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Hybrid Soft Actor-Critic and Incremental Dual Heuristic
Programming Reinforcement Learning for Fault-Tolerant Flight

Control

C. Teirlinck∗ Erik-Jan van Kampen†

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Recent advancements in fault-tolerant flight control have involved model-free offline and
online Reinforcement Learning (RL) algorithms in order to provide robust and adaptive control
to autonomous systems. Inspired by recent work on Incremental Dual Heuristic Programming
(IDHP) and Soft Actor-Critic (SAC), this research proposes a hybrid SAC-IDHP framework
aiming to combine adaptive online learning from IDHP with the high complexity generalization
power of SAC in controlling a fully coupled system. The hybrid framework is implemented into
the inner loop of a cascaded altitude controller for a high-fidelity, six-degree-of-freedom model
of the Cessna Citation II PH-LAB research aircraft. Compared to SAC-only, the SAC-IDHP
hybrid demonstrates an improvement in tracking performance of 0.74%, 5.46% and 0.82%
in nMAE for nominal case, longitudinal and lateral failure cases respectively. Random online
policy initialization is eliminated due to identity initialization of the hybrid policy, resulting in
an argument for increased safety. Additionally, robustness to biased sensor noise, initial flight
condition and random critic initialization is demonstrated.

Nomenclature

x, s, a = environment state, reinforcement-learning state and environment action vectors
x𝑒, x𝑐 = environment state error and cost vectors
𝑛, 𝑘, 𝑚 = number of reinforcement-learning states, environment states and environment actions
𝑟, 𝛾 = instantaneous reward and discount factor
𝜏 = target smoothing factor
𝛿 = temporal difference error
𝑡,Δ𝑡, 𝑁, 𝑇 = current time-step, sample time [s], number of samples and simulation time [s]
𝑓 (s, a) = state transition function
_𝑇 , _𝑆 = temporal and spacial scaling coefficients
𝜋, 𝜋\ , `\ , 𝜎\ = policy, parametric policy and stochastic policy parameterized mean and standard deviation
𝑄 𝜋 , 𝑄𝑤 , 𝑉𝜋 = action-state value function, parameterized action-state value function and state value function
_𝑤 = parameterized state-derivative of the state value function
\, 𝑤, 𝑤′ = policy, critic and target critic parameter vectors
H , H̄ , [ = entropy, entropy target and temperature coefficient
[𝑎, [𝑐 = actor and critic learning rates
D,B = replay buffer and mini-batch
𝐿 𝜋 , 𝐿𝑄, 𝐿_, 𝐿[ = loss functions for policy, SAC-critic, IDHP-critic and temperature coefficient
𝐹, 𝐺,Θ,Λ, 𝑋 = state, input, parameter, covariance and measurement matrices of the incremental model
^, 𝝐 = incremental model forgetting factor and innovation or error vector
𝛿𝑒, 𝛿𝑎, 𝛿𝑟 = elevator, aileron and rudder deflection [deg]
𝑝, 𝑞, 𝑟 = roll rate, pitch rate and yaw rate [deg/s]
𝛼, 𝛽, \, 𝜙, 𝜓 = angle of attack, sideslip angle, pitch angle and heading angle [deg]
𝑉, ℎ = airspeed [m/s], altitude [m]

∗M.Sc. Student, Control & Simulation, Delft University of Technology.
†Assistant Professor, Control & Simulation, Delft University of Technology.
Code available at https://github.com/CasperTeirlinck/RLFC-SACIDHP
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I. Introduction
New automation techniques play a vital role in both the safety and economics of current and future aerospace industry

needs. Developments in urban air mobility initiatives focusing on (e)VTOL aircraft have a need for novel automation
techniques. Many safety and autonomy challenges have to be overcome to make this viable [1]. In commercial air
transportation, there is also significant interest in better fault tolerance and automation techniques. Accident rates have
dropped significantly over the last two decades, however of all fatal accidents in commercial flights from 2009 to 2018,
60.4% are still caused by in-flight loss of control [2]. Flight control systems that are currently in use mainly use classical
control theory. These techniques use linear controllers and require gain scheduling in order to cover the flight envelope
of non-linear systems. This gain-scheduling process can be tedious, especially for complex coupled-dynamics systems,
and also relies on an accurate plant dynamics model [3]. These classical controllers also lack adaptive behaviour and
are not sufficient for increasingly autonomous systems that need to be able to deal with unexpected failures. Hence,
there is a need for methods that better handle non-linear systems and can enable fault-tolerant control. Reinforcement
Learning (RL) from the field of Machine Learning (ML) [4] is now being researched for adaptive control applications.
Traditional tabular RL methods use discrete state and action spaces, which are infeasible for controlling most complex
airborne systems. Thanks to the developments in continuous function approximators such as Artificial Neural Networks
(ANNs), continuous state and action spaces are possible and several methods have been developed. Adaptive and robust
control can be achieved with RL by using online and offline learning techniques. While training online can be highly
adaptive, it can also be a safety concern due to a continually changing policy. Instead, RL controllers can also be trained
offline, where the generalization power of the function approximators provides robust control.

The field of Approximate Dynamic Programming (ADP) [5] [6] uses mostly shallow ANNs as function approximators
and contains the class of Adaptive Critic Designs (ACDs) [7]. These actor-critic designs have been successfully
applied in simulation to flight control of a business jet aircraft [8], helicopter tracking control [9] and flight control of a
fighter aircraft model[10]. The ADP methods do however still require an accurate model of the plant dynamics in an
offline training phase, which limits the ability to deal with random failures. Newer ACDs implement an incremental
approach to system identification, which makes them highly adaptive and not reliant on accurate system models.
Incremental Heuristic Dynamic Programming (IHDP) [11] and Incremental Dual Heuristic Programming (IDHP) [12]
both are incremental methods that can be applied fully online and provide adaptive fault-tolerant control by identifying
an incremental plant model in real-time. Recent works [13] [14] [15] on these Incremental Approximate Dynamic
Programming (iADP) methods have further explored their applicability to flight control of the PH-LAB research aircraft,
but still require more validation and high fidelity simulations before real-world flight tests are feasible. The main
advantage for (i)ADP methods is the high sample efficiency, with the potential to react to severe failure cases.

Thanks to the increasing popularity of Deep Learning (DL) in recent years, the advancements made in training
Deep Neural Networks (DNNs) have found their way into RL characterizing the field of Deep Reinforcement Learning
(DRL). A major development by DeepMind in 2015 used DRL to achieve human-level performance on a number of
classic Atari games using a deep Q-network [16]. With a similar achievement in 2017, DeepMind’s AlphaGo [17]
also demonstrated the ability of DRL algorithms to outperform a human by defeating a world-class GO player. For the
continuous control of an aircraft, DRL methods that specifically can handle continuous spate and action spaces can be
used. Trust Region Policy Optimization (TRPO) [18] and Deep Deterministic Policy Gradient (DDPG) [19] are two
notable extensions of the classic Q-learning approach that provide continuous control. TRPO has been improved on
by the state-of-the-art algorithm, Proximal Policy Optimization (PPO) which has been successfully demonstrated in
control of a fixed-wing UAV [20] and path generation for an aircraft guidance task[21]. DDPG has also been improved
with state-of-the-art algorithms such as Twin-Delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic
(SAC) which improve the learning instability of DDPG. UAV path planning and tracking control have been demonstrated
using TD3 [22] [23] and SAC [24] [25] [26]. SAC has recently also been researched in the context of a coupled flight
controller for the PH-LAB research aircraft [27], making the SAC controller the baseline for this research. The main
advantage of DRL methods is the generalization power of the DNNs and the scalability to high-dimensional spaces.

The contribution of this paper is to advance the development of model-independent, adaptive and robust flight
controllers. More specifically, by developing an RL-based flight controller for the Cessna Citation II. This is achieved by
presenting a hybrid framework that aims to combine the advantages of the state-of-the-art SAC and IDHP frameworks in
providing fault-tolerance to unexpected failures and providing robust flight control.

The theoretical foundations for the SAC and IDHP algorithms are presented in section II followed by the flight
controller design in section III. The results of the hybrid method compared to SAC-only are discussed in section IV
followed by the conclusion in section V.
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II. Fundamentals
This section first formulates the flight control task as a reinforcement learning problem. Additionally, a detailed

overview of the two baseline algorithms used in finding a suitable control policy is provided.

A. Reinforcement Learning Problem Formulation
RL frameworks involve working inside the agent-environment interface, which is mathematically described by a

Markov Decision Process (MDP). This consists of a RL agent that at time 𝑡 selects an action a𝑡 ∈ R𝑚 which acts on
the environment with state s𝑡 ∈ R𝑛. The next state is determined by the state-transition function as seen in Equation 1
which is governed by the environment dynamics. The MDP has the Markov Property, meaning that the current state
and action carry all the information to predict the next state. A scalar reward 𝑟𝑡+1 ∈ R is then determined based on the
environment state and used as feedback for the agent. The goal of the agent is to maximize the reward over the time
of the episode of 𝑁 time-steps, or the discounted return 𝐺𝑡 defined in Equation 2. The discount factor 𝛾 is used to
trade-off future to immediate rewards.

Actor-critic RL frameworks consists of an actor that learns the policy, and a critic that learns a value function. The
policy can be stochastic as in Equation 3, or deterministic as in Equation 5. Both policy types are used in the hybrid
framework presented in this research. Additionally, the critic can estimate an action-value function, or Q-function 𝑄 𝜋

as seen in Equation 4. The Q-function maps a given state and action to a scalar value representing the value of being in
that state and taking the given action, while following the policy 𝜋 thereafter. This type of value function is used in the
SAC framework. A state value function as seen in Equation 6 works similarly, but only maps a given state to the value
of being in that state. The state derivative of the state value function is used in the IDHP framework.

Note that in practice, the state s𝑡 is often a subset of the full environment state x𝑡 and/or is augmented with additional
samples as shown in section III, however the terms for RL-state and environment state are often used interchangeably.

s𝑡+1 = 𝑓 (s𝑡 , a𝑡 ) (1) 𝐺𝑡 =

𝑁∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (2)

a𝑡 ∼ 𝜋(· | s𝑡 ) (3) 𝑄 𝜋 (s𝑡 , a𝑡 ) = E
𝜋
[𝐺𝑡 | s𝑡 , a𝑡 ] (4)

a𝑡 = 𝜋(s𝑡 ) (5) 𝑉𝜋 (s𝑡 ) = E
𝜋
[𝐺𝑡 | s𝑡 ] (6)

B. Soft Actor-Critic Framework
Soft Actor-Critic (SAC) is a state-of-the-art offline-learning off-policy DRL algorithm [28]. The main characteristics

of SAC are the use of soft policy iteration which includes an entropy term in the policy objective function, and the
use of a stochastic policy during training. Hence, a high level of exploration is achieved and the SAC agent is trained
offline. When evaluated, the policy is sampled using only the mean of the policy distribution, making it deterministic at
evaluation. Since SAC is off-policy, experience replay is used by storing samples in the replay buffer D. Every learning
step, a mini-batch B of experience samples can be sampled from the replay buffer.

1. Actor
The actor learns the SAC policy 𝜋\ , parameterized by the parameter vector \ representing the parameters of a DNN.

The stochastic policy distribution is implemented by having two outputs of the policy, being the standard deviation
𝜎\ and mean `\ . This is then used to sample an action from a normal distribution with 𝜎\ and `\ . Note that this
sampling requires a “reparameterization trick” to ensure differentiability of the sampled action, which is necessary
for the gradient calculations. This is usually implemented using an input Gaussian noise vector 𝜖𝑡 and sampling an
action using a𝑡 = 𝑓\ (𝜖𝑡 , s𝑡 ) = `\ (s𝑡 ) + 𝜖𝑡 · 𝜎\ (s𝑡 ). In [29] this reparameterization is implemented manually, but the
implementation of the normal distribution used here applies this under the hood.

The loss function for the policy can be seen in Equation 7. It depends on the Q-function critics and also includes the
entropy term with the coefficient [. The log probabilities log 𝜋\ (a𝑡 | s𝑡 ) are also derived from the normal distribution
and used in the update rules of both the actor and the critic.
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𝐿 𝜋 = E
s𝑡∼Ba𝑡∼𝜋

[
min
𝑖=1,2

𝑄′
𝑤′
𝑖
(s𝑡 , a𝑡 ) − [ log 𝜋\ (a𝑡 | s𝑡 )

]
(7)

In complex control tasks like 6-degree-of-freedom flight control, the action of the SAC policy tends to be highly
noisy and oscillatory. A method to smooth out the control input can be implemented by letting the policy control the
action increment Δa instead of the action directly [27]. The development of a hybrid framework in this research however
requires both the SAC and the IDHP frameworks to operate inside the same control loop. Initial tests showed the IDHP
framework has difficulty controlling an action derivative as opposed to the direct action of a complex system. Hence, a
different method is chosen to smooth out the policy that is compatible with direct action control using an additional
policy regularization term.

Using temporal and spatial regularization terms, described by Conditioning for Action Policy Smoothness (CAPS)
[30] forces the policy to keep new actions close to the previous action, and keeps actions close to actions corresponding
to similar states. The temporal regularization loss is defined in Equation 8 and computes the distance between the
previous and current actions. The spacial regularization loss is defined in Equation 9 and computes the distance between
the action and the action based on a normally sampled state s̄ ∼ 𝑁 (s, 𝜎 = 0.05). The distances are implemented as the
L2-norm. The total CAPS loss term is defined in Equation 10 and includes two additional scaling parameters _𝑇 and _𝑆
for the temporal and spacial terms respectively. Note that only the mean, or the deterministic action of the policy is used
in computing the distances and not the entire policy distribution

𝐿𝑇 = 𝐷 (𝜋(s𝑡 ), 𝜋(s𝑡+1)) = | |𝜋(s𝑡 ) − 𝜋(s𝑡+1) | |2 (8) 𝐿𝑆 = 𝐷 (𝜋(s), 𝜋(s̄)) = | |𝜋(s) − 𝜋(s̄) | |2 (9)

𝐿𝐶𝐴𝑃𝑆
𝜋 = 𝐿 𝜋 + _𝑇𝐿𝑇 + _𝑆𝐿𝑆 (10)

2. Critic
The critic learns the Q-function and in this case consists of two separate critics 𝑄𝑤𝑖

with their respective target critics
𝑄′

𝑤′
𝑖

and parameters vectors 𝑤𝑖 and 𝑤′
𝑖

for 𝑖 ∈ [1, 2]. Each Q-function is updated separately using its own loss function,
and the minimum of the two Q-values is used in the update rules to prevent overestimation. The target critics are used to
slow down the gradient updates with the purpose of increasing learning stability. This is achieved by updating the target
weights according to a soft update mechanism 𝑤′

𝑡+1 = 𝜏𝑤𝑡 + (1 − 𝜏)𝑤′
𝑡 using the smoothing factor 𝜏. The loss function

for the critic can be seen in Equation 11. As already seen in the actor update rule, the minimum of the twin target critics
is used in the update rule of actor and critic. This is done to prevent over-estimation of the value.

𝐿𝑄𝑖
= E

(s𝑡+1 ,s𝑡 ,a𝑡 )∼B
a𝑡+1∼𝜋

[(
𝑄𝑤𝑖

(s𝑡 , a𝑡 ) −
(
𝑟𝑡+1 + 𝛾

(
min
𝑖=1,2

𝑄′
𝑤′
𝑖
(s𝑡+1, a𝑡+1) − [ log 𝜋\ (a𝑡+1 | s𝑡+1)

)))2
]

(11)

3. Entropy
The SAC framework tries to maximize entropy in addition to maximizing the expected return. This ensures a high

level of exploration. The entropy of the policy distribution is defined in Equation 12.

H(𝜋\ (· | s𝑡+1)) = Ea∼𝜋 [− log 𝜋\ (a | s𝑡 )] (12)

In the update rules of the actor and critic, the entropy term is weighted using the entropy coefficient or temperature
coefficient [. The SAC algorithm has been shown to be highly sensitive to the temperature coefficient, thus it was
proposed by [28] to learn [ automatically. The loss function for this automatic learning process can be seen in
Equation 13. The term H̄ is a constant entropy target and is set to the negative of the action space size [29]. In the case
of an aircraft environment with three control surfaces, H̄ = −3.

𝐿[ = E
s𝑡∼Ba𝑡∼𝜋

[
−[ log 𝜋\ (a𝑡 | s𝑡 ) − [H̄

]
(13)
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4. Overview
In Figure 1, an overview of the SAC framework can be seen showing the interactions between the actor, critic,

entropy and environment. Data flow is depicted by solid arrows, while update processes are shown using dashed arrows.
The off-policy design is made clear by having two kinds of forward passes through the policy, one where the environment
observation generates a new action to take every time-step, and one where the replay buffer is sampled to perform the
updates. Also, different notations of the replay buffer signals are used where {𝑎𝑡 } is an action batch sampled from the
replay buffer and {𝑎𝑡 } ∼ 𝜋 is a batch of newly generated actions using the observations from the replay buffer. The
policy and Q-functions are modelled using DNNs. The update rules described above update the network parameters
according to Stochastic Gradient Descent (SGD) using the gradients ∇\𝐿 𝜋 , ∇𝑤𝑖

𝐿𝑄𝑖
and ∇[𝐿[ for the actor, critics and

temperature coefficient respectively.

Critic

Actor

𝑤𝑖

{s𝑡 , a𝑡 }

{s𝑡 , s𝑡+1}

{𝑟𝑡+1}

Replay Buffer D

𝑟𝑡+1s𝑡+1

Environment

𝑄𝑡𝑖 Critics 𝑄𝑤𝑖

min𝑖 𝑄′
𝑡

min𝑖 𝑄′
𝑡+1

Target Critics 𝑄′
𝑤′
𝑖

Loss 𝐿𝑄𝑖

log 𝜋𝑡

a𝑡

a𝑡

{a𝑡 , a𝑡+1} ∼ 𝜋

{a𝑡 , a𝑡+1} ∼ 𝜋

log 𝜋𝑡+1

Policy 𝜋\Loss 𝐿𝜋

Entropy Coef. [

s𝑡
{s𝑡 , s𝑡+1}

Loss 𝐿[

[𝑡

∇[𝐿[

∇\𝐿𝜋

∇𝑤𝐿𝑄𝑖

Fig. 1 SAC framework architecture, adapted from [27]

C. Incremental Dual Heuristic Programming Framework
Incremental Dual Heuristic Programming (IDHP) is a state-of-the-art online on-policy ACD algorithm [7]. IDHP is

characterized by a linearized, time-varying incremental model of the environment. This model is estimated online and
part of the learning process. The agent assumes no prior knowledge of the environment dynamics, hence this method is
still considered model-free in the context of this research. Furthermore, the policy is deterministic and the critic consists
of the derivative of the state value function as opposed to a Q-function critic in SAC. Compared to SAC, the sample
efficiency is considerably higher, assuming a sufficiently high sampling rate [31], and this method can be trained online
providing an adaptive fault-tolerant control policy.

Note that the distinction between the RL-state s and the environment state x is important to make here. Since s
is often only a subset or augmented version of x by design, the state vector used by the partial state derivatives and
incremental model has to be explicitly defined as the environment state vector x in order for the incremental model to
retain a meaningful estimation of the system dynamics.
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1. Actor
The actor learns the deterministic IDHP policy 𝜋\ parameterized by the parameter vector \. The loss function for

the policy can be seen in Equation 14 and consists of the next Bellman value estimate with 𝛾 the discount factor. Since
the output of the critic is the state partial derivative of 𝑉 , the gradient of 𝐿 𝜋 does not need backpropagation through the
critic network and can use the output of the critic directly in the gradient. The gradient of the loss function can then be
derived as seen in Equation 15 where the critic value comes from the target critic _′

𝑤′ . The term 𝜕x𝑡+1
𝜕a𝑡 can be replaced

by the incremental model input matrix 𝐺𝑡−1 as per definition of the input matrix according to the model discussed in
section II.C.3. The term 𝜕a𝑡

𝜕\
is calculated using backpropagation on the actor.

𝐿 𝜋 = −𝑉 (s𝑡 ) = − [𝑟𝑡+1 + 𝛾𝑉 (s𝑡+1)] (14)

∇\𝐿 𝜋 =
𝜕𝐿 𝜋

𝜕\
= −

[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝜕x𝑡+1
𝜕a𝑡

𝜕a𝑡
𝜕\

(15)

= −
[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝐺𝑡−1

𝜕a𝑡
𝜕\

2. Critic
The IDHP critic estimates the partial derivative of the state value function with respect to the state _𝑤 (s𝑡 ) = 𝜕𝑉 (s𝑡 )

𝜕x𝑡
with parameter vector 𝑤.

The loss is defined as the mean squared error of the state derivative of the TD error 𝜕𝛿𝑡
𝜕x𝑡 as seen in Equation 16. In

Equation 17, the formulation of the TD error for the critic can be seen, which corresponds to the next value function
estimate called the TD target minus the current value estimate 𝑉 (s𝑡 ). Taking the state partial derivative of the TD error
results in Equation 18 where the TD target is calculated using the target critic value _′

𝑤′ . The state derivative of the
reward is provided by the environment, while the term 𝜕x𝑡+1

𝜕x𝑡 can be computed by using the incremental model as seen
in Equation 19. The term 𝜕a𝑡

𝜕x𝑡 or 𝜕𝜋\ (a𝑡 |s𝑡 )
𝜕x𝑡 can be obtained by backpropagation through the policy network. The loss

gradient can then be derived using these previous definitions, as seen in Equation 20. The target critics are updated
according to the same smooth update method used in SAC.

𝐿_ =
1
2

(
−𝜕𝛿𝑡

𝜕x𝑡

) (
−𝜕𝛿𝑡

𝜕x𝑡

)𝑇
(16) 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (s𝑡+1) −𝑉 (s𝑡 ) (17)

𝜕𝛿𝑡

𝜕x𝑡
=

[
𝜕𝑟𝑡+1
𝜕x𝑡+1

+ 𝛾_′𝑤′ (s𝑡+1)
]
𝜕x𝑡+1
𝜕x𝑡

− _𝑤 (s𝑡 ) (18)
𝜕x𝑡+1
𝜕x𝑡

= 𝐹𝑡−1 + 𝐺𝑡−1
𝜕a𝑡
𝜕x𝑡

(19)

∇𝑤𝐿_ =
𝜕𝐿_

𝜕𝑤
=

𝜕𝐿_

𝜕_𝑤 (s𝑡 )
𝜕_𝑤 (s𝑡 )

𝜕𝑤
= −𝜕𝛿𝑡

𝜕x𝑡
𝜕_𝑤 (s𝑡 )

𝜕𝑤
(20)

3. Incremental Model
The incremental model provides a future estimate of the environment state to be used in the update rules for the actor

and critic. This model is derived from a first-order Taylor series expansion [32] and can be seen in Equation 25. Here,
the state matrix 𝐹𝑡−1 and input matrix 𝐺𝑡−1 are time-varying and are updated every time-step using an RLS estimator.

The RLS update rule of the incremental model can be seen in Equation 22 with Θ the parameter matrix as defined in
Equation 21 and ^ ∈ [0, 1] the forgetting factor. The measurement matrix 𝑋 contains the increments of the previous state
and action as seen in Equation 24. The error or innovation 𝜖 is defined in Equation 26 and represents the prediction error
between the actual state and the predicted state. Finally, the covariance matrix Λ estimates a measure of the covariance
of the parameter estimates and is updated according to Equation 23. Both the parameter matrix and covariance matrix
are expressed recursively and thus need an initial value. In this case, the parameter matrix is initialized as zero’s and the
covariance matrix as an identity matrix of magnitude Λ0 as no prior knowledge of the parameter covariances is assumed.
The magnitude Λ0 is usually set to a large value, as the uncertainty of the parameters is high at the initial stage. The
state and input matrices of the incremental model are used in the update rules of both the actor and the critic.
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Θ𝑡−1 =

[
𝐹𝑇
𝑡−1

𝐺𝑇
𝑡−1

]
(21) Θ𝑡 = Θ𝑡−1 +

Λ𝑡−1𝑋𝑡

^ + 𝑋𝑇
𝑡 Λ𝑡−1𝑋𝑡

𝝐 𝑡 (22) Λ𝑡 =
1
^

[
Λ𝑡−1 −

Λ𝑡−1𝑋𝑡𝑋
𝑇
𝑡 Λ𝑡−1

^ + 𝑋𝑇
𝑡 Λ𝑡−1𝑋𝑡

]
(23)

𝑋𝑡 =

[
Δx𝑡
Δa𝑡

]
(24) Δx𝑡+1 = 𝐹𝑡−1Δx𝑡 + 𝐺𝑡−1Δa𝑡 (25) 𝝐 𝑡 = Δx𝑇𝑡+1 − Δx̂𝑇𝑡+1 = Δx𝑇𝑡+1 − 𝑋𝑇

𝑡 Θ𝑡−1 (26)

4. Overview
An overview of the IDHP framework can be seen in Figure 2 which shows the interactions between the actor,

critic, incremental model and the environment. Compared to SAC, the actor and critic networks are much shallower
and narrower networks, using only a single layer of neurons. The update rules described above update the network
parameters according to SGD using the gradients ∇\𝐿 𝜋 and ∇𝑤𝐿_ for the actor and critic respectively. Additionally,
the incremental model is updated using the RLS update rule.

Actor

Critic

s𝑡+1

s𝑡+1

Environment
a𝑡

a𝑡 Policy 𝜋\Loss 𝐿𝜋

_𝑡

𝑤

Critic _𝑤

Target Critic _′
𝑤′

𝐺𝑡−1

𝐹𝑡−1
Incremental

Model

Loss 𝐿_

_′
𝑡+1

s𝑡

Δx𝑡 , Δx𝑡+1

Δa𝑡

𝜕𝑟𝑡+1
𝜕x𝑡+1

𝜕a𝑡
𝜕x𝑡

∇\𝐿𝜋

∇𝑤𝐿_

x𝑡+1

s𝑡
x𝑡

Fig. 2 IDHP framework architecture, adapted from [13][14][15]

III. Flight Controller Design
The flight controller design involves integrating the RL algorithms into a suitable altitude control loop designed to

interface with a simulation model of the PH-LAB research aircraft.

A. High-Fidelity Environment Model
The environment is modelled by a high-fidelity non-linear fully-coupled simulation model of the Cessna Citation

500 jet aircraft, built using the DASMAT tool by the Delft University of Technology [33] based on real world flight data.
This model can be considered equivalent to the Cessna 550 Citation II PH-LAB aircraft, which is the target platform for
the developed controller, despite the difference in fuselage size, engine power and wing size [34]. All simulations are
performed with the controller and environment model running at 100𝐻𝑧.

The environment state x ∈ R𝑘 and input vector a ∈ R𝑚 can be seen in Equation 27 and Equation 28 respectively. The
environment state x used throughout this paper is the observed state as seen by the RL agent, while the full aircraft state
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available from the simulation model is denoted by x’. A clean configuration is used for all simulations. Additionally,
a yaw damper and auto-throttle are provided by the simulation model. The auto-throttle tries to maintain a constant
airspeed set by the initial flight condition. The initial control inputs are always untrimmed and zero at the start of a
simulation.

x’ = [𝑝, 𝑞, 𝑟, 𝑉, 𝛼, 𝛽, \, 𝜙, 𝜓, ℎ]𝑇 ⇒ x = [𝑝, 𝑞, 𝑟, 𝛼, \, 𝜙, 𝛽, ℎ]𝑇 (27) a = [𝛿𝑒, 𝛿𝑎, 𝛿𝑟 ]𝑇 (28)

B. Network Architecture
The following two sections describe in more detail the neural network architecture of the SAC and IDHP actors and

critics. The SAC network architectures are used in the offline SAC agent of the attitude and altitude controllers, while the
SAC-IDHP networks are only used in the inner attitude controller of the final controller structure during online learning.

1. SAC Network Architecture
The network topology of actor and critic can be seen in Figure 3. Hidden layer neurons are identified as ℎ and output

layers by 𝑜 with superscript for layer number and subscript for neuron number.
The network of a single Q-function critic in Figure 3a takes both the RL-state and the action as inputs per definition

of the Q-function with a single scalar output. The policy network in Figure 3b is constructed using two separate output
layers `\ and log𝜎\ for the policy mean and standard deviation respectively. The network estimates the log of the
standard deviation in order to stay in R and the exponential is taken in order to build the policy distribution.

Both the actor and critic contain two hidden layers of sizes 𝑙1 and 𝑙2. Each hidden neuron ℎ consists of a
weighted linear combination of the input vectors with an additional bias term. The signal is subsequently passed to
a LayerNormalization layer [35] and finally passed to a ReLU activation function. The output neurons have a linear
activation function. All the weights, biases and normalization parameters form the parameter vectors \ and 𝑤𝑖 for the
actor and critics respectively.

𝑠1

...
𝑠𝑛

𝑎1

...
𝑎𝑚

Input
layer

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1
𝑄𝑤

Output
layer

(a) SAC critic Q-function architecture

𝑠1

...
𝑠𝑛

Input
layer

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1
1

`\1

...

𝑜1
𝑚

`\𝑚

Output
layer(s)

𝑜2
1

log𝜎\1

...

𝑜2
𝑚

log𝜎\𝑚

(b) SAC policy Architecture

Fig. 3 SAC network architectures

2. Hybrid SAC-IDHP Network Architecture
The novelty of the hybrid SAC-IDHP controller developed in this research lies in large part in the network structure

of the hybrid policy, as seen in Figure 4b. Contrary to a traditional policy network used in IDHP agents, the hybrid
policy includes the pre-trained layers ℎ1′ , ℎ2′ and 𝑜1′ corresponding to ℎ1, ℎ2 and 𝑜1 of the SAC policy. For the output
layer, only the policy mean output of the SAC policy is used. The parameters of these pre-trained SAC layers are frozen
during the IDHP learning process. Furthermore, the IDHP hidden units ℎ1 and ℎ2 do contain learnable parameters
consisting of only weights and no bias. Similarly to the SAC policy, the activation function used on the additional hidden
layers are ReLU functions, but no LayerNormalization is used in the IDHP neurons. Linear activation functions are used
on the output neurons. The hybrid policy parameters vector thus only contains the weights of the hidden units ℎ1 and ℎ2.
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By constructing the hybrid policy in this way, the goal is to maintain as much of the pre-learned information of the
robust SAC policy during online learning. In order to achieve this, the learnable IDHP policy layers are initialized using
the identity matrix as opposed to random initialization.

The critic on the other hand relates to a more traditional network structure used in Dual Heuristic Programming as
seen in Figure 4a consisting of a single hidden layer. The IDHP critic accepts the RL-state as input and estimates the
partial state derivative of the state value function 𝜕𝑉

𝜕x with 𝑘 elements. The hidden units are constructed identically to
the policy hidden units but with hyperbolic tangent activation functions, while the output neurons also have a linear
activation function. The initialization of the critic weights is random as opposed to the actor and sampled from a
truncated normal distribution with standard deviation 𝜎𝑐.

𝑠1

...
𝑠𝑛

Input
layer

ℎ1
1

...

ℎ1
𝑙

Hidden
layer

𝑜1

𝜕𝑉
𝜕𝑥1

...

𝑜𝑘

𝜕𝑉
𝜕𝑥𝑘

Output
layer

(a) IDHP critic architecture

𝑠1

...
𝑠𝑛

Input
layer

ℎ1′
1

...

ℎ1′
𝑙1

Hidden
SAC

layer 1

ℎ1
1

...

ℎ1
𝑙1

Hidden
layer 1

ℎ2′
1

...

ℎ2′
𝑙2

Hidden
SAC

layer 2

ℎ2
1

...

ℎ2
𝑙2

Hidden
layer 2

𝑜1′
1

𝑎0

...

𝑜1′
𝑚

𝑎𝑚

Output
SAC

layer `

(b) Hybrid IDHP-SAC combined policy architecture

Fig. 4 Hybrid IDHP-SAC network architectures

C. Attitude Controller
The attitude or inner control loop tracks reference signals for pitch, roll and sideslip angles as seen in Equation 29,

and outputs the environment action vector. The tracking error vector can then be defined as in Equation 30 where 𝑃 is a
binary selection matrix defined in Equation 32 mapping the aircraft state to the tracked states. In order to keep the error
signals in similar order of magnitude, the scaling vector from Equation 31 is determined by trial and error, where the
sideslip signal receives a larger scale due to its lower overall magnitude resulting from the zero-sideslip hold task.

x𝑟
𝑎𝑡𝑡

= [\𝑟 , 𝜙𝑟 , 𝛽𝑟 ]𝑇 (29) x𝑒
𝑎𝑡𝑡

𝑡 = x𝑟
𝑎𝑡𝑡

𝑡 − 𝑃𝑎𝑡𝑡x𝑡+1 = [\𝑟 − \, 𝜙𝑟 − 𝜙, 𝛽𝑟 − 𝛽]𝑇 (30)

x𝑐
𝑎𝑡𝑡

=
180
𝜋

[
1

30
,

1
30

,
1

7.5

]𝑇
(31) 𝑃𝑎𝑡𝑡 =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

 (32)

1. SAC Attitude Controller
In the context of SAC, a reward function and RL-state vector are defined by Equation 33 and Equation 34 respectively.

The reward function represents the negative of the L1 norm of the scaled error vector clipped on the [−1, 1] interval.
The RL-state vector consists of the scaled error vector to ensure good steady-state response and additionally the pitch,
roll and yaw rates for improved transient response [27].

𝑟𝑆𝐴𝐶
𝑎𝑡𝑡

𝑡+1 = −1
3

clip
[
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡

, ®-1, ®1
]

1
(33) s𝑆𝐴𝐶

𝑎𝑡𝑡

𝑡+1 =

[
𝑝, 𝑞, 𝑟,

(
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡
)𝑇 ]𝑇

(34)

2. IDHP Attitude Controller
The IDHP framework utilizes a reward function defined as the squared scaled error vector, defined in Equation 35.

The RL-state for the IDHP critic is defined in Equation 36 and contains the three body rates, pitch, roll, sideslip and
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angle of attack angles and the scaled error vector. Note that the IDHP framework requires the state derivative of the
reward function as defined in Equation 37 which can be derived directly using the definitions of the reward function and
error vector.

Note that the RL-state vector for the IDHP actor is the same as the state vector for the SAC actor due to the hybrid
policy architecture, and that the environment state vector for the incremental model excludes the altitude from the vector
defined in Equation 27.

𝑟 𝐼𝐷𝐻𝑃
𝑡+1 = −

[
x𝑒

𝑎𝑡𝑡

𝑡

]𝑇 [
𝑑𝑖𝑎𝑔 x𝑐

𝑎𝑡𝑡
] [

x𝑒
𝑎𝑡𝑡

𝑡

]
(35) s𝐼𝐷𝐻𝑃

𝑡+1 =

[
𝑝, 𝑞, 𝑟, 𝛼, \, 𝜙, 𝛽,

(
x𝑒

𝑎𝑡𝑡

𝑡 ⊙ x𝑐
𝑎𝑡𝑡
)𝑇 ]𝑇

(36)

𝜕𝑟 𝐼𝐷𝐻𝑃
𝑡+1
𝜕x𝑡+1

= 2
[
x𝑒

𝑎𝑡𝑡

𝑡

]𝑇 [
𝑑𝑖𝑎𝑔 x𝑐

𝑎𝑡𝑡
]
𝑃𝑎𝑡𝑡 (37)

D. Altitude Controller
The altitude or outer control loop only tracks the altitude reference signal and outputs the reference signal for the

pitch angle. The reference vector is defined in Equation 39 with the error vector in Equation 39 using the selection
matrix from Equation 41. Also, the altitude error signal requires a scaling factor, as seen in Equation 40.

x𝑟
𝑎𝑙𝑡

= [ℎ𝑟 ] (38) x𝑒
𝑎𝑙𝑡

𝑡 = x𝑟
𝑎𝑙𝑡

𝑡 − 𝑃𝑎𝑙𝑡x𝑡+1 = [ℎ𝑟 − ℎ, ] (39)

x𝑐
𝑎𝑙𝑡

=

[
1

240

]
(40) 𝑃𝑎𝑙𝑡 =

[
0 0 0 0 0 0 0 1

]
(41)

1. SAC Altitude Controller
The outer control loop only implements the SAC algorithm with a reward function similar to the SAC attitude

controller as seen in Equation 42. The RL-state vector defined in Equation 43 is simpler than the attitude controller,
with only containing the scaled error vector. This is because only the kinematic relationship between the pitch angle and
altitude has to be learned.

𝑟𝑆𝐴𝐶
𝑎𝑙𝑡

𝑡+1 = −
clip

[
x𝑒

𝑎𝑙𝑡

𝑡 ⊙ x𝑐
𝑎𝑙𝑡

, ®-1, ®1
]

1
(42) s𝑆𝐴𝐶

𝑎𝑙𝑡

𝑡+1 =

[
x𝑒

𝑎𝑙𝑡

𝑡 ⊙ x𝑐
𝑎𝑙𝑡
]

(43)

E. Hybrid SAC-IDHP Cascaded Controller
In Figure 5 a control loop diagram can be seen of the complete cascaded SAC-IDHP hybrid altitude-attitude

controller. Only the inner attitude controller implements the hybrid architecture, as it is assumed the majority of dynamic
relations that will change during failure modes are learned in the inner loop. Hence, an adaptive element is most useful
in the inner loop and the outer loop is only trained offline with the SAC algorithm in order to limit the overall complexity.
The dotted lines in the hybrid attitude controller represent the signal flow during online operation, where the IDHP
attitude controller controls the aircraft and the SAC attitude controller only provides its pre-learned policy weights.

Hybrid Attitude Controller

𝑝, 𝑞, 𝑟 ,
𝛼, 𝛽, 𝜙, \
𝜓, 𝑉𝑇𝐴𝑆 , ℎ

Plant
a

𝛿𝑒
𝛿𝑎 , 𝛿𝑟

- 𝜙

𝛽-

\𝑟

\-
x𝑒

x
s

𝜋\

SAC Attitude
Controller

IDHP Attitude
Controller

𝑟 (x𝑒 )
𝜙𝑟

𝛽𝑟

𝜕𝑟 (x𝑒 )
𝜕x

s SAC Attitude
Controller

𝑟 (x𝑒 )

ℎ𝑟

ℎ-

Fig. 5 SAC-IDHP Cascaded Altitude and Attitude Controller Structure
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F. Training Strategy
The hybrid RL controller involves multiple stages of training. The SAC attitude and altitude controllers are trained

offline, while the SAC-IDHP attitude controller requires an initial online training phase. The training strategy and
hyperparameters used for all phases are discussed in this section.

1. Offline SAC Training
The SAC attitude agent is trained first using a maximum of 1000000 time steps. This corresponds to 500 20𝑠

training episodes with a double step reference signal for the pitch and roll angles. The magnitude and sign of the step
signals is uniformly sampled from [20◦, 10◦] and [40◦, 20◦] for the pitch and roll angles, respectively. After every
training episode, the agent is evaluated using the same task, but without the randomized reference signal magnitudes
and using the maximum values instead. The sideslip reference signal is always held at zero. A batch of at least 5 agents
with differing random seeds is trained, where the best performing agent is selected to train the altitude controller.

The altitude controller follows the same training strategy with alternating climb, descend and altitude hold reference
signals using 50𝑚 altitude differences. The roll and sideslip reference signals are equal to the attitude training task.

The hyperparameters used for both SAC controllers can be seen in Table 1 consisting of default values from the
original SAC papers and empirically determined values. The parameters 𝛾, 𝜏, 𝑙1, 𝑙2, [𝑎, [𝑐, |B| and [0 are taken from the
previously successful SAC implementation [27], while the maximum replay buffer size |D| has been increased compared
to that paper as better learning stability was observed with a larger buffer size. The CAPS regularization coefficients
_𝑇 and _𝑆 have been determined by trial and error, whereby a trade-off is made between increased smoothness of the
policy’s action, and decreased tracking performance with increasing coefficient values. The altitude controller requires
smaller CAPS scaling coefficients, likely due to the decreased learning complexity of the outer altitude control. Note
that the learning rates are linearly decreased to 0 over the total number of time steps.

In Figure 6 the reward curves for attitude and altitude controllers can be seen, showing the average and interquartile
ranges over 5 random seeds of converged runs. The attitude and altitude controllers plateau at around −250 and −30
respectively, with little improvements after the initial 200000 time steps.

Compared to the equivalent training curves shown in previous research on the same system [27] the interquartile
range of the current results is considerably smaller. This improved learning stability is assumed to be caused by the
utilization of direct control and CAPS regularization as opposed to an incremental control approach in the previous
research.

Fig. 6 SAC offline training curves of
attitude and altitude controllers. Mean
smoothed by a window of size 20 and
the interquartile range over 5 random
seeds are shown by the solid lines and
shaded regions respectively.

Table 1 SAC Hyperparameters, adapted from [27] [28] [29]

Param. Value Value Description
Attitude Altitude
Agent Agent

𝛾 0.99 0.99 Discount factor
𝜏 0.005 0.005 Target critic mixing factor
𝑙1, 𝑙2 [64, 64] [32, 32] Actor/Critic hidden layer sizes
[𝑎, [𝑐 4.4𝑒 − 4 3.0𝑒 − 4 Actor/Critic initial learning rate
|B| 256 256 Replay buffer mini-batch size
|D| 1000000 1000000 Replay buffer maximum size
_𝑇 , _𝑆 400, 400 10, 10 CAPS scaling coefficients
[0 1.0 1.0 Initial temperature coefficient

2. Online IDHP Training
The IDHP framework requires initial excitation of all the environment states in order to successfully identify the

incremental model. In previous IDHP-only frameworks [13] [14], an exponentially decaying sinusoidal excitation signal

11

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

5,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
24

06
 



is added to the agent’s action in order to excite the system during the initial training phase. An advantage of the hybrid
framework is the presence of the pre-existing converged SAC policy, as obtained in subsubsection III.F.1 at the start
of the online learning phase. Because of the identity initialization of the hybrid policy, the initial excitation can be
provided by the SAC policy, driven by the reference signals without the use of additional excitation signals. The hybrid
attitude controller thus requires an initial online training task using in this case sinusoidal reference signals on the pitch,
roll and sideslip angles. The reference signal for the sideslip is decaying in order to better preserve aircraft stability.
The IDHP specific hyperparameters used are seen in Table 2, while the SAC portion only involves inference and no
updates to the SAC layers are performed during online learning. The IDHP hyperparameters are taken from previous
IDHP-only configurations [13] with the exception of the layer size 𝑙 and learning rates [𝑎 and [𝑐. The hidden layer size
is empirically determined at a small value for increased learning stability, but without observing significant loss in
learning ability. The learning rates are determined using trial and error by increasing learning rates until noticeable
oscillations or instability appears in the training tasks.

The response on the training task can be seen in Figure 7 where also the SAC-only response is shown. The
progression of the actor/critic weights and the incremental model parameters can be seen in Figure 8. Note that weights
of identity initialized networks remain near the identity matrix [36], hence the actor weights seen in the parameter plots
are plotted separately around 1 and 0. The parameters’ progression demonstrates the hybrid method can converge on the
training task, with the actor-critic weights and the parameter matrices of the incremental model all converging. The 𝐹

and 𝐺 matrices take approximately 8s to converge, while the critic weights are stable after 30s. The actor weights are
converging more slowly, but have reached the converging range within the 60s training task.

The nMAE metric as later defined in section IV can already be used here to compare the initial tracking performance
with SAC-only. With an nMAE of 7.41% for the hybrid and 10.31% for SAC-only, a noticeable improvement of
2.9% in tracking performance is already demonstrated. Looking at the visual tracking response, after approximately
20s, the hybrid agent has successfully corrected for the steady-state error of the SAC policy with a smaller tracking
error near the sinusoidal peaks of the pitch and roll reference signals. The sideslip tracking performance shows little
difference, as the SAC policy is already providing a low error. Note that before 20s, the initial converge phase results in
temporary divergence from the tracking signal, hence the importance of a controlled training task before performing
flight manoeuvre tasks. Also note that the airspeed tracking is handled by the auto-throttle from the DASMAT model
and is not managed by the RL-agent.

The resulting weights and parameters are stored and used as initial condition for the hybrid attitude agent in the
following flight manoeuvre demonstrations.
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Fig. 7 SAC-IDHP online training response of attitude controller. nMAE = 7.41% for SAC-IDHP and 10.31%
for SAC-only.

Table 2 IDHP Hyperparameters, adapted from [13] [14]

Parameter Value Description

𝛾 0.8 Discount factor
𝜏 0.01 Target critic mixing factor
𝑙 8 Critic hidden layer size
[𝑎, [𝑐 0.2, 1.0 Actor/Critic learning rate
^ 1.0 Incremental model forgetting factor
Λ0 1 · 108 Initial covariance matrix magnitude
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Fig. 8 SAC-IDHP online training of attitude controller, actor/critic weights and incremental model parameters.

IV. Results and Discussion
The response of the Hybrid controller and the SAC-only controller are compared on the simulation model of the

Cessna Citation jet aircraft. First, the aircraft in nominal state is evaluated after which several aircraft failures are
simulated and the performance between SAC-IDHP and SAC-only is compared. All evaluation runs are performed
using an initial condition of ℎ = 2000𝑚 and 𝑉 = 90𝑚

𝑠
. Additional results concerning varying initial flight conditions,

critic initialization and sensor noise are discussed in subsubsection IV.C.1.
A performance metric used in addressing tracking performance is the normalized Mean Absolute Error (nMAE)

averaged over externally tracked states which are altitude, roll and sideslip angles for the altitude tasks, and pitch, roll
and sideslip angles for the attitude tasks. The normalization is done over the maximum reference signal range with the
exception of the sideslip angle, where the normalization range is set at [−5◦, 5◦] as its reference signal is always 0.

A. Nominal System
The proposed flight controller should be able to control the aircraft in nominal condition without failures. This

section presents the control response on the altitude task by comparing the performance of the SAC-only controller
against the hybrid SAC-IDHP controller.

In Figure 9 the response on the altitude task can be seen. The external reference signal for the altitude is set at a
steady climb and descend over 250m with a 15s hold in between. The bank angle reference is set at alternating 20◦ and
40◦ turns motivated by CS-25 specifications for nominal coordinated turns [37]. The sideslip reference is set at zero per
definition of a coordinated turn. The pitch angle reference signal shown in the response plots is generated by the SAC
outer loop controller based on the altitude error.

Comparing tracking performance, the SAC-only agent achieves a nMAE of 2.77% and the hybrid 2.03% showing
a small improvement of 0.74%. Most notably, the sideslip angle has reduced peaks, but the longitudinal states show
increased oscillatory behaviour in the hybrid response while keeping closer to the reference signal. The SAC agent
shows similar tracking performance to previously developed SAC controllers on the same system [27]. This shows that
both SAC-only and the hybrid agent have satisfactory tracking performance on the nominal altitude tracking task.
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Fig. 9 Altitude tracking response on nominal system. SAC-IDHP and SAC-only compared. nMAE = 2.03% for
SAC-IDHP and 2.77% for SAC-only.

B. Failed System
The two most important failure cases tested in this section are the reduced effectiveness of the elevator and ailerons

to demonstrate longitudinal and lateral failures respectively. The same reference signals are used as for the nominal case
except for the maximum bank angle which is set at 20◦.

1. Reduced Elevator Effectiveness
In Figure 10 the response of 70% reduced elevator effectiveness at t=30s can be seen. The SAC agent achieves a

nMAE of 7.99% while the hybrid agent maintains an nMAE of 2.53%, an improvement of 5.46%. This shows the
hybrid policy is successful in correcting for performance degradation present in the robust response of the SAC policy.
Looking at the response, the SAC agent remains stable, but with a considerable tracking error on the altitude due to the
heavily reduced elevator effectiveness. The response of the hybrid agent remains close to the altitude reference while
also improving on a small steady state error appearing on the roll angle for SAC. Overall, the hybrid agent shows greatly
improved tracking performance, but with slightly increased oscillations mainly in the longitudinal states.
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Fig. 10 Altitude tracking response on system with 70% reduced elevator effectiveness from t=30s. SAC-IDHP
and SAC-only compared. nMAE = 2.53% for SAC-IDHP and 7.99% for SAC-only.

2. Reduced Aileron Effectiveness
In Figure 11 the response to 90% reduced aileron effectiveness from t=30s can be seen. Comparing tracking error

between SAC and SAC-IDHP, the respective nMAE of 3.28% and 2.46% only show a 0.82% improvement for the hybrid
agent. This is in line with the nominal case as can also be seen from visual inspection. The robust response of the
SAC policy successfully corrects for the reduced elevator effectiveness by increasing the maximum aileron deflection
from approximately 4◦ to 26◦ and keeping the tracking error small. Nonetheless, the hybrid agent still provides small
improvements in rise time of the bank angle, and keeping slightly closer to the zero sideslip reference. Note that for the
hybrid agent, increased oscillations are noticeably prevalent in the longitudinal states.
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Fig. 11 Altitude tracking response on system with 90% reduced aileron effectiveness from t=30s. SAC-IDHP
and SAC-only compared. nMAE = 2.46% for SAC-IDHP and 3.28% for SAC-only.

C. Additional Results
Additional experiments are performed in order to judge the robustness and reliability of the hybrid SAC-IDHP

controller compared to a SAC-only controller. Robustness to varying initial flight condition, biased sensor noise and
random critic initialization are explored.

1. Robustness to Initial Flight Condition
The SAC offline and the hybrid online training tasks are all performed on an initial condition of ℎ0 = 2000𝑚 and

𝑉0 = 90𝑚
𝑠

. This section explores variability in tracking performance with changing initial conditions different from the
training conditions, all performed on the altitude tracking task with 20◦ maximum bank angle.

In Table 3 the nMAE for 4 different flight conditions can be seen with FC2 being the nominal condition. The flight
conditions are in order of increasing dynamic pressure. It can be seen that tracking error and error variability across the
flight conditions is lower for the hybrid method. For FC1 with the lowest dynamic pressure, the SAC agent has the
largest error with decreasing error with increasing dynamic pressure, except that FC4 has a slightly higher error than
FC2. This pattern is not present for the hybrid method, which has a considerably lower variance and stays within 0.27%
nMAE. Note that the scope of this analysis excludes variability over multiple SAC reference policies and IDHP training
seeds, the latter being discussed independently in section IV.C.3.
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Table 3 Robustness to initial flight conditions of cascaded altitude controllers.

Flight Condition Initial Altitude [m] Initial Airspeed [m/s] nMAE nMAE
SAC-only SAC-IDHP

FC1 5000 90 4.71% 1.96%
FC2 (nominal) 2000 90 2.76% 2.02%
FC3 5000 140 2.05% 1.75%
FC4 2000 140 2.27% 2.01%

2. Biased Sensor Noise
Sensor noise is an essential element in assessing a closer to real-world environment. Biased sensor noise is applied

to the observed state using measurement values derived from the PH-LAB aircraft [33] as seen in Table 4. It was noticed
during initial testing that the incremental model identification of the IDHP framework produces inconsistent results
when high frequency oscillation are present in the states. Hence, a low-pass filter with 𝜔0 = 40𝑑𝑒𝑔 is applied to the
observation for the IDHP update rule, with an equivalent filter applied to the SAC-only update rules for a fair comparison.
The exact nominal altitude task from subsection IV.A is used, with a resulting nMAE of 2.69% for SAC-only and 2.00%
for the hybrid agent. This corresponds to a respective 0.08% and 0.03% reduction in nMAE compared to the case
without noise, attributed to the bias having a positive effect on the error, but also indicating both controllers maintain
performance in the presence of sensor noise. Note however that the hybrid agent suffers from increased oscillations
compared to SAC-only and the case without sensor noise, but shows to have no negative effect on tracking performance.
Again, the scope of this analysis excludes variability over IDHP training seeds and SAC reference policies.

Table 4 Cessna Citation PH-LAB sensor noise characteristics [33]

State Bias 𝝁 Variance 𝝈2

𝑝, 𝑞, 𝑟 [𝑟𝑎𝑑/𝑠] 3.0 · 10−5 4.0 · 10−7

\, 𝜙 [𝑟𝑎𝑑] 4.0 · 10−3 1.0 · 10−9

𝛽 [𝑟𝑎𝑑] 1.8 · 10−3 7.5 · 10−8

ℎ [𝑚] 8.0 · 10−3 4.5 · 10−3

3. Sensitivity to Random Critic Initialization
Compared to IDHP-only frameworks, the hybrid framework has a lesser degree online random initialization because

of the identity initialization of the IDHP actor layers. The online critic however is still initialized by sampling from a
truncated normal distribution with zero mean and a standard deviation 𝜎𝑐 as seen in Equation 44. The effect of this
random initialization and the effect of varying standard deviations is evaluated in this section.

All training runs are performed using same hyperparameters from Table 2. A total of 150 runs are performed, 50 for
each of three different standard deviations.

An additional metric is used in order to arrive at a total success rate per batch. Relating to the CAPS temporal loss
function used in the SAC offline training from Equation 8, a temporal loss metric is calculated per training run according
to Equation 45. The success threshold for the temporal loss metric is set at 𝐿𝑇 ≤ 0.01.

𝑤 ∼ N𝑡𝑟𝑢𝑛𝑐 (` = 0, 𝜎 = 𝜎𝑐) (44) 𝐿𝑇 = 𝐷 (𝜋(s𝑡 ), 𝜋(s𝑡+1)) =
𝑁∑︁
𝑡=1

| |a𝑡−1 − a𝑡 ) | |2 (45)

Looking at the results in Table 5, the success rates for three critic standard deviations can be seen with 𝜎𝑐 = 0.05
the nominal case. The convergence rate tracks the number of runs that become unstable in the parameters, while the
total success rate combines the convergence and temporal metrics. A lower standard deviation results in a more stable
training experience, indicated by the 100% success rate of a lower standard deviation compared to the nominal case. A
higher standard deviation then results in a lower success rate.
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To show the effect of random critic initialization on the response, the interquartile range of the states over 50 runs
of the nominal case is presented in Figure 12. Only the successful runs are presented meaning 72% or 36 runs. This
shows the level of variation the random seed causes during the training task. This shows a satisfactory and safe training
response with the states remaining close to the reference signal, even during the initial convergence period before t=20s,
but keeping in mind the success rate.

Due to the hybrid policy design and identity initialization of online learning policy layers, it is proposed that a failed
online training run can safely be reset due to the presence of the pre-trained SAC policy layers. This is in contrast with
IDHP-only methods which start with zero knowledge at the start of the training phase.

Table 5 Success rates on SAC-IDHP attitude training task with varying random critic initialization. Analysed
over 50 runs per configuration.

Network Initialization Convergence Rate Temporal Loss Rate Total Success Rate

𝜎𝑐 = 0.01 100.0% 100.0% 100.0%
𝜎𝑐 = 0.05 (nominal) 92.00% 78.26% 72.00%
𝜎𝑐 = 0.10 68.00% 70.59% 48.00%

Fig. 12 SAC-IDHP response on attitude training task with 𝜎𝑐 = 0.05 over 36 successful runs.
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V. Conclusion
It is demonstrated that a hybrid SAC-IDHP offline-online learning controller can be successfully implemented and

provide coupled-dynamics fault-tolerant flight control in a complete RL-based cascaded altitude controller. It is shown
that compared to SAC-only, the online learning of the hybrid policy architecture provides more adaptive control with
lower tracking error across all tested nominal and failure cases. An improvement in nMAE of 0.74%, 5.46% and 0.82%
is demonstrated for nominal case, longitudinal and lateral failure cases respectively. Compared to IDHP-only, random
initialization of the actor is removed by the hybrid policy. It is proposed that this provides the ability to revert to a robust
response only and reset online IDHP learning safely in flight due to the presence of robust pre-trained policy layers.
Additionally, the hybrid architecture provides increased confidence in including IDHP into a fully coupled-dynamics
6-degree-of-freedom control loop.

The SAC-IDHP agent however exhibits increased oscillations mainly in the longitudinal states, most noticeable
when adding biased sensor noise, but still providing lower tracking error compared to SAC-only. Challenges with offline
SAC learning remain, including inconsistent training performance due to the many stochastic factors, but is improved by
the use of CAPS regularization. Further research is recommended into comparison with IDHP-only and the safety of
SAC and IDHP in covering the entire flight envelope before executing flight tests on the PH-LAB aircraft.
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