

Delft University of Technology

Optimizing Routing and Fleet Sizing for Flash Delivery Operations

Kronmüller, M.

DOI
10.4233/uuid:5f831793-2dbc-4b24-9d92-1441f2d8ba16
Publication date
2024
Document Version
Final published version
Citation (APA)
Kronmüller, M. (2024). Optimizing Routing and Fleet Sizing for Flash Delivery Operations. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:5f831793-2dbc-4b24-9d92-
1441f2d8ba16

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:5f831793-2dbc-4b24-9d92-1441f2d8ba16
https://doi.org/10.4233/uuid:5f831793-2dbc-4b24-9d92-1441f2d8ba16
https://doi.org/10.4233/uuid:5f831793-2dbc-4b24-9d92-1441f2d8ba16

Optimizing Routing and Fleet Sizing for
Flash Delivery Operations

Optimizing Routing and Fleet Sizing for
Flash Delivery Operations

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Wednesday 31 January 2024 at 12:30 o’clock

by

Maximilian KRONMÜLLER

Master of Science in Applied and Engineering Physics,
Technical University Munich, Germany

born in Stuttgart, Germany

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof. dr. R. Babuska Delft University of Technology, promotor
Dr. J. Alonso-Mora Delft University of Technology, promotor

Independent members:
Prof. dr. ir. L.A. Tavasszy Delft University of Technology
Prof. dr. ir. K.I. Aardal Delft University of Technology
Prof. dr. ir. M.B.M. de Koster Erasmus University Rotterdam
Prof. dr.-ing. K. Bogenberger Technical University of Munich, Germany
Dr. A.S. Fielbaum Schnitzler University of Sydney, Australia

Printed by: Ridderprint

Cover by: Maximilian Kronmüller

Copyright © 2024 by M. Kronmüller

ISBN 978-94-6384-533-5

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Mit dem Wissen wächst der Zweifel.

Johann Wolfgang von Goethe

Doubt grows with knowledge.

Johann Wolfgang von Goethe

Contents

Summary xi

Samenvatting xiii

Zusammenfassung xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 2
1.2 Research Questions . 5
1.3 Approach . 6
1.4 Contribution Statement . 7
1.5 Research Beyond this Thesis . 8
1.6 Outline . 8

2 Online Flash Delivery from Multiple Depots 11
2.1 Introduction. 12
2.2 Related Work . 14

2.2.1 Same-Day Delivery Problem 14
2.2.2 Other related Problems. 15

2.3 Problem Formulation . 16
2.4 Method . 20

2.4.1 Method Overview. 20
2.4.2 Finding Pick-up Locations . 22
2.4.3 Trip Generation. 22
2.4.4 Assignment of Trips to Vehicles 24
2.4.5 Time-Propagation . 25
2.4.6 Complexity and Optimality Analysis 26

2.5 Experiments and Results . 27
2.5.1 Base Scenario . 27
2.5.2 Comparison . 31
2.5.3 Sensitivity Analysis . 33

2.6 Conclusion . 37
2.7 Chapter Appendix . 38

3 Routing of Heterogeneous Fleets for Flash Deliveries via
Vehicle Group Assignment 41
3.1 Introduction. 42
3.2 Related Work . 42

vii

viii Contents

3.3 Problem Formulation . 43
3.3.1 Notation and Problem Statement 44
3.3.2 Markov Decision Process . 45

3.4 Method . 46
3.4.1 Selecting Potential Pick-up Locations 47
3.4.2 Finding Potential Trips. 47
3.4.3 Assigning Trips . 47

3.5 Experiments and Results . 48
3.5.1 Comparison to Other Approaches 49
3.5.2 Fleet Composition . 51

3.6 Conclusion . 51
3.7 Chapter Appendix . 52

3.7.1 Details on Split&Route. 52

4 Reducing the Minimal Fleet Size by Delaying Individual Tasks 53
4.1 Introduction. 54
4.2 Related Work . 55

4.2.1 Overview . 55
4.2.2 Chaining-based approaches. 56

4.3 Problem Formulation . 57
4.3.1 Formal Problem Formulation 57
4.3.2 Problem Complexity . 59

4.4 Method . 62
4.4.1 Mixed Integer Linear Problem 62
4.4.2 Heuristics . 65
4.4.3 Solving the Mixed Integer Linear Problem 65

4.5 Experiments and Results . 66
4.5.1 Overview . 66
4.5.2 Gridworld . 66
4.5.3 Case Study: Manhattan . 72

4.6 Conclusion . 74
4.7 Chapter Appendix . 75

4.7.1 Notation. 75
4.7.2 Result Tables . 76
4.7.3 Plots of Heuristic Experiments. 78
4.7.4 Details on Vehicle Group Assignment for Pooling 79
4.7.5 Details on the Manhattan Dataset. 79

5 Fleet Sizing for the Flash Delivery Problem from Multiple
Depots a Case Study in Amsterdam 81
5.1 Introduction. 82
5.2 Related Work . 83

5.2.1 Fleet Sizing . 83
5.2.2 Routing for the Flash Delivery Problem. 84

Contents ix

5.3 Problem Formulation . 84
5.4 Method . 86

5.4.1 Pooling . 88
5.4.2 Chaining . 88

5.5 Dataset . 89
5.6 Experiments and Results . 90

5.6.1 Experimental Setup. 90
5.6.2 Results . 90

5.7 Conclusion . 94

6 Conclusion 97
6.1 Conclusion . 98

6.1.1 Answering the Posed Main-Research Question 99
6.2 Future Research . 100

6.2.1 Vehicle Routing for Flash Deliveries 100
6.2.2 Fleet Sizing . 101

Bibliography 103

Acknowledgements 113

Curriculum Vitæ 115

List of Publications 117

Summary
In recent years, Flash Delivery services have gained great popularity. Flash Delivery
is a service where goods of daily need can be ordered on-demand and subsequently
are delivered to the customer within a short time window, for example, in the next
ten minutes. Operational efficiency and cost management are vital for sustainability
in this competitive landscape, especially in the long term. To this end, this thesis
aims to improve operational planning for Flash Delivery Operations. It focuses on
two fundamental questions critical for the success of Flash Deliveries: the associ-
ated Vehicle Routing Problem and the associated Fleet Sizing Problem. The Vehicle
Routing Problem aims to determine how to best utilize a given fleet of vehicles to
deliver the requested orders efficiently, while the Fleet Sizing Problem involves find-
ing the optimal number of vehicles required to serve the given demand. The primary
objective of this dissertation is to provide algorithmic contributions, specifically fo-
cusing on optimizing vehicle routing and fleet sizing for Flash Delivery services.

First, the Flash Delivery Problem is formally defined and modeled as a Markov
Decision Process. This serves as the basis for the dissertation’s research and subse-
quent investigations. The thesis then proposes a novel routing algorithm for Flash
Deliveries from multiple depots, which effectively handles multiple depots for order
pick-up and dynamically determines the optimal depot for each order. The depots
are distributed within the city, for example, using existing stores, this differs from
other logistical processes using large warehouses outside of the city. Additionally,
this approach allows vehicles to visit depots to load additional orders before dis-
tributing their loaded ones, resulting in more agile planning. The scalability of this
method is demonstrated in scenarios involving thousands of orders and tens of ve-
hicles.

The proposed routing method is then extended to accommodate heterogeneous vehi-
cles and heterogeneous modes of transportation. Experiments using a fleet featuring
trucks and drones demonstrate that this approach serves more orders while requiring
less total traveled distance compared to a state-of-the-art method for heterogeneous
vehicles. The effects of fleet size and fleet composition between drones and trucks
are also examined. More drones were able to deliver more requests at the cost of an
increase in traveled distance.

The Fleet Sizing Problem represents the second major challenge addressed in this
dissertation. The balance between having too many vehicles, which can be very ex-
pensive, and having too few, which leads to unmet promises and undelivered orders,
is crucial for operational success. Typically, the Fleet Sizing Problem involves a fixed
set of tasks with no flexibility in their execution. However, this thesis introduces a

xi

xii Summary

novel problem, adding flexibility in time through the allowance of slight delays in in-
dividual transportation tasks. We propose modeling and solving the novel problem
as a Mixed Integer Linear Program. By incorporating this flexibility, the problem
opens up a broader trade-off space between the required number of agents, traffic,
and added delays. As a result, fleet sizes can be significantly decreased. To illus-
trate the practical application of this algorithm, a case study involving taxi rides in
Manhattan is presented.

To conclude this thesis, fleet sizing is combined with the previously proposed rout-
ing methods for Flash Delivery, resulting in a novel approach. Our method groups
individual delivery requests and generates optimized operational plans using a vari-
ation of the earlier proposed routing techniques. These plans are then used for fleet
sizing. To assess the effectiveness of our approach, we compare it against applying
routing and fleet sizing separately. The results clearly demonstrate the value of
our proposed method. Our experimental analysis is based on a real-world dataset
provided by a Dutch retailer, allowing us to gain valuable insights into the design
of Flash Delivery operations.

In summary, this thesis makes significant contributions to the operational optimiza-
tion of Flash Delivery services by addressing key challenges in vehicle routing and
fleet sizing. We propose novel methods to improve efficiency and effectiveness in
planning Flash Delivery operations.

Samenvatting
In de afgelopen jaren hebben Flash Delivery diensten, of in het Nederlands Flitz
Bezorging diensten, enorm aan populariteit gewonnen. Flash Delivery is een dienst
waarbij goederen voor dagelijks gebruik op aanvraag kunnen worden besteld en ver-
volgens binnen een kort tijdsbestek, bijvoorbeeld in de volgende tien minuten, aan
de klant worden bezorgd. Operationele efficiëntie en kostenbeheer zijn van vitaal be-
lang voor duurzaamheid in dit competitieve landschap, vooral op de lange termijn.
Met dat doel voor ogen heeft deze dissertatie tot doel de operationele planning voor
Flash Delivery operaties te verbeteren. Het richt zich op twee fundamentele vragen
die cruciaal zijn voor het succes van Flash Delivery leveringen: het bijbehorende
Vehicle Routing Problem (Voertuigrouteringsprobleem) en het bijbehorende Fleet
Sizing Problem (Probleem van de Vlootomvang). Het Vehicle Routing Problem
heeft als doel te bepalen hoe een gegeven vloot van voertuigen het meest efficiënt
kan worden ingezet om de gevraagde bestellingen efficiënt te bezorgen. Het Fleet
Sizing Problem zich bezighoudt met het vinden van het optimale aantal voertuigen
dat nodig is om aan de gegeven vraag te voldoen. Het primaire doel van deze disser-
tatie is het ontwikkelen van algoritmes, met specifieke nadruk op het optimaliseren
van voertuigrouting en vlootomvang voor Flash Delivery diensten.

Ten eerste wordt het Flash Delivery Probleem formeel gedefinieerd en gemodelleerd
als een Markov Beslissingsproces. Dit dient als basis voor het onderzoek van de
dissertatie en de daaropvolgende onderzoeken. De dissertatie stelt vervolgens een
nieuw routeringsalgoritme voor Flash Delivery Leveringen voor vanuit meerdere de-
pots, dat op doeltreffende wijze meerdere depots voor het ophalen van bestellingen
beheert en dynamisch het optimale depot voor elke bestelling bepaalt. De depots
zijn verspreid binnen de stad, bijvoorbeeld gebruikmakend van bestaande winkels,
in tegenstelling tot andere logistieke processen met grote magazijnen buiten de stad.
Daarnaast stelt deze aanpak voertuigen in staat om depots te bezoeken om extra
bestellingen op te halen voordat ze hun geladen bestellingen distribueren, wat re-
sulteert in meer flexibele planning. De schaalbaarheid van deze methode wordt
gedemonstreerd in scenario’s met duizenden bestellingen en tientallen voertuigen.

De voorgestelde routeringsmethode wordt vervolgens uitgebreid om rekening te hou-
den met heterogene voertuigen en vervoerswijzen. accommoderen. Experimenten
met een vloot bestaande uit vrachtwagens en drones tonen aan dat deze aanpak
meer bestellingen kan verwerken terwijl er minder totale afgelegde afstand nodig
is in vergelijking met een state-of-the-art methode voor heterogene voertuigen. De
effecten van de grootte van de vloot en de verhouding tussen drones en vrachtwagens
worden ook onderzocht. Meer drones konden meer verzoeken afhandelen ten koste
van een toename in afgelegde afstand.

xiii

xiv Samenvatting

Het Fleet Sizing Problem vertegenwoordigt de tweede grote uitdaging die in deze
dissertatie wordt aangepakt. Het evenwicht tussen te veel voertuigen hebben, wat
erg duur kan zijn, en te weinig voertuigen hebben, wat leidt tot niet nagekomen be-
loften en niet-afgeleverde bestellingen, is cruciaal voor operationeel succes. Typisch
betreft het Fleet Sizing Problem een vaststaande reeks taken zonder flexibiliteit
in hun uitvoering. Deze dissertatie introduceert echter een nieuw probleem door
flexibiliteit in de tijd toe te staan met lichte vertragingen in individuele transport-
taken. We stellen voor om dit nieuwe probleem te modelleren en op te lossen als
een Gemengd Geheel Lineair Programmeringsprobleem. Door deze flexibiliteit mee
te nemen, opent het probleem een breder afwegingsgebied tussen het benodigde
aantal agenten, verkeer en toegevoegde vertragingen. Als gevolg daarvan kunnen
vlootgroottes aanzienlijk worden verkleind. Om de praktische toepassing van dit
algoritme te illustreren, wordt een casestudy gepresenteerd met taxiritten in Man-
hattan.

Ter afronding van deze dissertatie wordt de dimensionering van de vloot gecom-
bineerd met de eerder voorgestelde routeringsmethoden voor Flash Delivery, wat
resulteert in een nieuwe aanpak. Onze methode groepeert individuele leverings-
aanvragen en genereert geoptimaliseerde operationele plannen met behulp van een
variatie van de eerder voorgestelde routeringstechnieken. Deze plannen worden ver-
volgens gebruikt voor de dimensionering van de vloot. Om de effectiviteit van onze
aanpak te beoordelen, vergelijken we deze met het afzonderlijk toepassen van rou-
tering en dimensionering van de vloot. De resultaten tonen duidelijk de waarde
van onze voorgestelde methode aan. Onze experimentele analyse is gebaseerd op
een dataset uit de praktijk die is verstrekt door een Nederlandse retailer, wat ons
waardevolle inzichten geeft in het ontwerp van Flash Delivery-operaties.

Samenvattend levert deze dissertatie aanzienlijke bijdragen aan de operationele op-
timalisatie van Flash Delivery diensten door belangrijke uitdagingen in voertuigrou-
ting en vlootomvang aan te pakken. We stellen nieuwe methoden voor om efficiëntie
en effectiviteit te verbeteren bij het plannen van Flash Delivery operaties.

Zusammenfassung
In den letzten Jahren haben sich Angebote von Flash Delivery, oder zu Deutsch
Blitz-Lieferungen, großer Beliebtheit erfreut. Flash Delivery ist ein Service, bei
dem Güter des täglichen Bedarfs auf Abruf bestellt werden können und anschlie-
ßend innerhalb eines kurzen Zeitraums an den Kunden geliefert werden, beispiels-
weise innerhalb der nächsten zehn Minuten. Operative Effizienz und Kostenmana-
gement sind in dieser wettbewerbsintensiven Landschaft, insbesondere langfristig,
von entscheidender Bedeutung für die Nachhaltigkeit. Zu diesem Zweck zielt diese
Dissertation darauf ab, die operative Planung für Flash Delivery Operationen zu
verbessern. Wir konzentrieren uns auf zwei grundlegende Fragen, die für den Er-
folg von Flash Deliveries entscheidend sind: das zugehörige Vehicle Routing Problem
und das zugehörige Fleet Sizing Problem. Das Vehicle Routing Problem zielt darauf
ab, wie eine gegebene Fahrzeugflotte am effizientesten genutzt werden kann, um die
angeforderten Bestellungen effizient zuzustellen, während das Fleet Sizing Problem
die optimale Anzahl der benötigten Fahrzeuge für die gegebene Nachfrage ermittelt.
Das Hauptziel dieser Dissertation besteht darin, algorithmische Beiträge zu liefern,
die sich speziell auf die Optimierung der Fahrzeugrouten und die Größenanpassung
der Flotte für Flash Delivery Dienste konzentrieren.

Zunächst wird das Flash Delivery Problem formell definiert und als Markow Ent-
scheidungsprozess modelliert. Dies dient als Grundlage für die anschließenden Un-
tersuchungen in dieser Dissertation. Die Dissertation schlägt einen neuen Routenal-
gorithmus für Flash Deliveries von mehreren Depots vor, der effektiv mit mehreren
Depots für die Abholung von Bestellungen umgeht und dynamisch das optimale
Depot für jede Bestellung ermittelt. Die Depots befinden sich innerhalb der Stadt,
beispielsweise können bestehende Geschäfte genutzt werden, dies unterscheidet sich
von anderen logistischen Abläufen, die große Lagerhäuser außerhalb der Stadt nut-
zen. Darüber hinaus ermöglicht dieser Ansatz den Fahrzeugen, Depots zu besuchen,
um zusätzliche Bestellungen abzuholen, bevor sie ihre geladenen Bestellungen ver-
teilen, was zu einer flexibleren Planung führt. Die Skalierbarkeit dieser Methode
wird in Szenarien mit Tausenden von Bestellungen und Dutzenden von Fahrzeugen
demonstriert.

Die vorgeschlagene Routenmethode wird dann erweitert, um heterogene Fahrzeuge
und unterschiedliche Transportarten handhaben zu können. Experimente mit einer
Flotte von Lastwagen und Drohnen zeigen, dass dieser Ansatz mehr Bestellungen
bedient und gleichzeitig weniger Gesamtfahrstrecke erfordert im Vergleich zu einer
State-of-the-Art-Methode für heterogene Fahrzeuge. Die Auswirkungen der Flotten-
größe und der Flottenzusammensetzung zwischen Drohnen und Lastwagen werden
ebenfalls untersucht. Mehr Drohnen konnten mehr Bestellungen bedienen, was mit

xv

xvi Zusammenfassung

einer Zunahme der zurückgelegten Entfernung einherging.

Das Fleet Sizing Problem stellt die zweite große Herausforderung dar, die in die-
ser Dissertation behandelt wird. Das Gleichgewicht zwischen zu vielen Fahrzeugen,
was sehr teuer sein kann, und zu wenigen, was zu nicht erfüllten Versprechen und
nicht zugestellten Bestellungen führt, ist entscheidend für den operationellen Erfolg.
Normalerweise betrachtet das Fleet Sizing Problem eine feste Anzahl von Aufgaben
ohne Flexibilität in ihrer Ausführung. Diese Dissertation führt jedoch ein neues
Problem ein, indem sie Flexibilität in der Zeit durch die Zulassung geringfügiger
Verzögerungen in einzelnen Transportaufgaben ermöglicht. Wir schlagen vor, dieses
neue Problem als gemischt-ganzzahliges lineares Programm zu modellieren und zu
lösen. Durch die Integration dieser Flexibilität eröffnet das Problem einen breiteren
Abwägungsraum zwischen der erforderlichen Anzahl von Fahrzeugen, dem Verkehr
und zusätzlichen Verzögerungen. Infolgedessen können die Flottengrößen erheblich
reduziert werden. Zur Veranschaulichung der praktischen Anwendung dieses Algo-
rithmus wird eine Fallstudie mit Taxifahrten in Manhattan präsentiert.

Um diese Dissertation abzuschließen, wird die Größenanpassung der Flotte mit den
zuvor vorgeschlagenen Routenmethoden für Flash Delivery kombiniert, was zu ei-
nem neuen Ansatz führt. Unsere Methode gruppiert einzelne Lieferanfragen und
generiert optimierte operative Pläne unter Verwendung einer Variation der zuvor
vorgeschlagenen Routentechniken. Diese Pläne werden dann zur Größenanpassung
der Flotte verwendet. Um die Wirksamkeit unseres Ansatzes zu bewerten, verglei-
chen wir ihn mit der getrennten Anwendung von Routenplanung und Größenanpas-
sung der Flotte. Die Ergebnisse zeigen deutlich den Wert unserer vorgeschlagenen
Methode auf. Unsere experimentelle Analyse basiert auf einem realen Datensatz,
der von einem niederländischen Einzelhändler bereitgestellt wurde, was uns wert-
volle Einblicke in die Gestaltung von Flash Delivery Operationen ermöglicht.

Zusammenfassend leistet diese Dissertation erhebliche Beiträge zur operationellen
Optimierung von Flash Delivery Diensten, indem sie Schlüsselherausforderungen
bei der Fahrzeugroutenplanung und der Größenanpassung der Flotte angeht. Wir
schlagen neue Methoden vor, um die Effizienz und Effektivität bei der Planung von
Flash Delivery Operationen zu verbessern.

Acronyms
DMDVRP Dynamic Multi-Depot Vehicle Routing Problem

DVRP Dynamic Vehicle Routing Problem

FDP Flash Delivery Problem

FSD Fleet Sizing with Delays

FSP Fleet Sizing Problem

HVGA Heterogeneous Vehicle-Group Assignment

ILP Integer Linear Program

KPIs Key Performance Indicators

MDP Markov Decision Process

MILP Mixed Integer Linear Program

SDD Same-Day Delivery

SDDP Same-Day Delivery Problem

VGA Vehicle-Group Assignment

VRP Vehicle Routing Problem

xvii

1
Introduction

1

1

2 1. Introduction

1.1. Motivation
Flash Delivery services have gained considerable popularity in recent years. These
services cater to the immediate needs of customers by swiftly fulfilling their requests
for daily essential products. With Flash Delivery services, customers can now order
online and receive their desired products at their front door in a matter of min-
utes. Everyday inconveniences, such as missing an ingredient for a planned meal
or running out of snacks and drinks, are commonplace in today’s society. Flash
Delivery services have become a luxury that addresses these challenges, allowing
people to have their groceries and products of daily need delivered to their doorstep
within minutes, eliminating the need for a trip to the nearest supermarket. As a re-
sult, these services’ convenience and time-saving aspects have garnered widespread
appreciation. The increasing significance and positive reception of Flash Delivery
services are evident from the emergence of numerous young startups offering such
solutions and the substantial turnover these companies have achieved [1]. Startups
like Gorillas, Flink, and Getir are prime examples of enterprises that have entered
this market and gained considerable traction. In 2021 alone, the Dutch popula-
tion spent a staggering 40 million euros per month on Flash Deliveries [2]. On the
other side, during 2023, this trend slowed down, leaving the future of Flash Delivery
services uncertain.
The significance of Flash Delivery services is further strengthened by potential syn-
ergies with other technological advancements. Autonomous delivery robots and
autonomous driving technologies are emerging as game-changers in the logistics and
transportation industries. These developments have the potential to accelerate exist-
ing processes in the Flash Delivery domain. One notable example is Starship Tech-
nologies, whose robot solutions have successfully completed millions of autonomous
deliveries, showcasing the feasibility and efficiency of such systems [3]. As these au-
tonomous robots become more sophisticated and widespread, they can significantly
enhance last-mile delivery capabilities, offering even faster and more cost-effective
solutions. Similarly, the advancement of autonomous driving technologies could
eliminate the need for human drivers and associated risks [4, 5, 6, 7]. Furthermore,
the concept of fast individual deliveries by air, often explored through drone tech-
nologies, could open up new avenues for Flash Delivery services, particularly for
high-value items and in urban areas with complex traffic patterns.
At the same time, Flash Delivery services pose a significant challenge to traditional
retailers operating brick-and-mortar stores, as they offer customers a more conve-
nient and time-saving alternative that eliminates the need to visit physical stores
and carry products home. Established retailers have recognized the potential of
this sector and are actively exploring opportunities to expand their service port-
folio. A notable example is Albert Heijn, a prominent Dutch supermarket brand,
which has partnered with Thuisbezorgd, a Dutch food delivery company, to provide
grocery delivery services within Amsterdam [8]. Similarly, the strategic collabora-
tion between Cornershop and Uber exemplifies this change [9]. However, traditional
retailers also have certain potential advantages in the face of this disruption. For in-
stance, in Amsterdam, there is a ban on opening new dark stores [10]. Dark stores
are dedicated pick-up locations for online orders. This limitation on dark stores

1.1. Motivation

1

3

presents a unique opportunity for brick-and-mortar retailers to capitalize on their
existing physical infrastructure and utilize their stores as depots for Flash Delivery
operations.
From a more technical perspective, Flash Deliveries are often described with other
terms like logistics, last-mile, on-demand, or personal. The term Logistics refers
to the efficient flow of goods within a value chain, with a specific focus on the
movement of goods between different pick-up and drop-off locations in the context
of Flash Delivery. The term Last-mile highlights the goal of executed deliveries,
which involves reaching individual customers at their desired destinations. This
term emphasizes the critical final segment of the delivery process. Additionally,
Flash Delivery services are characterized as On-demand, meaning there is a short
time gap between placing an order and the final delivery of goods. During the
operation, the orders to fulfill change with time, and as such, the situation to plan
for. This changing real-time nature of the service is often referred to as a dynamic
problem. Flash Delivery services are personal, meaning each customer individually
specifies a relatively small assortment of ordered goods.
Flash Delivery services hold great potential from a scientific perspective as they have
not been extensively researched because they just emerged in the last years. Their
growth is driven by high demand and intense competition for market share. Opera-
tional efficiency and cost management are vital for sustainability in this competitive
landscape, especially in the long term. The delivery process and the necessary re-
sources to support it are major cost drivers within the Flash Delivery industry. The
limited exploration of routing and fleet design for Flash Delivery services, specif-
ically including the option of batching orders together, is the identified research
gap that this thesis addresses. These critical components have not been extensively
studied, providing promising opportunities for further research and optimization.
Despite presenting fascinating research opportunities, the practical implications of
resolving these problems go far beyond academic interests. By optimizing routing
and fleet design, Flash Delivery companies can achieve higher operational efficiency,
cost-effectiveness, and, ultimately, customer satisfaction. Consequently, investing
efforts in understanding and solving these challenges would be highly valuable, also
leading to more sustainable and successful Flash Delivery services in the future.
This thesis specifically addresses two fundamental questions crucial for the execution
of Flash Deliveries: the corresponding Vehicle Routing Problem (VRP) and the
corresponding Fleet Sizing Problem (FSP). In general, the VRP asks the question
of how a given fleet of vehicles is used best to deliver demand according to the
constraints of the operation at hand. The FSP raises the question of how many
vehicles are needed to serve some given demand best, given a rule on how vehicles
are used. As such, a dependency of the two problems emerges, which is illustrated
in Figure 1.1. Assuming a fleet of vehicles, for example, seven autonomous trucks,
the VRP for Flash Deliveries is to decide on their deployment to efficiently meet
the existing demand. This optimization leads to operational plans for each of these
seven vehicles. Achieving this requires a routing methodology. Using such a method
as a starting point, the FSP can be asked: “How many vehicles are needed to serve
the demand?”. Resulting in a number of required vehicles, which then again was

1

4 1. Introduction

Figure 1.1: The VRP and the FSP are interrelated. VRP optimizes the usage of a given fleet,
while the FSP determines the optimal number of vehicles under specific rules.

the starting point for the according VRP. This interplay is why both problems are
tackled within this dissertation and shapes the structure of the here presented work.

Finding a feasible solution, no matter the costs, for both of these questions is a
simple task. Simple approaches may not be the most efficient, such as dispatching
riders sequentially to new orders, according to the motto first in, first out, or siz-
ing the fleet based solely on past experience. More sophisticated approaches could
involve grouping orders for simultaneous delivery when their locations are close, im-
proving efficiency. Additionally, striking the right balance in fleet size is essential.
Operational inefficiencies and unnecessary costs may arise if the number of riders
is excessive. Conversely, too few riders can lead to an inability to meet promised
service levels. Addressing these complexities effectively is crucial for achieving high-
quality, cost-effective, and reliable Flash Delivery services. Other effects of being
efficient means fewer vehicles crowding cities and less traffic causing pollution and,
at the same time, being able to offer the operations sustainably. By developing ad-
vanced algorithms and strategies, this thesis aims to optimize on-demand last-mile
logistics, providing valuable insights for the Flash Delivery industry and contribut-
ing to the growth and success of this rapidly expanding sector.

For the remainder of this introduction chapter, the goals of this dissertation are spec-
ified and divided into manageable sub-questions in Section 1.2. To address these
objectives, we propose several algorithms from the field of combinatorial optimiza-
tion, specifically modeling the problems as Integer Linear Program (ILP) or Mixed
Integer Linear Program (MILP). These innovative algorithms draw inspiration from
ride pooling and ridesharing concepts and apply them to the logistics domain. Fur-
ther details on the proposed methodology are presented in Section 1.3. The main
scientific contributions of this work are summarized in Section 1.4, highlighting the

1.2. Research Questions

1

5

novel insights and advancements made in the area. Section 1.5 introduces collab-
orative works beyond the work presented in this thesis. Lastly, the structure of
the remaining dissertation is outlined in Section 1.6, providing readers with a clear
roadmap of the upcoming chapters and their content.

1.2. Research Questions
To tackle the above-motivated aim of this thesis, we formulate the main research
question and divide it into smaller sub-questions. These sub-questions are tackled
individually, each contributing to answering the main question, which we pose as
follows:

Main-Research Question:
How can the planning for Flash Delivery operations regarding vehicle routing
and fleet sizing be accomplished efficiently and effectively?

We decided to tackle vehicle routing first because assuming a method for how to
use each vehicle is a harder and stronger assumption than assuming a number of
vehicles to be used. For the routing problem for Flash Delivery services, we assume
as input a predefined fleet and an operation to be carried out. What each of the
agents should do, in which order, and when needs to be determined. To emulate the
situation of a traditional retailer, we consider multiple depots as pick-up locations,
which leads to the first sub-question:

Sub-Question 1: How can we efficiently plan vehicle routes for Flash De-
livery services from multiple stores?

A limitation of the proposed approach is the usage of a single vehicle type with iden-
tical characteristics. To generalize the found results from a single type of vehicle to
multiple ones, even including different modes of transportation, like trucks following
the road network and drones flying in the air, we ask the following sub-question:

Sub-Question 2: How can we generalize the previously developed routing
approach to heterogeneous modes of transportation?

Answering the previous two questions provides a method to determine what each
vehicle of the fleet does, given a concrete situation. Nevertheless, how many vehicles
the fleet should consist of can not yet be tackled other than by assuming different
fleets and testing using the developed tools. Under the assumption that vehicles
follow plans as determined by the previously proposed method, we ask the question
of fleet sizing as follows:

Sub-Question 3: How to optimize required fleet sizes for on-demand last-
mile delivery operations?

1

6 1. Introduction

Last, we want to bring the insights from a theoretical realm closer to an applied
operation. To do so, we apply the proposed methods to a dataset resembling a
Flash Delivery operation extrapolated from traditional shopping behavior in super-
markets. We ask:

Sub-Question 4: To what extent is Flash Delivery applicable to a tradi-
tional retailer?
To study this question, we apply the previously proposed methods together to a
real-life dataset provided by a traditional retailer.

1.3. Approach
At a high level, the algorithms developed in this thesis’s scope belong to the combina-
torial optimization field. Combinatorial optimization involves searching for optimal
solutions within a finite and discrete set of possibilities. However, these problems can
quickly become computationally challenging, making exhaustive searches impracti-
cal. More specifically, we model our problems as ILP or MILP. These problems are
linear in their objective function and constraints. For ILP, the variables are discrete.
The problems are classified as MILP if some variables are continuous.

We build on existing methods that focus on the transportation of people rather than
goods, like dial-a-ride services or taxi rides. While Flash Deliveries or on-demand
last-mile logistics and on-demand transportation of people share similarities, there
are three significant differences. First, taxi rides specify the pick-up and drop-off
location rather than a goal location only. For Flash Delivery, customers do not
mind at which location their goods are picked up. Second, people care about the
transportation process itself, which is not the case for goods. For example, the time
till pick-up that is considered for pooled taxi rides is negligible for logistics. Third,
in Flash Deliveries, the delay of individual orders is less important as long as they
are delivered within the promised times. In contrast, passengers are highly delay
sensitive.

More specifically, our proposed routing algorithm is inspired by a routing algorithm
for pooled taxi rides [11]. In essence, [11] proposes an approach that assigns each
vehicle a plan to follow in the near future based on the current problem state.
This is achieved through two steps: first, potential plans are determined for each
vehicle, and second, the plans to be executed are selected by solving an optimization
problem.

In our work regarding fleet design, we build upon the concept of chaining, which
was also originally introduced for taxi rides [12]. The core idea behind chaining is to
relocate vehicles to the start location of new transportation tasks after completing
a previous one. If this relocation can be accomplished within the required time
constraints, the same vehicle can be reused, reducing the need for additional vehicles.
By applying this method throughout an entire operation, chaining can determine
the number of vehicles required for efficient service.

1.4. Contribution Statement

1

7

1.4. Contribution Statement
This dissertation aims to provide algorithmic contributions for Flash Delivery ser-
vices, with a specific focus on optimizing vehicle routing and fleet sizing. The
contributions of this thesis are as follows:

• A formal problem formulation of the Flash Delivery Problem. We
formally define and model the Flash Delivery Problem as a Markov Decision
Process.

• An Algorithm for Online Flash Delivery from Multiple Depots. The
proposed method handles multiple depots for order pick-up and endogenously
determines the optimal depot for each order. Additionally, vehicles have the
flexibility to visit a depot to load additional orders before distributing their
already loaded ones if beneficial. The algorithm’s scalability is demonstrated
through successful application in scenarios with thousands of orders and tens
of vehicles.

• A Flash Delivery Routing Method for Heterogeneous Fleets: Building
upon the previously proposed routing method, we propose an extension that
allows for routing heterogeneous vehicles and accommodating various modes
of transportation. This approach considers the specific characteristics of each
vehicle and plans routes accordingly, optimizing the overall delivery process.

• A Fleet Sizing Algorithm for On-Demand Operations Allowing for
Delays: We propose a novel problem and algorithm for fleet sizing, which
allows delaying individual transportation tasks slightly. Thus, the trade-off
space between the required number of vehicles, traffic, and newly introduced
delay can be enlarged. This allows previous minimal fleets to be decreased.
The proposed approach is based on chaining and models and solves the prob-
lem as an MILP.

• A Fleet Sizing Algorithm including Sophisticated Routing: We pro-
pose a novel combination of methods enabling fleet sizing, including vehicle
routing for Flash Delivery operations from multiple stores. Combining a so-
phisticated routing method with fleet sizing enables better quality solutions
than applying either of them alone.

• Insights into Designing Flash Delivery Operations at Large Scale:
Through a comprehensive case study conducted in Amsterdam, we offer valu-
able insights into the design and implementation of Flash Delivery operations.
By exploring a real-world scenario, we aim to shed light on the challenges and
opportunities of large-scale Flash Delivery services.

Together, these contributions advance the field of on-demand last-mile logistics, pro-
viding efficient and effective solutions for vehicle routing and fleet sizing, ultimately
contributing to the improvement of modern delivery services and transportation
systems.

1

8 1. Introduction

1.5. Research Beyond this Thesis
Within the scope of this Ph.D. project, several additional research projects were
conducted in collaboration with colleagues and supervised students. Although not
the primary focus of this dissertation, these projects significantly contributed to the
dissertations related broader research landscape. In the following, we briefly provide
an overview of these projects:

• Group-Based Distributed Auction Algorithms for Multi-Robot Task
Assignment: We investigated dynamic distributed multi-robot task assign-
ment, aiming to find efficient methods for allocating tasks to multiple robots
[13]. We propose two group-based distributed auction algorithms guided by
auction principles. We show that the designed algorithms can compete with
a centralized ILP.

• Request Anticipation in Dynamic Vehicle Routing Problems: We
conducted research on the integration of anticipation to enhance the limita-
tions of fully myopic routing approaches [14, 15, 16]. In [14], a novel antic-
ipatory order insertion technique is proposed, which predicts future requests
based on clustered historical data. These predictions are then integrated into
a dynamic vehicle routing solver using heuristics and an adaptive large neigh-
borhood search. In contrast, [15] introduces alternative methods to modify
individual trip costs based on the current problem state to incorporate the
effect on future states. The adapted costs influence the calculation and selec-
tion of vehicle plans. Multiple ways to alter the cost terms are investigated.
In the scope of his master thesis [16], Stavya Bhatia builds upon the insights
gained from [15] and applies these approaches to the context of logistics and
Flash Deliveries.

• Fleet Sizing in On-Demand Delivery Services: Fleet sizing was the
focus of the master thesis of Cilia Claij [17], specifically examining the efficient
selection of pick-up locations from multiple stores in the FSP. This research
project aimed to optimize the fleet size while considering the most suitable
pick-up points to enhance operational efficiency.

• Learning-Based Methods for Operations Research: To assess the via-
bility of learning-based methods within this dissertation, we investigated the
application of transformer networks in tackling the classical operations re-
search problem known as the knapsack problem [18]. Through this investi-
gation, we aimed to explore the possibilities and limitations of utilizing such
methods in optimization tasks.

For detailed insights into each project, please refer to the corresponding publications.

1.6. Outline
A graphical outline of this thesis is visualized in Figure 1.2.

1.6. Outline

1

9

Figure 1.2: Graphical outline of the structure of this dissertation. Chapters 2 and 3 explore routing
algorithms, while Chapter 4 concerns fleet design algorithms. A case study is presented in Chapter
5. Chapter 6 concludes this thesis.

This introductory chapter, Chapter 1, provides the motivation behind the research,
presents the main and sub-research questions, and outlines the overall approach. It
also highlights the contributions of the thesis and briefly introduces collaborative
works.
In Chapter 2, a routing method for the Flash Delivery Problem (FDP) is proposed.
The method considers multiple depots and adapts plans in real-time to optimize the
delivery process.
Chapter 3 generalizes the routing method of Chapter 2 to accommodate multi-
modal transportation, encompassing various vehicle types such as trucks and drones.
In Chapter 4, fleet design for on-demand operations, proposing a methodology
that allows to delay individual tasks, is investigated.
Chapter 5 combines fleet sizing and routing for Flash Deliveries. A case study
in Amsterdam is conducted, providing practical applications and insights into real-
world Flash Delivery operations.
Finally, Chapter 6 concludes the thesis, summarizing the key findings and offering
potential directions for future research.

2
Online Flash Delivery from

Multiple Depots
This chapter formally introduces the Flash Delivery Problem and presents a novel
routing method for it. The proposed approach allows for the consideration of mul-
tiple pick-up locations per order and provides the flexibility to adapt the vehicle’s
route before being empty. This method serves as a central cornerstone of this thesis,
forming the basis for further extensions and reuse in multiple contexts.

This chapter is based on:

• M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "On-Demand Grocery Delivery From Multi-
ple Local Stores With Autonomous Robots", in Proceedings of the International Symposium
on Multi-Robot and Multi-Agent Systems (MRS), pp.29-37, 2021 [19]

• M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Online Flash Delivery from Multiple De-
pots", in Transportation Letters, pp.1-17, 2023 [20]

11

2

12 2. Online Flash Delivery from Multiple Depots

Abstract
In recent years, delivery companies that deliver orders minutes after being placed
have emerged in many countries. In this chapter, we study the underlying routing
problem, which we call Flash Delivery Problem. The Flash Delivery Problem is
a variation of the Same-Day Delivery Problem requiring that orders are delivered
minutes after being placed. The new problem is formally introduced, and a novel
solution approach with two novel features is proposed: i) Multiple depots, optimizing
where to pick up every order, ii) Allowing vehicles to perform depot returns prior to
being empty, thus adapting their trips to include new orders online. Both features
result in shorter distances and allow for more agile planning. The problem is solved
online in discrete time steps. In each time step, trips for vehicles are computed.
Vehicles then follow them till the next time step. In each time step, a large set of
potential trips is calculated. Subsequently, which of these trips will be executed and
by which vehicle is decided by solving an integer linear program. Trips can serve
multiple orders together, define which depots to use, and can be updated in later
steps. Results show an improvement of 20% over a greedy approach. Considering
multiple depots also shows to be beneficial. Experiments with up to 10500 orders
show the scalability of the approach.

2.1. Introduction
The possibility to order and have one’s goods delivered within the next minutes
is appreciated by many customers. For groceries and products of daily need, such
services are summarized under the term Flash Deliveries. Young companies offering
such services have established themselves in recent years. Examples such as Gorillas,
Flink, Getir, or GoPuff promise to deliver groceries to customers’ homes in minutes.
During the last months of 2021, in the Netherlands alone, consumers spent around 40
million euros per month on Flash Deliveries [2]. Even some supermarket chains are
starting their first trials of Flash Deliveries. For instance, a recent collaboration in
the Netherlands between the supermarket chain Albert Heijn and the food delivery
companies Thuisbezergd and Deliveroo aims to provide faster delivery of groceries
[8]. Similarly, in several countries in South and North America, the delivery company
Cornershop has recently merged with Uber with a similar purpose [9].1
This chapter tackles the real-world problem of Flash Deliveries, especially planning
and routing algorithms that are necessary to compute vehicle plans during operation.
This problem has not been formalized yet, and methods to solve it are also unknown,
so this chapter is devoted to filling that research gap.
The FDP can be described as follows: Orders are placed continuously throughout
the day and need to be delivered within a short time window after they get known.
The goods need to be picked up at depots and delivered to customers’ locations,
1The rapid development in the area of autonomous delivery robots and autonomous driving in-
creases the relevance of such routing algorithms. For example, Starship Technologies already
completed their fourth million autonomous delivery using their developed robot solution [3]. It
might become feasible to operate large fleets with moderate costs and without the inherent risks
that the human riders currently face [4, 5, 6, 7]. Nevertheless, this chapter does not exclusively
assume autonomous vehicles. It applies the same to human-driven ones.

2.1. Introduction

2

13

leveraging a fleet of vehicles. For each vehicle, a trip needs to be found such that
a given objective function is optimized, for example, maximizing the number of de-
livered orders or minimizing customers’ waiting time. This chapter formally defines
the FDP and proposes a method to find high-quality solutions. As such, the FDP
forms a variant of the Same-Day Delivery Problem (SDDP). Moreover, most on-
demand last-mile deliveries, such as SDDP, are operated using a single depot and
with vehicles’ trips planned and fixed when leaving the depot. This chapter relaxes
these two assumptions, proposing methods to choose the best depot and to update
the vehicles’ trips online. In all, the here studied problem combines several NP-hard
problems, including the capacitated vehicle routing problem [21, 22], and the multi-
depot vehicle routing problem [23]. Moreover, it requires dynamic optimization and
can easily scale to large problem sizes.
To illustrate the concept that considering multiple depots and en-route adaptions
can lead to shorter trips that deliver more orders quicker, we give an example.
The example is illustrated in Figure 2.1. Orders 1 and 2 are known and loaded
into the vehicle. While the vehicle is on its tour, a new order (order 3) occurs.
If using depot A only and not allowing for pre-empty depot returns, the vehicle
serves the two loaded orders, following the first part of the solid tour, shown in
purple. Subsequently, it needs to return to depot A and then drive to the new
customer individually, the second part of the solid purple tour. If a second depot
was available (depot B) and the possibility of depot returns prior to being empty
was allowed, the original tour can be altered online. The vehicle can load the new
order at depot B after serving order 1, and can then service order 3 before serving
customer 2 (dashed green tour). By doing so, the long way back to the depot can be
saved, and shorter trips are possible. Further, customer 3 is served more quickly at
the price of delaying order 2 slightly. As such, both operators and users can benefit.

Figure 2.1: An exemplary tour of one vehicle serving two known orders (1 & 2) and one newly
requested order (3) that gets placed after the vehicle has already left depot A. The solid purple
arrows show the trip of the vehicle when there is only one depot and no pre-empty depot returns.
The dashed green arrows show the trip when using multiple depots (A & B) and allowing for
pre-empty depot returns.

The FDP is dynamic and, as such, evolves with time; new orders arrive through-
out the day. The operation needs to be planned and executed simultaneously. We
propose an approach, which is given a specific problem state at a specific time t, it
takes a decision which is followed till the time at which the next decision is taken.
To solve a single state, we first select potential pick-up locations from the set of de-
pots for each order individually. Second, potential feasible trips are calculated, i.e.,

2

14 2. Online Flash Delivery from Multiple Depots

sequences to pick up goods and deliver orders. To assign these trips to vehicles, an
integer-linear program is solved. As a result, each vehicle has a constantly updated
trip to follow, i.e., which orders to pick up and where, as well as in which sequence
to deliver them.

The main contributions of this chapter are threefold:

• We formally define the Flash Delivery Problem by modeling it as a Markov
Decision Process and propose a method to solve it.

• The proposed method can deal with multiple depots at which orders can be
picked up. The method decides endogenously which depot to use for each or-
der. To the best of our knowledge, this is the first work that considers multiple
depots per order simultaneously for a dynamic vehicle routing problem with-
out decomposing it into sub-problems, each having a single depot. Further,
the approach allows vehicles to visit a depot to load additional orders before
distributing their already loaded ones if beneficial.

• Finally, our method can scale up to scenarios with thousands of orders and
tens of vehicles. It finds good quality solutions online.

We evaluate the performance of our proposed solution approach by comparing the
results to a scenario applying a greedy assignment strategy. Further, we quantify
the effects of not allowing the extensions of the second contribution, namely: i)
assuming that each order is picked up at its closest depot and ii) prohibiting pre-
empty depot returns. A comprehensive sensitivity study analyzes the effects of the
number of considered stores, the total number of stores, the effect of allowing to
reinsert orders into the problem to enable longer delivery times, the number of used
vehicles and the used cost function.

2.2. Related Work
The FDP is a variant of the SDDP. The SDDP transposes into the FDP if each
order needs to be delivered within minutes after being placed instead of until the
end of the day. The FDP is a deterministic and dynamic problem following the
definition of [24]. To the best of our knowledge, there are no works tackling routing
for the FDP up to now.2 As such, in Section 2.2.1, we discuss the most relevant
SDDP works. In Section 2.2.2, we have a look at other related works.

2.2.1. Same-Day Delivery Problem
Both the FDP and the SDDP evolve dynamically over one operational day and must
incorporate newly requested orders while executing the trips. The main difference
is the deadline in which orders need to be delivered to the customers; in the SDDP
the deadline is the end of the day, which can be hours away; in contrast, Flash
Deliveries aim to deliver each order in minutes after receiving them.
2One exception is [25], which tackles routing for the FDP with heterogeneous vehicles. We exclude
this work here as it is part of this dissertation.

2.2. Related Work

2

15

This related work section focuses on routing optimizations for the SDDP [26], [27]
and [28], routing refers to actively deciding on the routes of vehicles. This excludes
works on order assignment or the sole dispatching of vehicles [29, 30, 31, 32, 33, 34].
[26] use a multi-scenario sampling approach, first introduced by [35]. They are
leveraging waiting strategies and test on scenarios with up to 800 orders and up
to 13 vehicles. Similar to our work, [27] allows for preemptive depot returns, i.e.,
depot returns before finishing the currently planned tour based on expectations of
future events. The authors proposed a method that builds on approximate dynamic
programming combined with an insertion routing heuristic. The method allows
vehicles to return to depots before finishing their current trips. The method by
[27] can plan for a single vehicle. [28] proposes different large neighborhood search
based approaches for the SDDP problem ranging from a re-optimization heuristic to
a branch-and-regret heuristic. They rely on a multi-scenario approach to anticipate
future events; and their approach is capable of performing preemptive depot returns
as well. Algorithms were tested based on the same scenarios as [26]. Scenarios of up
to ten vehicles were analyzed. A SDDP with micro-hubs was tackled by [36] using
a two-stage stochastic programming approach. Also, [37] studies general instant
delivery services with deadlines of up to hours. They focus on heterogeneous types
of orders and apply a column generation approach. Order acceptance and scheduling
for the instant delivery problem, here a deadline of 45 minutes was used, was looked
at by [38]. The problem is divided into a series of static problems. Orders are
inserted online into trajectories based on a similarity measure.
This chapter adds to the introduced works by scaling to larger problem sizes and
allowing us to consider picking up orders at multiple depots. Further, our approach
differs because pre-empty depot returns do not use anticipation of the unknown
future but only use currently available information. In contrast, the proposed ap-
proach works myopically.

2.2.2. Other related Problems
In addition to the SDDP, other problems are related to the FDP. The meal delivery
routing problem [39, 40, 41] shares the same nature of quick deliveries but has
longer lead times and a fixed pick-up location for each order. Similarly, multi-robot
task assignment problems [42], but often differing in their focus. They become
specifically challenging if incorporating heterogeneous and unreliable robots, each
equipped with different capabilities needed to serve different kinds of tasks.
Additionally, vehicle routing to transport people, the dial-a-ride problem [11, 43]
is related, especially, pooled dial-a-ride problems. The FDP mainly differs in two
aspects. First, customers do not mind where their goods are picked up from. As
such, this is up to the approach to decide unless there is a single option. Some
ridesharing works also try to loosen fixed pick-up points, as in [44], who consider
the option that passengers walk short distances. Second, the urgency of picking up
an order fast is lower for delivering goods than for transporting people, as humans
dislike waiting times. An overview of ridesharing methods can be found in [45, 46,
47].
The approach proposed in this chapter is based upon a routing method for a rideshar-

2

16 2. Online Flash Delivery from Multiple Depots

ing system [11] that transports people in metropolitan areas. This method is called
Vehicle-Group Assignment (VGA). VGA splits the procedure into two steps: First,
it generates potential groups of orders that each vehicle can serve, and second,
an optimal assignment of these potential groups to individual vehicles is computed.
With realistic enough computation time, the method can solve large-scale real-world
instances, up to thousands of vehicles, in an any-time optimal manner.
In regards to considering multiple depots for dynamic problems, the work in this
chapter is connected to the Dynamic Multi-Depot Vehicle Routing Problem (DMD-
VRP). Only a few works tackled this problem. It has been tackled by decomposing
the problem into multiple single-depot Dynamic Vehicle Routing Problem (DVRP),
where each order is assigned to one fixed depot, and each sub-problem is solved
separately [48, 49]. In contrast, we include the decision of which depot should be
used within the routing decision itself, and thus, this chapter is the first, up to our
knowledge, to consider multiple depots simultaneously for a DVRP.

2.3. Problem Formulation
This section presents our mathematical model of the FDP. Because the problem is
dynamic, we model it as a Markov Decision Process (MDP). In the FDP, a vehicle
fleet must pick up orders at one of the multiple depots and deliver them to the
customer’s goal locations. Orders are placed dynamically over the course of the
operation. Time is denoted as t. The operation starts at t = Tstart and ends at
t = Tend.
The fleet V consists of M identical vehicles. Vehicles v are ground-bound, have a
maximum capacity of C, and are assumed to drive with constant speed µ along the
roads of a street network.
This street network, the operational environment, is described using a weighted
directed graph G = (N ,A) where N defines a set of nodes and A defines a set
of weighted arcs. Each node represents a potential delivery location. The arcs’
weights represent the traveling times between two connected nodes. 3 We denote
the shortest travel time between any two locations n1, n2 ∈ N by τn1,n2 , which is
calculated as the sum of all weights of traversed arcs following the shortest-path. A
depot or store ξ ∈ N is a specific node where goods can be picked up. There are H
depots in total, which are summarized in the set of depots Ξ ⊂ N . We assume that
every depot has all goods that customers can order in stock, meaning every order
can be picked up at any depot.4
The demand set is denoted by O and consists of all individual orders placed by
customers. A total of U = |O| orders are placed. Each order o = (to, go) ∈ O
is revealed at time to and has to be delivered to its destination go ∈ N . We

3The travel times are assumed to be static. They are determined as the real-world distance
between the two locations divided by the constant speed of the vehicles. This assumption can be
replaced by a more sophisticated approach, like live data from a tool like Google Maps or similar.
Unfortunately, this is beyond the scope of the here presented work. Interested readers are pointed
to works such as [50, 51, 52, 53], which tackle problems with changing travel times.

4We take this assumption for the sake of simplicity. However, it is straightforward how to extend
our method if this isn’t the case.

2.3. Problem Formulation

2

17

assume to ∈ [Tstart, Tend − δT], where δT is a constant time span before the end
of the operation, in which no more orders are placed. For simplicity, we assume
all orders are the same size5, set to one. This assumption can easily be extended
to variable order sizes. Note that an order itself does not specify a depot to use
(pick-up location) po ∈ Ξ.6 With time, the status of an order evolves. As such,
at time t, the demand set O can be split into subsets depending on the status of
each order o ∈ O: The set LOt consists of all orders o ∈ O that are currently
loaded to any vehicle v ∈ V. The set DOt consists of all orders o ∈ O that were
delivered to their destinations go before t. The set IOt consists of all ignored orders
that can not be delivered within the problem’s constraints at time t. The set POt

consists of all orders o ∈ O that are already known (i.e. to ≤ t) but have not
been picked-up, delivered or ignored yet. For completeness, UOt is the set of all
unknown orders, consisting of all orders o ∈ O such that to > t. The subsets are
defined such that each order only belongs to one subset at time t, thus they are
disjoint, and fulfill O = UOt ∪ POt ∪ LOt ∪ DOt ∪ IOt. At the beginning of the
day (t = Tstart), all orders are unknown, i.e. UOTstart = O. At the end of the day
(t = Tend), all orders are either delivered or ignored, i.e., DOTend

∪IOTend
= O and

UOTend
= POTend

= LOTend
= ∅.

A major point of distinction between the SDDP and the FDP is the latest point
when an order must be delivered before being considered failed. We assign each
order a maximal drop-off time tdrop,o,max = tideal,o + δdelay, where δdelay is the
maximally allowed delay per order and is predefined by the operator to ensure
a desired service level7. For the FDP, δdelay is in the order of minutes. Each
order is allowed to have a maximum delay of δdelay otherwise, the order is ignored
θo ≤ δdelay ∀o ∈ O\IO. Hereby, θo is the actual delay of order o. It is calculated as
the difference between the ideal and the actual delivery time, θo = tdrop,o−tideal,o ≥
0. The earliest time an order can be delivered is described by tideal,o. To do so,
an idle vehicle needs to be located at the closest depot to the order’s destination
ξbest,o, and start serving the customer immediately without any detours, resulting
in tideal,o = to + δload + τξbest,o,go

+ δservice. Note that we assume that vehicles need
some constant time to load or deliver a single order, denoted by δload and δservice,
during which they are parking. Last, the times at which an order o is picked up
and dropped off are denoted by tpick,o and tdrop,o, respectively. A summary of all
involved points in time for one order is illustrated in Figure 2.2.

5Size is only used to see if the maximum capacity of a vehicle is violated. Therefore, this can be
either the weight, the volume of the order, or a combination of both.

6Customers do not mind where their goods are picked up from.
7Alternatively a maximally allowed lead time can be defined, which is a defined maximal time till
delivery and independent of the ideal delivery time. This approach is often seen in practice. One
benefit of defining a maximum delay is the equal urgency of all orders, in contrast to a dependency
on the distance of the goal location to the depot.

2

18 2. Online Flash Delivery from Multiple Depots

Figure 2.2: Visualization of the different times and time spans for one order.

Following [54] on modeling a MDP for dynamic vehicle routing problems, we define
decision points, the problem state, a decision, a transition between states, a reward,
and an objective. Further, an initial state at t = Tstart needs to be set. Generally,
given a state at a decision point, a decision is taken based on the reward, and the
problem transitions to the next state at the next decision point.
The set of decision points is denoted as ψ, which can be determined during oper-
ation or beforehand. Individual decisions and corresponding states are enumerated
by k. The time at decision point k is tk, and the problem is characterized by the
state Sk.
The state Sk contains all information needed to fully characterize the problem at
tk and make decisions. In the FDP, the state Sk is fully characterized by the time
itself tk, the vehicle’s fleet state, denoted as Vk, and the set of orders to be delivered.
Thereby, the fleet’s state Vk are the states of all individual vehicles v ∈ V at tk. At
each time t, a single vehicle v ∈ V is fully described by its current location lv,t, and
the orders it has loaded (picked up and not yet dropped off), denoted as the set
LOv,t. These definitions allow us to describe the state Sk formally as

Sk = (tk,Vk,POk)

For the initial problem state S0, with k = 0, at time t0 = Tstart, we assume
that all vehicles v ∈ V are equally distributed over all depots ξ ∈ Ξ and are empty
LOv,Tstart

= ∅ ∀v ∈ V.
The decision/action ak at tk is to assign each vehicle a plan, which it follows till
the next decision point at tk+1. For clarity, we refer to the plans as trips. A trip
Tv of a vehicle v is defined as an ordered set of locations n ∈ N , each assigned one
of the following activities. At each location, the vehicle either picks up an order,
delivers an order to a customer, or waits for further instructions. Between locations,
the vehicle follows the shortest path. As such, a trip delivers a set of orders which,
for simplicity, are denoted as oT . Note that a trip can be longer than the time span
between subsequent decision points, and a previous trip can be updated, followed
further, or canceled entirely. A decision in the FDP is to decide on a trip Tv for each

2.3. Problem Formulation

2

19

vehicle v, which it will follow until the next decision point tk+1. A feasible action
ak is a set of feasible trips ak = (T1, T2, ...). The number of orders considered by
all trips of the decision ak is |oak

|. Further, each vehicle trip Tv needs to obey the
following constraints to be feasible. The vehicle’s maximum capacity C needs to
be respected, LOv,t ≤ C ∀v ∈ V, t ∈ [0, Tend]. Second, the orders, which will be
delivered through the trip oTv

, need to be delivered before their respective deadline
at tdrop,o,max.
In contrast to [54], we do not model a reward to maximize but equivalently a cost
to minimize. The cost of a decision a is the sum of costs to execute the trips of all
vehicles plus extra costs for the orders that are not considered in any trip. First,
we formulate a general cost function that considers the operator’s and customers’
costs. The customer’s cost is based on the orders. The cost of order o is defined as
its delay θo, so that it measures the quality of service. Thus, the faster an order is
delivered, the better. The operator’s costs are defined as the traveling time of the
vehicle τv to serve all orders assigned to it. The two costs are combined convexly
via the cost weight β. Last, we add a fixed cost α for each order o that is in the
set POk, but is not considered in the decision a. The penalty α can be interpreted
as a potential cost the operator has to cover if a third party is hired to deliver the
respective order. Note that these orders are not necessarily ignored, as they might
be included in later decisions. As such the costs for a decision ak at tk are calculated
following Equation 2.1.

J(ak, tk) =

(1− β) ·
∑

oTv ∀Tv∈ak

θo + β ·
∑

Tv∈ak

τTv
+ α · (|POk| − |oak

|)

 (2.1)

In this chapter, we set α to be considerably larger than the sum of the other two
cost terms, meaning that the system first aims at maximizing the number of served
orders, and then to minimize the combination of operators’ cost and customers’ cost.
The transition from a current state Sk to a future state Sk+1 can be split into
two. On one side, a deterministic part, which consists of two aspects. First, the
transition of the vehicle fleet’s status Vt. This transition is known and only deter-
mined by the made decision ak. Second, following the trips, some orders get loaded
or are considered ignored, thus are not in the set PO anymore. On the other side,
PO changes as customers place new orders. This transition is unknown exogenous
information. We assume to have no knowledge about these future orders and also
do not include any predictions about them. The orders are fully known once placed,
and we do not consider any demand uncertainties such as [22]. Figure 2.3 depicts a
schematic visualization of the transition between subsequent states.
We formulate the objective of the FDP to minimize overall costs at the end of the
operation. The overall objective function at t = Tend is represented by Equation
2.2.

JTend
=

(1− β) ·
∑

o∈DOTend

θo + β ·
∑
v∈V

τv +
∑

o∈IOTend

α

 (2.2)

Two details worth highlighting. First, the sum of individual rewards of all decisions

2

20 2. Online Flash Delivery from Multiple Depots

Figure 2.3: Visualization of the transition between two consecutive states. The transition of the
vehicle fleet is known. In contrast, the transition of the open demand is partly unknown due to
customers placing new orders.

and the overall objective at the end of the day are not identical. This is because
trips of vehicles Tv can span greater times than ∆t and that they are subject to
change. Further, not considered orders in a decision are not identical to the finally
ignored ones. Second, the method we propose in Section 2.4 does not depend on
this specific cost function (and reward); in other words, a different cost function
could be used, and the proposed method still applies.

2.4. Method
This section gives a short overview of the proposed method and subsequently ex-
plains each method’s component in detail.

2.4.1. Method Overview
The set of decision points ψ is constructed by dividing the full operation into steps.
We do so by a fixed step size of ∆t. This results in K = Tend/∆t decisions from the
start to the end of the operation. A fixed time step ∆t means that our approach is
“batch-based”, in which a number of requests are accumulated before deciding how
to assign, as opposed to "event-based" approaches, where each request is assigned
as soon as it appears. The extra information allows to make better decisions, as has
already been acknowledged by the industry [55].
Our approach is myopic, i.e., it does not explicitly consider future states. We regard
this assumption as reasonable (not optimal), as ∆t, the time between two consec-
utive decisions, is rather short (100 seconds in our experiments) and trips T span
longer times. Thus, new information is included to the problem fast and previ-
ous solutions are updated frequently. Further, myopic approaches are usual in the
scientific literature, although anticipatory techniques can be used to improve the
solutions. For a discussion on this topic, see [56, 35, 15, 57].
To take a decision ak given a state Sk we propose a method divided into four steps:
First, potential pick-up locations for each order are found. Second, orders with
associated pick-up locations are grouped into potential trips, taking the current
location of each vehicle into account. With enough computational time, smaller
∆t, we calculate all possible trips for each vehicle. Third, we decide which of these
potential trips are being executed. Last, vehicles follow their assigned trips as time
is propagated forward until the next decision is taken. These steps are explained in
the next sections. An overview of the approach is depicted in Figure 2.4.

2.4.
M

ethod

2

21

Figure 2.4: Schematic overview of our solution approach. Step A assigns several potential pick-up locations to each order. During step B, individual
candidates c (combinations of orders and specific pick-up locations) are combined to feasible trips. In Step C, trips to be executed and corresponding
vehicles are selected. Within step D, we propagate time and vehicles follow their assigned trips.

2

22 2. Online Flash Delivery from Multiple Depots

2.4.2. Finding Pick-up Locations
Each individual order o ∈ O needs to be assigned to a specific pick-up location
po ∈ Ξ. A depot ξ ∈ Ξ is a feasible option for an order o if a vehicle can pick up the
goods at ξ and deliver them in time. Each order might have more than one feasible
depot. To select one of these options, we first define the term candidate c of an
order o ∈ O as follows.

Definition: A candidate c is a tuple containing an order oc ∈ O and an associated
pick-up location pc ∈ Ξ. Thus a candidate is described as c = (oc, pc).

A candidate c is unique, but one order o ∈ O can have multiple candidates, each
having a different pick-up location pc ∈ Ξ. IC

o denotes the set of candidates that
belong to order o. The set of all candidates is denoted by C. Ck is the set of
candidates at time tk corresponding to all placed orders o ∈ POk.
We introduce a tuneable heuristic to select a subset of pick-up locations. We do so
to control the number of candidates per order and, thus, the number of potential
trips for each vehicle, which is directly correlated to the required computational
effort. For each order, we consider the x depots closest to the order’s destination
in terms of travel time. The parameter x can be tuned. This results in maximally
x candidates per placed order. If x = H, all feasible depots are considered, and
if x = 1, only the closest depot is considered for each order. For x = 1, the
approach resembles a decomposition of the full problem into multiple single-depot
problems. In decomposition approaches, vehicles are fixed to one depot, which is
more restrictive than our approach, even if we use x = 1.

2.4.3. Trip Generation
In the trip generation step at tk we calculate the set of feasible trips Tk. This set
describes potential trips that vehicles can follow. Recall that we define a trip Tv of
a vehicle v as an ordered set of locations n ∈ N , each assigned one of the following
activities. At each location, the vehicle either picks up an order, delivers an order to
a customer or waits for further instructions. Between locations, the vehicle follows
the shortest path. As such, a trip delivers a set of orders which, for simplicity, are
denoted as oT . In the same fashion, a trip delivers candidates which, equivalently,
are denoted as cT .
The trip generation process is done iteratively, it starts by calculating small trips.
We do so to leverage the idea that a trip can only be feasible if all its sub-parts are
feasible as well. A trip’s size l, measured as the number of considered candidates,
is thereby step-wise increased starting at a size of one until a maximum size η is
reached. The operator sets η. Additionally, huge trips are prevented as each order
has a latest drop-off time tdrop,o,max. The result of this step is a set of potential
trips for each vehicle.
The algorithm to calculate the set of all feasible trips Tk at time tk is shown in Algo-
rithm 1. In Algorithm 1 we use four functions: CandidateV ehicle(), TwoCandidates(),
FeasibleTrip() and BestTripSequence(), each explained in detail in the following:

2.4. Method

2

23

Algorithm 1: Trip Generation for decision ak at tk
input : Sk, Ck, η
output: All feasible trips Tk

begin
Tk = ∅ ;
foreach v ∈ V do
Tℓ = ∅ ∀ℓ ∈ {1, ..., η} (Set of all trips of size ℓ);
[add trips of size 1]
foreach c ∈ Ck do

if CandidateV ehicle(v, c) valid then
T1 ← T1 ∪ (c) (Add trip to set of trips)

end
end
[add trips of size 2]
foreach (ci), (cj) ∈ T1 do

if TwoCandidates(ci, cj) valid and FeasibleTrip(v, ci, cj) valid
then
T2 ← T2 ∪BestTripSequence(v, ci, cj)

end
end
[add trips of size ℓ]
for ℓ ∈ {3, ..., η} do

foreach Ti, Tj ∈ Tℓ−1 with |Ti ∪ Tj | = ℓ
(The two combined trips contain ℓ candidates together) do

if ∀h ∈ {1, ..., ℓ}, {c1, ..., cℓ} \ ch ∈ Tℓ−1
(Each subset of this trip is a feasible smaller trip) then

if FeasibleTrip(v, Ti ∪ Tj) valid then
Tℓ ← Tℓ ∪BestTripSequence(Ti ∪ Tj);

end
end

end
end

end
return Tk ← ∪ℓ∈{1,...,η}Tℓ

end

2

24 2. Online Flash Delivery from Multiple Depots

• The binary logic function CandidateVehicle(v, c) is valid if vehicle v can
feasibly serve candidate c.

• The binary logic function TwoCandidates(ci, cj) checks whether the two
candidates ci and cj are combinable, i.e., if they can both be served by a
hypothetical vehicle located at the corresponding depot satisfying all the con-
straints. As multiple candidates per order exist, we add a constraint to the
existing time and capacity constraints: For two candidates to be combinable
into one trip, we require them to share their pick-up location.

• The binary logic function FeasibleTrip(v, T) checks whether all orders of a
trip T can be feasibly served by the vehicle v.

• If a trip T is feasible, we determine the sequence in which to deliver all its
candidates using the function BestTripSequence(T).

The cost of visiting a sequence of locations in trip T by vehicle v is given by γT,v,
which is derived from Equation 2.2, and calculates as follows:

γT,v := (1− β) ·
∑
oT

θo + β · τT (2.3)

where τT represents the total travel time to complete trip T . For vehicles that
already contain load, the sequence includes those loaded orders. The sequence in
which the prior loaded and new orders are served is not fixed. Herein the possibility
of pre-empty depot returns occurs. We only keep the trip that minimizes the costs
(Equation 2.3) for a specific vehicle and a set of candidates. Taking the minimal
cost trip is included in the subsequent notation of a trip T . Calculations for one
vehicle are stopped if a predefined time, ρmax, has passed. In this case, the trips
generated up to this point are considered.

2.4.4. Assignment of Trips to Vehicles
After calculating the set of potential feasible trips Tk in the previous step, we need
to decide which of them should be carried out. We call this step the Assignment of
Trips to Vehicles. The assignment is formulated as an ILP. The ILP is presented in
Equations 2.4-2.8.

argminχ

∑
T,r∈ϵT V

(γT,v − γloaded,v)ϵT ,v +
∑

o∈{1,...,|POt|}

αχo (2.4)

∑
T ∈IT

v

ϵT ,v ≤ 1 ∀v ∈ V (2.5)

∑
c∈IC

o

∑
T ∈IT

co

∑
v∈IV

T

ϵT ,v + χo = 1 ∀o ∈ POt (2.6)

χo ∈ {0, 1} (2.7)

ϵT ,v ∈ {0, 1} (2.8)

2.4. Method

2

25

Thereby, ϵT V denotes the set of all feasible trip vehicle combinations, and ϵT ,v is
the corresponding binary variable, taking the value 1 if the combination is executed.
Further, we define the following sets: IT

v , the set of trips that can be serviced by
a fixed vehicle v ∈ V; IT

c , the set of trips that contain candidate c; IV
T , the set of

vehicles that can service trip T ; IC
o , the set of candidates that belong to order o.

Further, χo is a binary variable, taking the value of one if the corresponding order
is ignored, and X is a set of all variables X = {ϵT ,v, χo; ∀ϵT V and ∀o ∈ O}.
Equation 2.4 describes the objective function. Note that the considered costs are
relative. From the costs of a vehicle’s trip γT,v (see Equation 2.3), the costs for the
considered vehicle to serve its already loaded orders are subtracted, γloaded,v. Thus,
we only account for changes in the vehicle’s trip. If a vehicle’s trip is not changed by
not assigning any new orders, the assignment poses no costs. Equation 2.5 ensures
that each vehicle is at most assigned to one trip. Equation 2.6 ensures that each
order is assigned to a single vehicle or is rejected in this decision and the penalty α is
charged. Furthermore, it ensures that no more than one candidate belonging to the
same order is chosen. Equations 2.7-2.8 ensure that the corresponding variables are
binary. χo takes the value one if its associated order o ∈ O can not be served by any
vehicle or is ignored. Equation 2.8 defines ϵT ,v as binary. As a result, each vehicle
is assigned to a new trip or does not receive any new orders. If a vehicle receives no
new orders, it will follow its current trip of delivering the currently loaded orders or
be considered idle if it has none.
To fasten the time needed to solve the above-presented ILP, we initialize it by a
greedy solution. The greedy solution is constructed by selecting the largest trip,
measured by the number of served candidates l, first. If multiple trips serve the
same amount of candidates, the trip with the lowest cost is selected. We remove all
trips which include already assigned orders or vehicles. We iterate until there are
either no more vehicles or no more orders to assign.
If a vehicle is considered idle after an assignment, we perform a rebalancing step. The
corresponding vehicle’s trip sends it to the closest depot from its current location.
We do so to enable the vehicle to pick up orders quickly in the following steps.
Nevertheless, it may still be assigned otherwise in a future time step before reaching
that depot.

2.4.5. Time-Propagation
In this step, we propagate time and update all elements affected by it until the next
decision k + 1 is triggered, tk+1 = tk + ∆t. Each vehicle follows its trip determined
in the decision ak. As time is propagated, each order can be in one of the following
five states: First, an order is picked up by a vehicle at a depot (o → LOk+1).
As soon as an order is picked up its vehicle allocated cannot be changed. Multiple
candidates belonging to one order are available, but only one of them is selected, and
so all other candidates of the order are removed. gets served, the other candidates
belonging to this order are removed. Second, an order is delivered to its destination
(o → DOk+1). Third, an order is assigned to a trip, and the planned pick-up time
is later than tk+1, the time of the next decision. Thus, we consider the order as not
picked up, yet. All not picked-up orders, more precisely the associated candidates,

2

26 2. Online Flash Delivery from Multiple Depots

are reinserted into the trip generation step for the next decision, thus allowing for
reassignment (o→ POk+1).
Fourth, an order is assigned to no vehicle. This order (associated candidates) is
reinserted into the trip generation step for the next decision (o → POk+1), unless
it is no longer feasible to serve it as explained in the next bullet point. Last, an
order is ignored (o→ IOk+1), i.e., it is not feasible to deliver it without violating
a constraint. All candidates belonging to this order are removed.
Note that an order o ∈ O is ignored in the case it can’t be delivered before the latest
drop-off time tdrop,o,max = tideal,o + δdelay. Hereby, tdrop,o,max is mainly influenced
by the value of δdelay. The smaller δdelay is set, the harder it is to combine multiple
candidates to be served by one vehicle. On the other hand, if δdelay is set too
large, the number of possible combinations becomes vast, which can hinder solving
the problem in the first place due to increased combinatorial size. A good balance
has to be found by the system operator. We distinguish between δdelay,real, defined
by the service level and δdelay,heuristic, the maximum delay at which the method
performs well. In case that δdelay,heuristic < δdelay,real, the former should be used. To
adjust to δdelay,real we allow a candidate to be reinserted into the problem after it
has violated δdelay,heuristic, but not δdelay,real. The candidate gets reinserted with a
new request time of tk, the current time. Each candidate can be ignored up to a
limit of ζ times, which is defined as:

ζ = (δdelay,real − (δdelay,real mod δdelay,heuristic))/δdelay,heuristic (2.9)

When a candidate gets ignored ζ times, it is removed from the problem. Note
that for feasibility calculations, the new request time has to be used. Nevertheless,
the original request time is used to calculate the users’ costs of a candidate on a trip.

2.4.6. Complexity and Optimality Analysis
Complexity: Our approach divides the full-day problem (Section 2.3) into multiple
sub-problems at specific times tk. Each sub-problem deals with its associated state
Sk. The trip generation step (Section 2.4.3) is the most complex and, thus, the
bottleneck of the proposed approach. The ILP (Section 2.4.4) can become large but
stays solvable in a reasonable time by state-of-the-art solvers. Thus, we analyze the
trip generation step in more detail.
Let us do a worst-case scenario analysis where all the orders are associated with
the same x depots, the corresponding candidates are all combinable, and all sets of
candidates can be served by any vehicle. Recall that the maximum trip size is η.
This leads to a complexity of:

O(|V| · |O|η · x)

If the trips’ size becomes large, limited by η, the complexity can increase rapidly. In
practice, the trip size is further influenced by two other factors: First, the density
of orders, i.e. the relation of the spatial size of the graph and the size of the set of
orders, which affects how orders can be combined. The lower the density of orders

2.5. Experiments and Results

2

27

is, the harder it becomes to serve them together. As a result, the maximum trip
size decreases. Second, a short maximum delivery time also decreases the maximum
length of potential trips and their number.

Optimality: The proposed approach is able to solve a sub-problem, regarding a
single state, to optimality. To achieve this, all depots have to be considered (x = H),
enough computational time has to be given, and the maximum trip length has to
be unconstrained. Note that even if each sub-problem is solved exactly, this does
not imply an optimal solution to the full-day problem due to the myopic approach
employed.

2.5. Experiments and Results
In this section, we present the computational experiments. First, Section 2.5.1
analyzes one run in detail, representing a day of on-demand grocery delivery in
Amsterdam, where we are able to deal with thousands of requests. Secondly, in
Section 2.5.2, we assess the performance of our solution approach by comparing it
with a greedy approach, a scenario that considers a single depot per order, and a
scenario that does not allow for pre-empty depot returns. Finally, in Section 2.5.3
we present the results of a sensitivity analysis of the main parameters, including the
number of considered stores, the number of vehicles and the used cost functions.
Table 2.1 in the Appendix contains all results of all analyzed scenarios.

2.5.1. Base Scenario
To analyze the proposed algorithm, we simulate a potential day in the city center of
Amsterdam. We represent the street network as a directed graph containing 2717
nodes and 5632 edges, shown in Figure 2.5(a). Over the whole service area, there are
20 pick-up depots which have been distributed by a k-center algorithm. The travel
times between nodes are calculated as their distance divided by the constant vehicle’s
speed of µ = 36 km

h .8 We simulated a demand of 10,000 orders, homogeneously
distributed in space. Time-wise, they cover a period from Tstart = 08 : 00 to
Tend = 21 : 10, including two peaks: at noon and in the evening. The temporal
demand distribution is shown in Figure 2.5(b). Each bar shows the number of newly
placed orders within ten minutes. In the last 10 minutes, before the end of the day
Tend, no more orders are placed, δT = 10.
The vehicle fleet V has 30 vehicles (M = 30) of capacity C = 6. The maximum trip
size η is set to ten. The maximum delay δdelay,real is set as eight minutes and equal
to δdelay,heuristic, resulting in a ζ of one. Per order, the three closest depots to the
final destination (x = 3) are considered. To load and service an order, we assume
δload = 15 sec, implying that all orders are prepared in advance and only need to
be loaded, and δservice = 30 sec, assuming that all customers are ready to grab
their groceries at the front door. The algorithm runs in time spans ∆t = 100 sec.
The penalty for ignoring an order is set to equal 104 seconds. We weighted the

8If more accurate data is available, like historical data per street or time-dependent data, this
information should be used instead.

2

28 2. Online Flash Delivery from Multiple Depots

(a) Graph representing the city centre of
Amsterdam.

(b) Temporal distribution of placed orders.

Figure 2.5: A visual representation of the underlying graph G = (N ,A) is shown on the left. The
locations of all 20 depots are highlighted in yellow. On the right side, the temporal distribution of
all order’s request times to ∀o ∈ O is depicted. Each bar shows the number of newly placed orders
within ten minutes.

two different objectives with β = 1/3. These values have been chosen to create a
scenario that is serving most orders but can’t serve everything. To solve the ILP
described in Equations 2.4-2.8, we use the software Mosek 7.1 with a time budget
of 50 sec. This time budget is enough to find the optimal solutions in about 85% of
the cases. Otherwise, the best-obtained solution at that point is used.
First, we evaluate the service rate, which is defined by the percentage of served
orders. A service rate of 95.19 % is achieved, which equals 481 ignored orders.
Figure 2.6 shows the number of open orders, pick-ups and drop-offs, and finally,
ignored orders per decision. Most ignored orders happen during peak times. Peak
times are characterized by large numbers of placed orders. The number of pick-ups
shows occasional spikes. These appear as vehicles can load a high number of orders
consecutively without driving when they visit a depot.
Second, we analyze different time spans (time Key Performance Indicators (KPIs))
involved in the delivery process of each order, see Figure 2.2. The distributions of
the time until pick-up (mean: 3 min 50 s), the time a order is loaded onto a vehicle
(mean: 3 min 13 s), the delivery time (mean: 7 min 47 s), and the associated delay
(mean: 5 min 43 s) are illustrated in Figure 2.7. These times can be compared to
the average distance of all nodes to their closest depot, which is is 1 min 20 s. Note
that the total delivery time is always greater than 45s, the sum of the loading and
service time (δload + δservice). The delay distribution increases strongly towards a
sharp cut-off at 480s, 8min, the maximum allowed delay.
Let us analyze the delay in more detail. We distinguish two time windows of two
hours, one in the morning (09:00 to 11:00) with a low workload and one in the
evening (17:00 to 19:00) with a high workload. Figure 2.8 shows the delay distribu-
tion for all orders placed in the corresponding time windows. For a low workload
(Figure 2.8a), the average delay is significantly lower and the overall shape of the
distribution is less pushed towards the maximum delay. With a lower workload, ad-
ditional resources become available, thereby allowing the improvement of the service

2.5. Experiments and Results

2

29

Figure 2.6: The number of open orders, the number of picked up and dropped off orders, as well
as ignored orders per time step are visualized.

Figure 2.7: Distributions of time to pick-up, time of orders spend loaded to a vehicle, the total
delivery time, and delay of the base scenario.

2

30 2. Online Flash Delivery from Multiple Depots

level without the necessity of serving additional orders initially. This is also reflected
in the number of rejected orders, as shown in Figure 2.6. In contrast, during high
workload (Figure 2.8b) most orders are served with a high delay.

(a) Delay distribution 9a.m. - 11a.m. (b) Delay distribution 5p.m. - 7p.m.

Figure 2.8: Distribution of delay for two different time windows differing in the workload of the
base scenario.

Third, we analyze how the proposed method utilizes each vehicle. The occupancy
of all vehicles is depicted in Figure 2.9(a). The evening peak of the demand can
also be identified through the brighter colors that appear there, meaning that many
vehicles have more loaded orders, best seen by the further reaching down parts in
bright green. Idle vehicles only occur at the beginning and end of the day. During
the rest of the day, vehicles are immediately used while or after returning to a
depot. Figure 2.9(b) displays the mean number of loaded orders of all vehicles over
time. The average load per vehicle over the day is 1.49 orders, captured in the KPI:
mean-loaded orders.

(a) Occupancy. (b) Mean-loaded orders.

Figure 2.9: Shown on the left, occupancy of all vehicles over the entire operation duration. Shown
on the right is the mean number of loaded orders of all vehicles as the day progresses.

Fourth, we analyze the total traveled distance. In the base scenario, a distance of
8,973.8 km is traveled by all 30 vehicles. All vehicles are used similarly. Driven

2.5. Experiments and Results

2

31

distance per vehicle ranges from 267.86 km to 311.86 km.

2.5.2. Comparison
We now assess the performance of our method by comparing it to three approaches.
First, in Section 2.5.2, we compare the results obtained with our approach with
those obtained by using a greedy assignment strategy. Second, in Section 2.5.2, we
compare considering multiple depots to picking up each order at its closest depot.
Third, we analyze the benefits of pre-empty depot returns in Section 2.5.2. For
simplicity, we refer to the scenario analyzed in Section 2.5.1 as the base scenario.
The parameters’ values are set as in the base scenario.

Greedy Assignment Strategy
This section compares the results of the base scenario to those obtained by a greedy
assignment strategy. We explain this strategy as follows. Every time an order is
placed, the algorithm immediately checks which is the best way to serve it. For
that, the strategy checks how the new order could be inserted into each vehicle.
Then, the new order is assigned to the best vehicle, i.e., the one that would achieve
the minimum added cost if such an order is allocated to this vehicle. Thereby, all
x pick-up options are considered. If an order can not be added to any vehicle’s trip
without violating some constraint, then the order is rejected immediately.
The obtained results are visualized in Figure 2.10. Comparing the two approaches
shows a decrease in service rate from 95.19% to 74.18%, while delay and total driven
distance increase significantly. This means that with the greedy algorithm fewer or-
ders are delivered, those that are delivered require longer travel times, and total
operators costs become larger.

Figure 2.10: Service rate, time KPIs, mean-loaded orders and total driven distance of the base
scenario and the greedy assignment strategy.

Considering the closest depot only
We compare the base scenario to the case in which each order is picked up at the
depot that is closest to its destination (i.e., applying our heuristic, introduced in
Section 2.4.2 with x = 1). This is similar to comparing to the case in which the
problem is decomposed into several single-depot problems, although this approach
is still more flexible as vehicles are not fixed to some specific depot. In the case of

2

32 2. Online Flash Delivery from Multiple Depots

comparing to a decomposition approach, we expect larger differences than the ones
discussed in the following.
For x = 1, worse results in terms of service rate and total driven distance are
obtained, as shown in Figure 2.11. The service rate drops from 95.19% to 92.68%
i.e., 251 additionally ignored orders. Even having fewer orders delivered overall, the
total driven distance increases by 121.14 km, for x = 1. These improvements of the
baseline come at the cost of increased delay in the order of seconds, it increases from
5 min 33 s to 5 min 43 s. See Section 2.5.3 for the analysis of additional values of x.

Figure 2.11: Service rate, time KPIs, mean-loaded orders and total driven distance of the base
scenario and the same scenario considering the closest depot only.

No pre-empty depot returns
One of the advantages of our proposed approach is that it allows for pre-empty
depot returns. Here, we compare our approach to the case where we prohibit those
depot returns. This means that only empty vehicles can load new orders. Results
of the comparison are depicted in Figure 2.12. They show a decrease in service rate
(95.19%→ 94.81%) and a slight increase for all time KPIs (average delay: 5 min 43 s
→ 5 min 46 s) and also for the total driven distance (8,973.8 km → 8,975.5 km).
Generally, the more depots are used for the operation, the less impactful allowing
for pre-empty depot returns is. The difference in results for a similar comparison
would be more significant if fewer depots were used, for example, a total of 5 or 10
depots. This is due to a smaller average distance of vehicles to the next depot. We
remark that these improvements are fully achieved by modifying the trips without
the need for additional infrastructure.

Figure 2.12: Service rate, time KPIs, mean-loaded orders and total driven distance of the base
scenario and the same scenario with prohibiting pre-empty depot returns.

2.5. Experiments and Results

2

33

Figure 2.13: The main performance indices for different numbers of considered depots per order
are visualized.

2.5.3. Sensitivity Analysis
In this Section, we analyze the effects of five parameters, namely: the number of
considered stores, the total number of stores, the effect of allowing to reinsert orders
into the problem to enable longer delivery times, the number of used vehicles, and
the used cost function. We perform a sensitivity analysis for each one of them. We
present the analyses in the following sections. All parameters are identical to the
base scenario (Section 2.5.1) unless mentioned otherwise.

Number of considered depots per order x
Our heuristic, introduced in Section 2.4.2, considers the x closest depots to an
order’s destination as potential pick-up locations. Therefore, the more depots are
considered, the higher the number of potential candidates and, consequently, the
higher the computational load.
Figure 2.13 shows the results if one (see Section 2.5.2), three, five, or seven depots
per order are considered. Service rate rises while total traveled distance decreases
when three instead of one depot per order are considered. Both get worse if x = 5
and then improve slightly if x = 7. Delay increases the more depots are considered,
with a slight drop if x changes from five to seven. Figure 2.14 additionally shows
the usage of depots, if they are ranked according to the distance to their order’s
destination, for the baseline (Figure 2.14a) and the scenario considering five depots
per order (Figure 2.14b). In both cases, the closer the depot, the more frequently
it is used, with the most significant change from the closest to the second closest
depot. The closest depot was used in both cases over 6000 times, leaving over 30%
to be distributed over the others, showing again that it is beneficial to consider
them.
On the one hand, considering multiple depots is beneficial, as shown by the im-
provements compared with considering the closest depot only. On the other hand,
it is not always better to consider more depots per order, as revealed by the worse
results obtained with x = 5. This can be explained by the myopic nature of our
approach, which can lead the system into unfavorable states to serve future demand.
For a single decision, using more depots is better as it enlarges the set of feasible
solutions, but the overall problem’s solution can worsen due to chaining multiple
states dynamically with each other. For example, a truck might be sent to a depot
that is far away when considering only current information, but if some orders ap-

2

34 2. Online Flash Delivery from Multiple Depots

(a) x = 3 (Base scenario). (b) x = 5.

Figure 2.14: Depots are categorized based on their distance to the goal location of the corresponding
order. This figure illustrates how often the depots are used. The left figure shows the case in which
three depots are considered per order (baseline). The right figure depicts the same case for five
considered depots per order.

pear nearby soon after, it would have been better to go to a closer depot in the first
place. We conclude:

• Considering only one depot per oder, as [48] and [49], can be inferior to con-
sidering multiple ones.

• To consider as many depots as possible can be inefficient for dynamic problems
having imperfect anticipation.

The question "How many depots should be considered?" emerges. The answer can
depend on various factors, including the problem at hand or even the current state.
This is outside of the scope of this chapter and is left for future work.

Total number of depots H
We varied the number of placed depots within the service area. We simulated
scenarios featuring 1, 15, and 25 depots in total. Results are depicted in Figure
2.15. The service rate improves at decreasing rates as more depots are available.
Delay shows non-monotonic behavior, which is related to the corresponding service
rates. For a single depot, fewer orders are served, i.e., more orders are ignored.
When some orders are ignored, the most complicated ones are ignored first, meaning
that they would have had a high delay if delivered. The number of mean-loaded
orders decreases as more depots are available. The total driven distance generally
decreases for more depots, except for 15 depots, compared to the single depot case,
which the substantial increase in service rate can explain. Generally, the magnitude
of changes in performance varies as the number of depots is increased linearly in
steps, each of size five. These results raise the question: "How many depots are
optimal, taking the cost to open and operate them into account?". We consider
this question interesting and relevant for future research related to the multi-facility
location problem [58].

2.5. Experiments and Results

2

35

Figure 2.15: Service rate, time KPIs, mean-loaded orders, and total driven distance of the four
different runs, featuring a different number of total depots distributed over the service area.

Allowing for reinsertion of orders
In Section 2.4.5, we distinguished between δdelay, real, the maximum delay allowed by
the operator, and δdelay, heuristic, the maximum delay used for running the proposed
algorithm. Recall that this distinction is made to reduce the computational com-
plexity and the time needed to solve the problem. If an order violates δdelay, heuristic,
the order would be considered ignored. But, by allowing reinsertions, see Section
2.4.5, the order has the chance to be still served while not violating δdelay, real.
Here we set δdelay,real = 24 minutes keeping δdelay,heuristic = 8, which results in
ζ = 3 maximum reinsertions per order. Figure 2.16 shows a comparison with the
of δdelay,real = δdelay,heuristic = 8, as in Section 2.5.1. We see an increase in service
rate and a decrease in the total driven distance. All time KPIs increase. Increasing
δdelay,real allows for a higher delay per order, which leads to an overall higher average
delay. The corresponding delay distribution is shown in Figure 2.17(a), where we
observe a repetitive nature. The number of reinsertions is shown in Figure 2.17(b),
showing a significant number of orders that are reinserted at least once.

Figure 2.16: Service rate, time KPIs, mean-loaded orders, and total driven distance of the base
scenario and the same scenario having a δdelay,real of 24 minutes, thus allowing reinsertion.

Number of orders U
We created two alternative demand scenarios, featuring different numbers of cus-
tomer orders U = 9, 500 and U = 10, 500, for the entire day. Both scenarios resemble
the distribution of the 10,000 order case in time and space. Figure 2.18 depicts the
corresponding results. The more orders are placed, the lower the service rate be-
cause available resources are kept constant. Nevertheless, the absolute number of

2

36 2. Online Flash Delivery from Multiple Depots

(a) Delay distribution. (b) Reinsertion count.

Figure 2.17: The delay distribution having a maximum delay δdelay,real of 24 minutes, thus allowing
reinsertion, is shown on the left. On the right, the number of served orders per reinsert step is
illustrated.

delivered orders increases (from 9,268 to 9,519 and then to 9,867). Although more
orders have been delivered, this does not necessarily increase the total driven dis-
tance. Compared with the 9,500 orders case, the driven distance decreases for both
10,000 and 10,500 orders. In general, if there are more orders to serve, it will be
easier to find customer destinations close to each other, so the average distance
between them decreases. However, those improvements do not hold for the time
KPIs as all of them worsen with more placed and served orders. The number of
mean-loaded orders increases in the same manner.

Figure 2.18: Service rate, time KPIs, mean-loaded orders, and total driven distance of the three
different runs, featuring different demand patterns.

Number of used vehicles:
We varied the number of used vehicles to 25 and 35. Figure 2.19 shows the effect of
the number of used vehicles on the obtained solutions. The service rate increases as
more vehicles are used, and similarly, the total driven distance increases. Time KPIs
decrease the more vehicles are used as well as the mean-loaded orders. The maximum
traveled distance by one vehicle stays about the same, as those vehicles are utilized
continuously throughout the whole day. For 25 vehicles, the maximal distance is
308 km, for 30 vehicles is 311 km, and for 35 vehicles is 309 km. On the other hand,
the minimal distance traveled by one vehicle varies strongly. For 25 vehicles, the
minimal distance is 290 km, for 30 vehicles is 267 km, and for 35 vehicles is just

2.6. Conclusion

2

37

Figure 2.19: Service rate, time KPIs, mean-loaded orders, and total driven distance of the three
different runs, featuring a different number of vehicles.

228 km. When considering 35 vehicles, some vehicles are used sparsely, especially at
the start of the operation, where the overall workload is still low compared to later
in the day.

Cost function weight β:
The cost weight β, shaping the cost terms in Equations 2.1-2.4 is varied in this
section. It weighs service level costs and operational costs. β = 0 leads to neglecting
operational costs, and the method fully tries to minimize delay, whereas the opposite
happens for β = 1 (only optimizing on operational costs). We run simulation for
β ∈ {0, 1

3 , 1}, the baseline scenario as well as both extreme cases. Figure 2.20
displays the obtained results. For β = 0 time KPIs are the lowest, as expected. For
β = 1, the total driven distance is minimized, as expected. The service rate varies
slightly between the different runs. The highest service rate is achieved for β = 1/3,
which suggests that fully optimizing to minimize driven distance or delay leads the
system into unfavorable states to serve future demand if the goal is to serve as many
orders as possible.

Figure 2.20: Service rate, time KPIs, mean-loaded orders and total driven distance of three runs,
featuring different cost weights β.

2.6. Conclusion
In this chapter, we introduce and formalize the FDP. The FDP is a variation of
the SDDP, aiming to deliver orders in minutes. The proposed approach consid-
ers picking up goods at multiple depots per order and allows vehicles to perform
pre-empty depot returns if beneficial. This enables a reduced average distance to

2

38 2. Online Flash Delivery from Multiple Depots

customers’ homes and more agile planning. In each step, orders are assigned to
potential pick-up locations, followed by checking how they could be combined into
potential trips. As many potential trips as possible are calculated for each vehicle,
limited by predefined constraints on the total delivery times and vehicle capacity.
Vehicles are assigned to the potential trips via solving an integer linear program.
The proposed method can handle large problem sizes. Extensive computational
experiments simulating one day of service have been carried out. Looking at one
scenario in detail, in which 10,000 orders are placed and 30 vehicles are available
to serve those, a service rate of 95.19% was achieved, which represents an improve-
ment of 20% over a greedy approach. The average delay accounts for 5 min 43 s and
8,973.8 km needed to be driven. Further, simulations showed the value of using and
considering multiple depots and the value of performing pre-empty depot returns.
A sensitivity study analyzed the varying influence of individual parameters on the
obtained solution.
Future research could extend the proposed method to look ahead or to actively
anticipate, such that the risk that the system gets into unfavorable states is reduced.
Further, the possibility to plan for heterogeneous fleets of vehicles could be added.
Additionally, the proposed approach is designed for on-demand deliveries exclusively.
How to integrate already known orders is another future research question, such as
the incorporation of stochastic information about the presence of potential orders.
How many depots should be operated within a given area and how many of them
should be considered per order are two further interesting questions for the future.
Additionally, representing the operational environment as realistically as possible
can strongly increase the expressiveness of found results. This includes but is not
limited to modeling realistic traffic conditions, considering dynamic travel times and
congestion, or accurately representing parking options in cities.

2.7. Chapter Appendix
Results
The precise values of all performance indices of all executed runs are shown in Table
2.1.

2.7.
C

hapter
A

ppendix

2

39

Service
rate [%]

Delivery
time [s]

Delay
[s]

Time on
vehicle [s]

Waiting
time [s]

Mean-
loaded
orders

Total
distance [km]

Base scenario 95.19 467.07 342.61 192.53 229.54 1.49 8973.8
Comparison
Greedy 74.18 533.93 406.30 184.81 304.12 1.13 10693.17
1 depot per ord. 92.68 456.74 332.82 177.23 234.51 1.36 9094.94
No pre-empty 94.81 470.89 346.43 191.73 234.16 1.48 8975.48
Considered depots
5 depots per ord. 94.95 472.08 347.54 198.28 228.80 1.53 9077.29
7 depots per ord. 95.25 467.12 342.66 195.60 226.52 1.52 9051.34
Total depots
1 depot 75.22 569.656 332.055 337.055 187.602 1.95 9555.17
15 depots 92.59 495.94 357.07 214.50 236.44 1.59 9714.92
25 depots 95.67 459.92 341.06 184.55 230.37 1.45 8844.39
Reinserts
3 reinserts 99.0 542.99 418.26 202.44 295.55 1.63 8803.1
Demand patterns
9500 orders 97.56 458.64 333.60 187.37 226.27 1.42 9067.55
10500 orders 93.97 481.85 357.19 198.39 238.46 1.59 9050.93
Number of used vehicles
25 vehicles 84.98 491.69 367.70 213.30 233.39 1.75 7469.91
35 vehicles 99.67 396.95 272.14 164.58 187.37 1.16 10121.33
Cost weight
β = 0 94.96 464.15 339.74 191.38 227.76 1.48 9140.61
β = 1 94.13 510.35 385.76 217.56 247.79 1.65 8793.51

Table 2.1: Precise results of all performance indices of all experiments of Chapter 2.

3
Routing of Heterogeneous

Fleets for Flash Deliveries via
Vehicle Group Assignment

The routing method proposed in the previous chapter will serve as the starting point
of this chapter. So far, the proposed approach considers vehicles that are homoge-
neous and are bound to the street network of a city. Using a single type of vehicle,
whether small trucks, bikes or drones, can be restrictive and cause inefficient oper-
ations.
In this chapter, we generalize the approach to multiple modes of transportation.
We investigate how multiple types of transportation can be combined to serve Flash
Delivery operations and propose an adapted method to do so. The new main chal-
lenge is the decision on which vehicle, including its type, to use for which orders
depending on the vehicle’s characteristics. We study an example scenario featuring
trucks and drones.

This chapter is based on:

• M. Kronmueller, A. Fielbaum and J. Alonso-Mora, "Routing of Heterogeneous Fleets for
Flash Deliveries via Vehicle Group Assignment", in IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC), pp. 2286-2291, 2022 [25]

41

3

42
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

Abstract
This chapter presents a novel approach to route heterogeneous fleets for Flash De-
livery operations. Flash deliveries offer to serve customers’ wishes in minutes. We
investigate a scenario that allows to pick-up orders at multiple depots with a hetero-
geneous vehicle fleet leveraging different modes of transportation. We propose the
Heterogeneous Vehicle-Group Assignment (HVGA) method, which, given a problem
state, identifies potential pick-up locations, calculates potential trips for all modes
of transportation and last chooses from the set of potential trips. Experiments to
analyze the proposed method are executed using a fleet featuring two modes of
transportation, trucks and drones. We compare to a state-of-the-art method. Re-
sults show that HVGA is able to serve more orders while requiring less total traveled
distance. Further, the effects of the fleet size and fleet composition between drones
and trucks are examined by simulating three hours of a Flash Delivery operation in
the city center of Amsterdam.

3.1. Introduction
Using heterogeneous fleets for last-mile delivery operations allows leveraging the
strengths of different modes of transportation. For example, a drone can maneuver
independently of roads and traffic and thus deliver quickly in hard-to-reach areas
and a truck can load many parcels simultaneously and deliver multiple orders in
one neighborhood. In addition, grocery deliveries within minutes have established
themselves within many cities. In the Netherlands alone, consumers spent around
40 million euros per month on Flash Deliveries at the end of 2021 [2]. Combining
these two aspects poses a highly relevant and interesting question: How do we route
heterogeneous fleets for on-demand last-mile deliveries?
This chapter proposes a novel optimization-based approach to route heterogeneous
fleets for on-demand last-mile deliveries, considering multiple depots and short de-
livery times. The proposed method is able to combine many types and forms of
transportation while staying scalable. We specifically investigate the use case of
supporting ground-based vehicles with drones.
The main virtues are threefold. First, we generalize a well-known method for ride-
sharing, called Vehicle Group Assignment, to be able to handle heterogeneous fleets,
including various modes of transportation. Second, this chapter combines dynamic
multi-depot vehicle routing with heterogeneous fleets. Third, to the best of our
knowledge, this chapter is first in investigating the use of drones for Flash Delivery
operations.

3.2. Related Work
The problem we face can be classified as a dynamic and heterogeneous vehicle rout-
ing problem (pick-up and delivery problem). Thus it is related to the two broad
fields of Dynamic Vehicle Routing Problems (DVRP) and Vehicle Routing Prob-
lems with heterogeneous fleets. For an overview of dynamic routing problems, see
[59, 60, 61], and for an overview of routing for heterogeneous fleets, see [62]. Het-
erogeneous routing problems are further divided by the type of vehicles they are

3.3. Problem Formulation

3

43

considering and by the way these can interact with each other. For a more detailed
analysis, we exclusively focus on dynamic problems, as approaches deployed between
static and dynamic vehicle routing problems differ strongly.
Proposed methods to tackle the dynamic vehicle routing problem with a hetero-
geneous fleet are mainly based on heuristics. Large Neighbourhood Search based
strategies were applied by [63] considering a fleet of trucks with different capabilities
and by [64] tackling the technician routing problem (technicians differ in skills and
repair parts carried). [65] used a Tabu Search to improve routes while dynamically
integrating new incoming orders. They consider different vehicle speeds and capaci-
ties. The problem of dynamically refueling airplanes by trucks with different speeds,
capacities, and fit planes was studied by [66] using a genetic ant colony algorithm.
More specifically, the problem studied in this chapter is a specific case of a SDDP
[30, 26, 67, 33, 68, 69]. Works that combine an SDDP and a heterogeneous fleet are
sparse. We identified three works, analyzed in the following.
[67] proposes a method routing a heterogeneous fleet of trucks and drones for a
SDDP, splitting it into two. For each new order, it is decided if it is served by
drones or trucks or is ignored. Subsequently, each mode of transportation is routed
independently. To determine if a drone or a truck should be used, they apply pol-
icy function approximation based on geographical districting. Orders which have
a travel time longer than a given threshold are preferably served by drones. [68]
builds upon [67] by adapting the way orders are assigned to a mode of transportation.
They leverage Q-learning to do so and improve on previous results. Improvements
are most substantial for small fleets but vanish fully if more resources are provided.
[70] investigates a SDDP, in which drones are used to resupply trucks, which ex-
clusively deliver to customers. They examine two approaches for resupplying: first,
only empty trucks can receive a resupply and second, resupplies are possible any-
time. They optimize on finding the best resupply locations, serving as many orders
as possible.
In contrast, this chapter investigates a specific variation of Same-Day Delivery
(SDD), a Flash Delivery operation featuring multiple depots. HVGA further dif-
fers from the works proposed for heterogeneous SDD by not splitting into assigning
orders to vehicles and routing but doing so jointly.
The proposed approach in this chapter is building on a ride-sharing method called
VGA [11]. VGA is an anytime optimal approach given enough computational time.
It shows great scalability. A retail context variation considering multiple depots was
investigated by [19]. This chapter extends VGA to heterogeneous fleets.
As we test our method considering scenarios in which drones and trucks are utilized,
we want to point interested readers to an overview on routing problems featuring
the usage of drones (mostly static), see [71].

3.3. Problem Formulation
This section presents the problem statement covering the whole operation and in-
troduces the used notation (Section 3.3.1). As our problem is dynamic, we model it
as a MDP, explicitly capturing the problem’s dynamics (Section 3.3.2).

3

44
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

3.3.1. Notation and Problem Statement
We consider a heterogeneous fleet of vehicles V consisting of multiple sub-fleets,
each having a different mean of transport, noted by the subscript m. Each vehicle,
independent of its mode, is denoted by v ∈ V. For the sake of simplicity, we describe
the method assuming a truck fleet L of H identical trucks and a drone fleet D of G
identical drones. The generalization towards more than two sub-fleets is straight-
forward. They move on a weighted and directed graph Gm = (N,Am), thereby the
arcs and arcs’ weights are mode-dependent. Apart from the network they travel on,
the fleets differ in their maximum capacity of each vehicle Cm and their traveling
speed sm. A set of depots De, locations where orders can be picked up, is placed
within the graph at specific nodes {de1, ..., de|De|}1.
Each customer is defined as an order o. Customers can request the delivery of goods
to a location of their desire. We denote the goal location by go, which is assumed to
be a node. The time a customer orders is called the request time to. All orders are
summarized within the demand O. Each order is unique and has a size of one. We
additionally introduce time-dependent demand subsets: First, the set of loaded or-
ders LOt consisting of all orders currently loaded to a truck or drone. Further, DOt

denotes the set of delivered orders and IOt the set of ignored orders (i.e., orders
that were not delivered within the given constraints). Last, the set of known open
orders OOt consisting of all orders currently known and unloaded nor delivered nor
ignored.
The operation starts at t = 0 and ends at t = T , with t being the current time.
During a short time span of duration δT before T , no new orders are accepted.
Further, δpick and δdrop are fixed time spans needed to load or to deliver an order.

General Problem Statement: Consider a heterogeneous fleet V consisting of
two sub-fleets, a truck fleet L of H identical trucks and a drone fleet D of G identi-
cal drones. Each mode of transportation operates on a weighted and directed graph
Gm = (N,Am). Multiple depots de ∈ De are placed within the graph. Each truck
and drone is in a known initial state (starting locations and no prior load). Cus-
tomers continuously place orders, summarized as the demand O, where each order
is specified by a request time to ∈ [0, T − δT] and a goal location go. The operation
starts at t = 0 and ends at t = T . Find a set of routes for each truck and drone to
pick up, thus including the choice of a depot, and to deliver the orders such that a
given cost function J is minimized subject to a set of given constraints.

We consider two constraints: First, each vehicle’s maximum capacity Cm may not be
exceeded. Second, each order has a maximum delivery time to,max,m. We calculate
the maximum delivery time as the sum of the request time to, the optimal delivery
time to,opt,m and a fixed time interval, called maximum delay θmax, i.e., to,max,m =
to + to,opt,m + θmax. Thereby, the optimal delivery time to,opt,m is calculated as the
time a vehicle needs to travel form the closest depot to the goal location of the order
plus the time to pick-up δpick and to deliver δdrop the order. Note that the optimal

1Also shared between trucks and drones.

3.3. Problem Formulation

3

45

delivery time is dependent on the used mode of transportation.2 An order might
not be delivered within the given constraints and is thus considered ignored.

3.3.2. Markov Decision Process
An MDP captures the dynamics of a problem by modeling subsequent states St

connected by a decision taken and a transition between them.
Decision Points: Decisions are taken at specific points in time, summarized in
the set3 ψ. Individual decisions and corresponding states are enumerated by k. We
make decisions in fixed time steps of ∆t, i.e., tk+1 = tk + ∆t.
Problem State: The problem state Sk at time tk is fully characterized by the time
itself tk, the state of both sub-fleets and the set of open orders OOt. To describe
the fleet’s states, each individual vehicle v is described by its location lv,t, its set of
loaded orders LOv,t and the plan it follows currently πv,t. For example, the truck
fleet’s state is described as Lt = ((ll,t,LOl,t, πl,t)∀l ∈ L). This results in the overall
state definition as

St = (t,Lt,Dt,OOt)

Note that a plan πv,t consists of an ordered sequence of actions (pick-up and drop-off
of orders or rebalancing) with associated locations. Between locations, the vehicle
follows the shortest path. As soon as an action is executed, it is removed from the
plan. Further, a plan can be updated at a later point in time.
Decision: The decision at decision point k is to update the plan πv,t of each vehicle
v, which it will follow until the next decision point tk+1. Note that a vehicle’s plan
can change if a subsequent decision updates it, including newly obtained informa-
tion.
Transition: The transition can be split into a deterministic part and an unknown
part. In the deterministic part, we update the truck and drone fleet’s status. Each
vehicle follows its plan πv,t determined within the taken decision. Doing so, a
vehicle’s location and its loaded orders change (orders can get delivered and new
orders can be loaded). As time propagates between subsequent states, customers
may place new orders (which is the unknown aspect). As a result, new orders are
added to the set of open orders OOk+1. If an order can not be delivered within its
constraints anymore, we consider it ignored. The order is removed from the set of
open orders4 OOk+1.
Objective: The goal of the posed problem is to minimize a combination of costs,
considering the total driven distance, service quality measured as the delay θ, and
a penalty term α for orders that are not delivered (Equation 3.1).

JT =
[

(1− β) ·
∑

o∈DOT

θo + β ·
∑
v∈V

ηv,T +
∑

o∈IOT

α

]
(3.1)

2Alternatively, a maximally allowed lead time can be defined, which is a defined maximal time till
delivery and independent of the ideal delivery time and delivery mode. This approach is often
seen in practice.

3ψ can be determined during operation or beforehand.
4Note that when vehicles load orders following their plan, they get removed from the set of open
orders.

3

46
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

Thereby, the delay θo is defined per order as the difference between the actual
delivery time and the optimal delivery time. The total driven distance of a vehicle
v ∈ V at time t is denoted by ηv,t. α is a constant predefined penalty for ignoring
an order. Note that if α is set to a large constant, the objective function puts the
highest priority on serving as many orders as possible. β is a tuneable weighting
parameter between operator cost and service quality. Note that we can not directly
map a decision taken at a specific state St to Equation 3.1. Each vehicle will follow
its plan πv,t until the next decision state, then each plan may be altered due to new
information. Thus, a current plan can not be directly correlated with Equation 3.1.

3.4. Method
Here, we describe the proposed method, called HVGA. Following the MDP (Sec-
tion 3.3.2), each time a decision point is hit, a decision given the current state Sk,
determining a set of routes πv,t for every vehicle v ∈ V, needs to be taken.
To do so, we follow a sequence of steps explained in the following. First, we de-
termine multiple potential pick-up locations for each order (Section 3.4.1). Second,
we calculate sets of potential trips each truck and drone could take (Section 3.4.2).
Last, we pick from those sets of potential trips, which each vehicle should carry out
by solving an ILP (Section 3.4.3). An illustrative overview is depicted in Figure
3.1. The proposed method builds on top of previous work for Flash Deliveries for
homogeneous fleets, introduced in [19].5

Figure 3.1: Given a problem state, a decision is taken on how to update the plans of all trucks
and drones. HVGA creates plans for all vehicles by first identifying potential pick-up locations for
each order. Subsequently, a large set of potential trips is calculated for each vehicle. Which of
these trips are executed is determined in the last step, called trip assignment. During a transition
phase, all trucks and drones follow their determined plan, and new orders are received until a new
decision state is met.

5[19] also provides a more detailed analysis of their proposed method. Interested readers are
referred to their work for further details.

3.4. Method

3

47

3.4.1. Selecting Potential Pick-up Locations
As orders only specify their delivery location go, the decision of where to pick up the
corresponding goods is raised. To acknowledge this, we introduce a concept called
candidate. A candidate combines an order with a potential pick-up location. We
define it as follows: A candidate c is a tuple containing an order oc ∈ O and an
associated pick-up location pc ∈ De. Thus, a candidate is described as c = (oc, pc).
Each order can have multiple candidates associated with it. Further, we introduce
a heuristic that reduces the number of candidates by only considering a subset of
depots. We consider the x depots closest in delivery time by truck to the order’s
goal location. x is a predetermined tuneable parameter.

3.4.2. Finding Potential Trips
A trip, denoted as Γ, is defined as a set of candidates c1, ..., cj , a vehicle, and a plan,
that serves all candidates of the trip,

Γ = (c1, ..., cj , v, πv,t) =
(
(oc1 , pc1), ..., (ocj

, pcj
), v, πv,t

)
The goal of the trip generation step is to find all potential trips for each truck and
drone, summarized as the set ZZ. This set is formed by combining the sets of
all potential trips Zv for each vehicle, i.e. ZZ =

⋃
v∈V Zv. We calculate the sets

Zv separately for each truck and drone and thus also separately for each mode of
transportation. Each trip is further tagged with the cost to execute it.
The general workflow for a truck and drone are identical but differ in the used
network Gm, speed sm and vehicle’s capacity Cm. If a trip Γ is feasible for a specific
vehicle v, a plan πv,t can be found, picking up and delivering all candidates of this
trip without violating any constraint. This includes orders that are already on board
of the considered vehicle. To generate the complete set of all feasible trips Zv, the
method builds onto the idea that a trip can only be feasible if all its sub-trips are
feasible as well. As a result, we start searching for trips of size one. Subsequently,
we combine obtained trips to form larger trips, successively increasing in size. The
cost of a trip Γ is given by γΓ and is derived from Equation 3.1:

γΓ = (1− β) ·
∑
o∈Γ

θo(Γ) + β · travel(Γ)/sm (3.2)

travel(Γ) determines the required distance traveled to serve the according trip Γ.
Note that the delay θo of an order, as well as the time needed to complete a trip,
depends on the trip and the used mode of transportation. The way to navigate
between different trip stops is determined by the used graph Gm, and the time
needed to traverse a given arc is shaped by the speed of the vehicle sm. To determine
the cost and plan πv,t of a trip Γ, we perform an exhaustive search on all possible
sequences and continue solely with the cheapest option.

3.4.3. Assigning Trips
Given the set ZZ of all potential trips each truck and drone can take, this step
decides which of them are executed. Thereby, we want to coordinate the individual

3

48
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

decisions to maximize performance and minimize cost. This problem is formalized
and solved as an ILP, see Equations 3.3-3.6. Equation 3.3 presents the cost function.
Note it differs slightly from Equation 3.2 as we only account for changes in vehicles’
plans by subtracting the costs needed to serve the already loaded orders of the
corresponding vehicle γloaded,v. We introduce the constraints that each truck and
drone is maximally used once (Equation 3.4). Also, each order is maximally served
once or ignored for now (Equation 3.5). Equation 3.6 introduces the binary variable
ϵΓ, which takes the value of one if a trip Γ is executed; and the binary variable χo

taking the value one if an order o is not served by the chosen trips.6
As a result, each truck and drone are either assigned a new trip, which they execute
until the next decision is taken, or they follow their plan as previously determined.
If a vehicle becomes idle (i.e., it has no orders to serve after the trips have been
assigned), we assign it a special plan, we call rebalancing. The vehicle is routed to
its closest depot, such that is in a promising position for future decisions.

argminχ

∑
Γ∈ZZ

(γΓ − γloaded,v)ϵΓ +
∑

o∈OOt

αχo (3.3)

∑
Γ∈Zv

ϵΓ ≤ 1 ∀v ∈ V (3.4)

∑
Γ∈ZZ|oc∈Γ

ϵΓ + χo = 1 ∀o ∈ Ot (3.5)

ϵΓ ∈ {0, 1} and χo ∈ {0, 1} (3.6)

Remark: Note that HVGA has a large potential to unify different types of vehicles
and modes of transportation due to assigning a cost to each trip and using it to make
decisions. Trips and their associated costs can thereby be calculated using entirely
different approaches. If approaches are similar, this ensures more straightforward
comparability. For example, one can only adapt the graph vehicles operate on,
from a road network to a water canal system or the speed can be adjusted to the
capabilities of an individual vehicle.

3.5. Experiments and Results
First, we compare HVGA to a state-of-the-art method to evaluate its performance
in Section 3.5.1. Section 3.5.2 investigates the effect of the size and composition of
a heterogeneous fleet of trucks and drones.
All experiments presented in this section use a time window of 3 hours and 10 minutes,
whereby no new orders are placed within the last 10 minutes. During this time, 1828
orders are placed randomly within the operation area.7 As an operation area, we
simulate the city center of Amsterdam, with trucks driving along the street network
6To solve this problem, standard software, like Mosek or Gurobi, can be used. We used Mosek
[72].

7We keep the used demand distribution and number constant to allow for better comparison
between all analyzed scenarios.

3.5. Experiments and Results

3

49

Figure 3.2: A cutout of one particular state of the simulation is illustrated. The road network graph,
on which trucks move is shown in grey. The plans of one drone and one truck are highlighted in
purple and green. Goal locations of known and non-delivered orders are shown in yellow.

with a speed of 10 meters per second and assuming that drones can fly directly to
their goal location with a speed of 15 meters per second. Trucks can load up to six
orders simultaneously, whereas drones have a maximum capacity of one. Each order
is allowed a maximum delay of 8 minutes. To load an order 15 seconds are needed
and 30 seconds to deliver it. HVGA was performed every 100 seconds, i.e., ∆t = 100.
The penalty for ignoring an order was chosen as a high constant α = 10000 [sec] and
the cost weighting parameter as β = 0.3333.
As a first impression, a snapshot of an area of a particular state is depicted in Figure
3.2. The plans for one truck and one drone are highlighted.

3.5.1. Comparison to Other Approaches
Next to HVGA, we implemented a second approach resembling the work by Ulmer
et. al. [67]. This method first decides which mode of transportation is going to
be used for which order, followed by a separate routing step. To assign the mode
of transportation, they use a policy function approximation based on geographical
districting, preferably serving orders with long travel times by drones. To allow
for a fair comparison, we adapted the approach [67] to use the routing method as
introduced in this chapter. Details on this adapted approach can be found in the
Appendix (Section 3.7.1). In the following, we call this approach Split&Route. Here
we investigate a scenario in which a single depot placed in the center of the graph
is used, as Split&Route is not specifically designed to work with multiple depots.
Obtained results are depicted in Figure 3.3. HVGA improves on Split&Route by
increasing the service rate by about 17 %. Despite serving more orders, the total
driven distance reduces by 108 km. On the other hand, the average delay increases
by 24 seconds. Figure 3.4 illustrates the difference in the orders that get served
in regard to their distance between the depot and drop-off location, based on the
street network. A histogram of orders against travel distance is shown, where orders
served by trucks are shown in purple and orders served by drones in yellow (HVGA:

3

50
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

Figure 3.3: Comparison of HVGA and Split&Route

Figure 3.4a, Split&Route: Figure 3.4b). HVGA primarily utilizes drones to serve
short-distance orders, standing in direct contrast to Split&Route. This results in a
greater amount of orders being served by drones (HVGA: 341, Split&Route: 138).
The results suggest that the assumption to serve long-distance orders using drones
does not hold for Flash Delivery operations. Not doing so allows drones to serve a
larger share of the requests.

(a) HVGA. (b) Split&Route.

Figure 3.4: Illustration highlighting the difference in served orders regarding their distance between
the depot and drop-off location between HVGA, left, and Split&Route, right.

3.6. Conclusion

3

51

Figure 3.5: Service rate, delay and total travelled distance are depicted for various compositions
of the total fleet. Further, the effect of the total fleet size is investigated by setting it to 15, 20,
and 25.

3.5.2. Fleet Composition
As this chapter is the first (to the best of our knowledge) in investigating the effect
of deploying drones within a Flash Delivery operation, we analyzed the fleet compo-
sition in more detail. We increase the number of pick-up locations in the service area
to 20, to leverage that our method can handle multiple depots; three are considered
per order (x = 3). Figure 3.5 shows the change in service rate, delay and total
travelled distance for three fleets of total size 15, 20 and 25 and their composition
in various ratios of trucks to drones.

Independent of the total fleet size, we see an increase in service rate the more
drones are used. This comes with an increase in total traveled distance. We see one
exception for a fleet size of 25, when the service rate comes close to 100%. Then
resources become available, which the approach can use to stronger optimize on
traveled distance and delay. Generally, delay decreases the higher the percentage of
drones used.
For Flash Delivery operations drones hold great potential. Short times between
ordering and delivery and short distances between drop-off and pick-up location
(strengthened by considering multiple depots) fit well with drones’ benefits. High
capacities are less important if comparing Flash Deliveries to traditional next-day
operations, where times between leaving and returning to a depot can cover many
hours.

3.6. Conclusion
This chapter presented an optimization-based approach to route a heterogeneous
fleet of vehicles for an on-demand last-mile delivery operation. Orders are served
within minutes after ordering, posing a special variant of a Same-Day Delivery prob-
lem. To analyze the results, a fleet of trucks and drones was studied and compared
to a method inspired by [67]. HVGA was able to serve more orders while driving
fewer kilometers in total. Further, the size and composition of various fleets have
been studied. A larger amount of drones increases obtained service rates at the cost
of increased traveled distance.
Future work involves a more detailed representation of used vehicle types, enabling
a more accurate study of their use for Flash Deliveries. Further, the scope of ex-

3

52
3. Routing of Heterogeneous Fleets for Flash Deliveries via

Vehicle Group Assignment

perimental analysis can be broadened such that the most critical drivers for Flash
Delivery operations can be identified and studied.

3.7. Chapter Appendix
3.7.1. Details on Split&Route
Split&Route selects a set of orders to be potentially served by drones and routes
the drones exclusively for this set of orders. We attempt to serve as many orders as
possible by drones. To do so, we take an iterative approach. The individual steps
are outlined in the following.
1. We select y orders to be potentially served by drones, further called the drone
order set. The y longest orders, based on their traveling distance on the road
network, are selected. Note that y can be larger than the number of drones, as it is
possible to assign multiple orders to one drone and deliver them subsequently, even
though the maximum capacity is set to one. y is a predefined tuneable parameter.
2. We calculate a solution using HVGA (potential pick-up locations, trip generation
and trip assignment) for all drones and the drone order set exclusively.
3. We check if all orders of the drone order set are assigned to a drone’s plan and
none is ignored. If yes, we update the drone plans πv,t and route all trucks using
HVGA for the set of remaining open orders. If not, we reduce the drone order set
by excluding the order with the shortest optimal travel distance and repeat starting
from step 2.

4
Reducing the Minimal Fleet
Size by Delaying Individual

Tasks
The two previous chapters proposed methods for routing a predefined fleet of ve-
hicles. Thus answering the question, "What should the existing vehicles do given
a concrete situation or problem?". However, the question of the initial number of
vehicles required remains unresolved, necessitating an assumed value.
Within this chapter, we present an innovative approach to determine the optimal
fleet size. This approach expands upon existing research by incorporating the option
to delay individual trips. Allowing delays introduces the opportunity for new trade-
offs, namely reducing the fleet size for increasing delay. The degree of this trade-off
is adjustable. To tackle the fleet sizing issue, we propose a novel mixed-integer linear
program, establish its NP-hard complexity, and conduct a comprehensive analysis
of the method’s potential. We conduct experiments in an abstract environment and
a case study of taxi rides in Manhattan.

This chapter is based on:

• M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Reducing the Minimal Fleet Size by De-
laying Individual Tasks", submitted to IEEE Transactions on Intelligent Transportation
Systems, 2023

53

4

54 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Abstract
This chapter formally defines the problem of fleet sizing with delays (FSD), where
the option of delaying individual tasks within fleet sizing is considered. We prove
that the Fleet Sizing with Delays (FSD) problem is NP-hard and solve a formulation
of the FSD problem as a MILP. We then analyze the proposed method in detail
in an abstract case and validate it in a case study of taxi rides in Manhattan. We
show that fleet sizes can be decreased significantly and that the trade-off space of
the number of required vehicles to execution time and added delay can be enlarged.

4.1. Introduction
Fleets of vehicles of various types are used to drive today’s world. For example,
taxi fleets offering mobility in cities, robot fleets operating entire warehouses or
bike courier fleets delivering your pizza for dinner. Thereby, a wrongly sized fleet,
regardless if it is too small or too large, causes inefficient operations regarding bad
service or additional costs. Thus, the general question of fleet sizing, i.e., “How
many vehicles does an operation optimally need?”, is posed. Typically, this question
involves a trade-off between the quality of the solution that can be provided and the
posed costs. Previous works showed the great potential of fleet sizing, [12] showcase
a great reduction in required taxis within Manhattan, or [73] optimizing the size of
robot fleets in flexible manufacturing systems.
All works tackling the fleet sizing question assume that tasks have a fixed starting
and ending time. In this chapter, we pose a new problem called FSD, which allows
to actively delay individual tasks slightly, if beneficial. Let us exemplify through a
situation of daily life: Within a family, Person A wants to go from home to sports,
leaving at 18:00, and person B arrives at the same home at 18:01. If A cannot delay
her trip, two vehicles are required to fulfill this demand. This changes if we allow
person A to leave slightly delayed at 18:01. Then, the two persons could use the
same vehicle sequentially. This can generalize to many passengers transported by
one system.
This chapter introduces and formally defines the FSD problem in a general fashion.
We give a general formulation that applies to operations, which can be described
as a set of tasks with vehicles that can execute the given tasks on their own and
move independently. Through such a general formulation, this chapter covers a wide
range of operations. For example, in the case of an operation of shared taxi rides, a
task can be a series of customers a single taxi fulfills, transporting a set of customers
to their locations until it becomes empty again. In the case of autonomous robots
in a greenhouse, a task can represent a set of crops to be harvested or pesticides
to be applied. In a warehouse or factory, a task can be a single request of parts
to an engineer. In the case of an on-demand delivery service, a task can represent
multiple orders one bike rider can transport at the same time.

Contribution Statement: This chapter proposes a new problem, fleet sizing with
delays. It introduces the option of delaying individual tasks within fleet sizing.

4.2. Related Work

4

55

The problem is formally defined. We prove that the FSD problem is NP-hard.
Further, we propose and solve a formulation of the FSD problem as a MILP. A
large experimental analysis is conducted, analyzing an abstract case in detail and
investigating a case study of taxi rides in Manhattan. We show that introducing
the option to delay tasks has two effects on obtained results. Firstly, fleet sizes can
be decreased significantly. Secondly, the trade-off space of the number of required
vehicles to execution time and added delay is increased.

4.2. Related Work
4.2.1. Overview
The fleet sizing problem was originally introduced by [74] in 1984. It poses the
question of the number of required vehicles (identical operating characteristics) to
satisfy a given demand. Since then, the problem itself has only slightly evolved,
mainly changing in the application it is asked for and the scale it can be tackled at.
For example, looking at fleet sizing in the maritime context [75, 76, 77], considering
the need to charge for electrical vehicles [78, 79], fleet sizing together with service
region partitioning [80], or pooled taxi rides [81, 82, 83]. Extending on the fleet
sizing question, the question of Fleet Design emerged [84, 85, 86]. Fleet Design goes
beyond determining the number of vehicles of one predefined type and incorporates
considerations about the types of vehicles to employ from a range of options and
the corresponding quantities needed. To tackle the fleet sizing problem, various
approaches in various areas have been developed and applied. We categorize these
approaches into three categories: chaining-based approaches, simulation-based ap-
proaches, and others. As an overview, we highlight each class.
Chaining-based approaches build on the idea of sequencing tasks to build so-
called chains, each chain representing the journey of a single vehicle. The obtained
number of chains equals the required fleet size if done for all tasks. The proposed
approach belongs to this class. As such, we have a closer look below, see Section
4.2.2.
Simulation-based approaches implement a simulation of an operation reflect-
ing its real counterpart as well as possible, [87, 88] (on-demand mobility services),
[89, 90] (shared rides) and [73] (flexible manufacturing systems). Once this is ob-
tained, various input parameters are changed, and the resulting Key Performance
Indicators are logged. By this means, fleets of different sizes and their influence can
be analyzed. The downside to these methods is that no theoretical guarantees can
be given and that it might require a lot of computational resources, as the simula-
tion needs to be repeated for each set of parameters. The upside is the capability
to represent the simulation environment in more detail, for example, traffic flow or
traffic lights.
Other approaches found in the literature are analytical approaches, such as [86]
looking at robots in a warehouse environment. They derive an optimal analytical
solution for the case of infinite pick-up stations. Further, we see approaches do-
ing a structured search, for example, [91] applies a binary search to find the best
fleet size for a fleet of mobile robots. Further, genetic algorithms have been used

4

56 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Figure 4.1: Illustration of a vehicle-shareability network [12], vertices are tasks or rides, and edges
represent potential chaining options, i.e. a single vehicle can serve both tasks in succession.

in fleet sizing. A comparison of a genetic algorithm and a chaining-based approach
(Hopcroft-Karp algorithm for the minimum path cover problem) was made by [92]
revealing that the genetic algorithm was outperformed in regards to the quality of
solution and the required computational time. [93] builds an optimization model
to estimate required fleet sizes based on GPS data. [94] formulates a mixed integer
linear problem to solve the joint fleet sizing and charging system planning problem.

This chapter is concerned with centrally controlled systems. That is, we do not
review works dealing with cases in which vehicles decide themselves on their plan,
such as [95] or [96], both papers modeling the behavior of ride-hailing drivers.

4.2.2. Chaining-based approaches
For the following of this literature review, we will focus on chaining-based approaches
alone, as our method belongs in this category. The general idea of chaining-based
approaches was first introduced by [12] to tackle the minimum fleet problem for taxi
rides in Manhattan. [12] first create a so-called Vehicle-shareability network, which
is a graph capturing which rides could be executed by a single vehicle in succession.
Rides or tasks are the graph’s vertices, and edges represent potential chaining op-
tions. A vertex i is connected to another vertex j, if a vehicle can serve ride j after
ride i. An example is illustrated in Figure 4.1. They show how, through these net-
works, the minimum fleet sizing problem can be transformed into a minimum path
cover problem. As the resulting graph is acyclic, the minimum path cover problem
can be solved through a maximum-matching algorithm (Hopcroft-Karp algorithm
[97]).
Since its introduction, chaining-based approaches have found great popularity, es-
pecially within the mobility of people community, and were adapted and extended.
Next, we analyze adaption from a problem perspective and from a methodological
one, subsequently.
Problem perspective: Finding the minimum fleet for non-shared taxi rides in
the city of Manhattan by relocating taxis to serve subsequent customers is tackled
by [12]. A group of papers extend chaining-based approaches to the application
of ridesharing, i.e. the option for multiple customers to share one vehicle simul-

4.3. Problem Formulation

4

57

taneously. A minimum fleet sizing problem with ridesharing was studied by [81],
[82] and [83], while the latter focused on the inclusion of demand predictions. [98]
formulates the pooling and chaining questions in a combined fashion and shows the
effect of pooling on obtained fleet sizes. Fleet sizing for On-Demand Multimodal
Transit Systems, combining fixed routes with on-demand vehicles, was studied by
[99].
From a methodological point of view, the most relevant question for chaining-
based approaches is how the chains are found. As a starting point, the problem is
often modeled as a graph, like the vehicle-shareability-network, capturing chaining
options. Transforming the graph into a bipartite graph and applying a maximum-
matching algorithm (like the Hopcroft-Karp algorithm) results in a minimal fleet,
like [12, 83, 100]. Other works formulate an ILP and solve it as a minimum flow
problem [99, 101]. If other objectives are considered beyond the fleet size, such as
the costs to chain tasks, other techniques are required. With costs, the problem
changes to a minimum-weight bipartite matching problem. It can be formalized as
an ILP considering costs in the objective function and solved as such or as a bipar-
tite matching problem with costs, approached by means of a Hungarian algorithm.
Forming chains iteratively by means of solving an ILP repeatedly was done by [81].
They use the chains formed up to this point as input and prolong them by adding
new tasks at each step. They start at the end of the day, and with each step, they
go further back in time.

This chapter extends the chaining-based approaches by allowing to delay individual
tasks. This changes the problem in both regards, from the tackled problem perspec-
tive and methodological. From an application-driven point of view, this enables to
decrease minimal fleet sizes even further, by adding delay. From a methodological
point of view, the newly posed problem can not be tackled by the existing approaches
as the decision, which tasks are delayed and if, by how much, is added.

4.3. Problem Formulation
In this section, we formally introduce and define the FSD. Intuitively described, the
FSD poses a problem in which a fleet of vehicles and their operational plans need
to be found to fulfill a given set of tasks while allowing to delay individual tasks.
Solutions are optimized based on a given objective.

4.3.1. Formal Problem Formulation
We first introduce the inputs, then the decision variables, and last, the cost function
of the problem.
Inputs: The operational environment is represented by a weighted directed graph
G = (V,E). The set of vertices V represents all locations, and the set of weighted
edges E represents connections between them. An edge exists if a vehicle can move
from one vertex to another directly, and the edge’s corresponding weight c(e) is the

4

58 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Figure 4.2: Illustration of a single task, its delayed variant, and associated points in time. For
clarity, we use tstart,ρ

T and tend,ρ
T , as the notation for the new starting and ending time of a delayed

task.

time needed to traverse it. All tasks are summarized in the set T . Each individual
task T is characterized as T = (lstart

T , lend
T , tstart

T , αT , σT): the first two variables
representing the starting and ending location1 (lstart

T and lend
T), while the following

two represent the starting time and duration of the task (tstart
T and αT). Last, σT

defines the maximum time a task can be delayed2. The resulting ending time tend
T

is the starting time plus the task duration, i.e. tend
T = tstart

T + αT . All tasks start
within tstart

T ∈ [0,Λ] ∀T ∈ T , with Λ defining the end time to request any task.
An illustration of a single task, its delayed variant, and all associated points in time
is shown in Figure 4.2.

Decision Variables: The decision variables of the FSD problem are the number
of vehicles and their trajectories, also defining the required delay per task. A single
trajectory is an operational plan for one vehicle. Formally, a trajectory is an ordered
sequence of tasks so that it is feasible for a single vehicle to serve all of them within
the given maximum delays. We denote a trajectory as gi = (Ti,1, Ti,2, ..., Ti,k),
thereby Ti,k denotes that task T is part of the trajectory gi and is served at position
k. A trajectory starts at the starting location and at the starting time of the first
task it serves, after serving this task, the vehicle relocates from the ending location
to the starting location of the subsequent task, if needed the vehicle waits until the
task starts and serves it, subsequently the vehicle relocates again. This procedure
is continued until the vehicle serves the last task, after which the vehicle stops. If
the vehicle arrives at the starting location of a task later than its starting time, the
1The starting and ending locations can be different or the same, there is no inherent need to return
to the starting location.

2Without a maximum delay, a single vehicle can serve the full set of tasks by serving all subse-
quently.

4.3. Problem Formulation

4

59

trip is delayed by the difference. The time a task is actually delayed is denoted
as ρT . A set of trajectories is summarized in the set ω. To be feasible, ω must
fulfill that all tasks are served, i.e. the union of all the trajectories results in T ,
mathematically ∪i∈ωgi = T ; and that no task is delayed more than its maximum
delay, i.e., ρT ≤ σT ∀T ∈ T .

Cost Function: The cost function C(ω) assigns a cost to a set of trajectories
ω. It includes costs for the number of vehicles used (fixed capital costs), their
total traveling time between tasks (relocation time), and costs for the total delay
added. For each vehicle used, i.e. for each executed trajectory, a capital cost of
Mfix is charged. To ease notation, we summarize the total relocation time of a
single trajectory gi as ϕ(gi). We denote the relocation time from task i to task j
as τTi,Tj

or short as τi,j . As such, the total relocation time of a single trajectory
can also be expressed as ϕ(gi) =

∑|gi|−1
j=1 τTi,j ,Ti,j+1 . Note that the execution time of

the vehicles during tasks is not part of the cost function because this is a constant
value. Additionally, two weights are used to weigh the influence of the total delay
and the total relocation time, which we denote as Mρ and Mϕ. Their exact values
depend on the specific cost structure of the operation3, which is also the case for
Mfix. In Section 4.5, we indicate those values for our experiments. Additionally,
two weights for the total delay Mρ and the total relocation time Mϕ are used. This
results in the objective function as follows:

c(ω) = Mfix · |ω|+Mρ ·
∑
T ∈T

ρT +Mϕ ·
∑
g∈ω

ϕ(g) (4.1)

Problem: We define Ω as the set of all sets of trajectories ω that are feasible
solutions to the FSD. As such, the fleet sizing problem with delays can be posed as:

min
ω∈Ω

c(ω) (4.2)

Note that an instance of the FSD problem is fully characterized by the graph
G = (V,E), the set of tasks T , and the constants Mfix, Mρ, and Mϕ.

4.3.2. Problem Complexity
Here we analyze the complexity of the newly introduced FSD problem. We first
compare the FSD problem on an intuitive level to its closest related problem, fleet
sizing without delays. Second, we claim and prove that FSD is NP-hard (Section
4.3.2).
On an intuitive level, introducing delay changes three points that are worth high-
lighting when comparing FSD to fleet sizing without delays:

• First, allowing delays will result in more options to chain individual tasks. For
no delays, each pair of tasks for which the starting location of the subsequent

3For example, for taxi rides, delays are more important than for logistical operations, resulting in
a higher value of Mρ.

4

60 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

task can not be reached in time can not be chained. For two tasks i and j of
the set of tasks T , this can be expressed as

tend
i + τi,j ≤ tstart

j i ∈ T , j ∈ T

This is relaxed with the option of delaying tasks, resulting in

tend
i + τi,j ≤ tstart

j + σj i ∈ T , j ∈ T

• Second, the individual decisions on whether to chain a pair of tasks are inde-
pendent of each other in case of no delays. This follows as the starting and
ending times are not changed by chaining. Thus, when deciding to chain task
i to task j, it is irrelevant which partial trajectory the corresponding vehicle
followed before task i. With delays, this is not the case, as the ending time of
a task changes if the task is delayed, which in turn might modify the starting
time of all the subsequent tasks assigned to the same vehicle. We remark that
this fact precludes utilizing the approach based on a bipartite graph, as done
by [12].

• Third, the set of all chaining options may contain a pair of tasks i and j twice,
once as (i, j) and once as (j, i).

Proof: The Fleet Sizing with Delays Problem is NP-Hard
Here, we prove that the FSD problem is within the complexity class of NP-Hard
problems. We do so by showing that the FSD can be reduced to the problem of de-
termining whether a Hamiltonian path exists, which is known to be NP-Complete.
A Hamiltonian path is defined as a path that visits each vertex of a given directed
graph G = (V,E) exactly once. As each vertex is exactly visited once, this implies
that the path is exactly of length |V | − 1.

Let us consider an instance of the Hamiltonian Path problem G = (V,E). We
prove that: a Hamiltonian path exists on the graph if and only if the FSD
problem4 (G, T ,Mfix,Mρ,Mϕ) admits a solution with a cost equal or lower to
Mfix + (|V | − 1 · |V |/2) + |V | − 1.

Reduction:

c(e) = 1 ∀e ∈ E (4.3a)
T = {Tv}v∈V , with: (4.3b)

lstart
T =v = lend

T =v = v ∀T ∈ T (4.3c)
tstart
T = tend

T = 0 ∀T ∈ T (4.3d)
σT = |V | − 1 ∀T ∈ T (4.3e)

Mρ = Mϕ = 1 (4.3f)
Mfix = |V |2 + |V | > (|V | − 1 · |V |/2) + |V | − 1 (4.3g)

4One instance of the FSD is fully characterized by G = (V,E), T ,Mfix,Mρ,Mϕ (see Section 4.3.1).

4.3. Problem Formulation

4

61

The cost to traverse any edge of the graph is set to one (Equation 4.3a). Equation
4.3b specifies that there is exactly one task per vertex in the graph (|V | = |T |); this
allows us to index the tasks using the vertices. For each of these tasks, the start
and the end locations are at the corresponding vertex (Equation 4.3c). Equation
4.3f sets the weights of added delay and relocation time equally to one. Equation
4.3g specifies that Mfix is larger than a given threshold, ensuring that reducing the
fleet size is always more important than the other parts of the objective function.

To prove the above-posed claim, we need to verify the claim in both ways. First, that
if the FSD is solvable with a cost less or equal than Mfix +(|V |−1 · |V |/2)+ |V |−1,
then a Hamiltonian path exists on G. Second, if a Hamiltonian path exists on the
graph G, then the FSD can be solved with a cost less or equal to Mfix + (|V | − 1 ·
|V |/2) + |V | − 1.

Direction 1: is solvable with a cost less or equal than Mfix+(|V |−1·|V |/2)+|V |−1
⇒ Hamiltonian path exists on G:
A solution to the FSD with the target costs of Mfix +(|V |−1·|V |/2)+|V |−1 is only
achievable under specific conditions. First, only a single vehicle can be used, causing
costs of Mfix. Using an additional vehicle would add costs of Mfix, leading to total
costs larger than 2Mfix, which is, in turn, larger than the target costs (Equation
4.3g), 2Mfix > Mfix + (|V | − 1 · |V |/2) + |V | − 1. Second, a solution of FSD must
serve all tasks, and therefore, all vertices of the graph are visited, as each task takes
place in exactly one vertex. That is, the existence of the solution with the said costs
ensures that a single vehicle is able to visit all of the nodes within the maximum
allowed delays. This clearly ensures that a Hamiltonian Path must exist: otherwise,
the vehicle would need to traverse at least V arcs, violating the maximum delay for
the last visited task.

Direction 2: A Hamiltonian path exists on graph G ⇒ the FSD can be solved with
a cost less or equal than Mfix + (|V | − 1 · |V |/2) + |V | − 1:
The desired solution is found by making a single vehicle follow exactly the Hamilto-
nian Path. Each vertex is visited by a Hamiltonian path; thus, each task gets served.
The first task is served at t = 0. The next task is met a time unit later as a Hamil-
tonian path will traverse exactly one edge to visit the next vertex. This pattern
continues till the last task is served at t = |V | − 1, thus satisfying the constraints.
As a Hamiltonian path traverses |V | − 1 edges, each having the cost of one, this
results in costs for total relocation time and delay of exactly (|V |−1·|V |/2)+|V |−1.
As a single path is formed, a single vehicle is required, adding costs of Mfix. As
such, A Hamiltonian path is a solution to the FSD problem and satisfies the cost
cap.

Conclusion: As the FSD problem simplifies, under the above-described reduction,
to the problem of whether a Hamiltonian path exists or not, which is NP-Complete,
we conclude that the FSD problem is NP-Hard.

4

62 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

4.4. Method
4.4.1. Mixed Integer Linear Problem
Here, we formalize the FSD as a MILP based on the idea of chaining. We connect
the individual tasks into chains, each forming a trajectory g for one vehicle. For a
single vehicle to be able to serve two tasks i and j in succession, it needs to be able
to relocate from the ending location of task i to the starting location of task j and
arrive before its starting time plus the maximal delay. This can be expressed as:

tend
i + τi,j ≤ tstart

j + σj i ∈ T , j ∈ T (4.4)

Recall, τi,j denotes the relocation time from task i to task j. It is calculated as
the sum of all costs of traversed edges if following the shortest path in between the
ending location of task i and the starting location of task j.
We define the set of all pairwise feasible chaining options of tasks as X , it contains
all pairs of tasks (i, j) that fulfill Equation 4.4.
To formulate this idea into a tractable problem, we introduce an integer decision
variable xi,j for each pair of tasks (i, j). xi,j takes the value of 1 if task i and j
are served by one vehicle in succession (i before j), i.e. the two tasks are chained
together. Otherwise, it takes the value of 0.

Taking the cost as defined previously (Equation 4.1), we award a constant value of
−Mfix for every two tasks that are chained.5 Further, we penalize delay and total
relocation time (total driven time between tasks). This allows us to formulate the
problem as a MILP as follows, using the newly introduced decision variable and
notation:

min
x,ρ

∑
(i,j)∈X

xi,j ·
[
−Mfix +Mϕ · τi,j

]
+Mρ ·

∑
i∈T

ρi (4.5a)

T∑
j=1

xi,j ≤ 1 ∀i ∈ T (4.5b)

T∑
i=1

xi,j ≤ 1 ∀j ∈ T (4.5c)

0 ≤ ρi ≤ σi ∀i ∈ T (4.5d)

xi,j · ρi ≤ xi,j ·
[
tstart
j + ρj − tend

i − τi,j

]
∀i ∈ T , ∀j ∈ T (4.5e)

Equation 4.5a describes the objective function of the MILP. −Mfix is awarded each
time two tasks are chained. Further, we add the time the vehicles need to drive
between the two tasks (τi,j) and the sum of the delay of all tasks (ρi ∀i ∈ T). Note
that the minimization problem can yield a negative value for the objective function
5Each chained formed means one vehicle less is required.

4.4. Method

4

63

due to awarding −Mfix, if two tasks are chained. The trivial feasible solution where
all variables are zero (no chaining and no delays) yields an objective value of zero,
which is not optimal. Equation 4.5b ensures that each task is maximally chained to
one subsequent task. Equation 4.5c ensures that each task has a maximum of one
preceding task. Note that the Equations 4.5a to 4.5c recover the traditional ILP for
fleet sizing if no delays are allowed. A constraint as Equation 4.5e can be omitted
in the no-delay case, as for no delays (ρ = 0), it is always trivially fulfilled because
all (i, j) belong to X , hence satisfying Equation 4.4 which is equivalent to Equation
4.5e for no delays. The set X does not contain any decision variable and, as such,
can be calculated beforehand. Equation 4.5d ensures that the actual delay of a task
(ρi) is not larger than its maximum delay (σi) and not smaller than zero. Equation
4.5e ensures that a vehicle arrives at the next task in time. To be precise, it means
that if xi,j = 1, the vehicle leaves the final location of i at its ending time plus its
potential delay (tend

i +ρi), drives to the new location taking time τi,j , and arrives in
time to the starting position of task j, including potential added delay of this task
(tstart

j + ρj); if xi,j = 0, this constraint has no implication. An illustration of this
constraint is shown in Figure 4.3.

Unfortunately, the constraint formulated in Equation 4.5e is not linear. To linearize
it, we define two new auxiliary variables Ai,j and Bi,j and apply a temporal scaling
to ensure σ ≤ 1. Intuition-wise, the new variables represent Ai,j = xi,j · ρi and
Bi,j = xi,j · ρj . As this would not be linear, these equations are represented by the
four Inequalities 4.6a-4.6d and respectively 4.6e-4.6h. The temporal scaling ensures
that equations 4.6c and 4.6g can always be satisfied also for the case of xi,j = 0.

Ai,j ≤ xi,j (4.6a)
Ai,j ≤ ρi (4.6b)

Ai,j ≥ xi,j + ρi − 1 (4.6c)
Ai,j ≥ 0 (4.6d)

Bi,j ≤ xi,j (4.6e)
Bi,j ≤ ρj (4.6f)

Bi,j ≥ xi,j + ρj − 1 (4.6g)
Bi,j ≥ 0 (4.6h)

Two cases can occur: First, xi,j = 0, as such Equation 4.6a demands Ai,j = 0.
Second, if xi,j = 1 then Ai,j = ρi forced by the Equations 4.6b and 4.6c. The same
holds for Bi,j and ρj . Using the auxiliary variables, Equation 4.5e can be rewritten
in linear form, see Equation 4.7.

Ai,j ≤ Bi,j + xi,j ·
[
tstart
j − tend

i − τi,j

]
(4.7)

All used notation of this chapter is summarized in Table 4.1 in Appendix 4.7.1.

4

64
4.

R
educing

the
M

inim
al

F
leet

Size
by

D
elaying

Individual
T

asks

Figure 4.3: Illustration clarifying the constraint of Equation 4.5e. Two tasks, i and j, their delayed variants, and the relocation time between are
shown. A vehicle follows the top line of arrows if it serves delayed task i relocates to task j, which was also delayed by ρj .

4.4. Method

4

65

4.4.2. Heuristics
As the size of the problem can get too large to be solvable through the above-
proposed method, or the required solving time can get too vast due to its NP-Hard
nature, we propose some heuristics for keeping the problem smaller. All heuristics
are designed to reduce the number of potential chains, |X |, needed to be considered
by the optimizer or by tightening the given constraints. We propose the following
four heuristics:

• Artificially reducing the maximally allowed delay time by introducing a new
maximum delay variable ρmax

ρi ≤ ρmax ∀i ∈ T ρmax < max
i∈T

σi

• Only allowing tasks to be chained if the end location of the ending task is
less than a given relocation time, τmax, apart from the start location of the
following task.

τi,j ≤ τmax ∀i ∈ T , ∀j ∈ T τmax < max
i,j∈T

τi,j

• For each starting task i, we limit the number of pairs (i, j) ∈ X to a maximum
of z pairs. Tasks are ranked by cost, and the z bests are considered. Here,
costs are calculated as τi,j +ρi,j , with ρi,j being the minimal delay if the tasks
are considered in isolation. z is a tuneable parameter.

• Due to allowed delays, it can happen that (i, j) ∈ X and also (j, i) ∈ X . This
heuristic consists of forbidding this situation, by only allowing trips to be
chained if trip i ends before trip j, i.e. tend

i < tend
j . We refer to this heuristic

as the “NoDuplicates”-heuristic.

4.4.3. Solving the Mixed Integer Linear Problem
For practical reasons, the MILP actually solved differs slightly from the one posed
in Equation 4.5. Equation 4.5e is replaced with its linear variant, Equation 4.7.
Further, we add a constraint for each pair of tasks, which can not be chained. The
corresponding decision variable xi,j is set to zero from the beginning, i.e.

(i, j) /∈ X → xi,j = 0

We solve the resulting problem using the Gurobi solver version 9.5.2 [102]. If heuris-
tics are applied, the problem to solve alters slightly. If setting a new artificial delay
bound (ρmax), Equation 4.5d is adapted accordingly. The other three heuristics add
an additional check while calculating the set of potential chaining options X , which
is used as described above.

4

66 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Figure 4.4: A graph representing the street network of the Gridworld environment n = 20, thus
containing 400 vertices, is depicted. For a vehicle to traverse any edge takes 10 seconds, b = 10.

4.5. Experiments and Results
4.5.1. Overview
This section presents our experimental results and is structured as follows: First, we
analyze a theoretical example called Gridworld in detail. We compare runs with and
without delay, analyze achievable trade-offs between fleet size, total relocation time,
and delay, compare different scenarios varying the density of tasks, and analyze the
introduced heuristics. Second, we investigate a case study of pooled taxi rides in
Manhattan. All computations have been performed on a PC with an AMD Ryzen
5 5600X and 64GB Memory. All resulting MILPs were solved using Gurobi 9.5.2
[102].

4.5.2. Gridworld
The operational environment, which we call Gridworld, is a grid-like structure con-
sisting of n × n vertices arranged in a square. Neighboring vertices are connected
and equidistantly spaced with a travel time of b seconds6. One instance of Gridworld
is fully characterized by n and b. An example of Gridworld is depicted in Figure
4.4. Gridworld has a maximal distance between vertices of 2× (n− 1)× b seconds.
For tasks’ start and end locations (lstart

T and lend
T), we randomly (uniformly) chose

two vertices from the environment graph. Start times tstart
T are sampled uniformly

within the starting time t = 0 and the end of the operation Λ. In Gridworld, we
define the duration of a task αT as the time it takes to travel the shortest path
from the start to the end location of the task7. As such, the ending time tend

T is
determined. This results in an average task length in Gridworld of 4

6×n×b seconds.
Within this section, we use the following parameter settings, unless mentioned oth-
erwise: n = 40; b = 10; |T | = 1, 600; σT = 480; Λ = 8 · 3, 600, Mρ = Mϕ = 1.
The parameters have been chosen to be realistic while keeping the required com-
putational times at a reasonable scale. We sampled and solved 5 different demand
6This is a simplifying assumption that we consider as reasonable as the proposed approach can ac-
commodate real travel times if available. Real travel times have an effect of the specific parameters
of tasks, but not on their general definition nor on the proposed method.

7This definition does not harm the generalization of the method and is straightforward to adapt.

4.5. Experiments and Results

4

67

scenarios. The mean and standard deviation are reported. The density analysis
and the heuristics are analyzed using a single case. Unless mentioned otherwise,
no heuristics are applied for all calculations within this section, and the problem at
hand is solved to optimality (no time limit and an optimality gap of 0.0001).

Comparison against the no-delay case
First, we compare solutions to the FSD (allowing to delay individual tasks) to the
traditional fleet sizing problem (not allowing delays). We do so for different values
of Mfix (Equation 4.5a), as it shapes the number of vehicles used. Generally, the
amount of extra delay and extra traffic to be accumulated to beneficially decrease
the fleet size by one vehicle is capped at Mfix, as otherwise the objective value
(Equation 4.5a) would increase and thus not chaining is better. Thus, a lower
absolute value of Mfix will lead to a less strong decrease in fleet size. Thereby, for
no delays, the value of Mfix that equals the largest relocation time between any two
vertices is of major importance. For the scenario analyzed here, this value equals
Mfix = 780. A value of Mfix ≥ 780 leads to a minimal fleet without delays, as it is
always beneficial to chain two tasks if possible. The threshold value of Mfix to not
decrease the fleet size at all, in other words, using an individual vehicle per task,
depends on the analyzed scenario. The threshold equals the minimum in the sum
of relocation time plus the potentially required delay of any two tasks that can be
chained.
Figure 4.5 shows a direct comparison of runs with and without allowing delays for
Mfix ∈ [400, 600, 800]. All results are also listed in Table 4.2 in Appendix 4.7.2.
The obtained fleet sizes, total relocation times, added minor delays, as well as the
difference in costs, are shown. Runs without delays are depicted in brighter colors.
Allowing for delays reduces the fleet size for all values of Mfix. The required fleet
sizes are reduced by around 1 vehicle for Mfix = 800, by around 2 vehicles for
Mfix = 600, and by around 1 vehicle for Mfix = 400. This showcases that allowing
delays is beneficial to decrease fleet sizes.8 This comes at the price of increasing
total relocation time and added delay. Respectively a total delay of 14:46 ± 02:51,
11:16 ± 02:02, and 05:50 ± 00:59 minutes and seconds is added. The average delay
per task is less than one second for all runs. The total amount of added delay, in
comparison to the total relocation time, is small. Please also note that the driving
time of the vehicles during tasks is not depicted nor part of the cost function, as it
is a constant. The obtained total costs, the objective of the optimization problem,
are smaller (minimization problem) if delays are allowed. As such, it is beneficial
to consider potential delays in fleet sizing regardless of the importance of single
objectives as seen by the overall achievable lower costs.

8Larger decreases in fleet size can be obtained for larger values of Mfix, see below (Figure 4.6).

4

68 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Figure 4.5: Comparison of runs with and without allowing to delay tasks for 3 values of Mfix ∈
[400, 600, 800], scenarios without delay are displayed in lighter colors. Allowing delays decreases
the obtained fleet size (purple) by adding some minor delay (dark green). Total objective values
(yellow) are lower if delays are allowed (minimization problem). The mean of 5 scenarios is shown,
including their standard deviation shown using black bars.

Further Reduction in Fleet Size
In the previous section, we showed the potential of solving the FSD in direct com-
parison to not considering the option to delay tasks. Here, we highlight the potential
of considering delaying tasks to decrease the fleet size even more. When no delays
are allowed, the threshold Mfix ≥ 780 ensures that fleet size is always the primary
objective. When delays are allowed, larger values of Mfix yield even smaller fleets,
as chaining decisions are not independent of each other anymore. Consequently, we
analyze Mfix > 780 within this section.
Figure 4.6 shows obtained results for values of Mfix from 1,000 to 6,000, in steps
of 1,000, and for comparison, the minimum achievable fleet without delays (using
Mfix = 800, same as previous section). Obtained fleet sizes, total relocation time,
and added delay are shown. Additionally, results are listed in Table 4.3 in Appendix
4.7.2. All runs are able to achieve a smaller fleet at the price of increasing total relo-
cation time and added delay compared to the non-delay case. The higher Mfix, the
smaller the obtained fleet size, accompanied by higher sums of total relocation time
and added delay. This is expected as the sum of costs (delaying tasks and longer
relocation times) can be more to include more tasks within each chain. Regarding
fleet size, the absolute number of vehicles saved for increasing Mfix more and more
diminishes slowly. Comparing the required fleet sizes for Mfix = 6, 000 to the mini-
mum fleet size without delays shows a decrease of needed vehicles of more than 50%
(from 59.2 to 28.6 vehicles), at a cost of just 9.7 seconds of average delay per task.
Average relocation time increases from 35 seconds to 1:03 minute and seconds. The

4.5. Experiments and Results

4

69

average relocation time increases from 34 seconds to 1 minute and 3 seconds.

Figure 4.6: Figure showing the effect of the value of Mfix on the obtained fleet size and the average
delay and average relocation time. For comparison, a run with no delay and only optimizing on
fleet size is shown. The mean of 5 scenarios is shown, including their standard deviation shown
using black bars.

In conclusion, FSD increases the potential trade-off space and, thus, the potential
to decrease the number of required vehicles significantly. This potential is huge but
heavily depends on the relation between costs involved, which in turn depends on
the nature of the operation at hand.

Density analysis
This section analyses the effect if the number of potential chains is varied and shows
that obtainable benefits are robust against external changes.
The number of potential tasks that a vehicle could serve after finishing a task (the
number of chaining options) increases if more tasks need to be fulfilled (i.e. if
we increase |T |). The same effect occurs the smaller the environment is, as the
average relocating time becomes smaller (which we analyze by changing n), and
thus it is easier to reach the new starting location in time. To analyze this effect
on the proposed method, we vary |T | and n. We compare runs with no delay, fully
minimizing fleet size, to runs allowing delays with Mfix = 5, 000. We vary the size of
the environment n as [20,40,60]. As for the number of placed tasks, we use different
numbers of total tasks to fulfill, |T | ∈ [800, 1,200, 1,600, 2,000, 2,400]. Obtained
results are visualized in Figure 4.7. The differences in fleet size (left) and delay
plus relocation time (right) for each value pair are shown for the scenarios with and
without delay. Values are shown in percentage, the baseline is the corresponding
run with no delays, fully minimizing fleet size.

4

70 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

Figure 4.7: The difference in fleet size and total relocation time plus delay for allowing delays to no
delays is shown in percentage as the environment size and the number of placed tasks are varied.

The decrease in fleet size ranges from 15.7% to 35%. This decrease is always sig-
nificant. The increase in total relocation time plus delay lies between 13.4% and
44.7%. Generally, greater changes accompany each other, seen by similar sizes of
the corresponding dots in Figure 4.7. No other clear trends show.

Effect of Heuristics
To enhance the scalability of the proposed approach to solve the FSD, we introduce
a variety of heuristics in Section 4.4.2. They reduce computational cost while not
significantly compromising the quality of the results. This capability is particu-
larly advantageous when tackling larger scenarios. In this section, we apply these
heuristics and analyze their effectiveness. Additionally, we vary the strengths of the
applied heuristics. For each heuristic, we compare fleet size, total relocation time
plus delay, the required computation time for the optimization, and the number of
chaining options, |X |. As a baseline for comparison, we use the case with Mfix

set to 5,000. For ease of comparison, in all figures of this section, all numbers are
displayed in percentages relative to the baseline.

Restricting maximum allowed delay: We restrict the maximum allowed delay form
σi = 480∀i ∈ T to ρmax ∈ [360, 240, 120]. Results are illustrated in Figure 4.8.
Reducing the maximally allowed delay can be effective in decreasing run times.
Figure 4.8 shows that the heuristic only slightly increases the fleet size and relocation
time plus delay for a strong decrease in required run times. But, if the heuristic is
applied strongly, i.e. for lower values of ρmax = 120, we see a substantial increase
in fleet size.
Restricting maximum allowed relocation time: We restrict the upper limit on the
relocation time between two tasks to τmax ∈ [600, 400, 200, 100]. Results are dis-
played in Figure 4.9. For larger values of τmax, the fleet size does not increase,
but the heuristic is also not effective in reducing required run times. Reducing the

4.5. Experiments and Results

4

71

Figure 4.8: Visualization of the effect of reducing the maximal allowed delay ρmax on fleet size,
delay plus total relocation time, run time, and the number of chaining options X , all presented as
percentages of the run without any heuristics.

Figure 4.9: Visualization of the effect of reducing the maximal allowed relocation time τmax on
fleet size, delay plus total relocation time, run time, and the number of chaining options X , all
presented as percentages of the run without any heuristics.

4

72 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

maximum relocation time strongly, τmax ∈ [200, 100], greatly decreases the number
of chaining options and a decrease in run times. For τmax = 200 the fleet size does
not change and total relocation time and delay only increase slightly. In contrast,
the fleet size increases strongly for τmax = 100. As such, the heuristic needs to be
well-tuned to be effective.
Comparing this heuristic to the previous one, we see a notable difference. Reducing
the maximum delay decreases the number of potential chaining options only slightly
but significantly affects the required computation time. In contrast, reducing the
maximum relocating time reduces the number of potential edges in a stronger fash-
ion but with a smaller effect on the computational time. This indicates that the
complexity of the problem is within the newly allowed delay.
Restricting the maximum number of chaining options per task to z: We varied
z ∈ [250, 200, 150, 100]. Most notably, the run time increases for all values of z.
As such, the heuristic is ineffective, and the sum of relocation times and minimum
required delay is ineffective in judging the potential of chaining options. Results are
shown in Figure 4.11 in Appendix 4.7.3.
“NoDuplicates”-Heuristic: This heuristic can either be used or not (no additional
tuning). The total number of chaining options only decreases very slightly (about
1.3%). The run time increases, and as such, we do not recommend the use of this
heuristic. Results are shown in Figure 4.12 in Appendix 4.7.3.

4.5.3. Case Study: Manhattan
This section analyses a real-world instance to analyze the proposed method’s po-
tential. We investigate the FSD problem considering taxi rides in Manhattan.
To build the set of tasks T , we utilize one hour of taxi rides data in Manhattan9 [103].
19,809 individual transportation requests are placed within this hour. The tasks we
consider are not these individual requests but groups of them that are pooled to
travel together. Here, the pooling of requests is done following a method based on
the Vehicle-Group-Assignment method by [11]. Details on this step can be found in
Appendix 4.7.4. The ending time of the transportation tasks is based on the task’s
duration, determined by the total travel time to serve all passengers following the
shortest path. This pooling step leads to a total of 4,255 pooled transportation tasks
or trips starting within 1 hour. Figure 4.13 in Appendix 4.7.5 shows distributions
of the starting times, trip duration, ending times of the tasks, as well as the number
of passengers per task. As the operational environment, Manhattan’s road network
is represented by a graph, and travel times are estimated for each road segment.
These travel times are used for transporting passengers and empty relocation. The
graph was obtained following the method described in [104]. Thereby, the travel
times of the graph are estimated based on the departure and arrival times of the
recorded trips and averaged over a day. The average relative error of the actual
travel times to the estimated travel times is minimized.
We run the above-proposed method for the Manhattan instance of the FSD prob-
lem with the following settings. For the cost function, we set Mfix = 2, 500 and
Mϕ = Mρ = 1. Based on the heuristic analysis for Gridworld (Section 4.5.2),
9The used data was recorded on 29.05.2013 between 1 p.m. and 2 p.m.

4.5. Experiments and Results

4

73

Figure 4.10: Main results of fleet sizing of one hour of pooled taxi rides in Manhattan, in regards
to fleet size, average relocation time, and average added delay, are displayed. For higher maximal
allowed delay, the required fleet sizes decrease, accompanied by an increase in total relocation time
and added delay.

we applied the heuristic capping the maximum relocating time, which we set to
τmax = 800 seconds. We do not apply the “NoDuplicates”-heuristic and the heuris-
tic selecting chaining options based on cost. For the maximum delay of all trips,
we analyze three scenarios of σ ∈ [60, 120, 180] seconds, which is at the core of this
chapter. All results are visualized in Figure 4.10 and listed in Table 4.4 in Appendix
4.7.2.

Each extra minute of allowed delay reduces the minimum required fleet size by
about 50 vehicles (52/54/47); in percentage, this is a decrease of around 3% (3.12%
/ 3.34% / 3.01%). Added delay and relocating time increase, whereby the stronger
changes are within the added delay. If 1 minute of maximum added delay is allowed
an average delay of 3.2 seconds per task is added. For 2 and 3 minutes of maximal
delay, this equals 10.7 and 22.37 seconds per task. This equals 8.41/29.2/62.78
seconds of delay for each vehicle over its entire day.
To conclude, introducing the option of delaying tasks is a way to reduce the number
of required vehicles. A slight modification, consisting of the introduction of 1 minute
of maximum delay, already allows decreasing the fleet by 3.12% at the mild cost of
an average delay of 12 seconds per trip. The proposed method allows stressing
this trade-off significantly further, allowing up to 3 minutes of delay, decreasing the
required fleet by 9.17% compared to not allowing delays.

4

74 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

4.6. Conclusion
In this chapter, we have posed the problem of fleet sizing with delays. It extends
the question of “How many vehicles are needed to perform a set of tasks?” by al-
lowing short delays before the beginning of each task, noting that such delays are
commonly observed in real-life applications. We proved that the new problem is
NP-Hard, and proposed a formulation of the FSD as a MILP. The formulation used
is general, and as such, the methods and findings have wide applicability. First, we
studied a general case (Gridworld) followed by a real-world case of shared taxi rides
in Manhattan.
For Gridworld, we showed that it is beneficial to consider delays within fleet sizing.
Lower costs are achieved in direct comparison to not considering them. We further
showed that delays allow a decrease in fleet size beyond previous limits. If a small
fleet is the highest priority, we find that fleets can be decreased by 50% compared
with the minimal fleet without delay while still respecting small limits of maximal
delay per task. Additionally, in this chapter, various heuristics are proposed and
analyzed. The work is concluded with a real-life case study of taxi rides in Man-
hattan. Results show the same nature and potential. By adding a maximum of
3 minutes of additional delay per ride, the required fleet size can be decreased by
about 9% in comparison to the minimal fleet without delays, at the cost of fewer
than 23 seconds of average delay per task.
In summary, using delays improves solutions and increases the option space for
potential trade-offs. It allows a reduction of the number of vehicles used strongly.
Future work includes the introduction of delays into other types of approaches, the
application of the proposed general method to specific fields and cases other than
the mobility of people, and the development of potent heuristics, such as a local
search algorithm or tabu search.

4.7. Chapter Appendix

4

75

4.7. Chapter Appendix
4.7.1. Notation

Notation Explanation
G Graph, encoding the environment
V Set of vertices of the graph, each vertex represents a location, cus-

tomers order to
E Set of edges connecting the vertices of the graph
c(e) Costs (time) required to traverse edge e
T Set of all tasks
T a single task T = (lstart

T , lend
T , tstart

T , αT , σT)
tstart
T Starting time of task T
tend
T Finishing time of task T
αT Duration of a task T
lstart
T Starting location of task T
lend
T Ending location of task T

Λ Ending time of the operation, tstart
T ≤ Λ

σT Maximum slack of task T
ρT Time task T is delayed
tstart,ρ
T Starting time of the delayed task T
tend,ρ
T Ending time of of the delayed task T
gi Trajectory i, which is defined as an ordered set of tasks gi =

(Ti,1, Ti,2, ..., Ti,k)
ω Set of trajectories
Ω Set of all feasible sets of trajectories
c(ω) Cost function
X Set of all pairs of tasks (i, j), which are chainable
xi,j Binary decision variable, whether tasks i and j are chained
Mfix Constant in the objective function awarded for chaining two tasks
Mρ Weight in the cost function to weigh the total delay
Mc Weight in the cost function to weigh the total relocation time
ϕ(g) Sum of times traveled by a vehicle between tasks of trajectory g
τi,j Relocation time from task i to task j
Ai,j Auxiliary variable to linearize Equation 4.7
Bi,j Auxiliary variable to linearize Equation 4.7
ρmax Artificial maximum delay
τmax Artificial maximum relocation time
z Tuneable parameter for selecting the z best edges per task
n Side length (in number of vertices) of the squared experimental en-

vironment Gridworld
b Distance in seconds between two connected vertices of the experi-

mental environment Gridworld

Table 4.1: Table summarizing the complete notation used throughout this chapter.

4

76
4.

R
educing

the
M

inim
al

F
leet

Size
by

D
elaying

Individual
T

asks

4.7.2. Result Tables

Mfix Max Delay σ [sec] Fleet Size Total Reloc. Time
[h:min:sec]

Total Added Delay
[h:min:sec]

Costs

800 480 58.2 ± 1.47 15:33:04 ± 0:05:59 0:14:46 ± 0:02:51 -1176569.4 ± 910.13
800 0 59.2 ± 1.83 15:49:08 ± 0:13:01 0:00:00 ± 0:00:00 -1175692.0 ± 932.98
600 480 65.2 ± 1.17 14:15:46 ± 0:08:16 0:11:16 ± 0:02:02 -868857.2 ± 660.19
600 0 67.2 ± 1.47 14:17:00 ± 0:06:47 0:00:00 ± 0:00:00 -868260.0 ± 666.84
400 480 79.4 ± 1.36 12:24:38 ± 0:08:36 0:05:50 ± 0:00:59 -563211.2 ± 524.8
400 0 80.4 ± 1.2 12:28:56 ± 0:10:21 0:00:00 ± 0:00:00 -562904.0 ± 474.7

Table 4.2: Comparison of the fleet sizing problem allowing delays and not doing so. These results are visualized in Figure 4.5. We list the total
delay instead of the average delay per task here, as the averages are all less than one second.

Mfix Max Delay σ [sec] Fleet Size Total Reloc. Time [h:min:sec] Total Added Delay [h:min:sec]
6000 480 28.6 ± 0.49 1 day, 4:04:40 ± 0:07:56 4:19:54 ± 0:19:30
5000 480 29.8 ± 0.4 1 day, 3:21:56 ± 0:20:36 3:16:15 ± 0:18:07
4000 480 31.8 ± 0.4 1 day, 1:45:28 ± 0:15:27 2:31:02 ± 0:16:03
3000 480 34.4 ± 0.8 1 day, 0:05:00 ± 0:08:08 1:26:02 ± 0:07:55
2000 480 39.2 ± 0.75 21:33:02 ± 0:27:54 0:42:19 ± 0:09:07
1000 480 52.6 ± 1.02 16:49:20 ± 0:12:52 0:20:33 ± 0:03:05
800 0 59.2 ± 1.83 15:49:08 ± 0:13:01 0:00:00 ± 0:00:00

Table 4.3: Results table for all experiments using values of Mfix greater than 800, and for comparison, the scenario achieving a minimal fleet for
no delays. These results are visualized in Figure 4.6.

4.7.
C

hapter
A

ppendix

4

77

Mfix Max Delay
ρmax [sec]

Max Reloc.
Time τmax

[sec]

z best “No
Duplicates”

Fleet
Size

Avg. Reloc.
Time
per Trip
[min:sec]

Avg. Added
Delay
per Trip
[min:sec]

Runtime
[h:min:sec]

Chaining
Options |X |

2,500 0 800 x ✓ 1,669 0:49 0:00 0:00:26 1,312,052
2,500 60 800 x ✓ 1,617 0:50 0:03 0:01:10 1,371,178
2,500 120 800 x ✓ 1,563 0:54 0:10 0:08:05 1,432,028
2,500 180 800 x ✓ 1,516 0:56 0:22 47:05:04 1,494,541

Table 4.4: Results table containing all results for the scenarios analyzed in the case study of taxi rides in Manhattan.

4

78 4. Reducing the Minimal Fleet Size by Delaying Individual Tasks

4.7.3. Plots of Heuristic Experiments

Figure 4.11: Visualization of the effect of restricting the maximum number of chaining options per
trip on fleet size, delay plus total relocation time, run time, and the number of chaining options
X , all presented as percentages of the run without any heuristics.

Figure 4.12: Visualization of applying the “NoDuplicates”-heuristic on fleet size, delay plus total
relocation time, run time, and the number of chaining options X , all presented as percentages of
the run without any heuristics.

4.7. Chapter Appendix

4

79

4.7.4. Details on Vehicle Group Assignment for Pooling
To create the set of tasks or rides T used within the case study of Manhattan,
the individual transportation requests within Manhattan have been pooled into
tasks T ∈ T first. This pooling step was done leveraging a method close to the
VGA [11]. VGA is a receding horizon approach. Each time step, all potential
trajectories for a set of given vehicles are calculated. A trajectory defines which
requests one vehicle serves and in which order, also determining its path. From this
set of potential trajectories, the best, according to a given objective function, are
selected by means of an assignment problem, solved as an integer linear problem. For
our purpose, VGA is altered to overcome the assumption of a fixed set of vehicles.
When calculating all potential trajectories. It is assumed that each request has its
own hypothetical vehicle available at its starting location. If a vehicle is not assigned
to be used during the assignment step, it is omitted. This procedure was proposed
in [105], more details can be found there. The tasks are defined as the trajectories
the used vehicles take, their first request defines the task’s start and the last request
the task’s end.

4.7.5. Details on the Manhattan Dataset
Figure 4.13 shows four histograms, all describing the set of trips used for the Man-
hattan Case study. They illustrate the starting time of the trips (top left), their
duration (top right), the resulting ending times (bottom left), and their total size
(bottom right).

Figure 4.13: This figure shows the distributions of the starting time (top left), their duration (top
right), the resulting ending times (bottom left), and their total size (bottom right) of all trips used
within the Manhattan case study. Size is measured as the number of individual passengers served
by a trip.

5
Fleet Sizing for the Flash

Delivery Problem from
Multiple Depots a Case

Study in Amsterdam
In previous chapters, the focus has been on studying either the vehicle routing prob-
lem for Flash Deliveries or the fleet sizing problem separately. However, combining
these two aspects remains a relevant challenge.
In this chapter, we present a novel approach that combines sophisticated routing
methods with fleet sizing for Flash Delivery operations. We analyze the effects of
this combination and study its application in real-life scenarios. A case study in
Amsterdam provides valuable insights and allows us to examine the influence of
various parameters on the overall operations.

This chapter is based on:

• M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Fleet Sizing for the Flash Delivery Problem
from Multiple Depots a Case Study in Amsterdam", planned to be submitted to IEEE 27th
International Conference on Intelligent Transportation Systems (ITSC) [106]

81

5

82
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

Abstract
In this chapter, we present a novel approach for fleet sizing in the context of Flash
Delivery, a time-sensitive delivery service that requires the fulfillment of customer
requests in minutes. Our approach effectively combines individual delivery requests
into groups and generates optimized operational plans that can be executed by a
single vehicle or autonomous robot. The groups are formed using a modified routing
approach for the Flash Delivery problem. Combining the groups into operational
plans is done by solving an ILP. To evaluate the effectiveness of our approach, we
compare it against three alternative methods: fixed vehicle routing, non-pooled de-
liveries, and a strategy encouraging the pooling of requests. The results demonstrate
the value of our proposed approach, showcasing its ability to optimize the fleet and
improve operational efficiency. Our experimental analysis is based on a real-world
dataset provided by a Dutch retailer, allowing us to gain valuable insights into the
design of Flash Delivery operations and to analyze the effect of the maximum al-
lowed delay, the number of stores to pick up goods from, and the employed cost
functions.

5.1. Introduction
In the ever-evolving landscape of retail and logistics, the prominence of Flash Deliv-
eries as a powerful business model is evident through the success of young companies
like Flink, Getir, and Gorillas. The growing demand for instant gratification and
swift order fulfillment has been the driving force behind the surge in popularity of
this time-sensitive delivery approach. Flash deliveries provide customers with the
convenience of receiving their requests promptly, challenging traditional retailers to
adapt and secure their market share in this highly competitive arena. Collabora-
tions between established players in the industry further exemplify the industry’s
response to this trend. For instance, in the Netherlands, Albert Heijn partnered
with Thuisbezorgd and Deliveroo to provide faster grocery delivery [8]. Similarly,
Cornershop merged with Uber, pursuing similar objectives [9].
These processes are accelerated and challenged further by the rapid progress in au-
tonomous delivery robots and autonomous driving technologies. A notable example
is Starship Technologies, which has successfully completed millions of autonomous
deliveries using their robot solution [3]. This advancement opens up possibilities for
operating large fleets at reasonable costs.
In contrast, a potential upside that traditional retailers have is the ban on opening
new dark stores, as seen in cities like Amsterdam [10]. Dark stores serve as dedicated
pick-up locations, and the prohibition on their establishment presents an opportu-
nity for brick-and-mortar stores to step in and utilize their existing infrastructure
as depots. This allows traditional retailers to leverage their physical presence to
support Flash Delivery operations.
In planning for Flash Delivery operations, two critical factors come into play: the
efficient routing of vehicles or robots and the design of the fleet. The interplay
between these factors adds complexity to the overall system. Traditional routing
assumes a fixed number of vehicles as input and focuses on optimizing their usage.

5.2. Related Work

5

83

Fleet sizing involves determining the optimal number of vehicles required based on
how they are utilized during service. To enable fleet sizing with sophisticated rout-
ing, we propose a novel method that combines routing optimization and fleet design
while considering multiple stores. Taking into account the unique characteristics
of multiple stores is particularly important, as it closely resembles the operational
setup of traditional retailers. In our study, we utilize real-world data from a Dutch
retailer, including information on the locations and number of brick-and-mortar
stores and real-life demand patterns. By integrating these aspects, we aim to gain
valuable insights into the optimization of Flash Delivery operations.
The contributions of this chapter are twofold: First, we propose a novel combina-
tion of methods enabling fleet sizing, including vehicle routing for Flash Delivery
operations from multiple stores. Second, we analyze a real-life scenario of deliver-
ies, emulating the entrance of traditional retailers into the Flash Delivery market,
shading light onto these operations.

5.2. Related Work
This chapter deals with fleet sizing for the FDP, including the pooling of requests,
i.e. vehicles can simultaneously carry multiple requests with similar destinations.
To the best of our knowledge, this chapter is the first to do so. As such, this
related literature section focuses on fleet sizing in general and on routing for the
FDP individually. The related literature predominantly originates from the area
of transporting people, such as the dial-a-ride problem and ridesharing. However,
there are three key distinctions between these areas and Flash Delivery logistics with
autonomous vehicles or robots. First, in logistics, the pick-up location of a request is
ambiguous and needs to be decided on. Second, while minimizing delay is crucial in
people transportation, Flash Delivery prioritizes operational efficiency and resource
utilization over delay reduction. Finally, the usage of autonomous vehicles or robots
enables continuous operation.

5.2.1. Fleet Sizing
Fleet Sizing generally answers the question, “How many vehicles are required to
serve some demand?”. [107] shows that various effects drive these decisions. The
existing literature offers two primary categories of approaches: simulation-based
and chaining-based methods. Simulation-based approaches aim to identify optimal
fleet designs and sizes by simulating operations with different fleet compositions.
For example, in [89], an agent-based micro-simulation model was employed to ana-
lyze shared ride services in Austin, Texas. Through cost estimates and simulations
with varying fleet sizes, an optimal fleet size was determined using the Golden Sec-
tion Search method [108]. Chaining-based approaches, on the other hand, involve
sequencing requests into chains by reallocating vehicles from completed tasks to sub-
sequent ones. The concept of chaining was initially introduced by [12] to address
the minimum fleet problem for taxi rides in Manhattan. They utilized a shareability
graph and applied a maximum matching algorithm to find the minimum fleet.
Building upon chaining, several papers extended the approach to ridesharing appli-

5

84
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

cations, enabling vehicles to serve multiple requests. For instance, in [81], chains
were iteratively formed using an ILP solver, progressively extending existing chains
by adding new tasks. [98] presented a combined optimization model that integrated
pooling and chaining, demonstrating the potential for reduced fleet sizes through
pooling. [82] proposed a novel order graph capturing complex inter-order share-
ability and solved a coverage problem over the graph to determine the required
fleet sizes. The following two works share a similar idea to the approach presented
here, which involves initially calculating how requests or passengers can be served
together and then applying chaining. In [83], a routing approach and demand fore-
casting were employed to maximize their proposed utility metric called "demand
utility" on shared trips, with chaining based on [12]. Additionally, [101] utilized
temporal and spatial aggregation to form trips, formulating fleet sizing as an ILP
and solving it as a minimum flow problem.

5.2.2. Routing for the Flash Delivery Problem
The routing aspect of the FDP represents a specialized domain within dynamic
vehicle routing problems. While the FDP shares similarities with the Same-Day
Delivery Problem, it poses unique challenges by requiring requests to be fulfilled
within minutes after being placed rather than by the end of the day. In the exist-
ing literature, only a few works have focused specifically on routing for the FDP,
namely [19, 20]. These studies adopt a rolling horizon approach to address the dy-
namic nature of the problem by dividing it into multiple snapshot problems. Their
methodology involves a two-step process for each snapshot. Firstly, a comprehen-
sive set of potential plans for each vehicle is generated. Subsequently, an assignment
problem is solved to determine which plans are executed by which vehicles. These
works build the foundation for the routing approach applied in this chapter.1
Not focusing on Flash Delivery, but the instant delivery problem are the works of [37]
and [38]. In [37], a column generation approach is used to optimize the assignment
of orders to a heterogeneous fleet of vehicles, considering deadlines of up to hours. In
[38], the instant delivery problem with shorter deadlines of 45 minutes is addressed
by decomposing it into a series of static problems. Orders are inserted into existing
trajectories based on a similarity measure.

5.3. Problem Formulation
Intuitively described, the fleet sizing problem poses a problem in which the number
of vehicles and their operational plans need to be found to fulfill a given demand.
It becomes the fleet sizing problem for the FDP when all requests need to be de-
livered within the constraints posed by the Flash Delivery operation. Solutions are
optimized based on a given objective.
The inputs are the demand, as a set of requests R which need to be serviced,
the capacity of the vehicles, and a graph G = (V,E) representing the operation
environment. The operational environment is represented as a weighted directed
graph denoted as G = (V,E), with vertices V representing different locations l ∈ V

1Another variation of this approach, generalizing to heterogeneous vehicles, was proposed in [25].

5.3. Problem Formulation

5

85

and edges E indicating connections between them. The weight of each edge, denoted
as w(e), represents the traversal time. The stores S form a subset of vertices V ,
where vehicles can pick up goods to fulfill customer requests. All stores have a full
stock of goods at all times.
The demand set R consists of individual customer requests r = (lgoal

r , tr), where
lgoal
r ∈ V represents the goal location and tr is the request placement time. It

is important to note that no specific pickup location for each request is specified,
as well as no specific set of products, as we assume each request to be unique.
In the FDP, each request must be dropped off within a maximum delay ρmax

r , as
[19, 20]. The drop-off delay ρr is the difference between the actual drop-off time
and the drop-off time if the request was served immediately via the shortest path
from the nearest store. Additionally, we consider fixed times tload to load a request
to a vehicle and tdeliver to deliver it to the customer. The assumed capabilities for
vehicles are as follows: Each vehicle has a maximum capacity of κ and drives along
the graph, specifying the needed traveling times.
The objective of the fleet sizing problem is to determine the number of vehicles re-
quired and their corresponding operational plans ω. An operational plan consists of
an ordered set of locations l ∈ V , where each location is assigned one of the following
activities: picking up a request, delivering a request to a customer, or waiting for
further instructions. The vehicle follows the shortest path between locations. Con-
sequently, following an operational plan results in the delivery of a set of requests
denoted as oω. Accordingly, the total driving time of a single trajectory ω is ϕ(ω),
and the resulting total delay if following this plan is ρ(ω). The starting time of
an operational plan is tstart

ω , and tend
ω is the ending time, respectively, starting and

ending location are lstart
ω and lend

ω .
To execute one operational plan ω, one vehicle is needed. As such, a set of oper-
ational plans Ω can be a solution to the fleet sizing problem if it satisfies certain
conditions. First, to qualify as a solution, together, all operational plans ω ∈ Ω
must successfully deliver all requests. Thereby, each request must be picked up
from a store and delivered to the customer before its specified maximum drop-off
time. Second, the capacity of each vehicle must not exceed the maximum capacity
constraint.
The evaluation of a solution Ω is based on the cost function J(Ω). The cost function
incorporates various factors, including the number of vehicles used (representing
fixed capital costs), travel time (representing variable capital costs), and delay costs
(representing the quality of service experienced by customers). For each vehicle or
executed trajectory in Ω, a fixed capital cost of Mfix is incurred. Additionally, the
costs of travel time and delay are weighted convexly using a cost weight parameter
α ∈ [0, 1]. This results in the cost function as follows:

J(Ω) = Mfix · |Ω|+
∑
ω∈Ω

[(1− α) · ρ(ω) + α · ϕ(ω)] (5.1)

Let ℧ be the set that includes all feasible sets of operational plans Ω, representing
solutions to the FDP. Given the set ℧, the fleet sizing problem can be formulated

5

86
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

as follows:
min
Ω∈℧

J(Ω) (5.2)

Note that constraints are implicit in the set ℧.

5.4. Method
To determine the solution Ωsol, our proposed approach consists of two key steps:
pooling and chaining. Pooling involves the coordinated gathering of multiple re-
quests into groups that can be efficiently delivered together. This step includes
optimizing the routing for each group, resulting in small operational plans. For
clarity, these small operational plans are not yet the final operational plans span-
ning the entire operation but rather smaller components. Thus, we refer to these
small operational plans as tasks T . The notation for tasks is identical to operational
plans. For example, a task’s starting and ending times are tstart

T and tend
T , and in

the same manner, the starting and ending locations are lstart
T and lend

T . Intuitively,
tasks represent individual units of work that can be performed efficiently by one
vehicle. Chaining combines these small operational plans or tasks T to create final
operational plans ω that cover the entire operation. This is done by assembling the
tasks in a sequential manner, considering dependencies, and optimizing the overall
delivery process. An overview of this approach is provided in Figure 5.1. For a more
in-depth understanding of pooling and chaining, please refer to Sections 5.4.1 and
5.4.2.

5.4.
M

ethod

5

87

Figure 5.1: Method Overview: Our method takes a set of requests as input. The first step, pooling, involves grouping the requests into groups that
can be efficiently delivered together. These groups are referred to as tasks, which include the corresponding routing optimization. The second step,
chaining, focuses on sequencing the tasks to create operational plans, with each plan requiring a single vehicle. To provide visual clarity, different
colors are used to represent each vehicle at each step of the process. Dashed lines represent vehicles driving in between tasks (chaining).

5

88
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

5.4.1. Pooling
The pooling step of our method is based on a dynamic routing approach for on-
demand last-mile logistics from multiple stores [19, 11]. However, we adapt this
approach to eliminate the requirement of a fixed fleet of vehicles as input, following
the methodology proposed in [105]. By building upon the principles of [19], we can
ensure that our method generates high-quality routes that satisfy the constraints
of the FDP. To address the dynamic nature of the problem, we employ a rolling
horizon approach by dividing the entire operation into multiple snapshot problems.
For each snapshot problem, we first calculate a large set of potential routes for the
vehicles. We then select the routes to be executed from this set. Routes represent
vehicle-specific operational plans, considering the vehicle’s current state. These
routes are designed to be feasible, adhering to the vehicle’s capacity constraints
and ensuring the timely completion of all assigned requests. Routes overlap mul-
tiple snapshot problems and are subject to change. For algorithmic details on the
approach to efficiently calculate the route set, we refer to [19].
Each route is assigned a cost to execute it, following Equation 5.1. The set of vehicles
to calculate routes for is not fixed in this chapter but differs for each snapshot
problem. In each step, we consider the none idle vehicles of the previous time
step and introduce new potential vehicles. We assume that one potential vehicle is
available for each request at the closest store to its goal location starting from the
request’s placement time tr.
The selection of routes to execute is performed through a coordinated process using
an assignment problem, which is formulated and solved as an ILP. The ILP is a
standard formulation to assign routes to vehicles such that all users are served2 and
no vehicle is assigned to more than one route; its explicit formulation can be found
in [19, 11]. If a new potential vehicle is chosen by the assignment, it is instantiated
into the problem and follows the assigned route. Any potential vehicles that are not
assigned are disregarded.
Each vehicle follows its assigned route until the next snapshot, at which point the
routes of all vehicles are updated and thus can be prolonged. Once a vehicle com-
pletes its assigned route and becomes idle, it is removed from the problem. The full
route that each vehicle executes, from its creation until it is dropped, constitutes a
task T . All tasks T are summarized in the set T .

5.4.2. Chaining
The chaining step is employed to combine the tasks T generated by the pooling step
into operational plans ω spanning the entire operation. The objective of chaining
is to optimally sequence tasks in a way that allows them to be executed by a single
vehicle.
In order for two tasks Ti and Tj to be executed consecutively by a single vehicle,
the vehicle must be able to relocate from the end location of task Ti, denoted as
lend
Ti

, to the start location of the subsequent task Tj , denoted as lend
Tj

, and reach it
before its designated starting time tstart

Tj
. The travel time required to drive from

2Serving all individual requests is always possible due to the possibility of creating new vehicles.

5.5. Dataset

5

89

lend
Ti

to lstart
Tj

is represented as τi,j .3 Thus, two tasks Ti and Tj can be chained if the
following equation is satisfied: tend

i + τi,j ≤ tstart
j . All pairs of tasks (i, j) that fulfill

this equation are summarized in the set X . To coordinate which pairs of tasks from
the set X are actually executed in sequence by one vehicle (chained), an ILP can be
formulated and solved [12]. The ILP minimizes the overall costs, Equation 5.3.4

min
∑

i,j∈X
xi,j ·

[
−Mfix + α · τi,j

]
(5.3)

Being subject to each task having maximally one preceding and one subsequent task.
Successfully chained tasks form a single operational plan ω within the solution Ωsol.
The size of the solution |Ωsol| defines the number of required vehicles, as each plan
requires one.

5.5. Dataset
The data set this case study is based on describes the shopping behavior of walk-in
customers in regular brick-and-mortar supermarkets in Amsterdam, Netherlands.
The locations of 42 stores belonging to a single retail company in the city center
are known and considered as pick-up locations S. Figure 5.2a displays a map of
Amsterdam’s city center, highlighting the locations of all stores in the dataset. The
dataset provides information on the number of transactions per hour for each store,
although the exact transaction times are not available. This transaction data is
available from 8 a.m. to 8 p.m. Figure 5.2b shows the used demand pattern as
the average number of transactions for all stores against time. Most notably, clear
peaks in demand during noon and the evening are present.
In this study, we simulate a Flash Delivery operation by modifying the original data.
One crucial aspect that undergoes changes is the set of requests R. We presume
that people reside in close proximity to the stores they frequent. Specifically, we
assume that each person exclusively shops at their nearest store, thereby defining
an area As associated with each store s. This area comprises all vertices l ∈ V for
which store s is the closest one. We iterate through all stores and time windows
to construct the individual requests r within the demand set R. For a given store
s and a specific time window k (one hour), the provided data includes the number
of transactions conducted at that store. We assume that a constant percentage5 of
these transactions will shift from traditional brick-and-mortar stores to the Flash
Delivery service. For each individual request r, we sample the goal location lgoal

r

from the set of vertices within the corresponding area As. We assume that customers
are uniformly distributed within this area. The request time tr is also uniformly
sampled from the corresponding time window k (one hour).

3During relocation, the vehicle is empty.
4This is equivalent to the overall cost function in Equation 5.1, as the cost to execute tasks can be
excluded as it is constant.

5Due to confidentiality reasons, we can not report exact numbers here.

5

90
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

(a) All store locations over a map of
Amsterdam.

(b) Average number of transactions per store.

Figure 5.2: Store distribution and demand data of the used data.

5.6. Experiments and Results
5.6.1. Experimental Setup
Our experiments focus on Amsterdam’s city center, represented by a graph of 2717
vertices and 5632 edges. However, we reduce the set of stores S. This decision is
based on the retailer’s reasoning that some stores are too busy to be suitable as
pick-up locations. As such, we exclude the busiest half, measured in total number
of transactions, of all stores from being pick-up locations. Below, we also analyze a
scenario using all stores. The demand, as described above, stays identical, as it is
not affected by such strategic decisions. We assume a loading and service time of
1 minute for each request (tload = tdeliver = 60[sec]). The maximum delay allowed
during pooling is set to 5 minutes (ρmax

r = 300[sec]). A snapshot problem is solved
every 100 seconds. Following the logic that delays in on-demand delivery operations
are nearly neglectable as long as the request is delivered within the promised time
window, we set the cost weight in all functions to α = 1, fully focusing on total
driving time. In the cost functions, we use a large value of Mfix = 2000[sec],
making the minimization of fleet size the first priority6.
Due to the nature of the data used to generate the demand, it exhibits an inherent
structure divided into one-hour intervals, clearly seen in Figure 5.2b. First, we apply
the proposed method to each interval separately. Second, we repeat the chaining
step, chaining the obtained operational plans per interval.

5.6.2. Results
First, “How many vehicles are required?”. For the entire day, a total of 459 vehicles
are needed. Figure 5.3 illustrates the status of each vehicle throughout the day.
The number of working vehicles (green) increases, i.e. the number of vehicles yet to

6Mfix larger than the maximal time for relocating, determined by the environment, is sufficient
to achieve this effect.

5.6. Experiments and Results

5

91

start (purple) decreases, reaching the highest fleet utilization during the hour with
the highest demand. The steps in the graph are due to the hourly segmentation of
the demand.

Figure 5.3: The status of each vehicle throughout the day.

To further understand the results we analyze each hour in more detail. The number
of requests, the number of tasks (the result of pooling), and the required fleet size
per hour are shown in Figure 5.4. As the number of initial requests increases in
one interval, more tasks are generated, leading to higher fleet sizes. The difference
between the number of requests and tasks becomes more significant with higher
demand, indicating that it is easier to group and serve requests together when there
is a larger volume of demand.

Figure 5.4: The number of requests, the number of tasks (result of pooling), and the required fleet
size for each interval for the entire day are shown.

During the peak hour (17:00-18:00), 5054 requests were grouped into 2278 tasks.
Each task serves an average of 2.22 requests and takes 445.7 seconds. To handle
these tasks, a fleet of 443 vehicles is required, which is slightly less than for the
entire day. Each vehicle serves 11.40 requests on average, and an operational plan
takes approximately 55 minutes and 33 seconds. This duration is close to spanning
the full hour, indicating effective utilization of the vehicles.
Total traffic by all vehicles shows the same correlation with demand (Figure 5.5).
It is observed that traffic originating from the pooling step (pooling traffic) exceeds
traffic originating from the chaining step (chaining traffic). This difference becomes

5

92
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

more pronounced with higher demand. Generally, with higher demand, the average
chaining traffic per vehicle decreases.

Figure 5.5: The total traffic and its breakdown into polling traffic and chaining traffic for each
interval throughout the day is shown.

Figure 5.6a presents the average delay per request over the course of the entire day.
It differs by about 1 minute between 140 and 200 seconds over the day. About 50
seconds, half of the time step of the pooling algorithm is due to the applied rolling
horizon approach. Additionally, Figure 5.6b displays the delay distribution for all
requests between 17:00 and 18:00. Each request experiences an average delay of 199
seconds. There is a noticeable increase in the number of requests with higher delays
approaching the maximum allowed delay of 300 seconds.7

(a) Average delay of intervals. (b) Distribution peak interval.

Figure 5.6: Two figures showing the average delay of all intervals (a) and the delay distribution of
the peak interval (b).

To conduct a comparative analysis and examine the key parameters, the focus of the
study is narrowed down to the peak hour interval, from 17:00 to 18:00. This time
period is chosen due to its significance, as it represents the hour with the highest
number of transactions throughout the entire day.
To range in the performance of the proposed approach, we compare it against three
opposing approaches. First, ‘encouraged pooling”, we apply a strategy encouraging
pooling to decrease the number of tasks obtained. To do so, we add costs to a route
7Recall that delay was not considered as part of the cost function. We do so as part of the
sensitivity analysis below.

5.6. Experiments and Results

5

93

Figure 5.7: Comparison of the proposed approach to three different strategies based on the main
KPIs.

if it uses a new potential vehicle. This extra cost was set to equal 1000 seconds.
Second, “chaining only”, we exclude the pooling step and deliver each request in-
dividually. Third, “fixed vehicles”, we use a fixed number of vehicles, equivalent to
the results of the proposed approach, and route them as [19] (pooling step). The
comparative results are presented in Figure 5.7. In the “encouraged pooling” and
“chaining only” approaches, the fleet sizes increase, and higher total driving times
compared to the proposed approach are needed. The “chaining only” approach has
no delay since each request is immediately served with its own vehicle. Service rates
are at the enforced 100% for all three methods (Proposed approach, “encouraged
pooling” and “chaining only”). In contrast, using a “fixed number of vehicles” does
not enforce the service rate but serves as many requests as possible using the avail-
able vehicles. We fixed the fleet size to 443, the same number as for the proposed
approach. As a result, around 62.5% of requests are served, requiring more driving
time and a lower average delay. The main reason for this difference is that the
vehicles are not rebalanced as effectively as with the chaining step, which is done in
hindsight with full information over the full planning horizon.
Last, we study the effect of the maximum allowed delay ρmax

r , the number of stores
to pick up goods, and the cost weight between delay and driving time. We vary the
studied variable exclusively and compare fleet size, traffic, and delay.
Delay: We vary the maximal delay as ρmax = [4, 6, 8]. Results are shown in Figure
5.8. The higher the maximum allowed delay, the lower are required fleet sizes,
accompanied by lower traffic, but at the price of higher values of average delay.
This is somehow expected. Most interestingly, are the changes in the split between
pooling traffic and chaining traffic. Both decrease with higher maximum delay, but
the amount of change in chaining is more, as more requests get served together,
which then befits the fleet size.
Number of Stores: For the experiments, up to here, the busier half of all stores
have not been considered as pick-up locations. Here, we compare the influence of
the number of used stores on the obtained results. We exclude 10 more and 10 fewer

5

94
5. Fleet Sizing for the Flash Delivery Problem from Multiple

Depots a Case Study in Amsterdam

Figure 5.8: Comparison of fleet size, traffic, and average delay for different values of allowed
maximum delay.

Figure 5.9: Comparison of fleet size, traffic and average delay for different number of available
stores.

stores, as well as using all stores of the retailer. Results are visualized in Figure 5.9.
All KPIs improve the more stores are used. For fleet size and traffic, the changes get
smaller the more stores are used. So the gains of using one additional store when
having 11 stores are larger than when already using 41 stores. Changes in delay are
more constant.
Cost Weight for Pooling α: The relation between total driving time and delay
experienced by customers is captured in the used cost functions. For all experiments
so far, we did not consider delay as a cost, here, we do so by varying alpha in
α = [0.9, 0.95]. The obtained results are illustrated in Figure 5.10. As a direct
result average delay decreases, the lower α the more. This comes at the cost of an
increased fleet size. Changes in traffic are minor.

5.7. Conclusion
We presented a novel approach for fleet sizing for the FDP. The comparison with
alternative strategies demonstrates the benefits of our approach, showing that the
integration of both pooling and chaining steps leads to improved performance com-
pared to using only one of these strategies. Furthermore, by utilizing a real-world
dataset, we were able to gain valuable insights into the operation of Flash Delivery
services. We explored the effects of store selection, maximum delay, and cost weight-

5.7. Conclusion

5

95

Figure 5.10: Comparison of fleet size, traffic, and average delay for different values of the cost
weight α.

ing on fleet size, traffic, and delay. These findings provide practical knowledge for
designing and managing Flash Delivery systems in urban environments. For future
work, it is essential to reduce assumptions and incorporate real-life features such as
traffic conditions.

6
Conclusion

97

6

98 6. Conclusion

6.1. Conclusion
This thesis is centered around the operational planning of Flash Delivery services,
with a primary focus on addressing the VRP and the FSP. Dedicated algorithms
have been proposed to tackle these specific problems, and their individual effective-
ness has been demonstrated. Furthermore, the study extends its scope by exploring
the combined application of these algorithms through a real-world case study using
actual data, provided by a Dutch retailer. The comparative analyses conducted
within this thesis validate the efficiency of the proposed approaches. Further, the
impact of key parameters was studied to offer valuable insights into the overall per-
formance of Flash Delivery operations. As a result, this work lays a solid foundation
for the optimization of operational processes in the realm of Flash Deliveries.

In Chapter 2, the Flash Delivery problem was formally defined as a dynamic vehicle
routing problem, which is modeled as a MDP. The proposed method for solving the
problem leverages the idea of first calculating a large set of plans for all vehicles
and, secondly, choosing which plans to execute by means of an optimization prob-
lem. This method efficiently considers multiple depots for each order, autonomously
selecting the most suitable one. Vehicles can visit depots to load additional or-
ders, enhancing operational efficiency. The method’s scalability is demonstrated
in scenarios with numerous orders, vehicles, and depots. Extensive computational
experiments revealed a 20% improvement over a greedy approach, showcasing the
effectiveness of the proposed routing method. Simulations further confirmed the
value of considering multiple depots and performing pre-empty depot returns. It
was shown that the proposed routing method is suitable to tackle the routing prob-
lem of the FDP. It builds the foundation of this dissertation and was reused and
extended in other parts of this dissertation.

Chapter 3 introduced an optimization-based approach to route a heterogeneous fleet
of vehicles for Flash Deliveries. It extended the in Chapter 2 proposed routing ap-
proach to heterogeneous modes of transportation, including heterogeneous vehicles,
such as small delivery robots, cars, bikes, and drones. Through experiments, the
proposed methods demonstrated their merits, showcasing higher delivery rates with
reduced driving distances. Moreover, the study delved into the size and composition
of different fleets, revealing that a larger number of drones can enhance service rates
at the expense of increased travel distances.

Chapter 4 tackled the FSP. The traditional FSP is extended by introducing addi-
tional flexibility to delay individual transportation tasks. A new problem is intro-
duced and formulated, FSD. FSD is proven to be NP-hard. A novel method formu-
lating the FSD as a MILP is proposed. Results demonstrated that incorporating
task delays had two significant effects: reductions in fleet sizes and an expanded
trade-off space between the number of vehicles, execution time, and added delay.
A comparison with traditional fleet sizing approaches revealed overall lower costs
achieved through the introduction of delays. The real-life case study of taxi rides in
Manhattan showcased the practical benefits of task delays. With a maximum of just

6.1. Conclusion

6

99

3 minutes of additional delay per ride, the required fleet size decreased by about 9%
in comparison to the minimal fleet without delays, while the average delay per task
was less than 23 seconds. In conclusion, leveraging delays improves solutions and
allows for more flexible trade-offs, resulting in potential reductions in the number
of vehicles required for Flash Delivery operations.

Chapter 5 introduced a novel approach combining fleet sizing and vehicle routing for
Flash Delivery operations from multiple stores. A real-life scenario emulating the
entrance of traditional retailers into the Flash Delivery market was analyzed. The
comparison with alternative strategies demonstrates the benefits of our approach,
showing that the integration of both pooling and chaining steps leads to improved
performance compared to using only one of these strategies. Our experimental anal-
ysis is based on a real-world dataset provided by a Dutch retailer. By exploring the
effects of store selection, maximum delay, and cost weighting on fleet size, traffic,
and delay, this chapter offers practical knowledge for effectively managing Flash
Delivery systems. These findings provide practical knowledge for designing and
managing Flash Delivery systems in urban environments.

Overall, these contributions address the key challenges in operating a Flash De-
livery service. However, there are still several remaining issues towards improving
obtained results or before the proposed methods are applicable to everyday prac-
tices. Towards that goal, possible directions for future work are described below.

6.1.1. Answering the Posed Main-Research Question
This thesis attempts to answer the following main-research question: “How can the
planning for Flash Delivery operations regarding vehicle routing and fleet sizing be
accomplished efficiently and effectively?”

Vehicle routing and fleet sizing are inherently complex, demanding potent algorithms
to compute efficient and effective solutions. Throughout this thesis, the goal has
been to develop novel algorithms that introduce new aspects and opportunities
to address these challenges while remaining solvable within reasonable time and
resource constraints.
In essence, the effectiveness of the solutions derived can be enhanced when algo-
rithms can encompass a broader range of real-world problem facets, in conjunction
with plausible assumptions. For example, the inclusion of pre-empty depot returns
or factoring in delays during fleet sizing enhances the operational efficiency of the
planned activities. Similarly, the employment of a variety of vehicle types and their
cooperative potential in task fulfillment adds another layer of complexity and real-
ism.
Moreover, if problems along the value chain can be collectively solved, it presents
advantages. This not only streamlines the planning process but also allows for the
elimination of certain assumptions. In the context of this thesis, the integration of
vehicle routing and fleet sizing showcases such a situation, eliminating the need to
assume fixed routes or a simple routing rule, allowing more effective planning.

6

100 6. Conclusion

In summary, developing more comprehensive algorithms leads to more efficient and
effective Flash Delivery operations.

6.2. Future Research
Although this thesis has provided a step forward toward efficient Flash Deliver-
ies, many challenges and avenues for future research remain. In the following, we
recommend several research avenues for Flash Deliveries regarding VRP and the
FSP.

6.2.1. Vehicle Routing for Flash Deliveries
• Real-World Representation: Generally speaking, the better real-world sce-

narios are represented within the analyzed problems, the better. Taking as-
sumptions is common and necessary in research, as otherwise, the problems
become impossible to solve in a reasonable time and would take away the fo-
cus of what research is supposed to contribute. Nevertheless, decreasing the
number and strength of assumptions poses opportunities for future research.
To only name some of the many, we want to highlight the common assump-
tion of static travel times, the neglection of traffic and congestion in cities, the
neglection of parking times, and the absence of unforeseen disruptions of the
operation. Specific to the research presented in this dissertation, considering
longer loading and delivery times for more complex orders and incorporating
lead times for pick-ups from stores would lead to more accurate and prac-
tical solutions. Addressing these aspects can enhance the applicability and
effectiveness of Flash Delivery operations in real-world settings.

• Anticipatory Methods: Future research could focus on extending the pro-
posed method to incorporate anticipation, aiming to reduce the risk of unfa-
vorable states in the dynamic Flash Delivery operation. Anticipating future
scenarios can be challenging, especially in large-scale problems with rapidly
changing dynamics. Generally, larger problems can tolerate less extensive ways
to anticipate or simulate future scenarios. Developing efficient algorithms that
can anticipate future orders and dynamically adjust routing decisions for large-
scale Flash Delivery services is an important direction for further investigation.
Additionally, incorporating stochastic information about potential orders and
integrating orders known ahead of time into the optimization process could
lead to improved operational efficiency.

• Integration with Other Logistic Processes: Investigating the integration
of Flash Deliveries with other logistical processes presents intriguing avenues
for future research, both vertically and horizontally. Vertical fusion involves
exploring how Flash Deliveries can be combined with preceding steps in the
value chain, leading to more seamless and efficient overall operations. Simi-
larly, horizontal fusion entails integrating Flash Deliveries with other delivery
processes, such as return processes or next-day delivery services, to enhance

6.2. Future Research

6

101

the overall efficiency and effectiveness of both operations. Studying these com-
binations could unlock new possibilities and efficiencies in last-mile logistics.

• Number and Location of Depots: In the future, two intriguing questions
are how many depots should be operated within a given area, as well as where
and how many depots should be considered per order. Integrating routing
considerations into these questions appears to be a promising avenue that can
lead to further improvements in Flash Delivery operations.

• Less Urgency: The routing algorithms presented in this dissertation are
specifically tailored for Flash Delivery operations. However, an interesting area
for future research lies in their application and adaptation to other logistical
operations with varying levels of urgency, such as deliveries within an hour or
within a few hours. Exploring how these algorithms can be extended to suit
different time frames could yield valuable insights for diverse delivery services.
How the approaches combine and compare to other methods for the DVRP,
which can emerge in case of less urgency, is a critical aspect in this avenue of
future work.

• Details for Heterogeneous Vehicles: Chapter 3 introduced the exten-
sion to heterogeneous vehicles, which relies on accurately representing the
capabilities of different vehicle types. This enables a thorough analysis of
their strengths and weaknesses and facilitates informed decision-making. As
such, representing them as well as possible is an opportunity for future im-
provements. For instance, considering the battery life of drones is crucial to
avoid over-optimistic use in the obtained results. Additionally, novel ways of
combining heterogeneous vehicles in different integration strategies and the
corresponding VRPs pose interesting future research possibilities.

• User Experience and Customer Preferences: Investigating methods to
incorporate customer preferences and feedback into the operational planning
process could enhance service quality and customer satisfaction.

6.2.2. Fleet Sizing
• Including Dynamics of Operation: Addressing the disparity between fleet

sizing approaches, which usually assume complete information, and the dy-
namic real-time execution presents a crucial challenge. Otherwise, obtained
results, like an optimal fleet size, will not be sufficient to obtain wanted costs
and service quality.

• Real-World Representation: Indeed, just like for the VRP, accurately rep-
resenting the FSP and the underlying problem is essential to obtain meaning-
ful results and practical solutions. For example, accounting for uncertainties
in the operation would contribute to more robust and adaptable fleet sizing
strategies.

• Delay in Fleet Sizing: In Chapter 4, the FSD was introduced. Two key
directions for future work in this area pose. First, enhancing the scalability of

6

102 6. Conclusion

the FSD approach is crucial to handle large-scale Flash Delivery operations.
Developing powerful heuristics tailored to the FSD problem will enable faster
or better scaling solutions. Second, exploring the application of delays in other
types of transportation problems opens up intriguing possibilities.

• Fleet Design: The approaches proposed for the FSP in this dissertation
assume the use of homogeneous vehicles. However, expanding the problem
context to include the decision on the types of vehicles to be used could lead
to more specialized fleets and enhance their applicability in real-life scenarios.
Incorporating the decision on the fleet composition from diverse vehicle options
increases the problem’s complexity strongly.

Bibliography
[1] Gorillas, “Gorillas celebrates 16 million orders world-

wide,” 2022. [Online]. Available: https://gorillas.io/en/blog/
gorillas-celebrates-16-million-orders-worldwide

[2] Kantar, “Markt van flitsbezorging groeit onstuimig in nederland,”
2022. [Online]. Available: https://www.kantar.com/nl/kantar-nieuws/
onderzoek-markt-flitsbezorging

[3] S. Technologies. (2023) Comapny website of starship technologies. [Online].
Available: https://www.starship.xyz/

[4] N. Christie and H. Ward, “The health and safety risks for people who drive
for work in the gig economy,” Journal of Transport and Health, vol. 13, pp.
115–127, 2019.

[5] Y. Zheng, Y. Ma, L. Guo, J. Cheng, and Y. Zhang, “Crash involvement and
risky riding behaviors among delivery riders in china: The role of working
conditions,” Transportation Research Record, vol. 2673, no. 4, pp. 1011–1022,
2019.

[6] A. M. Amiri, M. R. Ferguson, and S. Razavi, “Adoption patterns of au-
tonomous technologies in logistics: evidence for niagara region,” Transporta-
tion Letters, vol. 14, no. 7, pp. 685–696, 2022.

[7] A. Fielbaum, F. Ruiz, G. Boccardo, D. Rubio, A. Tirachini, and J. Rosales-
Salas, “The job of public transport, ride-hailing and delivery drivers: Con-
ditions during the covid-19 pandemic and implications for a post-pandemic
future,” Travel Behaviour and Society, vol. 31, pp. 63–77, 2023.

[8] Albert Heijn Nieuws, “Albert heijn breidt samenwerking met deliveroo
en thuisbezorgd.nl uit,” 2022. [Online]. Available: https://nieuws.ah.nl/
albert-heijn-breidt-samenwerking-met-deliveroo-en-thuisbezorgdnl-uit

[9] Cbinsights Research Briefs, “Uber acquires cornershop,” 2021. [Online].
Available: https://www.cbinsights.com/research/uber-acquires-cornershop/

[10] M. Peters and H. Ernste, “Discovering a new phenomenon inside a dutch
urban context: ‘flash delivery’,” Master Thesis at Radboud University, 2022.

[11] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-
demand high-capacity ride-sharing via dynamic trip-vehicle assignment,” Pro-
ceedings of the National Academy of Sciences, vol. 114, no. 3, pp. 462–467,
2017.

103

https://gorillas.io/en/blog/gorillas-celebrates-16-million-orders-worldwide
https://gorillas.io/en/blog/gorillas-celebrates-16-million-orders-worldwide
https://www.kantar.com/nl/kantar-nieuws/onderzoek-markt-flitsbezorging
https://www.kantar.com/nl/kantar-nieuws/onderzoek-markt-flitsbezorging
https://www.starship.xyz/
https://nieuws.ah.nl/albert-heijn-breidt-samenwerking-met-deliveroo-en-thuisbezorgdnl-uit
https://nieuws.ah.nl/albert-heijn-breidt-samenwerking-met-deliveroo-en-thuisbezorgdnl-uit
https://www.cbinsights.com/research/uber-acquires-cornershop/

6

104 Bibliography

[12] M. Vazifeh, P. Santi, G. Resta, S. Strogatz, and C. Ratti, “Addressing the
minimum fleet problem in on-demand urban mobility,” Nature, vol. 557, no.
7706, pp. 534–538, 05 2018.

[13] X. Bai, A. Fielbaum, M. Kronmüller, L. Knoedler, and J. Alonso-Mora,
“Group-based distributed auction algorithms for multi-robot task assign-
ment,” IEEE Transactions on Automation Science and Engineering, vol. 20,
no. 2, pp. 1292–1303, 2023.

[14] J. van Lochem, M. Kronmueller, P. van ’t Hof, and J. Alonso-Mora, “Antici-
patory vehicle routing for same-day pick-up and delivery using historical data
clustering,” 2020 IEEE 23rd International Conference on Intelligent Trans-
portation Systems (ITSC), 2020.

[15] A. Fielbaum, M. Kronmueller, and J. Alonso-Mora, “Anticipatory routing
methods for an on-demand ridepooling mobility system,” Transportation,
vol. 49, p. 1921–1962, 2021.

[16] S. Bhatia and M. Kronmueller, “Anticipatory route optimization in on-
demand same-day grocery delivery,” Master Thesis at Delft University of
Technology, 2022.

[17] C. Claij and M. Kronmueller, “Fleet design for last-mile on-demand logistics,”
Master Thesis at Delft University of Technology, 2022.

[18] J. Pierotti, M. Kronmueller, J. Alonso-Mora, J. T. van Essen, and W. Böhmer,
“Reinforcement learning for the knapsack problem,” in Optimization and Data
Science: Trends and Applications. Springer International Publishing, 2021,
pp. 3–13.

[19] M. Kronmueller, A. Fielbaum, and J. Alonso-Mora, “On-demand grocery de-
livery from multiple local stores with autonomous robots,” in 2021 Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2021, pp.
29–37.

[20] ——, “Online flash delivery from multiple depots,” Transportation Letters,
vol. 0, no. 0, pp. 1–17, 2023.

[21] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. T. Jr., “On the
capacitated vehicle routing problem,” Math. Program., vol. 94, no. 2-3, pp.
343–359, 2003.

[22] M. Bernardo, B. Du, and J. Pannek, “A simulation-based solution approach
for the robust capacitated vehicle routing problem with uncertain demands,”
Transportation Letters, vol. 13, no. 9, pp. 664–673, 2021.

[23] J. R. Montoya-Torres, J. López Franco, S. Nieto Isaza, H. Felizzola Jiménez,
and N. Herazo-Padilla, “A literature review on the vehicle routing problem
with multiple depots,” Computers &Industrial Engineering, vol. 79, pp. 115–
129, 2015.

Bibliography

6

105

[24] M. Bernardo, B. Du, and A. B. Matias, “Achieving robustness in the ca-
pacitated vehicle routing problem with stochastic demands,” Transportation
Letters, vol. 15, no. 3, pp. 254–268, 2023.

[25] M. Kronmueller, A. Fielbaum, and J. Alonso-Mora, “Routing of heteroge-
neous fleets for flash deliveries via vehicle group assignment,” 2022 IEEE 25th
International Conference on Intelligent Transportation Systems (ITSC), pp.
2286–2291, 2022.

[26] S. A. Voccia, A. M. Campbell, and B. W. Thomas, “The same-day delivery
problem for online purchases,” Transportation Science, vol. 53, no. 1, pp. 167–
184, 2017.

[27] M. W. Ulmer, B. W. Thomas, and D. C. Mattfeld, “Preemptive depot re-
turns for dynamic same-day delivery,” EURO Journal on Transportation and
Logistics, vol. 8, p. 327–361, 2019.

[28] J.-F. Côté, T. A. de Queiroz, F. Gallesi, and M. Iori, “Dynamic optimization
algorithms for same-day delivery problems,” in cirrelt.ca, 04 2021.

[29] G. Ghiani, E. Manni, A. Quaranta, and C. Triki, “Anticipatory algorithms
for same-day courier dispatching,” Transportation Research Part E: Logistics
and Transportation Review, vol. 45, no. 1, pp. 96–106, 2009.

[30] N. Azi, M. Gendreau, and J.-Y. Potvin, “A dynamic vehicle routing problem
with multiple delivery routes,” Annals of Operations Research, vol. 199, no. 1,
pp. 103–112, 2012.

[31] M. A. Klapp, A. L. Erera, and A. Toriello, “The one-dimensional dynamic
dispatch waves problem,” Transportation Science, vol. 52, no. 2, pp. 402–415,
2016.

[32] ——, “The dynamic dispatch waves problem for same-day delivery,” European
Journal of Operational Research, vol. 271, no. 2, pp. 519–534, 2018.

[33] ——, “Request acceptance in same-day delivery,” Transportation Research
Part E: Logistics and Transportation Review, vol. 143, p. 102083, 2020.

[34] M. W. Ulmer and S. Streng, “Same-day delivery with pickup stations and
autonomous vehicles,” Computers &Operations Research, vol. 108, pp. 1–19,
2019.

[35] R. Bent and P. Van Hentenryck, “Scenario-based planning for partially
dynamic vehicle routing with stochastic customers,” Operations Research,
vol. 52, pp. 977–987, 2004.

[36] C. Ackva and M. Ulmer, “Consistent routing for local same-day delivery via
micro-hubs,” Working Paper Series, 2022.

6

106 Bibliography

[37] L. Zhen, J. Wu, G. Laporte, and Z. Tan, “Heterogeneous instant delivery
orders scheduling and routing problem,” Computers &Operations Research,
vol. 157, p. 106246, 2023.

[38] G. Xue and Z. Wang, “Order acceptance and scheduling in the instant delivery
system,” Computers &Industrial Engineering, vol. 182, p. 109395, 2023.

[39] D. Reyes, A. Erera, M. Savelsbergh, S. Sahasrabudhe, and R. O’Neil, “The
meal delivery routing problem,” Optimization Online, vol. 6571, 2018.

[40] B. Yildiz and M. Savelsbergh, “Provably high-quality solutions for the meal
delivery routing problem,” Transportation Science, vol. 53, no. 5, pp. 1372–
1388, 2019.

[41] M. W. Ulmer, B. W. Thomas, A. M. Campbell, and N. Woyak, “The restau-
rant meal delivery problem: Dynamic pickup and delivery with deadlines and
random ready times,” Transportation Science, vol. 55, no. 1, pp. 75–100, 2021.

[42] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review
of the state-of-the-art,” Cooperative Robots and Sensor Networks 2015, pp.
31–51, 2015.

[43] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: models and algo-
rithms,” Annals of Operations Research, vol. 153, no. 1, pp. 29–46, 2007.

[44] A. Fielbaum, X. Bai, and J. Alonso-Mora, “On-demand ridesharing with opti-
mized pick-up and drop-off walking locations,” Transportation Research Part
C: Emerging Technologies, vol. 126, p. 103061, 2021.

[45] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for dynamic
ride-sharing: A review,” European Journal of Operational Research, vol. 223,
no. 2, pp. 295–303, 2012.

[46] A. Mourad, J. Puchinger, and C. Chu, “A survey of models and algorithms for
optimizing shared mobility,” Transportation Research Part B: Methodological,
vol. 123, pp. 323–346, 2019.

[47] S. Narayanan, E. Chaniotakis, and C. Antoniou, “Shared autonomous vehicle
services: A comprehensive review,” Transportation Research Part C: Emerging
Technologies, vol. 111, pp. 255–293, 2020.

[48] B. Yu, N. Ma, W. Cai, T. Li, X. Yuan, and B. Yao, “Improved ant colony opti-
misation for the dynamic multi-depot vehicle routing problem,” International
Journal of Logistics Research and Applications, vol. 16, no. 2, pp. 144–157,
2013.

[49] H. Xu, P. Pu, and F. Duan, “A hybrid ant colony optimization for dynamic
multidepot vehicle routing problem,” Discrete Dynamics in Nature and Soci-
ety, vol. 2018, 2018.

Bibliography

6

107

[50] A. Vitetta, “The importance of modeling path choice behavior in the vehicle
routing problem,” Algorithms, vol. 16, no. 1, 2023.

[51] G. Musolino, A. Polimeni, C. Rindone, and A. Vitetta, “Travel time forecast-
ing and dynamic routes design for emergency vehicles,” Procedia - Social and
Behavioral Sciences, vol. 87, pp. 193–202, 2013.

[52] G. Musolino, A. Polimeni, and A. Vitetta, “Freight vehicle routing with re-
liable link travel times: a method based on network fundamental diagram,”
Transportation Letters, vol. 10, no. 3, pp. 159–171, 2018.

[53] A. Polimeni and A. Vitetta, “Optimising waiting at nodes in time-dependent
networks: Cost functions and applications,” Journal of Optimization Theory
and Applications, vol. 156, 03 2013.

[54] M. W. Ulmer, J. C. Goodson, D. C. Mattfeld, and B. W. Thomas, “On mod-
eling stochastic dynamic vehicle routing problems,” EURO Journal on Trans-
portation and Logistics, vol. 9, no. 2, p. 100008, 2020.

[55] Uber, “Uber marketplace matching,” 2022. [Online]. Available: https:
//www.uber.com/us/en/marketplace/matching/

[56] M. W. Ulmer, J. C. Goodson, D. C. Mattfeld, and M. Hennig, “Offline–online
approximate dynamic programming for dynamic vehicle routing with stochas-
tic requests,” Transportation Science, vol. 53, no. 1, pp. 185–202, 2019.

[57] M. Hyland, F. Dandl, K. Bogenberger, and H. Mahmassani, “Integrating de-
mand forecasts into the operational strategies of shared automated vehicle
mobility services: spatial resolution impacts,” Transportation Letters, vol. 12,
no. 10, pp. 671–676, 2020.

[58] R. Z. Farahani and M. Hekmatfar, Facility location: concepts, models, algo-
rithms and case studies. Springer Science & Business Media, 2009.

[59] G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and delivery
problems,” European Journal of Operational Research, vol. 202, no. 1, pp.
8–15, 2010.

[60] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of dynamic
vehicle routing problems,” European Journal of Operational Research, vol. 225,
no. 1, pp. 1–11, 2013.

[61] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing prob-
lems: Three decades and counting,” Networks, vol. 67, no. 1, pp. 3–31, 2016.

[62] Çağrı Koç, T. Bektaş, O. Jabali, and G. Laporte, “Thirty years of heteroge-
neous vehicle routing,” European Journal of Operational Research, vol. 249,
no. 1, pp. 1–21, 2016.

https://www.uber.com/us/en/marketplace/matching/
https://www.uber.com/us/en/marketplace/matching/

6

108 Bibliography

[63] A. Goel and V. Gruhn, “Solving a dynamic real-life vehicle routing problem,”
Operations Research Proceedings, vol. 2005, pp. 367–372, 01 2005.

[64] V. Pillac, C. Guéret, and A. Medaglia, “A fast reoptimization approach for
the dynamic technician routing and scheduling problem,” Operations Re-
search/Computer Science Interfaces Series, pp. 347–367, 01 2018.

[65] F. Ferrucci and S. Bock, “Real-time control of express pickup and delivery pro-
cesses in a dynamic environment,” Transportation Research Part B: Method-
ological, vol. 63, pp. 1–14, 2014.

[66] M. Schyns, “An ant colony system for responsive dynamic vehicle routing,”
European Journal of Operational Research, vol. 245, no. 3, pp. 704–718, 2015.

[67] M. W. Ulmer and B. W. Thomas, “Same-day delivery with heterogeneous
fleets of drones and vehicles,” Networks, vol. 72, no. 4, pp. 475–505, 2018.

[68] X. Chen, M. W. Ulmer, and B. W. Thomas, “Deep q-learning for same-day
delivery with vehicles and drones,” European Journal of Operational Research,
vol. 298, no. 3, pp. 939–952, 2022.

[69] M. W. Ulmer, “Dynamic pricing and routing for same-day delivery,” Trans-
portation Science, vol. 54, no. 4, pp. 1016–1033, 2020.

[70] I. Dayarian, M. Savelsbergh, and J.-P. Clarke, “Same-day delivery with drone
resupply,” Transportation Science, vol. 54, no. 1, pp. 229–249, 2020.

[71] S. H. Chung, B. Sah, and J. Lee, “Optimization for drone and drone-truck
combined operations: A review of the state of the art and future directions,”
Computers and Operations Research, vol. 123, p. 105004, 2020.

[72] M. ApS, MOSEK for c++. Version 7.1.

[73] M. Sahnoun, Y. Xu, F. B. Abdelaziz, and D. Baudry, “Optimization of trans-
portation collaborative robots fleet size in flexible manufacturing systems,” in
2019 8th International Conference on Modeling Simulation and Applied Opti-
mization (ICMSAO), 2019, pp. 1–5.

[74] B. Golden, A. Assad, L. Levy, and F. Gheysens, “The fleet size and mix vehicle
routing problem,” Computers &Operations Research, vol. 11, no. 1, pp. 49–66,
1984.

[75] G. Pantuso, K. Fagerholt, and L. M. Hvattum, “A survey on maritime fleet
size and mix problems,” European Journal of Operational Research, vol. 235,
no. 2, pp. 341–349, 2014.

[76] G. C. de Bittencourt, R. D. Seimetz Chagas, V. A. Silva, I. G. Peres Vianna,
R. P. Longhi, P. C. Ribas, and V. J. M. Ferreira Filho, “A solution frame-
work for the integrated problem of cargo assignment, fleet sizing, and delivery
planning in offshore logistics,” Computers & Industrial Engineering, vol. 161,
p. 107653, 2021.

Bibliography

6

109

[77] I. F. A. Vis, R. M. B. M. de Koster, and M. W. P. Savelsbergh, “Minimum ve-
hicle fleet size under time-window constraints at a container terminal,” Trans-
portation Science, vol. 39, no. 2, pp. 249–260, 2005.

[78] H. Zhang, C. J. R. Sheppard, T. E. Lipman, and S. J. Moura, “Joint fleet
sizing and charging system planning for autonomous electric vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4725–
4738, 2020.

[79] M. Xu and Q. Meng, “Fleet sizing for one-way electric carsharing services
considering dynamic vehicle relocation and nonlinear charging profile,” Trans-
portation Research Part B: Methodological, vol. 128, pp. 23–49, 2019.

[80] D. Banerjee, A. L. Erera, and A. Toriello, “Fleet sizing and service region
partitioning for same-day delivery systems,” Transportation Science, vol. 56,
no. 5, pp. 1327–1347, 2022.

[81] A. Wallar, J. Alonso-Mora, and D. Rus, “Optimizing vehicle distributions and
fleet sizes for shared mobility-on-demand,” in 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 3853–3859.

[82] C. Wang, Y. Song, Y. Wei, G. Fan, H. Jin, and F. Zhang, “Towards minimum
fleet for ridesharing-aware mobility-on-demand systems,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10.

[83] B. Qu, L. Mao, Z. Xu, J. Feng, and X. Wang, “How many vehicles do we
need? fleet sizing for shared autonomous vehicles with ridesharing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 594–
14 607, 2022.

[84] P. JONES and J. ZYDIAK, “The fleet design problem,” The Engineering
Economist, vol. 38, no. 2, pp. 83–98, 1993.

[85] A. Zhao, J. Xu, J. Salazar, W. Wang, P. Ma, D. Rus, and W. Matusik,
“Graph grammar-based automatic design for heterogeneous fleets of under-
water robots,” 2022 International Conference on Robotics and Automation
(ICRA), pp. 3143–3149, 2022.

[86] A. Rjeb, J.-P. Gayon, and S. Norre, “Sizing of a homogeneous fleet of robots in
a logistics warehouse,” 17th IFAC Symposium on Information Control Prob-
lems in Manufacturing INCOM 2021, vol. 54, no. 1, pp. 552–557, 2021.

[87] I. Markov, R. Guglielmetti, M. Laumanns, A. Fernández-Antolín, and R. de
Souza, “Simulation-based design and analysis of on-demand mobility services,”
Transportation Research Part A: Policy and Practice, vol. 149, pp. 170–205,
2021.

[88] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle fleet sizes
required to serve different levels of demand,” Transportation Research Record,
vol. 2542, no. 1, pp. 111–119, 2016.

6

110 Bibliography

[89] D. Fagnant and K. Kockelman, “Dynamic ride-sharing and fleet sizing for
a system of shared autonomous vehicles in austin, texas,” Transportation,
vol. 45, 01 2018.

[90] A. Fielbaum, A. Tirachini, and J. Alonso-Mora, “Economies and diseconomies
of scale in on-demand ridepooling systems,” Economics of Transportation,
vol. 34, p. 100313, 2023.

[91] Y. Mei, Y.-H. Lu, Y. Hu, and C. Lee, “Determining the fleet size of mobile
robots with energy constraints,” in 2004 IEEE International Conference on
Intelligent Robots and Systems (IROS), vol. 2, 2004, pp. 1420–1425.

[92] G. Wang, “Comparative study on solving the minimum fleet of shared au-
tonomous vehicles,” CICTP 2020, pp. 522–534.

[93] Y. Yang, Z. Yuan, X. Fu, Y. Wang, and D. Sun, “Optimization model of taxi
fleet size based on gps tracking data,” Sustainability, vol. 11, no. 3, p. 731,
Jan 2019.

[94] H. Zhang, C. J. R. Sheppard, T. E. Lipman, and S. J. Moura, “Joint fleet
sizing and charging system planning for autonomous electric vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4725–
4738, 2020.

[95] J. C. Castillo, D. Knoepfle, and G. Weyl, “Surge pricing solves the wild goose
chase,” in Proceedings of the 2017 ACM Conference on Economics and Com-
putation, ser. EC ’17, 2017, p. 241–242.

[96] M. Schröder, D.-M. Storch, P. Marszal, and M. Timme, “Anomalous supply
shortages from dynamic pricing in on-demand mobility,” Nature Communica-
tions, vol. 11, 09 2020.

[97] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum matchings
in bipartite graphs,” SIAM Journal on Computing, vol. 2, no. 4, pp. 225–231,
1973.

[98] S. Hao, X. Liu, L. Miao, W. K. V. Chan, and M. Qi, “Qualifying the benefits
of ride-sharing on reducing fleet size,” Journal of Physics: Conference Series,
vol. 1903, no. 1, p. 012019, apr 2021.

[99] R. Auad-Perez and P. Van Hentenryck, “Ridesharing and fleet sizing for
on-demand multimodal transit systems,” Transportation Research Part C:
Emerging Technologies, vol. 138, p. 103594, 2022.

[100] G. Wang, “Research on the fleet size of shared autonomous vehicles in the
future city: An example in shanghai,” CICTP 2020, pp. 4537–4549.

[101] M. Balac, S. Hörl, and K. W. Axhausen, “Fleet sizing for pooled (automated)
vehicle fleets,” Transportation Research Record, vol. 2674, no. 9, pp. 168–176,
2020.

Bibliography 111

[102] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.
[Online]. Available: https://www.gurobi.com

[103] B. Donovan and D. Work, “New york city taxi trip data (2010-2013),” 2016.
[Online]. Available: https://databank.illinois.edu/datasets/IDB-9610843

[104] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. Strogatz, and C. Ratti, “Quan-
tifying the benefits of vehicle pooling with shareability networks,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 111,
09 2014.

[105] M. Čáp and J. Alonso-Mora, “Multi-objective analysis of ridesharing in auto-
mated mobility-on-demand,” in Proceedings of Robotics: Science and Systems,
2018.

[106] M. Kronmueller, A. Fielbaum, and J. Alonso-Mora, “Fleet sizing for the flash
delivery problem from multiple depots a case study in amsterdam,” arXiv,
2023.

[107] A. Fielbaum, A. Tirachini, and J. Alonso-Mora, “Economies and diseconomies
of scale in on-demand ridepooling systems,” Economics of Transportation,
vol. 34, p. 100313, 2023.

[108] R. Shao and L. Chang, “A new maximum power point tracking method for
photovoltaic arrays using golden section search algorithm,” in 2008 Canadian
Conference on Electrical and Computer Engineering, 2008, pp. 619–622.

https://www.gurobi.com
https://databank.illinois.edu/datasets/IDB-9610843

Acknowledgements
I am deeply grateful to Javier Alonso-Mora, whose guidance and mentorship through-
out the four years have been invaluable. His support and provision of everything
I needed have been instrumental in shaping this dissertation. I extend my sincere
appreciation to Robert Babuska for providing high-level guidance and being ap-
proachable whenever I needed advice. A special thanks to Andres Fielbaum for
his invaluable feedback, explanations, and inspiring ideas. His contributions have
significantly influenced the development of this dissertation and me, as a researcher.
I would like to express my gratitude to Ahold Delhaize for their financial support and
for making the AIRLab project possible. The connections and discussions forged
over the course of four years have been immensely valuable. I am thrilled that my
Ph.D. project was part of the AIRLab project. Especially, I want to sincerely thank
Bassem Zaarour, Bart Voorn, and Thomas Rodenberg for their support, collabora-
tion, and constant efforts to make connections and to organize valuable data.
My gratitude also goes out to all the members of the Autonomous Multi Robots Lab.
Sharing this journey with all of you, whether through discussions, coffee breaks, or
moments of fun, has been a true pleasure.
I am deeply thankful to my friends whose unwavering support and encouragement
have been a constant source of strength. A special shoutout to Daniel Kolb for
his motivating presence and ability to bring a smile to my face, no matter the
circumstances. Friedrich Sbresny, thank you for your willingness to share and discuss
matters, even during challenging times. To Max Spahn and Merle Losch, thank
you for the enjoyable board game sessions, bike rides, and dinners. Your company
has made my Ph.D. journey all the more delightful. I owe a debt of gratitude to
Alvaro Serra Gomez and Corrado Pezzato for getting me out of the office and to
the bouldering wall. Your friendship and the chats we shared, whether during these
activities or over coffee, have been uplifting.
My family’s support has been a pillar of strength throughout this journey. I am
immensely grateful to my parents for their unwavering support, belief in me, and
encouragement, regardless of my plans and ambitions. You have played a significant
role in shaping me into the person I am today. To my two incredible sisters, I am
continuously amazed and grateful to have you in my life.
Finally, I want to express my deepest appreciation to Antonia Huefner, who has
been the best thing that ever happened to me. Her constant support, love, and
presence have brought immeasurable happiness to this journey. I am incredibly
fortunate to have her in my life.

113

Curriculum Vitæ
Maximilian Kronmüller was born in Stuttgart, Ger-
many, in 1992. He earned his Master of Science degree
in “Applied and Engineering Physics” from the Techni-
cal University of Munich in 2018. During his master’s
thesis titled “Application of deep neural networks to
event type classification in IceCube” he joined the “Ex-
perimental Physics with Cosmic Particles” group led
by Prof. Elisa Resconi. Subsequently, he continued as
a researcher in the same group. His work was focused
on developing algorithms and methodologies to analyze
and interpret data from the IceCube neutrino detec-
tor.

In September 2019, Maximilian began his Ph.D. journey under the supervision of
Prof. Javier Alonso-Mora, becoming a member of the Department of Cognitive
Robotics at Delft University of Technology. His Ph.D. project centered on vehicle
routing and fleet sizing for Flash Delivery operations, hosted within the "AIRLab -
AI for Retail" initiative.

Maximilian’s research interests encompass a wide range of topics, including Flash
Delivery services, dynamic vehicle routing problems, online multi-task assignment,
fleet sizing, learning-based methods for routing decisions, and dynamic optimization.

115

List of Publications

Published

7. M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Online Flash Delivery from Mul-
tiple Depots", in Transportation Letters, vol. 0, no. 0, pp. 1-17, 2023.

6. X. Bai, A. Fielbaum, M. Kronmueller, L. Knoedler and J. Alonso-Mora, "Group-
Based Distributed Auction Algorithms for Multi-Robot Task Assignment", in IEEE
Transactions on Automation Science and Engineering, vol. 20, no. 2, pp. 1292-1303,
2023.

5. M. Kronmueller, A. Fielbaum and J. Alonso-Mora, "Routing of Heterogeneous
Fleets for Flash Deliveries via Vehicle Group Assignment", in IEEE 25th Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pp. 2286-2291,
2022.

4. A. Fielbaum, M. Kronmueller, J. Alonso-Mora, "Anticipatory Routing Methods
for an On-Demand Ridepooling Mobility System", in Transportation, vol. 49, pp.
1921–1962, 2022.

3. J. Pierotti, M. Kronmueller, J. Alonso-Mora, T. van Essen, W. Boehmer, "Rein-
forcement Learning for the Knapsack Problem", in Optimization and Data Science:
Trends and Applications, pp. 3-13, 2021.

2. M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "On-Demand Grocery Delivery
From Multiple Local Stores With Autonomous Robots", in Proceedings of the Inter-
national Symposium on Multi-Robot and Multi-Agent Systems (MRS), pp.29-37,
2021.

1. J. van Lochem, M. Kronmueller, P. van ’t Hof, J. Alonso-Mora, "Anticipatory
Vehicle Routing for Same-Day Pick-up and Delivery using Historical Data Cluster-
ing", in IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), pp. 1-6, 2020.

Under Review

1. M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Reducing the Minimal Fleet Size
by Delaying Individual Tasks", submitted to IEEE Transactions on Intelligent Trans-
portation Systems, 2023.

117

118 List of Publications

In Preparation

1. M. Kronmueller, A. Fielbaum, J. Alonso-Mora, "Fleet Sizing for the Flash Delivery
Problem from Multiple Depots a Case Study in Amsterdam", planned to be submitted
to IEEE 27th International Conference on Intelligent Transportation Systems (ITSC)

	Summary
	Samenvatting
	Zusammenfassung
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Approach
	Contribution Statement
	Research Beyond this Thesis
	Outline

	Online Flash Delivery from Multiple Depots
	Introduction
	Related Work
	Same-Day Delivery Problem
	Other related Problems

	Problem Formulation
	Method
	Method Overview
	Finding Pick-up Locations
	Trip Generation
	Assignment of Trips to Vehicles
	Time-Propagation
	Complexity and Optimality Analysis

	Experiments and Results
	Base Scenario
	Comparison
	Sensitivity Analysis

	Conclusion
	Chapter Appendix

	Routing of Heterogeneous Fleets for Flash Deliveries via Vehicle Group Assignment
	Introduction
	Related Work
	Problem Formulation
	Notation and Problem Statement
	Markov Decision Process

	Method
	Selecting Potential Pick-up Locations
	Finding Potential Trips
	Assigning Trips

	Experiments and Results
	Comparison to Other Approaches
	Fleet Composition

	Conclusion
	Chapter Appendix
	 Details on Split&Route

	Reducing the Minimal Fleet Size by Delaying Individual Tasks
	Introduction
	Related Work
	Overview
	Chaining-based approaches

	Problem Formulation
	Formal Problem Formulation
	Problem Complexity

	Method
	Mixed Integer Linear Problem
	Heuristics
	Solving the Mixed Integer Linear Problem

	Experiments and Results
	Overview
	Gridworld
	Case Study: Manhattan

	Conclusion
	Chapter Appendix
	Notation
	Result Tables
	Plots of Heuristic Experiments
	Details on Vehicle Group Assignment for Pooling
	Details on the Manhattan Dataset

	Fleet Sizing for the Flash Delivery Problem from Multiple Depots a Case Study in Amsterdam
	Introduction
	Related Work
	Fleet Sizing
	Routing for the Flash Delivery Problem

	Problem Formulation
	Method
	Pooling
	Chaining

	Dataset
	Experiments and Results
	Experimental Setup
	Results

	Conclusion

	Conclusion
	Conclusion
	Answering the Posed Main-Research Question

	Future Research
	Vehicle Routing for Flash Deliveries
	Fleet Sizing

	Bibliography
	Acknowledgements
	Curriculum Vitæ
	List of Publications

