mode. These deformations result in a reduced angle of attack in both cases. This
is expected, as only negative ply orientations were used on both the upper and lower surfaces of the blade.
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IV. Design Sensitivity Study Results
Design sensitivity studies are presented in this section to provide insights regarding structural design trends and

physical mechanisms affecting variations in propeller performance. In particular, the use of symmetric-unbalanced
laminates has been compared with the use of symmetric-balanced laminates to define the propeller blade structure,
highlighting performance and deformation trends that are obtained with each laminate type over a range of ply
orientations. The results shown in this section lastly demonstrate some capabilities of the proposed analysis routine.

A. Design Study Setup
To maintain commonality, the propeller blade geometry that was used during the verification study of the complete

aeroelastic analysis in Section III.C.2 was again used for the sensitivity studies shown in this section, including the same
pitch setting, scale factor, material, spar web locations, and spatial discretization scheme. Thus, the blade pictured in
Fig. 8 again describes the blade geometry that was used during this investigation. The only difference between the blade
from Section III.C.2 and the blade that was used for the sensitivity studies is that the laminate thickness of all surfaces
of the blade was doubled from a value of 0.75 millimetres to a value of 1.50 millimetres in this case. The decision to
change the laminate thickness was made to ensure that the maximum tip displacement does not exceed a value of 5% of
the tip radius, which improves the feasibility of the structural design. Ultimately, a compromise was made between
feasibility and sensitivity to changes in ply orientation, as a thinner laminate will yield larger variations in performance
and the primary objective of the design sensitivity studies is to provide insights into how changes in ply orientation
affect deformations and performance. The chosen laminate thickness was therefore considered to be the largest value to
yield variations in performance and deformations with ply orientation that are sufficient for comparison.

The propeller blade was defined with one laminate each for its upper and lower surfaces, as well as for each of its spar
webs. The same laminate was always used for the upper and lower surfaces, and a constant quasi-isotropic laminate was
always used to define the two spar webs. For the upper and lower surfaces, two laminate types were considered during
this work: symmetric-unbalanced and symmetric-balanced. The ply stacking sequence defining symmetric-unbalanced
laminates is given by Eq. (16), and Eq. (17) defines the ply stacking sequence for symmetric-balanced laminates.
For any ply angle, given by Θ ∈ {−90◦ , −75◦ , ... , +90◦}, the stacking sequence of the upper surface laminate is
equivalent to the stacking sequence of the lower surface laminate. For symmetric-unbalanced laminates, changing the
ply orientation directly changes the major principal stiffness axis, as it will always align with the angle Θ. Conversely,
symmetric-balanced laminates will have two major stiffness directions, mainly aligned with ±Θ. As a result of the
constant plies with orientations of 90◦ and 0◦, the major principal stiffness axis for symmetric-balanced laminates will
either have an angle of approximately 0◦ or 90◦, depending on which angle |Θ| is closest to, and at Θ = ±45◦, the
maximum stiffness will be equally distributed between angles of +45◦ and −45◦. Thus, the presence of constant ply
angles of 0◦ and 90◦ potentially reduces the amount of bend-twist coupling from symmetric-balanced laminates, although
the decision to include these angles was made to improve the feasibility of the structural design, and the resulting
decrease in bend-twist coupling is not expected to have any effect on the main conclusions from this investigation.
Supplementary plots of the stiffness rosettes are provided in Appendix D to support the discussion on the direction of
the primary stiffness axis. For all ply stacking sequences used for laminates considered during the design sensitivity
studies, ply angles are defined relative to the spanwise axis of the blade, positive towards the trailing edge.

Symmetric-Unbalanced: S∗ =
{

90◦ 0◦ Θ Θ Θ Θ Θ Θ 0◦ 90◦
}

s
(16)

Symmetric-Balanced: S∗ =
{

90◦ 0◦ Θ −Θ Θ −Θ Θ −Θ 0◦ 90◦
}

s
(17)

B. Results
Performance trends are shown in Section IV.B.1 and deformation trends are shown in Section IV.B.2. For comparisons

between symmetric-balanced and symmetric-unbalanced laminates, results were collected over a range of advance ratio
values at each ply orientation under consideration, while holding the rotor speed constant at a value of Ω = 23 RPS to
maintain a constant centrifugal force, effectively reducing some bias from the results. In this way, the advance ratio was
varied between values of 0.35 and 1.70 by directly varying the freestream velocity only.

1. Performance Trends
Plots of the thrust and power coefficient are shown in Fig. 13 for both symmetric-unbalanced and symmetric-balanced

laminates. For symmetric-unbalanced laminates, Fig. 13a and Fig. 13c indicate that ply orientations yielding a decrease
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in thrust coefficient will also cause the power coefficient to decrease. This was found to occur for negative ply orientations,
which generally induce an aerodynamic wash-out effect as the blade deforms, causing upward displacements to result
in leading-edge-down pitch rotations that reduce the loading. For symmetric-unbalanced laminates with positive
ply orientations, an aerodynamic wash-in effect is observed as the blade deforms, which conversely causes upwards
displacements to yield leading-edge-up pitch deformations that increase the loading. Fig. 13b and Fig. 13d indicate that
variations in performance for symmetric-balanced laminates are significantly smaller in comparison to performance
variations for symmetric-unbalanced laminates. This low sensitivity to changes in ply orientation for symmetric-balanced
laminates is caused by the absence of extension-shear coupling and the negligible bend-twist coupling.

For symmetric-unbalanced laminates, the largest decrease in thrust and power appears to be present at ply orientations
between −30◦ and −15◦. Conversely, the largest increase in thrust and power appears to be present at ply orientations
between +15◦ and +30◦. This is consistent with the observation that changes in performance are closely linked to the
presence of bend-twist and extension-shear coupling, as a large amount of extension-shear and bend-twist coupling is
present between these angles. For symmetric-balanced laminates, it appears that the performance trends approximately
overlap for ply orientations of ±90◦ and 0◦, ±75◦ and ±15◦, as well as ±60◦ and ±30◦. The laminates corresponding to
each pair are the same, except offset from each other by 90◦. Thus, they have the same amount of torsional and shear
stiffness. Because the aerodynamic loads exert a leading-edge-down pitching moment on the blade, which increases
with advance ratio (this will be explained in more detail in the discussion of the deformation trends associated with
Fig. 16b), the loading encountered by the flexible propeller without any coupling is always decreased relative to the
rigid propeller, and this difference in loading grows with increasing aerodynamic loads.

(a) Thrust coefficient (symmetric-unbalanced laminates). (b) Thrust coefficient (symmetric-balanced laminates).

(c) Power coefficient (symmetric-unbalanced laminates). (d) Power coefficient (symmetric-balanced laminates).

Fig. 13 Plots of thrust and power coefficients as a function of the advance ratio.

The most important conclusion to draw from the results presented in Fig. 13 is that the difference in performance is
largely dependent on pitch deformations of the propeller, and thus aeroelastic tailoring may only be used to enhance
performance through the inclusion of extension-shear or bend-twist coupling. As a result, symmetric-balanced
laminates provide a minimal change in performance because they provide a negligible amount of bend-twist and
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extension-shear coupling. On the other hand, symmetric-unbalanced laminates have the potential to provide a substantial
amount of bend-twist and extension-shear coupling, and thus may yield a significant change in thrust and power that
can either enhance or degrade performance, depending on the type of coupling that is present. The application of
symmetric-unbalanced laminates towards the improvement of performance should therefore be explored further.

To clarify trends in performance that are shown in Fig. 13, the thrust and power coefficients have been plotted as a
function of the ply orientation at constant advance ratio values in Fig. 14. The thrust and power coefficient difference
terms that are plotted on the vertical axis of Fig. 14 are computed using Eq. (18):

Δ𝐶𝑇 = 𝐶flexible
𝑇 − 𝐶rigid

𝑇

Δ𝐶𝑃 = 𝐶flexible
𝑃 − 𝐶rigid

𝑃

}
(18)

where coefficients with the superscript “flexible” correspond to results obtained with the flexible propeller and coefficients
with the superscript “rigid” correspond to results obtained with the rigid propeller. The difference in thrust and power
coefficients have been plotted in Fig. 14 instead of the actual thrust and power coefficient values to enable the effect on
performance resulting from variations in ply orientation at each fixed advance ratio to be easily compared.

(a) Thrust coefficient (symmetric-unbalanced laminates). (b) Thrust coefficient (symmetric-balanced laminates).

(c) Power coefficient (symmetric-unbalanced laminates). (d) Power coefficient (symmetric-balanced laminates).

Fig. 14 Plots of thrust and power coefficients as a function of the ply orientation.

Symmetric-unbalanced laminates exhibit noticeable variations in performance, whereas symmetric-balanced
laminates have already been shown to yield small variations in performance, and this trend is confirmed again in Fig. 14.
It is clear from Fig. 14b and Fig. 14d that variations in performance for symmetric-balanced laminates are dependent
primarily on the amount of torsional and shear stiffness that the blade has, as variations are smallest for ply orientations
of ±45◦, where the shear and torsional stiffness are largest, and variations in performance grow as ply orientations
approach 0◦ or ±90◦. Symmetric-balanced laminates always appear to yield lower thrust and power coefficients in
comparison to the rigid baseline case due to the leading-edge-down aerodynamic pitching moment that is generated by
the blade, which results in a natural aerodynamic wash-out effect during propulsive mode and a wash-in effect during
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energy-harvesting mode. On the other hand, the main takeaway from Fig. 14a and Fig. 14c is that symmetric-unbalanced
laminates with negative ply orientations yield an aerodynamic wash-out effect that tends to alleviate loads, resulting in a
decrease in magnitude for both the thrust and power coefficients, whereas positive ply orientations yield an aerodynamic
wash-in effect that causes thrust and power coefficient magnitudes to increase. For symmetric-unbalanced laminates, the
torsional and shear stiffness of the laminate has a secondary effect on performance, whilst the presence of bend-twist
and extension-shear coupling has the most substantial effect on performance, as the largest variations in performance
occur for angles given by 15◦ ≤ |Θ| ≤ 30◦, which correspond to the most amount of structural coupling.

Efficiency plots are lastly shown in Fig. 15 for both balanced and unbalanced laminates to indicate the laminate
configurations that are beneficial or detrimental to overall performance. The trends in efficiency vs. advance ratio are
less clear than the trends in thrust and power. This is because the differences in blade loading for each ply orientation
at a constant advance ratio will affect the relative magnitudes of the deformations, which will ultimately influence
performance. Thus, it is difficult to make a direct comparison in the efficiency trends yielded by each ply orientation
when plotted against advance ratio. These plots have still nevertheless been shown for completeness.

(a) Propeller efficiency (symmetric-unbalanced laminates). (b) Propeller efficiency (symmetric-balanced laminates).

(c) Turbine efficiency (symmetric-unbalanced laminates). (d) Turbine efficiency (symmetric-balanced laminates).

Fig. 15 Propeller and turbine efficiency plots as a function of the advance ratio.

The propeller efficiency appears to either be increased or decreased depending on the ply orientations, although the
turbine efficiency appears to always decrease through the consideration of blade flexibility. For symmetric-unbalanced
laminates, Fig. 15a indicates that negative ply orientations result in a larger propeller efficiency in comparison to the
rigid propeller, whereas positive ply orientations yield a lower propeller efficiency in comparison to the rigid propeller.
All flexible propellers yield a similar peak propeller efficiency value that always appears to exceed the peak value of the
rigid propeller. It is also shown in Fig. 15c that the turbine efficiency is always lower or close to equivalent for the
flexible propeller in comparison to the rigid propeller, although ply orientations between approximately −30◦ and −15◦
appear to exhibit the greatest turbine and propeller efficiency. Ply orientations between approximately +15◦ and +30◦
conversely exhibit the lowest propeller and turbine efficiency. These trends emerge as a result of the type of structural
coupling that is present, which is elaborated on in Section IV.B.2. For symmetric-balanced laminates, Fig. 15d indicates
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that the flexible propeller always underperforms in comparison to the rigid propeller, with the best turbine efficiency
being demonstrated for ply orientations of ±45◦, which exhibits performance trends that are closest to that of the rigid
propeller. Differences in performance for symmetric-balanced laminates are primarily driven by the amount of torsional
and shear stiffness that is associated with each ply orientation, as discussed further in Section IV.B.2.

2. Deformation Trends
The first set of deformation results presented are plots of twist deformations around the 𝑦-axis as a function of the

advance ratio, as shown in Fig. 16. These results are most interesting because they precisely indicate the presence and
type of structural coupling, as the aerodynamic loads provide a relatively small pitching moment contribution. These
results also show the pitch deformation tendencies of the blade in the absence of any coupling.

(a) Symmetric-unbalanced laminates. (b) Symmetric-balanced laminates.

Fig. 16 Plots of blade tip torsional deformations as a function of the advance ratio.

For symmetric-unbalanced laminates, the significant differences in pitch deformations are primarily caused by
the presence of extension-shear and bend-twist coupling. This is indicated by the significant differences observed
between symmetric-balanced and symmetric-unbalanced laminates. The negative slope of pitch angle deformations
with increasing advance ratio for symmetric-unbalanced laminates with positive ply orientations shown in Fig. 16a
indicates a wash-in effect. This is consistent with the results shown in Fig. 13a, which indicated positive ply orientations
to yield more thrust and power at a constant advance ratio in comparison to negative ply orientations of the same
absolute angle value. For laminates with negative ply orientations, the opposite type of coupling exists, as indicated
by the positive slope with respect to advance ratio, due to the presence of a wash-out effect. For laminates with ply
orientations of equivalent values and opposite signs, the positive ply orientations have a slope with a slightly greater
magnitude in comparison to the negative ply orientations due to the aerodynamic pitching moment, which tends to
increase in the leading-edge-up direction with increasing thrust. Thus, using positive ply orientations yields a similar
structural response to the forward-swept blade that was studied by Sodja et al. [6], whereas negative ply orientations
yield a similar structural response to the backward-swept blade that was investigated by Sodja et al. [6]. Lastly, the
most amount of coupling was found at ply angles near ±15◦ and ±30◦, which is made clear by the slope of the pitch
rotation vs. advance ratio curve shown in Fig. 16a being of the largest magnitude at these angles. The largest variations
in performance were also identified near these angles in Fig. 13a, Fig. 13c, Fig. 14a, Fig. 14c, Fig. 15a, and Fig. 15c.

For symmetric-balanced laminates, Fig. 16b indicates that the propeller blade structure encounters a natural
aerodynamic wash-out effect as a result of the leading-edge-down pitching moment that is generated by the blade at
almost all advance ratios that were considered. This wash-out effect decreases in strength as the advance ratio decreases
(and thus as the aerodynamic forces increase) because the structural axis is aft of the quarter-chord line. Ply orientations
of ±45◦ have the most amount of torsional stiffness, and the torsional stiffness decreases as plies become more closely
aligned. As a result, the least amount of pitch deformations and variations in performance are observed at angles of ±45◦.
Moreover, the magnitude of torsional deformations increases as ply orientations approach 0◦ and 90◦. The torsional
stiffness is equivalent for laminates with ply orientations of 0◦ and ±90◦, ±15◦ and ±75◦, and ±30◦ and ±60◦, as each
pair of angles corresponds to equivalent laminates that are offset from each other by an angle of 90◦. An analogous trend
in performance has also been observed, with the largest variation in performance being encountered at ply orientations

18

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
26

77
 



corresponding to the least amount of shear and torsional stiffness. In comparison to their counterparts, laminates with
smaller angles in each pair have more stiffness in bending due to the majority of their plies being more closely aligned
with the blade axis, and thus their pitch deformation vs. advance ratio curves shown in Fig. 16b have a decreased slope.

Plots of signed net tip displacements as a function of the advance ratio are shown in Fig. 17 to indicate how
varying the primary stiffness axis affects bending deformations. Positive displacements correspond to operation in
propulsive conditions, and negative displacements correspond to operation in energy-harvesting conditions. The main
conclusions from the tip displacement plots shown in Fig. 17 are that the stiffness increases as the ply orientations
become more closely aligned with the blade axis, and because the loading is negligibly affected by the ply orientation
for symmetric-balanced laminates, the deformation magnitude is equivalent for laminates with orientations of either
(+Θ , −Θ) or (−Θ , +Θ). On the other hand, the presence of bend-twist coupling, which results in either an aerodynamic
wash-in or wash-out effect, will affect the amount of loading that the blade constructed out of symmetric-unbalanced
laminates experiences. Thus, symmetric-unbalanced laminates with positive ply orientations will encounter larger
deformations than symmetric-unbalanced laminates with negative ply orientations of the same angle.

(a) Symmetric-unbalanced laminates. (b) Symmetric-balanced laminates.

Fig. 17 Signed blade tip displacement plots as a function of advance ratio, with 𝑝max = ±
√︃
𝑝2

1 + 𝑝
2
2 + 𝑝

2
3𝑝max = ±

√︃
𝑝2

1 + 𝑝
2
2 + 𝑝

2
3𝑝max = ±

√︃
𝑝2

1 + 𝑝
2
2 + 𝑝

2
3.

In the plots of tip displacement vs. thrust, the more consistent loading makes it somewhat easier to observe the trend
in magnitude with changing ply orientation. This is especially true for symmetric-balanced laminates, where it has
been shown in Fig. 13 that the thrust and power coefficients are quite similar between each ply orientation, indicating a
similar amount of loading at each constant advance ratio. For symmetric-unbalanced laminates, Fig. 13 instead shows a
much larger difference in thrust and power coefficient, which suggests more considerable differences in the amount of
loading encountered at different ply orientations for a constant advance ratio. Lastly, it is interesting to observe that
propellers with symmetric-unbalanced laminates that have ply orientations between −30◦ and −15◦ exhibit the lowest tip
displacement magnitudes, as shown in Fig. 17a, in addition to the best performance, as shown in Fig. 15a and Fig. 15c.
This result demonstrates the potential for aeroelastic tailoring to be applied towards the design of propeller blades.

The final plots shown correspond to torsional deformations and signed net tip displacements as a function of the ply
orientation for several constant advance ratios, shown in Fig. 18. The most noticeable result from these plots is that
trends in pitch deformations are analogous to trends in variations in performance, shown in Fig. 14, and the physical
reasoning behind the trends in pitch deformations shown in Fig. 18a and Fig. 18b follows directly from the discussion
concerning Fig. 14. This similarity between pitch deformations and performance variations occurs because variations in
performance are driven primarily by pitch deformations. Although the BEM model that was used during this research is
insensitive to changes in blade axis geometry (with exception to radial deformations, which generally have a negligible
influence on performance), it is still likely that pitch deformations have the largest effect on variations in performance.
Nevertheless, a physical model of the propeller would likely exhibit variations in performance due to changes in blade
sweep and lean as well, and these effects could not be captured during this investigation. The tip displacement plots,
shown in Fig. 18c and Fig. 18d, indicate that tip displacement magnitudes are primarily affected by the stiffness of the
laminate, whereas pitch deformations are governed almost entirely by the presence of bend-twist or extension-shear
coupling. Indeed, the tip displacements consistently increase as ply orientations approach ±90◦, where the stiffness
under the loads encountered by the blade is lowest. The tip displacement accordingly decreases as plies become aligned
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with the blade axis. Moreover, the presence of bend-twist and extension-shear coupling appears to provide a clear
influence on the tip displacements obtained with symmetric-unbalanced laminates in Fig. 18c. Mainly, negative ply
angles exhibit a load alleviation effect, which reduces deformations, and positive ply angles have the opposite effect.
Nevertheless, the majority of displacements are caused directly by the transverse and centrifugal forces that the blade
encounters and thus deformations are influenced most by the amount of bending stiffness that the blade has. This
suggests that coupling may be used to enhance the blade’s performance whilst still reducing its tip displacements.

(a) Torsional deformations (symmetric-unbalanced laminates). (b) Torsional deformations (symmetric-balanced laminates).

(c) Signed net tip displacement (symmetric-unbalanced laminates). (d) Signed net tip displacement (symmetric-balanced laminates).

Fig. 18 Blade tip deformation plots as a function of the ply orientation.

V. Conclusions
A tightly coupled aeroelastic analysis routine was proposed, featuring an aerodynamic model that is based on blade

element momentum theory and a structural model that is capable of handling geometrical nonlinearities and nonlinear
loads. The aerodynamic model was validated through comparisons with experimental data, which showed agreement
with general trends and a maximum uncertainty that is below 20% at all operating conditions that would be of interest
during a design study. Very good agreement was observed during verification studies, when comparing results obtained
with the proposed model with results from an existing BEM code. Verification studies were also completed for both the
structural and aeroelastic models, resulting in an excellent agreement with the selected reference cases, for which a
maximum error of less than 0.01% was obtained. The aeroelastic analysis framework that was developed and verified is
capable of modelling detailed composite blade geometries with an arbitrary number of laminates distributed along its
spanwise and chordwise axes. Due to its low-fidelity aerodynamic model, combined with its medium-fidelity structural
model, the analysis routine has a low computational cost, which makes it suitable for use in an optimization routine.

After verifying that the proposed aeroelastic analysis procedure was properly implemented, design sensitivity studies
were conducted using the TUD-XPROP-3 propeller, enlarged by a factor of 4.5 to yield a blade of a representative
scale for application on a general aviation aircraft. Through the application of aeroelastic tailoring, both a wash-in
and a wash-out aeroelastic response of the blade may be achieved using symmetric and unbalanced laminates. With
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laminates that are symmetric and balanced, variations in performance between the flexible and rigid propellers were less
apparent due to the absence of extension-shear coupling and the small amount of bend-twist coupling. As expected, the
presence of an aerodynamic wash-out effect tended to improve performance through the alleviation of loads, whereas the
presence of a wash-in effect tended to degrade performance though the augmentation of loads. It was interestingly shown
that introducing an aerodynamic wash-out effect can improve the efficiency in both propulsive and energy-harvesting
conditions, whilst suppressing bending deformations. The proposed aeroelastic analysis framework will be applied in
future investigations towards more comprehensive design sensitivity analyses and optimization studies.

Acknowledgements
Jatinder Goyal, cited as Goyal et al. [19], provided the baseline BEM code that was used during development and

verification of the aerodynamic model, in addition to polar plots from RFOIL for the TUD-XPROP, as required for all
aerodynamic analyses. Robert Nederlof, cited as Nederlof et al. [20], provided the experimental data that was used
during validation of the aerodynamic model.

A. Mapping Loads and Derivatives between Eccentric Nodes and Structural Grid Points
If an applied external force or moment is located at one of the structural nodes, then it is relatively straightforward

to include it within the analysis. However, in most cases, applied loads are eccentric, and thus must be appropriately
handled by the finite-element solver, such that equivalent loads are applied at the structural degrees of freedom instead.
The calculation of eccentric forces and their sensitivities is based on the work of de Breuker [25] and Werter [12], who
applied the formulation developed by Battini and Pacoste [24] to allow for both constant and follower eccentric forces
and moments. For completeness, a discussion on the formulation used to define eccentric loads and their derivatives has
been provided within this section, although further details may be found within references [12, 24, 25]. This derivation
has been repeated in this work because it is essential for the calculation of sensitivities for the aerodynamic forces, as
they always act at points that are eccentric to the structural nodes.

For any structural element, eccentric forces can be applied at any location, at a distance of
¯
𝑣0 from the line that joins

the two end nodes of the element. Considering nodes 𝑘 and 𝑘 + 1 of the structure, which have position vectors given by

¯
𝑥𝑘 and

¯
𝑥𝑘+1, an input eccentric force and moment can be applied at a location of

¯
𝑥a + ¯

𝑣0, where
¯
𝑥a is a point on the

element that joins
¯
𝑥𝑘 and

¯
𝑥𝑘+1. The normalized distance between

¯
𝑥a and

¯
𝑥𝑘 is given by 𝜉, which is defined as follows.

𝜉 =
| |

¯
𝑥a − ¯

𝑥𝑘 | |
| |

¯
𝑥𝑘+1 − ¯

𝑥𝑘 | |
=⇒ 1 − 𝜉 = | |

¯
𝑥𝑘+1 − ¯

𝑥a | |
| |

¯
𝑥𝑘+1 − ¯

𝑥𝑘 | |
Diagrams of this scenario are provided in Fig. 19 for clarity.

xk

xk+1

xa
v0
me

ξ

1-ξ

fe

~
~

(a) The eccentric force applied to the undeformed structure.
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(b) A diagram of the displacement of eccentric forces.

Fig. 19 Schematic diagrams of the eccentric forces and moments (adapted from [12]).

The location of the applied force in the initial configuration is given by
¯
𝑥e in Eq. (19), shown below, where

¯
𝑣0 is

defined as a rigid link that is orthogonal to the beam element, as depicted in Fig. 19a.

¯
𝑥e = ¯

𝑥a + ¯
𝑣0 (19)
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Fig. 19b indicates that the rigid link may be converted into its corotated orientation as follows:

¯
𝑣a = RaRaRa · ¯

𝑣0 (20)

whereRaRaRa is the rotation matrix that converts rigid links from the undeformed configuration to the corotated configuration.

Using Fig. 19, displacements of the location of the applied load are related to displacements of the nearest point on
the beam element,

¯
𝑥a, as shown below.

¯
𝑢a + ¯

𝑣a = ¯
𝑣0 + ¯

𝑢e (21)
=⇒

¯
𝑢e = ¯

𝑢a + [RaRaRa − 𝐼3x3𝐼3x3𝐼3x3] · ¯
𝑣0 (22)

To transfer the applied load acting at
¯
𝑥e onto the two nodes of the beam element, Eq. (23) ensures that the virtual

work of the equivalent loads acting at the two nodes must be equal to the virtual work of the eccentric load:

𝛿
¯
𝑝T

e

[
¯
𝑓e

¯
𝑚̃e

]
=

[
𝛿
¯
𝑝T
𝑘

𝛿
¯
𝑝T
𝑘+1

] 
¯
𝑓𝑘

¯
𝑚𝑘

¯
𝑓𝑘+1

¯
𝑚𝑘+1

 ¯
𝑝 =

[
¯
𝑢

¯
𝜃

]
(23)

where the total rotational pseudo-vector of the eccentric point is given by
¯
𝜃e, the total rotational pseudo-vectors of the

two end nodes are given by
¯
𝜃𝑘 and

¯
𝜃𝑘+1, and displacement vectors of the two nodes are denoted by

¯
𝑢𝑘 and

¯
𝑢𝑘+1. Forces

and moments are denoted respectively by
¯
𝑓 and

¯
𝑚, with subscripts to denote whether they apply to nodes 𝑘 or 𝑘 + 1.

Using the relations derived above and the assumption of equivalent virtual work, Werter [12] derived a relationship
between deformations of the eccentric node and global deformations of the two end nodes of the beam element in
variational form, where

¯
𝜗a is the spatial angular variation at the eccentric node.

𝛿
¯
𝑢e = 𝛿¯

𝑢a + 𝛿RaRaRa¯
𝑣0 (24)

𝛿RaRaRa = 𝛿𝜗a𝜗a𝜗aRaRaRa (25)
=⇒ 𝛿

¯
𝑢e = 𝛿¯

𝑢a + 𝛿𝜗a𝜗a𝜗aRaRaRa¯
𝑣0 = 𝛿

¯
𝑢a + 𝛿𝜗a𝜗a𝜗a¯

𝑣a = 𝛿¯
𝑢a − 𝑣a𝑣a𝑣a𝛿¯

𝜗a (26)

=⇒ 𝛿
¯
𝑝e =

[
𝛿
¯
𝑢e

𝛿
¯
𝜃e

]
=

[
(1 − 𝜉) 𝐼3x3𝐼3x3𝐼3x3 − (1 − 𝜉) 𝑣a𝑣a𝑣a 𝜉𝐼3x3𝐼3x3𝐼3x3 −𝜉𝑣a𝑣a𝑣a

03x303x303x3 (1 − 𝜉) 𝐼3x3𝐼3x3𝐼3x3 03x303x303x3 𝜉𝐼3x3𝐼3x3𝐼3x3

] 
𝛿
¯
𝑢𝑘

𝛿
¯
𝜗𝑘

𝛿
¯
𝑢𝑘+1

𝛿
¯
𝜗𝑘+1


= 𝐵e𝐵e𝐵e ·

[
𝛿
¯
𝑝

g
𝑘

𝛿
¯
𝑝

g
𝑘+1

]
(27)

To transform the spatial angular variation into the variation of the total rotational pseudo-vector, the relation that
was derived by Ibrahimbegovic [42] has been applied as follows.

T𝜃T𝜃T𝜃 =
sin ( | |

¯
𝜃 | |)

| |
¯
𝜃 | | 𝐼𝐼𝐼 +

(
1 − sin ( | |

¯
𝜃 | |)

| |
¯
𝜃 | |

)
¯
𝑢 ⊗

¯
𝑢 + 1

2

(
sin ( | |

¯
𝜃 | | /2)

| |
¯
𝜃 | | /2

)2
𝜃𝜃𝜃 (28)


𝛿
¯
𝑢𝑘

𝛿
¯
𝜃𝑘

𝛿
¯
𝑢𝑘+1

𝛿
¯
𝜃𝑘+1


=


03x303x303x3 03x303x303x3

03x303x303x3 TTT −1
𝜃𝑘𝜃𝑘𝜃𝑘

03x303x303x3 03x303x303x3

03x303x303x3 TTT −1
𝜃𝑘+1𝜃𝑘+1𝜃𝑘+1

06x606x606x6

06x606x606x6


·


𝛿
¯
𝑢𝑘

𝛿
¯
𝜗𝑘

𝛿
¯
𝑢𝑘+1

𝛿
¯
𝜗𝑘+1


= 𝐻𝐻𝐻

[
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
(29)

The full conversion between displacements at the eccentric node and displacements at the degrees of freedom of the
element is given by the following relation, which is used as shown to compute loads.

𝛿
¯
𝑝e = 𝐵e𝐵e𝐵e ·𝐻𝐻𝐻 ·

[
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
=⇒ 𝛿

¯
𝑝T

e =

[
𝛿
¯
𝑝T
𝑘

𝛿
¯
𝑝T
𝑘+1

]
(𝐵e𝐵e𝐵e ·𝐻𝐻𝐻)T (30)

=⇒ (𝐵e𝐵e𝐵e ·𝐻𝐻𝐻)T

[
¯
𝑓e

¯
𝑚̃e

]
= 𝐻𝐻𝐻T · 𝐵𝐵𝐵T

eee ·
[

¯
𝑓e

¯
𝑚̃e

]
=


¯
𝑓𝑘

¯
𝑚𝑘

¯
𝑓𝑘+1

¯
𝑚𝑘+1


(31)
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The method of mapping forces from eccentric nodes to the nodes of the structural mesh, according to the expression
shown in Eq. (31), has been applied also to convert aerodynamic loads from the aerodynamic grid points to the structural
nodes. Centrifugal forces are already calculated at the nodes of the structure and thus are not converted.

The derivative of the applied eccentric forces is calculated by taking the variation of the eccentric load vector:
𝛿
¯
𝑓𝑘

𝛿
¯
𝑚𝑘

𝛿
¯
𝑓𝑘+1

𝛿
¯
𝑚𝑘+1


=

(
𝛿𝐻𝐻𝐻T

)
· 𝐵𝐵𝐵T

eee ·
[

¯
𝑓e

¯
𝑚̃e

]
︸                 ︷︷                 ︸

geometric moment stiffness

+ 𝐻𝐻𝐻T ·
(
𝛿𝐵𝐵𝐵T

eee

)
·
[

¯
𝑓e

¯
𝑚̃e

]
︸                 ︷︷                 ︸

geometric rotation stiffness

+𝐻𝐻𝐻T · 𝐵𝐵𝐵T
eee ·

[
𝛿
¯
𝑓e

𝛿
¯
𝑚̃e

]
︸              ︷︷              ︸

material stiffness

= 𝐾e𝐾e𝐾e

[
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
(32)

=⇒
[
𝐾h𝐾h𝐾h +𝐾g𝐾g𝐾g +𝐾m𝐾m𝐾m

] [
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
= 𝐾e𝐾e𝐾e

[
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
(33)

where 𝐾h𝐾h𝐾h is the geometric moment stiffness matrix, 𝐾g𝐾g𝐾g is the geometric rotation stiffness matrix, and 𝐾m𝐾m𝐾m is the
material stiffness matrix. The complete derivation of the derivative matrix of the eccentric forces has been provided by
Werter [12], and thus the full derivation of the eccentric force derivative matrix will not be repeated here for brevity.
Nevertheless, the material stiffness has been briefly revisited within this section, as it has been treated differently during
the calculation of the aerodynamic stiffness matrix. The geometric moment stiffness and the geometric rotation stiffness
are not dependent on the nature of the applied forces, and thus their form remains unchanged from [12].

To calculate the material stiffness, the variation of the applied force must be calculated, as all remaining quantities
are already known. This is defined as the derivative of the eccentric forces, multiplied by the variation of the degrees of
freedom at the eccentric node. [

𝛿
¯
𝑓e

𝛿
¯
𝑚̃e

]
=

(
𝑑

𝑑
¯
𝑝e

[
¯
𝑓e

¯
𝑚̃e

])
· 𝛿

¯
𝑝e (34)

Substituting Eq. (30) into the above expression yields the following expression for the variation of the eccentric
loads. This expression can then be used to determine the material stiffness matrix. This derivation has been used to
evaluate the material stiffness matrix for aerodynamic forces, whilst the original derivation that was provided by Werter
[12] has been used for the evaluation of the material stiffness matrix for all other externally applied forces.[

𝛿
¯
𝑓e

𝛿
¯
𝑚̃e

]
=

(
𝑑

𝑑
¯
𝑝e

[
¯
𝑓e

¯
𝑚̃e

])
· 𝐵e𝐵e𝐵e ·𝐻𝐻𝐻 ·

[
𝛿
¯
𝑝𝑘

𝛿
¯
𝑝𝑘+1

]
=⇒ 𝐾m𝐾m𝐾m = 𝐻𝐻𝐻T · 𝐵e𝐵e𝐵e

T ·
(
𝑑

𝑑
¯
𝑝e

[
¯
𝑓e

¯
𝑚̃e

])
· 𝐵e𝐵e𝐵e ·𝐻𝐻𝐻 (35)

Using the expression for the derivative of the aerodynamic forces with respect to degrees of freedom of aerodynamic
grid points, given by Eq. (7) from Section II.C, the material stiffness matrix for aerodynamic loads is expressed by
Eq. (36). Note that the subscript “e” has been replaced by “a” to indicate that the loads being discussed are due to
aerodynamic effects:

𝐾m𝐾m𝐾m = 𝐻𝐻𝐻T · 𝐵a𝐵a𝐵a
T ·

¯
0

¯
0

¯
0

¯
0 𝑑

𝑑𝛽 ¯
𝑓a ¯

0

¯
0

¯
0

¯
0

¯
0 𝑑

𝑑𝛽 ¯
𝑚̃a ¯

0

 · 𝐵a𝐵a𝐵a ·𝐻𝐻𝐻 (36)

where 𝐵a𝐵a𝐵a is analogous to 𝐵e𝐵e𝐵e, except corresponding to aerodynamic loads instead of eccentric loads;
¯
𝑓a and

¯
𝑚̃a are

similarly analogous to
¯
𝑓e and

¯
𝑚̃e. The geometric moment and rotation stiffness matrices are unchanged from the

matrices provided by Werter [11, 12] and thus have not been discussed further.

B. Iterative Scheme for Computing Derivatives of Aerodynamic Loads
To compute derivatives of aerodynamic loads according to the method outlined in Section II.C by solving Eq. (8),

the unknown quantities 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽 must be evaluated iteratively and substituted into Eq. (9) and Eq. (13).
Derivatives of the thrust and torque coefficients with respect to variations in blade twist have been calculated

using blade element theory and momentum theory to obtain two sets of expressions that may be iteratively evaluated
until convergence. With momentum theory, thrust and torque coefficients are expressed using the axial and tangential
induction factors, whereas blade element theory relates the thrust and torque coefficients to the flow angles.
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𝑑𝐶𝑡

𝑑𝛽
=
𝜕𝐶𝑡

𝜕𝑎

𝜕𝑎

𝜕𝛽
+ 𝜕𝐶𝑡

𝜕𝑎′
𝜕𝑎′

𝜕𝛽
=
𝑑𝐶𝑡

𝑑𝛼

𝑑𝛼

𝑑𝛽
(37)

𝑑𝐶𝑞

𝑑𝛽
=
𝜕𝐶𝑞

𝜕𝑎

𝜕𝑎

𝜕𝛽
+
𝜕𝐶𝑞

𝜕𝑎′
𝜕𝑎′

𝜕𝛽
=
𝑑𝐶𝑞

𝑑𝛼

𝑑𝛼

𝑑𝛽
(38)

Using momentum theory, derivatives of the thrust and torque coefficients with respect to variations in the blade twist
angle are given by Eq. (39) and Eq. (40), maintaining all the assumptions discussed in Section II.B:

𝑑𝐶M
𝑡

𝑑𝛽
=


4
(
(1 + 2𝑎) 𝐹 + 𝑎 (1 + 𝑎) 𝜕𝐹

𝜕𝑎

)
𝑑𝑎
𝑑𝛽

𝑎 ≥ −0.326(
1.39𝐹 + (1.39 (1 + 𝑎) − 1.816) 𝜕𝐹

𝜕𝑎

)
𝑑𝑎
𝑑𝛽

𝑎 < −0.326
(39)

𝑑𝐶M
𝑞

𝑑𝛽
= 4 (1 + 𝑎) 𝑛𝑟

𝑉∞

(
𝐹 + 𝑎′ 𝜕𝐹

𝜕𝑎′

)
𝑑𝑎′

𝑑𝛽
+ 4𝑎′

𝑛𝑟

𝑉∞

(
𝐹 + (1 + 𝑎) 𝜕𝐹

𝜕𝑎

)
𝑑𝑎

𝑑𝛽
(40)

where the superscript “M” denotes that𝐶M
𝑡 and𝐶M

𝑞 are respectively the sectional thrust and torque coefficients computed
using momentum theory, and where 𝐹 is the Prandtl root- and tip-loss factor.

Differentiating the root- and tip-loss factors, 𝐹root and 𝐹tip, with respect to the incoming flow angle, 𝜑, yields Eq. (41)
and Eq. (42), which were derived by directly differentiating expressions for the root and tip loss factors:

𝐹root =

(
2
𝜋

)
cos−1

(
𝑒

−𝑁b
2

(
𝑟−𝑟root

𝑟root |sin(𝜑) |

) )
=⇒ 𝜕𝐹root

𝜕𝜑
=
−𝑁b

𝜋

(
𝑟 − 𝑟root

𝑟root |sin (𝜑) |

)
cos (𝜑)
sin (𝜑)

©­­«
𝑒

−𝑁b
2

(
𝑟−𝑟root

𝑟root |sin(𝜑) |

)√︃
1 − 𝑒−𝑁b

(
𝑟−𝑟root

𝑟root |sin(𝜑) |

) ª®®¬ (41)

𝐹tip =

(
2
𝜋

)
cos−1

(
𝑒
− 𝑁b

2

(
𝑟tip−𝑟

𝑟 |sin(𝜑) |

) )
=⇒

𝜕𝐹tip

𝜕𝜑
= −𝑁b

𝜋

(
𝑟tip − 𝑟
𝑟 |sin (𝜑) |

)
cos (𝜑)
sin (𝜑)

©­­«
𝑒
− 𝑁b

2

(
𝑟tip−𝑟

𝑟 |sin(𝜑) |

)√︃
1 − 𝑒−𝑁b

(
𝑟tip−𝑟

𝑟 |sin(𝜑) |

) ª®®¬ (42)

where 𝐹root and 𝐹tip are respectively the root- and tip-loss factors, 𝑁b is the number of propeller blades, 𝑟root is the radial
location of the blade root, and 𝑟tip is the radial location of the blade tip.

The derivatives of the Prandtl root- and tip-loss factor, 𝐹, with respect to the axial and tangential induction factors,
are given by Eq. (43) and Eq. (44), which are found using the chain rule, as 𝐹 = 𝐹root · 𝐹tip:

𝜕𝐹

𝜕𝑎
=

[
𝜕𝐹root

𝜕𝜑
𝐹tip + 𝐹root

𝜕𝐹tip

𝜕𝜑

] 𝜕𝜑/𝜕𝑎︷                  ︸︸                  ︷[
𝑉∞
𝑉eff

𝑛 𝑟

𝑉eff
(1 − 𝑎′)

]
(43)

𝜕𝐹

𝜕𝑎′
=

[
𝜕𝐹root

𝜕𝜑
𝐹tip + 𝐹root

𝜕𝐹tip

𝜕𝜑

] [
𝑉∞
𝑉eff

𝑛 𝑟

𝑉eff
(1 + 𝑎)

]
︸                ︷︷                ︸

𝜕𝜑/𝜕𝑎′

(44)

With these expressions, all terms within Eq. (39) and Eq. (40) are known except for 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽. Derivatives
of the thrust and torque coefficients with respect to variations in the blade twist may also be evaluated using blade
element theory to isolate for derivatives of the angle of attack, computed using either the thrust or torque coefficient
expressions, denoted respectively with the subscripts 𝑡 or 𝑞, as shown below. This yields three expressions for 𝑑𝛼/𝑑𝛽:

𝑑𝐶BE
𝑡

𝑑𝛽
= 𝐶𝑧𝛼 𝜎 (𝑟)

(
𝑉eff

𝑉∞

)2
𝑑𝛼

𝑑𝛽
=⇒

(
𝑑𝛼

𝑑𝛽

)
𝑡

=


4( (1+2𝑎)𝐹+𝑎 (1+𝑎) 𝜕𝐹

𝜕𝑎 ) 𝑑𝑎
𝑑𝛽

𝐶𝑧𝛼 𝜎(𝑟 )

(
𝑉∞
𝑉eff

)2
𝑎 ≥ −0.326

(1.39𝐹+(1.39(1+𝑎)−1.816) 𝜕𝐹
𝜕𝑎 ) 𝑑𝑎

𝑑𝛽

𝐶𝑧𝛼 𝜎(𝑟 )

(
𝑉∞
𝑉eff

)2
𝑎 < −0.326

(45)

𝑑𝐶BE
𝑞

𝑑𝛽
= 𝐶𝑥𝛼 𝜎 (𝑟)

(
𝑉eff

𝑉∞

)2
𝑑𝛼

𝑑𝛽
=⇒

(
𝑑𝛼

𝑑𝛽

)
𝑞

=

4𝑛𝑟𝑉∞
[
(1 + 𝑎)

(
𝐹 + 𝑎′ 𝜕𝐹

𝜕𝑎′

)
𝑑𝑎′

𝑑𝛽
+ 𝑎′

(
𝐹 + (1 + 𝑎) 𝜕𝐹

𝜕𝑎

)
𝑑𝑎
𝑑𝛽

]
𝐶𝑥𝛼 𝜎 (𝑟) 𝑉2

eff
(46)
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where the superscript “BE” denotes that 𝐶BE
𝑡 and 𝐶BE

𝑞 are respectively the sectional thrust and torque coefficients
computed using blade element theory, and where 𝜎 = 𝑁b𝑐/(2𝜋𝑟) is the propeller’s local solidity.

With three expressions and three unknowns, the derivatives 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽, may be iteratively solved for using
Newton’s method by constructing a residual vector, as shown below, and evaluating the system of equations shown
in Eq. (48) (presented at the 𝑖th iteration) until convergence. After solving for both 𝑑𝑎/𝑑𝛽 and 𝑑𝑎′/𝑑𝛽, 𝑑𝛼/𝑑𝛽 can be
evaluated by substituting these terms into either Eq. (13), Eq. (45), or Eq. (46). All three of these equations will yield
the same result. With this, all terms required to evaluate Eq. (8) are known:

¯
𝑅 =

[(
𝑑𝛼
𝑑𝛽

)
𝑡
− 𝑑𝛼

𝑑𝛽

(
𝑑𝛼
𝑑𝛽

)
𝑞
− 𝑑𝛼

𝑑𝛽

]𝑇
:=

¯
0 (47)


𝑑𝑎
𝑑𝛽

𝑑𝑎′

𝑑𝛽

 𝑖+1

=


𝑑𝑎
𝑑𝛽

𝑑𝑎′

𝑑𝛽

 𝑖 −


𝜕𝑅1
𝜕(𝑑𝑎/𝑑𝛽)

𝜕𝑅1
𝜕(𝑑𝑎′/𝑑𝛽)

𝜕𝑅2
𝜕(𝑑𝑎/𝑑𝛽)

𝜕𝑅2
𝜕(𝑑𝑎′/𝑑𝛽)


−1

𝑖

·
¯
𝑅 (48)

where
¯
𝑅 is the residual vector that is minimized using Newton’s method.

C. TUD-XPROP-3 Blade Geometry and Material Properties

Material Data
Table 3 contains a summary of the materials used in Section III and Section IV (see Table 1). Only unidirectional

carbon fibres have been considered for the design of propeller blades because they exhibit a good combination of
strength and stiffness [43]. Aluminium was used to model the cantilever box beam during verification of the structural
analysis routine in Section III.A. The subscript “11” denotes quantities acting parallel to the plies, while quantities acting
orthogonal to the plies are denoted by the subscript “22”. The ultimate tensile strength is denoted by the superscript
“UT”, the ultimate compressive strength is denoted by the superscript “UC”, and the shear strength is denoted by 𝜏U

12.

Table 3 Material properties used in Section III and Section IV [43, 44].

Materiala,b 𝜌S𝜌S𝜌S 𝐸11𝐸11𝐸11 𝐸22𝐸22𝐸22 𝐺12𝐺12𝐺12 𝜈12𝜈12𝜈12 𝜎UT
11𝜎UT
11𝜎UT
11 𝜎UC

11𝜎UC
11𝜎UC
11 𝜎UT

22𝜎UT
22𝜎UT
22 𝜎UC

22𝜎UC
22𝜎UC
22 𝜏U

12𝜏
U
12𝜏
U
12

AS4 / APC2 1.57 134 8.70 5.1 0.28 2060 1100 78 196 157
Al 6061-T6 2.75 72 72 26.9 0.33 310 310 310 310 207

a SI units are used for all dimensional quantities, with g/cm3 for densities (𝜌), GPa for elastic constants (𝐸, 𝐺), and MPa for strengths (𝜎, 𝜏).
b Fibre composite materials are conventionally named as follows: “fibre material” / “resin composition”.

TUD-XPROP Geometry
Geometry data for the XPROP or XPROP-3 propeller are shown in Fig. 20, and photographs of the two propellers

under consideration are provided in [41]. The blade pitch setting is always defined as the twist angle at the 70% span
position. Thus, the twist distribution that is shown in Fig. 20b corresponds to a blade pitch setting of approximately 0◦.

(a) Airfoils at varying spanwise locations. (b) Chord and twist distributions.

Fig. 20 Geometric data for the TUD-XPROP propeller [20].
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Blade geometry data for the TUD-XPROP propeller are provided in [20]. There are two composite propellers with
the same blade geometry and either three or six blades (XPROP-3 and XPROP, respectively). The incidence angle of
the blades can be manually adjusted, and the diameter of the propeller is 406.4 millimetres. The propeller represents a
typical previous-generation turboprop propeller. It has negligible sweep and lean, making its geometry relatively simple,
and the two rotors under consideration have been used extensively already for investigations into isolated propeller
aerodynamics, propeller integration studies, and distributed propeller studies (i.e. [17, 19, 20]).

D. Stiffness Rosette Plots Supporting Design Sensitivity Studies
Laminate stiffness rosettes have been shown at selected ply orientations, representing symmetric-unbalanced and

symmetric-balanced laminates. Only six ply orientations of each type are shown. The in-plane stiffness represents
the ability of the laminate to resist in-plane forces, whereas the out-of-plane stiffness represents the ability of the
laminate to resist out-of-plane forces. As expected from the stiffness rosettes for symmetric-unbalanced laminates,
shown in Fig. 21a for in-plane stiffness and in Fig. 21c for out-of-plane stiffness, the direction of maximum stiffness is
closely aligned with the angle that most of the plies are aligned with. This is immediately clear for laminates with
Θ ∈ {−45◦ , +45◦}. Laminates with ply orientations of ±30◦ and ±60◦ have slightly skewed stiffness rosettes due to the
constant presence of fibres with orientations of 0◦ and 90◦. For symmetric-balanced laminates, Fig. 21b indicates that
laminates corresponding to orientations of (+Θ , −Θ) and (−Θ , +Θ) have equal in-plane stiffness. The out-of-plane
stiffness, shown in Fig. 21d, is skewed between laminates with equivalent ply angles of opposite sign, showing more
stiffness towards the outermost plies. The difference observed between the out-of-plane stiffness corresponding to ply
orientations of (+Θ , −Θ) and (−Θ , +Θ) would likely be greater if the laminates only consisted of fibres with these
corresponding orientations, instead of also containing plies with constant angles of 0◦ and 90◦. For symmetric-balanced
laminates, the maximum stiffness is either aligned closely with 0◦ or 90◦, depending on whether ±Θ is closer to
0◦ or 90◦, except for at Θ = ±45◦, where the maximum stiffness is split evenly between the angles +45◦ and −45◦.
Without the outermost and innermost fibres that have constant angles of 0◦ and 90◦, the primary stiffness axes of the
symmetric-balanced laminates would instead be more closely aligned with the angles given by ±Θ.

(a) In-plane stiffness (symmetric-unbalanced). (b) In-plane stiffness (symmetric-balanced).

(c) Out-of-plane stiffness (symmetric-unbalanced). (d) Out-of-plane stiffness (symmetric-balanced).

Fig. 21 Plots of stiffness rosettes for ply orientations considered during sensitivity studies.
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