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Abstract: We propose a novel method to improve the convergence performance of model
predictive control (MPC) for setpoint tracking, by introducing sub-references within a multi-
level MPC structure. In some cases, MPC is implemented with a short prediction horizon due
to limited on-line computation capacity, which could lead to deteriorated dynamic performance.
The introduced multi-level optimization method can generate proper sub-references for the MPC
setpoint tracking problem, and efficiently improve the dynamic performance. In the higher level
a specific performance criterion is taken as the objective, while explicit MPC is utilized in
the lower level to represent the control input. The generated sub-references are then used in
MPC for the real system with prediction horizon restrictions. Setpoint-tracking MPC for linear
systems is used to illustrate the approach throughout the paper. Numerical simulations show
that MPC with sub-references significantly improves the convergence performance compared
with regular MPC with the same prediction horizon. Thus, it can be concluded that MPC with
sub-references has a high potential to tackle more complicated control problems with limited
computation capacity.
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1. INTRODUCTION

Model predictive control (MPC) is an online optimization-
based control method that traces back to the 1970s
(Morari and Lee, 1999; Mayne, 2014). It has been widely
used in the process industry due to its conceptual simplic-
ity and its ability to easily and effectively handle com-
plex systems with many inputs and outputs and hard
constraints (Qin and Badgwell, 2000, 2003). Typically,
only the first element of the optimized control sequence
is implemented to the controlled system, and then the
prediction horizon is moved forward for one control step.
Abundant stability and optimality results have been de-
rived for MPC (Mayne et al., 2000), which means that the
theory of this technique is mature.

However, in practice the limited computational capacity
may only allow for a short prediction horizon for online
MPC optimization, especially for nonlinear MPC due to
the complexity of solving a nonlinear non-convex opti-
mization problem. However, a short prediction horizon
may lead to deteriorated dynamic performance, since the
controller only considers the short-term cost and ignores
the long-term effects. Therefore, it is crucial to achieve
a balance between computational complexity and perfor-
mance, by choosing a proper prediction horizon.

Setpoint tracking is an important application of MPC, in
both traditional industrial implementations (e.g., chem-
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icals, polymers, and air and gas processing (Qin and
Badgwell, 2000, 2003)), and applications in robotics (e.g.,
control of quadrotors (Watterson and Kumar, 2015; Bouf-
fard et al., 2012), autonomous vehicles (Richter et al.,
2018), and humanoid robots (Erez et al., 2013)). A short
prediction horizon in MPC setpoint tracking may cause
an undesired overshoot of the system trajectory, or even
oscillations, which would result in inaccurate tracking and
waste of energy. Therefore, such undesired effects should
be avoided in practical use.

One known approach that has been introduced to over-
come the online computational issue of MPC is explicit
MPC (Alessio and Bemporad, 2009). Explicit MPC pre-
computes the optimal control law offline as a function of
all feasible states. The resulting control law for a linear
system with a quadratic cost function is known to be
piecewise affine (PWA), and hence, the online optimiza-
tion problem is reduced to a simple function evaluation
(Bemporad et al., 2002; Pistikopoulos et al., 2002; Alessio
and Bemporad, 2009). However, explicit MPC is mainly
suitable for small-scale systems, as for large-scale systems
it will lead to high storage space requirements. Several
attempts have been made to address such limitations,
such as shortening the prediction horizon (Tøndel and Jo-
hansen, 2002), reducing the number of state partitions by
optimally merging regions where the affine gain is the same
(Geyer et al., 2008), or relaxing the Karush–Kuhn–Tucker
conditions, such as nonnegativity of the dual variables (Be-
mporad and Filippi, 2003). Nonetheless, all these methods
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prediction horizon is moved forward for one control step.
Abundant stability and optimality results have been de-
rived for MPC (Mayne et al., 2000), which means that the
theory of this technique is mature.

However, in practice the limited computational capacity
may only allow for a short prediction horizon for online
MPC optimization, especially for nonlinear MPC due to
the complexity of solving a nonlinear non-convex opti-
mization problem. However, a short prediction horizon
may lead to deteriorated dynamic performance, since the
controller only considers the short-term cost and ignores
the long-term effects. Therefore, it is crucial to achieve
a balance between computational complexity and perfor-
mance, by choosing a proper prediction horizon.

Setpoint tracking is an important application of MPC, in
both traditional industrial implementations (e.g., chem-
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icals, polymers, and air and gas processing (Qin and
Badgwell, 2000, 2003)), and applications in robotics (e.g.,
control of quadrotors (Watterson and Kumar, 2015; Bouf-
fard et al., 2012), autonomous vehicles (Richter et al.,
2018), and humanoid robots (Erez et al., 2013)). A short
prediction horizon in MPC setpoint tracking may cause
an undesired overshoot of the system trajectory, or even
oscillations, which would result in inaccurate tracking and
waste of energy. Therefore, such undesired effects should
be avoided in practical use.

One known approach that has been introduced to over-
come the online computational issue of MPC is explicit
MPC (Alessio and Bemporad, 2009). Explicit MPC pre-
computes the optimal control law offline as a function of
all feasible states. The resulting control law for a linear
system with a quadratic cost function is known to be
piecewise affine (PWA), and hence, the online optimiza-
tion problem is reduced to a simple function evaluation
(Bemporad et al., 2002; Pistikopoulos et al., 2002; Alessio
and Bemporad, 2009). However, explicit MPC is mainly
suitable for small-scale systems, as for large-scale systems
it will lead to high storage space requirements. Several
attempts have been made to address such limitations,
such as shortening the prediction horizon (Tøndel and Jo-
hansen, 2002), reducing the number of state partitions by
optimally merging regions where the affine gain is the same
(Geyer et al., 2008), or relaxing the Karush–Kuhn–Tucker
conditions, such as nonnegativity of the dual variables (Be-
mporad and Filippi, 2003). Nonetheless, all these methods
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Fig. 1. The structure of two-level optimization of sub-
references

Fig. 2. A sequence of sub-MPC problems at the lower level

up to kN . Note that N = 1 results in the regular setpoint
tracking problem. Fig. 3 illustrates the concept of sub-
references.

The proposed sub-reference MPC approach works because
the sub-references can smoothen the process of conver-
gence, by introducing stage setpoints to steer the outputs
to reach the final setpoint gradually. The key point re-
garding the proposed approach is to find the appropriate
sub-reference time steps ki to introduce the sub-references
and the proper magnitudes ri of the sub-references, for
i = 0, 1, · · · , N − 1. Next we explain how to find the
parameters ri, ki, i = 0, 1, · · · , N − 1 to optimize a given
objective function.

3. PROBLEM FORMULATION

To determine the parameters of the sub-references, a two-
level optimization structure, as shown in Fig. 1, is pro-
posed. At the high level, the cost function J̄ that represents
the simplified or alternative performance criterion, e.g.,
minimizing the convergence time or overshoot, is opti-
mized to obtain the sub-references parameters ri, ki, i =
0, 1, · · · , N − 1; meanwhile, at the lower level the original
MPC problem can be decomposed into N low-level MPC
problems according to the introduced N sub-references,
and the sub-MPC problems are solved with regard to
their corresponding sub-references and cost functions, in a
sequential style along the timeline, as shown in Fig. 2.

The whole procedure can be formulated as the following
problem, which is solved for every setpoint r:

min
r0,··· ,rN− 1,k0,··· ,kN− 1

J̄(·)

s.t.




min
ũk

J(U, x(k), r0, Np), k from k0 to k1 − 1

...
min
ũk

J(U, x(k), rN−1, Np), k from kN−1 to T (·)
xk+κ+1|k = Axk+κ|k +Buk+κ|k,

yk+κ+1|k = Cxk+κ+1|k +Duk+κ|k, κ = 0, ..., Np − 1,
Ex̃k + Fũk ≤ G,

(2)

Fig. 3. Illustration of the sub-reference approach; the
dotted curve represents the discrete-time trajectory
of the output, while the bold dashed lines represent
the sub-reference

where k0 is the starting time step and kN is the end
time step of reference r. The relationship between the
parameters as well as the partition of stages are shown
in Fig. 3, where the bold dashed lines represent the sub-
references in the stages. Problem (2) contains the higher
level and the lower level optimization simultaneously, with
each sub-optimization problem minũk

J(·) subject to the
system constraints in (1).

The objective function J̄(·) is user-defined to optimize any
required performance criteria. As an illustration, let us
consider the convergence time T (·), where T (·) is defined
as the minimal number of time steps that is required
such that the output trajectory converges to the set-point
r with a given tolerance ϵ (see Fig. 3). Here ϵ is the
convergence tolerance, and the trajectory is assumed to
be convergent if it stays within the tolerance bound for
Nϵ time steps. Obviously T (·) is a function of param-
eters ri, ki, i = 0, 1, ..., N − 1 and ϵ, and it should
be represented as T (r0, · · · , rN−1, k0, · · · , kN−1, ϵ). Next
the problem is how to formulate the objective J̄(·) as a
function of the parameters ri, ti, for i = 0, ..., N − 1. The
issue is that in general (2) cannot be solved analytically,
because finding an explicit relationship between J̄(·) and
ri, ki, i = 0, 1, · · · , N − 1 is in most cases impossible.

Remark 1. The low-level sub-MPC problems already tackle
the references inherently, while ensuring state and input
constraints. Therefore, the high-level MPC can handle
extra performance criteria, such as convergence time or
accumulated energy consumption.

4. METHODOLOGY FOR SOLVING THE
TWO-LEVEL PROBLEM

In order to solve problem (2), we need to first solve the
low-level sub-MPC problems, and then move to the high-
level to optimize the sub-reference parameters.

4.1 Explicit controller for lower-level optimization

To tackle the lower-level problem, we propose to consider
an explicit expression for the control inputs for every

improve the computational efficiency of explicit MPC at
the cost of a possible loss of closed-loop performance.

In this paper, we propose a multi-level MPC approach
based on sub-references for an MPC setpoint tracking
problem with short prediction horizons. The main aim is
to improve the convergence performance of MPC with-
out extra on-line computational burden. This paper is
organized as follows. Related work and the idea behind
the approach are introduced in Section 2, as well as the
definition of sub-references. Then the sub-reference MPC
problem is formulated as a two-level optimization problem
in Section 3. In Section 4 we discuss how to solve the above
optimization problem, followed by numerical simulations
and discussion of results in Section 5. Finally, conclusions
are given in Section 6.

2. SUB-REFERENCES

2.1 Related work

Gilbert et al. (1994) propose a control method called refer-
ence governor for a discrete-time linear system with input
constraints. The governor is used to attenuate the control
input to avoid saturation, especially when the reference
command is too large to follow. The generated artificial
reference played an important role in guaranteeing sta-
bility of the closed-loop system and convergence to the
desired reference. A similar idea is adopted by Limón et al.
(2008), where the approach is extended to the reference
tracking problem for linear MPC. Artificial references are
generated based on the considered piecewise constant ref-
erences, and are added explicitly in the objective function.
In the cost function, the deviation of the system state from
the artificial reference is penalized, as well as the distance
between the artificial reference and the target reference.
Recursive feasibility and convergence can be proved, and
the attraction domain of the proposed MPC is enlarged.
Limón et al. (2012) further extended their results to the
MPC tracking problem with periodic references.

Applications of the concept can be found in Klaučo et al.
(2017), which introduces a reference governor in MPC
for control of a magnetic levitation system. Setpoints are
optimized by the MPC-based reference governor for the
inner feedback control loop. The formulated optimal con-
trol problem can be solved efficiently with a parametric
optimization technique, and the solution can be expressed
as a continuous piecewise affine function similar to ex-
plicit MPC. Experimental results show that the proposed
method can improve the reference-tracking performance
compared to the case without a reference governor. This
approach is further used by Holaza et al. (2018) to control
a continuous stirred-tank reactor, and applied by Klaučo
and Kvasnica (2017) to control a boiler-turbine unit. Sim-
ulations or experimental results show the effectiveness of
the approach in reference tracking.

2.2 Main idea behind our approach

Unlike the studies mentioned above, we explicitly consider
the limited on-line computation capacity and the resulting
performance deterioration. To address this issue, the con-
cept of sub-reference is proposed, which is different from

the artificial reference generated by a reference governor
as in the literature. In our method, the generated sub-
references are piecewise constant, which means they do
not need to be optimized for each control time step. In
addition, sub-references are optimized by a multi-level
MPC optimization problem, to minimize a cost function
specified for a desired performance index.

The main steps of the proposed approach go as follows.
A nonlinear system can be simplified or linearized. Then,
sub-references can be designed through an optimization
procedure. The parameters to be optimized include the
values of the sub-references and the switching time instants
of the sub-references. The whole optimization procedure
contains two levels. The optimization is performed with
an alternative cost function and the parameters of sub-
references as optimization variables at the high level,
and at the low level MPC is used to track the sub-
reference at each stage (i.e., the duration of each sub-
reference). The high-level problem can be solved using
time instant optimization (TIO) and the low-level problem
will be solved using explicit MPC (see Section 4 for more
details). After the optimization procedure, the generated
sub-references are then used in on-line setpoint tracking
for the original system.

2.3 Definition of sub-references

Consider a discrete-time linear setpoint regulation MPC
problem, in which the following quadratic optimization
problem is solved at every control time step k ∈ N in a
receding horizon fashion:

min
ũk

J(ũk, x(k), r,Np) = min
ũk

Np∑
κ=1

(yk+κ|k − r)⊤·

Q(yk+κ|k − r) +

Np−1∑
κ=0

u⊤
k+κ|kRuk+κ|k

s.t. xk+κ+1|k = Axk+κ|k +Buk+κ|k,

yk+κ+1|k = Cxk+κ+1|k +Duk+κ|k, κ = 0, 1, ..., Np − 1,

Ex̃k + Fũk ≤ G,

xk|k = x(k), k ∈ N.
(1)

where xk+κ|k, yk+κ|k, uk+κ|k are the predicted state,
output, and input for control time step k + κ across the
prediction window of Np control steps on the basis of the
information available at control time step k where Np is
called the prediction horizon, ũk = [u⊤

k|k, ..., u
⊤
k+Np−1|k]

⊤,

x̃k = [x⊤
k+1|k, ..., x

⊤
k+Np|k]

⊤, Q = Q⊤ ⪰ 0, R = R⊤ ≻ 0,

A,B,C,D are the system matrices, E,F,G are properly
defined matrices that represent the constraints on inputs,
states, and output, and r is the target setpoint for the
output. For the sake of simplicity, the control horizon often
used in MPC is assumed to be Np as well.

We introduce N sub-references in order to improve the
convergence performance of MPC, e.g., to reduce the
overshoot without increasing the on-line computational
burden. For example, we set the reference as r0 for all
control time steps from k0 up to k1 − 1, r1 for all control
time steps from k1 up to k2 − 1. The final sub-reference is
set to the setpoint r for all control time steps from kN−1
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up to kN . Note that N = 1 results in the regular setpoint
tracking problem. Fig. 3 illustrates the concept of sub-
references.

The proposed sub-reference MPC approach works because
the sub-references can smoothen the process of conver-
gence, by introducing stage setpoints to steer the outputs
to reach the final setpoint gradually. The key point re-
garding the proposed approach is to find the appropriate
sub-reference time steps ki to introduce the sub-references
and the proper magnitudes ri of the sub-references, for
i = 0, 1, · · · , N − 1. Next we explain how to find the
parameters ri, ki, i = 0, 1, · · · , N − 1 to optimize a given
objective function.

3. PROBLEM FORMULATION

To determine the parameters of the sub-references, a two-
level optimization structure, as shown in Fig. 1, is pro-
posed. At the high level, the cost function J̄ that represents
the simplified or alternative performance criterion, e.g.,
minimizing the convergence time or overshoot, is opti-
mized to obtain the sub-references parameters ri, ki, i =
0, 1, · · · , N − 1; meanwhile, at the lower level the original
MPC problem can be decomposed into N low-level MPC
problems according to the introduced N sub-references,
and the sub-MPC problems are solved with regard to
their corresponding sub-references and cost functions, in a
sequential style along the timeline, as shown in Fig. 2.

The whole procedure can be formulated as the following
problem, which is solved for every setpoint r:

min
r0,··· ,rN− 1,k0,··· ,kN− 1

J̄(·)

s.t.
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ũk
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xk+κ+1|k = Axk+κ|k +Buk+κ|k,
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Ex̃k + Fũk ≤ G,
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Fig. 3. Illustration of the sub-reference approach; the
dotted curve represents the discrete-time trajectory
of the output, while the bold dashed lines represent
the sub-reference

where k0 is the starting time step and kN is the end
time step of reference r. The relationship between the
parameters as well as the partition of stages are shown
in Fig. 3, where the bold dashed lines represent the sub-
references in the stages. Problem (2) contains the higher
level and the lower level optimization simultaneously, with
each sub-optimization problem minũk

J(·) subject to the
system constraints in (1).

The objective function J̄(·) is user-defined to optimize any
required performance criteria. As an illustration, let us
consider the convergence time T (·), where T (·) is defined
as the minimal number of time steps that is required
such that the output trajectory converges to the set-point
r with a given tolerance ϵ (see Fig. 3). Here ϵ is the
convergence tolerance, and the trajectory is assumed to
be convergent if it stays within the tolerance bound for
Nϵ time steps. Obviously T (·) is a function of param-
eters ri, ki, i = 0, 1, ..., N − 1 and ϵ, and it should
be represented as T (r0, · · · , rN−1, k0, · · · , kN−1, ϵ). Next
the problem is how to formulate the objective J̄(·) as a
function of the parameters ri, ti, for i = 0, ..., N − 1. The
issue is that in general (2) cannot be solved analytically,
because finding an explicit relationship between J̄(·) and
ri, ki, i = 0, 1, · · · , N − 1 is in most cases impossible.

Remark 1. The low-level sub-MPC problems already tackle
the references inherently, while ensuring state and input
constraints. Therefore, the high-level MPC can handle
extra performance criteria, such as convergence time or
accumulated energy consumption.

4. METHODOLOGY FOR SOLVING THE
TWO-LEVEL PROBLEM

In order to solve problem (2), we need to first solve the
low-level sub-MPC problems, and then move to the high-
level to optimize the sub-reference parameters.

4.1 Explicit controller for lower-level optimization

To tackle the lower-level problem, we propose to consider
an explicit expression for the control inputs for every
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To obtain the optimal parameters of this nonlinear and
non-convex function, we use MultiStart function of the
Matlab Optimization toolbox, in which we choose the SQP
algorithm and take 1000 starting points to solve the non-
linear and non-convex optimization problem. Furthermore,
simulations of linear MPC with different numbers of sub-
references are carried out to compare the various choices
of the number of sub-references.

5.2 Results and discussions

Three setpoints are set for tracking (see Fig. 4), which
are 5, -5, and 15, respectively. For each setpoint, the sub-
references are calculated. The problem (2) can be solved
efficiently within a few seconds. The sub-references ri,j
for each setpoint are (i represents the setpoint, and j
represents the corresponding sub-reference):




r1,1 = 3.1991, for k from 0 to 8,

r1,2 = 4.7153, for k from 8 to 11,

r1,3 = 5, for k from 11 onwards,

r2,1 = −5.9853, for k from 30 to 33,

r2,2 = −4.4616, for k from 33 to 37,

r2,3 = −5, for k from 37 onwards,

r3,1 = 6.0613, for k from 60 to 61,

r3,2 = 11.8442, for k from 61 to 70,

r3,3 = 15, for k from 70 onwards.

Note that the convergence time can be less then the switch-
ing time instance of the sub-reference. This makes sense
because when the system is following the sub-references,
the trajectory already converges to the target setpoint and
stays around the setpoint within the convergence tolerance
in the subsequent time steps.

MPC with a longer prediction horizon is implemented,
in which the control horizon Nc = 2 and the prediction
horizon Np = 3. Thus both MPC approaches have a
comparable online computational time. The comparison
of the convergence performance is presented in Fig. 4.
We see that the overshoot is almost eliminated using
the sub-reference MPC approach. The convergence time
is reduced significantly compared to MPC without sub-
references that has a longer prediction horizon. For the set-
point at the upper boundary of the system, sub-reference
MPC can track without violating the constraints, while
conventional MPC with a longer horizon cannot avoid
exceeding the upper bound. Therefore, it is shown that
the sub-reference MPC method improves the convergence
performance substantially even with a shorter prediction
horizon.

Now, a comparison study is conducted to determine the
number of sub-references. For the first setpoint r = 5,
choosing the number of sub-reference to be N = 2, the
optimal convergence time is T = 9 time steps with the
parameters r0 = 3.2621, k1 = 10. With N = 4, the
minimum convergence time is T = 9 time steps with the
parameters r0 = 7.6066, r1 = 6.3460, r3 = 3.2772, k1 =
2, k2 = 4, k3 = 10. Similar results are obtained for N =
3. The comparison of the trajectories for different sub-
references are shown in Fig. 5.
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Fig. 4. Comparison of the convergence performance of
the closed-loop controlled system for conventional and
sub-reference MPC approaches: solid line denotes sub-
reference MPC with Np = Nc = 2, dashed line
denotes conventional MPC with Nc = 2, Np = 3.
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Fig. 5. Comparison of the convergence performance for
different numbers of sub-references with details on the
convergence point

We see that the performance of sub-reference MPC for
different numbers of sub-references is similar, and the
same convergence time is achieved for those cases. The
mechanism of this method can be summarized as follows.
The peak of the realized output trajectory with respect
to the sub-reference approaches the final setpoint. Then
the sub-reference is switched to the real setpoint and the
trajectory can converge to the set-point smoothly and
steadily, resulting in a reduction of the overall overshoot.
This phenomenon holds for N = 2, 3, 4. This implies
that a limited number of sub-references can improve the
convergence performance substantially, and provides an
insight that we can start with a small number of sub-
references, e.g., N = 2, for the sake of computational
efficiency.

control time step of stage i:

ui(k) = f(x(k), ri), i = 0, ..., N − 1 (3)

where f(·) expresses the mapping from the current state
x(k) and the current sub-reference ri to the MPC control
inputs for the current control time step k. To formulate
the controller as a function of the current state and the
parameters ri, i = 0, 1, · · · , N − 1 from (1), we can apply
explicit MPC (Bemporad et al., 2002; Pistikopoulos et al.,
2002). For the linear case, the explicit formulation of the
MPC input results in a piecewise affine (PWA) function,
which can be derived through solving a multi-parametric
quadratic programming (mp-QP) problem (Alessio and
Bemporad, 2009). The derivation of explicit MPC for
reference tracking problem can be obtained by following
the references, and it is omitted here.

Remark 2. For nonlinear systems, explicit formulation of
the input can also be established for the linearized version
of the system. Alternatively, the explicit model predictive
control law can be approximated by neural networks (Chen
et al., 2018; Åkesson and Toivonen, 2006), thus providing
the possibility to apply sub-references in a nonlinear
system directly. With the explicit controller, the lower-
level problem can then be replaced by simple calculation
of the state trajectory.

4.2 Solution approaches for the higher-level problem

We can utilize time-instant optimization (TIO) (van Ek-
eren et al., 2013) to solve the higher-level problem. In
this setting, k1, · · · , kN−1 are the time steps at which
the set-point changes. The main feature of TIO is that
the time instants and the sub-reference levels are the
variables to be optimized (De Schutter and De Moor,
1998; Sadowska et al., 2015), which coincides with the
aim of our method. The main challenge is to formulate
the relationship between the cost function J̄(·) and the
parameters r0, · · · , rN−1, k0, · · · , kN−1. The procedures to
obtain sub-references are presented in Algorithm 1.

Algorithm 1 Multi-level MPC for sub-references

1: Given initial state x0, system dynamics, and the track-
ing setpoint r

2: Given the number of sub-references N
3: for stage i from 0 to N − 1 do
4: Formulate the explicit control input (3)
5: Evolve system states using initial state x(ki), sub-

reference ri, ki, and control input (3)
6: Calculate the terminal state x(ki+1)
7: end for
8: Calculate the objective function J̄(·) for the given state

trajectory
9: Solve the high-level problem (2) to obtain the sub-

references for setpoint r

In order to solve problem (2), we can utilize numerical
algorithms, such as a multi-run genetic algorithm (GA)
(Whitley, 1994), multi-start sequential quadratic program-
ming (SQP) (Boggs and Tolle, 1995), and so on. In general,
more sub-references allow for more flexibility to shape
the trajectory, resulting in a better performance; however,

this also introduces more parameters within the optimiza-
tion problem, and increases the computational complexity.
Note that this optimization problem can be solved in
advance, with the information of the linearized systems,
initial states, and target reference. In the next section, it
is illustrated via simulation how to reach a balance be-
tween optimality and computation efficiency by choosing
a proper value for N .

Remark 3. The complexity of problem (2) depends on the
definition of objective function J̄(·). Fortunately, the piece-
wise constant sub-references do not need to be optimized
every time step, thus allowing for more time to solve the
optimization problem (2). In addition, Algorithm 1 can
be performed in a moving horizon strategy to deal with
changing setpoints.

5. SIMULATIONS FOR A LINEAR MPC EXAMPLE

In this section, we present a case study on a linear
MPC example to illustrate and validate our sub-reference
method.

5.1 Setup

Here we take a discrete-time linear system as an example
to show the effectiveness of sub-reference MPC. Consider
the following system:

x(k + 1) = Ax(k) +Bu,

y = Cx
(4)

where

A =

[
1 1
0 1

]
, B =

[
1
0.5

]
, C = [1 0]

The initial state is taken as x(0) = [−10, 0]⊤; the lower
and upper bounds for states and outputs are xmin =
[−15,−15]⊤, xmax = [15, 15]⊤, ymin = −15, ymax = 15;
the lower and upper bounds for the input is umin = −1,
umax = 1. To validate the proposed algorithm, a short
prediction horizon is chosen Np = 2. The penalty matrices
for the output and input are Q = 1, R = 1, respectively.
A series of changing setpoints are considered in this case
study.

For each setpoint, we determine 3 sub-references with N =
3 by introducing parameters k1, k2, r0, r1, r2 = r. In order
to find the optimal parameters r0, r1, k1, k2, the explicit
controller (3) can be calculated by using the MPT3 toolbox
in Matlab (Herceg et al., 2013). After the implementation
of explicit MPC in MPT3, the exact formulation of (3) can
be obtained:

ui,j(k) = Hjθi(k) + gj for Kjθi(k) ≤ bj (5)

where θi(k) = [x⊤(k), ri]
⊤ is the vector of parameters,

j denotes the index of the corresponding region for the
current parameter vector θi(k), and H, g are the matrix
and the vector that define the explicit controller while K, b
are the matrix and the vector that represent the critical
regions. In this case study, the objective function J̄(·) is
the convergence time T (·). The convergence tolerance is
ϵ = 0.1. With the explicit controller (5), the given initial
states and setpoint, and parameters ri, ki, i = 0, 1, 2, we
can calculate the final objective T (·) in a numerical way.
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To obtain the optimal parameters of this nonlinear and
non-convex function, we use MultiStart function of the
Matlab Optimization toolbox, in which we choose the SQP
algorithm and take 1000 starting points to solve the non-
linear and non-convex optimization problem. Furthermore,
simulations of linear MPC with different numbers of sub-
references are carried out to compare the various choices
of the number of sub-references.

5.2 Results and discussions

Three setpoints are set for tracking (see Fig. 4), which
are 5, -5, and 15, respectively. For each setpoint, the sub-
references are calculated. The problem (2) can be solved
efficiently within a few seconds. The sub-references ri,j
for each setpoint are (i represents the setpoint, and j
represents the corresponding sub-reference):




r1,1 = 3.1991, for k from 0 to 8,

r1,2 = 4.7153, for k from 8 to 11,

r1,3 = 5, for k from 11 onwards,

r2,1 = −5.9853, for k from 30 to 33,

r2,2 = −4.4616, for k from 33 to 37,

r2,3 = −5, for k from 37 onwards,

r3,1 = 6.0613, for k from 60 to 61,

r3,2 = 11.8442, for k from 61 to 70,

r3,3 = 15, for k from 70 onwards.

Note that the convergence time can be less then the switch-
ing time instance of the sub-reference. This makes sense
because when the system is following the sub-references,
the trajectory already converges to the target setpoint and
stays around the setpoint within the convergence tolerance
in the subsequent time steps.

MPC with a longer prediction horizon is implemented,
in which the control horizon Nc = 2 and the prediction
horizon Np = 3. Thus both MPC approaches have a
comparable online computational time. The comparison
of the convergence performance is presented in Fig. 4.
We see that the overshoot is almost eliminated using
the sub-reference MPC approach. The convergence time
is reduced significantly compared to MPC without sub-
references that has a longer prediction horizon. For the set-
point at the upper boundary of the system, sub-reference
MPC can track without violating the constraints, while
conventional MPC with a longer horizon cannot avoid
exceeding the upper bound. Therefore, it is shown that
the sub-reference MPC method improves the convergence
performance substantially even with a shorter prediction
horizon.

Now, a comparison study is conducted to determine the
number of sub-references. For the first setpoint r = 5,
choosing the number of sub-reference to be N = 2, the
optimal convergence time is T = 9 time steps with the
parameters r0 = 3.2621, k1 = 10. With N = 4, the
minimum convergence time is T = 9 time steps with the
parameters r0 = 7.6066, r1 = 6.3460, r3 = 3.2772, k1 =
2, k2 = 4, k3 = 10. Similar results are obtained for N =
3. The comparison of the trajectories for different sub-
references are shown in Fig. 5.

0 10 20 30 40 50 60 70 80 90

k

-10

-5

0

5

10

15

20

 

Output with sub-references
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Target setpoint

Sub-references

Fig. 4. Comparison of the convergence performance of
the closed-loop controlled system for conventional and
sub-reference MPC approaches: solid line denotes sub-
reference MPC with Np = Nc = 2, dashed line
denotes conventional MPC with Nc = 2, Np = 3.
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Fig. 5. Comparison of the convergence performance for
different numbers of sub-references with details on the
convergence point

We see that the performance of sub-reference MPC for
different numbers of sub-references is similar, and the
same convergence time is achieved for those cases. The
mechanism of this method can be summarized as follows.
The peak of the realized output trajectory with respect
to the sub-reference approaches the final setpoint. Then
the sub-reference is switched to the real setpoint and the
trajectory can converge to the set-point smoothly and
steadily, resulting in a reduction of the overall overshoot.
This phenomenon holds for N = 2, 3, 4. This implies
that a limited number of sub-references can improve the
convergence performance substantially, and provides an
insight that we can start with a small number of sub-
references, e.g., N = 2, for the sake of computational
efficiency.
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6. CONCLUSION AND FUTURE WORK

In this paper we have proposed a multi-level optimiza-
tion method, called sub-reference MPC, to generate sub-
references for MPC setpoint tracking problem. The dy-
namic performance is considered and optimized explicitly,
while the tracking performance is improved even with
a short prediction horizon. The effectiveness of the pro-
posed methods is illustrated via numerical simulations.
The results show our method outperforms conventional
MPC with even a longer horizon, and achieves a better
convergence time without violating the constraints when
tracking a upper bound reference.

In the future, the generated high-level optimization prob-
lem can be further analyzed mathematically, and stability
of the method can be investigated. Moreover, a more
complexity case study can be conducted on a nonlinear
system, and the proposed method can be compared with
existing approaches.
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