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Foreword and Acknowledgements 

One of my earliest memories is riding on a tour bus to the work island ‘Neeltje Jans’ to watch the 
construction of the storm surge barrier in the Eastern Scheldt around 1984 or 1985. This experience 
likely sparked my interest in civil engineering at a young age, and my dad further fuelled that 
interest. He operated a wheel loader on major infrastructure projects at the time and often took me 
along on Saturdays to show me what he was working on. While the heavy machinery was 
impressive (and fun to operate), what really fascinated me was the design of interchanges. I filled 
my school notebooks with fictional interchange designs, constantly trying to recreate and improve 
upon the ones my dad had shown me. It is no surprise, then, that I decided to pursue a bachelor’s 
education in traffic engineering. This program taught me how to design roads from a traffic 
perspective, which usually involved implementing established guidelines. 

After completing my bachelor’s degree, my teachers at Noordelijke Hogeschool Leeuwarden 
encouraged me to pursue a master’s degree. It was during this time at Rijksuniversiteit Groningen 
that I first delved into scientific study. Learning about environmental and infrastructure planning 
theories and engaging in discussions was incredibly rewarding, particularly with Jochem about 
postmodernism and traffic safety (Dijkstra, 2008). While a desire to pursue a PhD had always been 
in the back of my mind, it seemed out of reach at that point. 

In industry, working at Arcadis and Movares, I got to operationalise my knowledge on 
infrastructural planning and design. At Arcadis, I collaborated with seasoned designers, and at 
Movares, I had the chance to lead various road designs and delve into human factors. It was during 
my first major project, widening the N33, that I connected with colleagues at Rijkswaterstaat: Henk 
Hennink and Ad Kranenburg. They introduced me to the concept of considering the interaction 
between the driver and the road (human factors) beyond the scope of standard design guidelines, 
in order to see the design from the driver’s perspective. This perspective deeply intrigued me and 
aligned with my drive to understand every aspect of geometrical road design. 

Taking guidance from Chantal Merkx, I enrolled in courses on applied cognitive psychology at 
Utrecht University. This helped me articulate specific design issues that were not covered by design 
manuals during road safety audits. 
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Switching to government opened up some new perspectives. At Rijkswaterstaat (executive agency 
of the Dutch Ministry of Infrastructure) I got to oversee the Dutch guidelines on geometric design 
of freeways, known as the ROA. Here I learned that the understanding of geometric design is still 
evolving. My colleagues Jaap Groot and Gerald Uittenbogerd had been using High Frequency 
Floating Car Data to correlate speed profiles along off ramps with curve geometry. This made me 
realise how the guidelines were not reflecting actual use of our freeways, but were based on 
research done decades ago.  

The lingering wish to pursue a PhD was sparked again while attending the PhD defence of Billie 
(de Haas, 2017). Recognizing the opportunities at Rijkswaterstaat, and with the support of my 
colleague Jurgen Koppen, I started to write a research proposal and collect additional funding. 
During this period, I delved into old Dutch papers from the 1960’s and 1970’s describing early 
Dutch research on freeway design and tried to update my knowledge on cognitive psychology to 
get a better grasp at the topic in mind: driver behaviour at freeway curves.  

Most of the research proposal was written from the comfort of my home, and I discussed it with 
Marjan Hagenzieker and Haneen Farah, whom I approached as potential supervisors. Their 
expertise in applied psychology, road infrastructure design and methodology, coupled with their 
enthusiasm for my topic, helped me create the initial outline of my research. After several 
discussions, my PhD journey officially commenced on January 1st, 2019. Even though I had 
prepared the proposal, it still felt like venturing into uncharted territory. Rijkswaterstaat allocated 
one day a week for my research and after about a year and a half in, I dedicated additional time, 
as by then all my children were in school. This required careful planning at home, and I am 
immensely grateful that Marleen and I devised a schedule that allowed me to pursue my PhD 
while also supporting Marleen in her aspirations as a writer. 

In my initial research, I relied on an online survey as the primary methodology. Therefore, my first 
paper would not have been possible without the support of friends and colleagues who shared the 
survey in their own networks. I am aware of the dedication that some of you showed in spreading 
and completing the survey, and I am sincerely grateful for your efforts. 

Conducting my on-road study required significant time and effort from the participants. I am 
grateful for your participation, especially since it turned out to be more challenging than 
anticipated to find a sufficient number of participants. So I want to extend my gratitude to Iris 
Welvaarts from the ANWB for also reaching out to ANWB members for this study. 

For my speed prediction modelling, I compiled a substantial database. This achievement would 
not have been possible without the funding provided by Rijkswaterstaat. I would like to express 
my thanks to Jurgen Koppen for recognizing the value of this data in enhancing our understanding 
of speed in curve approaches. I am grateful for his assistance in obtaining the High Frequency 
Floating Car Data from Be-Mobile, as well as the efficient re-engineering of the road sections 
carried out by Arcadis. 

I want to give special thanks to the data lab team at Be-Mobile for their support in initiating the 
analysis of the raw data. I had the opportunity to spend valuable time with Lisa, Jan, and Kwinten 
in Brugge, learning about data analysis.  

In the latter half of my PhD journey, I had some insightful discussions with Ilse Harms. Her 
expertise on familiarity proved valuable in my final two papers. 

Throughout my PhD journey, I actively sought feedback from a sounding board at Rijkswaterstaat. 
Alex, Jaap, Raymond, and Kirsten, I want to express my gratitude for your constructive input and 
genuine interest. Your contributions ensured that my research closely aligned with 
Rijkswaterstaat’s interests. While at Rijkswaterstaat, I openly shared my ideas, brainfarts, and 
discussed my findings. Some of the less developed concepts were bounced off my close colleagues 
in the “geometrical road design” team: Teed, Paul, Hans, and Koen. I appreciate your attentive 
listening and practical feedback. Furthermore, in various meetings related to signage, traffic safety, 
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and behaviour, I shared insights aggregated from my research. The discussions during and after 
these meetings highlighted for me how much I valued the integration of my applied research into 
discussions relating the knowledge field of road design at Rijkswaterstaat. 

Aside from the significant influence my paranymphs had on my research, Jurgen and Chantal were 
invaluable in assisting with the preparation of my defence. I want to extend my heartfelt thanks 
for alleviating some of my stress and for showcasing the depth of knowledge we have in traffic 
safety and human factors at Rijkswaterstaat. I hope to work alongside the both of you for a long 
time ahead. 

Obviously, the quality of my research was greatly enhanced by the guidance of my promotors. 
Marjan and Haneen, I highly value the discussions we had; they were to the point and incredibly 
helpful in organizing my thought process. Additionally, discussing the on-road study with Joost 
de Winter significantly improved my understanding of eye-tracking. I was truly impressed by the 
amount of work you all put into academia – I deeply appreciate your efforts and hope you also 
take care of yourselves! 

My parents were also reading and trying to understand my research interests. Hendrik-Jan and 
Adri, thank you so much for your continued support throughout my career. You had the 
confidence to let me forge my own path, even though it was vastly different from what you were 
accustomed to. You supported me staying on the HAVO, switching from civil engineering to traffic 
engineering, being board member of a faculty union at University and so much more. Thank you 
for your belief in me. 

However, this journey would not have been possible without the unwavering support of my wife. 
Marleen, I deeply love you and would like to thank you immensely for providing the time and 
patience during these hectic years. I am fully aware of the imbalance my PhD brought to our family. 
The Covid-lockdowns tested our resilience, but despite the fatigue, we managed to persevere in 
pursuit of both our ambitions while still making time for each other and our children. Niek, Evi 
and Rosa, you have seen how I was talking in English with my supervisors during the lockdowns, 
and you have seen my enthusiasm about freeways. I love you, your down-to-earth views, cuddles, 
playful moments and so much more. Now, it’s time to strike a balance at home and embark on our 
new journey in our new home – in so many perspectives. 

 





  

xi 

 

 

Voorwoord 

 

Eén van mijn vroegste herinneringen is de busrit naar het werkeiland ‘Neeltje Jans’ om de bouw 
van de Oosterscheldekering te bekijken, rond 1984 of 1985. Deze ervaring heeft waarschijnlijk mijn 
interesse in civiele techniek op jonge leeftijd gewekt, en mijn vader heeft die interesse zeker verder 
aangewakkerd. Hij was destijds shovelmachinist op grote infrastructuurprojecten en nam me vaak 
op zaterdagen mee om me te laten zien waar hij aan werkte. Hoewel het zware materieel 
indrukwekkend was (en leuk om te bedienen), fascineerde het ontwerp van knooppunten me 
vooral. Ik vulde mijn schoolschriftjes met fictieve ontwerpen van knooppunten, waarbij ik 
voortdurend probeerde dat wat ik bij mijn vader had gezien te evenaren en te verbeteren. Het is 
dan ook geen verrassing dat ik besloot een de HTS verkeerskunde te doen. Daar leerde ik wegen 
te ontwerpen vanuit een verkeersperspectief, wat meestal het implementeren van vastgestelde 
richtlijnen inhield. 

Na het behalen van mijn bachelorsdiploma moedigden mijn docenten aan de Noordelijke 
Hogeschool Leeuwarden me aan om een masteropleiding te volgen. Aan de Rijksuniversiteit 
Groningen ging ik me voor het eerst echt verdiepen in wetenschappelijk onderzoek. Het leren over 
milieu- en infrastructuurplanningstheorieën en er over discussiëren gaf veel voldoening, vooral 
met Jochem over postmodernisme en verkeersveiligheid (Dijkstra, 2008). Hoewel de ambitie om 
een PhD te doen vanaf dat moment in mijn achterhoofd zat, leek het destijds nog buiten bereik. 

In de markt, werkend bij Arcadis en Movares, kreeg ik de kans om mijn kennis op het gebied van 
infrastructuurplanning en -ontwerp toe te passen. Bij Arcadis werkte ik samen met ervaren 
ontwerpers, en bij Movares kreeg ik de kans om verschillende wegontwerpen te leiden en me te 
verdiepen in human factors. Tijdens mijn eerste grote project, het verbreden van de N33, kwam ik 
in contact met vakgenoten bij Rijkswaterstaat: Henk Hennink en Ad Kranenburg. Zij 
introduceerden mij in het denken over de interactie tussen de bestuurder en de weg (human 
factors) buiten het toepassen van standaard ontwerprichtlijnen om, om het ontwerp vanuit het 
perspectief van de bestuurder te bekijken. Dit perspectief intrigeerde me en sloot aan bij mijn drang 
om elk aspect van geometrisch wegontwerp te begrijpen. 
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Op aanraden van Chantal Merkx schreef ik me daarna in voor cursussen toegepaste cognitieve 
psychologie aan de Universiteit Utrecht. Dit hielp me om specifieke ontwerpvraagstukken onder 
woorden te brengen bij verkeersveiligheidsaudits, buiten de ontwerprichtlijnen om. 

De overstap naar de overheid opende nieuwe perspectieven. Bij Rijkswaterstaat, kreeg ik de 
verantwoordelijkheid voor de Nederlandse richtlijnen voor geometrisch ontwerp van 
autosnelwegen, bekend als de ROA. Hier leerde ik dat het doorgronden van geometrisch ontwerp 
nog steeds evolueerde. Mijn collega’s Jaap Groot en Gerald Uittenbogerd gebruikten High 
Frequency Floating Car Data om snelheidsprofielen langs afritten te correleren met 
bochtgeometrie. Dit deed me beseffen dat de richtlijnen niet het daadwerkelijke gebruik van onze 
autosnelwegen weerspiegelen, maar gebaseerd zijn op onderzoek dat decennia geleden was 
uitgevoerd. 

De sluimerende ambitie om een PhD te doen werd opnieuw aangewakkerd tijdens het bijwonen 
van de PhD-verdediging van Billie (de Haas, 2017). De mogelijkheden bij Rijkswaterstaat 
herkennend, en met steun van mijn collega Jurgen Koppen begon ik een onderzoeksvoorstel te 
schrijven en aanvullende financiering te verzamelen. In deze periode dook ik in oude Nederlandse 
artikelen uit de jaren 1960 en 1970 die het oude Nederlandse onderzoek naar snelwegontwerp 
beschreven en probeerde ik mijn kennis van cognitieve psychologie bij te schaven om een beter 
begrip te krijgen van het onderwerp: het gedrag van bestuurders bij bochten van autosnelwegen. 

Het grootste deel van het onderzoeksvoorstel schreef ik thuis op de bank, en ik besprak het met 
Marjan Hagenzieker en Haneen Farah, die ik benaderde als mogelijke begeleiders. Hun expertise 
op het gebied van toegepaste psychologie, wegontwerp en methodologie, samen met hun 
enthousiasme voor mijn onderwerp, hielpen me de eerste opzet van mijn onderzoek te vormen. 
Na verschillende discussies begon mijn PhD-reis officieel op 1 januari 2019. Ook al had ik het 
voorstel voorbereid, het voelde nog steeds als een sprong in het diepe. Van Rijkswaterstaat kreeg 
ik één dag per week voor mijn onderzoek, en na ongeveer anderhalf jaar kon ik er extra tijd aan 
besteden, omdat tegen die tijd al mijn kinderen op school zaten. Dit vereiste zorgvuldige planning 
thuis, en ik ben enorm dankbaar over de afstemming met Marleen zodat ik mijn PhD kon doen 
terwijl ook Marleen haar ambities als schrijver kon ontplooien. 

In mijn initiële onderzoek gebruikte ik op een online enquête als de primaire methodologie. 
Daarom zou mijn eerste paper niet mogelijk zijn geweest zonder de steun van vrienden en collega’s 
die de enquête actief deelden in hun eigen netwerken. Ik ben me bewust van de toewijding die 
sommigen van jullie hebben getoond bij het verspreiden en invullen van de enquête, en ik ben 
oprecht dankbaar voor jullie inspanningen. 

Het uitvoeren van mijn on-road studie vereiste aanzienlijke tijd en inspanning van de deelnemers. 
Ik ben dankbaar voor jullie deelname, vooral omdat het uitdagender bleek dan verwacht om 
voldoende deelnemers te vinden. Daarom wil ik ook mijn dank uitspreken aan Iris Welvaarts van 
de ANWB voor het benaderen van ANWB-leden voor deze studie. 

Voor het modellering van snelheidsvoorspelling heb ik een aanzienlijke database samengesteld. 
Dat zou niet mogelijk zijn geweest zonder de financiering van Rijkswaterstaat. Ik wil mijn dank 
uitspreken aan Jurgen Koppen voor het erkennen van de waarde van deze data bij het verbeteren 
van ons begrip van snelheid in benaderen van bogen. Ik ben dankbaar voor zijn hulp bij het 
verkrijgen van de High Frequency Floating Car Data van Be-Mobile, evenals voor de efficiënte re-
engineering van de weggedeelten uitgevoerd door Arcadis. 

Ik wil speciale dank uitspreken aan het datalab-team van Be-Mobile voor hun ondersteuning bij 
het starten van het doorgronden van de ruwe data. Ik kreeg de kans om waardevolle tijd door te 
brengen met Lisa, Jan en Kwinten in Brugge, waarbij ik meer leerde over data-analyse. 

In de tweede helft van mijn PhD had ik enkele goede discussies met Ilse Harms. Haar expertise op 
het gebied van “bekendheid” was waardevol in mijn laatste twee papers. 
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Gedurende mijn PhD-reis zocht ik feedback bij een klankbord bij Rijkswaterstaat. Alex, Jaap, 
Raymond en Kirsten, ik wil mijn dank uitspreken voor jullie constructieve input en oprechte 
interesse. Jullie bijdragen zorgden ervoor dat mijn onderzoek aansloot bij de belangen van 
Rijkswaterstaat. Bij Rijkswaterstaat deelde ik mijn ideeën, hersenspinsels en besprak ik mijn 
bevindingen. Enkele van de minder ontwikkelde concepten besprak ik met mijn naaste collega’s 
in het team “geometrisch wegontwerp”: Teed, Paul, Hans en Koen. Ik waardeer jullie aandachtig 
luisteren en praktische feedback. Bovendien deelde ik in verschillende overleggen met betrekking 
tot bebording, verkeersveiligheid en gedrag inzichten die voortkwamen uit mijn onderzoek. De 
discussies tijdens en na deze overleggen benadrukten voor mij hoezeer ik de integratie van het 
toegepast onderzoek waardeer in discussies over het kennisveld van wegontwerp bij 
Rijkswaterstaat. 

Naast de aanzienlijke invloed die mijn paranimfen hadden op mijn onderzoek, waren Jurgen en 
Chantal van onschatbare waarde bij het assisteren bij de voorbereiding van mijn verdediging. Ik 
wil mijn oprechte dank uitspreken voor het wegnemen van een deel van mijn stress en voor het 
etaleren van de grote kennis die we op het gebied van verkeersveiligheid en human factors bij 
Rijkswaterstaat hebben. Ik hoop nog lang met jullie beiden te mogen samenwerken. 

Uiteraard werd de kwaliteit van mijn onderzoek aanzienlijk verbeterd door de begeleiding van 
mijn promotoren. Marjan en Haneen, ik waardeer de discussies die we hebben gehad; ze waren ter 
zake kundig en ongelooflijk nuttig bij het organiseren van mijn denkproces. Daarnaast kreeg ik 
tijdens het bespreken van de on-road studie met Joost de Winter aanzienlijk meer begrip van eye-
tracking. Ik ben echt onder de indruk van de hoeveelheid werk die jullie in de academische wereld 
steken - ik waardeer die inspanningen enorm, maar hoop ook dat jullie goed voor jezelf zorgen! 

Mijn ouders probeerden mijn onderzoeksinteresse te begrijpen en lazen mijn papers met 
bewondering. Hendrik-Jan en Adri, heel erg bedankt voor jullie voortdurende steun gedurende 
mijn carrière. Jullie hadden het vertrouwen om me mijn eigen pad te laten bewandelen, ook al was 
het heel anders dan waar jullie aan gewend zijn. Jullie steunden me bij het blijven op de HAVO, 
de overstap van civiele techniek naar verkeerskunde, het bestuurslid zijn van een 
faculteitsvereniging op de universiteit en nog veel meer. Bedankt voor jullie geloof in mij. 

Deze reis zou echter niet mogelijk zijn geweest zonder de onvoorwaardelijke steun van mijn 
vrouw. Marleen, ik hou enorm van je en wil je waanzinnig bedanken voor het bieden van tijd en 
geduld tijdens deze hectische jaren. Ik ben me volledig bewust van de disbalans die mijn PhD in 
ons gezin heeft gebracht. De Covid-lockdowns testten onze veerkracht, maar ondanks de 
vermoeidheid slaagden we erin om onze ambities na te streven én tijd vrij te maken voor elkaar en 
onze kinderen. Niek, Evi en Rosa, jullie hebben gezien hoe ik tijdens de lockdowns in het Engels 
met mijn begeleiders sprak, en jullie hebben mijn enthousiasme over snelwegen gezien. Ik hou van 
jullie, jullie nuchtere kijk, knuffels, speelse momenten en nog zo veel meer. Nu is het tijd om thuis 
weer een balans te vinden en aan onze nieuwe reis te beginnen in ons nieuwe huis - vanuit zoveel 
perspectieven.  
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Summary 

Although it is known that drivers start to decelerate at a sufficient distance upstream of a sharp 
freeway curve, it is unknown which cues trigger drivers to start decelerating. Understanding these 
cues is essential for designing safe roads. Traditional speed prediction models based on geometric 
curve characteristics have shown significant correlations between curve radius, super-elevation, 
and operating speed, making them useful for freeway design. However, these models do not 
consider driver behaviour and have secondary limitations, including biases in data collection, 
misassumptions about constant speed throughout curves, and a focus on tangent-curve 
combinations without considering the entire road design.  

Safe road design starts with an understanding of the interaction between the driver and the road – 
i.e., the human factors involved. Human factors research in the context of road design focuses on 
understanding how the overall road layout influences drivers’ behaviour and their performances. 
Previous studies have explored driver perception, decision-making and behaviour in curve 
driving, driving tasks categorisation, and the identification risk factors. However, these studies did 
not provide sufficient quantification of the interaction between the drivers’ behaviour and road 
characteristics to be directly applicable in road design.  

General cognitive models, such as the information processing model, recognise the significant role 
played by memory schemata in information processing. Memory schemata are organised mental 
templates of expectations and behaviours to help the driver select the correct speed given certain 
curve characteristics in a mostly unaware process. No research has investigated the specific cues 
that trigger these schemata for deceleration when approaching a curve, to enhance objectivity and 
support evidence-based decision-making in road design, it is important to identify the cues used 
in memory schemata and quantify the relationship between curve characteristics and drivers’ 
speed choices.  

The main aim of this dissertation is to quantify the interaction of drivers with road characteristics 
during curve approach, to be applicable in road design and safety assessments. This entails 
quantification of the cause-and-effect relation between curve characteristics and drivers’ speed 
choices from a cognitive point of view. The main research question for this dissertation is: 

What road characteristics trigger speed adjustments by drivers during curve approach? 
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Methodology 

To answer the main research question, two main approaches were used. Speed prediction 
modelling to quantify speed behaviour related to curve characteristics, and human factors research 
to understand and quantify drivers’ cognitive processes of the interpretation of curve 
characteristics during curve approach.  

The base conceptual model of this 
dissertation, shown in Figure 0-1, 
visualises these two approaches. 
Arrows labelled “1” relate to speed 
prediction models connecting curve 
characteristics to speed behaviour. 
The human factors approach is 
labelled “2” along the arrows and 
assumes causality to understand the 
relationship between physical 
reality and human behaviour.  

To develop speed prediction models, free flow speed profiles were collected along 153 freeway 
curves in The Netherlands using High Frequency Floating Car Data. This dataset comprised one 
million drivers’ free-flow speed data, recorded at a frequency of 1Hz. Additionally, various curve 
characteristics – including discontinuities, sight distances, signs, road geometry, etc. – were added 
to the database. Correlation and regression analysis were conducted on individual speed profiles 
to quantify the impact of curve characteristics on the position where drivers start to decelerate and 
the speed they adhere to in the curve. Next, parsimonious models were generated based on the 85th 
percentile speeds, to predict the speed development in the vicinity of curves. These models utilise 
easily obtainable geometric design variables, including the start and end of the horizontal curve, 
the horizontal radius, and the number of lanes. By using these easily obtainable variables, designers 
can forecast the speed development relative to the curve’s position, based on the 85th percentile of 
speed and acceleration. 

To gain a better understanding of how drivers interact with curve characteristics three studies were 
conducted. The first study involved an online survey designed to explore which curve cues and 
other variables influence drivers’ speed choice. Eight hundred nineteen participants were 
presented with 28 sets of curve comparisons, featuring pictures from two different curves from 
interchanges in the Netherlands. For each set of two pictures, the participants were asked to 
indicate in which curve they would drive faster. This task aimed to stimulate participants’ thought 
process, leading them to consider the reasons behind their speed preferences. After the 28 
comparison tasks, participants were asked to provide their reasons for driving fast in a curve. The 
curve pictures were then ranked based on the frequency of selection by the participants and 
compared with their respective curve characteristics. The answers to the open-ended question (i.e., 
the reasons for driving fast in a curve) were labelled with the curve characteristics that were 
mentioned and analysed on frequency and clustering of curve characteristics.  

The second study was conducted on-road with 31 participants using their own vehicles. The 
participants drove through six freeway curves while their look ahead fixations and speed were 
recorded with an eye-tracker and GPS device, respectively. In addition to these measurements, 
verbalisations of the participants on their speed adjustments were recorded. The distribution of 
fixations over various areas of interest was analysed relative to the start of deceleration before each 
curve and relative to the start of each curve. Verbalisation data were analysed to infer the number 
and types of reasons for changing speed and when these were mentioned together with comments 
related to deceleration before a curve. This approach results in quantifiable information regarding 
road characteristics drivers fixate on before adjusting their speed behaviour, which is further 
explained by the verbalisations given by the participants.  

Figure 0-1 The base conceptual model in this dissertation. 

The connections show the corresponding approaches. 
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Finally, the third study employs a Bayesian Belief Network (BBN) to model driver expectations 
regarding safe speed during curve approach using the data collected during the speed prediction 
modelling. This model mimics expectations as the probability of measured speeds given cues 
which are visible for drivers, such as the number of lanes or signs. Using Bayes theorem, “prior 
beliefs” on safe speeds are updated towards a “posterior belief” when a new cue is observed during 
curve approach. This posterior belief is in the context of this study interpreted as expected safe 
speed. Drivers are assumed to adjust their operating speed if it does not match their expected safe 
speed. The developed BBN is employed in two case studies, comparing the modelled expected safe 
speeds to the operating speed measurements. 

 

Findings 

The findings of this dissertation are presented based on two research approaches. Firstly, the 
results from the speed prediction modelling are presented, followed by the results from the human 
factors studies.  

The results from the speed prediction modelling show significant correlations between the position 
where drivers initiate deceleration, the speed they maintain in curves, and the horizontal curve 
radius. Drivers start to decelerate earlier when approaching sharper curves and adopt lower speeds 
in those. The position where drivers start to decelerate is further explained by sight distances, the 
number of lanes and the presence of a discontinuity. With the presence of longer sight distances, 
higher number of lanes, and in the presence of a discontinuity before the curve, drivers start to 
decelerate later (i.e., closer to the curve start). Higher speed in a curve is further correlated with 
higher approaching speed, higher number of lanes in the curve, larger deflection angle and the 
absence of discontinuities in the curve.  

The human factors studies in this dissertation show that drivers do not use the horizontal radius 
to select a safe speed during curve approach. Drivers however rely on other cues to adjust their 
speed. The online survey conducted identified four common categories of curve cues and variables 
that influence the decision to drive faster: road environment and surroundings, geometric road 
characteristics, driver related factors and external influence. The cues related to the road 
environment and its surroundings were mentioned most frequently by the respondents. The top 
three variables influencing speed choice are visibility, the overall “overview” of the road (a holistic 
but difficult-to-measure variable), and the number of lanes. Respondents also frequently 
mentioned variables such as the presence of signage and trees. Geometric road characteristics like 
curve radius and deflection angle were recognized by respondents as influencing factors, but their 
impact on speed selection was observed only when these were visible to the driver and not 
obstructed by trees or other elements. This suggests that a combination of geometric and 
surrounding elements is necessary for a better understanding of speed selection by drivers.  

The on-road study conducted in this dissertation reveals that before starting to decelerate, the 
participants primarily fixated on the Focus of Expansion, which is the point on the horizon toward 
which objects in the visual scene converge when driving in a straight line. They also fixated on 
edges parallel to the curve trajectory, such as noise barriers, guardrails, or tree lines. Most fixations 
on warning or speed signs were recorded after participants had already started to decelerate. These 
findings suggest that drivers primarily use information from the Focus of Expansion, whether it is 
a change in optical flow (the visual perception of objects’ motion patterns based on their relative 
positions and movements in the visual field) or the presence of a kink in the alignment, as the main 
cue to initiate deceleration. Parallel edges also serve as important cues, while warning and speed 
signs primarily confirm the need for a speed change.  

Finally, the Bayesian Belief Network demonstrated that the visible deflection angle of an upcoming 
curve has a large influence in triggering the expectations of a safe speed. The full deflection angle 
is not always visible to the driver but can be improved by using parallel edges (or lines) along the 
curve which are better visible. This increases the detectability of curves’ trajectories because drivers 
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heuristically assume these lines to be parallel to the actual curve. Additionally, the type of roadway 
preceding the curve and the number of lanes are both important cues for triggering a driver’s 
expectations of a safe speed. Speed and warning signs were found to be interdependent on the 
road scene and, therefore, have less influence on triggering expectations.  

 

Implications and future research 

This dissertation demonstrates the use of two main approaches, namely speed prediction 
modelling and human factors research, to gain quantifiable insights of the interaction between 
drivers’ behaviour and road characteristics. Through this interaction the driver selects a safe speed 
given certain curve characteristics. The main conclusion is that while the horizontal radius 
significantly correlates with speed behaviour during curve approach, drivers primarily use the 
visible deflection angle, number of lanes and the preceding roadway to adjust their speeds. Speed 
and warning signs, on the other hand, primarily serve as confirmatory cues rather than being the 
main factors that influence speed adjustments.  

While all used methods combined add to applicable results, especially the application of a Bayesian 
Belief Network (BBN) shows promising results for future research to quantify driver’s unaware 
reasoning. The BBN approach mimics drivers’ expectations as probability distributions and utilises 
Bayes’ theorem to update these expectations when drivers can perceive curve characteristics. 
However, prior to the development of a BBN, it is essential to identify the cues drivers actually 
perceive and use. This may require studies such as surveys or eye-tracking experiments to 
understand which cues drivers rely on. The development of the BBN leads to a quantification of 
expectations which are assumed to guide the interaction between the drivers’ behaviour and road 
characteristics. By addressing drivers’ expectations not only as a qualitative concept, but formulate 
these in a quantitative way, the BBN becomes a valuable tool in the field of engineering, 
particularly in designing roads that adhere to the principles of self-explaining roads. It enables 
engineers to create road designs that align with drivers’ expectations and promote safe and 
intuitive driving experiences. 

In addition, “breakpoints” in speed profiles are introduced in this dissertation to identify positions 
where the deceleration changes. The inclusion of breakpoints offers advantages for studying speed 
behaviour. It allows researchers to focus on specific segments of the driving task where 
deceleration changes occur, providing a more detailed analysis of speed adjustments compared to 
traditional speed prediction models. This approach enables a finer-grained examination of the 
factors influencing drivers’ decision-making during these critical points.  

Moreover, aligning these breakpoints with the action component of cognitive models provides an 
opportunity to partially quantify the interaction between the drivers’ behaviour and road 
characteristics. By identifying the positions where deceleration changes, researchers can align these 
breakpoints with the corresponding actions (speed change) in cognitive models. This linkage 
between observed behaviour and cognitive processes provides a valuable means of understanding 
the underlying mechanisms that drive speed adjustments. 

Experiments in controlled environments are still needed to examine the effect of the height of 
parallel edges – and hence the detection of the total deflection angle – on speed behaviour during 
curve approach. Furthermore, the analysis presented in the dissertation focuses on curves on main 
carriageways and connector roads in interchanges. To gain a comprehensive understanding of 
driver behaviour in freeway curves, extending the research to include curves in on and off ramps 
(slip roads) is suggested.  

Regarding the application of human factor knowledge in road design, the dissertation presents 
enhancements of existing driving task descriptions for the approach and curve discovery phases 
and the individual effects of design elements that can aid in analysing existing designs or accident-
prone areas. The dissertation emphasizes the importance of incorporating driver perspectives in 
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road designs and calls for design guidelines that consider the total road environment, including 
preceding elements and road surroundings. To aid road designers in interpreting these guidelines 
effectively, the dissertation presents a summarising table displaying permissible combinations of 
design elements, highlighting combinations that should be avoided. 
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Samenvatting 
Hoewel bekend is dat bestuurders beginnen af te remmen op een voldoende afstand 
stroomopwaarts van een scherpe bocht op de snelweg, is het onbekend welke signalen bestuurders 
aanzetten tot decelereren. Het begrijpen van deze signalen is essentieel voor het ontwerpen van 
veilige wegen. Traditionele snelheid voorspel modellen op basis van geometrische 
bochtkenmerken hebben significante correlaties aangetoond tussen boogstraal, verkanting en 
rijsnelheid, waardoor ze nuttig zijn voor snelwegontwerp. Deze modellen houden echter geen 
rekening met het gedrag van de bestuurder en hebben secundaire beperkingen, waaronder 
vooroordelen in gegevensverzameling, verkeerde veronderstellingen over constante snelheid in 
bochten en een focus op combinaties van tangenten en bochten zonder rekening te houden met het 
hele wegontwerp. 

Veilig wegontwerp begint met een begrip van de interactie tussen de bestuurder en de weg, dat 
wil zeggen de human factors die van invloed zijn. Onderzoek naar human factors in de context 
van wegontwerp richt zich op het begrijpen van hoe de algehele wegindeling het gedrag en de 
prestaties van bestuurders beïnvloedt. Eerdere studies hebben bestuurdersperceptie, 
besluitvorming en gedrag in bocht rijden, rijtaak beschrijvingen en de identificatie van 
risicofactoren onderzocht. Deze studies hebben echter onvoldoende kwantificering geboden van 
de interactie tussen het gedrag van de bestuurders en de wegkenmerken om direct toepasbaar te 
zijn in wegontwerp. 

Algemene cognitieve modellen, zoals het informatieverwerkingsmodel, erkennen de belangrijke 
rol van geheugenschema’s in informatieverwerking. Geheugenschema’s zijn georganiseerde 
mentale sjablonen van verwachtingen en gedrag om de bestuurder te helpen de juiste snelheid te 
kiezen gegeven bepaalde bochtkenmerken in een grotendeels onbewust proces. Er is geen 
onderzoek verricht naar de specifieke signalen die deze schema’s activeren om te gaan decelereren 
bij het naderen van een bocht. Om objectiviteit te verbeteren en op bewijs gebaseerde 
besluitvorming in wegontwerp te ondersteunen, is het belangrijk om de signalen in 
geheugenschema’s te identificeren en de relatie tussen bochtkenmerken en de snelheidskeuzes van 
bestuurders te kwantificeren. 

Het belangrijkste doel van dit proefschrift is om de interactie van bestuurders met wegkenmerken 
tijdens het naderen van een bocht te kwantificeren, zodat deze toepasbaar is in wegontwerp en 
veiligheidsbeoordelingen. Dit omvat de kwantificering van de oorzaak-en-gevolgrelatie tussen 
bochtkenmerken en de snelheidskeuzes van bestuurders vanuit cognitief oogpunt. De 
belangrijkste onderzoeksvraag voor dit proefschrift is: 

Welke wegkenmerken zetten bestuurders aan tot snelheidsaanpassingen bij het 
naderen van een bocht? 
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Methodologie 

Om de belangrijkste onderzoeksvraag te beantwoorden, werden twee hoofdaanpakken gebruikt. 
Snelheidsvoorspellingsmodellering om snelheidsgedrag in verband met bochtkenmerken te 
kwantificeren, en onderzoek naar menselijke factoren om de cognitieve processen van bestuurders 
bij de interpretatie van bochtkenmerken tijdens het naderen van een bocht te begrijpen en 
kwantificeren. 

Het basis conceptuele model van dit 
proefschrift, weergegeven in Figuur 
0-2, visualiseert deze twee 
benaderingen. Pijlen met label “1” 
verwijzen naar snelheid voorspel 
modellen die bochteigenschappen 
verbinden met snelheidsgedrag. De 
benadering vanuit human factors is 
gelabeld met “2” langs de pijlen en 
maakt gebruik van oorzakelijke 
verbanden om de relatie tussen de 
fysieke realiteit en menselijk gedrag 
te begrijpen.  

Om snelheid voorspel modellen te ontwikkelen, werden free flow snelheidsprofielen verzameld 
langs 153 snelwegbochten in Nederland met behulp van High Frequency Floating Car Data. Deze 
dataset bestond uit snelheidsgegevens van één miljoen ritten die werden vastgelegd met een 
frequentie van 1 Hz. Daarnaast werden verschillende bochteigenschappen - waaronder 
discontinuïteiten, zichtafstanden, borden, weggeometrie, enz. - aan de database toegevoegd. 
Correlatie- en regressieanalyses werden uitgevoerd op individuele snelheidsprofielen om de 
impact van bochteigenschappen op de positie waar bestuurders beginnen met decelereren en de 
snelheid die ze aanhouden in de bocht te kwantificeren. Vervolgens werden eenvoudige modellen 
gegenereerd op basis van de snelheden van het 85e percentiel, om de snelheidsontwikkeling in de 
buurt van bochten te voorspellen. Deze modellen maken gebruik van gemakkelijk verkrijgbare 
geometrische ontwerpvariabelen, waaronder de start- en eindposities van de horizontale bocht, de 
horizontale straal en het aantal rijstroken. Door gebruik te maken van deze gemakkelijk 
verkrijgbare variabelen kunnen ontwerpers de snelheidsontwikkeling voorspellen ten opzichte 
van de positie van de bocht, op basis van de snelheid en acceleratie van het 85e percentiel. 

Om een beter inzicht te krijgen in de interactie tussen bestuurders en de weg, werden drie studies 
uitgevoerd. De eerste studie omvatte een online enquête om te onderzoeken welke 
bochteigenschappen en andere variabelen van invloed zijn op de snelheidskeuze van bestuurders. 
Achthonderdnegentien deelnemers kregen 28 sets bochtvergelijkingen voorgelegd, met 
afbeeldingen van twee verschillende bochten in snelwegknooppunten in Nederland. Voor elke set 
van twee afbeeldingen werd aan de deelnemers gevraagd in welke bocht ze sneller zouden rijden. 
Deze taak had als doel het denkproces van de deelnemers te stimuleren, zodat ze de redenen achter 
hun snelheidsvoorkeuren zouden overwegen. Na de 28 vergelijkingstaken werd aan de 
deelnemers gevraagd om hun redenen voor het rijden met hoge snelheid in een bocht te geven. 
Vervolgens werden de bochtafbeeldingen gerangschikt op basis van de frequentie van selectie door 
de deelnemers en vergeleken met hun respectievelijke bochteigenschappen. De antwoorden op de 
open vragen (de redenen voor snel rijden in een bocht) werden gelabeld met de genoemde 
bochteigenschappen en geanalyseerd op frequentie en clustering van eigenschappen in de 
antwoorden. In de tweede studie werd een praktijkonderzoek uitgevoerd met 31 deelnemers die 
hun eigen voertuigen gebruikten. De deelnemers reden door zes snelwegbochten terwijl hun oog 
fixaties en snelheid werden geregistreerd met respectievelijk een eye-tracker en GPS-apparaat. 
Naast deze metingen werden ook verbalisaties van de deelnemers over hun 
snelheidsaanpassingen geregistreerd. De verdeling van fixaties over verschillende 

Figuur 0-2 Het basis conceptuele model in dit proefschrift. 

De pijlen tonen de overeenkomstige benaderingen. 
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aandachtsgebieden werd geanalyseerd in relatie tot het begin van deceleratie vóór elke bocht en 
het begin van elke bocht. De verbalisaties werden geanalyseerd om het aantal en de soorten 
redenen voor het veranderen van snelheid af te leiden en wanneer deze werden genoemd in relatie 
tot opmerkingen over vertraging voor een bocht. Deze benadering resulteert in kwantificeerbare 
informatie over de bochteigenschappen waar bestuurders zich op richten voordat ze hun snelheid 
aanpassen, die verder worden toegelicht door de verbalisaties van de deelnemers. Ten slotte maakt 
de derde studie gebruik van een Bayesian Belief Network (BBN) om de verwachtingen van 
bestuurders met betrekking tot de veilige snelheid tijdens het naderen van een bocht te modelleren, 
gebruikmakend van de verzamelde gegevens voor de snelheids voorspel modellen. Het BBN 
bootst verwachtingen na als de waarschijnlijkheid van gemeten snelheden, gegeven de 
bochteigenschappen die zichtbaar zijn voor bestuurders, zoals het aantal rijstroken of 
verkeersborden. Met behulp van de Bayesiaanse theorema worden “a priori overtuigingen” over 
veilige snelheden bijgewerkt naar een “a posteriori overtuiging” wanneer een nieuwe eigenschap 
wordt waargenomen tijdens het naderen van een bocht. Deze a posteriori overtuiging wordt in de 
context van dit onderzoek geïnterpreteerd als de verwachte veilige snelheid. Er wordt 
verondersteld dat bestuurders hun rijsnelheid aanpassen als deze niet overeenkomt met hun 
verwachte veilige snelheid. Het ontwikkelde BBN wordt gebruikt in twee casestudies, waarbij de 
gemodelleerde verwachte veilige snelheden worden vergeleken met de gemeten rijsnelheden. 

 

Bevindingen 

De bevindingen van dit proefschrift worden gepresenteerd op basis van de twee onderzoek 
benaderingen. Allereerst worden de resultaten van de snelheids voorspel modellen gepresenteerd. 
Dit wordt gevolgd door de presentatie van de resultaten van de benadering van de human factors. 

De resultaten van de snelheids voorspel modellen laten significante correlaties zien tussen de 
positie waar bestuurders beginnen met decelereren, de snelheid die ze in bochten handhaven, en 
de horizontale boogstraal. Bestuurders beginnen eerder te decelereren bij het naderen van 
scherpere bochten en nemen lagere snelheden aan in deze bochten. De positie waar bestuurders 
beginnen met decelereren wordt verder verklaard door zichtafstanden, het aantal rijstroken en de 
aanwezigheid van een discontinuïteit. Met langere zichtafstanden, meer rijstroken en in 
aanwezigheid van een discontinuïteit beginnen bestuurders later te vertragen (dat wil zeggen, 
dichter bij het begin van de bocht). Hogere snelheid in een bocht correleert verder met hogere 
naderingssnelheid, meer rijstroken, grotere booghoek en het ontbreken van discontinuïteit. 

Het gedeelte van het onderzoek naar human factors in dit proefschrift laat zien dat bestuurders de 
horizontale boogstraal niet gebruiken om een veilige snelheid te kiezen tijdens het naderen van 
een bocht. Bestuurders vertrouwen echter op andere aanwijzingen om hun snelheid aan te passen. 
De uitgevoerde online enquête identificeerde vier veelvoorkomende categorieën van bocht 
eigenschappen en variabelen die de beslissing om sneller te rijden beïnvloeden, waarbij die 
gerelateerd aan de weg en zijn omgeving het meest frequent werden genoemd. De top drie 
variabelen die van invloed zijn op de snelheidskeuze zijn de zichtbaarheid van bocht, het algemene 
“overzicht” van de weg (een holistische maar moeilijk meetbare variabele) en het aantal rijstroken. 
Respondenten noemden ook vaak variabelen zoals de aanwezigheid van bebording en bomen. 
Geometrische wegkenmerken zoals boogstraal en hoek werden door de respondenten erkend als 
beïnvloedende factoren, maar hun invloed op de snelheidsselectie werd alleen waargenomen 
wanneer deze zichtbaar waren voor de bestuurder en niet werden belemmerd door bomen of 
andere elementen. Dit suggereert dat een combinatie van geometrische en omgevingselementen 
noodzakelijk is voor een beter begrip van de snelheidsselectie door bestuurders. Het 
praktijkonderzoek uitgevoerd in dit proefschrift laat zien dat de deelnemers zich vóór het begin 
van het vertragen voornamelijk richtten op het “Focus of Expansion”, dat is het punt aan de 
horizon waar objecten in het gezichtsveld samenkomen wanneer ze in een rechte lijn rijden. Ze 
fixeerden ook op randen parallel aan de boog, zoals geluidswallen, geleiderails of bomenrijen. De 
meeste fixaties op waarschuwings- of snelheidsborden werden geregistreerd nadat de deelnemers 
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al waren begonnen met decelereren. Deze bevindingen suggereren dat bestuurders voornamelijk 
informatie gebruiken vanuit het “Focus of Expansion”, of het nu een verandering in optic flow is 
(de visuele perceptie van bewegingspatronen van objecten op basis van hun relatieve posities en 
bewegingen in het gezichtsveld) of de aanwezigheid van een knik in de belijning, als het 
belangrijkste signaal om het decelereren te starten. Parallelle randen dienen ook als belangrijke 
aanwijzingen, terwijl waarschuwings- en snelheidsborden voornamelijk bevestigen dat een 
snelheidsverandering nodig is.  

Ten slotte toonde het Bayesian Belief Network aan dat de zichtbare hoek van een naderende bocht 
een grote invloed heeft op het stellen van de verwachtingen van een veilige snelheid. De volledige 
hoek is niet altijd zichtbaar voor de bestuurder, maar kan worden verbeterd door het gebruik van 
parallelle randen (of lijnen) langs de bocht die beter zichtbaar zijn. Dit verhoogt de herkenbaarheid 
van het bochtverloop, omdat bestuurders heuristisch aannemen dat deze lijnen parallel lopen aan 
de werkelijke bocht. Daarnaast zijn het type weg voorafgaand aan de bocht en het aantal rijstroken 
beide belangrijke aanwijzingen voor het stellen van de verwachtingen van een veilige snelheid. 
Snelheids- en waarschuwingsborden bleken onderling afhankelijk te zijn van de wegomgeving en 
hebben daardoor minder invloed op het stellen van verwachtingen. 

 

Implicaties en verder onderzoek 

Dit proefschrift toont het gebruik van twee hoofdaanpakken, namelijk snelheid voorspel 
modellering en onderzoek naar human factors, om meetbare inzichten te verkrijgen in de interactie 
tussen het gedrag van bestuurders en wegkenmerken. Deze interactie leidt er toe dat de bestuurder 
een veilige snelheid kiest gegeven bepaalde bochtkenmerken. De belangrijkste conclusie is dat 
hoewel de horizontale straal significant correleert met het snelheidsgedrag tijdens het naderen van 
een bocht, bestuurders voornamelijk de zichtbare hoek, het aantal rijstroken en de voorafgaande 
wegindeling gebruiken om hun snelheden aan te passen. Snelheids- en waarschuwingsborden 
daarentegen dienen voornamelijk als bevestigende signalen in plaats van de belangrijkste factoren 
die snelheidsaanpassingen beïnvloeden. 

Hoewel alle gebruikte methoden bijdragen aan toepasbare resultaten, laat met name de toepassing 
van een Bayesian Belief Network (BBN) veelbelovende resultaten zien voor toekomstig onderzoek 
naar de kwantificering van onbewuste redenering van bestuurders. De BBN-aanpak bootst de 
verwachtingen van bestuurders na als waarschijnlijkheidsverdelingen en maakt gebruik van het 
Bayesiaanse theorema om deze verwachtingen bij te werken wanneer bestuurders bocht-
kenmerken kunnen waarnemen. Echter, voordat een BBN wordt ontwikkeld, is het essentieel om 
de wegkenmerken te identificeren die bestuurders daadwerkelijk waarnemen en gebruiken. Dit 
kan studies zoals enquêtes of eye-tracking-experimenten vereisen om te begrijpen op welke 
signalen bestuurders vertrouwen. De ontwikkeling van de BBN leidt tot een kwantificering van 
verwachtingen die verondersteld worden de interactie te leiden tussen het gedrag van de 
bestuurders en wegkenmerken. Door bestuurdersverwachtingen niet alleen als een kwalitatief 
concept te beschouwen, maar deze kwantitatief te formuleren, wordt de BBN een waardevol 
instrument op het gebied van wegontwerp, met name bij het ontwerpen van wegen die voldoen 
aan de principes van “selfexplaining roads”. Het stelt ingenieurs in staat om wegontwerpen te 
creëren die aansluiten bij de verwachtingen van bestuurders en een veilige en intuïtieve 
rijervaringen bevorderen. 

Bovendien worden in dit proefschrift “breakpoints” in snelheidsprofielen geïntroduceerd om 
posities te identificeren waar de snelheid verandert. De inclusie van breakpoints biedt voordelen 
voor het bestuderen van snelheidsgedrag. Het stelt onderzoekers in staat zich te concentreren op 
specifieke segmenten van de rijtaak waar snelheid veranderd, wat een gedetailleerdere analyse van 
snelheidsaanpassingen mogelijk maakt in vergelijking met traditionele snelheid voorspel 
modellen. Deze aanpak maakt een betere analyse mogelijk van de factoren die de besluitvorming 
van bestuurders beïnvloeden tijdens deze kritieke momenten. 
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Bovendien biedt het afstemmen van deze breakpoints op de actiecomponent (snelheid veranderen) 
van cognitieve modellen de mogelijkheid om de interactie tussen het gedrag van bestuurders en 
wegkenmerken gedeeltelijk te kwantificeren. Door de posities waar de vertraging verandert te 
identificeren, kunnen onderzoekers deze breakpoints afstemmen op de overeenkomstige acties in 
cognitieve modellen. Deze koppeling tussen waargenomen gedrag en cognitieve processen biedt 
een waardevol middel om de onderliggende mechanismen die snelheidsaanpassingen activeren, 
te begrijpen. 

Experimenten in gecontroleerde omgevingen zijn nog steeds nodig om het effect van de hoogte 
van parallelle randen - en dus de detectie van de totale hoek - op snelheidsgedrag tijdens het 
naderen van een bocht te onderzoeken. Bovendien richtte de analyse in het proefschrift zich op 
bochten op hoofdbanen en verbindingswegen in knooppunten. Om een alomvattend begrip van 
bestuurdersgedrag in snelwegbochten te verkrijgen, wordt voorgesteld het onderzoek uit te 
breiden naar bochten toe- en afritten van snelwegen. 

Wat betreft de toepassing van kennis van menselijke factoren in wegontwerp, presenteert het 
proefschrift aanvullingen van de bestaande beschrijvingen van de rijtaak tijdens de benadering van 
een bocht, evenals de individuele effecten van ontwerpelementen die kunnen helpen bij het 
analyseren van bestaande ontwerpen of ongeval gevoelige wegvakken. Het benadrukt het belang 
van het opnemen van het perspectief van de bestuurder in wegontwerpen en pleit voor 
ontwerprichtlijnen die de totale wegomgeving, inclusief voorafgaande elementen en de omgeving 
van de weg, in overweging nemen. Om wegontwerpers te helpen deze richtlijnen effectief te 
interpreteren, presenteert het proefschrift een samenvattende tabel met toegestane combinaties 
van ontwerpelementen, waarbij combinaties die vermeden moeten worden, worden benadrukt. 
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1 Introduction 

In 2008, the European Directive 2008/96/EC, known as Road Infrastructure Safety Management 
("RISM," 2008), was adopted by the European Parliament and the Council of the European Union. 
This directive aims to ensure a consistently high level of road safety on the trans-European road 
network. Subsequently, in 2010, The Netherlands incorporated the RISM into the Public Works 
Management Act ("Wbr adjustment," 2010), which made it mandatory for all Dutch freeway 
designs to undergo a Road Safety Audit (RSA). 

A RSA is a comprehensive and independent safety check that examines the design characteristics 
of a road infrastructure project at every stage, from planning to early operation. Its purpose is to 
identify potential safety issues and critical design elements based on the expected road user 
behaviour. The introduction of RSA marked a significant advancement in proactive road safety 
assessment, as it allows for the implementation of road-safety knowledge before accidents occur 
(Wegman, 2017). Research has shown that this approach effectively reduces the occurrence of 
actual crashes at a reasonable cost (Sitran, Delhaye, & Uccelli, 2016).  

Implementing RSA has led to a greater interest in understanding road user behaviour in relation 
to road design. Notably, there is a focus on the effects of tight curves on freeways that do not adhere 
to the designated design speeds, since these curves have a high crash risk (Davidse, Duijvenvoorde, 
& Louwerse, 2020). Observations have indicated that drivers tend to exceed the design speeds in 
these curves (Farah, van Beinum, & Daamen, 2017). These factors, along with the increased policy 
attention to road user behaviour, have motivated the research presented in this dissertation.  

This introduction begins by discussing the space requirements and safety considerations of 
freeway curves, emphasizing the relevant policies in place. The second section focuses on existing 
scientific literature and identifies the knowledge gaps. In the third section, the aim, scope, and 
research questions of this dissertation are presented. Section four outlines the methods employed 
in this research. The fifth section highlights the scientific and practical contributions of this 
dissertation. Finally, section six provides an outline of the dissertation’s structure. 

1.1 Space requirements versus safety of freeway curves  

Finding the optimum freeway design is a complex process (Casal, Santamarina, & Vázquez-
Méndez, 2017), involving many aspects such as traffic demand, safety, environmental issues, cost, 
etc. Dense physical environments, such as in The Netherlands, require complex design solutions, 
which are regularly at odds with spatial integration. For example, the increasing urban 
development usually calls for more on and off ramps on freeways, because of traffic needs. A 
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crucial element in freeway design is the horizontal alignment, consisting of straight segments 
(tangents), curves and transition curves which connect straight segments with curves 
(Rijkswaterstaat, 2022). The combination of these elements forms a line through the environment – 
the horizontal alignment – portraying the position where a carriageway is to be positioned. In 
dense environments, design solutions usually consist of a large amount of relatively tight curves, 
reducing spatial requirements and cost. The spatial requirements of a curve are mainly determined 
by its radius and deflection angle. Figure 1-1 illustrates that when deflection angles are larger, the 
selection of a radius significantly affects the spatial footprint of a carriageway. 

 

Figure 1-1 The effect of different curve radii (R) and deflection angles (∆) in the horizontal 

alignment. 

Cheap, space efficient horizontal curves with tight curve radii do however require speed reduction, 
and are hence known to be unsafe (Davidse et al., 2020). When the curve radius decreases, crash 
risk increases (Othman, Thomson, & Lannér, 2009; Zegeer, Stewart, Council, & Reinhurt, 1991). A 
crash is usually caused by drivers who do not expect a sharp curve in a freeway, or overestimate 
its curvature and hence do not 
decelerate enough in the curve 
approach phase (Cafiso & La Cava, 
2009). This results in skidding of the 
vehicle in the curve, because of 
excessive lateral acceleration in the 
curve (Peng, Chu, Wang, & Fwa, 2021). 
A safe road design, viewed from a safe 
system perspective, takes into account 
the interactions between vehicle, 
infrastructure and the driver 
(Rijkswaterstaat, 2022; SWOV, 2018) as 
illustrated in Figure 1-2 and elaborated 
upon by Borsos et al. (2015). The 
interactions between the vehicle and 
the road can be labelled as physical 
factors and mainly refer to skid 
resistance. How the driver perceives the road and its surroundings and how the driver interacts 
with the road can be referred to as human factors and is mainly based on applied cognitive 
psychology. The Dutch safe system approach for improving road safety has human factors as the 
primary focus (SWOV, 2018). By trying to understand the interaction between the driver and the 
road, the traffic system can be adapted to achieve maximum safety.  

R=5

R=3

R=7

R=3

R=7

R=5

∆ = 200 grad

R=5

R=3

R=7

∆ = 100 grad

Figure 1-2 The main interactions in the road system, 

derived from Borsos, Birth, and Vollpracht (2015). 

Driver

Road and 
Surroundings

Vehicle

Machine
Factors

Physical 
Factors

Human 
Factors



Chapter 1 Introduction 15 

The understanding of how both the driver and the vehicle interact with the freeway, are translated 
into design guidelines (Rijkswaterstaat, 2022). This translation is generally done by providing 
applicable formulas, or standardised measurements in tables which reflect best practices. This 
quantification of knowledge helps roads designers in making informed design decisions. However, 
the background of the current Dutch guidelines for safe curve design are based on research from 
the 1970s (Brevoort, 1974; Cate, 1974; Pacejka, 1974) which focusses on the relation of the vehicle 
and the road – the physical factors. Since then, the design guidelines have been updated to reflect 
the latest best practices and a better understanding of curve geometry. This took into account 
various factors like different types of pavements, vehicle dynamics, and driver expectations. These 
updates, however, were not properly documented, so the guidelines cannot be benchmarked to 
evidence-based research anymore. Therefore, designers and auditors have problems motivating 
deviations from the guidelines. Especially since more complex design solutions call for tighter 
curve radii, a re-evaluation of the interaction of drivers and vehicles with curves is needed. The 
first step of this process is the interaction of the driver with the road and its environment during 
curve approach and the driver’s decision to start decelerating to proceed with a safe speed. 
Understanding how the driver makes this decision is therefore essential to create a safe road 
design. This dissertation focusses on the interaction of the driver with the road and its environment 
– i.e. the human factors. In order to make this knowledge accessible in freeway design, 
quantification of this interaction between the drivers’ behaviour and road characteristics is needed. 
The quantifications in this dissertation are related to the road characteristics drivers indicate to be 
important for speed adjustments during curve approach, correlation between deceleration and 
road characteristics, look ahead fixation duration during curve approach and the unaware 
expectations drivers have built on safe speeds in curves given certain observed curve 
characteristics. Using such quantifications, designers can make more objective, evidence-based 
design decisions. This enables them to compare different designs and ensure that road designs are 
optimised for driver performance and safety. 

1.2 Literature review and knowledge gap 

Design of freeway curves is usually based on design speed (Fitzpatrick & Kahl, 1992; A Policy on 
Geometric Design of Highways and Streets 2018, 2018; Rijkswaterstaat, 2022) which is a selected speed 
used to determine the various geometric design elements of the carriageway (Porter, Donnell, & 
Mason, 2012). Design speeds use physical forces in point mass models (Donnell, Wood, Himes, & 
Torbic, 2016) to tie speed and curve radius together in a simplified representation of a vehicle as a 
single point travelling through a curve. This results in design speeds that are a function of super-
elevation and curve radius in order to reduce risk of skidding and offer a comfortable ride at these 
design speeds. These design speeds are hence mainly based on physical models of the forces 
between the vehicle, the infrastructure, and the driver. Design speed is therefore an important 
factor in setting road design parameters. This importance is reinforced by the understanding that 
excessive speeds are the main cause for accidents in curves (Aarts & Van Schagen, 2006; 
Domenichini, Paliotto, Meocci, & Branzi, 2022). This literature review first focusses on the 
correlation between operating speed and curve characteristics, which are covered in speed 
prediction models (section 1.2.1). Speed prediction models, however, typically do not include the 
driver’s interaction with the road, generally referred to as human factors. So, following speed 
prediction models, human factors are introduced in section 1.2.2 by discussing task descriptions, 
risk and cognitive process models, and relevant empirical studies of curve perception. After 
reviewing relevant literature in both approaches (speed prediction and human factors), the 
knowledge gaps are identified that this PhD research aims to address. 
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1.2.1 Speed prediction models 

Measuring operating speeds and relating these to geometric curve characteristics leads to speed 
prediction models (Hassan, Sarhan, Porter, et al., 2011; Odhams & Cole, 2004; Shallam & Ahmed, 
2016). These models show significant correlations between curve radius, super-elevation and 
operating speed, resembling the way design speed is modelled. These models are great in 
quantifying speed behaviour related to curve characteristics and making these relations accessible 
for freeway design.  

However, existing speed predicting models have severe deficiencies, which are discussed by 
Hassan, Sarhan, and Dimaiuta (2011). They identified different biases regarding data collection and 
the assumptions underneath the development of these models. Regarding data collection the 
selected road segments need to be carefully picked to avoid biases resulting from influences of 
upstream road elements such as nearby intersections. Next to that, the chosen speed collection 
methods can bias the results because of limited sample sizes and number of observations, as well 
as errors in manual speed measurements. A major misassumption in traditional models is that 
speed is constant throughout a curve. More recent studies using naturalistic driving data have 
shown that speed throughout a curve varies (Cafiso & Cerni, 2012; Dias et al., 2018). Traditional 
speed prediction models, using a single measurement for operating speed in a curve, which usually 
was taken at the centre of a curve, therefore giving an unrealistic representation of actual human 
speed behaviour. Studies using continuous speed profiles provide a better understanding of speed 
development, including acceleration and deceleration. These speed profiles show how deceleration 
starts before the curve and ends in the curve (Montella, Galante, Imbriani, Mauriello, & Pernetti, 
2014). Another assumption in traditional speed prediction models is that speed measures from the 
curve are independent from upstream and downstream road sections, while both upstream and 
downstream elements influence operating speed (Hassan et al., 2011).  

Moreover, it has been identified that most models focus on tangent-curve combinations, without 
considering the entire road design (upstream and downstream horizontal and vertical elements, 
type of discontinuity and (changes in) cross section and its environment (Cafiso & Cerni, 2012). 
The specific road design elements of influence are not mentioned in these studies though.  

Most speed prediction models use the horizontal radius of a curve as the main independent 
variable to explain the operating speed in the curve (Hassan, Sarhan, Porter, et al., 2011). Recent 
speed prediction models show that the operating speeds in the Netherlands are well above the 
design speeds (Farah et al., 2017), so design speeds are not similar to operating speeds. Therefore, 
the measured operating speeds cannot be explained using traditional design speed approaches. 
After all, drivers do not drive through a technical and theoretical design, but through a real-life 
freeway environment. This calls for taking driver behaviour also into account when analysing 
operating speeds. 

1.2.2 Human factors 

Driver behaviour is primarily based on the perception of the driver, since “it is the perceived situation 
not the physical reality that determines behaviour” (Rumar, 1982). Human factors research in road 
design involves studying the interactions between the driver and the road and its environment to 
understand human capabilities, limitations, and behaviour. A wide variety of factors is believed to 
influence drivers speed choice (e.g., road and vehicle factors, traffic and environment factors, 
driver related factors). Various behavioural models have been designed to help understand how 
drivers function and choose their speeds. But it is recognised that no comprehensive model of 
driving behaviour exists, nor is there a standard categorisation of models (Ranney, 1994; Shinar, 
2017b). In this overview, relevant models are divided into two categories: describing what the 
driver does (task descriptions and errors), and why and how the driver does this (risk and cognitive 
process models). After an overview of these models, relevant human factors studies of curve 
driving are discussed. 
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1.2.2.1 Task descriptions and errors 

Task descriptions serve to analyse the driving task in specific situations and create specific task 
requirements. Driving task descriptions (Campbell et al., 2012; McKnight & Adams, 1970) provide 
insights into the different phases during curve driving: curve not yet in sight (anticipation), curve 
in sight (discovery), within a curve (negotiation) and exiting a curve (leaving). These zones need 
different driving tasks. For the determination of safe speeds, speed signs and curve radius are 
mentioned as primary indicators. In the discovery phase of curve driving, speed is adapted to a 
suitable speed based on curve cues, which are not further defined in the task description. Within 
the curve the speed is adjusted to the actual curvature and lateral acceleration.  

On a more general level, driving tasks can be categorized into three hierarchical task levels: 
strategic (planning), tactical (manoeuvring) and operational (control) (Michon, 1985). Curve 
driving is generally assumed to be done at an operational level, since it is mainly a subconscious 
driving task. These three levels match up with the classification of human behaviour by Rasmussen 
(1982), who distinguishes three levels: skill-, rule- and knowledge-based behaviour. Skill-based 
behaviour relies on accumulated experience that has been stored in memory and manifests as 
largely automated behaviour. Rule-based behaviour acts on known rules and familiar situations, 
and is regarded as more conscious behaviour. Knowledge-based behaviour, while also conscious, 
involves using current knowledge in unfamiliar situations where limited prior experience is 
available.  

Speed selection in curves is considered a skill-based process (Ranney, 1994) that operates without 
active thinking while driving, as it relies on automated routines developed through experience. At 
this level, errors can occur when drivers do not perform the appropriate attentional control over 
their actions, leading to the activation of incorrect routines (Reason, 1990). These errors may arise 
due to insufficient attention given to the curve cues, or misinterpretation of curve cues, resulting 
in the selection of an inappropriate speed. Skill-based activities can lead to unintended actions 
defined as slips (correct intention or plan, but the execution fails) or lapses (failure to perform an 
intended action or forgetting the next action in a sequence). In curve driving, these errors can result 
in skidding or running off the road.  

1.2.2.2 Risk models 

Risk is widely recognized as a key motivational component for drivers. One of the most influential 
theories in this regard is the risk homeostasis theory proposed by Wilde (1998), which states that 
drivers accept a certain level of risk in exchange for the benefits they gain. This implies that drivers 
make a trade-off between a certain risk of skidding in curves and time saved by driving at higher 
speeds.  

In order to maintain their safety margins, drivers are thought to utilise comfort zones, which help 
them avoid crossing certain thresholds (Summala, 2007). Drivers’ automatic and unconscious 
behaviour, shaped by their experience, allows drivers to adhere to specific safety margins they 
have learned over time. These safety margins keep drivers within a pleasant comfort zone and 
influence their decision-making regarding driving speeds (Van Winsum & Godthelp, 1996). Higher 
speeds in curves create higher lateral acceleration, which is known to decrease comfort levels 
(Dhahir & Hassan, 2019b). When drivers exceed their comfort zone by choosing higher speeds for 
the sake of time savings, they experience uncomfortable feelings that can serve as safety warnings. 
These comfort zones align closely with the safety zones defined by Gibson and Crooks (1938), who 
already in 1938 theorised that drivers respect safety zones by decreasing their speed to prevent 
skidding or running off the road. They defined a “field of safe travel” based on factors such as 
acceleration, deceleration, and a minimum stopping zone. Their theory is in essence an information 
processing model based on the perception of safety zones and the subsequent reaction of the driver 
by steering or decelerating. 
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1.2.2.3 Cognitive process models  

Information processing or cognitive process models outline the mental processes and typically 
consist of three basic steps: perception, decision making and action. Memory plays a pivotal role 
in information processing as it involves encoding, storing, and retrieving information. This is 
shown in Figure 1-3, which presents a model of human information processing adapted from 
Wickens, Helton, Hollands, and Banbury (2021) and Endsley (1995). The model begins with 
sensory processing such as the processing that occurs on the retina of the eye. While this 
dissertation does not delve into the specifics of sensory processing, it is important to note that it 
leads to the subsequent process of perception.  

Perception itself is the process of becoming aware – on different levels – of the world around us 
(Shinar, 2017b). The driving task specifically, is predominantly fed by visual perception (Sivak, 
1996). Cognitive models often incorporate Neisser’s perceptual cycle (Neisser, 1976) to explain the 
perception component. This cycle involves continuous interaction with the environment, using 
cues and schemata stored in long-term memory. Positioned between perception and action (i.e., 
response execution), is cognition, where working memory combines perception and the stored 
schemata to interpret the perceived information.  

Schemata can be considered as organised mental patterns of thoughts or behaviours to help 
organise world knowledge (Neisser, 1976). They are based on multiple experiences and 
associations, providing a generalised and adaptable framework without much detail (Ghosh & 
Gilboa, 2014). Schemata help the driver optimize their behaviour and make quick decisions based 
on expectations stored in memory as schemata. They affect how drivers perceive information about 
the (road)environment and how this information is being activated (Plant & Stanton, 2012). 
Schemata assist in selecting appropriate speed based on perceptual cues (Charlton & Starkey, 
2017a, 2017b; Ranney, 1994), leading to automatic performance characterised as efficient, 
unintentional, and unconscious behaviour (Charlton & Starkey, 2011). Errors occur when incorrect 
schemata are activated, leading to the selection of inappropriate responses. In this dissertation, a 
schema will be considered as an organised mental template of expectations and behaviours to help 
the driver select the correct speed given certain curve characteristics in a mostly unaware process.  

The principles of dual process theory (Evans, 2003; Kahneman, 2011) shed light on driving without 
awareness (Burdett, Charlton, & Starkey, 2019; Charlton & Starkey, 2011, 2018a, 2018b; Malhotra, 
Charlton, Starkey, & Masters, 2018) which is associated with rapid and automatic thinking (Evans, 
2003). This aligns with bottom-up driving (Charlton & Starkey, 2011), which is composed of well-

Figure 1-3 A model of human information processing. 
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rehearsed perception-action units allowing experienced drivers navigate traffic with little or no 
conscious attention. Existing theories are mostly based on descriptions of the conscious, top-down 
driving mode (Charlton & Starkey, 2011), hence they pose a challenge when considering driver 
behaviour in curve driving.  

Driver behaviour is not simply a dichotomy between top-down vs bottom-up. Charlton and 
Starkey (2011) propose a tandem-like approach in which both systems constantly work together 
and depend on each other. In visual awareness research it is still discussed whether this is 
dichotomous or graded (Windey, Vermeiren, Atas, & Cleeremans, 2014). However, it is agreed that 
easy, well-known stimuli get processed bottom-up, leading to partial awareness (Fazekas & 
Overgaard, 2018).  

Unawareness is also common in driving, as drivers are prone to mind-wandering, even while 
successfully executing correct motor responses (Burdett et al., 2019). Neurological research 
suggests different pathways from the retina that lead to either perceptual awareness or motor 
output during early visual processing (Lamme, 2018; Spering & Carrasco, 2015).  

1.2.2.4 Human factors studies of curve driving 

Visual perception plays a pivotal role in the driving task (Sivak, 1996), prompting researchers to 
investigate how drivers perceive curves. In the early years of this research, perspective drawings 
were primarily employed. But over the years, the utilization of eye tracking, driving simulators 
and surveys became prevalent in experimental settings. More recently, naturalistic driving studies 
and instrumented vehicles have emerged as additional methodologies in this field of research. 
These advancements have allowed for a deeper understanding of how drivers perceive curves, 
which are discussed below. 

Perspective drawings revealed significant disparities between the visual image of a curve and its 
physical properties (Bakker & Springer, 1961; Springer, Huizenga, & Moonen, 1970). These studies 
showed how curves are predominantly perceived as hyperbola by the driver. Perspective drawings 
also emphasised the significance of curve angle (Fildes & Triggs, 1985; Riemersma, 1988) and the 
possible distortion of the curve perception caused by transition curves (Riemersma, 1989). Early 
eye tracking experiments identified the “tangent point” (the point on the inside of a curve, where 
the apparent curvature of the curve reverses) as a focus point for drivers while navigating through 
a curve. It was found that drivers begin searching for this point approximately 1 to 2 seconds before 
a curve (Land & Lee, 1994; Shinar, McDowell, & Rockwell, 1977).  

Subsequent eye tracking studies showed that drivers also seek information outside the “tangent 
point” about the trajectory of a curve (Lappi & Lehtonen, 2013; Lehtonen, Lappi, & Summala, 2012), 
based on driving experience (Lehtonen, Lappi, Koirikivi, & Summala, 2014; Tuhkanen et al., 2019). 
Driving simulator experiments have been used to validate theories such as the “two point” steering 
model (Jamson, Benetou, & Tate, 2015; Salvucci & Gray, 2004), which suggests that drivers use a 
near and a far focus point to guide their steering during driving. Additionally, the importance of 
curve radii and lane width in speed selection was also confirmed through simulator studies 
(Bobermin, Silva, & Ferreira, 2021; A. Calvi, 2015; Van Winsum & Godthelp, 1996). Both driving 
simulators and naturalistic driving experiments demonstrated that more experience (driving 
experience in general, and knowledge about specific curves) lead to higher speeds (Charlton & 
Starkey, 2011; Pratt, Geedipally, Dadashova, Wu, & Shirazi, 2019), and hence higher risk 
acceptance.  

Surveys help understand driver risk acceptance (Deng, Chu, Wu, He, & Cui, 2018; Xie, Wu, Lyu, 
& Duan, 2019), by showing the influence of driving style and workload on speed behaviour. 
Surveys, when combined with other research methodologies, have added value to experiments in 
giving more qualitative meaning to the quantitative results.  

Such human factors studies in curve driving have given valuable observations into the variables 
which play an important role in curve negotiation and speed selection. Most of these studies, 
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however, do not give a generalizable and quantifiable knowledge into speed selection, making it 
challenging to directly apply them in road design processes. 

1.2.3 Knowledge gap 

Existing knowledge regarding speed prediction models and driver behaviour indicates a gap 
between the “real world” and its representation and interpretation by the driver. This discrepancy 
has been attributed to the behaviouristic approach in understanding driver behaviour prevalent in 
the 20th century (Michon, 1985). Behaviourism focusses on the correlation between visual input – 
i.e., curve characteristics – and observable behavioural output – i.e., speed – without considering 
the underlying mental processes of the driver. In contrast, cognitivism takes a more comprehensive 
approach by considering how visual input is interpreted and translated into observable output, as 
shown in Figure 1-3, thereby establishing a causal relationship. While behaviourism has 
contributed to describing driving tasks and developing speed models, cognitivism provides a 
deeper understanding of the underlying processes involved.  

Within the field of applied cognitive psychology, that focusses on studying the basic aspects of 
human perception and cognitive processes relevant to human behaviour, it has been identified that 
it remains unknown which specific schema or mental template is activated in different road 
environments (Salmon, Lenne, Walker, Stanton, & Filtness, 2014). To the best of our knowledge 
there is no research on the cues that trigger specific schemata drivers use to determine their speed. 
This gap exists because most human factors studies on curve driving concentrate on the curve itself, 
not on the approach part where deceleration is known to start. Therefore, in this dissertation, it is 
assumed that the cues activating specific schemata for speed deceleration are visible during the 
approach to the curve, rather than in the curve itself.  

It should be noted that most theories on driver behaviour are based on descriptions of the 
conscious, top-down driving mode (Charlton & Starkey, 2011) which involves conscious, deliberate 
effort of the driver. Speed selection and curve driving are however considered bottom-up cognitive 
processes (Ranney, 1994) with little or no conscious attention or effort by the driver, which are 
based on expectations stored in schemata.  

Therefore, the main knowledge gap lies in understanding the specific cues that trigger schemata for 
deceleration during the approach of a curve, as most existing research focusses on the curve itself and 
fails to address the bottom-up cognitive processes involved in curve driving with little conscious 
attention or effort from the driver.  

1.3 Aim and research questions 

The topic of this dissertation is the interaction between the drivers’ behaviour and road 
characteristics during curve approach. The aim is to quantify this interaction, connecting speed 
adjustments to road characteristics and driver behaviour such as eye fixations and development of 
expectations. This research is essential because most existing human factors studies lack 
comprehensive and quantifiable insights into speed selection.  

Quantification is crucial for applying knowledge about driver behaviour to road design and 
improving safety assessment methods. To achieve this goal, a diverse range of data is collected, 
covering both curve characteristics and driver behaviours. These data form the basis for 
quantifying and analysing the driver-road interaction from the perspective of the driver. 

By examining the three basic steps of human information processing (perception, decision making, 
and action), a better understanding of drivers’ cognitive processes during curve approach can be 
achieved. Speed selection is assumed to be driven by expectations which are stored in schemata, 
connecting specific road characteristics to specific speed adjustments. As drivers start to slow down 
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prior to entering a curve, these schemata are expectations built upon road environment upstream 
of a curve. This results in the following main research question: 

What road characteristics trigger speed adjustments by drivers during curve approach? 

Schemata, which are assumed to be mental representations, cannot be directly measured (Walker, 
Stanton, & Salmon, 2011). Therefore, this dissertation employs two approaches identified in the 
literature review for this purpose: speed prediction modelling and human factors analysis. 
Consequently, two complementary research questions will provide quantifiable observations into 
curve approach behaviour related to curve characteristics. Research question 1 is as follows:  

1. What road characteristics are correlated to speed behaviour during curve approach?  

Identifying these correlations helps to quantify the effect of different road characteristics on speed 
adjustments. These correlations can be quantified using speed, deceleration at specific positions 
during curve approach, and curve characteristics. However, correlations do not identify causation 
because they merely indicate relationships between variables, while schemata are temporal in 
nature employing a cause-and-effect relationship. This cause-and-effect structure relates to driver’s 
information processing. The “cause” part represents a specific road characteristic that the driver 
perceives, triggering the activation of the relevant schema. The “effect” part represents the 
expected speed adjustments based on the activated schema. This temporal nature of schemata 
highlights the importance of understanding the utilization of road characteristics in drivers’ 
information processing. Therefore, research question 2 is as follows: 

2. What road characteristics are utilized in drivers’ information processing and speed 
adjustment decisions during curve approach? 

This question delves into the causal relationship between road characteristics and their utilisation 
in drivers’ information processing during curve approach. By investigating how drivers 
incorporate specific road features into their decision-making processes, the study can identify the 
relevant road characteristics that play a role in the formation and activation of memory schemata. 
Understanding the utilization of road characteristics in drivers’ information processing helps to 
understand the causal connections between these features and speed adjustments stored in drivers’ 
memory schemata. 

By addressing both research questions, the dissertation can quantitatively examine the correlations 
between road characteristics and speed adjustments, while also investigating the causal 
relationships and utilization of these characteristics in the drivers’ information processing. 
Together, these research questions provide a comprehensive understanding of the road 
characteristics which trigger speed adjustments during curve approach. The following paragraph 
discusses the methods used to answer these research questions.  
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1.4 Methods 

To guide the research questions and methodologies a base conceptual model has been developed. 
Figure 1-4 shows this model, incorporating the elements of both speed prediction modelling and 
human information processing. 
On the left the physical reality 
(curve characteristics) is 
represented. On the right-side 
driver behaviour (operating 
speed) is captured. In the middle, 
the interpretation of the driver is 
defined as human factors, which 
reflects the interaction between 
the road and the driver. This 
provides a concise summary of 
the information processing model 
shown in Figure 1-3. The arrows 
show the direction of information processing is temporal, aligning with research question 2 and 
provides and understanding about why drivers start to decelerate.  

Below the human factors process, there is a box representing speed prediction modelling. The 
arrows show that this modelling takes the input from both the physical reality (curve 
characteristics) and the driver behaviour (speed adjustment). This modelling approach is used to 
address research question 1 aiming to identify the correlations between road characteristics and 
observed speed behaviour. This provides understanding about what behaviour occurs. The 
following paragraphs discuss the methods used in both approaches, and how they can be 
combined to provide a comprehensive understanding of the main research question.  

1.4.1 Speed prediction modelling 

The relationship between the physical world and operating speeds can be modelled objectively 
using speed prediction models. In this dissertation free-flow speed profiles are analysed in relation to 
the curve characteristics during curve approach. The physical reality is translated in a 
comprehensive set of variables which are analysed on correlation and regression with the individual 
speed profiles to answer research question 1.  

To ensure practical applicability in early design phases, the dissertation also creates parsimonious 
models. These models capture the speed development using the fewest possible variables. By 
minimizing the number of variables required to accurately model speed development, these 
parsimonious models offer practical utility and enhance their usability in early design 
considerations. 

1.4.2 Human factors approach 

Since no specific literature is available on the cues drivers use during curve approach, an online 
survey is used to understand the factors influencing drivers speed selection. Because existing 
literature suggests that the interaction of the driver with the road is primarily visual (Sivak, 1996), 
also an on-road study is conducted using eye-tracking to unravel the specific cues that participants 
fixate on during curve approach. Additionally, the participants engaged in speaking aloud 
procedures which allowed for a qualitative understanding of the quantified relations between eye 
fixations and speed during curve approach.  

Furthermore, literature shows that most of the deceleration behaviour is unaware, based on 
expectations stored in schemata. To model these driver expectations, a Bayesian Belief Network 

Figure 1-4 The base conceptual model in this dissertation. 

The connections show the corresponding research question. 

numbers. 
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(BBN) is employed which is assumed to mimic driver expectations. This method utilises 
probability distributions of curve characteristics and speed distributions gathered during the speed 
prediction modelling. By incorporating these distributions, the BBN provides a framework to 
capture the updating of driver speed expectations during curve approach.  

Together, the online survey, on-road study, and Bayesian Belief Network contribute to a better 
understanding of the cues that drivers utilise, the unconscious expectations they hold, and the 
cognitive mechanisms involved in speed selection during curve approach. 

1.4.3 Combining the approaches 

The answers to research question 1 explain what behaviour occurs. The answers to research 
question 2 delve deeper into the underlying reasons why these behaviours manifest, utilizing the 
model of human information processing shown in Figure 1-3. By combining both approaches, the 
answers to the research questions contribute to a quantifiable understanding of human factors and 
provide further explanation for the operating speeds observed during curve approach. 

To our knowledge, no previous research has explored the combination between speed prediction 
and human factors in the context of driver behaviour during curve approach. Therefore, the aim 
of this dissertation is to establish a first integration between these two research approaches. This 
process is discussed in the conclusions of this dissertation, highlighting the significance of this 
novel integration, and suggesting avenues for future research. 

1.5 Contributions 

Literature on cognitive processes identifies that it is a challenge to uncover mental processes 
(Walker et al., 2011), specifically related to how drivers construct schemata of the environment to 
adjust their speed (Charlton & Starkey, 2017b; Salmon et al., 2014). This dissertation employs mixed 
methods to help understand and quantify the interaction between the drivers’ speed behaviour 
and the road characteristics during curve approach.  

The quantitative research uses breakpoints in speed profiles as key variables. Building upon the 
initial work by Montella, Galante, Mauriello, and Aria (2015) in a simulator experiment, this 
dissertation enhances the use of breakpoints to examine naturalistic, free-flow speed profiles. 
Breakpoints identify the positions where drivers start and stop their deceleration and can therefore 
act as identifiers of the position where drivers initiate action. This approach shows prospects for 
future research in speed adjustments, providing a better understanding of driver speed behaviour. 
While this approach was primarily employed in the analysis of speed profiles based on High 
Frequency Floating Car Data, it was also used in an on-road study, combining it with eye-tracking 
and speaking aloud methods. This unique combination of methods for data collection provides a 
temporal understanding of human cognitive processing during curve approach, allowing for a 
better understanding of drivers’ curve approach behaviour. 

The qualitative research uses mostly feedback from drivers, both in an online survey and during 
the on-road study. This active feedback on the reasons why drivers change their speed, helps to 
better explain the quantitative results and to select the relevant road characteristics drivers use 
during curve approach, which is usually overlooked in traditional speed prediction modelling. 

The knowledge of which road characteristics are relevant for drivers, was used to build a Bayesian 
Belief Network (BBN) to mimic drivers’ expectations of safe speeds during curve approach and 
quantify the importance of these road characteristics. While Bayesian approaches have gained 
popularity in neuropsychology (Geurts, Cooke, van Bergen, & Jehee, 2022; Wilder, Feldman, & 
Singh, 2016), their use in applied cognitive psychology is relative new and have – to our knowledge 
– not been applied in traffic psychology. This dissertation explored the use of a BBN to understand 
driver’s expectations, aligning with the concept of self-explaining roads (Theeuwes, 2021). 
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The findings of this research can be used to update the Dutch design guidelines on freeway 

geometry (Rijkswaterstaat, 2022). This is expected to lead to freeway design that takes into account 

the driver’s perspective. Furthermore, traffic safety auditors can use the results to broaden their 

knowledge base and they have improved tools available to evaluate new designs and existing 

freeways. This includes parsimonious speed prediction models, identification of important design 

elements for drivers, an enhancement of existing driving task descriptions for the approach and 

curve discovery phases and an evidence-based design guideline table displaying permissible 

combinations of design elements, highlighting combinations that should be avoided.  

1.6 Outline 

This dissertation is structured into five main chapters each addressing different aspects of the 
research questions. The main chapters are outlined in Table 1-1, showing which elements in the 
conceptual model are discussed in the chapters, and how these elements are connected. 
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Table 1-1 Main outline of this dissertation. 

Chapter Content Elements in conceptual model 

2 

The second chapter explores which curve 
cues and other variables influence drivers’ 
speed choice in curves using an online survey. 
It therefore aims to gain mainly qualitative 
understanding in drivers’ interpretation of 
curve characteristics. These variables are 
further explored in the following chapters.  

3 

The third chapter identifies the correlation 
between freeway characteristics identified in 
chapter 2 and deceleration upon curve 
approach. To do so, curve characteristics 
from 153 curves and 1 million individual, free-
flow speed profiles are analysed. This is 
essentially speed prediction modelling 
based on individually measured speed 
behaviour. 

 

4 

The fourth chapter generates parsimonious 
models to predict speed development based 
on 85th percentile speeds, including 
deceleration and acceleration behaviour 
upon entering and exiting freeway curves. 
The models rely on easy to generate 
geometric design variables, providing a 
practical approach to speed prediction. 

5 

The fifth chapter helps understand the 
perceptual and cognitive processes of 
drivers during curve approach. Through an 
on-road study using eye-tracking, GPS 
tracking, and verbal protocol analysis, the 
visual cues that drivers use before and 
during deceleration are identified. It aims to 
gain causal insights in the correlations 
identified in chapters 3 and 4.  

 

6 

The sixth chapter combines the gained 
quantitative data and qualitative knowledge 
from the previous chapters and generates a 
Bayesian Belief Network to model driver 
expectations during curve approach. This 
approach does not rely on correlation 
between curve characteristics and operating 
speed to model behaviour, but it mimics the 
interpretation of the curve characteristics 
and speed behaviour to capture driver 
behaviour. 
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The final chapter summarizes and discusses the outcomes from the speed prediction modelling 
and human factors approach, addressing the two research questions and providing an 
understanding of the cues that drivers use, thereby answering the main research question. In 
addition, it provides recommendations for future research and policy implications regarding 
design guidelines.
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2 A Survey to Explore Which Variables Drivers 
Say They Use in Curve Approach 

 

This chapter has previously been published as: Vos, J., Farah, H., & Hagenzieker, M. (2021). How do 
Dutch drivers perceive horizontal curves on freeway interchanges and which cues influence their speed 
choice? IATSS Research, 45(2), 258-266. 

 

 

Abstract 

Operating speeds in Dutch freeway curves differ often by 20 km/h compared to their design 
speeds. Operating speed is thought to be influenced by how drivers perceive curves their speed 
choice when approaching a curve. This explorative research explores which curve cues and other 
variables influence drivers’ speed choice in curves. For this purpose, a survey was designed with 
28 sets of curve comparisons. The curves were chosen from interchanges in the Netherlands and 
were compared to each other. To avoid direction bias, the curves were right turning only. In each 
set illustrations of two different curves out of a total of 8 curves were shown, and the participants 
were asked in which curve they would drive faster. In total 819 participants in the age range of 18 
and 78 (mean=41.3; Std.=11.9) completed the survey. The survey data showed four common 
categories of curve cues and variables influencing the decision to drive faster, of which those in the 
category of the road environment and its surroundings were mentioned the most. The top three 
variables influencing speed choice are visibility of curve characteristics, “overview” as a holistic 
but as such hard to measure variable, and number of lanes. Variables such as presence of signage 
and trees were also mentioned frequently by the respondents. Geometric road characteristics such 
as curve radius and deflection angle were identified by the respondents as influencing variables, 
but only showing to affect speed selection when these are visible to the driver and not obscured by 
trees or other elements. This suggests combinations of geometric and surrounding elements are 
needed to get a better understanding of speed selection by drivers. 
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2.1 Introduction 

Design of freeway curves is usually based on design speeds (Fitzpatrick & Kahl, 1992; A Policy on 
Geometric Design of Highways and Streets 2018, 2018; Rijkswaterstaat, 2022) which use physical forces 
in point mass models (Donnell et al., 2016) to tie speed and curve radius together. This results in 
design speeds that are a function of superelevation and radius, in order to reduce the risk of 
skidding and offer a comfortable ride. These design speeds are therefore mainly based on physical 
models of the forces between the infrastructure and the vehicle through skid resistance, and 
between infrastructure and the driver through comfort coefficients. There is, however, a difference 
between design speed and operating speed. 

Measuring operating speeds and connecting these to geometric curve characteristics lead to speed 
prediction models (Hassan, Sarhan, Porter, et al., 2011; Odhams & Cole, 2004; Shallam & Ahmed, 
2016). These show significant correlations between curve radius, superelevation and operating 
speed, resembling the way design speed is modelled. Speed prediction models, however, also show 
that the operating speeds in Dutch curves are well above the design speeds (Farah et al., 2017), so 
curve geometrics such as radius and superelevation do not have a direct (causal) relationship with 
operating speed. A correlation however does exist, because with smaller radii lower speeds are 
selected, so in some way curve geometric characteristics are perceived by the drivers and used to 
select an operating speed. Differences in design speeds and operating speeds well over 20 km/h 
(Farah et al., 2017) could thus be explained, because driver characteristics and perception are 
usually overlooked in setting the design speeds. An understanding of how drivers select their 
operating speeds could lead to a design practice in which driver characteristics and perception are 
taken into account, and to a design based on human behaviour instead of physics alone. 

The available literature on driver behaviour in curves generally remains rather conceptual though, 
but it gives some insights towards speed selection in curves. For example, driving task descriptions 
(Campbell et al., 2012; McKnight & Adams, 1970) give insights in the different zones of curve 
driving: curve not yet in sight (anticipation), curve in sight (discovery), within a curve (negotiation) 
and exiting a curve (leaving). These zones need different tasks, such as turning the steering wheel 
in curve negotiation. In terms of speed estimation by the driver, speed signs and curve radius are 
mentioned as primary indicators. The perception of the curve radius itself becomes better when 
getting closer to the curve, being at best at the start of the curve itself (Riemersma, 1988). Transition 
curves however could distort the perception of curvature (Riemersma, 1989). In curve negotiation 
the tangent point is the spot that gets the most attention of the driver (Land & Lee, 1994; Lappi & 
Lehtonen, 2013; Shinar et al., 1977). The perception of curve cues is an automated process (Neisser, 
1976) of perceptual exploration and the memory drivers have of curve cues. The memory of 
different curves is stored in schema and help drivers to quickly select a speed based on cues they 
perceive (Charlton & Starkey, 2017a, 2017b; Ranney, 1994). This speed selection is a skill-based 
process (Ranney, 1994) and does not involve active thinking while driving, because it is based on 
experience and memory. At the skill-level, errors could for example happen when drivers do not 
perform an attentional control over the intended action and therefore a wrong routine is activated 
(Reason, 1990). This means that not enough attention is paid to the curve cues, or curve cues are 
misinterpreted and the wrong speed is selected (Stanton & Salmon, 2009).  

These conceptual insights lack quantitative variables measuring their influence on speed choice. 
Such variables therefore cannot be incorporated in complex designs. To our best knowledge no 
research has been done on the cues that drivers use to choose their operating speeds in curves. The 
aim of this research is to explore which curve characteristics drivers use to select an operating speed 
to drive through curves. Because of the explorative nature of this research, a good method to start 
gaining insight into these variables is to ask the drivers themselves (Proctor & Zandt, 2008). A 
survey is a useful method to ask a large sample of drivers for their reasons to select an operating 
speed through curves. Since the driving task is mainly visual (Hills, 1980; Sivak, 1996), a well-
known method is to show respondents photos and pictures as stimuli (Charlton & Starkey, 2017a). 
We further elaborate on this in the method section. 
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2.2 Method 

This section first presents the main research questions, followed by the survey design, curve 
selection, survey respondents and analysis approach.  

2.2.1 Research questions 

The main question in this explorative study is: Which curve cues are used by Dutch drivers to select 
their operating speed through a curve? To answer the main question, two sub-questions were 
defined as follows: 

(1) Which reasons (variables) for selecting their operating speed are identified by 
respondents? 

(2) How are these reasons related to actual curve characteristics?  

2.2.2 Survey design 

The survey was designed in Dutch using Google Forms. First, information about the aim of the 
survey was given to respondents, followed by an informed consent which the respondents were 
asked to sign to give permission to use their anonymous data. The main part of the survey showed 
pictures of pairs of curves. Static pictures were used to prevent biases that could arise based on 
perceived speed (or deceleration) in videos. Videos have inherent cues based on locomotion 
(Charlton & Starkey, 2017b). A video incorporating vehicle speeds could be chosen by the 
respondents based on these dynamics, instead of its curve characteristics, which are the main aim 
of this research. To overcome this the same speeds could be used in the videos but that would 
result in very unrealistic videos. In addition, comparing pairs of videos is more difficult and time 
consuming for participants than comparing pictures. Therefore, we chose to use pictures instead.  

Each presented picture included a pair of curves. Respondents were asked to compare them and 
pick the curve through which they think they would drive faster. Eight different curves were 
compared to each other, resulting in 28 different comparisons. The comparisons were shown in 
random order to overcome sequence bias. The goal of these comparisons was two-fold. First by 
comparing all 8 different curves to one another, it would be possible to rank the curves in terms of 
how often they were chosen. The second and main goal was to activate the thought process needed 
to answer the question which followed the 28 comparisons: “What are your reasons to drive faster 
in a curve?”. Speed selection in curves is probably a skill-based process (Ranney, 1994) which does 
not involve active thinking while driving. By asking the main question after a dichotomous 
comparison task in which respondents were asked to choose between two curves, it was assumed 
that this has activated their thinking about speed selection. A dichotomous answer option was 
chosen over a Likert Scale because a dichotomous option forces the respondent to think about 
differences, without having the easy “neutral” option. This could give insights into particular 
schema or scripts being activated. Furthermore, by not providing pre-stated answer possibilities 
(as in (Kanellaidis, 1995)), it was hoped that this would lead to a variety of reasons mentioned. 
Finally, in the last part of the survey the participants were asked to optionally provide information 
regarding their gender, age and driven kilometres a week.  

2.2.3 Curve selection 

The curve selection was done based on three predetermined road geometric characteristics that 
were encountered in the literature on the perception of curve characteristics (Calvi, Bella, & 
D'Amico, 2018; Fildes & Triggs, 1985; Riemersma, 1988): radius, deflection angle and number of 
lanes. All selected curves were right turning to prevent bias towards turning direction, because 
drivers behave differently in curves with different turning directions (Othman, Thomson, & 
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Lannér, 2010). In addition, there is larger variation in the curve radius in right turning curves 
because they include curves with deflection angles between 50 and 300 degrees. The 8 selected 
curves are presented in Table 2-1 together with their geometric characteristics. ‘Rh’ is the horizontal 
radius measured in meters, this is thought to be the major cue in speed prediction (Campbell et al., 
2012; Riemersma, 1988). ‘Rv’ is the vertical curvature in meters with a positive number being a sag 
curve and a negative number being a crest curve. It is measured because vertical alignment is 
thought to influence the perception of horizontal radius (Bella, 2015). ‘i’ is the superelevation in %, 
which plays a major role in setting design speeds. ‘W’ is the road width measured in meters and 
number of lanes is an integer number. Both are included because they might play a different role 
in curve perception. In order to measure the visibility of the curve in the pictures two different 
sight distances were measured, using the point where the picture was taken from. ‘Sr’ is the sight 
on length of road visible in meters, this is the length of road which is visible from the standpoint 
of the driver, which can be obstructed by a vertical crest curve, or obstacles in the inner curve, such 
as guardrail. ‘St’ is the sight on the length of the visible trajectory of the road. The trajectory of the 
road is also visible through elements parallel to the road geometry, such as guardrail, trees, fences, 
earthworks, etc. These elements also contribute to the prediction of the path of the road (Lehtonen 
et al., 2014). This makes ‘St’ a broader concept than ‘Sr’. Figure 2-1 illustrates an example of 
measuring ‘Sr’ and ‘St’ in curve A15. The sight on the road itself is obstructed by guardrail (the 
dashed-dotted line), so only the black part of the road is visible which is measured as ‘Sr’, the grey 
part of the road is invisible to the driver. The treeline in the outside curve gives the driver sight of 
the trajectory of the curve until the end of the curve because the trees are high enough to be visible 
over the entire length of the curve. The length of the treeline is measured as ‘St’. Since A15 does 
not have a vertical crest curve, this does not obstruct ‘Sr’ or ‘St’. In some cases, ‘Sr’ and ‘St’ are the 
same, because there are no extra trajectory cues available than the road itself. Not the entire 
deflection angle is visible in the pictures. Therefore the visible angle ‘Øv’ is taken into account, 
which is measured in gradians and represents the angle of the visible trajectory of the road (St) as 
shown in Figure 2-1.  

 

Table 2-1 Geometric characteristics of the selected curves. 

Curve 
ID 

Rh (m) Rv (m) i (%) W(m) Number 
of lanes 

Sr(m) St(m) Øv (g) 

A01 239 -57035 4.5 15.44 3 138 159 42 

A02 249 ∞ 4.5 10.77 2 134 134 34 

A09 180 -2551 7.0 11.77 2 80 275 97 

A15 60 10419 3.0 8.70 1 63 192 204 

A28 64 ∞ 7.0 8.08 1 103 103 102 

A50 206 12939 4.5 8.57 1 183 183 57 

A59 255 3416 7.0 7.80 1 122 263 66 

A77 346 10171 5.0 7.21 1 140 226 42 

https://www.google.nl/maps/@52.3496,4.9621749,3a,75y,65h,94.67t/data=!3m7!1e1!3m5!1sfmUn4M_NcMfISh207rlr3g!2e0!6s%2F%2Fgeo2.ggpht.com%2Fcbk%3Fpanoid%3DfmUn4M_NcMfISh207rlr3g%26output%3Dthumbnail%26cb_client%3Dsearch.revgeo_and_fetch.gps%26thumb%3D2%26w%3D96%26h%3D64%26yaw%3D285.8981%26pitch%3D0%26thumbfov%3D100!7i16384!8i8192
https://www.google.nl/maps/@52.2961733,4.9406811,3a,75y,15.76h,94.94t/data=!3m6!1e1!3m4!1s2YaASuJIZTuc1B4rUd2l0w!2e0!7i16384!8i8192
https://www.google.nl/maps/@52.3276443,4.7731717,3a,75y,150.75h,94.68t/data=!3m6!1e1!3m4!1sKaCuHFS3hxTJJMkWasK5jw!2e0!7i16384!8i8192
https://www.google.nl/maps/@51.8570024,4.5953864,3a,75y,310.87h,92.2t/data=!3m6!1e1!3m4!1skKp53f7_49iXIjn7pJF9Dw!2e0!7i13312!8i6656
https://www.google.nl/maps/@52.6684122,6.1984321,3a,75y,238.83h,95.88t/data=!3m7!1e1!3m5!1sfE393iIqGENN68W3dLhSdg!2e0!6s%2F%2Fgeo0.ggpht.com%2Fcbk%3Fpanoid%3DfE393iIqGENN68W3dLhSdg%26output%3Dthumbnail%26cb_client%3Dmaps_sv.tactile.gps%26thumb%3D2%26w%3D203%26h%3D100%26yaw%3D204.11636%26pitch%3D0%26thumbfov%3D100!7i13312!8i6656
https://www.google.nl/maps/@51.8552116,5.7082565,3a,75y,61.55h,96.54t/data=!3m6!1e1!3m4!1sA7doQxpQj20tNYq9DJvnCA!2e0!7i13312!8i6656
https://www.google.nl/maps/@51.6460677,4.6945615,3a,75y,291.1h,94.25t/data=!3m6!1e1!3m4!1sz852UM_gQ8b9hrm6sFMMVg!2e0!7i16384!8i8192
https://www.google.nl/maps/@51.6671328,5.9036474,3a,75y,283.24h,93.84t/data=!3m6!1e1!3m4!1sdIj-m9uov2PPwP6VY-kncw!2e0!7i13312!8i6656
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Figure 2-1 An example of measuring sight distance on road ‘Sr’, sight distance on trajectory ‘St’ 

and visible angle ‘Øv’ in curve A15, of which the picture is shown in Figure 2-2. 

Curves A01, A02 and A59 were selected as a trio to compare the effect of the number of lanes 
present, while the radius remained similar. Curves A50 and A77 were selected as a duo in which 
the radius was different, but the number of lanes remained the same. Curves A15 and A28 were 
selected as a duo in which the visible angle changed while the radius and the number of lanes 
remained the same. Finally, curve A09 was selected as an extra curve to fill the gap in radii between 
64 and 239 meters. Curve ID’s were created based on freeway numbering in The Netherlands. The 
actual locations are hyperlinked in Table 2-1.  

As introduced, it is the main goal of this explorative study to identify curve cues which drivers 
think are important when selecting their operating speed. Eight curves with unique characteristics 
do not provide enough data to perform meaningful statistical analyses on curve characteristics. 
The amount of 28 comparisons, however, were assumed to generate active thinking by the 
respondents to answer the main question. This is hoped to identify reasons for driving faster 
through a curve. At the same time, 28 comparisons are a fair amount for participants to complete 
in such a survey. At the start of the survey respondents were informed that it would take about 5 
minutes to complete it.  

The pictures were taken from CycloMedia (Van Hasselt, 2009), a database containing 
approximately 168 million pictures of 1 million kilometres of roads in the Netherlands. Pictures are 
updated frequently, so various conditions of each road are available. CycloMedia pictures show 
the viewing perspective in between that of a truck driver and a passenger car driver. Pictures with 
about the same weather conditions were selected and with as few other vehicles in the picture. 
Pictures were selected that were taken at the start of the curve itself, because that is where drivers 
can perceive the curve best (Riemersma, 1988). The pictures also show the tangent point of the 
curve approximately in the middle of the picture, because the tangent point is the spot that is 
looked at the most by the driver (Land & Lee, 1994; Lappi & Lehtonen, 2013; Shinar et al., 1977), 
and therefore resembles the most natural viewing direction.  
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Figure 2-2 Overview of curve pictures shown in the survey taken from CycloMedia Technology 

B.V. Curve ID’s were created based on freeway numbering in The Netherlands. 

  

A01 A02

A77A59

A50A28

A15A09
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2.2.4 Survey respondents 

The survey was spread throughout social media, such as LinkedIn, Facebook, Twitter, and mailing 
lists to colleagues, friends, family, alumni groups, etcetera. This resulted in 820 responses, of which 
819 gave consent to use their input. All respondents were Dutch. In total 74% of the respondents 
were males (n=607) and 25% (n=206) were females, 1% (n=6) did not answer the question or did 
not want to disclose their gender. The age of the 689 respondents (not all respondents answered 
the age question) ranged from 18 (which was the set minimum) to maximum 78 (mean = 41.3; 
Std.=11.9). Frequencies of age and gender are shown in Figure 2-3(A), while Figure 2-3(B) shows 
the distribution of the amount of km the respondents drive per week. 

 

 

Figure 2-3 (A) – Bar chart showing the distribution of ages of the respondents per gender, in light 

grey boxes the distribution of driver license holders in The Netherlands is shown per age group in 

2014 (Transport and mobility 2016, 2016); (B) – Pie chart showing the distribution of driven 

kilometers per week by the respondents. 

Based on the people owning a driver’s licence in the Netherlands (Transport and mobility 2016, 2016), 
our sample shows an over-representation of the 30-40 age group, and an under representation of 
the 60 – 80 age group (Figure 2-3 A). Our sample also shows an over-representation of male drivers 
while the distribution of kilometres driven per week is on average similar (Transport and mobility 
2016, 2016). Given the exploratory nature of this research and the fact that we had a relatively large 
sample of respondents (819), the slight over-representation of ages 30 – 40 and under 
representation of ages 60 - 80 does not pose a problem. The over-representation of males in the 
sample is discussed further in the Results and Discussion section. 

2.2.5 Analysis approach 

The analysis approach consisted of three main steps. First, the reasons behind choosing to drive 
faster on one curve over the other, based on the open question, were investigated and then grouped 
in 21 different variables. The grouping was based on sets of words which had the same meaning 
and pointed in the same direction. For instance, the variable “visibility” is defined by words as 
looking, seeing, and visible. “Visibility” in that way is a variable which is measurable as a sight 
distance. The variable “overview” was created because the Dutch word “overzicht” was mentioned 
often by the respondents. It is a hard to measure variable, which has a more holistic and contextual 
connotation. By going through the responses, a list of synonyms was created, which was then used 
to categorise answers into one or more variables. A cluster analysis on respondents’ answers was 
conducted to identify how variables would be clustered. 
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After the analysis of the variables mentioned by the respondents, it was counted how often each 
respondent chose a certain curve. In the comparison task eight curves were compared to each other. 
So, a curve could be picked a maximum of seven times and a minimum of zero times. The amount 
of times a certain curve was selected leads to a ranking, and the curve which was picked most 
often, was assumed to be the curve which the respondent thought to drive through with the highest 
speed. This ranking was compared in a qualitative manner to the actual curve characteristics in 
order to gain insight in which curve characteristics relate to operating speed selection. 

Finally, data from specific groups of respondents within the survey were further analysed. These 
groups do not constitute a representative sample of the population of Dutch drivers. However, 
each group is represented relatively well in this sample, and we look into the results of these 
specific groups to gain insight into the overall usefulness of the outcome of the first two steps.  

2.3 Survey results and discussion 

2.3.1 Reasons for driving faster 

The open question in the survey gave much insight into the reasons why respondents would drive 
faster through a curve. These answers were grouped into 21 different variables and summarised 
into 4 different commonly identifiable categories as summarized in Table 2-2. The first category 
relates to the road environment and its surroundings. The second category concerns the road 
geometric characteristics of the curve itself. The third category are driver related factors, and the 
last category refers to external influences. Table 2-2 shows in detail the different identified variables 
and the number of respondents that mentioned these variables. Each respondent provided on 
average more than one reason, so the sum of n in the table is larger than the number of respondents 
(819).  
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Table 2-2 Reasons for driving faster. 

Categories and variables              %            N   
Road environment and surroundings 82% 668 

• Visibility 71% 583 

• Overview 34% 275 

• Presence of signage 20% 162 

• Presence of trees 9% 77 

• Presence of guardrail 6% 48 

• Presence of obstacles 5% 43 

• Guidance 5% 39 

• Marking 3% 22 

Geometric road characteristics 57% 465 

• Number of lanes 35% 284 

• Radius 28% 229 

• Road width 17% 136 

• Road type 5% 38 

• Vertical alignment 5% 38 

• Deflection angle 4% 32 

• Superelevation 3% 24 

Driver related factors 21% 172 

• Driving style* 9% 70 

• Familiarity 3% 25 

• Type of vehicle 1% 9 

External influences 16% 130 

• Pavement conditions 7% 60 

• Traffic conditions 5% 41 

• Weather conditions 3% 28 
* This includes reasons regarding feelings, hurry, status, excitement, fun, safety, etc. 

The following sub-sections discuss the results in Table 2-2 per category.  

2.3.1.1 Road environment and surroundings 

Elements of the general appearance of the curve were mentioned the most by the respondents. 
These include visibility and overview, but also the presence of signage, trees, guardrail, obstacles, 
markings and guidance in general. Having a good overview and being guided through the curve 
were generalised reasons having to do with most of the variables. This implies that drivers use the 
whole curve environment to select their operating speed. Visibility was mentioned in most of the 
answers. It includes words as looking, seeing, and visible. Visibility being the most mentioned 
variable confers the statement that 90% of the driving task is visual (Hills, 1980; Sivak, 1996). The 
answers focus on the need to see where the road is going, which resembles the visible angle ‘Øv’. 
A specific type of visibility is mentioned as ‘overview’. In total 34% of the respondents gave a clear 
statement about the importance of overview in choosing their speed. This is a much broader 
concept than regularly used as different sight distances in geometric road design and which 
corresponds to trajectory planning and looking ahead (Lehtonen et al., 2014). It cannot easily be 
quantified through a measure in the field, because the answers given by respondents related to 
overview are not related to a single curve characteristic or set of characteristics.  

One fifth of the respondents answered that when there are no curve signs they would drive faster. 
Since only 20% of the respondents mentioned curve signage, it is possible that the other 80% of the 
respondents did not notice the signage, perhaps due to some form of inattentional blindness (Costa 
et al., 2014; Martens, 2018) while performing the curve assessments. Another explanation could be 
that the other 80% just do not value the presence of signage.  
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When a respondent mentioned the presence of trees in their answers, they had different and 
conflicting reasons, either as giving guidance, or obstructing the visibility of the curve. A 
distinction between inner and outer curve was not made in the present study, but earlier simulator 
studies have shown that trees in the inside curve trigger drivers to reduce their operating speeds 
in curves (A. Calvi, 2015; Jamson et al., 2015). Respondents usually mentioned the presence of 
guardrail as an obstacle and restricting the ability to look ahead, but also in reference to guidance. 
Guidance as a general term was mentioned by 5% of the respondents. It was usually mentioned as 
leading towards selecting a higher speed. Marking as a guiding principle did not seem to play a 
big role because marking in all the pictures was adequate, and there was not much variability 
among the curves. 

2.3.1.2 Geometric road characteristics 

Over half of the respondents mentioned reasons related to the geometric characteristics of the 
curve. This includes the number of lanes, the radius, the type of road, vertical alignment, angle and 
superelevation. When looking into these variables, the answers of the respondents show strong 
relation with visibility and overview. This implies that a single curve characteristic needs to be 
evaluated within the context of the entire curve surrounding. Respondents reason that when more 
lanes are available, their operating speed will be higher, but some respondents mention the 
opposite; they do not like other traffic besides them. Having the possibility to overtake makes it 
more attractive to drivers to travel with higher speeds. It also corresponds to the relation between 
more lanes and larger radii mentioned in older Dutch design guidelines (ROA - Knooppunten en 
Aansluitingen, 1993). These guidelines were used to design many curves which are still present in 
today’s freeway system in The Netherlands, and therefore in the memory of many drivers. This 
points towards drivers’ expectations regarding the relation between more lanes and bigger radii. 
Results of simulator studies (Alessandro Calvi, 2015; Calvi et al., 2018) also show this, as well as 
speed observations made on Dutch freeway curves (Farah, Daamen, & Hoogendoorn, 2019). 
Respondents state that if the road width itself increases, so does their operating speed. A total of 
35 respondents mentioned both road width and number of lanes, making it a minority in the group 
of respondents mentioning road width. It is therefore unclear whether road width is perceived and 
interpreted in the same way as number of lanes. Curve radius itself is quite a technical term, so 
mentions of sharpness, curviness, etcetera have been included under this variable as well. This is 
supported by earlier research on perception of curves (Riemersma, 1988) which identified these 
types of words to correspond to radius. Respondents usually mentioned that when a curve has a 
larger radius, they would select a higher speed. Different types of road (main carriageway, 
connector road, etc.) and discontinuities (exits, freeway junction, fork, etc.) were mentioned by very 
few respondents to influence their speed choice, perhaps because the pictures did not explicitly 
show this type of road sections. Road type seems to refer to the concept of self-explaining roads 
(Walker, Stanton, & Chowdhury, 2013) and drivers’ ability to construct expectations on upcoming 
elements (such as sharp curves) based on the general road layout. Respondents answered they 
would drive faster on a main carriageway compared to connector roads. Vertical alignment refers 
to all mentions of hilliness, grades, going up, acclivity, etc. Respondents reasoned that crest curves 
obstruct overview but up-going slopes gave them a better overview of the situation. There is also 
evidence that drivers (in simulators) chose different speeds when confronted with crest or sag 
curves, based on a distortion of their perception of the horizontal curvature (Bella, 2015). Deflection 
angle is a variable used to capture all the mentions of angle, long curves and degrees. Deflection 
angles have earlier been shown to be of significant importance (Riemersma, 1988) to curve 
perception. Superelevation is hard to see in a picture, probably therefore only a few of the 
respondents mentioned it as a reason. So, here we see a difference between curve perception and 
curve design. Superelevation is a variable of major importance in curve design but seems to play a 
minor role in curve perception. 
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2.3.1.3 Driver related factors 

Much fewer respondents gave insights into reasons that relate to their own driving style or other 
personal motivations. We use the term driving style as a generalisation of reasons regarding 
feelings, hurry, status, excitement, fun, safety, etc. Different driving styles (positive and negative) 
were included in this variable and recent research which focussed more on driving style showed 
differences between moderate and aggressive drivers (Deng et al., 2018). This type of 
differentiation could not be made based on the answers given in this survey, because only 9% of 
the respondents gave answers in this direction without mentioning it being negative or positive. 
Some of the respondents mentioned they would go faster through a curve when they are familiar 
with the curve and know what is coming. Naturalistic driving studies have also shown a relation 
between familiarity and higher speeds (Wu & Xu, 2018). The type of vehicle the respondents drive 
was mentioned by only 1% of the respondents. An Australian study (Salmon et al., 2014) showed 
that drivers of different types of vehicles have different schema of the same situation. A memory 
schema helps the driver optimize their behaviour based on expectations stored in memory. These 
schema help drivers select a speed based on cues they perceptually receive (Charlton & Starkey, 
2017a, 2017b; Ranney, 1994).  

2.3.1.4 External influences 

External influences are variables that lie outside the spatial design and the driver. The reasons 
mentioned by the respondents related to pavement, traffic, and weather conditions. Pavement 
conditions include maintenance, quality or the colour of the asphalt. Newer asphalt appeared more 
reliable to drivers and give them confidence in driving faster. Traffic conditions related to other 
traffic which could limit drivers’ speeds or following behaviours. Some respondents also 
mentioned that they do not want to slow down other traffic. And finally, respondents mentioned 
that bad weather conditions would lower their operating speeds.  

2.3.2 Cluster analysis 

The 819 respondents used different combinations of variables in their answers. The count of those 
variables was given in Table 2. This table summarised the variables into commonly used categories, 
and not how these variables were combined in answers. Hierarchical clustering of the combined 
variables in respondent answers was conducted using ‘ClustOfVar’ package in R (Chavent, 
Kuentz-Simonet, Liquet, & Saracco, 2012) which generated the dendrogram in Figure 4.  
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Figure 2-4 Cluster dendrogram of the variables used in the answers of the respondents. 

The dendrogram in Figure 2-4 shows seven identifiable clusters of variables (height above 1.0) used 
in the answers of the respondents. The clustering of radius, familiarity and road type suggests that 
drivers know what the radius is going to be, based on previous experiences. The presence of 
guardrail, trees and guidance might suggest that both trees and guardrail are thought of as either 
guiding elements in a curve, or that these obstruct guidance. Marking, road width and pavement 
conditions all have relations to the carriageway itself and this cluster might indicate how the road 
looks to drivers. The type of vehicle, driving style, and external weather and traffic conditions are 
closely related to each other in respondents’ answers, and indicates that how drivers respond to 
external circumstances varies with both driver and vehicle characteristics. Visibility and overview 
are clustered, which appears logical because the term overview (“overzicht” in Dutch) is treated as 
a linguistically derived variable of visibility (“zicht” in Dutch) in this analysis. The clustering of 
deflection angle, superelevation and vertical alignment could hint at how well a curve is 
recognisable, since it is closely related to the visibility cluster. The cluster which groups the number 
of lanes with presence of signage is less obvious to explain, but could be interpreted as how clear 
the sharpness of the curve is ‘readable’ from cues other than guidance or the radius itself. 
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2.3.3 Curve ranking 

Based on the number of times respondents picked a curve throughout all the comparisons a 
ranking of the curves was made. Table 2-3 shows the overall ranking based on the average number 
of times respondents picked a curve to be the one they would drive through fastest. Table 2-3 also 
shows curve characteristics in order to compare these to the curve ranking.  

Table 2-3 Curve ranking and curve characteristics. 

Rank 
(most 
often 
picked to 
drive 
fastest) 

Avg. 
pick 

Std. Curve 
ID 

Rh 
(m) 

i (%) Number 
of lanes 

Sr 
(m) 

St 
(m) 

Øv 
(g) 

Sign
-age 

1 6.06 1.23 A02 249 4.5 2 134 134 34 No 

2 5.40 1.48 A01 239 4.5 3 138 159 42 No 

3 3.99 1.44 A59 255 7 1 122 263 66 No 

4 3.78 1.65 A09 180 7 2 80 275 97 Yes 

5 3.56 1.62 A77 346 5 1 140 226 42 No 

6 2.65 1.34 A50 206 4.5 1 183 183 57 Yes 

7 1.26 1.16 A28 64 7 1 103 103 102 Yes 

8 1.26 1.50 A15 60 3 1 63 192 204 Yes 

The ranking in Table 2-3 is based on respondents’ overall comparisons on which curves they think 
they would have driven faster, based on the pictures of the curves. Whether this would also 
represent actual operating speeds is still to be investigated. Speed prediction models suggest that 
higher operating speeds are to be expected in curves with larger radius (Hassan, Sarhan, Porter, et 
al., 2011; Odhams & Cole, 2004; Shallam & Ahmed, 2016). However, the curve with the largest 
radius (A77) in Table 2-3 was not picked the most by the respondents. If we look at the curve 
surroundings in Figure 2-2, we see that this probably has to do with the close surroundings of trees 
and therefore lack of perceived overview. The number of lanes could also contribute to this, since 
A77 only has one lane, which does not lead the respondents to expect higher operating speeds. The 
curve which was picked most (A02) has two lanes and a wide overview, since no trees are present. 
Both cues are mentioned to be of influence for choosing higher speeds. A further look at Table 2-3 
shows that curves with more than one lane are in the top 4 curve picks, while curves with larger 
radii but only one lane were picked less often by the respondents.  

When looking at sight distances themselves (‘Sr’ and ‘St’), they do not show a similar order as 
compared to the average pick. When sight distances are combined with the angle, some relation 
exist in the picking order and visible angle (‘Øv’). Based on the results of this survey, the more curve 
angle is visible (i.e. ‘Øv’ is larger), the less often a curve gets picked as being a fast curve. This 
makes sense, because the further we can see does not tell anything about what we see. So, 
combining curve surroundings as a measure of how far we can see the trajectory of the curve with 
a geometric curve element (such as the deflection angle) gives a more holistic approach. Visible 
angle (‘Øv’) however still does not explain fully how speed is selected and may not be generalizable 
to other curves based on this research alone. This needs to be explored with a bigger sample size 
and statistically tested. A more probable explanation for the relation between curve characteristics 
and ranking is that more curves without curve signs are picked as fast curves. This is logical 
because curve signs are placed at small radii. 

The results show that the average pick is not ranked in relation to the available superelevation (%), 
which is in line with the small amount of times this variable was mentioned by the respondents.  

Since only eight curves were compared, we decided not to quantify correlations or do some form 
of dimension reduction or regression analysis.  
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What Table 2-3 tells mainly is that ranking of curves based on pictures is more elaborate than 
looking at geometric curve design characteristics alone. Other characteristics mentioned by the 
respondents provide more insight in the way an entire curve is perceived. These characteristics 
often refer to holistic variables such as overview and guidance. Quantification of such a holistic 
approach, or even an approach based on Gestalt principles (Čičković, 2016) is however very 
difficult to attain, because there are so many variables to be taken into account.  

2.3.4 Specific groups within the survey 

Within the respondents three groups were looked further into: experts, younger and female 
respondents. 

The survey was spread through the personal network of the first author (road design expert and 
researcher), which could have led to bias in the outcomes. To check this, we searched for the use 
of professional and technical terms that are usually not used by lay persons in the reasons given 
by respondents to drive faster through curves. This led to 14% to 27% of the respondents being 
identified as experts, depending on which terms were used as a filter. The results showed that 
experts only picked curve A77 significantly more often than lay persons (χ2 (7, n=819) = 17.73, 
p=0.013), the other curves showed no significant difference. This suggests that curve A77 was 
selected more often by the participants in the present study as compared to the entire population. 

Driving experience is important in how well one can estimate how fast the driver can travel 
through a curve (Charlton & Starkey, 2017a, 2017b; Neisser, 1976; Ranney, 1994). This would 
suggest that younger respondents (age 18-23, n=36) would differ in their survey answers from 
older respondents (age 24-78, n=783). However, no variable was mentioned significantly more or 
less often by the younger respondents compared to the older ones.  

Since female respondents (n=206) are under-represented in the sample, we investigated whether 
they assessed the curves in this study differently than male respondents (n=607). The female 
respondents mentioned radius significantly more often (χ2 (1, n=813) = 4.46 , p=0.035); they never 
mentioned superelevation; they mentioned vertical alignment significantly less often (χ2 (1, n=813) 
= 6.08, p=0.014) and also mentioned guidance and overview less (χ2 (1, n=813) = 8.14, p=0.004, χ2 
(1, n=813) = 4.99, p=0.025, respectively). This might indicate these characteristics play a less 
important role for the entire population than the findings of the present study suggest. 

2.4 Conclusion 

The results of the survey provide some insights in driver expectations about freeway curves which 
can readily be applied in curve design. Insights which may be used in design are for example, the 
reasons mentioned by the respondents to select an operating speed in a curve indicate that 
overview is needed to pick up references to the trajectory of the curve, such as tree lines, guardrail 
or anything parallel to the curve itself. The visibility of the trajectory could be a combination of the 
often mentioned variables visibility, overview and radius. Visible angle could therefore be a 
pragmatic dimension reduction which combines both behavioural and geometric aspects in terms 
of perception and deflection angle. Visible angle might have influenced the picking of curves for 
which higher operating speeds could be selected. In a follow-up study, this could be studied with 
a larger curve sample and observations of actual operating speeds. 

Respondents indicated that their operating speed could be higher when more lanes are present. 
This corresponds to the design principles in The Netherlands (ROA - Knooppunten en Aansluitingen, 
1993) which link an increasing number of lanes to increasing radii. This means most multi-lane 
curves in The Netherlands have relatively large radii, so experience in driving through such curves 
could form expectations that in multi-lane curves higher speeds are possible. If this is indeed a 
generalised expectation of drivers, road designers should be careful designing small radii curves 
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with multiple lanes because faulty routine activation by drivers could lead to errors (Stanton & 
Salmon, 2009) and accidents. Superelevation is of importance to design speed, and design 
guidelines mention that superelevation helps to detect an upcoming curve better. Based on this 
study however, superelevation does not seem to play a role in curve perception. 

This study provides some first insights into possible directions for further research. Based on the 
results of this study, it is recommended that future research into predicting operation speeds in 
curves also incorporates variables that are identified as relevant for drivers for selecting their 
operating speed. Most of these variables are easy to measure, such as radius and number of lanes, 
others are easy to spot, such as the presence of trees and signs. Curve surroundings are not usually 
a variable in speed prediction models (Hassan, Sarhan, Porter, et al., 2011), but based on this study, 
there is good reason to include these. It is however difficult to quantify the most mentioned variable 
“visibility” since sight distances alone do not seem to have a clear relationship with speed. But 
visible angle ‘Øv’ might prove a valuable measure which combines sight distances with radius and 
deflection angle. Also, the term overview was mentioned by a third of the respondents. This seems 
to be a holistic concept, which is hard to quantify and use in a speed prediction model. Future 
research should include more curve characteristics and surrounding elements in an attempt to 
operationalise the variable “overview” in a speed prediction model. 

This research is explorative in its nature and the survey itself is basic in its design, showing only 
pictures of eight different right turning curves. It is difficult to gain insights in drivers speed choice 
based on static pictures alone (Charlton & Starkey, 2017b). The ranking differed in that of the 
measured speed, so further research should focus on cues based on locomotion as well, but also 
use a larger sample of curves and explore other research methodologies beside static pictures. Since 
the setting of the survey and the respondents were Dutch, results might not generalisable to drivers 
in other countries who may have other expectancies about curves and speed selection. 
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3 Analysis of Individual Speed Profiles 

 

This chapter has previously been published as: Vos, J., Farah, H., & Hagenzieker, M. (2021). Speed 
behaviour upon approaching freeway curves. Accident Analysis & Prevention, 159, 106276. 

 

 

Abstract 

The actual speed behaviour when drivers approach a curve is very relevant to assess the road 
design and safety but is mostly overlooked in the scientific literature. Most research into curve 
driving behaviour is focussed at the behaviour inside the curve, although the speed selection is 
done before curve entry. The main objective of this research is to identify which freeway 
characteristics play a role in driving speed selection. High Frequency Floating Car Data, detailed 
reconstruction of the curves and their surroundings, as well as three dimensional sight distance 
analysis, were used to analyse individual speed profiles on 153 Dutch freeway curves. By defining 
the positions where the acceleration approaches 0 m/s2 before and after a curve starts, the positions 
when the driver started and stopped decelerating upon curve entry were defined. Further 
correlation and regression analysis of those positions revealed that the radius of the curve is indeed 
a main explaining variable, as well as the speed driven before deceleration starts. Sight distances 
and cross section characteristics play a further role in determining the position where deceleration 
starts. Deceleration ends at approximately 135 meters after curve start, and the speed in a curve is 
also correlated with the deflection angle and length of a curve. Sight distances do not play a role in 
selecting the speed in a curve based on this research. Overall, the findings indicate a non-constant 
nature and variability of speed behaviour upon curve entry. This can be used for safer freeway 
curve design and to assess traffic safety based on actual speed behaviour. 
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3.1 Introduction 

The speed which drivers select to drive in a freeway curve is of major influence on traffic safety. A 
speed which is too high, results in a loss of control of the vehicle due to a loss of friction (Donnell 
et al., 2016; Himes, Porter, Hamilton, & Donnell, 2019; Li & He, 2016). Because of this, the design 
of freeway curves has mostly been related to side friction factors (Fitzpatrick & Kahl, 1992). Human 
factors are however mostly overlooked in curve design, although it is the driver who selects the 
speed (Charlton & Starkey, 2017b). Understanding how drivers select their driving speeds is 
therefore of importance to safe freeway curve design.  

Research in curve driving has mainly focussed on driving aspects when the driver is already inside 
the curve. Such research focusses on where drivers look (Gruppelaar, Paassen, Mulder, & Abbink, 
2018; Land & Lee, 1994; Lehtonen et al., 2014; Salvucci & Gray, 2004; Shinar et al., 1977), the lateral 
position inside the lane (Coutton-Jean, Mestre, Goulon, & Bootsma, 2009; de Waard, Steyvers, & 
Brookhuis, 2004; Van Winsum & Godthelp, 1996) or the speed drivers select in a curve (Farah et 
al., 2019; Hassan, Sarhan, Porter, et al., 2011; Luque & Castro, 2016; Odhams & Cole, 2004). Only a 
few research studies have focused on the curve detection phase (Lehtonen et al., 2012), even though 
task descriptions state that the period just before entering the curve is most important in the 
perceptual, cognitive and psychomotor tasks drivers need to select their driving speeds in a curve 
(Campbell et al., 2012; McKnight & Adams, 1970; Shinar, 2017c). Explorative research showed that 
drivers take the entire curve surroundings into account while selecting their speed when entering 
a curve (Vos, Farah, & Hagenzieker, 2021a). It remains unclear however, which cues are of 
importance to the driver.  

The key feature of a curve is its radius. A relatively small radius urges drivers to slow down, in 
order not to skid (Donnell et al., 2016; Gibson & Crooks, 1938). This means that the radius is a key 
element upon which drivers select their speed. Because the driving task is mostly visual (Hills, 
1980; Sivak, 1996), drivers need to perceive the radius. However, from a driver standpoint the 
perception of a curve gets distorted in a hyperbola, which results into less well perceived curvature 
when the radius decreases (Brummelaar, 1975). Because it is difficult for drivers to perceive the 
curve radius, other factors are assumed to play a role in curve perception and speed selection such 
as the deflection angle of a curve (Fildes & Triggs, 1985; Riemersma, 1988; Wang & Easa, 2009). 
Studies on distortion in the perception of curvature were mostly based on perspective drawings as 
laboratory stimuli and lack therefore other static and dynamic curve characteristics (e.g., guardrail, 
signing or traffic). Some of these elements have however been validated in experiments or field 
studies, these include the transition curve (Perco, 2006; Riemersma, 1989) and vertical sag curves 
(Bella, 2015; Campbell et al., 2012; Wang & Easa, 2009). Visual research using eye trackers shows 
more visual attention towards the right, in right turning curves than to the left in left turning curves 
(Lappi & Lehtonen, 2013; Shinar et al., 1977), suggesting right turning curves need more attention. 
In both laboratory studies (Singh & Fulvio, 2007) and simulator studies (Coutton-Jean et al., 2009), 
it was shown that drivers use and need continuous information to assess the curvature. This 
includes road markings (Charlton & Starkey, 2013; Coutton-Jean et al., 2009; de Waard et al., 2004), 
curve signs (Charlton, 2004), road lighting and tree lines (Blumentrath & Tveit, 2014). These 
elements need to be visible enough though, otherwise drivers decelerate later and more sharply 
before curve entry (Jamson et al., 2015). Partly occluded shapes however, can still be interpreted 
based on knowledge about these objects (Hazenberg & van Lier, 2016). Indeed, when drivers are 
familiar with the road, they choose higher speeds (Wu & Xu, 2018). Drivers also choose their speed 
based on perceived road categories (Charlton & Starkey, 2017a) and the number of lanes present 
(Calvi et al., 2018), so the composition of the cross section is also relevant to the driver. 
Furthermore, design consistency studies showed that the tangent characteristics upstream of the 
curve, such as tangent length and width, influence the speed reduction (Hassan, Sarhan, Porter, et 
al., 2011). 

Speed profiles give more insights into speed development upstream of a curve and in the curve 
itself and can be considered as key input for assessing the way drivers drive through curves (Dias, 
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Oguchi, & Wimalasena, 2018). Research into speed profiles showed that the speed is not constant 
in a curve (Bella, 2014; Montella, Galante, Mauriello, & Aria, 2015; Wang, Guo, & Tarko, 2020), and 
that deceleration starts before the curve and ends inside the curve. Since drivers start to search for 
the upcoming curve and start to decelerate before the curve (Campbell et al., 2012; Hallmark et al., 
2015; Land & Lee, 1994; Lehtonen et al., 2012; Shinar et al., 1977), the speed profile before a curve 
is of interest in investigating which of the elements discussed above may be of importance to the 
driver in speed selection. There is still a knowledge gap on this point. Since the deceleration stops 
within the curve, the speed selection inside the curve is also of interest to analyse the speed 
behaviour upon curve approach. 

Therefore, the aim of this research is to gain insights into which elements are of influence on the 
speed profile when approaching a curve, and the speed selection in a curve. In order to gain these 
insights the following research questions were defined: 

• Where do drivers begin to decelerate in reference to the curve start? And which elements 
influence this position? 

• Which speed do drivers adopt in a curve? And which elements influence this speed? 

The following section will discuss the research methods used to answer these questions. Section 3 
analyses the data in three steps: first insights into speed profiles, correlations of speeds and curve 
characteristics, and regression analysis. Sections 4 and 5 discuss the results and summarize the 
conclusions, respectively. 

3.2 Research method 

In order to investigate the relationship between speed profiles and curve characteristics, we chose 
real world situations over laboratory settings such as simulators, to avoid any bias due to lack of 
motion cues or limitations in the dynamic visualisation of the road scenario (Bella, 2009; Molino, 
Opiela, Katz, & Moyer, 2005). We therefore selected a representative sample of freeway curves and 
obtained relevant and measurable curve characteristics.  

3.2.1 Curve selection 

We chose our curves based on a number of characteristics that are known from literature to have 
an influence on speed selection. Therefore, a representative selection of deflection angles, curve 
radii and number of lanes were considered in the freeway curves selection. Speed on off-ramps is 
much influenced by slowing down for the junction at the end of it, so off-ramps are excluded in 
the selection. Only main carriageways and connector roads in junctions were included. 

This resulted in a selection of 99 road sections which include 153 curves, as presented in Figure 3-1 
with their main characteristics. The curves were selected throughout The Netherlands as presented 
in Figure 3-2. 
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Figure 3-1 Scatterplot of main characteristics of the selected curves in this study. 

           

Figure 3-2 Map showing the location of the curves in The Netherlands (in black). 
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3.2.2 Obtaining relevant curve characteristics 

All of the selected curves were reverse engineered in order to have insights into the relevant 
geometric elements: horizontal alignment (radius, transition curves, deflection angles and 
tangents), vertical alignment (grades, sag and crest curves) and cross section elements (width of 
carriageway, number of lanes, presence of hard shoulder, superelevation, distance from side 
marking to guardrail). 

Using the reverse engineered road alignments, sight distances were obtained every 10 meters using 
the Dutch “Zicht” application (Broeren, 2002) which was developed for Rijkswaterstaat (Dutch 
Directorate-General for Public Works and Water Management) and used for more than 20 years. 
In three dimensional models of the curve environment, guiding elements (which run parallel to 
the alignment of the curve), were identified per curve. This included the roadway itself, brake-
lights (stopping sight distance), guardrail, treelines, noise barriers and curve signs as guiding 
elements. The position of these guiding elements was fed into “Zicht”. The program stops every 
10 meters along the alignment, to position a red box at the predefined offset every 5 meters in front 
of the driver and checks whether or not it is visible from the driver standpoint. Figure 3-3 shows a 
graphical example of this analysis which resulted in a definition of maximum sight distances for 
each guiding element, at every 10 meters along the alignment. Results from “Zicht” have been 
validated using dashcam video’s, as shown in Figure 3-3. 

 

Figure 3-3 On the left the analysis of “Zicht” on the visibility of the curve signs. The red object in 

the 3D model is the object “Zicht” checks along the alignment, in this case a curve sign, positioned 

above the guardrail (the dark grey line). On the right, this exact viewpoint is shown in the real life 

situation. 

3.2.3 Speed data collection and preparation 

Continuous speed profiles provide detailed information about speed development during the 
curve anticipation phase (Dias et al., 2018), and overcome traditional errors derived from classic 
point speed measurements (Hassan, Sarhan, Porter, et al., 2011; Wang et al., 2020). To create these 
speed profiles along the generated alignments, High Frequency Floating Car Data from 
Flitsmeister-users was used. This smart-phone navigation app is used by 1.6 million users in The 
Netherlands, of which most are personal car or van drivers. Regular Floating Car Data cannot be 
used to create speed profiles, but only to show speed distributions per section of road 
(Colombaroni, Fusco, & Isaenko, 2020). For this study, the data gathering algorithms for the app 
were set to a frequency of 1 Hz along the selected road sections. Data collection was executed in 
March, April and September 2020. These are unique speed-profiles per trip, from which 
acceleration-profiles can be derived. The amount of precipitation was also added for each speed 
profile, using the Dutch climatological radar rainfall dataset (Saltikoff et al., 2019) in order to study 
relations between speed and wet road conditions. 

The use of speed profiles containing speed and deceleration per second allows us to find positions 
in the speed profile where the slope of speed versus time changes, which are called breakpoints. 
This method was introduced by Alfonso Montella et al. (2015), who also showed that deceleration 
starts in front of the curve, and ends inside the curve. Breakpoints are the main points of interest 
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in this research, and are explained further in Figure 3-4. The positions of breakpoint 1 (BP1) and 
breakpoint 2 (BP2) are defined based on the acceleration profile. The position where the continuous 
radius starts is the reference point for the breakpoints positions (zero). The point upstream of a 
curve start, where the acceleration approaches 0 m/s2, is defined as BP1 and has a negative 
position. The point downstream of the curve start, where the acceleration approaches 0 m/s2, is 
defined as BP2 and has a positive position. The acceleration profile was smoothed using the LOESS 
algorithm in R (Cleveland, Grosse, & Shyu, 1992) to obtain a more realistic acceleration profile. 
Because of this smoothing, hardly any point will have an exact acceleration of 0 m/s2. Therefore 
thresholds needed to be set to find the point closest to 0 m/s2. Using a threshold of 1 second in 
which the acceleration profile is between -0.1 m/s2 and 0.1 m/s2 shows an optimal result for 
defining the positions of the breakpoints1.  

 

 

Figure 3-4 Theoretical speed and acceleration profiles drawn around the curve start.  

3.2.4 Speed data filtering 

All road sections were checked for road-works during the measuring period. Road works could 
entail extra signing, lowering speeds or distracting elements along the road. In order not to bias 
the outcomes in that direction, trips during roadworks were eliminated from the database.  

Since we are interested in the speed selection based on curve characteristics, car following 
behaviour should be eliminated from the database. Every road segment in The Netherlands has a 
loop-detector which measures all traffic and generates average speeds and traffic volumes per 
minute. Hashim (2011) showed that above a headway of 5 seconds, most vehicles travelled at their 
desired speed. This is called a free-flow situation. Given that traffic flow is Poisson distributed, the 
headway is exponentially distributed. Taking an average headway of 5 seconds, the chance is 
around 5% that a vehicle has a headway greater than 15 seconds (e-(15/5) = 0.0497). This is 4 vehicles 
per minute. In order to select trips which have a probability of 95% to have been in free-flow, trips 
in periods with 5 or more vehicles per minute per lane were filtered out of the database.  

This results in 996,375 unique trips available in this research, on average 10,064 trips per road 
section (sd = 8,616, max = 41,041, min = 425). This large variability is explained because some road 
sections are situated in busy urban areas, and other curves are situated in remote rural areas, see 

 

1 These thresholds are based on a sensitivity analysis, which is shown in Appendix A. 
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also Figure 3-2. Some road sections also had many trips filtered out because of roadworks being 
present during the measurements.  

Based on the loop detector data, we were able to compare our sample in the High Frequency 
Floating Car Data to the entire population. On average, our sample contains 9.1% (sd 7.1%) of all 
the drivers in the selected periods without roadworks and in free-flow. By comparing the average 
speeds of all the drivers, based on the loop detector data, to the sample data, it was found that the 
drivers in our sample drove on average 5.4 km/h faster (sd 4.9 km/h) at the loop-detector than all 
the drivers in the same free-flow periods. Based on the measurements of Farah et al. (2019) the 
sample in this research represents on average around the 60th percentile of all the drivers. 

3.3 Data analysis 

The following sub-sections describe the analyses of the data in three steps: first we show some 
insights into speed profiles (3.3.1), then correlations of speeds and curve characteristics were 
investigated (3.3.2), and finally the results of the regression analysis for predicting the positions 
and speeds of BP1 and BP2 are presented (3.3.3). 

3.3.1 First insights into speed profiles  

In order to get a first feel of the collected data, speed profiles of curves with radii around 250 meters 
were compared. For these curves the median speed profile was calculated, by calculating the 
median speed for every meter considering all individual speed profiles. All these curves have 
relative tangent approaches. So, based on common speed prediction models, it is expected that all 
these curves have almost equal profiles (Hassan, Sarhan, Porter, et al., 2011). Figure 3-5 however 
shows some different characteristics in the speed profiles and breakpoints. This leads us to the 
hypothesis that other curve characteristics than curve radius alone might explain these differences. 
And indeed, when looking at the dashcam pictures in Figure 3-6, we see different road layouts in 
terms of different cross sections and surroundings.  
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Figure 3-5 Speed profiles of eight curves with radii around 250 m and information about their 

breakpoints. A) shows the profiles of median speeds of all measured speeds per curve, relative to 

the start of the curve radius. A note to profile “A1-4-5Re”, which shows a bump between 250 and 

50 meter before the curve start. This bump is probably due to an overpass of around 110 meter at 

this location, which caused GPS inconsistencies. B) shows boxplots of the position of BP1 per 

curve. C) shows boxplots of the position of BP2 per curve.  
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Figure 3-6 Dashcam pictures of the actual carriageways taken at 1000m (most left picture), 500m, 

250m and 0 m (most right picture) to the curve start of each speed profile shown in Figure 3-5. 

3.3.2 Correlations of speed, deceleration and positions of breakpoints 1 and 2 to curve 

characteristics 

The positions of BP1, BP2 together with the speeds at BP1 and BP2 are identified as variables which 
determine the speed profiles. The average deceleration is derived from those two points. 
Correlation analysis between these five variables with curve geometry and sight distances are 
presented in Figure 3-7. In Figure 3-7 only variables which have at least one correlation coefficient 
above 0.25 or below -0.25 are shown. All shown correlation coefficients have a significance of 
p<0.001. The variables ’Curvature Change Rate’, ’Deflection angle’ and ’Length of curve’ include 
both the transition curves and circular curve. The ’number of usable lanes’ are the available lanes 
to the driver, either all available lanes on a carriageway, or the available lanes to pre-sort in the 
direction of the curve. The ’Ratio A to R’ represents the value of A-value of the clothoid divided by 
the horizontal radius in meters, and is therefore related to the length and angle of the transition. 
The ’visible angle’ is defined as the amount of angle which is visible based on any parallel guiding 
element, as explained in Vos et al. (2021a) and the ’visible length’ is the amount of length of the 
curve which is visible. All individual speed profiles have been used in the correlation analysis in 
order to account for individual differences in speed profiles and their respective positions of the 

A73-114—5r at 1000 m, 500 m, 250 m and 0 m to curve start

A1-87-5h at 1000 m, 500 m, 250 m and 0 m to curve start

A2-35-0f at 1000 m, 500 m, 250 m and 0 m to curve start

A1-4-5-Re at 1000 m, 500 m, 250 m and 0 m to curve start

A35-51-5u at 1000 m, 500 m, 250 m and 0 m to curve start

A67-18-5t at 1000 m, 500 m, 250 m and 0 m to curve start

A9-38-8r at 1000 m, 500 m, 250 m and 0 m to curve start

A59-89-0s at 1000 m, 500 m, 250 m and 0 m to curve start
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breakpoints. Even though Figure 3-7 does not show correlation coefficients above 0.5 or below -0.5, 
some general conclusions can be drawn, even though speed prediction models usually only report 
correlation coefficients above 0.4 when using multiple variables (Hassan, Sarhan, Porter, et al., 
2011; Llopis-Castelló, González-Hernández, Pérez-Zuriaga, & García, 2018). Since we have used all 
individual speed profiles in our analyses and analyse single variables, we expect relative low 
correlations. In behavioural sciences a correlation coefficient between 0.3 and 0.5 is defined as 
“medium”, below 0.3 as “low”, and above 0.5 as “strong” (Cohen, 1988). Distance of BP1 to the 
curve start, average deceleration and the speed at BP2 show the largest correlations with curve 
geometrics and sight distances.  

 

Figure 3-7 Correlations between variables which determine speed profiles and variables which 

determine the curve.  

The speed at BP2 seems to be correlated with the speed at BP1, suggesting a relation between speed 
outside and inside a curve. Speed at BP1 is also correlated with the position of BP1, which is to be 
expected: faster driving needs more deceleration length. Sight distances on guiding elements are 
also correlated with the position and speed at BP1: when present, guiding elements such as closed 
elements (e.g., noise barriers) or curve signs have a higher correlation with the position and speed 
at BP1 than stopping sight distance or road sight distance. The variable that is most correlated with 
the distance of BP1 is however the visible length of the curve.  

Speed at BP2 is correlated more to the curve geometric elements such as Curvature Change Rate 
(CCR), deflection angle, horizontal radius, transition curve and number of lanes. A relative large 
correlation can also be observed between the speed at BP2 and the maximum speed sign and 
presence of curve signs. Also the sight distance available on guiding elements is correlated with 
the speed in a curve. The position of BP2 is hardly correlated with anything, suggesting that 
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geometric elements and sight distances do not influence the position of BP2. The average 
deceleration is correlated with the same geometric elements as the speed at BP2. Average 
deceleration however seems to be more correlated with sight distance on the guiding elements than 
the speed at BP2 does.  

In the above paragraphs we have discussed the correlations in Figure 3-7. These all met the 
threshold of a correlation coefficient above 0.25 or below -0.25. It is also of interest to see which 
variables did not meet this threshold. The introduction mentioned that the curve direction 
influences driver behaviour, but this was not found in this analysis shown Figure 3-7. Also sag 
curves in combination with the horizontal curve were mentioned to influence driver perception, 
but this did not show in Figure 3-7. Superelevation is of major importance in using design speeds 
to design a curve, however it did not correlate to any of the breakpoints. Road categories were also 
identified in the introduction to influence the driver. Since only freeways were examined, we 
focussed instead on types of discontinuity. Discontinuities are transitions between two road-
sections which limits the amount of lanes available for a driver in a certain direction because of 
pre-sorting. However, the different types of discontinuities did not correlate to any of the 
breakpoint variables. The number of usable lanes in the direction of the curve at a discontinuity 
takes pre-sorting into account, and even usable lanes are less correlated with BP1 than all lanes in 
the cross section at BP1. So, no direct correlation of discontinuity or pre-sorting with BP1 and BP2 
variables was found. Most of the sight distances to guiding elements were satisfactorily correlated 
with the breakpoints. The positions from which sight on the curves start, or where the first 100 m 
of the curve is available to the driver, however did not correlate at all with BP1 or BP2 variables. 
And only the presence of curve signs as guiding elements seemed to correlate to the breakpoints; 
guardrail, treelines or closed elements did not. Finally, external weather effects such as daylight 
and precipitation also were not found to correlate to the breakpoint variables.  

3.3.3 Regression analysis 

Regression analysis was used to explore the relationship between the positions and speeds of BP1 
and BP2 and the explanatory variables. The horizontal radius of the curve is the defining variable 
of a curve. Figure 3-8 clearly shows relations of the horizontal curve radius to the distance of BP1 
and the speed at BP2. The position of BP2 is loosely correlated with the radius of the curve. The 
speed at BP1 is not correlated with the horizontal curve radius because it is assumed that drivers 
chose an optimal desired speed and are not being influenced by the horizontal radius, and indeed 
in Figure 3-8C a very scattered plot is shown. 
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Figure 3-8 Relations of the positions and speeds at BP1 and BP2 to the horizontal radius of the 

curve. Each point refers to the average value of a single curve for that variable.  

The formulas derived in Figure 3-8 contribute to the prediction of the position and speed of BP1 
and BP2 (respectively dBP1 and dBP2 in meters and vBP1 and vBP2 in km/h) for different horizontal 
curve radii (Rh) in meters. These formulas have been used to create mean speed profiles for an array 
of different horizontal radii as shown in Figure 3-9. This shows the average speed behaviour in 
curve approach as a function of the horizontal radius of the curve, based on BP1 and BP2.  
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Figure 3-9 Mean speed profiles for different horizontal radii, based on the mean positions and 

speeds at BP1 and BP2, derived from Figure 3-8. 

Each of the two breakpoints (BP1, BP2) shown as a mean in Figure 3-9 has a variability in the 
relation to the horizontal radius as shown in Figure 3-8. We have used linear regression analysis 
on all available variables, to investigate how much each variable explains the variability of BP1 and 
BP2. We used the BIC value as an indicator for the fitness of the model. We started with a base 
model, showing the breakpoint as a function of the horizontal radius of the curve, as shown in 
Figure 3-8. Next we created new models, in which we added one variable per model, to examine 
the contribution of this variable to explaining the variability. The added variables which lowered 
the BIC value of the base model by at least 0.05% showed that these variables could have a relevant 
contribution in explaining the variance of the breakpoints. Those variables were then checked for 
collinearity, before creating and testing multiple regression models. The outcome of these steps are 
presented in the next sub-sections. 

3.3.3.1 Breakpoint 1 (BP1) 

In Table 3-1 we show which variables contribute to predicting the distance of BP1 to curve start 
(dBP1). Both the visible angle of the curve at BP1 (vØBP1) and the visible length of the curve at BP1 
(vLcBP1) decrease the BIC value more than 2.9%, but are rather correlated, because the deflection 
angle is a derivative of curve radius and length. Because the closer a driver gets to a curve, the 
more length and deflection angle he can see, it is logical that the visible angle (vØBP1) is related to 
the position of BP1 (dBP1). We chose to investigate the effect of the visible angle (vØBP1) further 
because it was found to decrease the BIC value more than the visible length of the curve, and is 
less obviously related to the distance of BP1 to the curve start. Next, the speed at BP1 (vBP1) was 
found to explain some of the variability in the distance of BP1 to curve start. This is because the 
faster a driver drives, the more length they need to decelerate. Both the road sight distance and 
stopping sight distance at BP1 (RSDBP1 and SSDBP1) improve the explainability of the model, but 
since both sight distances are collinear, only one of the two variables will be considered. We 
explored the stopping sight distance (SSDBP1) further because it decreased the BIC value most and 
is an internationally used measurement. The total number of lanes and the number of pre-sorting 
lanes to the curve, as well as the width of the carriageway at BP1 (nLBP1, nuLBP1, and WBP1) are also 
correlated. We explored the total number of lanes (nLBP1) further, because it reduced the BIC value 
most. The effect of not having all the lanes available because of pre-sorting at BP1, is covered in a 
variable checking the presence of a discontinuity. The presence of different types of discontinuities 
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(weaving section, exit lane or a fork) at BP1 (WsBP1, ElBP1 and FoBP1 respectively) are correlated, so 
we chose to explore the variable of continuity at BP1 (CBP1) further, because it lowers the BIC value 
most and covers the presence of discontinuity and the need for pre-sorting as well. 

 

Table 3-1 Variables which increase the explainability of the position of BP1 (grey 

variables are not explored further because of collinearity). 

Added variable to  
dBP1 = ln(Rh) + … 

Variable Interpretation model BIC BIC decrease Variable collinear with 

vØBP1  Visible angle of the curve at 
BP1 (grad) (see Vos et al. 
(2021a)) 

19339426 2.97 % vLcBP1 (R(1481780) = .49,  
p < .0001) 

vLcBP1  Visible Length of the curve 
at BP1 (m) 

19349040 2.92 % ØvBP1 (R(1481780) = .49,  
p < .0001) 

vBP1  Speed at BP1 (km/h) 19457787 2.37 %  

SSDBP1  Stopping Sight Distance at 
BP1 (m) 

19605067 1.64 % RSDBP1 (R(1481903) = -.86,  
p < .0001) 

RSDBP1  Road Sight Distance at BP1 
(m) 

19632363 1.50 % SSDBP1 (R(1481903) = -.86,  
p < .0001) 

nLBP1  Number of Lanes at BP1 19798294 0.67 % nuLBP1 (R(1481903) = -.68,  
p < .0001), 
WBP1 (R(1481903) = -.75,  
p < .0001), 

WBP1  Width of carriageway at 
BP1 

19844715 0.43 % nLBP1 (R(1481903) = -.75,  
p < .0001), 
nuLBP1 (R(1481903) = -.47,  
p < .0001) 

CBP1  Continuity at BP1 (1 = 
continuous, 0 = 
discontinuous) 

19863030 0.34 % Fo BP1 (R(1481903) = -.47,  
p < .0001),  
ElBP1 R(1481903) = -.41,  
p < .0001),  
WsBP1 R(1481903) = -.49,  
p < .0001) 

CSSBP1  Curve Sign in Sight at 
breakpoint 1 (1 = yes, 0 = no) 

19872820 0.29 %  

WsBP1  Weaving section at 
breakpoint 1 (1 = weaving 
section, 0 = continuous or 
other discontinuity) 

19888209 0.21 % CBP1 (R(1481903) = -.49,  
p < .0001) 

SDmaxBP1  Maximum Sight Distance at 
BP1 (m) (maximum of sight 
on road, stopping sight, 
guardrail, curve signs, 
treeline or closed elements 

19895226 0.18 %  

nuLBP1  Number of usable Lanes at 
breakpoint 1 based on pre-
sorting; correct pre-sorting 
lanes leading up to the 
curve 

19898082 0.17 % nLBP1 (R(1481903) = -.68,  
p < .0001), 
WBP1 (R(1481903) = -.47,  
p < .0001) 

ElBP1 Exit lane at breakpoint 1 (1 
= exit lane, 0 = continuous 
or other discontinuity) 

19898961 0.16 % CBP1 (R(1481903) = -.41,  
p < .0001) 

FoBP1  fork at breakpoint 1 ((1 = 
fork, 0 = continuous or other 
discontinuity) 

19911603 0.10 % CBP1 (R(1481903) = -.47,  
p < .0001) 

T  Daytime (1 = sun up, 0 = sun 
down) 

19916198 0.07 %  
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The selected variables in Table 3-1 were used to create multiple regression models for predicting 
the position of BP1. The results are shown in Table 3-2. This shows the added explainability of 
using sight and visibility in the model to predict the distance of BP1. Dropping the visible angle 
(vØBP1) from the model, decreases the explainability drastically as seen in models 4 and 7 in Table 
3-2. The models show that with more curve angle visible, the position of BP1 moves closer towards 
the curve start. But, with more sight distance (SSDBP1 and SDmaxBP1) available at BP1, this is located 
further away from the curve start. However, a sight on curve signs (CSSBP1) decreases the distance 
of BP1 to the curve start. Figure 3-10 shows how these sight distances interact with the position of 
BP1. Stopping Sight Distance from BP1 (SSDBP1) is defined by how far ahead the driver is able to 
see a braking light. In most cases the SSD remains the roughly same if the position of BP1 changes. 
Whether or not a curve sign is visible from BP1 (CSSBP1) is defined by whether or not BP1 is 
positoned beyond the point where the signs are visible the first time. If BP1 gets closer to the curve 
start from that point, the varible remains “yes”. The visible part of deflection angle seen from BP1 
(vØBP1) is very much related to the position of BP1 to the curve start. The closer BP1 is located to 
the curve start, the larger the visible deflection angle will be. Adding lanes (nLBP1) to the cross 
section, increases the distance between BP1 and the curve start, and this is even more when a 
discontinuity (CBP1) is added. Finally, during daytime (T) the position of BP1 is located closer to the 
curve start, than during night time.  

Table 3-2 Regression analysis results for the position of BP1. 

 
Model 1 
(base) 

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Constant -980.286*** -1104.617*** -1115.862*** -934.521*** -965.670*** -947.848*** -495.498*** 
 (1.629) (1.166) (1.235) (1.586) (1.299) (1.263) (1.481) 
ln(Rh) 134.395*** 180.308*** 182.810*** 138.395*** 192.028*** 191.076*** 155.613*** 
 (0.289) (0.194) (0.202) (0.278) (0.197) (0.196) (0.236) 
vØBP1  2.852*** 2.829***  2.448*** 2.449***  
  (0.002) (0.003)  (0.003) (0.003)  
vBP1     -2.269*** -2.308*** -4.166*** 
     (0.006) (0.006) (0.008) 
SSDBP1  -0.826*** -0.792***  -0.650*** -0.650*** -0.457*** 
  (0.001) (0.001)  (0.001) (0.001) (0.001) 
SDmaxBP1   -0.043***  -0.038*** -0.038*** -0.027*** 
   (0.000)  (0.000) (0.000) (0.000) 
CSSBP1   19.756***  21.669*** 21.010***  
   (0.276)  (0.264) (0.264)  
nLBP1    -42.137*** -3.798*** -4.366*** -14.986*** 
    (0.147) (0.101) (0.100) (0.128) 
CBP1    48.093*** 14.982*** 13.978*** 43.465*** 
    (0.386) (0.253) (0.253) (0.322) 
T     12.004***  11.344*** 
     (0.209)  (0.268) 

Num.Obs
. 

1481905 1481905 1481905 1481905 1481905 1481905 1481905 

R2 0.127 0.629 0.635 0.210 0.669 0.668 0.457 
R2 Adj. 0.127 0.629 0.635 0.210 0.669 0.668 0.457 
AIC 19931003.8 18664030.3 18640587.0 19782830.0 18493508.1 18496798.2 19227773.9 
BIC 19931040.4 18664091.3 18640672.5 19782891.1 18493642.4 18496920.3 19227883.8 

Log.Lik. 
-
9965498.884 

-
9332010.129 

-
9320286.511 

-
9891410.008 

-
9246743.040 

-
9248389.087 

-
9613877.949 

F 215655.159 836516.766 514640.655 131390.746 332926.431 373300.302 178081.226 

* p < 0.1, ** p < 0.05, *** p < 0.01;  
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Figure 3-10 Sightlines from BP1 are shown in two different positions of BP1 (a and b) as a dotted 

arrow to show the effect on different sight distance measurements. 

The speed at BP1 (vBP1) is not correlated with the curve itself, but is used as a variable to define the 
position of BP1. So, no specific model has been created to define the speed at BP1. In case of 
consecutive curves, the speed at BP2 (vBP2) for the first curve, can be used as the speed at BP1 (vBP1) 
to predict the position of BP1 (dBP1) for the second curve. 

3.3.3.2 Breakpoint 2 (BP2) 

As shown in Figure 3-8B, the position of BP2 (dBP2) is weakly correlated with the horizontal radius 
of the curve. The position is on average 135 meters from the curve start, but varies between 50 and 
350 meters. Figure 3-7 shows no variables correlate to the position of BP2. We found that different 
variables did not reduce the BIC by more than 0.15% compared to the base model. Curve length 
has no influence in this, since the curves in this study have an average length of 303 m (sd=46.5 m). 
When investigating the curves which are causing the variability, we notice that the curves which 
have a position of BP2 beyond 160 meter after curve start, all have follow-up curves which need 
further speed reduction. We can exclude these curves in our analysis on the position of BP2, since 
these positions are actually related to the consecutive curve. Hence we assume the position where 
drivers stop decelerating (dBP2) is rather constant along different horizontal radii. 

In Table 3-3 we show the variables added to the base model which contribute to the prediction of 
the speed at BP2. The speed at BP1 decreases the BIC of the base model most. Since the deflection 
angle of the curve and the entry transition curve (Øc and Øetc, respectively) as well as the Curvature 
Change Rate (CCRtot) are collinear with the total deflection angle (Øtot) we chose to explore this 
variable further. By doing so, we isolated the deflection angle, which is part of the calculation of 
the CCR. Also the total length of the curve (Ltot) and turning direction (Dir) are of influence. In the 
cross section, the presence of a discontinuity, number of lanes and the width of the emergency lane 
(CBP2, nL and Wel) further lower the BIC. Finally, the presence of curve signs (pCS) also lowers the 
BIC of the base model.  

CSSBP1b

= yes

SSDBP1b = 
290 m

BP1a

SSDBP1a = 
300 m

BP1a

CSSBP1a 

= yes

vØBP1a = 50 grad

BP1a

BP1b BP1b BP1b

vØBP1b = 60 grad

Curve Sign in Sight?Stopping Sight Distance Visible deflection angle
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Table 3-3 Variables which increase the explainability of the speed at BP2 (grey variables 

are not explored further because of collinearity). 

Added variable 
to  
vBP2 = ln(Rh) + 
… 

Variable Interpretation model BIC BIC 
decrease 

Variable collinear with 

vBP1 Speed at BP1 (km/h) 12049030 1.96 %  

Øc Deflection angle of the 
horizontal curve (rad) 

12269707 0.17 % Øtot (R(1481903) = .98, p < .0001) 
CCRc (R(1481903) = .63, p < 
.0001) 

Øtot Total deflection angle of the 
horizontal curve, including 
transition curves (rad) 

12269917 0.16 % Øetc (R(1481903) = .83, p < .0001) 
Øc (R(1481903) = .98, p < .0001) 
CCRtot (R(1481903) = .80, p < 
.0001) 

Ltot Total Length of the horizontal 
curve, including transition 
curves (m) 

12272569 0.14 % Lc (R(1481903) = .94, p < .0001) 

CBP2 Continuity at BP2 (1 = 
continuous, 0 = discontinuous) 

12274609 0.13 %  

nL number of Lanes in curve 12274036 0.13 % W (R(1481903) = .74, p < .0001) 

CCRtot  Total Curvature Change Rate 
of horizontal curve, including 
transition curves 

12276095 0.11 % CCRc (R(1481903) = .98, p < 
.0001) 
Øtot (R(1481903) = .80, p < .0001) 

Dir Direction of curve (1 = right 
turning, -1 = left turning)) 

12276473 0.11 % i (R(1481903) = .78, p < .0001) 

CCRc  Curvature Change Rate of 
horizontal curve 

12277515 0.10 % CCRtot (R(1481903) = .98, p < 
.0001) 
Øc (R(1481903) = .63, p < .0001) 

Øetc Deflection angle of entry 
transition curve (rad) 

12278122 0.10 % Øtot (R(1481903) = .83, p < .0001) 

W  Width of carriageway in curve 
(m) 

12277702 0.10 % nL (R(1481903) = .74, p < .0001) 

Lc  Length of horizontal curve (m) 12279619 0.09 % Ltot (R(1481903) = .94, p < .0001) 

Letc Length of entry transition 
curve (m) 

12279271 0.09 % Aetc R(1481903) = .77, p < .0001) 

i  Superelevation in curve (%) 12281303 0.07 % Dir (R(1481903) = .78, p < .0001) 

Wel Width of emergency lane (m) 12283065 0.06 %  

Aetc  A-value of entry transition 
curve (clothoid parameter) 

12283939 0.05 % Letc R(1481903) = .77, p < .0001) 

pCS  Presence of curve signs in 
curve (1 = yes, 0 = no) 

12283822 0.05 %  

 

The selected variables in Table 3-3 were used to create multiple regression models. The results are 
shown in Table 3-4. This shows that with a higher speed in front of the curve (vBP1), a higher speed 
in the curve (vBP2) is obtained. Furthermore, increasing length and angle of the curve (Øtot and Ltot) 
seem to increase the speed in a curve. And, also, the wider the cross section gets, the higher the 
speed gets. However, adding the speed at BP1, deflection angle, length and direction of the curve 
(vBP1, Øtot,, Ltot and Dir) to the model, nullifies this effect for the number of lanes in the curve (nL).  
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Table 3-4 Regression analysis results for the speed at BP2. 

 
Model 1 
(base) 

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Constant -39.609*** -54.003*** -48.737*** -60.448*** -37.843*** -43.345*** -45.276*** 
 (0.124) (0.130) (0.135) (0.124) (0.140) (0.147) (0.160) 
ln(Rh) 23.391*** 19.770*** 18.124*** 21.041*** 22.386*** 17.458*** 17.804*** 
 (0.022) (0.022) (0.025) (0.021) (0.023) (0.025) (0.028) 
vBP1  0.331*** 0.337*** 0.318***  0.353*** 0.351*** 
  (0.001) (0.001) (0.001)  (0.001) (0.001) 
Øtot  0.020*** 0.040***   0.038*** 0.039*** 
  (0.000) (0.000)   (0.000) (0.000) 
Ltot   0.006*** 0.002***  0.008*** 0.008*** 
   (0.000) (0.000)  (0.000) (0.000) 
Dir   3.385*** -1.214***  3.222*** 3.333*** 
   (0.026) (0.014)  (0.026) (0.026) 
nL     1.869*** -0.234*** -0.307*** 
     (0.018) (0.017) (0.017) 
CBP2     -4.531*** -9.227*** -9.229*** 
     (0.044) (0.041) (0.041) 
Wel     1.429*** 1.236*** 1.240*** 
     (0.017) (0.016) (0.016) 
pCS       0.913*** 
       (0.030) 

Num.Obs. 1481905 1481905 1481905 1481905 1481905 1481905 1481905 
R2 0.433 0.531 0.536 0.523 0.446 0.554 0.554 
R2 Adj. 0.433 0.531 0.536 0.523 0.446 0.554 0.554 
AIC 12290097.4 12010287.7 11992963.6 12034897.2 12256647.7 11935478.1 11934563.4 
BIC 12290134.1 12010348.7 11993049.1 12034970.5 12256720.9 11935600.2 11934697.7 

Log.Lik. 
-
6145045.72
0 

-
6005138.83
8 

-
5996474.81
1 

-
6017442.60
6 

-
6128317.83
0 

-
5967729.06
4 

-
5967270.70
3 

F 
1133386.77
6 

558968.079 342810.984 406220.801 298274.797 230059.611 204725.726 

* p < 0.1, ** p < 0.05, *** p < 0.01 

3.4 Discussion, limitations and future research directions 

We have shown that the radius of a curve is of influence on the position where drivers start to 
decelerate in front of a curve, as well as the speed they select within a curve. We present a relation 
which shows when the horizontal radius decreases, drivers start decelerating further away from 
the curve. This deviates from the findings by Alfonso Montella et al. (2015), who show drivers start 
decelerating closer to the curve, when the radius decreases. This difference might be explained by 
the use of a driving simulator in the study by Alfonso Montella et al. (2015) and the distortion of a 
curve from a driver’s standpoint (Brummelaar, 1975) in such an experiment. This strengthens the 
hypothesis that drivers on freeways use other cues besides the horizontal radius alone to select 
their speed.  

This research focusses on the positions where 0 m/s2 was reached in speed profiles. These positions 
however do not match up with the perceptual tasks, since the breakpoints are preceded by the 
cognitive and psychomotor tasks (Campbell et al., 2012; Shinar, 2017c). The cues drivers actually 
react to, could be present up to a couple of seconds before the position where 0 m/s2 is reached.  

The amount of visibility of the curve at BP1 is correlated with the position of BP1. It remains unclear 
however whether this is a cause or an effect, because the closer BP1 is positioned to the curve start, 
the more of that curve the driver would be able to see. So, visibility-variables which take the 
position of the curve start into account (e.g. visible angle or curve sign in sight) should not be taken 
into account in explaining the position of BP1. This means that the need to recognise 100 meters of 
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the curve (Campbell et al., 2012; Rijkswaterstaat, 2022) cannot be underpinned by this study. The 
focus should be on the sight distances though, which show that if a driver has increased sight 
distances available, deceleration occurs earlier. Effects of individual guiding elements were not 
found, although adding guiding elements to the sight distance (SDmaxBP1) increases this effect. The 
finding that stopping sight distance (SSDBP1) added more explainability to the regression analysis 
of the position of BP1 (dBP1) than the road sight distance (RSDBP1) could be explained because SSD 
analysis in ‘Zicht’ created a smoother line than RSD analysis because it is less prone to sight 
obstructions. This adds to the thought that drivers need continuous information (Coutton-Jean et 
al., 2009; Singh & Fulvio, 2007). The presence of curve signs only correlates to the position of BP1, 
when these are tested on correlation in Figure 3-7. But when added in a regression model together 
with horizontal radius it shows no extra explainability, other than the speed at BP2 (vBP2).  

The cross section is of influence both on the position where deceleration starts (BP1), as well as the 
speed in a curve. Increasing the width of a cross section, increases the distance of BP1 from the 
curve start. This could be explained by the speed at BP1, however this was not collinear. One 
explanation could be the extra perceived risk with multiple lanes in a cross section (Vos et al., 
2021a), which could lead the driver to decelerate more cautiously. But, because we tested only 
speed profiles in free flow situations, this explanation is unlikely, since not much other vehicles 
should be around during the measurement. The addition of pre-sorting tasks effects increase this 
effect. Having a discontinuity at breakpoint 1, increases the distance to the curve start even more. 
The speed in a curve decreases with the addition of extra lanes, but only if the length and angle of 
the curve are taken into account. When analysing the number of lanes in a curve without any other 
variables, the increasing number of lanes increases speed in a curve, just as Calvi et al. (2018) also 
showed. Our study shows the impact of other variables of the curve on this effect. One of these 
effects is the direction of the curve. We show that in right turning curves the speed is higher than 
in left turning curves, which is not in line with the findings of Farah et al. (2019) but is in line with 
findings of Misaghi and Hassan (2005). Since more visual attention is towards the right in right 
turning curves compared to attention to the left in left turning curves (Lappi & Lehtonen, 2013; 
Shinar et al., 1977), but no sight distances added explainability to the speed at breakpoint 2, it 
remains unclear as to why drivers drive faster in right turning curves. However, since all the afore 
mentioned studies were undertaken in right driving countries, it could have to do with the added 
visibility of the curve trajectory, because it is less obscured by the bodywork of the car. 

The relation between the radius and start of deceleration shows an increase in variability of the 
position of BP1 when the radius decreases. This heteroscedasticity is explained mostly by the speed 
at BP1, the larger the radius of a curve, the less speed adjustment is needed. The relation of radius 
and the speed in a curve shows a decrease in variability of the speed at BP2 if the radius decreases. 
This shows that the smaller a radius gets, the less speed in a curve is influenced by other variables 
than the horizontal radius.  

By using all individual speed profiles in the statistical analysis, we were able to gain insight in 
individual speed choices. This showed a positive correlation between the speed before a curve, and 
inside a curve, suggesting that fast drivers on tangents, also drive fast through curves. This could 
relate to individual driving style or familiarity. Since speed before a curve is important to the speed 
in a curve, speed prediction models should pay more attention to elements which influence speed 
before a curve, such as discontinuities. Hassan, Sarhan, and Dimaiuta (2011) already noted that 
both upstream and downstream elements influence measurements at a certain location. 

No correlation to the vertical alignment was found in this study. This could be related to the 
relatively large sag curves in the data-set, so critical combinations are almost not present in the 
data. This could also be due to the relative flatness of most road sections in the Netherlands, which 
could also explain why the grade of the road did not correlate with any breakpoint as well. 

The amount of precipitation has no substantial influence on the position of BP1, or the speed at 
BP2, and therefore not on deceleration. Wet surfaces offer less friction (Donnell et al., 2016; Li & 
He, 2016) and therefore lead to increased crash risks. This increased risk seems not to influence 
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speed behaviour. A small correlation to daylight and breakpoint 1 is seen. Drivers tend start 
decelerating later in daylight, suggesting a more cautious curve approach in lessened visibility, the 
effect is however less than half a second. 

The sample of drivers used in this research appear to be faster drivers than the average driver in 
the Netherlands. This might also indicate a higher level of experience and familiarity, and could 
also be an explanation for not finding relations to precipitation. This should be kept in mind when 
translating these insights into design-policy or safety assessments. The use of this set of faster 
drivers represents a subset which is willing to take a higher risk of skidding than the average 
driver. 

The use of High Frequency Floating Car data is promising, but this data is not readily available 
because regular Floating Car Data recording methods need to be altered into a higher data 
gathering frequency within the used apps. This includes careful consideration of research purposes 
and selecting useful road sections in future research using this type of data. Because the data has 
high frequency time series, using complex functional data analysis could give more multi-
dimensional insights (Ramsay, Hooker, & Graves, 2009).  

The discussion showed uncertainty in causality for the relation between visibility and the position 
where drivers start decelerating. Further research on where the visual focus of drivers lies just 
before deceleration, could give better insights into the cues which drivers use to start decelerating. 
Using two time dependent variables – visual focus and start of deceleration – could infer a causal 
relation between the guiding element which was focussed on by the driver and the deceleration 
which occurred, using knowledge about the drivers information processing (Shinar, 2017c). 

3.5 Conclusions 

We were able to show that the distance to a curve start where drivers start to decelerate is related 
to the horizontal radius of that curve, and this result confirms earlier findings that speed in the 
curve is also related to the horizontal radius. We found relations of the driven speed in front of the 
curve to the speed behaviour in curve approach and concluded that drivers stop decelerating at 
around 135 meters into the curve independent from the horizontal radius and speed.  

So, horizontal radius is a key characteristic for a curve and the speed behaviour upon curve entry. 
Variability in positions where drivers start to decelerate are explained further by stopping sight 
distances, number of lanes, the presence of a discontinuity for pre-sorting and daylight. We were 
unable to find relations towards specific guiding elements in a curve which determine speed 
behaviour in front of a curve, other than the presence of curve signs.  

The speed in a curve is further explained by the deflection angle and length of a curve, as well as 
the direction of the curve. Also the cross section is of influence, but we were unable to provide 
good explanation to the relation of the number of lanes, width of the emergency lane and 
discontinuities with the speed inside the curve. Of further interest is that sight distances do not 
seem to influence speed within a curve.  

Given the insights gained in this research, freeway curve design should not be solely based on side 
friction, but should take actual speed behaviour into account as well. This means considering the 
existence of deceleration in a constant circular curve, and acknowledging the influence of upstream 
road characteristics and other curve characteristics on speed behaviour upon a curve. This could 
reveal differences in friction demand based on actual speed behaviour. Furthermore, problems 
regarding to speeding and traffic safety in curves, can be analysed using the variables in this 
research.  
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4 Parsimonious Models of the 85th Percentile 
Speed Development through Curves 

 

This chapter has previously been published as: Vos, J., & Farah, H. (2022). Speed development at 
freeway curves based on high frequency floating car data. European Journal of Transport and Infrastructure 
Research, 22(2), 201-223. 

 

 

Abstract 

Road designers need to have insights where deceleration and acceleration are expected related to 
the position of the curve, and in in which amount so that drivers are able to safely decelerate and 
accelerate respectively into and out of a freeway curve. For this, empirical speed data is needed. 
Therefore, Floating Car Data in 153 curves in The Netherlands were collected at a resolution of 1 
Hz and were filtered on free-flow periods, to analyse over 800 thousand unique continuous free-
flow speed observations on these curves. Regression models were developed to predict speed 
development, including deceleration and acceleration behaviour upon entering and exiting 
freeway curves. The models rely on easy to generate geometric design variables, including the start 
and end position of the horizontal curve, the horizontal radius and the number of lanes. Using 
these variables, the designer can predict the speed development based on the 85th percentile of 
speed and acceleration, relative to the position of the curve. The regression models reveal strong 
goodness-of-fit of the predicted 85th percentiles of speed in a curve, showing acceleration and 
deceleration inside the curve, and higher predicted 85th percentile speeds than the design speeds. 
The models also show satisfying results in speed development prediction in sets of consecutive 
curves with different characteristics, as well as deceleration when entering a first curve and 
acceleration when exiting a last curve. These insights are valuable in evaluating road design in 
relation to traffic safety based on its predicted use. 
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4.1 Introduction 

Curves are known as an infrastructural element where many road accidents occur (Davidse et al., 
2020). If a curve comes unexpectedly, drivers might be surprised (Alexander & Lunenfeld, 1986; 
Richard & Lichty, 2013) and react by braking too fiercely resulting in large speed differences in 
traffic or a skidding car and run-of-the-road accidents (Aarts & Van Schagen, 2006; Mahapatra & 
Kumar, 2018; Torbic et al., 2014). Drivers should be able to safely decelerate and accelerate 
respectively into and out of a freeway curve. Therefore designers need to have insights in where 
deceleration and acceleration are expected related to the position of the curve, and in in which 
amount. This will help designers to design safe deceleration and accelerations lanes, so the driver 
can give the needed attention to the operational driving task at hand; speed adjustment. It will 
furthermore give insights into the smoothness of speed adjustment in consecutive curves, leading 
to a consistent design without surprising the driver (Hassan, 2004). 

Traditionally, speed prediction modelling use point speed data, but it has been argued that this 
method does not show enough insights into acceleration and deceleration (Hassan, Sarhan, & 
Dimaiuta, 2011). Continuous speed profiles however do provide valuable insights into speed 
development along curves (Dias et al., 2018), because they provide continuous information along 
the alignment. In the last decade several studies have generated speed profiles using driving 
simulators (Bella, 2014; Montella, Galante, et al., 2014; Alfonso Montella et al., 2015; Wang et al., 
2020), usually to research specific elements of the road (Bobermin et al., 2021). Other studies used 
instrumented vehicles to analyse speed profiles (Altamira, García Ramírez, Echaveguren, & 
Marcet, 2014; Cafiso & Cerni, 2012; Cafiso & La Cava, 2009; Echaveguren, Henríquez, & Jiménez-
Ramos, 2020; Hashim, Abdel-Wahed, & Moustafa, 2016; Malaghan, Pawar, & Dia, 2020, 2021; 
Montella, Pariota, Galante, Imbriani, & Mauriello, 2014; Nama, Sil, Maurya, & Maji, 2020). These 
methods usually have low sample sizes of observed curves or participants and suffer from 
participant bias. Furthermore, besides the study of Alfonso Montella et al. (2015), these studies 
focus on the amount of deceleration or acceleration, but not on where this is located related to the 
position of the curve. Figure 4-1 shows the general approach and the used variables in recent 
literature. Usually, the minimum speed in the curve (vmin) is identified and subtracted from the 
maximum speed upstream of the curve (vmax). This results in the speed difference known as ∆v. The 
distance between the positions of vmax and vmin (D) is then used to calculate the deceleration (d) 
using equation 4-1. 

 𝑑 =  
(𝑣𝑚𝑎𝑥 −  𝑣𝑚𝑖𝑛)

2𝐷
=

∆𝑣

2𝐷
 [4-1] 

where: 
 d   =  average deceleration  
 vmax  = maximum measured speed upstream of curve 
 vmin  = minimum measured speed inside curve 
 ∆v  = the difference between vmax and vmin 
 D  = distance between positions of vmax and vmin 
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Figure 4-1 Overview of general approach and variables used in recent deceleration research. 

This approach has two drawbacks. It does not generate a model to position the deceleration related 
to the position of the curve, and it assumes a constant deceleration. Several studies have shown 
that vmin is not reached at curve start, otherwise known as the Point of Curvature (PC), or at the 
Midpoint of the Curve (MC) (Bella, 2014; Malaghan et al., 2021; Vos, Farah, & Hagenzieker, 2021b). 
So, there seems to be no geometrically fixed point defining vmin. This makes it hard to implement 
speed profiles in geometric design checks and could underestimate the combined need for lateral 
and longitudinal friction during curve entry (Hassan, 2004). To summarize, previous research into 
speed profiles has improved our understanding of deceleration. However, there are still some 
limitations in existing speed profile research: 

• low sample sizes; 

• participant bias; 

• inability to relate deceleration to position of curve; 

• an assumption of constant deceleration based on ∆v. 

Therefore, we aim to further develop the understanding of speed behaviour and its 
implementation by developing speed and acceleration profiles. This research therefore has three 
goals: 

1. model speed development related to the position of the curve as speed profiles; 

2. model acceleration development related to the position of the curve as acceleration profiles; 

3. use generic variables which are easy to derive from geometric designs and develop 
parsimonious models (Tenenbaum & Filho, 2016). 

To overcome the low sample sizes and participant bias, High Frequency Floating Car Data (HF 
FCD) is used. This is speed data collected from a route navigation app users which was for our 
study set to a data sampling frequency of 1 Hz. This approach ensures naturalistic driving, because 
the users of the app were unaware of the data collection. The only downside is that the users remain 
completely anonymous, because of General Data Protection Regulation laws, so no demographics 
are known. Besides this downside, this data collection provides thousands of unique speed profiles 
in a large number of curves.  

To our knowledge, this study is the first to use HF FCD to analyse speed profiles and generate 
models to predict deceleration and acceleration related to the position of the curve. 

The following section further discusses the methods. The third section analyses the retrieved data 
in two parts; first it analyses the speed development, followed by the acceleration development. In 
the fourth section we discuss the results and the study limitations. Finally, we summarize the main 
conclusions in section five. 
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4.2 Methods 

For the analysis in this study, 99 freeway sections in The Netherlands were selected, containing 153 
curves with different characteristics, as shown in Table 1. The freeway sections were chosen with 
upstream and downstream tangents of at least 1.000 m, which ensure that drivers are able to drive 
their desired operating speed in free flow situations. The curves are located throughout The 
Netherlands – both in rural and urban areas – as shown in Figure 4-2, and only contain main 
carriageways and connector roads in junctions. The selected curves include long tangents upstream 
and downstream which ensure that drivers’ speed behaviours are not influenced by other 
geometric elements such as small tangents, or cross roads. 

 

Figure 4-2 Map of The Netherlands showing the selected freeway sections. 

All selected road sections in this study were re-engineered based on digital terrain models to obtain 
the present geometrical characteristics. The main horizontal characteristics are summarised in 
Table 1. Since The Netherlands is a rather flat country, the range of the vertical grades of the curves 
is -3.3% – +2.8% (average 0.0%, SD = 1.1%). 

4.2.1 High Frequency Floating Car Data 

High Frequency Floating Car Data (HF FCD) was collected by setting the data collection frequency 
of the route navigation app “Flitsmeister” to 1 Hz along the selected freeway sections. This 
smartphone app is used by approximately 1.6 million users in The Netherlands – roughly 15% of 
all driver-licence holders. Data was collected in March, April and September of 2020, generating 
12.5 million individual speed profiles. These were bought by the Dutch Ministry of Infrastructure. 



Chapter 4 Parsimonious Models of the 85th Percentile Speed Development through Curves 67 

The HF FCD was then mapped along the re-engineered freeway sections, to generate individual 
speed and acceleration profiles, which are connected to the geometric characteristics of the 
respective road sections. 

In these individual speed profiles, breakpoints (BPs) were identified. These BPs are the positions 
surrounding curve start and curve end where drivers deviate from a constant speed (Alfonso 
Montella et al., 2015; Vos et al., 2021b). These BPs are defined based on the position where drivers 
first deviate from 0 m/s2 upstream of curve start (BP1), first reset to 0 m/s2 downstream of curve 
start (BP2), first deviate from 0 m/s2 upstream of a curve end (BP3), and first reset to 0 m/s2 
downstream of a curve end (BP4). Furthermore, we defined the positions where maximum 
deceleration occurs upstream of curve start (MAXdec) and where the maximum acceleration 
occurs downstream of curve end (MAXacc). This is shown in Figure 4-3, in theoretical speed and 
acceleration profiles. Curve start and curve end are therefore the reference points (i.e, distance 
value of zero) of the BPs and are defined by the start and end of the continuous radius. Relative to 
these reference points, upstream position values are negative and downstream position values are 
positive. At those positions, the speed and deceleration are captured for the models in this research. 

 

Figure 4-3 Theoretical speed and acceleration profiles, showing the positions of the breakpoints 

and maximum deceleration and acceleration in relation to curve start and curve end. 

4.2.2 Data filtering and curve grouping 

Individual speed profiles during road works and in non free-flow situations were filtered out, 
because these speed observations could be affected by other factors other than the road geometrics. 
Furthermore, v85 is usually defined as the speed which 85 percent of all vehicles are observed to 
travel at or below in free-flowing conditions (Hassan, Sarhan, Porter, et al., 2011; Lamm, Choueiri, 
Hayward, & Paluri, 1988). For simplicity we will refer to the 85th percentile of the free flow 
measurements as 85th percentile speeds or v85. To identify free-flow observations, detector loop 
data (Nationaal Dataportaal Wegverkeer, 2020) was used from each freeway section which shows 
the total amount of traffic per minute per lane. Based on the timestamps of the HF FCD, we 
eliminated all individual speed profiles in periods with more than 5 vehicles per minute per lane. 
This results in a 95% probability that the remaining individual speed observations were in free 
flow situation with headways greater than 5 seconds (Hashim, 2011). After filtering, the data 
included 881,153 individual speed profiles, with an average of 8,901 individual speed profiles per 
freeway section (max 39,618, min 330). This sample represents 7.6% off all drivers in the selected 
time periods (free-flow without roadworks). The loop-detectors also collect average speed per 
minute. The averages of the entire population from the loop-detectors were compared, to the speed 
observations from the HF FCD data sample and this has shown that the sample of drivers in the 
HF FCD drive on average 5.4 km/h (SD 4.9 km/h) faster than the entire population. Based on other 
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speed observations of the entire population (Farah et al., 2019), the sample in this study represents 
on average around the 60th percentile of all drivers. 

Because in the selected freeway sections several consecutive curves were included, the curves were 
grouped based on their relative positions. This was done to gain information about the speed and 
acceleration observations at the different BPs without it being influenced by other nearby 
consecutive curves. So, speed behaviour upstream of a curve was analysed on first curves only, 
speed inside a curve was analysed on single curves only and speed downstream of a curve was 
analysed on last curves only. Single curves are also included in the first and last curve groups, 
because it is assumed they have the same behaviour at respectively curve start and curve end. The 
variables for each curve group are summarised in Table 4-1. 

Table 4-1 Summary of the curve groups. 

 All curves First curves Single curves Last curves 

Number of 
curves 

153 99 47 99 

Average radius 
(m.) 

297 
range: 60 – 801 

SD = 174 

315 
range: 60 – 801 

SD = 189 

301 
range: 60 – 749 

SD = 172 

268 
range: 60 – 750 

SD = 167 

Average length 
(m.) 

303 
range: 31 – 1018 

SD = 210 

308 
range: 31 – 1018 

SD = 223 

432 
range: 78 – 1018 

SD = 212 

338 
range: 50 – 1018 

SD = 212 

Average 
deflection angle 

(grad.) 

86 
range: 6 – 284 

SD = 67 

85 
range: 6 – 284 

SD = 71 

112 
range: 36 – 284 

SD = 65 

103 
range: 11 – 284 

SD = 68 

Mode of number 
of lanes 

1 
range: 1 – 4 

SD = 0.8 

1 
range: 1 – 4 

SD = 0.8 

1 
range: 1 – 3 

SD = 0.7 

1 
range: 1 – 3 

SD = 0.6 

Based on these curve groups speed development was analysed first, followed by an analysis on 
acceleration development. 

4.3 Data analysis 

The focus of the analysis in this paper is on the 85th percentile of speed and acceleration because 
design speeds are determined based on the 85th percentile of speeds or anticipated operating 
speeds (Fitzpatrick & Kahl, 1992; A Policy on Geometric Design of Highways and Streets 2018, 2018; 
Rijkswaterstaat, 2022). Furthermore, the main design variable in a horizontal curve, is its horizontal 
radius which is known to be of main influence on driving speeds (Hassan, Sarhan, Porter, et al., 
2011). Therefore, the speed analysis starts with analysing the 85th percentile of speeds at the 
different breakpoints and in relation to the horizontal radius.  

4.3.1 Speed profiles based on the 85th percentile of speed 

The 85th percentile of speeds at the four breakpoints of each curve in the dataset were calculated, 
but also at the curve start and curve end. The deceleration and acceleration inside the continuous 
curve is of special interest, because this could entail risks of skidding since this combines both the 
use of both lateral and longitudinal friction (Himes et al., 2019; Pacejka & Besselink, 2012). 
Furthermore the 50th percentile of the positions of the four breakpoints relative to curve start and 
curve end were calculated, because the aim is to generate 85th percentile speed profiles using these 
positions. The distribution of the positions of breakpoints (boxplots in Figure 4-4) is rather similar 
along the different speed percentiles, as shown in Figure 4-4. So, using the 15th or 85th percentile 
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positions, would result in skewed profiles, meaning the presented deceleration or acceleration 
would be too steep or to flat.  

 

Figure 4-4 Two examples showing the 15th, 50th and 85th speed profile, and their respective 

distributions of positions of BP1 and the position of curve start along the alignment. 

The values for the v85 and positions of the breakpoints are plotted in Figure 4-5, shown in relation 
to the horizontal radius of the curve. The grey points represent all the 153 curves in the dataset, the 
black points represent the specific group used. The used groups show a lesser variability than the 
entire set, which is to be expected.  

Figure 4-5A shows how drivers tend to start braking more ahead of a curve (pos50BP1), when the 
radius decreases. This makes sense, because a greater amount of speed has to be reduced. Figure 
4-5B shows a rather very mild increase in speed at BP1 (v85BP1) with a mean of 124 km/h, which is 
to be expected, since no major influence of the curve is expected here because relative long tangents 
are positioned upstream of the first curves. The slight slope towards smaller radii can be explained 
by the fact that some small radii in The Netherlands are designed on separated carriageways in 
junctions, which tend to have lower speeds. Figure 4-5C, 4-5E, 4-5G and 4-5H show a firm 
correlation of speed throughout the curves, at curve start, BP2, BP3 and curve end (v85CS, v85BP2, 
v85BP3 and v85CE) to the horizontal radius, respectively. Figure 4-5D and 4-5F show a weak 
correlation of the position where drivers stop decelerating in a curve (pos50BP2) and start 
accelerating out of a curve (pos50BP3). These positions are however rather constant at around 75 m. 
after curve start for BP2 and 75 m. before curve end for BP3. Figure 4-5I shows it takes drivers 
longer to gain a constant speed after leaving curves (v85BP4) with lower radii, which is explained 
by the greater speed increase. Lastly, Figure 4-5J shows that drivers adopt a lower speed after 
leaving a curve with a small radius at BP4 (pos85BP4) than when they leave a curve with a relative 
large radius. 
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Figure 4-5 Scatterplots comparing horizontal radius to the 85th percentile of speed and median 

positions of breakpoints. All 153 curves are represented in grey points. The used subset in black 

points refer in A and B to first curves, C through H to single curves, and for I and J to last curves. 
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The regression lines shown in Figure 4-5 can be used to calculate coordinates of speed profiles 
based on horizontal radii. For example, using Figure 4-5A for the position of BP1 and Figure 4-5B 
for the 85th percentile of speed at BP1, it can be determined where drivers start to decelerate 
upstream of curve start and at which speed. In Figure 6 these coordinates were calculated for a set 
of horizontal radii to generate speed profiles based on breakpoints. Figure 4-6A shows the speed 
profiles for different horizontal radii upon curve entry, based on the following coordinates: 
(pos50BP1, v85BP1), (0, v85CS), (pos50BP2, v85BP2). Figure 4-6B shows the speed profiles for different 
horizontal radii upon curve exit, based on the following coordinates: (pos50BP3, v85BP3), (0, v85CE), 
(pos50BP4, v85BP4). Figure 4-6A shows deceleration slopes, which get steeper if the radius decreases 
below 300, meaning drivers brake harder in front of relative small radii. The opposite is true for 
acceleration out of a curve. Figure 4-6B shows that the acceleration is rather constant out of a curve, 
but decreases when radii increase over 300 m. Furthermore, Figure 4-6 shows that deceleration and 
acceleration is greater upstream and downstream of the curve respectively, than inside a curve.  

 

Figure 4-6 Profiles for the 85th percentile of speeds on different horizontal radii based on 

breakpoints and related to the start and end of the curve. 

However, as seen in Figure 4-5, there is still some variability in the speed profiles as shown in 
Figure 4-6. A sensitivity analysis was done on which variables could explain this variability best. 
Using variables which are customary in design guidelines, and are easily distinguishable by drivers 
(Vos et al., 2021a), the influence of the number of lanes and the length of the curve were identified 
as extra factors explaining these variabilities. Figure 4-7A shows how the 85th percentile speed 
differs when having 1 lane in a curve compared to more lanes (notice that the regression lines for 
2 and 3 lanes overlap). Figure 4-7B shows higher speeds in curve lengths shorter than 250 m. 
Appendix B contains the different subsets of these variables for the 85th percentile speeds, and for 
the positions of the breakpoints. 

 

 

Figure 4-7 Sensitivity analysis on the number of lanes and length of a curve. 
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Adding the distinction between 1 lane or more to the model improved all the v85 predictions 
significantly (p < 0.001). Collinearity between variables was checked, for example the distinction 
between 1 lane or more was not found to be correlated with ln(Rh) and was therefore used in the 
models. The correlation of nLanes1BP1 with ln(Rh) is r = 0.09, for nLanes1 is r = 0.35 and for nLanes1BP4 

is r = -0.04. For the positions of BP1 and BP4, adding extra variables did not result in better models. 
The models for the positions of BP2 and BP3 are very weak, and adding variables did not improve 
models significantly, so, to keep in line with BP1 and BP4 we chose not to add variables. Adding 
the curve length itself or the distinction of curve length being more or less than 250 meters only 
improved the v85 predictions at BP2 and BP3. To create a continuous speed profile, the predictions 
from all speed and position models need to be combined. Adding curve length variables only in 
BP2 and BP3 models would mean that continuous speed profiles use different variables at different 
positions resulting in misalignments of speed prediction between CS and BP2, and BP3 and CE. So 
this variable was excluded for all breakpoints. This resulted in modelled speed profiles which align 
the observed data better, by using the below presented best subsets of variables to predict the 
coordinates of speed profiles. The coordinates are in the form of (pos50, v85) for each breakpoint.  

 

pos50BP1 = 155 * ln(Rh) - 1067   (R2 = 0.679)    [4-2] 

pos50BP2 = -11 * ln(Rh) + 130   (R2 = 0.078)    [4-3] 

pos50BP3 = 9 * ln(Rh) - 122   (R2 = 0.015)    [4-4] 

pos50BP4 = -159 * ln(Rh) + 1057   (R2 = 0.531)    [4-5] 

v85BP1 = 6 * ln(Rh) + 4 * nLanes1BP1 + 88  (R2 = 0.220)    [4-6] 

v85CS = 26 * ln(Rh) + 8 * nLanes1- 41  (R2 = 0.948)    [4-7] 

v85BP2 = 28 * ln(Rh) + 7 * nLanes1 - 58  (R2 = 0.961)    [4-8] 

v85BP3 = 27 * ln(Rh) + 7 * nLanes1 – 51  (R2 = 0.919)    [4-9] 

v85CE = 27 * ln(Rh) + 8 * nLanes1- 47  (R2 = 0.971)    [4-10] 

v85BP4 = 58 * ln(Rh) + 4 * nLanes1BP4 + 58 (R2 = 0.423)    [4-11] 

 

where: 

pos50 = 50th percentile of a position relative to curve start or curve end (distance in m.); 

v85 = 85th percentile of speed (km/h); 

Rh = horizontal radius of the curve (m.); 

nLanes1 = distinction of having 1 or more lanes (0 = 1 lane, 1 = more lanes). 

The R2 of the different models show that the radius of the curve and the number of lanes explain 
well the variability in the speed inside a curve. The variability of the positions of BP1 and BP4 is 
moderately explained by the radius of the curve. The variability of speed at BP1 and BP4 is weakly 
explained by curve radius and number of lanes at these BPs, this is generally seen for speed 
prediction models on tangents (Hassan, Sarhan, Porter, et al., 2011). The mean speed at BP1 with 
more than 1 lane is 125 km/h (SD = 9.3 km/h). The radius of the curve does not explain well the 
variability observed in the positions of BP2 and BP3, but, as seen in Figure 4-5D and 4-5F, the 
positions of these points are rather constant and not influenced by the radius of the curve. d50BP2 
has a mean of 93 m. (SD = 72 m) and d50BP3 has a mean of -106 m. (SD = 94 m.). Both have a median 
of 76 m. (negative for d50BP3). 

These models were compared on actual speed profiles to see how well they align with speed 
development in different situations. In Figure 4-8 actual observed 85th percentile speed profiles are 
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shown in a red dashed lines. The different horizontal radii and positions of curve start (CS) and 
curve end (CE) were added, together with the number of lanes in relation to the speed profile. For 
each curve, a predicted speed profile based on the following coordinates ((pos50BP1 + CS), v85BP1), 
(CS, v85CS), ((pos50BP2 + CS), v85BP2), ((pos50BP3 + CE), v85BP3), (CE, v85CE), ((pos50BP4 + CE), v85BP4) 
was added. Figure 8A shows a single, relative sharp, curve. The predicted profile aligns well with 
both slopes, but we notice also deceleration upstream of BP1 and acceleration downstream of BP4, 
although being at a lesser slope. Figure 4-8B shows predictions of a set of curves with radii around 
500 m. Only marginal speed development is seen and predicted. Figure 4-8C shows a set of curves 
with decreasing radii. The predictions follow the actual slope of entering the set of curves and 
exiting the set of curves. It also shows to negate the coordinates for BP3 to BP4 from the first curve 
and BP1 of the second, since they are smoothed together. Figure 4-8D shows this in a more extreme 
setting with two relative small radii curves, connected with a small tangent. Observed slopes of 
exiting the first curve and entering the second are quite well aligned with the predicted slopes. 
Figure 4-8E shows a set of three curves, of which the first two have about the same radius, and the 
last one is larger. The slope of entering the first curve of the set is quit smooth in the observed red 
line, but aligns about half way with the predicted line. Exiting the curve combination of curves was 
predicted at a steeper slope towards the third curve. Possibly drivers remain cautious towards the 
last curve. Finally, Figure 4-8F shows a complex road section with two sets of curves with each two 
curves and different numbers of lanes. In the tangent between the two sets of curves, a higher speed 
is predicted, but overall, the slopes are pretty well aligned with the observed speed. Overall, Figure 
4-8 shows relative well alignment of predicted and observed speeds in the curves, as well as the 
slopes of acceleration and deceleration, but are less well aligned with speeds at tangents. It also 
shows that based on the predicted speeds, inconsistent designs can be revealed, because these 
designs do not show a smooth operating speed profile.  
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Figure 4-8 Observed and predicted speed profiles; red dashed line is the observed 85th percentile 

speed, the black lines are the predicted speed profiles per curve. Curve radii in a grey box 

representing the position of the curve. Below that a line indicating the number of lanes present 

along the profile. 

In Figure 4-8, it was shown that the slopes that were predicted using the coordinates for the BPs 
and their respective 85th percentile speeds are rather accurate. So, based on these coordinates, the 
average acceleration and decelerations based on the different slopes can be calculated. Table 4-2 
provides the outcomes of those calculations for the range of radii shown in Figure 4-6. As noticed 
in Figure 4-6, Table 4-2 shows rather constant decelerations and accelerations along the range of 
radii up to 250 meters. Larger radii seem to result in lower accelerations and decelerations. The 
exception is the deceleration from CS to BP1, which shows to increase with decreasing radii. 
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Table 4-2 Average decelerations and accelerations based on predicted slopes from 85th 

percentile speed profiles. 

Rh 
(m.) 

1 lane 2 or more lanes 

Deceleration Acceleration Deceleration Acceleration 

BP1-CS 
(m/s2) 

CS-BP2 
(m/s2) 

BP3-CE 
(m/s2) 

CE-BP4 
(m/s2) 

BP1-CS 
(m/s2) 

CS-BP2 
(m/s2) 

BP3-CE 
(m/s2) 

CE-BP4 
(m/s2) 

75 -0.77 -0.29 0.12 0.61 -0.76 -0.40 0.18 0.57 

100 -0.80 -0.29 0.13 0.64 -0.76 -0.39 0.19 0.58 

125 -0.81 -0.27 0.13 0.65 -0.76 -0.38 0.20 0.58 

150 -0.81 -0.25 0.13 0.66 -0.75 -0.37 0.20 0.57 

200 -0.81 -0.20 0.13 0.66 -0.72 -0.33 0.21 0.53 

250 -0.79 -0.16 0.13 0.66 -0.67 -0.29 0.22 0.48 

300 -0.76 -0.11 0.13 0.63 -0.61 -0.25 0.22 0.41 

400 -0.67 -0.02 0.13 0.54 -0.44 -0.16 0.22 0.19 

500 -0.51 0.07 0.12 0.35 -0.18 -0.08 0.22 -0.22 

4.3.2 Acceleration profiles based on the 85th percentile of deceleration and acceleration 

In the previous paragraph the main focus was on analysing the slope in speed profiles to gain 
insights into deceleration and acceleration upon curve entry and curve exit. This paragraph 
enriches these insights, using the median positions where drivers maximize their decelerations and 
accelerations (pos50MAXdec, pos50MAXacc) and the observed 85th percentile of respectively the 
deceleration and acceleration (a85MAXdec, a85MAXacc) at those positions. This provides insights into 
the development of accelerations. Since the average acceleration inside of curves was found to be 
different from the average acceleration upstream and downstream a curve, the 85th percentile of 
deceleration and acceleration observed at respectively curve start and curve end (a85CS, a85CE) were 
also extracted from the data.  

Figure 4-9 shows scatterplots of these variables in relation to the horizontal radius. Figure 4-9A 
shows that drivers tend to maximise their deceleration closer to the curve start when the radius is 
larger, and Figure 4-9B shows that drivers decelerate harder at that point and when the radius is 
smaller, which is the same for the deceleration at curve start, but in a lesser amount, as shown in 
Figure 4-9C. Figure 4-9D shows that at curve end acceleration out of a curve is faster when the 
radius is smaller. Acceleration is highest at a position after curve end, and gets closer to curve end 
as the radius gets larger, as shown in Figure 4-9E. Finally, Figure 4-9F shows that at that point of 
maximum acceleration, the acceleration is larger when the radius decreases. 
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Figure 4-9 Scatterplots comparing horizontal radius to the 85th percentile of acceleration and 

deceleration as well as the positions of maximum acceleration and deceleration. 

Breakpoints are defined based on the acceleration being 0 m/s2 at those positions (Figure 4-3), so 
pos50 (50th percentile of those positions) for each breakpoint can be used as a position in an 
acceleration profile where 0 m/s2 is observed. By adding information from the regression lines in 
Figure 4-8, a deceleration and acceleration profile can be plotted based on the positions of the 
breakpoints, maximum acceleration, curve start and curve end. Figure 4-10 shows these 
acceleration profiles for the same set of horizontal radii used in Figure 4-6. Figure 4-10A shows the 
deceleration profiles upon curve entry based on the following coordinates: (pos50BP1, 0), 
(pos50MAXdec , a85MAXdec), (0, a85CS), (pos50BP2, 0). Figure 4-10B shows the acceleration profiles upon 
curve exit based on the following coordinates: (pos50BP3, 0), (pos50MAXacc, a85MAXacc), (0, a85CE), 
(pos50BP4, 0). Overall, Figure 4-10 shows the deceleration and acceleration development upstream 
and downstream of a curve.  
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Figure 4-10 Profiles for the 85th percentile of deceleration and acceleration on different horizontal 

radii based on breakpoints and maximum acceleration. 

Because Figure 4-9 shows variability around the regression lines, it was explored which variables 
might explain this variability. However, none of the variables added to the models contributed 
significantly to explaining this variability for the acceleration models. Appendix C shows the tested 
models. To keep in line with the other models for the 50th percentile of positions, no other variables 
were added to the positions of maximum deceleration and acceleration. The best subsets of 
variables for the additional coordinates needed for acceleration and deceleration profiles are given 
below: 

pos50MAXdec = 39 * ln(Rh) - 241   (R2 = 0.351)    [4-12] 

pos50MAXacc = -49 * ln(Rh) + 307   (R2 = 0.518)    [4-13] 

a85MAXdec = -0.58 * ln(Rh) - 4.18   (R2 = 0.712)    [4-14] 

a85CS = -0.46 * ln(Rh) - 3.15   (R2 = 0.702)    [4-15] 

a85CE = -0.19* ln(Rh) + 1.46   (R2 = 0.702)    [4-16] 

a85MAXacc = -0.50 * ln(Rh) + 3.44   (R2 = 0.825)    [4-17] 

where: 

pos50 = 50th percentile of a position relative to curve start or curve end (distance in m.); 

a85 = 85th percentile of acceleration (m/s2); 

Rh = horizontal radius of the curve (m.). 

The R2 values reveal relatively strong goodness-of-fit of the predicted 85th percentiles of 
deceleration and acceleration, while the goodness-of-fit of the models predicting positions of 
maximum deceleration and acceleration are relatively weak.  

These models were compared on actual acceleration and deceleration profiles, taken from the same 
road sections as Figure 4-8. In Figure 4-11 the 15th percentile and 85th percentile of acceleration were 
plotted in green dashed lines. The 15th percentile of acceleration is used as the 85th percentile of 
deceleration. The start and end of each curve was also included. Based on these positions of the 
curves, the predicted acceleration profiles per curve were created based on the following 
coordinates: ((pos50BP1 + CS), 0), ((pos50MAXdec + CS), a85MAXdec), (CS, a85CS), ((pos50BP2 + CS), 0), 
((pos50BP3 + CE), 0), (CE, a85CE), ((pos50MAXdacc + CE), a85MAXacc), ((pos50BP4 + CE), 0). Figure 4-11A 
shows a relative good match to the deceleration and acceleration around a single curve. Figure 
4-11B shows that the predicted acceleration and decelerations of curves with radii around 500 
meter are not detectable by the 15th and 85th percentiles of observed acceleration. Figure 4-11C 
shows that with a set of curves, only the deceleration up to the first curve, and the acceleration after 
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the last curve are aligned well. Between the two curves, the acceleration remains rather neutral, 
because speed was already adjusted in the first curve. Figure 4-11D shows that if the curves are a 
bit more apart, parts of the acceleration and deceleration between the curves are aligned, but with 
an offset. Figure 4-11E shows how the model aligns the acceleration upstream of the third curve 
relatively well, based on de acceleration out of the second curve. Figure 4-11F finally, shows how 
the deceleration before the second set of curves is aligned relatively well, based on the tangent 
between both sets of curves. In general, Figure 4-11 shows acceleration profiles are relatively well 
aligned for curves surrounded by tangents. For sets of curves, only the deceleration into the first 
curve, and acceleration out of the last curve are relatively well aligned. The acceleration profile 
between consecutive curves should be examined based on the speed profile mostly; if the speed 
remains relatively the same, no acceleration is observed. 

 

Figure 4-11 Observed and predicted acceleration profiles; green dashed lines are the observed 

accelerations at 15th and 85th percentile, the black lines are the predicted acceleration profiles 

per curve. Curve radii in a grey box representing the position of the curve. These acceleration 

profiles are taken from the same curves as presented in Figure 4-8. 
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4.4 Discussion and limitations 

The strong correlation between the horizontal radius to speed and acceleration is confirmed, which 
is also shown in numerous other studies (Farah et al., 2019; Hassan, Sarhan, Porter, et al., 2011). 
When identifying the slopes in the speed profiles when entering a curve, the results show different 
findings from those by Alfonso Montella et al. (2015) where increasing slopes were found when 
the radius decreases. This study found a relation only between the radius of the curve and the 85th 
percentile of maximum decelerations, not to the average decelerations.  

Also in line with other studies, this study was unable to present strong correlations between the 
speed on tangents and the geometric elements. The speed on tangents upstream of a curve are of 
importance to predict the deceleration before the curve. The predicted slopes in speed profiles are 
generally well aligned with the observed slopes, which are the average deceleration calculated 
based on speeds on tangents and in the curve.  

The acceleration models show a lesser goodness of fit than the speed models. This could be 
explained because acceleration is treated as a derivative of speed in this research. The slopes of the 
acceleration models were not further investigated, because of increasing uncertainties in the 
derivations. The slope of acceleration is known as the longitudinal jerk (m/s3) and has limited 
influence on general traffic safety, but can be used to identify individual aggressive drivers (Feng 
et al., 2017). 

It was the aim of this study to include only variables which are easily extracted from a geometric 
design, namely horizontal radius, start and end position of curves, and the number of lanes. Other, 
more complex variables (Vos et al., 2021b), might improve the models further, but are harder to 
implement in design evaluations. Furthermore, variables such as type of roadway, superelevation, 
transition curves, Curvature Change Rate or weather conditions do not have significant impact on 
speed behaviour or are collinear to horizontal radius (Vos et al., 2021b). 

The length of a curve was omitted from the regression models, as it was shown in the analysis to 
be insignificant for predicting the speeds at breakpoint outside of the curve. The models however 
show acceleration and deceleration inside a curve. So, with shorter curve-lengths acceleration and 
deceleration will overlap and visually show unrealistic speed development. This predicts a higher 
speed inside a curve then predicted by v85BP2 and v85BP3. More research is needed to understand 
the smoothing of the profiles, based on the current insights of the breakpoints. 

The 85th percentile of observed speeds before drivers start to decelerate upstream of a curve 
confirm the selected design speed of 120 km/h for main carriageways with two or more lanes. 
Based on the 85th percentile of speeds observed inside the curves, we noticed discrepancies up to 
30 km/h towards the design speeds used for designing freeway curves in The Netherlands 
(Rijkswaterstaat, 2022). These insights can be used to evaluate safety risks which arise from these 
discrepancies, such as friction demand, sight distances both horizontally and vertically, forgiving 
shoulder design, etcetera.  

The regression models shown in this study are based on radii ranging from 60 to 800 meters. It was 
noticed that when radii larger than 500 meters are used in these models, unrealistically high values 
are predicted. It seems the 85th percentile speed and acceleration are only influenced by radii 
smaller than 500 meters.  

Since the sample of drivers in this study showed to drive on average 5.4 km/h faster over the loop 
detectors, it is assumed that the 85th percentile speeds shown and predicted in this study, are lower 
for the entire population. 
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4.5 Conclusions 

Insights were gained in this study on speed and acceleration development upstream and 
downstream of freeway curves based on a highly detailed data-set containing High Frequency 
Floating Car Data combined with re-engineered road sections and detector loop data. Slopes in 
predicted speed models, as well as predicted maximum deceleration and acceleration, based on 
the horizontal radius and number of available lanes align well with the observed speed and 
acceleration data. Furthermore, distinction between acceleration outside and inside a curve was 
made, which is of importance to design evaluation related to friction. We show that inside a curve 
besides lateral friction, also longitudinal friction is absorbed. This deviates from design guidelines 
in which only lateral friction is used to calculate curve radii. Differences in deceleration and 
acceleration patterns outside and inside the curve are observed, with decreasing curve radii, 
drivers decelerate stronger in a curve.  

Speed and acceleration development are predicted based on the coordinates of breakpoints. 
Breakpoints identify positions relative to curve start and curve end where drivers start and stop 
accelerating. Combining these positions with the 85th percentile of speed, speed development can 
be predicted. It is shown that the speed development in a curve can be strongly explained by the 
horizontal radius and whether the curve has one or more lanes. The correlations to the speed 
development on the tangents were weaker, but the predicted slopes in the speed profiles (which 
represent deceleration or acceleration) align well with the observed speed development. 
Furthermore, the speed development around consecutive curves is reasonably well predictable, 
using the developed predictive models per curve, gaining insights into speed development by their 
overlapping characteristics. Acceleration development was further investigated by gaining insight 
into the positions where maximum deceleration and acceleration is reached and the 85th percentile 
of those observations. The observed acceleration profiles for entering a first curve and exiting a last 
curve also align reasonably well to the predicted acceleration development. Acceleration inside a 
set of curves is not predictable based on our models, because our models assume acceleration 
outside of a curve, while a follow-up curve might not induce this.  

The presented models are ready to be implemented into geometric design evaluation, because they 
show how speed and acceleration develops based on the position of the curve. Furthermore, the 
models can give insights into the needed acceleration and deceleration lengths around relative 
sharp curves in freeway connector roads. Because the speed development can be predicted, 
designers can check the needed sight distances, signage or even the needed friction, as well as 
speed inconsistencies. 

The presented speed observations confirm the design speed on main carriageways based on the 
85th percentile of observed speed. The design speeds in curves however do not match up with the 
observed 85th percentile of speed in this study confirming similar findings of previous studies. 
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5 On-Road Study to Uncover Which Cues 
Drivers Use in Curve Approach 

This chapter has previously been published as: Vos, J., de Winter, J., Farah, H., & Hagenzieker, M. 
(2023). Which visual cues do drivers use to anticipate and slow down in freeway curve approach? An eye-
tracking, think-aloud on-road study. Transportation Research Part F: Traffic Psychology and Behaviour, 94, 
190-211. 

 

 

Abstract 

Although much research is done on speed and gaze behaviour inside curves, there is little 
understanding of which cues drivers use to anticipate and slow down while approaching curves. 
Therefore, an on road experiment was conducted in which 31 participants drove through six 
freeway curves in their own car. During the experiment, look-ahead fixations and speed were 
recorded using an eye-tracker and a GPS tracker, respectively. In addition to these measurements, 
the participants verbalised their reasons for changing speed. The distribution of fixations over 
various areas of interest was investigated around the start of deceleration before each curve and 
around the start of each curve. Verbalisation data were analysed to infer the number and types of 
reasons for changing speed and when these were mentioned together with mentions of 
deceleration before a curve. The results showed that before starting to decelerate, the participants 
fixated mostly on the Focus of Expansion and edges parallel to the curve trajectory, whereas most 
fixations on warning or speed signs were recorded mostly after participants started to decelerate. 
These findings suggest that drivers use information from the Focus of Expansion, be it a change in 
optical flow or the presence of a kink in the alignment, as the main cue to start decelerating. Parallel 
edges are also important cues, whereas warning and speed signs are primarily used to confirm that 
a speed change is needed. 
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5.1 Introduction 

Freeways are designed to maintain a high speed throughout the trip, in accordance with drivers’ 
expectations regarding operating speeds on freeways. At the same time, it is imperative that 
drivers anticipate any curves well in advance and reduce their speed to navigate the curvy parts 
of the freeway safely. There is a lot of research on curve driving itself, both into speed behaviour 
(Malaghan et al., 2020; Vos & Farah, 2022) and perception (Lehtonen et al., 2018; Macuga, 2019), 
but driving task analysis (Campbell et al., 2012) shows that the anticipation of a curve starts far 
ahead of a curve and has considerable perceptual and cognitive requirements, i.e. where drivers 
look and how they judge this visual information. Freeways are considered to be self-explanatory 
(Theeuwes, 2021; Walker et al., 2013), meaning that the driver knows when speed reduction is 
required based on a uniform road design. But there is limited research investigating which cues 
from the road design and environment drivers use to reduce their speed before a curve (Vos et al., 
2021a). This research aims to gain insight into which visual information is used by the driver in 
curve approach and how this is related to deceleration before a curve. 

Deceleration in curve approach has been modelled based on speed differences before and in the 
curve (Altamira et al., 2014; Hassan, Sarhan, Porter, et al., 2011; Malaghan et al., 2021), but these 
models primarily use geometric elements as independent variables; attentional measures such as 
speed signs and warning signs are usually ignored. Moreover, deceleration models only reveal the 
amount of deceleration before a curve and not the position where deceleration starts (Vos & Farah, 
2022), that is, the position where a driver starts to act towards the curve. Besides that the horizontal 
radius of the curve correlates to the position where a driver starts to slow down, Vos et al. (2021b) 
showed that sight distances also correlate to this position, indicating the relevance of visual 
information the driver uses. Lehtonen, Lappi, Kotkanen, and Summala (2013) showed that during 
perceptual exploration of the road, a distinction could be made between guiding fixations and look-
ahead fixations, which correspond, respectively, to the near and far points in the two-point steering 
model (Neumann & Deml, 2011; Salvucci, 2006). Guiding fixations are task-relevant fixations that 
precede action by about 1–2 s of driving (Mole, Pekkanen, Sheppard, Markkula, & Wilkie, 2021), 
whereas look-ahead fixations are fixations on objects relevant to future actions (Lehtonen et al., 
2013; Mennie, Hayhoe, & Sullivan, 2007; Sullivan, Ludwig, Damen, Mayol-Cuevas, & Gilchrist, 
2021). While driving on a tangent, the near point tends to be in the centre of the lane or on the car 
in front (Salvucci & Gray, 2004), and the far point is positioned on the horizon, where the lines in 
the environment seem to be still while the driver moves forward, that is, the point from which all 
optical flow vectors expand, also known as the Focus of Expansion after Gibson (1950). The guiding 
fixations in curve driving are usually aimed near the tangent point of the curve or the car ahead 
(Land & Lee, 1994; Lappi & Lehtonen, 2012; Shinar et al., 1977), and the look-ahead fixations are 
aimed more downstream in the curve towards what is identified as future point, far point (Lappi, 
2014), or occlusion point (Lehtonen et al., 2013). The curve radius itself – which is highly correlated 
to the operating speed – is hard to perceive by drivers because it appears as a hyperbola on the 
retina due to its viewing angle (Brummelaar, 1975; Fildes & Triggs, 1985; Springer & Huizenga, 
1975). Therefore, curve warning signs, special markings, and delineation are used to help the driver 
anticipate the curve correctly and choose a safe speed in the curve (Bella, 2013; Charlton, 2007; 
Costa, Figueira, & Larocca, 2022). This is in line with task descriptions of curve approach, which 
mention signs and visible road direction changes as indicators for curve anticipation (Campbell et 
al., 2012; McKnight & Adams, 1970). Drivers themselves indicate that a good view of the trajectory 
and the presence of guiding elements are important for choosing a suitable speed (Vos et al., 2021a). 
It is however difficult for drivers to reflect on speed choices. That is because speed reduction during 
curve approach is an operational driving task (Michon, 1985) and is a skill-based process (Ranney, 
1994) and therefore does not involve active thinking while driving. Speed reduction during curve 
approach can hence be described as subconscious. Charlton and Starkey (2011) showed that during 
unaware driving, correct motor responses are still produced. Similarly, in unaware locomotion, 
perceptual and cognitive processing is still present (Harms, van Dijken, Brookhuis, & de Waard, 
2019). This research aims to gain insights in these perceptual and cognitive processes and identify 
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the visual cues drivers use before and during deceleration while approaching a curve. To achieve 
this, two main research questions were formulated: 

- Where do drivers look during curve approach, and how does this relate to deceleration? 

- What do drivers report as important cues related to speed reduction during curve 

approach? 

To investigate these research questions, an on-road study was conducted. A field study was chosen 
because a laboratory setting might disturb the unawareness of the driving behaviour (Shinar, 
2017a). Furthermore, road geometry in laboratory settings (e.g., driving simulators) might not be 
representative of the real world (Bobermin et al., 2021). Familiarity with the test route may however 
bias the looking behaviour and driving speeds of local participants (Pratt et al., 2019; Young, 
Mackenzie, Davies, & Crundall, 2018), so this was also tested. We used portable eye-tracking, 
concurrent think-aloud procedures, and GPS tracking — a combination that has been proven 
valuable in investigating information processing thanks to the complementarity of the methods 
(Kircher & Ahlstrom, 2018; Lenne, Salmon, & Young, 2011). Eye-tracking has been used in driving 
experiments for several decades and has contributed to our understanding of which visual 
information is used during driving processes (Crundall & Underwood, 2011). We focus on look-
ahead fixations, since these are thought to reveal which cues are used to anticipate a curve. 
Concurrent think-aloud techniques can reveal in real-time what visual information drivers use to 
start an action (Read, Beanland, Lenné, Stanton, & Salmon, 2017), such as deceleration. 

The following section, section 2, describes the methods of the experiment. The results are reported 
in section 3 and discussed in section 4. Finally, the main conclusions of this research are presented 
in section 5. 

5.2 Methods 

5.2.1 Participants 

Thirty-one participants (5 female, 26 male) were recruited through the professional network of the 
first author and via the ANWB – the Royal Dutch Touring Club. None of the participants wore 
glasses. Participants had to own and bring a passenger car and their driver’s license. The research 
was approved by the Human Research Ethics Committee of the Delft University of Technology 
(letter of approval 1717). The participants had a mean age of 41.5 years (SD = 13.3 years) and a 
mean driving experience of 21.8 years (SD = 13.2 years). Most participants indicated being frequent 
drivers; only three indicated driving less than one day a week, while seven indicated driving every 
day. Participants were offered a €50 gift certificate for their time and car fuel. 

5.2.2 Procedure 

In order to capture how the participants interact with the road layout rather than other 
surrounding traffic, the experiment was carried out outside of peak hours in daylight settings, from 
9:30 to 15:15. 

Before the experiment, the participants were asked to sign an informed consent form and to fill in 
a NASA-TLX standardised test (Hart, 2006) regarding their drive to the location of the experiment. 
Next, the eye-tracker was calibrated, and the participant was asked to, during the experiment, 
reflect on their speed adaptations: “I want you to explain to me why you change your speed during the 
drive on the freeway. Try to constantly answer the question “how can you tell you need to slow down or 
speed up?”. In other words, please explain how you choose your speed. Please speak in your own words and 
drive like you normally would”. By keeping the aim of verbalisation towards speed change in general, 
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the participants were not biased towards curves. The participants then drove the route shown in 
Figure 5-1, which lasted 33 minutes on average. During the drive, the participants wore the eye-
tracker, and a portable GPS tracker was placed in the participants’ car to record speed and position. 
The participants were asked to switch off their ADAS, as we were interested in speed reduction by 
the human driver and not by any autonomous system. The experimenter sat in the back seat of the 
car, giving route directions to the participant by orally mentioning the target direction (e.g. 
Amsterdam) on the upcoming route signage, keeping an eye on the recordings, and nudging the 
participant when deviating from the think-aloud protocol. After the experiment, the participants 
completed another NASA-TLX regarding their drive during the experiment. Furthermore, the 
participants were asked to rate their familiarity with each curve on a Likert-scale from 1 (not at all 
familiar) to 10 (very familiar) (Harms, Burdett, & Charlton, 2021) using a map, pictures of the road 
or help from the experimenter to identify the curves, and to reflect on the experiment in terms of 
how they experienced it and how they anticipated curves in a post-experiment questionnaire. 
During the experiment, all communication, including the think-aloud, was done in Dutch. 

5.2.3 Test route 

The test route was located on the freeways to the south of Amsterdam, had a length of 39 km, and 
included six curves of interest, see Figure 5-1. The alignment of the curves was reconstructed in 
Civil3D using road measurements from the road authority to provide information about relevant 
geometric elements, such as the horizontal radii and the start of the continuous curve. The 
alignment starts at the position where the first route signage for the given direction is present and 
ends at the end of the connector road. The constructed alignment sections act as the scope of the 
data processing; data outside these sections was not processed. 

 

Figure 5-1 The route participants drove and the selected six curves analysed in this study. 

Curve 1 is positioned after a two-lane deceleration lane. The curve itself remains obscured by a 
noise barrier that ends approximately 150 m upstream of the curve. The curve has a horizontal 
radius of 105 m. Just after the noise barrier, an advisory speed sign showing 50 km/h is positioned 
on the right shoulder. Curve 2 is the end of a main carriageway consisting of two lanes. It has a 
horizontal radius of 88 m. The curve is preceded by speed limit signs showing 80 km/h and 60 
km/h and flashing warning signs at 700 m, 400 m, and 250 m upstream of the curve on both 
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shoulders. Curve 3 is a direct connector road with a horizontal radius of 250 m. A two-lane weaving 
section precedes this curve, and at the start of the curve, an advisory speed sign indicating 80 km/h 
is positioned on both shoulders. Curve 4a is preceded by a single lane split and a speed limit sign 
of 80 km/h positioned on the right shoulder of the curve. The curve has a horizontal radius of 360 
m. The connector road continues with a curve and a tangent of approximately 1600 m consisting 
of two lanes. This is followed by Curve 4b with a horizontal radius of 128 m. The curve is mostly 
obscured by an overpass and preceded by advisory speed signs showing 50 km/h on both 
shoulders. Curve 5 is the shortest, with a length of 150 m and a horizontal radius of 300 m, and is 
preceded by a three-lane asymmetrical weaving section. The curve is not preceded by warning 
signs. Following Curve 5, signs are in place for the remainder of the connector road. Curves 4a, 4b, 
and 5 are followed by other curves, which are not analysed because the speed behaviour in these 
curves would be influenced by the preceding curves (Kim & Choi, 2013; Vos, 2022). Figure 5-2 
shows dashcam pictures at the approximate median positions where deceleration starts. 

 

Figure 5-2 Dashcam pictures at the approximate median positions where deceleration before each 

curve starts. Google maps locations via these hyperlinks: Curve 1, Curve 2, Curve 3, Curve 4a, 

Curve 4b, Curve 5. 

5.2.4 Data collection 

The Qstarz BT-Q1000XT GPS-logger recorded the position and speed of the participants’ car at a 
rate of 1 Hz and with a known accuracy of 78.7% of the recorded location within 10 m of the 
expected location (Schipperijn et al., 2014). The Tobii Pro Glasses 3 records the participants’ gaze 
data at 60 Hz and an HD video in the looking direction of the participant. The participants’ 
verbalisations were also recorded by the Tobii Pro Glasses 3 in the HD video. 

Curve 1 Curve 2

Curve 3 Curve 4a

Curve 4b Curve 5

https://www.google.nl/maps/@52.3283889,4.7924158,3a,50.6y,280.17h,89.45t/data=!3m6!1e1!3m4!1sU5fFAz2ydBSRmNfrzOxvAQ!2e0!7i16384!8i8192
https://www.google.nl/maps/@52.285955,4.9510378,3a,51.5y,122.25h,86.57t/data=!3m6!1e1!3m4!1sqxFxKeu_Gl3qSiDVYRC1Ng!2e0!7i16384!8i8192
https://www.google.nl/maps/@52.2951599,4.9409897,3a,28.6y,339.8h,90.66t/data=!3m6!1e1!3m4!1s9oL02aMzxdFW48E7E-gx0A!2e0!7i16384!8i8192
https://www.google.nl/maps/@52.3226695,5.004314,3a,27.7y,37.79h,84.4t/data=!3m7!1e1!3m5!1sNxRm1V7NSh8sNRrVjn-5eA!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fpanoid%3DNxRm1V7NSh8sNRrVjn-5eA%26cb_client%3Dmaps_sv.tactile.gps%26w%3D203%26h%3D100%26yaw%3D98.77438%26pitch%3D0%26thumbfov%3D100!7i16384!8i8192
https://www.google.nl/maps/@52.3330716,5.0050624,3a,29.9y,338.45h,90.51t/data=!3m6!1e1!3m4!1sRd_8Y2tcbX6vxhgKuRhVqA!2e0!7i16384!8i8192
https://www.google.nl/maps/@52.3490129,4.9695341,3a,16.6y,304.4h,90.12t/data=!3m7!1e1!3m5!1srM1XZuWj4xAGBInpKYg4Ug!2e0!6shttps:%2F%2Fstreetviewpixels-pa.googleapis.com%2Fv1%2Fthumbnail%3Fpanoid%3DrM1XZuWj4xAGBInpKYg4Ug%26cb_client%3Dsearch.revgeo_and_fetch.gps%26w%3D96%26h%3D64%26yaw%3D249.06564%26pitch%3D0%26thumbfov%3D100!7i16384!8i8192
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5.2.5 Data analysis 

5.2.5.1 GPS data 

First, the GPS data points per participant were individually related to the closest position on the 
reconstructed alignment of the curves to have timestamps connected to specific positions along the 
alignment. Next, the acceleration profile was derived from the speed data by dividing the speed 
change in km/h every second by 3.6 to get acceleration in m/s2. Based on this acceleration profile, 
we were able to identify the last position upstream of the start of the curve where the participant 
maintained 0 m/s2. This position is illustrated in Figure 5-3 and served as the position where the 
driver initiated action while approaching the curve, that is, the start of deceleration before the curve 
(Vos et al., 2021b). Furthermore, based on the eye-tracking video, it was determined whether a 
participant was driving free-flow, i.e., having a minimum headway of 5 seconds (Hashim, 2011).  

 

Figure 5-3 Theoretical speed and acceleration profile showing the starting point of deceleration 

relative to the start of the curve. 

5.2.5.2 Fixation data 

The analysis of the gaze data was done in the Tobii Pro Lab (Tobii Pro, 2021), which enables manual 
labelling of Areas of Interest. The software shows the percentage of gaze samples per participant. 
When this was below 80%, it was analysed which individual curves had a coverage over 80% and 
could therefore be included in the analysis. The raw data were compared with the pre-set filters in 
the software, and it was concluded that the “attention filter” showed the most meaningful results 
in our dynamic experimental environment. This filter maintains a gaze velocity threshold of 100 
degrees/s, which allows for smooth pursuit (Bahill & LaRitz, 1984) and vestibular ocular reflexes 
(Schubert, Migliaccio, & Della Santina, 2006) to be captured as fixations. The software plots a 
fixation point halfway during the fixation length over the captured HD video. The visual size of 
the fixation point was chosen to be 1% of the video height, increasing to a maximum of 5% after a 
1 s fixation duration. If a fixation point fell into an Area of Interest (AoI), it was manually labelled 
as belonging to that AoI.  

For the applied labels, three types of fixations were identified, each corresponding to a number of 
AoIs: 

• In-car fixations, with mirrors and the speedometer as AoI. 

• Guiding fixations, which are fixations up to 2 driving seconds in front of the car and are 
used to guide the vehicle in the lateral position and keep distance (Lappi & Lehtonen, 2013). 
The corresponding AoIs included the centre of a lane, a car ahead, and tangent points. 

• Look-ahead fixations, which are used to identify future actions (Lehtonen et al., 2012; 
Mennie et al., 2007). For the look-ahead fixations, the first author conducted a first round 
of labelling derived from the literature mentioned in the introduction. This led to several 
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ambiguous labels, including overlapping ones, which were discussed among all authors. 
Based on this discussion, the authors defined a labelling hierarchy including three 
subgroups of AoIs relevant for look-ahead fixations: 
o The first group of AoIs contained parallel edges to the curve. Using these parallel edges 

as a discriminatory element adheres to Gestalt grouping principles (Čičković, 2016; 
Geisler, Perry, Super, & Gallogly, 2001; Wagemans et al., 2012), which suggest that 
drivers heuristically use parallel edges to the actual curve, to anticipate the curve. 
Parallel edges were defined as solid edges that included noise barriers and guardrails, 
or more jagged edges, such as a treeline.  

o If a fixation did not fall on a clear parallel edge, it was checked whether the fixation fell 
on objects that were either visually salient or carried information, namely, signs, 
gantries, or overpasses.  

o If the fixation did not fall onto any of these objects, it was labelled based on one of 
several generic zones, namely, an occlusion point, far zone, the horizon, or the Focus 
of Expansion (Lehtonen et al., 2012). When a car ahead was further away than 2 seconds 
from the participant it was not considered a guiding fixation, but rather labelled 
according to the zone it is located in (e.g., FOE, Far zone, etc.). 

Figure 5-4 provides an overview of all AoIs in the hierarchy used during the labelling process; it 
illustrates that when a fixation overlaps two or more AoI’s, the highest AoI in het hierarchy was 
selected. The full definitions of the corresponding labels are given in Appendix D. The labelling 
was done using the AoI tool in the Tobii Pro software. The AoI tool statically showed the defined 
labels as a snapshot and enabled the author to go along the video, fixation by fixation and label the 
correct AoI. The labelling was done by the first author. Because all fixations were labelled in this 
process, the reported distributions in the analysis section add up to 100% of the measured fixations. 

 

 

Figure 5-4 Identified Areas of Interest in the labelling hierarchy. On the right, an example of a 

road view (top) and the corresponding Areas of Interest (bottom). 
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The timestamps of the fixations were matched with the timestamps from the GPS data. In this way, 
we were able to position the labelled fixation data both in space and time, that is, relative to the 
curve start and the start of the deceleration. The fixation durations per AoI were summed up per 
50-m sections or per second for analysis in space or time, respectively, in line with the frequency 
of the GPS tracker, being 1 Hz, and given operational speeds of 30 m/s and an accuracy above 78% 
within 10 m. 

5.2.5.3 Verbal Protocol Analysis 

The verbalisations were transcribed verbatim in Dutch and segmented based on mentioned 
subjects, pauses, or interactions with the experimenter. A segment is defined as a single identifiable 
unit being a reference, assertion, phrase, thought, or sentence. Each segment was individually 
labelled. Per segment, a timestamp and English labels were added heuristically by the first author 
to transform the verbal reports into data on time and subject (Hughes & Parkes, 2003). Additional 
labels were used per segment to reflect whether the verbal report was retrospective in nature and 
originated from long-term memory (Ericsson & Simon, 1980) and to reflect the level of driving task 
the verbal report related to (Michon, 1985). The retrospective segments were omitted from the 
analysis because these did not reflect the relevant driving task. Driving task levels were labelled 
“strategic” referring mostly for route choices, “tactical” referring mostly for lane changes, and 
“operational” referring mostly for speed adjustments. The heuristic labels were discussed among 
all the authors, focusing on labels deemed ambiguous. The discussion resulted in a detailed 
description of the labels shown in the Appendix. Based on this detailed description, the first author 
altered the ambiguous labels accordingly. The following label groups were distinguished: 

• Driver-related: reporting on the driving style, operating or maximum speed, familiarity, or 
comfort. 

• Traffic-related: reporting on the traffic surrounding the participant or how the participant 
interacted with traffic. 

• Speed adjustments related to the curve: reporting on decelerating upstream of the curve or 
accelerating out of the curve. 

• Curve-related: reporting on curve sighting, anticipation, and signs. 

• Other cues: reporting on the general characteristics of the road and its environment; these 
could be cues for curves, such as the type of road, number of lanes, or route signage. 

• Non-speed-related: a residual group used to label all non-speed-related verbal reports. 

Examples of verbal feedback in this paper were translated into English by the first author.  

5.3 Results 

5.3.1 Task load 

The results of the NASA-TLX task load scores before and after the experiment were compared to 
assess the difference in task loads between normal driving (i.e., driving to arrive at the experiment 
location) and driving during this experiment. Temporal demand during normal driving (median 
= 25, SD = 21) was significantly higher, t(30) = 3.16, p = 0.004, than the temporal demand during 
the experiment (median = 10, SD = 14). According to six participants, the setting of the experiment 
was more relaxed compared to the normally rushed driving on a freeway, which could explain the 
above difference in temporal demand. The effort during the experiment (median = 20, SD = 17) 
was significantly higher, t(30) = -2.29, p = 0.029, than the effort during normal freeway driving 
(median 15, SD = 11). Five participants mentioned the extra effort of wearing the eye-tracker during 
the experiment. No significant differences were observed in mental demand, physical demand, 
performance, or frustration between normal driving and driving during the experiment. 
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5.3.2 Fixation duration 

The eye-tracker recordings of one participant were not saved correctly, one participant appeared 
to be near-sighted, and two calibrations were questionable. The entire measurements from these 
four participants were omitted from the database. The remaining 27 measurements were further 
analysed. During the experiment several days were rather sunny. The sun interferes with the 
infrared illuminators of the eye-tracker, resulting in poor eye-tracking or no measurements at all 
because of squinting eyes in several individual curves per participant. These individual curves 
were omitted from the database. All of the above resulted in 22 successful recordings for Curves 1 
and 4b, 21 successful recordings for Curve 2, and 23 successful recordings for Curves 3, 4a, and 5. 

The median fixation duration of all fixations was 240 ms (SD = 557 ms). In-car fixations, guiding 
fixations, and look-ahead fixations had a median duration of 240 ms (SD = 208 ms), 281 ms (SD = 
624 ms), and 220 ms (SD = 575 ms), respectively. 

5.3.2.1 Distribution of fixation duration towards curve start 

The distribution of fixation duration of all participants and curves from 550 m before to 250 m after 
the curve start is shown in Figure 5-5. The participants spent about 40% of the time on look-ahead 
fixations in the curve approach and curve entry. A Wilcoxon signed-rank test indicated that the 
number of look-ahead fixations 550 m before the start of the curve (median = 40%) and 150 m after 
the start of the curve (median = 36%) was not statistically significantly different (p = 0.222, r = 
0.106); for this comparison, 150 m was used, as for the shortest curve (Curve 5) fixations beyond 
that point could also be assigned to tangents or curve approach of a second curve. 

 

Figure 5-5 Distribution of fixation duration of all curves and all participants relative to the start 

of the curve. 

Figure 5-6 zooms in on the distribution of look-ahead fixations around the start of the curve. A 
transition zone between 300 m and 100 m upstream of the curve is visible, where fixations shifted 
from the Focus of Expansion, route signage, and speed or warning signs to the far zone, parallel 
edges (closed elements, guardrail, and treelines parallel to the curve), and curve signs.  
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Figure 5-6 Distribution of fixation duration for look-ahead fixations of all curves and all 

participants, relative to the start of the curve. 

5.3.2.2 Distribution of fixation duration towards deceleration 

Figure 5-7 shows the distribution of fixation durations from 20 s before to 20 s after the participants 
started to decelerate. No change in look-ahead fixations is observed before, around, or after the 
start of deceleration. A Wilcoxon signed-rank test indicated that the number of look-ahead fixations 
20 s before the start of deceleration (median = 39%) and 20 s after the start of deceleration (median 
= 46%) was not statistically significantly different (p = 0.951, r = 0.006). 

 

Figure 5-7 Distribution of fixation duration of all curves and all participants, relative to the start 

of deceleration. 

Figure 5-8 zooms in on the distribution of look-ahead fixations around the start of deceleration. 
Until about 3 s prior to the start of deceleration, participants focused mainly on the Focus of 
Expansion and route signage. The latter might be due to the experimental setup, where the 
experimenter pointed out route signage for route directions. A small increase in fixations on the 
Focus of Expansion is seen 4 s before the start of deceleration. Furthermore, it is noticed that when 
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drivers started to decelerate, they fixated less on the Focus of Expansion and more on the far zone 
and parallel edges (closed elements, guardrail, and treelines parallel to the curve). An increase in 
fixations on speed signs or warning signs is only noticeable after the deceleration has started. 

 

Figure 5-8 Distribution of fixation duration for look-ahead fixations of all curves and all 

participants, relative to the start of deceleration. 

5.3.2.3 Distribution of fixation duration in individual curves 

Each of the investigated curves had a unique layout; therefore, unique driving behaviour was 
expected. An average speed profile of all participants, the fixation duration, and the start of 
deceleration distribution per curve are shown in individual figures.  

Curve 1 shows in Figure 5-9 a rather sudden change in look-ahead fixations around 200 m before 
the curve. This is likely due to the end of the noise barrier, which obstructed the view towards the 
speed sign and the far zone of the curve itself. Participants showed more interest in the occlusion 
point in Curve 1 than in the other curves. Most participants started to decelerate before fixating on 
the speed sign.  
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Figure 5-9 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 1, having a horizontal radius of 105 m. The positions of the curve is indicated 

with a grey box and the positions of speed and warning signs are also indicated. 

Curve 2 was positioned at the end of a main carriageway; therefore, there were many speed and 
warning signs present before the curve, since such a sharp curve is not expected in a main 
carriageway. As seen in Figure 5-10, most participants started to decelerate after fixating on the 
first speed and warning sign. At the positions where most decelerations started, an equal amount 
of time was dedicated to the warning signs and the Focus of Expansion. Only after the deceleration 
started participants fixated on the parallel edges or the far zone.  

 

Figure 5-10 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 2, having a horizontal radius of 88 m. The positions of the curve is indicated 

with a grey box and the positions of speed and warning signs are also indicated.  



Chapter 5 On-Road Study to Uncover Which Cues Drivers Use in Curve Approach 93 

Curve 3 shows in Figure 5-11 an increase in fixation towards the Focus of Expansion and the 
warning signs just before most participants started to decelerate. After the deceleration started, the 
attention shifted towards the occlusion point, far zone, and less towards the focus of expansion. 
The warning sign on Curve 3 is located just in front of the overpass, obstructing most of the curve. 
Since only guardrails are present as a parallel edge, not many fixations are given on parallel edges, 
but more on the far zone.  

 

Figure 5-11 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 3 having a horizontal radius of 250 m. The positions of the curve is indicated 

with a grey box and the positions of speed and warning signs are also indicated.  

Curve 4a shows in Figure 5-12 that most participants started to decelerate before fixating on the 
speed sign. A few look-ahead fixations towards a far zone were observed because this curve was 
clearly in sight and moved over the main carriageway. Curve 4b shows in Figure 5-13 an increase 
of fixations towards the warning sign before most participants started to decelerate. Only after 
starting to decelerate the curve signs (chevrons) were fixated on. Again, this curve was mostly 
obscured by an overpass. 
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Figure 5-12 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 4a, having a horizontal radius of 360 m. The positions of the curve is 

indicated with a grey box and the positions of speed and warning signs are also indicated.  

 

Figure 5-13 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 4b, having a horizontal radius of 128 m. The positions of the curve is 

indicated with a grey box and the positions of speed and warning signs are also indicated. 

Curve 5 was the first, short, curve of a set of curves in a junction. Deceleration before these curves 
was preceded only by fixations towards the Focus of Expansion and route signage, as showed in 
Figure 5-14. No warning signs were present before the first curve to fixate upon. 
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Figure 5-14 Average speed behaviour, distribution of fixation duration, and start of deceleration 

distribution of Curve 5, having a horizontal radius of 300 m. The positions of the curve is indicated 

with a grey box and the positions of speed and warning signs are also indicated. 

5.3.2.4 Effects of familiarity 

The participants scored their familiarity in Curve 1 on average 4.8 (SD = 3.1), in Curve 2 on average 
5.6 (SD = 3.6), in Curve 3 on average 5.4 (SD = 3.1), in Curve 4a and 4b on average 3.1 (SD = 2.6) 
and in Curve 5 on average 5.7 (SD = 3.3). Familiarity was not correlated to the position where 
participants in free-flow situations started to decelerate. Familiarity showed however weak 
positive relationships with speed at curve start in free-flow situations. Pearson’s correlation 
coefficients ranging from r(10) = 0.03, p = 0.91 in Curve 5 to r(25) = 0.46, p = 0.02 in Curve 4a indicate 
higher speeds with higher familiarity of a curve. For each participant, the relative amount of 
fixation duration towards specific Areas of Interest were tested on correlation. Familiarity has a 
weak negative relationship to the relative look-ahead fixation duration (r(22) = -0.32, p = 0.13), and 
a negative relationship towards the relative fixation duration towards parallel edges (closed 
elements, guardrails and tree lines) (r(22) = -0.36, p = 0.08). There was no relationship between 
Familiarity, on the one hand, and fixations on curve signs, speed/warning signs, Focus of 
Expansion, or the far zone, on the other. 

5.3.3 Verbalisation 

The participants were verbalising their operational driving task on average 22% (SD = 19%) of the 
total time while driving on the sections of the road investigated. Verbalising the tactical and 
strategic driving tasks took up on average 4% (SD = 7%) and 4% (SD= 5%) of the driving time 
respectively, while on average 10% (SD= 16%) of the time was spent verbalising on non-driving 
task topics. For each of the labels defined in the Appendix, Table 5-1 shows how many times each 
topic was verbalised. In total, 1301 verbalisation segments were labelled. Since each segment can 
have multiple labels, the percentages given in Table 5-1 reflect the percentage of segments 
containing these labels. A large number of verbalisations were related to the driver and 
surrounding traffic, and only about 30% of the verbalisations were related to the curve. Out of the 
verbalisations related to the curve, most were on decelerating for the curve.  
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Table 5-1 Summary of verbalisations related to speed. In bold, the group totals, and 

bullet-wise the individual labels are shown 

 % N  % N 

Driver-related 23.1% 300 Curve-related 11.7% 152 

• Driving style 5.5% 72 • Curve sighting 5.1% 67 

• Operating speed 3.5% 46 • Anticipating radius 5.1% 66 

• Faster than speed sign 4.5% 60 • Anticipating length 0.7% 9 

• Slower than speed sign 0.2% 3 • Curve direction 1.2% 15 

• Unsure about max speed 0.5% 6 • Curve end 0.3% 4 

• Comfort 4.6% 63 • Oversight 0.8% 10 

• Familiarity 5.7% 75 • No oversight 0.9% 12 

   • Speed sign 8.4% 109 

   • Trees 0.0% 0 

   • Warning sign 0.7% 9 

   • Curve sign (chevron) 0.2% 2 

Traffic-related 20.3% 265 Other cues 2.9% 38 

• Cars braking 1.8% 23 • Type of road 1.2% 15 

• Traffic volume 2.0% 26 • Number of lanes 0.6% 8 

• Adjust to traffic 9.0% 117 • Lane ending 0.8% 10 

• Overtaking 3.8% 50 • Special marking 0.0% 0 

• Pre-sorting 4.3% 56 • Route signing 0.5% 6 

• Lane-keeping 0.4% 5 • Overpass 0.0% 0 

Speed-related to curve 18.9% 246 Not related to external speed cues 26.4% 343 

• Decelerating for curve 12.8% 167    

• Accelerating after curve 6.2% 81    

Some participants mentioned that it was hard to verbalise the anticipation of a curve because it is 
such a natural or logical thing to do. Participant 1 said, for example: “I’m reducing speed for a curve, 
but that goes without saying, right?”. 

5.3.3.1 Co-occurrence with deceleration 

As seen in Table 5-1, decelerating for a curve was mentioned 167 times during the experiment. 
Sometimes the participant elaborated further on the specific cue or reason, which led to multiple 
assigned labels per segment (co-occurrence in labels). Since the aim of this research is to understand 
which cues drivers use to decelerate, co-occurrence with the verbalisation of decelerations is 
further researched. Table 5-2 shows the distribution among the different labels that co-occurred 
with the label of deceleration for a curve in a single verbalisation segment. Out of the 167 
verbalisations of deceleration for a curve, 92 did not co-occur with other labels (55%) and gave, 
therefore, no specific cue for deceleration for a curve. Table 5-2 shows the distribution of the 
remaining 45% of verbalisations. 
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Table 5-2 Co-occurring labels along verbalising “decelerating for a curve”. In bold, the 

group totals, and bullet-wise the individual labels are shown. 

 % N 

Driver-related  10.2% 17 

• Driving style 1.2% 2 

• Operating speed 0.6% 1 

• Faster than speed sign 1.2% 2 

• Comfort 4.8% 8 

• Familiarity 2.4% 4 

Traffic-related  3.6% 6 

• Cars braking 1.8% 3 

• Adjusting to traffic 1.2% 2 

• Overtaking 0.6% 1 

Curve-related  34.1% 57 

• Curve sighting 12.0% 20 

• Anticipating radius 11.4% 19 

• Anticipating length 0.6% 1 

• Curve direction 0.6% 1 

• No oversight 1.8% 3 

• Speed sign 13.2% 22 

Other cues  0.6% 1 

• Road type 0.6% 1 

Table 5-2 shows that most of the co-occurring labels with “decelerating for a curve” were towards 
speed signs, seeing the curve itself, and anticipating its radius. In addition to the reasons mentioned 
in Table 5-2, two participants elaborated in retrospective verbalisations on using on-board 
navigation systems with a map to anticipate an upcoming curve. 

5.3.3.2 Sign verbalisation 

Table 5-1 shows that speed signs were verbalised ten times more than warning signs and that curve 
chevron signs were seldom mentioned. Warning sign labels co-occurred in a verbalisation segment 
only once with a curve sighting label and three times with a speed sign label. Speed sign labels co-
occurred four times with curve sighting labels, and warning sign labels co-occurred only once with 
curve sighting labels. A number of participants verbalised speed signs just after verbalising curve 
discovery: 

• “I’m decelerating because I see an upcoming curve, would have done that even without the speed 
sign” (Participant 1) 

• “A sharp curve here, designated with a 80 km/h sign and a warning sign” (participant 5) 

• “I don’t want to drive too fast with this upcoming curve. And indeed, a warning sign “you are 
driving too fast”, so… I’m going to adjust my speed to the other traffic” (Participant 11) 

• “But this is a curve with an advisory speed of 50 km/h, so I’m going to brake harder” (Participant 
25) 

Verbalisations of speed signs both mention following up the speed on the sign and not. A couple 
of examples are: 

• “80 km/h, but I’m driving 100 km/h still, so I’m driving a bit too fast, but this is well suited for 100 
km/h” (Participant 5) 

• “I’m seeing a sign 70 km/h, I think, well, let’s release gas.” (Participant 8) 

• “I’ve seen the advisory speed sign 80 km/h but chose not to comply because it’s wide enough, sunny 
and the road surface looks good”. (Participant 11) 
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• “Well, we’re allowed 80 km/h and approaching with 120 km/h. That curve is perfectly suited for 110 
km/h. I don’t understand that sign”. (Participant 15) 

• “Oh, there it becomes 50 km/h, so, let’s slow down.” (Participant 17) 

• “Advisory speed 50 km/h. Let’s see what my predecessors do. They don’t brake a lot, so I think 70 
km/h is a nice speed. A sharp curve, so I’m slowing down. This is a good speed.” (Participant 20) 

• “I see 50 km/h here, so, eh. Advisory speed, so let’s adhere to that”. (Participant 23) 

• “I’m releasing gas now; it said 80 km/h”. (Participant 28) 

No specific verbalisations towards the use of the Focus of Expansion, parallel edges, or far zones 
are given. 

5.3.4 Participant feedback on speed reduction before curve 

After revealing the aim of the experiment in the post-experiment questionnaire, several 
participants shared their insights into how they reduced speed before a curve in the final 
questionnaire. Four participants mentioned that all curves had different signs, but only three others 
shared that they did use signs to anticipate their speed. Participant 4 actually shared a description 
of curve approach: “I follow the traffic in front of me. I reduce speed upon seeing a speed sign. In a regular 
situation, I tend to brake as less as possible. I then judge the curve on sharpness, clarity, traffic volume and 
speed”. Overall, 20 participants could not give insights into how they reduce speed before a curve 
in the post-experiment questionnaire, indicating unawareness.  

5.4 Discussion and limitations 

The main aim of this research was to gain insights into which visual cues drivers use to reduce 
speed upon approaching a curve. By combining speed data and look ahead-fixations, we found 
that the participants tended to start decelerating about 4 seconds after look-ahead fixations on the 
Focus of Expansion increased and that fixations on speed and warning signs are mostly manifested 
after the start of deceleration. Towards the curve start, fixations towards parallel edges (closed 
elements, guardrail or treelines parallel to the curve trajectory) and into the curve itself are 
increased, and fixations on the Focus of Expansion are decreased. These findings deviate from 
driving task descriptions (Campbell et al., 2012; McKnight & Adams, 1970), which position the 
gathering of speed information from signing at the same time of initial speed reduction and as one 
of the primary speed influences. We conclude that the curve discovery on the Focus of Expansion 
itself provides enough visual information to start reducing speed. We therefore diminish the 
usually suggested importance of signs for curve anticipation (Borowsky, Shinar, & Parmet, 2008; 
Campbell et al., 2012; Costa et al., 2022; Fitzpatrick, Carlson, Brewer, & Wooldridge, 2003; Montella, 
Galante, Mauriello, & Pariota, 2015). Verbal feedback confirmed that speed signs are used to assess 
the needed speed reduction better, knowing that the speed indicated on the signs can usually be 
exceeded. This non-compliance is in line with Ahie, Charlton, and Starkey (2015). 

The reported large amount of fixations on the Focus of Expansion on tangents are in line with 
previous research (Lehtonen et al., 2012; Salvucci & Gray, 2004; Shinar et al., 1977). The increased 
amount of fixations on the Focus of Expansion before the start of deceleration might indicate that 
participants used a change in the optical flow near the Focus of Expansion (Rogers, 2021) or the 
presence of a kink in the road trajectory (Brummelaar, 1975) as a first indicator of the curve itself, 
which is in line with Gestalt grouping principles (Čičković, 2016). No verbal reports on this first 
curve discovery were made, suggesting highly automated responses. Similarly, most participants 
could not actively answer the post-experiment question on their speed-adjusting behaviour in 
curve approach, underpinning the unawareness and skill-based nature of this driving task. 
Towards the start of the curve, fixations on the Focus of Expansion diminished in favour of 
fixations on parallel edges and the far zone, not being the occlusion point per se (Lehtonen et al., 
2012), suggesting that the participants anticipated the curve sharpness mostly based on the 
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available information in their field of view. We furthermore found a fairly stable amount of look-
ahead fixations of 39–44 % of the time during curve approach, while earlier research reported 10–
33 % (Lehtonen et al., 2013). This difference might be because Lehtonen et al. (2013) defined look-
ahead fixations as being outside the 6-degrees field of view, while we labelled it based on the 
contents in the Area of Interest.  

A large proportion of verbal reporting was devoted to speed signs, which might be due to the task 
to verbalise speed behaviour. Curve 2, however, demonstrates how warning signs are used as the 
main cue to start deceleration when the curve is in the main carriageway, on which no such sharp 
curve is expected, while there are no good parallel edges available. The large amount of fixations 
on the route signage reported might be due to the experimental setup, where the experimenter 
gave route directions orally by pointing out directions on the route signage.  

Familiarity of participants with specific curves, resulted in higher speeds, which is in line with the 
finding by Pratt et al. (2019). Furthermore, familiarity of curves led to less time spent on look ahead 
fixations in general and towards parallel edges (closed elements, guardrails and tree lines) in 
general. These findings are in line with findings by Young et al. (2018), showing more fixations on 
the road far ahead with less familiarity. Only 16% of the participants were female, so our results 
may be skewed towards male speed and fixation behaviour.  

Think-aloud methods might interfere with natural driving behaviour (Salmon et al., 2017; Thomas, 
Goode, Grant, Taylor, & Salmon, 2015) or looking behaviour (Prokop, Pilař, & Tichá, 2020) and 
might make participants more aware than they would be in everyday driving. To investigate the 
effect of the think-aloud protocol on the participants’ behaviour, a pilot study was conducted prior 
to the experiment in which four test participants (2 male, 2 female, average age of 45 years, average 
amount of driving experience of 24 years) drove the proposed route twice. On the first drive, two 
participants were asked to engage in concurrent think-aloud, and the other two were asked to drive 
without concurrent think-aloud. The second drive was vice versa. Comparing the collected data 
from sessions with and without concurrent think-aloud did not show major differences in speed, 
deceleration, fixation lengths or distribution. Therefore, concurrent think-aloud was applied to 
understand which visual cues were used by the participants to reduce speed (Ericsson & Fox, 2011). 
Retrospective think-aloud might have given more insights (Stapel, El Hassnaoui, & Happee, 2020) 
than concurrent think-aloud, but it would not be possible to stop on a freeway, and memory decays 
after two minutes. The task-load comparison between pre-experiment and post experiment, and 
the post-experiment questionnaire did not show signs that the verbalisation interfered with the 
natural driving task. 

Eye-tracking does not provide information on the role of peripheral vision in anticipating speed 
(Martens, Comte, & Kaptein, 1997) and in helping to focus on relevant information (Wolfe, Sawyer, 
& Rosenholtz, 2022). It can, however, be argued that the relevant visual information is attended to 
with a fixation on the fovea (Crundall & Underwood, 2011). Furthermore, our research focusses on 
look-ahead fixations, which generally are not in the periphery but at least 50 m and up to 500 m in 
front of the driver. At the same time, these large distances are a downside in this research, as at 
such distances, the HD video does not show details that the human eye might perceive, making 
the labelling of Areas of Interest ambiguous. Therefore, labels at the horizon, Focus of Expansion, 
or far zone might have been overrepresented in this research. 

5.5 Conclusions and implications 

By using three different methodologies, GPS, eye-tracking, and think-aloud, we were able to gain 
insights into which visual cues drivers use to reduce speed upon approaching a freeway curve. We 
used the qualitative data gathered from the verbal protocol to support and interpret the 
quantitative analysis from GPS and eye-tracking. 
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The results showed that participants used the Focus of Expansion and parallel edges as a first cue 
to start decelerating before a curve. When this visual information was not sufficiently available 
participants used warning and speed signs as a first cue. Speed signs were generally used in a 
confirmatory manner or to update speed anticipation.  

The results support the self-explaining nature of freeways and imply that when deceleration is 
needed based on the geometric design, extra attention should be paid to the road layout and its 
surrounding so that it provides enough information to the drivers about an upcoming curve. This 
could be done by using parallel edges. Speed and warning signs can be used when the road layout 
is unclear, such as when parallel edges are obstructed or absent. Further research is needed to 
understand the situations in which extra signs are needed and on which exact position to place 
them, to match the expectations of drivers. 
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6 A Bayesian Belief Network to Mimic Driver 
Expectations in Curve Approach 

This chapter is currently under review for journal publication: Vos, J., Farah, H., & Hagenzieker, M. 
(under review). Modelling Driver Expectations for Safe Speeds on Freeway Curves using Bayesian Belief 
Networks 

 

Abstract 

Sharp curves in freeways are known to be unsafe design elements since drivers do not expect them. 
It is difficult for drivers to estimate the radius of a curve from a distance. Therefore, drivers are 
believed to use other cues to decide on decelerating when approaching a curve. Based on previous 
successful experiences of driven speeds in curves, drivers are thought to have built expectations of 
safe speeds given certain cues, minimalising risks. Our aim is to model these expectations and use 
them pro-actively in freeway design and safety assessment. This research employs a Bayesian 
Belief Network to model driver expectations using measured speeds in 153 curves and data on the 
characteristics of the curve approaches. This model mimics expectations as the probability of 
measured speeds given certain cues. Using Bayes theorem, prior beliefs on safe speeds are updated 
towards a posterior belief when a new cue is observed during curve approach. We refer to this 
posterior belief as expected safe speed. The drivers are assumed to adjust their operating speeds if 
it doesn’t match their expected safe speed. The model shows that the visible deflection angle has a 
large influence in setting the expectations of a safe speed for an upcoming curve. Both the 
preceding type of roadway and the number of lanes are also important cues to set the driver’s 
expectations of a safe speed. Speed and warning signs are shown to be interdependent on the road 
scene and hence have less influence in setting expectations. This research shows that design and 
safety assessment of freeway curves should be considered together with the road scene upstream 
of the curve.  
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6.1 Introduction 

Both in research and in policy making, there is an increasing interest in a pro-active road safety 
assessment, based on infrastructure, its surroundings and human factors knowledge, i.e. how 
drivers interact with the road (Domenichini et al., 2022; SWOV, 2018). Sharp curves in freeways 
are known to be unsafe design elements, especially when drivers do not expect them (Davidse et 
al., 2020; Elvik, 2022). Research on the interaction between curve characteristics and driver 
behaviour in the curve itself are available and can be used in pro-active assessment of road design 
and safety (Charlton, 2007; Jamson et al., 2015; Lappi & Lehtonen, 2012; Ryan et al., 2022). Driving 
task descriptions for curve driving however indicate that drivers anticipate a curve well ahead of 
the start of the curve, by using visual cues on the road to recognize an upcoming curve and using 
signage to estimate a needed speed change in order to drive safely in the curve (Campbell et al., 
2012). The estimation of a safe speed in curves is thought to be based on drivers’ judgement of 
driving comfort and the ability to slow down safely without skidding (Gibson & Crooks, 1938; 
Summala, 2007). Since drivers start anticipating the curve well ahead of the curve start itself, they 
are assumed to have expectations of safe speeds based on the visual cues they receive during curve 
approach, such as roadside signs and the road scene upstream of the curve (Campbell et al., 2012). 
These expectations are believed to be stored in memory schemata of drivers (Charlton & Starkey, 
2017b), connecting road characteristics to safe speeds. Quantitative research of speed behaviour in 
curve approach is covered in deceleration models (Nama et al., 2020), but these models do not take 
into account the visual cues drivers use during curve approach. They merely show correlations 
between deceleration and the curve geometric design elements itself. Our aim is to develop a 
generalizable and quantifiable model for expected safe speeds during curve approach to be usable 
pro-actively in road-design and road safety assessment.  

To build such a generalizable and quantifiable model, we first identify which cues are known to 
influence driving speed behaviour during curve approach (Section 2). We then proceed by 
discussing how these cues are perceived by drivers and how they build expectations on certain 
safe speeds in curves. Next, we show how to model these expectations using a Bayesian approach. 
This approach is suitable since it is assumed to resemble how drivers build-up and update their 
expectations of safe speeds during curve approach. Section 3 of this paper discusses the data and 
methods used for developing the Bayesian model using the data gathered by Vos et al. (2021b). 
This data is used since it contains information on curve characteristics and speed profiles of 153 
horizontal curves. In Section 4 we build the Bayesian model, present the results, and run a number 
of case studies for demonstration purposes. The results are then discussed in Section 5, and in 
Section 6 the general conclusions of this research and recommendations for future research are 
drawn. 

6.2 Literature review 

6.2.1 Known variables related to deceleration in curve approach 

In general, deceleration modelling studies show that the deceleration in curve approach is 
correlated to the approaching tangent length, cross section design, horizontal curve radius and 
deflection angle (Altamira et al., 2014; Malaghan et al., 2021; Nama et al., 2020; Vos & Farah, 2022). 
The position where drivers start to decelerate is correlated to the speed driven before the curve, 
visibility of guiding elements such as tree lines or curve signs, the cross section and number of 
lanes available, and the horizontal curve radius itself (Vos et al., 2021b). In a survey study by Vos 
et al. (2021a) drivers indicate that the number of lanes and road type are elements in the road design 
that influence their speed choice during curve approach besides the presence of signs. And indeed, 
these elements influence the position where drivers start to decelerate before a curve (Vos et al., 
2021b), and have been found to influence speed in the curve itself as well in numerous speed 
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prediction studies (Calvi et al., 2018; Colombaroni et al., 2020; A. Montella et al., 2015). Driving task 
analysis research has resulted in descriptions of how drivers anticipate and approach a curve 
(Campbell et al., 2012; McKnight & Adams, 1970). In these descriptions, roadside signs or the 
roadway scene which provides evidence of a curve are given as indicators of curves, while during 
the approach itself drivers are thought to adhere to the posted speed or estimate a safe speed from 
the deflection angle and superelevation of the curve itself and other features in the environment.  

6.2.2 Curve perception and speed reduction 

Both the driving task descriptions, and a recent eye-tracking experiment which captured 
anticipatory fixations during curve approach (Vos, de Winter, Farah, & Hagenzieker, 2023) show 
that the first cue drivers use is a change in the heading of the roadway. This is thought to be a 
change in the patterns of visual motion driver perceive as they move – i.e. optic flow – on the point 
in the visual field where these patterns appear to converge – i.e. the Focus of Expansion (Gibson, 
1950). This means drivers see a change in the road direction on the horizon and start decelerating 
after that. During the 1970s the road picture of curves as it is perceived by the driver was analysed 
using perspective drawings with sets of hyperbola (Springer & Huizenga, 1975). From these 
perspective analysis it is known that this change of direction is seen as a kink, and opens up and 
reveals curvature when the driver gets closer to the curve. Brummelaar (1975) provides the 
following equation to calculate the distance at which the curve opens up: 

 Z2 = Rh(46h-2a)         [6-1] 

where:  Z  =  approach distance at which the curve appears to be open (m) 
  Rh  =  horizontal radius of the curve (m) 
  h  =  height of the observer’s eye (m) 
  a =  distance of the observer to the road edge (m) 

So, equation 6-1 gives quantifiable information about the distance from the observer to curve start 
(Z) at which the curve is perceived to open and reveal its curvature. This equation only calculates 
road edges as the perspective drawings only provided road edges, but recent eye-tracking research 
(Vos et al., 2023) shows that other parallel lines or edges such as tree lines or noise barriers running 
parallel to the curve are also used by the driver to anticipate that curve. This is in line with Gestalt 
principles of organisation which show parallel edges to the curve are heuristically used to 
anticipate the trajectory of a curve (PIARC, 2016). To quantify the effect of parallel edges on curve 
perception, we assume that the eye-height in equation 6-1 can also be used to alter the height of the 
road edge, and thus of a parallel edge. Figure 6-1 shows the sight line as intended in equation 6-1, 
and the sight line used to calculate the height of a parallel edge. If an eye-height of 1.1 meters above 
the road is used, a parallel edge of 2.2 meters above the road results in the same perspective line 
since it is mirrored at the eye height. Based on this approach, the height of the parallel edge can be 
used to calculate the distance on which the curve shows curvature. The distance of the driver to 
the edge has a rather small influence in equation 6-1. So, if a distance of 5 meters from the driver 
to the parallel edge is set, equation 6-1 can be used to see what the effects of different heights of 
parallel edges are on what drivers perceive. This is shown in Figure 6-1 using different lines for 
different heights. Figure 6-1 furthermore shows the position where drivers start to decelerate 
related to the horizontal radius based on an equation derived from analysing speed profiles by Vos 
and Farah (2022): 

 posBP1 = 155 * ln(Rh) – 1067       [6-2] 

where:  posBP1 = position relative to curve start where drivers start to decelerate (m) 
  Rh  = horizontal radius of the curve (m) 

Equation 6-2 does not consider the existence of a parallel edge, but just estimates the position where 
drivers start to decelerate in front of a curve generally. 
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Figure 6-1 Analysing the perception of parallel edges in curves regarding their height. The top 

panel shows how equation 1 is used to calculate from which distance Z a curve shows its curvature 

to drivers, based on the height of a parallel edge. The red line shows the edge of a noise barrier as 

an example. Since the eye-height above the road surface can be mirrored we can use the height of 

the parallel edge minus the eye height to calculate Z. The bottom panel is a diagram showing the 

effect of different heights of parallel edges on the visibility of curvature and the starting point of 

deceleration related to the horizontal radius. 

Combining equations 6-1 and 6-2 in Figure 6-1 shows whether or not the curvature of the curve 
was visible before drivers started to decelerate. When approaching curves with a horizontal radius 
of less than 400 meters, drivers start decelerating before the road itself shows curvature. A parallel 
edge which is higher than the road itself could however still show the curvature of the road ahead. 
For a radius of 300 meter, a parallel edge with a height of 3 meters would show the curvature to 
drivers before starting to decelerate, but for a radius of 200 meters, a parallel edge of 7.5 meters is 
needed. It is unlikely that parallel edges this high are available. So, particularly for curves with 
radii of 300 meters and less, other cues than the perceivable curvature are thought to be used by 
drivers to build up the correct expectations on when to start decelerating during curve approach 
towards an expected safe speed. To know which cues are actually used by drivers, an 
understanding of the driving task during curve approach is needed. 
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6.2.3 Driver expectations 

Ranney (1994) positions steering and braking on the operational driving task level. This means that 
anticipation in curve approach mostly consists of skill-based behaviour that is fully automatised 
(Rasmussen, 1983) based on what people have learned to expect (Theeuwes, Horst, & Kuiken, 
2012). These expectations are based on the development of mental categories, or schemata, 
containing curve cues and corresponding safe speeds (Charlton & Starkey, 2017b), which are built 
upon multiple episodes (Ghosh & Gilboa, 2014). In human information processing models 
(Wickens et al., 2021), schemata reside in the long term memory (Plant & Stanton, 2013) and 
therefore act as input for the working memory to select the correct response based on perception 
as is illustrated in Figure 6-2. A schema helps drivers optimize their behaviour and make quick 
decisions on a safe speed based on cues they perceptually receive and on expectations stored in 
schemata (Charlton & Starkey, 2017a, 2017b; Ranney, 1994).  

6.2.4 Statistical learning 

Expectations are built on regularities in the environment. Since drivers spend much of their driving 
time on freeways, it can be assumed they have passively learned about regularities in the road 
environment (Theeuwes, 2021). These regularities are assumed to be extracted from the 
environment by the drivers to build expectations through statistical learning (Sherman, Graves, & 
Turk-Browne, 2020). Statistical learning is thought of as a cognitive mechanism to discover 
underlying structures and distributions of these perceptual cues and their distributions (Frost, 
Armstrong, Siegelman, & Christiansen, 2015) and is known to help build schemata in temporal 
tasks such as spatial navigation (Graves et al., 2022). Based on these schemata, drivers then come 
to expect a certain safe speed given certain cues. 

Research on how cognitive judgments compare with optimal statistical inferences in real-world 
settings suggests that people adopt expectations in line with the statistics in the real world 
(Griffiths & Tenenbaum, 2006; Seriès & Seitz, 2013). It has furthermore been found that drivers also 
learn these regularities and differences for spatial navigation (Chanales, Oza, Favila, & Kuhl, 2017; 
Graves et al., 2022). We therefore assume that drivers also infer a safe speed based on statistical 
learning of regularities in the road environment (Theeuwes, 2021). Statistical learning is best 
understood in Bayesian terms of probability (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). 
This means drivers have a conjecture or belief about a range of safe speeds, which is defined as a 
probability distribution, given certain curve cues which are available as evidence. Figure 6-2 shows 
how in this research the human information processing is connected to a Bayesian approach by 
using probability distributions as constructs to resemble a driver’s schemata. The next section 
explains the Bayesian approach, and the connections with human information processing. 
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Figure 6-2 Human information processing (squares) and Bayesian belief updating (ovals) with 

assumed connections in dashed arrows. The model of information processing is simplified from 

Wickens et al. (2021) and includes the notion that schemata reside in long term memory (Plant & 

Stanton, 2013). This figure shows how the perception of a cue provides evidence in Bayesian 

modelling. This evidence has a learned likelihood of appearing given certain safe speeds, which 

are thought to resemble stored expectations (schemata). Using the prior probability of safe speeds, 

and the likelihood, the belief (expectation) is updated toward a posterior belief upon which the 

driver is thought to select an appropriate response via prediction error minimisation (Engström 

et al., 2018). The box connecting the belief update, shows example probability distributions of 

prior belief on safe speeds, the likelihood of the evidence and the following posterior belief given 

that evidence. 

6.2.5 Bayesian approach 

In the Bayesian approach each safe speed, 𝑣𝑖, can be associated with a degree of belief 𝑃(𝑣𝑖) from 
a probabilistic standpoint. This is called a Prior belief, and in a freeway curve approach, the Prior 
belief for the safe speed in free flow conditions on a freeway tangent would be around 120 – 130 
km/h. Based on experience, drivers are assumed to have learned the likelihood of the appearance 
of different cues, 𝑐, given certain safe speeds on this tangent, such as speed signs. Using Bayes 
theorem, a Prior belief about safe speed can be updated based on new evidence – thought to be the 
perception of a cue -which results in a Posterior belief based on the following equation: 

 
𝑃(𝑣𝑖|𝑐) =  

𝑃(𝑐|𝑣𝑖) ∙ 𝑃(𝑣𝑖)

𝑃(𝑐)
=  

𝑃(𝑐|𝑣𝑖) ∙ 𝑃(𝑣𝑖)

∑ 𝑃(𝑖 𝑣𝑖) ∙ 𝑃(𝑐|𝑣𝑖)
 [6-3] 

where:  𝑃(𝑣𝑖|𝑐)   = Posterior belief for safe speed given a certain cue 
 𝑃(𝑐|𝑣𝑖)   = Likelihood of a cue appearing given a certain safe speed 
 𝑃(𝑣𝑖)   = Prior belief for safe speed 
 𝑃(𝑐)   = Marginal probability of a cue appearing  
 ∑ 𝑃(𝑖 𝑣𝑖) ∙ 𝑃(𝑐|𝑣𝑖) = Sum of (Prior * likelihood) over all safe speeds 

Equation 6-3 shows the Posterior belief is the conditional probability of a safe speed given a certain 
visual cue denoted as 𝑃(𝑣𝑖|𝑐). It is furthermore known that 𝑃(𝑐|𝑣𝑖) ∗  𝑃(𝑣𝑖) =  𝑃(𝑐, 𝑣𝑖) which is the 
joint probability for a cue appearing together with a certain safe speed. This type of inference is 
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also referred to as belief updating (Feldman, 2013), because new cues are assumed to lead drivers’ 
belief to evolve from a Prior belief to a certain Posterior belief – or expectation – of the safe speed in 
a curve. In this way, the belief about the safe speed, is gradually updated by the cues towards a 
suitable safe speed for an upcoming curve. Figure 6-2 illustrates how likelihoods and beliefs are 
assumed to be stored in schemata and hence resemble expectations. Thus, beliefs in Bayesian 
terminology are translated to expectations in driver information processing models. 

Since several cues might indicate an upcoming curve, it is suitable to develop a Bayesian belief 
network (BBN), since these are able to model conditional dependence between the cues (Pearl, 
1988). Such networks are acyclic directed graphs in which nodes represent the random variables 
and connections represent the direct probabilistic dependence among them. In general, the 
direction of influence in a Bayesian belief network flows from parent nodes to child nodes. This 
means that the state of a parent node affects the likelihood of the child node being in a particular 
state. The conditional probability distributions are captured in conditional probability tables 
(CPT’s) which describe the likelihood of a particular node’s state, given the state of its parent nodes. 
Belief updating in a BBN is induced by observing evidence. A node (cue) that has been observed is 
called evidence, and by observing the evidence, the probability distribution is updated towards a 
certainty and gets propagated through the network, modifying the probability distribution of other 
nodes (cues and expected safe speed). In this way, expectations about safe speeds can be 
statistically modelled as posterior beliefs of safe speeds, based on observed evidence of curve cues. 
This process is shown in Figure 6-3, where drivers starts off with an approaching speed and 
updates their expectations of the upcoming safe speed (posterior belief) with each cue received 
(evidence). Based on this updated belief, the driver is assumed to adjust the operating speed, 
whenever this does not match the belief of the upcoming safe speed. This process is known as 
prediction error minimisation (Engström et al., 2018) as shown in Figure 6-2. In this process the 
driver resolves the difference in the belief about the upcoming expected safe speed and the actual 
operating speed (i.e. prediction error) by deceleration to minimize the risk of skidding in the curve 
(Wilde, 1998) or feelings of discomfort (Summala, 2007). 

 

 

Figure 6-3 The process of updating the expected safe speed in a curve given the received cues (C1, 

C2, C3, …, Cn) and adjusting the operating speed accordingly.   
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6.3 Methods 

6.3.1 Data collection and analysis 

The database generated by Vos et al. (2021b) is used in this research to model prior beliefs about 
expected safe speeds and the likelihoods of cues (evidence) appearing given certain expected safe 
speeds. Each of the 153 curves in the database has detailed information about its geometry and 
surroundings and is accompanied by about one million unique free-flow speed profiles taken from 
High Frequency Floating Car Data. This data is assumed to reflect different schemata in which 
expectations are stored in the driver’s memory, since schemata on safe speeds are built in the 
driver’s memory based on multiple experiences (Charlton & Starkey, 2017b). For different curve 
cues the database contains measured speeds, reflecting the cues drivers perceive and the response 
(i.e., decelerating) the drivers adhered to. Table 6-1 shows how the available cues are distributed 
among the curves in the database. Speeds in preceding curves and the angles of the curves were 
discretised into intervals of respectively 20 km/h and 100 gradients. The speeds were grouped into 
20 km/h because this ensures that each interval has enough data points to use in de model and 
generate reliable marginal probabilities (e.g. to prevent having intervals without data points). The 
variable “preceded by tangent” was added to reflect tangents or large radii which do not impact 
the approach speed of a curve. Deflection angle was grouped in three categories that would be 
easily distinguishable by drivers (e.g. straight corners) since exact angles are hard to perceive from 
a distance (Riemersma, 1988), but direction (left or right) is. For each of the collected free-flow 
speed profiles, we calculated the speed which the driver adhered to in the curve. Since a single 
speed profile consists of a string of speed measurements with a frequency of 1Hz, we assume that 
the mode of the measured speeds in the curve is the speed the driver deemed safe, since this is the 
speed the driver drove the longest inside the curve. For each of the curves, we then establish an 
85th percentile median speed driven in those curves.  

Table 6-1 Distribution of cues in the available database. 

Cue N %  Cue N % 
Turning direction    Speed sign present   

- Left turning 48 31%  - Advice speed 50 km/h 10 7% 
- Right turning 105 69%  - Advice speed 60 km/h 8 5% 

Preceding roadway    - Advice speed 70 km/h 9 6% 
- Main carriageway 43 28%  - Advice speed 80 km/h 3 2% 
- Connector road 50 33%  - Advice speed 90 km/h 8 5% 
- Deceleration lane 21 14%  - Speed limit 50 km/h 5 3% 
- Fork 13 8%  - Speed limit 60 km/h 1 1% 
- Weaving section 24 16%  - Speed limit 70 km/h 12 8% 
- Merge 2 1%  - Speed limit 80 km/h 4 3% 

Speed in preceding curve    - Speed limit 90 km/h 2 1% 
- 60 – < 80 km/h 2 1%  - No speed signs present 91 59% 

- 80 – < 100 km/h 13 8%  Curve warning sign present   
- 100 – < 120 km/h 26 17%  - Curve warning sign present 49 32% 
- 120 – < 140 km/h 11 7%  - No curve warning sign present 104 68% 

- Preceded by tangent 101 66%  Curve chevron signs present   
Number of lanes in curve    - Curve chevron signs present 48 31% 

- One 76 50%  - No curve chevron signs present 105 69% 

- Two 58 38%     
- Three 15 10%     
- Four 4 3%     

Deflection angle of curve       
- 10 – < 100 grad 82 54%     
- 100 – < 200 grad 50 33%     
- 200 – < 310 grad 21 14%     
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The 85th percentile of the measured median speeds in curves have been used as the independent 
variable for generating the probability distributions of the cues represented in Table 6-1. This gives 
the first probabilistic view on the expected safe speed for different curve cues independently. 

6.3.2 Modelling a Bayesian Belief Network 

The modelling and analysis was done in the GeNIe Modeler ("GeNIe Modeler," 2022), which is an 
interface to the Structural Modeling, Inference, and Learning Engine (SMILE) (Druzdzel, 1999). 
The interface allows to use the dataset to learn and evaluate the Bayesian belief networks (BBN). 
To model the variables in a BBN, we discretised the speeds into intervals since speed cannot be 
modelled as a continuous variable, as these do not have a linear distribution. We iterated the 
interval-size, and an interval-size of 10 km/h was found most appropriate: smaller intervals gave 
intervals without enough data-points, larger intervals showed less detail. We started by building 
and analysing a naïve Bayesian network (NBN), shown in Figure 6-4. A NBN assumes all variables 
to be independent, so using a NBN we can independently test the strength of influence of each 
variable on the class label, which in this case is the safe speed. The class label expected safe speed 
is the prior belief, which can be updated by observed evidence of cues and calculate the posterior 
belief of the expected safe speed given the observed evidence using equation 6-3. The strength of 
influence is measured using the average Euclidian distance between the expected safe speed and 
the cues (Koiter, 2006) and therefore refers to the degree to which the probability of a particular 
variable is influenced by another variable. 

 

Figure 6-4 The naive Bayesian network (NBN). 

However, different cues might be interdependent of each other. For example, the co-occurrence of 
particular signs or the tendency for forks to have more lanes than deceleration lanes. So, an NBN 
probably does not reflect how driver expectations are constructed, because these 
interdependencies are assumed to be learned by the driver as well, as these cues tend to be 
observed together. To investigate the interdependence of the variables we have learned a Tree 
Augmented Naïve Bayes (TAN) structure using the interdependencies in our dataset. The TAN 
algorithm uses the NBN structure and adds connections between the different cues to account for 
dependence, conditional on the expected safe speed (Friedman, Geiger, & Goldszmidt, 1997). The 
TAN algorithm allows for one extra connection between cues to be added based on the highest 
amount of mutual information regarding the expected safe speed in the extra connections. 
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6.3.3 Testing and validating 

The learning and testing of the networks is done via an expectation maximization (EM) algorithm 
which selects random values for parameters to learn the optimal values. A higher log-likelihood 
indicates a better fit of the model to the data. Validating the TAN is done by using a Leave One 
Out (LOO) procedure to test how well the network performs when one record is left out in the 
learned data and see how well the TAN predicts the expected safe speed for that left out curve.  

6.4 Results 

The following sub-sections describe the results of the data analysis and modelling. Subsection 6.4.1 
starts with the probability distributions of individual cues, subsection 6.4.2 models these cues into 
Bayesian Belief Networks (BBNs). These BBNs are tested and validated in section 6.4.3, and section 
6.4.4 shows the use of a BBN in several case studies. 
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6.4.1 Probability distributions of curve cues 

For each available cue, the probability distribution of the measured 85th percentile median speeds 
is plotted. These are given in Figure 6-5 and can be interpreted as naïve Prior beliefs, so as 
independent variables. 

 

Figure 6-5 Probability distributions for the eight different variables (cues) related to the 85th 

percentile measured median speeds in a curve. 

Figure 6-5 shows how the measured speeds are distributed along different cues. Several cues show 
clear differences in the speed distributions. For example, a 50 km/h speed sign or a large angle are 
associated with low speeds, while a presence of 4 lanes would be associated with larger speeds 
(i.e., no need to decelerate).  
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6.4.2 Bayesian Belief Networks 

The NBN in Figure 6-4 had its parameters learned based on the observed data in the dataset. This 
resulted in an EM Log Likelihood of -1286.58 and the strengths of influences given in Table 6-2. 
The average strength of influence in Table 6-2 show a large value of the angle on the expected safe 
speed, followed by the type of preceding roadway, presence of curve and speed signs as well as 
the number of lanes. Other cues, such as warning sign, preceding curve speed, and curve direction 
showed less strength of influence. 

Table 6-2 Average strength of influence for each connection in NBN. 

Parent Child Average strength of influence 

Expected safe speed 

Angle 0.4403 

Preceding Roadway 0.3470 

Curve sign 0.3181 

Speed sign 0.3096 

Number of lanes 0.3073 

Warning sign 0.2074 

Preceding curve speed 0.1792 

Direction 0.1783 

 

Next, a tree augmented naïve Bayesian network (TAN) was learned based on our data using 
expected safe speed as the class label. This resulted in an EM Log Likelihood of -1026.19. Other 
learning algorithms (i.e. “Bayesian Search”, “PC”, “Greedy Thick Thinning”) led to lower EM Log 
Likelihoods. The learned TAN is given in Figure 6-6 and the average strength of influences per 
connection are given in Table 6-3. 

 

 

Figure 6-6 The tree augmented naive Bayesian network (TAN), learned from the data with the 

expected safe speed set as the class variable. 
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Table 6-3 Average strength of influence for each connection in the learned TAN. 

Parent Child Average strength of influence 

Preceding roadway type Number of lanes 0.4458 

Expected safe speed 
Angle 0.4235 

Number of lanes 0.3832 

Preceding roadway type Preceding curve speed 0.3706 

Preceding curve speed Angle 0.3564 

Expected safe speed 
Speed sign 0.3192 

Preceding roadway type 0.2907 

Speed sign Preceding roadway type 0.2818 

Expected safe speed Preceding curve speed 0.2764 

Speed sign 

Warning sign 0.2500 

Curve sign 0.2304 

Direction 0.2083 

Expected safe speed 

Curve sign 0.1971 

Direction 0.1865 

Warning sign 0.1796 

 

Since the type of preceding roadway influences the number of lanes greatly, the number of lanes 
has a larger strength of influence on the safe speed in the TAN than in the NBN. Furthermore, the 
interdependence among the variables, leads to a lower influence of speed signs in the TAN. The 
conditional probability tables (CPTs) for the TAN are given in Appendix E. 

6.4.3 Validation 

We cross-validated the TAN using a Leave One Out (LOO) procedure using our dataset, meaning 
the TAN structure was trained 153 times, each time leaving one case out and predicting its expected 
safe speed on the trained TAN of 152 cases. Overall, the class variable – expected safe speed – was 
predicted correctly (i.e., within the same interval as the measured 85th percentile median speed) 
51% overall, and for 82% within an average of 10 km/h offset (i.e., adjacent interval). The confusion 
matrix is shown in Table 6-4, showing the variability around the correct predictions for most 
expected safe speeds is better predicted in the lower speeds than in the higher speeds.  

Table 6-4 Confusion matrix for cross validating the expected safe speed in the tree 

augmented naïve Bayesian network with the measured 85th percentile median speeds. 
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60 – 69 14 3 0 0 0 0 0 0 

70 – 79 2 5 2 0 0 0 0 0 

80 – 89 0 0 7 2 1 0 0 0 

90 – 99 1 0 1 17 5 1 1 0 

100 – 109 0 0 0 7 16 6 5 0 

110 – 119 0 0 0 6 9 8 3 2 

120 – 129 0 0 0 3 3 3 6 2 

130 – 140 0 0 0 0 0 4 2 6 
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6.4.4 Case studies 

The validation in the previous section was done using all observable evidence (cues) to predict an 
expected safe speed. The assumption, however, is that drivers update their expectations about a 
safe speed during curve approach using cues as they appear during curve approach as illustrated 
in Figure 6-3. The temporal process of belief updating during curve approach is tested in two case 
studies. We present two curve approaches providing the measured speed profiles using the data 
from Vos et al. (2021b) and the available cues to the driver in four pictures along the approach. 
These cues are then set as evidence in our TAN, to see how the resulting expected safe speeds (i.e., 
posterior belief about safe speed) resembles the speed development in the actual speed profiles. The 
TAN is shown in Figure 6-7 without observed evidence, i.e. no visible cues.  

 

 

Figure 6-7 - The tree augmented naive Bayesian network with bar charts in each node showing 

the probabilities for each possible definition of that node, without having any evidence set. The 

thickness of each connection (arrow) indicates its strength of influence. 

The case studies show which evidence was set in the TAN by underlining a specific definition of a 
node and setting its probability to 100%. The expected safe speed is shown in the case studies as a 
probability distribution in red, using the distributions in the expected safe speed intervals.  

Case study 1 starts in picture B in Figure 6-8 with a connector road visible with two lanes in a curve 
in which the 85th percentile of the operating speeds is between 100 and 120 km/h, no signs are 
visible, and no curve angle or direction can be estimated of the upcoming curve. The expected safe 
speed is between 80 and 120 km/h. Then in picture C it becomes clear the connector road continues 
in one lane, the expected safe speed drops to 60 to 120 km/h, which corresponds to a speed drop 
in the 15th percentile speeds. Then the curve and its angle become visible in picture D, which 
narrows the expected safe speed towards the lower speeds and leads to a decrease in the 85th 
percentile operating speed. After seeing the advisory speed of 60 km/h, together with warning 
and curve signs before entering the curve in picture E, the expected safe speed shifts drastically to 
a range between 60 and 70 km/h, and from that moment also the 15th percentile operating speeds 
starts to drop. Case study 2 starts in picture B with one lane on a fork – the right side of the block 
markings. The expected safe speed in an upcoming curve is predicted between 80 and 120 km/h, 
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but since the drivers drive on a tangent, the operating speed is relatively high, and then gradually 
lowered. Picture C shows how the carriageway leading to the curve actually has two lanes instead 
of the one lane on the preceding fork, so the expected safe speed gets updated to a higher speed 
range, between 100 and 140 km/h. A small increase in 15th percentile operating speeds is noticed 
here. Next, the curve direction and angle become visible in picture D, this creates a little difference 
in the probability distribution of the expected safe speed. From this position onwards the measured 
operating speed starts to drop. Once the speed and warning signs in picture E become visible, the 
expected safe speed is updated to the range of 100 to 110 km/h, in line with the 85th percentile 
operating speeds in the curve. 

 

 



116 Drivers’ Behaviour on Freeway Curve Approach 

 

Figure 6-8 Case study 1 of belief updating upon curve approach. Panel A shows the measured 

operating speeds in this curve approach and the positions of the pictures. The pictures in panels 

B through E show the curve approach with the TAN next to it, updated with the visible cues and 

the resulting expected safe speed. 
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Figure 6-9 Case study 2 of belief updating upon curve approach. Panel A shows the measured 

operating speeds in this curve approach and the positions of the pictures. The pictures in panels 

B through E show the curve approach with the TAN next to it, updated with the visible cues and 

the resulting expected safe speed. 
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Several hypothetical cases were tested in the TAN. The results are given in Table 6-5 (and visually 
presented in Appendix F). Table 6-5 shows how changing different elements in the design could 
change the expectations of drivers about a safe speed, as the column of expected safe speeds show 
the expected safe speeds with the highest probability. Appendix F shows the different variabilities 
of expected safe speeds visually as resulting probability distributions.  

Table 6-5 Expected safe speeds based on different definitions of the nodes in the tree 

augmented naive Bayesian network (visualisation of the respective TAN’s are given in 

Appendix F). 
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6.5 Discussion 

Since Bayesian statistics are thought to resemble how drivers build their expectations, this 
approach can be used to model speed behaviour in curve approach. These results can then be used 
pro-actively in assessing the safety of a road design. This research starts by analysing the measured 
85th percentile speed probability distributions in a curve dependent on the individual cues during 
curve approach. Several cues have a zero probability for certain speeds. These include speed signs, 
high number of lanes, forks, high preceding speeds and large curve angles. When these cues are 
present, they reduce the probability of certain speeds (e.g., low speeds for high number of lanes 
and high speeds for large curve angles) to zero. These variables also tend to have a higher strength 
of influence in the explored Bayesian Belief Networks (BBNs). The deflection angle of the curve 
has a strong influence on the expected safe speed in the curve, which is in line with the notion that 
increasing angles are associated by drivers with tighter curve radii (Riemersma, 1988) and that the 
visible angle of the curve is related to how drivers assess their expected safe speed in curves (Vos 
et al., 2021a). The total angle of a curve might however be – partially – obscured. The visible angle, 
which drivers are also assumed to derive from parallel edges, can hence only be used as evidence 
during curve approach when completely visible to the driver. The preceding roadway and the 
number of lanes are however clearly visible upon curve approach, and, when these cues are 
analysed interdependently in a Tree Augmented Naïve Bayes (TAN) structure, the preceding 
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roadway and number of lanes show a strong influence on the expected safe speed. In case studies, 
where the TAN was applied in a temporal order along a curve approach, the updated expected 
safe speeds for the upcoming curve follows the actual measured operating speed profile, showing 
how this TAN indeed mimics the curve approach behaviour by minimising the prediction error 
through deceleration. Both the strength of influence of the speed signs in the TAN, as well as the 
case studies show a low influence of speed signs, even though the probability distributions of speed 
signs show that measured 85th percentile speeds which deviate much from the (advisory) speed 
limit have low probabilities and are hence thought to have a large influence. This could be the 
result of a high interdependency between the speed signs and the measures speeds and underpins 
the findings by Vos et al. (2023) who showed that speed signs are mostly used by drivers for 
confirmation for the need to decelerate and not as an independent cue.  

The cross-validation of the TAN shows that it is better suited for predicting relatively low expected 
safe speeds, as the confusion matrix shows more off-target predictions when the speeds get higher. 
This is in line with the identified need for additional cues than perceivable curvature when 
approaching smaller radii, since these are hard to perceive. Better predictability of curves which 
have low operating speeds suggest a more uniform curve approach – at least in this dataset – and 
therefore a better self-explainability.  

Finally, we mention some limitations. First, the database we have used was not specifically 
designed for conducting this research. The relative low number of curves and the high number of 
variables and conditional probabilities led to several conditional probabilities which might be 
skewed to one or two available records, and hence do not reflect the conditional probabilities of a 
cue. However, BBNs are known to perform well with missing data (Chen & Pollino, 2012). Still, a 
larger set of curves would give better insights into the conditional probabilities, furthermore the 
conditional probability tables could be adjusted based on expert knowledge. 

In addition, the dataset used to model expected safe speeds was based only on data collected in the 
Netherlands (Vos et al., 2021b). This means that the results only represent expectations about Dutch 
freeways. The methodology presented in this research, using a Bayesian approach to modelling 
safe speed expectations, is universally employable whenever enough data or expert knowledge is 
available on local curve characteristics and driving speeds. 

6.6 Conclusions 

Estimating curve radii from a distance, which is needed to properly decelerate, is difficult for 
drivers, especially for smaller radii. Therefore, other cues are needed to assist drivers to build 
correct expectations about a safe speed. By modelling the expected safe speed in an upcoming 
curve, dependent on cues during curve approach in a Bayesian Belief Network, we mimic driver’s 
expectations and curve speed approach behaviour. The results show that the preceding type of 
roadway, and the number of lanes, have a strong influence on the expectations of the safe speed in 
an upcoming curve. But not as much influence as the deflection angle of the curve, which, when 
visible using the roadway itself or parallel edges such as tree lines, tells a lot about the range of 
safe speeds to be expected. Speed signs on the contrary, seem to have a more confirmatory use for 
the driver. The model can reflect the updating of expected safe speeds in a temporal way during 
curve approach, resembling operating speed profiles. We conclude that the Bayesian approach to 
driver behaviour is a useful method in quantifiably modelling driver behaviour. It can be used to 
pro-actively assess road safety, based on infrastructural elements, since it helps to understand how 
drivers build and use their expectations about a safe speed. Using the model in a Dutch context, 
designers and safety auditors can check if a combination of design elements preceding a curve, 
leads the driver to build a correct expectation about the speed that can be safely driven through a 
curve. If this expected safe speed does not reflect a design speed for an upcoming curve, the 
expectations of the driver might deviate too much from the actual curvature and might result in a 
too high speed during the curve approach, increasing accident risks because of speed differences 
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among drivers or potential skidding. Dutch design guidelines can be updated using these insights 
and relate curve design to the cues the drivers are given in curve approach, making the design 
process more holistic and driver oriented. In order to use the model in a non-Dutch context, the 
Conditional Probability Tables need to be revised using local expert knowledge or data on local 
curve characteristics and driving speeds. 
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7 Discussion and Conclusions 

The main aim of this dissertation was to quantify the interaction between the drivers’ behaviour and road 
characteristics during curve approach, with the objective to apply these quantifications in freeway 
design. This interaction is assumed to be mainly governed by organised mental templates of 
expectations and behaviours which help the driver selecting the safe speed given certain curve 
characteristics in a mostly unaware process. These mental templates are known as (memory) 
schemata. This resulted in the following main research question: 

What road characteristics trigger speed adjustments by drivers during curve approach? 

Two main approaches were identified to answer this question: speed prediction modelling to 
quantify the relations between road characteristics and operating speed, and the human factors 
approach in order to quantify and understand drivers’ cognitive processes of the interpretation of 
curve characteristics during curve approach to adjust their speed. This resulted in two research 
questions: 

1. What road characteristics are correlated with speed behaviour during curve approach?  
2. What road characteristics are utilized in drivers’ information processing and speed 

adjustment decisions during curve approach? 

This chapter discusses the results and draws conclusions in five sections.  

In the first section, a comparison is made between the two main approaches: speed prediction 
modelling and the human factors approach. This comparison aims to address the two research 
questions. Each approach is first discussed separately, followed by a comparative analysis. 

Next, in the second section, the main research question is addressed by discussing the relevant 
road characteristics identified in the different chapters. By categorising these characteristics into 
four overarching sets, the results from the various approaches are discussed.  

Subsequently in the third section, several limitations inherent to this research are acknowledged 
and discussed. The fourth section discusses future research recommendations. Finally, the fifth 
section focusses on policy implications, particularly regarding the potential implementation of the 
findings of this dissertation in the Dutch road design guidelines.  
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7.1 Two approaches 

In this section, the two research questions are discussed. To answer the first research question, 
speed prediction models were used which, in a behaviouristic approach, connect curve 
characteristics to speed behaviour to gain insights in the correlations between curve characteristics 
and operating speed. To answer the second research question, human factors approaches were 
used which adopt a cognitive 
perspective on how drivers 
interpret the curve characteristics 
and subsequently decide to 
decelerate based on those curve 
characteristics. These two 
approaches are visualised in the 
base conceptual model, shown in 
Figure 7-1  (which is identical to  
Figure 1-4, and repeated here for 
clarity). The connecting arrows, 
show that the speed prediction 
model uses correlation to correlate the curve characteristics with the operating speed (arrows 
indicated with 1) and that the human factors approach uses causation to reveal the relation between 
the physical reality and the human behaviour based on temporal relations (arrows indicated with 
2).  

The next two sections will discuss the results from both approaches separately, followed by a 
comparison of the two approaches. 

7.1.1 Speed prediction 

Traditional speed prediction models have several deficiencies, including incorrect assumptions of 
constant operating speed in a curve, not considering the road (environment) upstream of the curve 
and biases in data collection, which result in unrealistic assumption of driver behaviour (Hassan, 
Sarhan, & Dimaiuta, 2011). Learning from these deficiencies in traditional speed prediction models, 
the research in this dissertation collected about one million free flow speed profiles from High 
Frequency Floating Car Data (HF FCD) in 99 locations, covering 153 curves. The extent of the 
spatial coverage of the speed profiles ensured that the majority of approaching elements could be 
included in the analysis, and to this end, all geometrical and environmental elements related to 
freeway design and layout were included in the dataset. Speed profiles benefit from the ability to 
probe speed data at any given position along the road design, instead of being bound to specific 
measurement sites. Furthermore, this approach ensured enough data to do proper statistical 
analysis. 

The analysis of individual speed profiles and the development of parsimonious speed prediction 
models using 85th percentile speeds (chapters 3 and 4 respectively), helped to understand the 
correlations between curve characteristics and operating speeds. While traditional speed 
prediction models usually take the speed in the centre of a curve (Hashim et al., 2016; Hassan, 
Sarhan, Porter, et al., 2011), the analysis of the speed profiles in this dissertation took a dynamic 
approach in finding the position where drivers stop decelerating, which is in line with finding the 
minimum speed in a curve (Malaghan et al., 2020).  

Especially when correlating the 85th percentile speeds to road geometry – which is quite common 
in speed prediction modelling (Llopis-Castelló et al., 2018; Russo, Biancardo, & Busiello, 2016) – 
prior research has consistently identified a substantial correlation between the horizontal curve 
radius and the operating speed in a curve. This research combined the radius and the number of 
lanes in a curve as predictors of the 85th percentile speeds, which resulted in an R2 of 0.96. Based 

Figure 7-1 The base conceptual model in this dissertation. 
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on individual speed profiles this resulted in an R2 of 0.44. This difference in R2 can be explained by 
introducing heterogeneity based on individual driver behaviour. 

Next to the horizontal radius, the number of lanes and driver’s approaching speed, the speed in a 
curve can further be explained by the deflection angle of the curve, the length of the curve, whether 
or not a discontinuity (deceleration lane, weaving section, etc.) was located in the curve, the 
direction of the curve, the width of the emergency lane and the presence of curve chevron signs. 
These are known elements that influence speeds in curves (Bobermin et al., 2021; Hassan, Sarhan, 
Porter, et al., 2011; Kazemzadehazad, Monajjem, Larue, & King, 2019).  

The position where drivers start to decelerate was also investigated, since this is a measurable 
variable related to drivers taking action. Identifying this position and knowing which curve 
characteristics correlate with it, contributes to formulate a measurable memory schema: “start to 
decelerate”. This is a new approach in speed prediction modelling, since most research focusses on 
speed in the curve, and the deceleration in front of curves (Hassan, Sarhan, Porter, et al., 2011; 
Malaghan et al., 2021) which gives no information about where drivers start reacting to a curve.  

While analysing the 85th percentile speeds in relation to curve approach, it was observed that the 
point where drivers begin to decelerate was strongly correlated to the horizontal radius: sharper 
curves prompt earlier deceleration. However, when examining individual speed profiles, this 
correlation weakened, underscoring the variability in how drivers navigate curves. Incorporating 
individual speeds as an independent variable in regression analysis strengthened the correlation 
between road characteristics and driver behaviour. Similarly, factors like visibility, including sight 
distances and the visible angle of a curve, enhanced the correlation between individual speed 
profiles and curvature to a similar degree. While it is intuitive that increased visibility as a curve is 
approached leads to an increased correlation (more of it becomes visible), it is noteworthy that 
extended sight distances correspond to an earlier onset of deceleration. Additionally, the number 
of lanes and the absence of a discontinuity account for how much sooner drivers commence 
deceleration. Although sight distances are recognized for their influence on speeds along tangents 
(Hassan, Sarhan, Porter, et al., 2011), their impact on speed during curve approach has been 
underexplored. The research reported in this dissertation has addressed this gap. 

7.1.2 Human factors 

Human factors in this dissertation refer to the interaction between the driver and the infrastructure. 
Three conceptual approaches were used to analyse the human factors:  

• analysis of the cognitive processes at play during curve approach; 

• evaluation of drivers’ risk assessment during curve approach; 

• a comprehensive description of the driving task, covering the actions, behaviours and 
cognitive processes that a driver engages in while approaching a curve. 

The next sections cover the findings based on these approaches, starting with the cognitive 
processes. This order stems from the understanding that the cognitive processes are considered the 
root for a driver’s understanding of the infrastructure. 

7.1.2.1 Cognitive processes 

Cognition is described as “the interpretation of sensed material” by Wickens et al. (2021). The “sensed 
material” in this dissertation were the curve characteristics, sensed mainly by drivers’ eyes. The 
interpretation of these curve characteristics is guided by schemata stored in long-term memory. 
The output of this process, which is fast and mainly unaware during curve approach, is an action 
(i.e., response selection and execution) which results in deceleration. It is however experimentally 
and conceptually challenging to understand how schemata are built (Walker et al., 2011). This is 
because schemata are constructs stored in memory and cannot be directly measured. Simply 
inferring correlation between the outside world and measured behaviour leads to generating speed 
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prediction models (chapters 3 and 4). These models tend to have a large explaining power when 
using the horizontal radius of a curve. However, the horizontal radius of a curve is not a sensation 
which can be observed or interpreted by the driver. Instead, the driver observes the horizontal 
curve as either a kink or a hyperbola in the downstream alignment (Brummelaar, 1975; Wang & 
Easa, 2009). 

To understand these cognitive processes, this dissertation employed several methodologies. Since 
curve driving is mostly a skill-based behaviour and hence relatively automatic and unaware, the 
survey in chapter 2 first made the participants aware of the process of speed adjustment for a curve 
using a comparison task between different pairs of curve pictures. Then, participants were asked 
which cues they used to adjust their speed. This revealed the driver’s need for as much visibility 
of the curve trajectory as possible, in order to acquire the relevant information for their upcoming 
actions. Visible angle seems to be important in that matter, next to the number of lanes, signage 
and trees which were also mentioned as relevant aspects to speed adjustment. The importance of 
signage and number of lanes are in line with the findings of a previous study which used a 
questionnaire regarding curve speeds (Kanellaidis, 1995). Note however that Kanellaidis (1995) 
used closed questions, so the visible angle (or comparable variables) was not looked into in that 
study. The tendency of drivers to seek the greatest visible extent of a curve as possible has also 
been shown in eye-tracking research by Lappi (2014) and was discussed as the “future path model” 
for drivers’ looking behaviour in a curve.  

Next, in the on-road study (chapter 5), an eye tracking device measured the fixations of the drivers 
and these were compared to the output of their actions (i.e., deceleration). Furthermore, the on-
road study used verbalisation to gain insight in the drivers thought processes about speed changes. 
The results from the eye tracking showed that drivers fixate on the Focus of Expansion (the point 
in the visual field where all perceived motion appears to converge, usually on the horizon) mostly 
before starting to decelerate, which is in line with the two point steering model, that shows that 
drivers fixate on the Focus of Expansion on tangents (Salvucci & Gray, 2004). Based on these results, 
it is hypothesised that drivers perceive the shift from a tangent into a curve in edges parallel to the 
curve like guardrails or treelines, which coincide with the Focus of Expansion, and use this visual 
cue to initiate deceleration. Only after the start of deceleration, drivers fixate on warning and speed 
signs and use this information to confirm a needed speed change. This contradicts common 
knowledge which state that speed or warning signs are the most important tools to aid the driver 
in speed adjustments for dangerous situations (Costa et al., 2022). 

Finally, a Bayesian Belief Network (BBN) was developed in chapter 6, using insights from statistical 
learning on how prior probabilities resemble cognition (Griffiths & Tenenbaum, 2006). The BBN 
organises the complex relationships between curve characteristics and expectations of safe speed 
resembling schemata during curve approach. The Bayesian approach showed that multiple cues 
are used in the schemata during curve approach. Main cues drivers use during curve approach are 
the preceding roadway type (i.e., main carriageway or a type of discontinuity such as a weaving 
section), the number of lanes, the visibility of the curve in general, and the visible deflection angle 
in particular. The results, particularly those pertaining to the preceding roadway type and number 
of lanes, are in line with the Self Explaining Road concept, which postulates that the type of road 
should help the driver estimate the probability of certain properties of that road (Theeuwes & 
Godthelp, 1995). In this study these are curves that require the driver to  decelerate. Speed and 
warning signs are much dependent on other variables, so they only complete – or underpin – 
schemata in that sense.  

7.1.2.2 Individual risk assessments 

Next to the general schemata identified, individual driving styles influence behaviour during curve 
approach. These driving styles are assumed to be mostly determined by the amount of risk the 
individual is willing to accept (Summala, 2007; Wilde, 1998). The analysis of individual speed 
profiles in this dissertation shows the correlation between individual speeds driven before a curve, 
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the position where individuals start to decelerate and how fast they navigate a curve. Since higher 
speeds are associated with higher risks, these correlations could suggest that individual risk 
assessments during curve approach contribute to the variability in curve approach behaviour.  

The survey and on-road study add some qualitative insights to individual speed behaviour. Nine 
percent of the survey respondents included reasons such as feeling hurried, status, excitement, fun 
and safety as motivations to select specific speed on a curve. These reasons were clustered in 
respondents’ answers according to mentioned reasons regarding the type of vehicle, weather 
conditions and traffic conditions. These answers are in line with the verbalisations provided by the 
participants in the on-road study. About 23% of the verbalisations in the on-road study were driver 
related (i.e., not related to traffic or the road geometry or environment). This included 6% on 
driving style, 5% on comfort and various other reasons such as familiarity and interpretations of 
operating speed. Out of the verbalisations regarding decelerating for a curve, 10% included driver 
related verbalisations, of which 1% was on driving style and 5% was on comfort and the rest on 
other reasons such as familiarity, which is discussed below. This shows that comfort can be 
considered an aspect to accept a speed in a curve, and which differs per individual driver. These 
individual reasons were not further investigated in this dissertation. Van Winsum and Godthelp 
(1996) however showed that both the geometric elements and drivers safety margins have an effect 
on observed speed behaviour. So, each individual driver uses the same geometric elements as 
input, but makes a different trade-off towards a desired speed, because of different individual 
safety margins.  

Familiarity with a curve was mentioned by 3% of the respondents in the survey, and in 6% of the 
overall verbalisations in the on-road study. Furthermore, familiarity was mentioned in 2% of the 
verbalisations related to decelerating for a curve. These percentages appear to be on the lower side, 
considering that other research has shown that familiarity significantly influences driving 
behaviour (Harms et al., 2021). Further, in the on-road study it was weakly related to higher driving 
speeds in curves and shorter fixation duration in look-ahead fixations in general and parallel edges 
specifically. Unfortunately, familiarity could not be investigated in the speed prediction modelling 
in chapters 3 and 4, because of privacy regulations. 

7.1.2.3 Driving task 

The task of approaching a curve, decelerating and driving through it is thought to be an operational 
driving task (Michon, 1985) and a skill based process (Ranney, 1994; Rasmussen, 1982). This means 
the curve driving task is highly automated and hence happens mostly unaware. And indeed, 
during the on-road study, the participants had difficulties verbalising their deceleration during 
curve approach, indicating unaware, automated tasks. 

The descriptions of the driving task for curve driving (Campbell et al., 2012; McKnight & Adams, 
1970) outline the actions a driver must take while approaching and navigating through a curve. 
These descriptions provide some helpful information, like the importance of recognizing the 
curve’s angle. However, they do not explain the specific characteristics that are crucial for the 
driver during the approach to a curve. It is only mentioned that curves are identified and speed is 
estimated based on speed signs, without explaining which curve attributes are crucial for curve 
discovery and triggering safe speed expectations. Additionally, the existing driving task 
descriptions assume a long tangent approach to a curve. 
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Based on the findings from the human factor studies in this dissertation (chapters 2, 5 and 6), the 
driving task descriptions for the approach and curve discovery phases can be enhanced with the 
following insights: 

Approach phase: 

• Drivers form their expectations of safe speeds and adjust their driving speed based on the 
preceding roadway. Different types of roadways and their associated expectations have 
been identified: 

o Main carriageway: the driver assumes they can maintain their current speed. No 
specific cues are provided to signal the need for deceleration. 

o Discontinuity: markings (e.g. block markings and arrows) indicate the need for 
deceleration as the driver leaves the main carriageway, resulting in earlier 
deceleration. Different types of discontinuities can be distinguished: 

▪ Split: is associated with relatively high-speed expectations. 
▪ Deceleration lane: is associated with relatively low-speed expectations. 
▪ Weaving section: is associated with both high- and low-speed 

expectations. 

• Drivers also form their expectations and adjust their driving speed based on the number 
of lanes preceding a curve. More lanes are linked with higher speed expectations, leading 
to higher speeds during curve approach and in the curve. 

Discovery phase: 

• Drivers identify an upcoming curve based on what they perceive at the Focus of 
Expansion. This is often seen as a kink in the alignment or trajectory of the road. Parallel 
edges, such as guardrails, treelines, or noise barriers, can assist drivers in spotting these 
curves at an early stage. 

• If the trajectory of the curve itself is not visible, speed and warning signs may be the first 
indication of an upcoming curve: 

o Speed signs help the driver underpin the necessary speed adjustment during 
curve approach. 

o Warning signs help the driver understand why the speed limit is set. 
o Curve (chevron) signs aid in discovering the curve similarly to parallel edges, as 

they help visualize the curve’s trajectory, offering better contrast and perspective. 

• A safe speed is best estimated once the driver has a clear “overview” of the curve. Curves 
with higher visible angles are associated with lower safe speed expectations, resulting in 
earlier deceleration and lower speeds. 

When the safe speed expectations do not align with the current operating speed, the driver 
starts to decelerate, or increases its deceleration. The interaction between drivers’ behaviour 
and road characteristics is visualised in Figure 7-2, illustrating that different visual 
representations of curve characteristics generate different expectations.  
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Figure 7-2 Visualisation of the road characteristics during curve approach. Panel A shows a top 

view of the curve approach. Panels B through E visualise several variations of preceding roadway 

from the drivers’ perspective. Panels F though I show the change of trajectory and signs from the 

drivers’ perspective. Panels J through M show the visible angle from the drivers’ perspective in 

several settings (see text for further explanation).  

Panel A offers a top-down view of a curve approach, featuring a two-lane carriageway and a right-
hand curve with trees on the outer side. This scenario is further presented in sequential panels B, 
F, and J from the driver’s perspective. Variations are displayed below these panels, with their 
implications explained here. 

Panels B to E showcase various types of preceding roadways that would establish different 
expectations of safe speeds. Panel B illustrates a two-lane carriageway, generating expectations for 
relatively high safe speeds and hence no need to start decelerating. Panel C features a lane split, 
resulting in slightly lower safe speed expectations once the driver crosses the block markings. Panel 
D exhibits a deceleration lane, leading to even lower anticipated safe speeds upon entering and 
hence a need to start decelerating earlier. In contrast, Panel E displays a single-lane road, 
prompting significantly lower safe speed expectations compared to carriageways with two or more 
lanes. 

Panels F to I highlight the identification of trajectory changes and thus the detection of a curve. 
Panel F underpins that the treeline on the outside of the curve clearly indicates a trajectory 
alteration. Panel G presents the same configuration but without the treeline, making the trajectory 
change less noticeable. When the trajectory change is challenging to observe, Panel H demonstrates 
that warning and speed signs can act as initial cues, while Panel I showcases that curve chevron 
signs aid in detecting a trajectory change. 
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Panels J to M demonstrate that the visible angle provides valuable information about required 
deceleration. Panel J features a visible angle of around 100 degrees, accentuated by the treeline. 
Panel K illustrates diminished detectability of the curve’s angle due to the absence of the treeline. 
In Panel L, a curve with a visible angle of approximately 200 degrees implies a lower safe speed 
expectation than the curve in Panel J. Lastly, Panel M shows that obscuring the full deflection angle 
– achieved by obstructing the view with trees on the inside of the curve – leads to expectations of 
higher safe speeds than panel L. This might result in overestimating safe speeds which could result 
in accidents.  

Note that the panel sequence in Figure 7-2 serves as an illustrative example. Real-world 
expectation-triggering and subsequent speed adjustments rely on the temporal order and visibility 
of specific curve characteristics during the curve approach.  

7.1.3 Speed prediction versus human factors 

The discussion above shows that speed prediction models only provide correlations, which do not 
imply causal relationships between curve characteristics and driver behaviour. This is most clearly 
seen in the important role the horizontal curve radius plays in the speed prediction models, while 
this curve characteristic is not perceivable by the driver. In other words, speed prediction models 
on their own cannot explain why a driver chooses a specific speed behaviour. Human factors 
research, on the other hand, helps to understand how the driver interprets the curve characteristics. 
By using human factors approaches in this dissertation, the schemata used by drivers approaching 
curves have been used to enhance the existing driving task descriptions, suggesting probable 
causal relations between several identified curve characteristics and drivers’ behaviour. Bayesian 
statistics identified which cues are assumed to have the largest influence on the speed choice 
schemata.  

The Bayesian Belief Network (BBN) developed in chapter 6 used the same variables as speed 
prediction models to measure driver expectations: curve characteristics and the operating speed. 
However, the constructed BBN acknowledged that the curve radius is not something a driver can 
directly perceive, and therefore it as not included as a variable in the model. Next to that, the 
probabilistic approach mimics the heuristics employed by drivers better than the deterministic 
approach (Rolls, 2011) employed in classic speed prediction models. In this way, constructing a 
BBN is speed prediction modelling that incorporates human factors knowledge. 

Still, traditional speed prediction modelling equips freeway designers with valuable insights into 
how various design elements relate to speed, a crucial factor in the design process. This dissertation 
shows that operating speed inside the curve is mainly correlated to curve geometry, and thus 
relatable to lateral acceleration and comfort thresholds (Dhahir & Hassan, 2019a). Although the 
speed behaviour during curve approach is also correlated to the curve geometry, this is not as firm 
as the operating speed in the curve. Furthermore, the relationship between deceleration during 
curve approach and sight distances, along with the understanding that a curve’s horizontal radius 
is not perceivable by the driver during curve approach (Brummelaar, 1975; Riemersma, 1988), 
highlights the importance of using a human factors approach. This approach helps determine 
which factors affect driver behaviour and should be included in speed modelling.  

7.2 Road characteristics drivers use during curve approach 

This section addresses the main research question using the insights gathered from the earlier 
chapters. This will be done through four subsections, each focusing on the findings related to 
significant road features uncovered in this dissertation’s research. By examining these road 
features separately, it is aimed to uncover the specific curve characteristics that drivers take into 
account when approaching curves. These are assumed to be stored in their memory schemata 
related to deceleration during curve approach.  
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7.2.1 Horizontal curve alignment 

Horizontal curve alignment consists of two main characteristics: horizontal radius and deflection 
angle. The research findings of this dissertation on these two characteristics are discussed in this 
sub section. 

In chapter 2, it was found that 28% of survey respondents highlighted the horizontal radius as a 
reason for reducing speed, whereas only 4% mentioned the deflection angle itself. References to 
the horizontal radius tended to occur alongside comments about familiarity and the type of road. 
This indicates that participants draw on their past experiences to estimate the radius of the curve. 
On the other hand, the deflection angle was often linked to answers about superelevation and 
vertical alignment. This suggests a relationship between the deflection angle and the curve’s 
visibility to the driver. Moreover, the visible angle emerged as a factor that might shed light on how 
participants evaluated the curve images. When the curves were arranged according to how 
frequently respondents selected them as the curve where they would drive the fastest, the visible 
angle was the only variable that mostly follows an ascending order in the list. Interestingly, the 
horizontal radius did not appear to serve as an explanatory variable. 

In the speed prediction models (chapters 3 and 4) horizontal radius was the main explaining 
variable for speed behaviour. The starting point of deceleration was closer to the curve with larger 
radii, but with lower radii, larger variability was observed in the position where drivers start to 
decelerate. Speed in the curve is – especially with lower radii, up to 300 meters – very strongly 
correlated with the horizontal radius, showing lower speeds in tighter curves. The maximum 
amount of deceleration during curve approach was also moderately correlated with the horizontal 
radius; with tighter curves, drivers decelerate stronger. Deflection angle on the other hand was 
shown to have a weak negative correlation with the position where drivers start to decelerate and 
the speed in the curve. Again, there was a positive correlation between the visible angle at the point 
where drivers begin to decelerate and the variability of that specific point. The total deflection angle 
also positively influenced the variability in curve speeds. The parsimonious speed prediction 
models in chapter 4 did not take deflection angle into account, because it does not improve the 
models significantly. 

During the on-road study (chapter 5), participants mentioned anticipating radius in 11% of the 
verbalisations for deceleration during curve approach while they do not explicitly mention 
deflection angle. Length of a curve – which is associated with this angle – was mentioned in about 
1% of the verbalisations. Increased fixation duration into the curve after the start of deceleration 
indicates an increased interest in the trajectory of the curve and hence its length and deflection 
angle. 

In the perspective analysis of curves in chapter 6 it was shown that the horizontal radius is hard to 
perceive by drivers, especially for sharper curves. By the time drivers visually detect the curvature 
of such sharp curves, they have already started the deceleration. The Bayesian Belief Network 
showed that other cues during curve approach help the driver in anticipating the safe speed and 
the correlated horizontal radius. The deflection angle of a curve emerged as a significant factor 
influencing drivers’ expectations of a safe speed when approaching a curve. However, it is 
important to note that for this influence to occur, the deflection angle must be visually noticeable. 

Horizontal radius plays a pivotal role in curve driving, both in terms of human and physical 
factors. It affects lateral acceleration (Reymond, Kemeny, Droulez, & Berthoz, 2001), impacting skid 
resistance and overall comfort, which are related to physical and human factors respectively. 
However, during curve approach other cues are used by the driver, because the radius itself is not 
recognisable from a driver perspective (Brummelaar, 1975; Fildes & Triggs, 1985). Notably, the 
visible deflection angle emerges as a key factor influencing a driver’s expectations and speed 
adjustments when navigating a curve. This observation aligns with insights derived from 
perspective analysis of curves (Riemersma, 1988) while deflection angle has also been shown to 
positively correlate with accident risk (Shalkamy, Gargoum, & El-Basyouny, 2021). 
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7.2.2 Road configuration 

The configuration of the road is primarily represented by the cross section and markings that 
drivers can easily recognise. This dissertation focuses on two distinctive road characteristics: the 
type of preceding roadway and the number of lanes. 

Even though the curve images in the survey conducted in chapter 2 did not show any preceding 
roadways, 5% of the respondents still cited the type of carriageway as a factor influencing their 
chosen speed. When respondents mentioned the type of carriageway, it was frequently associated 
with references to radius and familiarity, suggesting a correlation between these factors. Over one-
third of the respondents (35%) mentioned the number of lanes as a reason to drive faster through 
a curve. Furthermore, curve pictures with fewer lanes, tended to be picked as curves with lower 
preferred speeds by the respondents. 

The analysis of individual speed profiles in chapter 3 showed that the presence of a discontinuity 
(i.e., weaving section, deceleration lane or split) and an increasing number of lanes relate to drivers 
starting to decelerate earlier. The number of lanes was the only variable next to the horizontal 
radius to be included in the parsimonious models (chapter 4) on speed development through 
curves. It was shown that two or more lanes resulted in about 4 to 8 km/h higher speeds during 
curve approach compared to approaches with a single lane. Furthermore, the models showed that 
operating speed before the curve was weakly correlated to the curvature and number of lanes 
alone. This means other variables are needed to explain the operating speed on the curve approach. 

The road configuration consists of multiple components, which were not captured by how the 
fixations were labelled in the on-road study described in chapter 5. Instead, it can be assumed that 
the various components of the road configuration are all taken into account within the fixations on 
various Areas of Interest during both look-ahead fixations and guiding fixations. The road type 
was mentioned as a speed-related factor in a mere 1% of the verbalizations, while the number of 
lanes was referred to in less than 1% of the verbalizations during the experiment. This is much less 
than the 35% mentioned in the online survey, suggesting that drivers are not as actively aware of 
the number of lanes during driving than after a comparison task using curve pictures. 

Using a Bayesian Belief Network to model expectations (chapter 6), revealed a strong influence of 
the preceding roadway on triggering expectations regarding a safe driving speed. The probability 
distributions showed that expectations for safe speed were higher on main carriageways, than on 
carriageways preceded by discontinuities. Furthermore, a strong influence was observed between 
preceding roadway and the number of lanes. Increasing numbers of lanes showed probability 
distributions with higher speeds and were related to discontinuities associated with higher speeds 
such as splits. 

Although drivers find it hard to mention the effect of the preceding roadway, it is clear from this 
research that the design of the preceding roadway influences expectations and behaviour of the 
driver. This is in line with the Self Explaining Road approach, in which a type of road helps the 
driver in triggering the right expectations (Theeuwes & Godthelp, 1995). Furthermore, because 
drivers have the experience of driving faster trough curves with higher number of lanes, this is one 
of the key cues to trigger expectations regarding safe speed behaviour. This is in line with a study 
on the number of exit lanes performed by Calvi et al. (2018), who show lower speeds on a single 
exit lane. 

7.2.3 Curve visibility 

As discussed in paragraph 7.2.1 the visible part of a curve’s deflection angle influences expectations 
for a safe speed on a large scale. Two elements researched in this dissertation contributed to 
visibility: sight distances and parallel edges. Sight distances refer to a driver’s line of sight towards 
elements of the road environment. Parallel edges denote features like guardrails, treelines, or noise 
barriers that run alongside a curve’s alignment. 
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An overwhelming 71% of the respondents of the survey (chapter 2) mention visibility as a reason 
to drive faster through a curve. This is closely connected with the Dutch word “overzicht”, loosely 
translated as overview, which was mentioned by 34% of the respondents. Even though traditional 
sight distances like road sight distance or sight distance on the trajectory of the curve do not show 
any relation with the ranking of curves by the participants, visible angle does. Edges or lines parallel 
to the curve mentioned include trees and guardrail, which were mentioned by 9% and 6% of the 
respondents respectively. These were clustered together in answers containing the term guidance, 
which was mentioned by 5% of the respondents. This suggests that these parallel edges create 
visual guidance for the driver. 

Both road sight distance and stopping sight distance explained the variability of the position where 
drivers start to decelerate in the analysis of individual speed profiles (chapter 3), but these two 
sight distances were collinear. Maximum sight distance, which indicates the distance at which 
parallel edges such as guardrail, curve signs or noise barriers are visible, also contributed, albeit to 
a slightly lesser extent, to explaining the variability. The presence of these parallel edges did not 
correlate with any of the breakpoints in the analysis of individual speed profiles. Sight distances 
or parallel edges did not explain variability in the operating speeds inside the curve and were not 
part of the parsimonious speed prediction models in chapter 4. 

In the on-road study outlined in chapter 5, a considerable portion of fixation duration was 
dedicated to guiding fixations. These fixations hold relevance for sight distances on the road, as 
they primarily assist drivers in maintaining their lane. Moreover, roughly 40% of the fixation 
duration was allocated to look-ahead fixations. This suggests that drivers frequently use sight 
distances extending beyond three seconds of driving time to plan their upcoming actions while 
driving. Although participants did not verbally mention any of the parallel edges, their gaze was 
drawn to them. Starting just before the moment participants initiated deceleration, fixation 
duration progressively increased, spanning from the Focus of Expansion to the far zone of a curve. 
As drivers navigated through the curve, their fixation on the parallel edges remained consistent, 
provided these edges are present. 

The case studies employing the Bayesian Belief Network in chapter 6 showed that when cues 
become visually available during curve approach, drivers reacted to them in changing their speed, 
according to their expectations. Furthermore, the perspective analysis of curves showed that 
increasing the height of parallel edges increases the distance from which curvature is perceivable 
by the driver.  

Overall, sight distances were correlated to the deceleration behaviour of drivers, because when 
cues with stored expectations become available, drivers adapt their speed accordingly. This is in 
line with the predictive processing framework (Engström et al., 2018), which shows that drivers 
adjust their behaviour – in a very broad sense – based on sensory input and it underpins schema 
theory (Plant & Stanton, 2013). Specifically, the presence of parallel edges increases the guidance 
of drivers, both during curve approach, and while driving in the curve itself. This is in line with 
Gestalt principles of bounding (Čičković, 2016; PIARC, 2016), which show that drivers heuristically 
assume that these edges are parallel to a curve and therefore can be used to infer the curve’s 
trajectory. 

7.2.4 Road signs 

This dissertation has also explored the impact of road signs pertaining to curves: curve signs 
(chevrons), speed signs, and warning signs. 

Curve signs in this dissertation refer specifically to chevron signs which are placed in the curve. 
These signs are mentioned by 20% of the survey respondents in chapter 2 to be of influence on their 
speed selection. These answers are clustered together with answers on the number of lanes. When 
ranking the curve pictures by how many times a curve was picked as the fastest by the respondents, 
pictures with curve signs were in the lower part of the ranking. The curve pictures did not show 
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any speed or warning signs, nor did any of the respondents mention speed or warning signs as a 
cue for their operating speed. 

The visibility of curve signs at the moment drivers started to decelerate, explains the variability of 
that position in the analysis of individual speed profiles (chapter 3). It explains the relation between 
visible curve signs and a later moment of deceleration. Furthermore, the presence of curve signs 
was related to higher speeds in a curve. Although the speed indicated on speed signs was seen to 
correlate with the speeds taken to drive through curves, it did not account for the diversity in 
speeds observed in the regression analysis. The parsimonious speed prediction models (chapter 4) 
did not include the presence of any road signs. 

During the on-road study described in chapter 5, participants referred to curve signs in 0.2% of 
their verbalisations, warning signs in 0.7%, and speed signs in 8.4%. Additionally, participants 
mentioned in 4.5% of the verbalisations that they were driving faster than the speed sign indicated 
and in only 0.2% they mentioned they were driving slower than allowed. When participants 
mentioned they decelerated for a curve, 13.2% of them also mentioned a speed sign, which was the 
most common co-occurrence with deceleration. The second-highest of co-occurrences, at 12.0%, 
was when participants mentioned discovering the curve together with mentioning decelerating. In 
addition, participants revealed they used the speed signs as a confirmation or speed indication 
after curve discovery. This is in line with the fixation measurements; only after the participants 
slow down, they start fixating on road signs in general, unless the speed sign itself is the first cue 
drivers see. Fixation distribution on curve signs is relatively higher in curves that did not have clear 
parallel edges, suggesting that a row of curve signs can serve as a substitute for a clear parallel 
edge.  

When modelling the cues which influence driver expectations using a Bayesian Belief Network 
(chapter 6), it became clear that curve and warning signs have a relatively minor influence on 
drivers’ speed expectations. Probability distributions showed that the presence of curve signs just 
tells a driver to decelerate, but not how much. There was however a moderate dependency between 
speed and warning signs. Speed signs showed narrow probability distributions for the operational 
speeds, based on the speed indicated on the sign. This narrow probability distribution suggests 
high influence of the indicated speed on speed signs on the expectation building for drivers during 
curve approach about their safe speed. And indeed, when modelling the expectations in a Bayesian 
Belief Network, using dependency upon other characteristics, speed signs still had a moderate 
influence on expectations. In the case studies the speed signs mainly act as a confirmation about 
the safe speed, i.e. narrowing the probability distribution of the expected safe speed. 

Generally speaking, curve signs can help drivers’ judgment on curvature, especially when parallel 
edges are absent. However, aiding the driver in judging the sharpness of the curve could 
potentially lead to higher speeds. In a simulator study by Calvi, D’Amico, Bianchini Ciampoli, and 
Ferrante (2019), the application of curve signs (chevrons) was shown to help the drivers understand 
the sharpness of a curve better. In this way, placing curve signs can substitute the absence of 
parallel edges. Warning signs alone do not contribute significantly to drivers’ ability to anticipate 
the need for deceleration before a curve. It is in the combination with speed signs that drivers 
trigger expectations about safe speeds. This is in line with a study by Charlton (2007), which 
demonstrates that warning signs become more effective when they are combined with other road 
treatments. Generally, when speed signs are present, they tend to align with the demands imposed 
by the curve’s horizontal radius, although they typically display slightly lower speeds than what 
drivers actually drive. The speed signs drivers observe appear to contribute to strengthening their 
expectations about the necessary deceleration before approaching a curve. While there is still a 
common belief within the research community regarding the substantial impact of speed signs on 
speed adjustments (Costa et al., 2022), it is recognized that drivers primarily rely on cues from the 
road itself, and using speed signs as supplementary information (Shinar, 2017d). Nonetheless, road 
signs in general prove to be particularly valuable during reduced visibility conditions.  
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7.3 Limitations 

The main chapters in this dissertation build on each other. Several knowledge gaps which 
remained in a single chapter, were then taken up in a following chapter. So, not all limitations 
mentioned in single chapters are limitations of this dissertation as a whole. However, some 
overarching limitations remain, which are discussed in the next three sub-sections. 

7.3.1 Sample selection 

Only curves in main carriageways and connector roads in interchanges were researched in this 
dissertation. Other schemata and speed behaviour may be present in curves in on and off ramps 
due to the need to slow down towards an intersection or to speed up from one. 

Next, the speed data gathered for the analysis of the speed profiles, for the generation of speed 
prediction models and for building the Bayesian Belief Network were obtained from a faster sub-
group than the entire driving population: users of the navigation and speed trap warning app 
“Flitsmeister”. It has been shown in paragraph 3.2.4 that these app-users drive on average 5 km/h 
faster than the average driver based on measurements from loop detectors, but that is all we know 
of this group. No further insights into the driver demographics or driving history are known, nor 
about the type of vehicles used, so no study of personal characteristics and an understanding of 
their impact on schemata was performed.  

Furthermore, the samples in the survey and on-road study were skewed to (young) males. The 
survey results show that (young) males differ in mentioning specific characteristics that are 
relevant for speed selection (e.g. superelevation, vertical alignment, guidance and overview) 
compared to the entire sample, as explained in paragraph 2.3.4. 

7.3.2 Data gathering 

In this dissertation, the survey in chapter 2 only used static images, while locomotion is known to 
provide information about speed (Wolfe et al., 2022). Since discussing speed based on static images 
is not the same as choosing a speed while moving (Charlton & Starkey, 2017b), the results from the 
survey can only be used exploratively. The verbalisation in the on-road study was difficult for the 
participants and the on-road study had a relatively low number of participants, which could have 
resulted in biased results. Furthermore, the quantitative data gathered on eye fixations, includes 
Area’s of Interest located up to 300 meters beyond the position of the eye tracker, making it hard 
to distinguish the correct AoI in the complex road environments used in the on-road study.  

Generally, the conclusions drawn in this dissertation about the schemata drivers have on curve 
approach are assumptions derived from the gathered data. The data contains only measurable and 
quantifiable variables, such as operational speed, curve characteristics, fixations and verbalised or 
transcribed thoughts. The latter comes closest to actual schemata, but schemata themselves are not 
directly measurable (Walker et al., 2011), and are therefore conceptually still open for discussion 
(Plant & Stanton, 2013), since surveys and verbalisations can be biased. The concept of a mental 
representation of expectations about safe speeds in curves, connected to curve characteristics is 
however shown to have explanatory power related to actual operational speeds as shown in the 
case studies in chapter 6.  

7.3.3 Generalisation 

Since all data was gathered in The Netherlands, applying the insights in road and curve design to 
other countries should be done with caution and consideration of local design characteristics and 
driving culture. For the conclusions drawn on drivers’ expectations, it is clear that, even in 
neighbouring countries, drivers build different schemata based on how local design dictates curve 
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approaches. Specifically, the use of steeper grades in the vertical alignment and poor road 
maintenance conditions – both were absent in the studied curves in this dissertation – might have 
influences on driver expectations.  

7.4 Recommendations for future research 

The methodological advancements and innovative approaches in this dissertation contribute to 

expanding knowledge in the field of traffic psychology, shedding light on the cognitive processes 

underlying driver behaviour and paving the way for further investigations. 

In this dissertation, the research focused on several important aspects related to driver behaviour 

during curve approach. Firstly, it identified the position at which drivers begin to decelerate and 

examined how curve characteristics influence this deceleration point. Additionally, the study 

explored the cognitive processes underlying drivers’ speed adjustments in relation to these curve 

characteristics.  

By expanding our knowledge of driver behaviour during curve approach and exploring the impact 

of different variables, this research contributes to the development of more effective road safety 

measures (e.g. expectations) and advancements in automated vehicle technology because speed 

behaviour is quantified (Markkula et al., 2023). The provided knowledge on human driver 

behaviour during curve approach in this dissertation can also be regarded as a reference for testing 

automated vehicles. In this way automated vehicles will mimic human driver behaviour instead of 

adhering to inferred speed behaviour from curve radius alone. This results in a more homogeneous 

traffic flow, by excluding automated behaviour, which is assumed to be more safe (Aarts & Van 

Schagen, 2006). 

The on-road study (chapter 5) revealed that drivers fixate on parallel edges to the curve. 

Additionally, it was observed that increased sight distance on curve trajectory (inferred by parallel 

edges in the analysis of individual speed profiles, and related to the visible deflection angle) led to 

earlier deceleration. Still, the perspective analysis in chapter 6 only assumed an effect of the height 

of these parallel edges on the visibility and speed behaviour based on the driver’s perspective on 

a curve (Brummelaar, 1975; Fildes & Triggs, 1985). An experiment in a controlled environment, 

with only the height or visibility of parallel edges changing, could give better – and quantifiable – 

insights into the effect of the height of parallel edges on speed behaviour during curve approach. 

The same is true for the positioning of speed and warning signs when the trajectory of a curve is 

not visible (enough) from a distance. In general, the real-world observations in this dissertation, 

can be studied independently in a controlled environment (e.g., advanced driving simulator, 

experiments on a (race) test track or an (online) experiment using different video’s to test the 

influence of specific road characteristics on expectations) to gain more in depth knowledge about 

speed behaviour (Lappi, 2022).  

In this dissertation only curves on main carriageways and connector roads in intersections were 
researched. To fully understand curve-related schemata on freeways, it is needed to conduct 
research that explores how drivers build their schemata for curves in both on and off ramps (slip 
roads). This would complement the analysis presented in this dissertation. A way forward could 
be to develop a database containing all connector roads, on and off ramps in The Netherlands, 
combined with the relevant curve characteristics mentioned in this dissertation. This database 
could be used to further develop the Bayesian Belief Network presented in chapter 6.  

Individual reasons to decelerate (driving style) were not further investigated in this dissertation. 

This requires further research, especially since it is known that various types of road users  such as 
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car drivers and motorcyclists, interpret the same environment differently (Walker et al., 2011), or 

have distinct perspectives of the road due to varying heights, e.g. truck drivers.  

Finally, only interactions between the driver and the road were researched in this dissertation. The 
interactions between the vehicle and the road – i.e., skid resistance – were not researched, but 
determine the safe outcome of a speed choice made by the driver. This calls for research into skid 
resistance, based on driver’s speed choices to understand which physical forces are required in 
different situations. The information regarding deceleration at the beginning of a curve, as 
presented in the speed prediction models, or the diverse speed expectations outlined in chapter 6, 
can serve as valuable starting points for guiding further research in this area. 

7.5 Applying human factors knowledge in road design 

It is hoped that with this dissertation awareness is raised in the road design community that speed 
behaviour during curve approach is not only dependent on the curve geometry itself. Factors such 
as preceding road elements, sight distances, warning and speed signs and continuous elements 
placed parallel to the curve have significant influences. Therefore, horizontal curve design should 
always consider the surrounding driving context. The driving task (presented in paragraph 7.1.2) 
and the individual effects of design elements (presented in paragraph 7.2) can help analyse existing 
designs or accident hot spots by answering two questions: 

- What speed behaviour is to be expected in this location? 
- What do drivers expect to happen? And is this in line with the physical reality? 

However, to be pro-active in road safety, knowledge of the driver’s perspective of our road designs 
needs to be implemented in the design phase (SWOV, 2018; Wegman, 2017). This calls for design 
guidelines which have a holistic approach, considering curves in the entire road environment, i.e., 
considering preceding elements and surroundings. The following sections use the insights from 
this dissertation to generate design guidelines for future freeway curves. 

Since design guidelines should be easily interpretable and applicable by road designers, the 
findings and knowledge acquired in this dissertation have been summarized into a table that 
outlines permissible combinations of design elements. This table also shows which combinations 
to avoid. The main design characteristic of curves is the horizontal radius (Rijkswaterstaat, 2022). 
So, to keep that consistent from a designer’s point of view, intervals of radii have been grouped. 
To do so, equation 7-1 is used – which was developed in chapter 4 as part of the parsimonious 
speed prediction models – because this connects the horizontal radius (Rh) and the 85th percentile 
speed in the curve (V85BP2). Trying to take a driver perspective here, the inverse of equation 7-1 
(leaving out the binary variable nLanes1 resembling number of lanes being one or more than one), 
gives an equation which can be used to calculate the horizontal radius (𝑅ℎ) based on an 85th 
percentile speed (𝑉85). This is presented as equation 7-2:  

V85BP2 = 28 * ln(Rh) + 7 * nLanes1 - 58     [7-1] 

𝑅ℎ =  𝑒
𝑣85+58

28         [7-2] 

Equation 7-2 can then be used to create intervals of horizontal radii spanning a range of 10 km/h, 
which is a fair threshold for design consistency (Lamm et al., 1988). The lowest radius available in 
this dissertation is 60 meters, which corresponds to a V85 of 57 km/h. The following cut offs for 
the intervals are presented in Table 7-1. Rounding the calculated radii to values of 5 meters, provide 
usable intervals presented in Table 7-2 and Table 7-3.  

Next, the preceding roadway, number of lanes and deflection angle are used as design elements to 
differentiate the holistic environments. These elements have impact on both speed behaviour and 
expectations and are easily distinguishable during the design process. Using the insights from the 
Bayesian Belief Network (BBN) which mimics driver expectations (chapter 6), Table 7-2 and Table 
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7-3 are filled to reflect whether or not specific combinations are within or outside drivers’ 
expectations. To do this, the Tree Augmented Naïve Bayes Network is used primarily, and the 
individual probability distributions are used to better reflect specific combinations which were not 
available in the dataset. This means, when a specific variable suggests that no safe speeds are to be 
expected in a certain range, this is shown in the tables (e.g., the amount of 4 lanes indicates that 
radii lower than 520 m. are not to be expected and hence labelled red). Specifically for main 
carriageways the permissible combinations were limited further than the BBN suggests, to reflect 
basic criteria for freeways: continuous high speeds and the possibility to overtake (i.e., at least two 
lanes and no curve radii < 740 m). 

Table 7-1 The relation between the 85th percentile speeds in curves (V85) at 10 km/h 

intervals, the horizontal radius (Rh) and the position of the start of deceleration in front 

of the curve (BP1). 

V85 Rh BP1 

57 km/h 60 m 430 m 

67 km/h 87 m 375 m 

77 km/h 124 m 320 m 

87 km/h 177 m 264 m 

97 km/h 253 m 209 m 

107 km/h 362 m 154 m 

117 km/h 518 m 98 m 

127 km/h 740 m 43 m 

Since the visibility of the deflection angle was shown to have a major impact on how drivers 
anticipate the curve, this is included as a control variable. If the entire deflection angle is not visible 
from the moment drivers start their comfortable deceleration, additional measures are to be taken. 
This distance is taken from the developed parsimonious speed prediction models, equation 7-3, 
which determines the position of breakpoint 1 (pos50BP1) as the position where drivers start to 
decelerate as an function of the horizontal radius (Rh): 

pos50BP1 = 155 * ln(Rh) – 1067      [7-3] 

The results of using equation 7-3 are presented in Table 7-1 in line with the chosen intervals, and 
the averages of the results for two interval edges are presented in Table 7-2 and Table 7-3 as a 
controlling variable for sight distances. If the deflection angle is not fully perceivable from this 
position in front of the curve, designers could suggest clearing out sight obstructions such as 
bushes, increasing the height of parallel edges or applying curve signs (chevrons). If these 
measures are not possible, speed and warning signs need to be installed to inform the drivers to 
slow down, as the road environment itself is not able to tell the driver to do so. 

This approach leads to Table 7-2 and Table 7-3, which are shown on the next two pages. 
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Table 7-2 Permissible combinations – shown in green – of design elements on main 

carriageways and on connector roads. Controlling for visible angle and driver 

expectations.  

Preceding 
roadway 

Number 
of lanes 
in curve 

Range of 
deflection 

angles 

Range of horizontal radii (m) 

60 - 
85  

85 - 
125 

125 - 
175 

175 - 
255 

255 - 
360 

360 - 
520 

520 - 
740 

> 740 

Main 
carriageway 

1 

10 - 100                 

100 - 200                 

200 - 300                 

2 

10 - 100                 

100 - 200                 

200 - 300                 

3 

10 - 100                 

100 - 200                 

200 - 300                 

> 3 

10 - 100                 

100 - 200                 

200 - 300                 

Connector 
road                    

(not the first 
curve) 

1 

10 - 100                 

100 - 200                 

200 - 300                 

2 

10 - 100                 

100 - 200                 

200 - 300                 

3 

10 - 100                 

100 - 200                 

200 - 300                 

> 3 

10 - 100                 

100 - 200                 

200 - 300                 

Extra warning and speed signs 
necessary if combination is labelled 
orange and / or deflection angle is 

not visible from the amount of 
meters in front of a curve stated here 

400 350 290 235 180 125 70 20 
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Table 7-3 Permissible combinations – shown in green – of design elements following 

splits, weaving sections and deceleration lanes. Controlling for visible angle and driver 

expectations. 

Preceding 
roadway 

Number 
of lanes 
in curve 

Range of 
deflection 

angles 

Range of horizontal radii (m) 

60 - 
85  

85 - 
125 

125 - 
175 

175 - 
255 

255 - 
360 

360 - 
520 

520 - 
740 

> 740 

Fork 

1 

10 - 100                 

100 - 200                 

200 - 300                 

2 

10 - 100                 

100 - 200                 

200 - 300                 

3 

10 - 100                 

100 - 200                 

200 - 300                 

> 3 

10 - 100                 

100 - 200                 

200 - 300                 

Weaving 
section 

1 

10 - 100                 

100 - 200                 

200 - 300                 

2 

10 - 100                 

100 - 200                 

200 - 300                 

3 

10 - 100                 

100 - 200                 

200 - 300                 

> 3 

10 - 100                 

100 - 200                 

200 - 300                 

Deceleration 
lane 

1 

10 - 100                 

100 - 200                 

200 - 300                 

2 

10 - 100                 

100 - 200                 

200 - 300                 

3 

10 - 100                 

100 - 200                 

200 - 300                 

> 3 

10 - 100                 

100 - 200                 

200 - 300                 

Extra warning and speed signs 
necessary if combination is labelled 
orange and / or deflection angle is 

not visible from the amount of 
meters in front of a curve stated here 

400 350 290 235 180 125 70 20 
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A Sensitivity Analysis on Thresholds for 
Breakpoint Definition in the Analysis of 
Individual Speed Profiles 

 

The position of breakpoint 1 and 2 are defined based on the acceleration profile. The first position 
in front of the curve start where the acceleration equals 0 m/s2 is defined as breakpoint 1. The first 
position after the curve start where the acceleration equals 0 m/s2 is defined as breakpoint 2. Since 
the measurements are smoothed and taken at a 1 second interval, it is improbable that a 
measurement will exactly hit 0 m/s2. So, thresholds need to be set in order to find the positions of 
most breakpoints in the acceleration profiles. Thresholds can be set in a range of acceleration above 
and below 0 m/s2, and in the number of seconds (measurements) the acceleration profile should 
be within that range. Figure A-1 shows the theoretical impact of setting these different thresholds. 

 

Figure A-1 Effects of different thresholds on the position of breakpoint 1 in three different 

scenarios. The scenario’s show individual acceleration measurement points. For three 

acceleration thresholds (small, medium and large) the bandwidth is shown in grey. How much 

points (measurements per second) fall within the bandwidth, defines if a breakpoint is defined 

based on the threshold set for the amount of seconds an acceleration profile remains in the set 

bandwidth. It shows that based on the different thresholds, the position of the breakpoint may 

shift, or may not even be recorded.  
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In order to test the effect of the different thresholds, five random curves were selected to test 
different sets of thresholds. Of each curve the median speed and acceleration profile were plotted 
(thick line, respectively in red and green). Interquartile ranges of both speed and acceleration are 
plotted in thin lines.  

The next definitions of thresholds are tested in the profiles: 

1. Minimum and maximum acceleration needs to be: 
a. Between -0.05 and 0.05 m/s2 
b. Between -0.1 and 0.1 m/s2 
c. Between -0.2 and 0.2 m/s2 
d. Between -0.3 and 0.3 m/s2 

2. Duration in which the acceleration profile needs to be within the threshold of minimum 
and maximum acceleration 

a. 1 second 
b. 2 seconds 
c. 3 seconds 

For each of the 12 different sets of definitions a bar plot is shown for the positions of the breakpoints 
1 and 2, and the amount of recorded breakpoints is shown. 

Below, the five results are shown and captioned with a analysis on the effects of the thresholds. 
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Figure A-2 Summarised speed and acceleration profile based on 27440 unique profiles for a curve 

with a radius of 250 m and 2 lanes. Based on the median acceleration profile, breakpoint 1 should 

be positioned around 250 m in front of curve start. A threshold of 1 second between -0.1 and 0.1 

m/s2 approaches this the best with the most amount of recorded breakpoints. Breakpoint 2 should 

be positioned around 120 m after curve start. A threshold of 1 second between -0.1 and 0.1 m/s2 

approaches this the best with the most amount of recorded breakpoints. A threshold of 1 second 

between -0.05 and 0.05 m/s2 approaches this the best, but loses a lot of recordings. Enlarging the 

threshold to a range between -0.1 and 0.1 m/s2 with the keeps the median position about the same, 

but adds much more recordings. 
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Figure A-3 Summarised speed and acceleration profile based on 60605 unique profiles for a curve 

with a radius of 255 m and 1 lane. Based on the median acceleration profile, breakpoint 1 should 

be positioned around 350 m in front of curve start. A threshold of 2 second between -0.05 and 0.05 

m/s2 approaches this the best but loses a lot of recordings. Decreasing the threshold 1 second with 

the keeps the median position about the same, but adds much more recordings. Breakpoint 2 

should be positioned around 75 m after curve start. A threshold of 1 second between -0.1 and 0.1 

m/s2 approaches this the best with the most amount of recorded breakpoints. 
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Figure A-4 Summarised speed and acceleration profile based on 8685 unique profiles for a curve 

with a radius of 75 m and 1 lane. Based on the median acceleration profile, breakpoint 1 should 

be positioned around 450 m in front of curve start. A threshold of 3 second between -0.05 and 0.05 

m/s2 approaches this the best but loses a lot of recordings. It also does not match up with the kink 

in the median speed profile, which is located around 350 m in front fo curve start. A threshold of 

1 second between -0.1 and 0.1 m/s2 approaches this the best with the most amount of recorded 

breakpoints. Breakpoint 2 should be positioned around 75 m after curve start. A threshold of 2 

second between -0.1 and 0.1 m/s2 approaches this the best but loses a lot of recordings. Decreasing 

the threshold to 1 second, increases the amount of recordings significantly, and lines up with the 

kink in the median speed profile.  
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Figure A-5 Summarised speed and acceleration profile based on 14823 unique profiles for a curve 

with a radius of 150 m and 1 lane. Based on the median acceleration profile, breakpoint 1 should 

be positioned around 150 m in front of curve start. A threshold of 2 second between -0.1 and 0.1 

m/s2 approaches this the best with the most amount of recorded breakpoints. Breakpoint 2 should 

be positioned around 75 m after curve start. A threshold of 1 second between -0.1 and 0.1 m/s2 

approaches this the best with the most amount of recorded breakpoints. 
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Figure A-6 Summarised speed and acceleration profile based on 34584 unique profiles for a curve 

with a radius of 400 m and 2 lanes. The median acceleration profile does not show changes in 

acceleration. Based on the kink in the median speed profile, breakpoint 1 should be positioned 

around 200 m in front of curve start. A threshold of 3 second between -0.05 and 0.05m/s2 

approaches this the best but loses a lot of recordings, because of its sensitive nature. Increasing 

the threshold to a range between -0.1 and 0.1 m/s2 increases the number of recordings much, and 

remains closest to the kink in the speed profile. Breakpoint 2 should be positioned around 75 m 

after curve start. A threshold of 1 second between -0.1 and 0.1 m/s2 approaches this the best with 

the most amount of recorded breakpoints. 
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Table A-1 Summary of the best thresholds for each curve 

Figure Best threshold for breakpoint 1 Best threshold for breakpoint 2 

A-2 1 second between -0.1 and 0.1 m/s2 1 second between -0.1 and 0.1 m/s2 

A-3 1 second between -0.05 and 0.05 m/s2 1 second between -0.1 and 0.1 m/s2 

A-4 1 second between -0.1 and 0.1 m/s2 1 second between -0.1 and 0.1 m/s2 

A-5 2 seconds between -0.1 and 0.1 m/s2 1 second between -0.1 and 0.1 m/s2 

A-6 3 seconds between -0.1 and 0.1 m/s2 1 second between -0.1 and 0.1 m/s2 

 

Table A-1 summarises the best fitted thresholds for each of the shown curves. It is obvious that for 
breakpoint 2, a threshold of 1 second between -0.1 and 0.1 m/s2 should be chosen. For breakpoint 
1 however, some different thresholds have been found. It is found that increasing the sensitivity 
(increasing the amount of seconds, and decreasing the acceleration bandwidth), decreases the 
amount of recorded breakpoints as well. This suggests that a 1 second threshold should be chosen 
with an as large as suitable acceleration bandwith, wich is seen at the range of -0.1 and 0.1 m/s2. 
This suits most shown speed profiles well. Chosing this threshold will however also include speed 
profiles which do not have a steady speed before breakpoint 1, but change from an acceleration to 
a deceleration at breakpoint 1. This leads to the technical definition of breakpoint 1 as the position 
where deceleration starts. 
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B Developed Regression Models for Speed Development in the 85th 
Percentile Speed Modelling 

Table B-1 Developed regression models for 85th percentile speeds. 

 v85BP1 v85BP1 v85BP1 v85BP1 v85CS v85CS v85CS v85CS v85BP2 v85BP2 v85BP2 v85BP2 v85BP3 v85BP3 v85BP3 v85BP3 v85CE v85CE v85CE v85CE v85BP4 v85BP4 v85BP4 v85BP4 

Constant 90.38*** 88.42*** 88.73*** 89.87*** -55.33*** -41.34*** -43.28*** -45.69*** -70.04*** -57.74*** -62.12*** -65.33*** -63.69*** -50.87*** -56.58*** -59.88*** -60.57*** -46.65*** -46.37*** -46.73*** 63.16*** 58.49*** 58.57*** 62.11*** 

 (6.55) (6.63) (6.65) (6.72) (7.05) (6.41) (6.54) (6.79) (6.40) (5.92) (5.43) (5.71) (8.48) (8.55) (8.03) (8.61) (6.06) (4.98) (5.17) (5.45) (6.80) (7.14) (7.30) (7.61) 

ln(Rh) 6.13*** 5.78*** 5.59*** 5.22*** 28.95*** 25.76*** 26.48*** 27.09*** 31.28*** 28.47*** 30.11*** 30.80*** 30.40*** 27.47*** 29.61*** 30.24*** 30.12*** 26.94*** 26.84*** 26.97*** 10.12*** 10.45*** 10.43*** 9.43*** 

 (1.17) (1.19) (1.21) (1.27) (1.27) (1.22) (1.34) (1.44) (1.15) (1.13) (1.11) (1.21) (1.53) (1.63) (1.64) (1.82) (1.09) (0.95) (1.06) (1.15) (1.26) (1.25) (1.33) (1.46) 

nLanes1BP1  4.34 4.45 4.54                     

  (2.79) (2.80) (2.79)                     

nLanes1      8.11*** 8.28*** 8.95***  7.13*** 7.50*** 8.58***  7.43** 7.91*** 9.15***  8.07*** 8.05*** 8.09***     

      (1.66) (1.65) (1.70)  (1.53) (1.37) (1.43)  (2.21) (2.03) (2.15)  (1.29) (1.31) (1.36)     

nLanes1BP4                      3.83+ 3.82+ 3.45+ 

                      (2.00) (2.01) (2.01) 

length > 
250m 

  1.34    -2.65    -5.98**    -7.79**    0.38    0.11  

   (1.69)    (2.05)    (1.70)    (2.52)    (1.62)    (1.85)  

length in 
m. 

   0.00    -0.01+    -0.01**    -0.02**    0.00    0.01 

    (0.00)    (0.00)    (0.00)    (0.01)    (0.00)    (0.00) 

Num.Obs. 99 99 99 99 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 99 99 99 99 

R2 0.220 0.239 0.244 0.250 0.920 0.948 0.950 0.952 0.942 0.961 0.970 0.970 0.898 0.919 0.934 0.931 0.944 0.971 0.971 0.971 0.401 0.423 0.423 0.434 

R2 Adj. 0.212 0.223 0.220 0.227 0.919 0.946 0.947 0.948 0.941 0.960 0.968 0.968 0.896 0.915 0.929 0.926 0.943 0.969 0.968 0.968 0.395 0.411 0.405 0.416 

AIC 703.6 703.1 704.5 703.6 303.7 285.3 285.6 284.3 294.6 277.8 268.0 268.0 321.1 312.3 304.9 306.6 289.5 261.6 263.5 263.6 712.6 710.9 712.9 711.1 

BIC 711.4 713.5 717.4 716.6 309.3 292.7 294.8 293.6 300.2 285.2 277.2 277.3 326.6 319.7 314.1 315.9 295.1 269.0 272.8 272.8 720.4 721.3 725.9 724.1 

Log.Lik. -348.790 -347.563 -347.236 -346.801 -148.872 -138.670 -137.775 -137.159 -144.318 -134.906 -128.985 -129.003 -157.528 -152.152 -147.436 -148.324 -141.771 -126.784 -126.754 -126.783 -353.323 -351.466 -351.464 -350.546 

F 27.296 15.052 10.206 10.575 519.801 404.235 274.137 281.800 736.472 548.251 463.636 463.269 396.592 249.383 201.770 193.755 761.151 723.764 472.155 471.563 64.962 35.211 23.231 24.259 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

  



148  Drivers’ Behaviour on Freeway Curve Approach 

Table B-2 Developed regression models for 50th percentile of positions of breakpoints. 

 pos50BP1 pos50BP1 pos50BP1 pos50BP1 pos50BP2 pos50BP2 pos50BP2 pos50BP2 pos50BP2 pos50BP3 pos50BP3 pos50BP3 pos50BP3 pos50BP3 pos50BP4 pos50BP4 pos50BP4 pos50BP4 

Constant 
-
1066.77*** 

-
1051.49*** 

-
1060.96*** 

-
1041.97*** 

130.41*** 123.97** 145.66*** 113.41** 85.32*** -122.18* -89.72 -151.06* -130.20+ -80.70*** 1057.18*** 1025.45*** 1059.37*** 1052.67*** 

 (60.43) (61.33) (60.29) (60.47) (31.36) (35.36) (32.14) (36.35) (8.69) (56.60) (63.01) (57.83) (66.21) (15.82) (82.05) (87.23) (83.76) (87.37) 

ln(Rh) 155.10*** 157.83*** 152.16*** 146.28*** -11.04+ -9.57 -16.48* -6.15  8.53 1.11 18.83 10.84  -158.66*** -156.38*** -159.43*** -157.25*** 

 (10.83) (10.99) (10.99) (11.41) (5.65) (6.74) (6.45) (7.72)  (10.19) (12.01) (11.61) (14.07)  (15.14) (15.28) (16.07) (17.71) 

nLanes1BP1  -33.84                 

  (25.87)                 

nLanes1      -3.73     18.83        

      (9.15)     (16.30)        

nLanes1BP4                26.04   

                (24.43)   

length > 
250m 

  21.53    18.22     -34.50+     3.37  

   (15.59)    (11.06)     (19.90)     (22.58)  

length in m.    0.08*    -0.02 -0.04*    -0.01 0.01    -0.01 

    (0.04)    (0.02) (0.02)    (0.05) (0.03)    (0.06) 

Num.Obs. 99 99 99 99 47 47 47 47 47 47 47 47 47 47 99 99 99 99 

R2 0.679 0.685 0.685 0.694 0.078 0.082 0.132 0.096 0.083 0.015 0.044 0.078 0.017 0.003 0.531 0.536 0.531 0.531 

R2 Adj. 0.676 0.678 0.679 0.687 0.058 0.040 0.092 0.055 0.063 -0.007 0.001 0.036 -0.028 -0.019 0.526 0.527 0.521 0.521 

AIC 1143.5 1143.7 1143.5 1140.9 444.0 445.8 443.2 445.1 443.7 499.5 500.1 498.4 501.4 500.1 1205.7 1206.6 1207.7 1207.7 

BIC 1151.3 1154.1 1153.9 1151.3 449.5 453.2 450.6 452.5 449.3 505.1 507.5 505.8 508.8 505.6 1213.5 1217.0 1218.1 1218.1 

Log.Lik. -568.747 -567.872 -567.773 -566.441 -218.993 -218.904 -217.586 -218.537 -218.873 -246.754 -246.052 -245.201 -246.723 -247.038 -599.873 -599.291 -599.862 -599.861 

F 205.094 104.155 104.459 108.617 3.824 1.960 3.342 2.337 4.073 0.700 1.020 1.869 0.372 0.152 109.754 55.522 54.335 54.337 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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C Developed Regression Models for Deceleration development in the 85th 
Percentile Speed Modelling 

Table C-1 Developed regression models for 85th percentile of acceleration. 

 a85MAXdec a85MAXdec a85MAXdec a85MAXdec a85CS a85CS a85CS a85CS a85CE a85CE a85CE a85CE a85MAXacc a85MAXacc a85MAXacc a85MAXacc 

Constant -4.18*** -4.21*** -4.17*** -4.12*** -3.15*** -3.13*** -3.15*** -3.12*** 1.46*** 1.45*** 1.47*** 1.44*** 3.44*** 3.40*** 3.45*** 3.45*** 

 (0.21) (0.23) (0.21) (0.21) (0.17) (0.19) (0.17) (0.17) (0.10) (0.10) (0.10) (0.10) (0.13) (0.13) (0.13) (0.13) 

ln(Rh) 0.58*** 0.59*** 0.57*** 0.56*** 0.46*** 0.45*** 0.45*** 0.44*** -0.19*** -0.19*** -0.20*** -0.19*** -0.50*** -0.49*** -0.51*** -0.51*** 

 (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) 

nLanes1  -0.02    0.02    -0.01    -0.05   

  (0.06)    (0.05)    (0.03)    (0.03)   

length > 250 
m 

  0.04    0.00    0.02    0.02  

   (0.05)    (0.04)    (0.03)    (0.03)  

length in m.    0.00    0.00    0.00    0.00 

    (0.00)    (0.00)    (0.00)    (0.00) 

Num.Obs. 99 99 99 99 96 96 96 96 96 96 96 96 99 99 99 99 

R2 0.712 0.712 0.714 0.720 0.702 0.703 0.702 0.706 0.543 0.544 0.545 0.545 0.827 0.831 0.827 0.827 

R2 Adj. 0.709 0.706 0.708 0.714 0.699 0.696 0.696 0.699 0.538 0.534 0.535 0.535 0.825 0.827 0.824 0.824 

AIC 20.9 22.8 22.3 20.2 -22.8 -20.9 -20.8 -21.8 -126.3 -124.4 -124.7 -124.7 -76.8 -76.9 -75.0 -74.9 

BIC 28.7 33.2 32.7 30.6 -15.1 -10.6 -10.5 -11.5 -118.6 -114.2 -114.5 -114.4 -69.0 -66.5 -64.7 -64.5 

Log.Lik. -7.467 -7.402 -7.167 -6.121 14.376 14.427 14.377 14.896 66.154 66.217 66.371 66.337 41.416 42.457 41.525 41.456 

F 239.911 118.940 119.733 123.316 221.883 109.928 109.765 111.464 111.648 55.365 55.691 55.619 464.063 235.539 230.250 229.864 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
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D Labels for the Areas of Interest and 
Verbalisation in the On-Road Study 

Table D-1 Labels for the Area’s of Interest with definitions and pictures. 

AoI Definition Picture 

In-Car 

Speedometer The area on the dashboard where 
the driven speed is shown  

 

Rear-view mirror The mirror positioned inside the 
car to look through the rear 
window 

 

Side-view mirror 
LEFT 

External wing mirror on the left 
side of the car, used to look to the 
left side behind the car 

 

Side-view mirror 
RIGHT 

External wing mirror on the right 
side of the car, used to look to the 
right side behind the car 

 

Other Such as radio, gear-shift, 
navigation, or body of the car 
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AoI Definition Picture 

Guiding fixations  

Lane tangent point Any inside curve road marking on 
tangent point (either closed, open, 
or block marking). 

Recognisable as an edge 

 

Road edge tangent 

point 

Inside curve edge of pavement or 
crown line (earthworks). 

Recognisable as an edge  

Obstacle inside 
curve 

Any obstacle located at the inside 
of a curve, such as guardrail, noise 
barriers, trees, or bushes which 
either obscures the sight through a 
curve or guides the driver 

 

Marking All types of marking on the edge of 
lanes, including noses (not located 
at the Tangent Point). 

Recognisable as an edge 

 

Centre of lane Including arrow markings 

 

 
 

Car ahead A car ahead in any lane in front of 
the participant. When the car is 
further away than 2 seconds from 
the driver, it is assumed not to be a 
guiding fixation, but it is labelled 
according to the zone the car is 
located in. 
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AoI Definition Picture 

Look ahead fixations  

Parallel edges  

Closed elements 
on the outside of a 
curve 

Such as noise barriers (smooth and 
straight) 

 

Gaze point overlaps with a 
recognisable edge, so at least with 
the top of the element or another 
clear edge within the element 

 

Guardrail on the 
outside of a curve 

Guardrail or barrier 

 

Gaze point overlaps with one of the 
clearly recognisable edges 

 

 

Treeline on the 
outside of a curve 

A wall created by nature; rugged 
but mainly parallel to the roadway  

 

Gaze point overlaps with the top of 
the treeline, which is recognisable 
as an edge. 

 

Objects  

Curve signs 
(chevron) outside 
of a curve 

A part of this sign is within the 
gaze point  

 

Lighting poles Either inside or outside the curve 

 

A part of a lighting pole is within 
the gaze point 

 

 

 

 

 

Route signage A part of this sign is within the 
gaze point 
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AoI Definition Picture 

Gantry The supporting structure for road 
signs 

 

A part of the gantry is within the 
gaze point 

 

Curve warning 
sign 

A part of this sign is within the 
gaze point 

 

Curve warning 
sign (DYNAMIC) 

A part of this sign is within the 
gaze point 

 

Speed sign (MAX) A part of this sign is within the 
gaze point 

 

Speed sign (MAX) 
incl curve warning 

A part of this sign is within the 
gaze point 

 

 

Speed sign 
(ADVICE)  

incl curve warning 

A part of this sign is within the 
gaze point 
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AoI Definition Picture 

Zones 

Focus of 
Expansion 

On a tangent, the position where 
the road disappears on the horizon. 

In a curve, the position where the 
optical flow originates from 

The gaze point is located at this 
clear, single point, not being an 
occlusion point 

 

 

Far zone (future 
path) 

Patch of road beyond the tangent 
point, not clearly defined by 
parallel edges. The road itself is, 
however, still clearly 
distinguishable. 

The gaze point is on the road, 
beyond the tangent point 

 

Into curve Road section not directly visible, 
beyond the far zone. So, the 
contours suggest the curve is going 
there, but no clear edges are 
recognisable 

The gaze point is on a surface, not 
containing edges, beyond the far 
zone, suggesting the trajectory of 
the road 

 

Occlusion point Point where the roadway 
disappears. Often being obscured 
by a vertical element (occlusion 
point trumps the vertical occluding 
element in labelling) 

The gaze point is in the position 
where the roadway clearly 
disappears behind a vertical 
element. 

 

Horizon Fixations on the horizon, other than 
on the Focus of Expansion 

 

Overpass ahead All distinguishable parts of an 
overpass: girders, columns 
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AoI Definition Picture 

Other off road  

Other off road Everything else, e.g., 
advertisements, buildings, trains, 
sky 

 

 

Table D-2 Labels for verbalisation with definitions and examples 

Label Definition Example verbalisations 

Driver-related 

Driving style General mentions about driving 
style of the participant 

 

I like to go fast through a curve 
Being (anti)social  
Having room to manoeuvre 
It’s fun to drive (fast), and I want to 
accelerate fast 
Careful when driving and approaching 
curves 

Operating speed Explicitly mentioning the current 
operating speed by reading out 
the speedometer  

I’m driving 78 now 

Faster than 
speed sign 

Relating the current operating 
speed to the maximum (or 
advised) operating speed when 
the participant is going faster 

I’m driving a bit faster now than 80 
Usually you can drive faster through a 
curve 

Slower than 
speed sign 

Relating the current operating 
speed to the maximum (or 
advised) operating speed when 
the participant is going slower 

I’m allowed to go faster 

Unsure about 
max speed 

Stating unawareness about the 
applicable maximum operating 
speed  

Does this 80 still apply here? 
I’m looking for speed information 

Comfort Statements about the comfort of 
driving through the present (or 
upcoming) curve. This includes 
relations with lateral acceleration 
(speed in relation to radius) and 
drivability. 

Adjusting speed for a comfortable 
drive (I’m braking a bit more) 
Pre-adjusting speed in order not to 
brake in the curve 
This is a nice speed in the curve 
This feels nice 

Familiarity Statements about the familiarity 
of the present or upcoming 
stretch of roadway 

I know this stretch very well 
I usually go to the right here 
I’ve never been here before 

Traffic-related 

Cars braking Statements of braking cars 
downstream of the participant 

Cars ahead are braking / slowing 
down 

Traffic volume Statements about the amount of 
traffic on the (upcoming) stretch 
of road 

Much traffic / not much traffic 
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Label Definition Example verbalisations 

Adjust to traffic Participant explains his/her 
driving reactions to other 
vehicles 

I’m decelerating / accelerating to 
merge 
What is he doing? 
Anticipating lane changes of other 
vehicles 
I’m not going to overtake, but slow 
down 
I’m doing what they are doing 
Keeping distance 

Overtaking Statements about (the desire to) 
overtake 

I want to go faster (the other one is 
going too slow) 
I’m going to overtake 

Pre-sorting Statements about (the desire to) 
pre-sort 

I am going to switch lanes, to be 
prepared  

Lane-keeping Explicit mentions of not 
changing lanes 
 
 

I stay in my lane (to anticipate 
upcoming events) 

Speed related to curve 

Decelerating for 
curve 

Statements about the action of 
decelerating in (front of) a curve 

I’m slowing down for that curve 
Because of this curve, I’m slowing 
down 

Accelerating 
after curve 

Statements about the action of 
accelerating out of a curve 

We have left the curve, now I’m 
accelerating 
Back to speed now 

Curve-related 

Curve sighting Clear statement about sighting 
and anticipating an upcoming 
curve 

I see an upcoming curve 
I see other traffic going through a curve 

Anticipating 
radius 

Statements about the (upcoming) 
curve’s radius (sharpness) 

It is a sharp curve 
It is not such a sharp curve 

Anticipating 
length 

Statements about the (upcoming) 
curve’s length or angle 

It is a long turning curve 
It is a short curve 

Curve direction Statements about the (upcoming) 
curve’s direction 

A curve to the left / right 

Curve end Clear statement about sighting 
and anticipating the end of the 
present curve. 

I can see the end of the curve 

Oversight Statements about being aware of 
the trajectory of the upcoming 
road section 

I know where the curve is heading  
I have oversight 

No oversight Statements about being unaware 
of the trajectory of the upcoming 
road section 

I don’t know where the curve is 
heading, can’t see through the curve 
I have no oversight 
I can’t see what’s happening 

Speed sign Explicitly mentioning the 
presence of a speed sign, either 
maximum speed or advice, or 
just the amount of km/h allowed 

I notice a speed sign 
Oh, it’s 50 here 
It is a maximum speed / it’s just and 
advice 
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Label Definition Example verbalisations 

Trees Explicitly mentioning a treeline 
on the outside of a curve. Trees 
in the inside curve obstructing 
the view are labelled as no 
oversight 

I notice trees 

Warning sign Explicitly mentioning the 
presence of a curve warning sign 

A sign tells me a curve is coming up 

Curve sign 
(chevron) 

Explicitly mentioning the 
presence of a curve chevron sign 
 
 

I see curve signs 

Other cues 

Type of road Statements of the type of 
(upcoming) road (section) the 
participant is on 

We’re entering the freeway again 
This doesn’t feel like a freeway 
I wouldn’t expect this on a freeway 

Number of lanes Mentions of specific or relative 
number of lanes 
Also mentions of lanes based on 
route signing 

Just one lane 
Too many, more, less lanes 
 

Lane ending Mentions of a lane ending Oh, a lane drop is coming up 

Special marking Mentions of all types of special 
marking 

You’re not allowed to drive over those 
markings 

Route signing Mentions about the direction the 
participant (can) go 

I’m looking where to go 
That’s where I need to go (in xxx 
meters) 
Junction/off-ramp ahead 

Overpass Mentions of an overpass ahead I notice an overpass 

Pause 

Pause A clear pause in a full sentence. 
The second part of the sentence 
is a clear follow-up of the first 
part 

… 
uuuhm 

Not related to external speed cues 

Non-speed-
related 

All other, non-speed-related 
verbalisations, such as 
distractions, other (traffic) signs, 
complex situations such as 
tapers, tiredness, general car 
 

Hey, a nice building, car, train, traffic 
on other carriageways etc. 
Good car, stable on the road 
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E Conditional Probability Tables 

This appendix presents the Conditional Probability Tables underlying the tree augmented naïve 
Bayesian network which is developed in chapter 6. 

 

Table E-1 CPT of node “number of lanes”. 

Number of 
lanes 

Preceding roadway: connector road 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.850 0.988 0.499 0.700 0.529 0.444 0.906 0.250 

Two 0.033 0.004 0.499 0.300 0.412 0.222 0.031 0.250 

Three 0.061 0.004 0.001 0.000 0.059 0.333 0.031 0.250 

Four 0.056 0.004 0.001 0.000 0.000 0.000 0.031 0.250 

Number of 
lanes 

Preceding roadway: main carriageway 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.498 0.009 0.250 0.001 0.200 0.125 0.250 0.000 

Two 0.498 0.972 0.250 0.797 0.399 0.749 0.250 0.818 

Three 0.002 0.009 0.250 0.200 0.399 0.125 0.375 0.091 

Four 0.002 0.009 0.250 0.001 0.001 0.000 0.125 0.091 

Number of 
lanes 

Preceding roadway: merge 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250 

Two 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250 

Three 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250 

Four 0.250 0.250 0.250 0.250 0.250 0.906 0.906 0.250 

Number of 
lanes 

Preceding roadway: deceleration lane 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.972 0.031 0.988 0.832 0.997 0.906 0.332 0.250 

Two 0.009 0.906 0.004 0.167 0.001 0.031 0.660 0.250 

Three 0.009 0.031 0.004 0.001 0.001 0.031 0.004 0.250 

Four 0.009 0.031 0.004 0.001 0.001 0.031 0.004 0.250 

Number of 
lanes 

Preceding roadway: fork 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.250 0.250 0.906 0.972 0.491 0.399 0.009 0.031 

Two 0.250 0.250 0.031 0.009 0.491 0.598 0.972 0.906 

Three 0.250 0.250 0.031 0.009 0.009 0.001 0.009 0.031 

Four 0.250 0.250 0.031 0.009 0.009 0.001 0.009 0.031 

Number of 
lanes 

Preceding roadway: weaving section 

Expected safe speed (km/h) 

060 - 
069 

070 - 
079 

080 - 
089 

090 - 
099 

100 - 
109 

110 - 
119 

120 - 
129 

130 - 
140 

One 0.999 0.988 0.250 0.988 0.399 0.250 0.009 0.250 

Two 0.000 0.004 0.250 0.004 0.200 0.498 0.972 0.250 

Three 0.000 0.004 0.250 0.004 0.399 0.250 0.009 0.250 

Four 0.000 0.004 0.250 0.004 0.001 0.002 0.009 0.250 
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Table E-2 CPT of node “direction”. 

Direction 

Advice speed: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.050 0.008 0.938 0.938 0.500 0.500 0.500 0.500 

Right 0.950 0.992 0.063 0.063 0.500 0.500 0.500 0.500 

Direction 

Advice speed: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.008 0.981 0.664 0.500 0.500 0.500 0.500 0.500 

Right 0.992 0.019 0.336 0.500 0.500 0.500 0.500 0.500 

Direction 

Advice speed: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.938 0.400 0.500 0.938 0.500 0.500 

Right 0.500 0.500 0.063 0.600 0.500 0.063 0.500 0.500 

Direction 

Advice speed: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.500 0.500 0.938 0.500 0.500 0.500 

Right 0.500 0.500 0.500 0.500 0.063 0.500 0.500 0.500 

Direction 

Advice speed: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.500 0.938 0.500 0.981 0.664 0.500 

Right 0.500 0.500 0.500 0.063 0.500 0.019 0.336 0.500 

Direction 

Speed limit: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.008 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Right 0.992 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Direction 

Speed limit: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500 

Right 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500 

Direction 

Speed limit: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.063 0.992 0.334 0.500 0.500 0.500 

Right 0.500 0.500 0.938 0.008 0.666 0.500 0.500 0.500 

Direction 

Speed limit: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.500 0.063 0.664 0.500 0.500 0.500 

Right 0.500 0.500 0.500 0.938 0.336 0.500 0.500 0.500 

Direction 

Speed limit: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Right 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Direction 

No speed limit 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Left 0.001 0.008 0.019 0.000 0.250 0.261 0.250 0.500 

Right 0.999 0.992 0.981 1.000 0.750 0.739 0.750 0.500 
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Table E-3 CPT of node “Curve sign”. 

Curve sign 

Advice speed: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.750 0.992 0.938 0.938 0.500 0.500 0.500 0.500 

Not present 0.250 0.008 0.063 0.063 0.500 0.500 0.500 0.500 

Curve sign 

Advice speed: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.664 0.981 0.992 0.500 0.500 0.500 0.500 0.500 

Not present 0.336 0.019 0.008 0.500 0.500 0.500 0.500 0.500 

Curve sign 

Advice speed: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.063 0.600 0.500 0.063 0.500 0.500 

Not present 0.500 0.500 0.938 0.400 0.500 0.938 0.500 0.500 

Curve sign 

Advice speed: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.500 0.063 0.981 0.500 0.500 

Not present 0.500 0.500 0.500 0.500 0.938 0.019 0.500 0.500 

Curve sign 

Advice speed: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.063 0.500 0.500 0.664 0.500 

Not present 0.500 0.500 0.500 0.938 0.500 0.500 0.336 0.500 

Curve sign 

Speed limit: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.664 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Not present 0.336 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Curve sign 

Speed limit: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500 

Not present 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500 

Curve sign 

Speed limit: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.938 0.664 0.168 0.500 0.019 0.500 

Not present 0.500 0.500 0.063 0.336 0.832 0.500 0.981 0.500 

Curve sign 

Speed limit: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.938 0.008 0.500 0.500 0.500 

Not present 0.500 0.500 0.500 0.063 0.992 0.500 0.500 0.500 

Curve sign 

Speed limit: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.019 

Not present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.981 

Curve sign 

No speed limit 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.832 0.008 0.019 0.267 0.150 0.044 0.000 0.100 

Not present 0.168 0.992 0.981 0.733 0.850 0.956 1.000 0.900 
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Table E-4 CPT of node “Preceding roadway type”. 

Preceding roadway 
type 

Advice speed: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.196 0.331 0.896 0.896 0.167 0.167 0.167 0.167 

Main carriageway 0.341 0.331 0.021 0.021 0.167 0.167 0.167 0.167 

Merge 0.037 0.003 0.021 0.021 0.167 0.167 0.167 0.167 

Deceleration lane 0.204 0.331 0.021 0.021 0.167 0.167 0.167 0.167 

Fork 0.012 0.003 0.021 0.021 0.167 0.167 0.167 0.167 

Weaving section 0.212 0.003 0.021 0.021 0.167 0.167 0.167 0.167 

Preceding roadway 
type 

Advice speed: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.331 0.969 0.659 0.167 0.167 0.167 0.167 0.167 

Main carriageway 0.331 0.006 0.003 0.167 0.167 0.167 0.167 0.167 

Merge 0.003 0.006 0.003 0.167 0.167 0.167 0.167 0.167 

Deceleration lane 0.003 0.006 0.331 0.167 0.167 0.167 0.167 0.167 

Fork 0.003 0.006 0.003 0.167 0.167 0.167 0.167 0.167 

Weaving section 0.331 0.006 0.003 0.167 0.167 0.167 0.167 0.167 

Preceding roadway 
type 

Advice speed: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.896 0.399 0.969 0.021 0.167 0.167 

Main carriageway 0.167 0.167 0.021 0.399 0.006 0.896 0.167 0.167 

Merge 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167 

Deceleration lane 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167 

Fork 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167 

Weaving section 0.167 0.167 0.021 0.200 0.006 0.021 0.167 0.167 

Preceding roadway 
type 

Advice speed: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.167 0.167 0.896 0.006 0.167 0.167 

Main carriageway 0.167 0.167 0.167 0.167 0.021 0.488 0.167 0.167 

Merge 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167 

Deceleration lane 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167 

Fork 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167 

Weaving section 0.167 0.167 0.167 0.167 0.021 0.488 0.167 0.167 

Preceding roadway 
type 

Advice speed: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.167 0.896 0.006 0.006 0.003 0.167 

Main carriageway 0.167 0.167 0.167 0.021 0.488 0.006 0.659 0.167 

Merge 0.167 0.167 0.167 0.021 0.006 0.006 0.003 0.167 

Deceleration lane 0.167 0.167 0.167 0.021 0.488 0.006 0.003 0.167 

Fork 0.167 0.167 0.167 0.021 0.006 0.488 0.331 0.167 

Weaving section 0.167 0.167 0.167 0.021 0.006 0.488 0.003 0.167 

Preceding roadway 
type 

Speed limit: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.003 0.167 0.488 0.167 0.167 0.167 0.167 0.167 

Main carriageway 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167 

Merge 0.003 0.167 0.006 0.167 0.167 0.167 0.167 0.167 

Deceleration lane 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167 

Fork 0.003 0.167 0.488 0.167 0.167 0.167 0.167 0.167 

Weaving section 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167 
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Preceding roadway 
type 

Speed limit:60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167 

Main carriageway 0.167 0.896 0.167 0.167 0.167 0.167 0.167 0.167 

Merge 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167 

Deceleration lane 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167 

Fork 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167 

Weaving section 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167 

Preceding roadway 
type 

Speed limit: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.021 0.331 0.499 0.167 0.006 0.167 

Main carriageway 0.167 0.167 0.021 0.659 0.167 0.167 0.488 0.167 

Merge 0.167 0.167 0.021 0.003 0.000 0.167 0.006 0.167 

Deceleration lane 0.167 0.167 0.896 0.003 0.167 0.167 0.488 0.167 

Fork 0.167 0.167 0.021 0.003 0.167 0.167 0.006 0.167 

Weaving section 0.167 0.167 0.021 0.003 0.000 0.167 0.006 0.167 

Preceding roadway 
type 

Speed limit: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.167 0.896 0.659 0.167 0.167 0.167 

Main carriageway 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167 

Merge 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167 

Deceleration lane 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167 

Fork 0.167 0.167 0.167 0.021 0.331 0.167 0.167 0.167 

Weaving section 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167 

Preceding roadway 
type 

Speed limit: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006 

Main carriageway 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.969 

Merge 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006 

Deceleration lane 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006 

Fork 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006 

Weaving section 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006 

Preceding roadway 
type 

No speed sign present 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Connector road 0.333 0.003 0.488 0.267 0.450 0.391 0.083 0.000 

Main carriageway 0.000 0.003 0.006 0.067 0.150 0.261 0.417 0.899 

Merge 0.000 0.003 0.006 0.000 0.000 0.043 0.083 0.000 

Deceleration lane 0.000 0.003 0.488 0.400 0.150 0.043 0.167 0.000 

Fork 0.000 0.003 0.006 0.133 0.000 0.174 0.083 0.100 

Weaving section 0.665 0.987 0.006 0.133 0.250 0.087 0.167 0.000 
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Table E-5 CPT of node “Expected safe speed”. 
Expected safe 
speed (km/h)   

060 - 069 0.111 

070 - 079 0.059 

080 - 089 0.066 

090 - 099 0.170 

100 - 109 0.222 

110 - 119 0.183 

120 - 129 0.111 

130 - 140 0.079 

 

Table E-6 CPT of node “Speed sign”. 

Speed sign 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Advice speed 50 
km/h 0.278 0.333 0.100 0.038 0.000 0.000 0.000 0.000 

Advice speed 60 
km/h 0.167 0.222 0.300 0.000 0.000 0.000 0.000 0.000 

Advice speed 70 
km/h 0.009 0.000 0.100 0.192 0.059 0.036 0.000 0.000 

Advice speed 80 
km/h 0.001 0.000 0.000 0.000 0.029 0.071 0.000 0.000 

Advice speed 90 
km/h 0.001 0.000 0.000 0.038 0.059 0.071 0.176 0.000 

Speed limit 50 km/h 0.175 0.000 0.200 0.000 0.000 0.000 0.000 0.000 

Speed limit 60 km/h 0.005 0.111 0.000 0.000 0.000 0.000 0.000 0.000 

Speed limit 70 km/h 0.008 0.000 0.100 0.115 0.176 0.000 0.118 0.000 

Speed limit 80 km/h 0.009 0.000 0.000 0.038 0.088 0.000 0.000 0.000 

Speed limit 90 km/h 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.167 

No speed sign 
present 0.340 0.333 0.200 0.577 0.588 0.821 0.706 0.833 
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Table E-7 CPT of node “Preceding curve speed”. 

Preceding 
curve speed 

(km/h) 

Preceding roadway: connector road 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.231 0.003 0.001 0.000 0.000 0.111 0.025 0.200 

080 - 100 0.048 0.331 0.333 0.300 0.118 0.111 0.025 0.200 

100 - 120 0.449 0.331 0.333 0.500 0.471 0.444 0.025 0.200 

120 - 140 0.053 0.003 0.167 0.000 0.118 0.000 0.900 0.200 

Tangent 0.219 0.331 0.167 0.200 0.294 0.333 0.025 0.200 

Preceding 
curve speed 

(km/h) 

Preceding roadway: main carriageway 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.002 0.007 0.200 0.001 0.001 0.000 0.000 0.000 

080 - 100 0.250 0.007 0.200 0.001 0.399 0.125 0.000 0.000 

100 - 120 0.002 0.007 0.200 0.598 0.001 0.125 0.000 0.000 

120 - 140 0.002 0.007 0.200 0.001 0.200 0.125 0.375 0.182 

Tangent 0.746 0.970 0.200 0.399 0.399 0.624 0.624 0.818 

Preceding 
curve speed 

(km/h) 

Preceding roadway: merge 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200 

080 - 100 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200 

100 - 120 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200 

120 - 140 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200 

Tangent 0.200 0.200 0.200 0.200 0.200 0.900 0.900 0.200 

Preceding 
curve speed 

(km/h) 

Preceding roadway: deceleration lane 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200 

080 - 100 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200 

100 - 120 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200 

120 - 140 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200 

Tangent 0.970 0.900 0.988 0.998 0.996 0.900 0.988 0.200 

Preceding 
curve speed 

(km/h) 

Preceding roadway: fork 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025 

080 - 100 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025 

100 - 120 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025 

120 - 140 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025 

Tangent 0.200 0.200 0.900 0.970 0.970 0.996 0.970 0.900 

Preceding 
curve speed 

(km/h) 

Preceding roadway: weaving section 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

060 - 080 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200 

080 - 100 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200 

100 - 120 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200 

120 - 140 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200 

Tangent 0.998 0.988 0.200 0.988 0.996 0.994 0.970 0.200 
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Table E-8 CPT of node “Curve angle”. 

Curve 
angle 
(grad) 

Preceding curve speed: 060 - 080 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

010 - 100 0.114 0.333 0.333 0.333 0.333 0.792 0.333 0.333 

100 - 200 0.549 0.333 0.333 0.333 0.333 0.167 0.333 0.333 

200 - 300 0.336 0.333 0.333 0.333 0.333 0.042 0.333 0.333 

Curve 
angle 
(grad) 

Preceding curve speed: 080 - 100 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

010 - 100 0.042 0.167 0.086 0.943 0.731 0.901 0.333 0.333 

100 - 200 0.042 0.792 0.901 0.052 0.267 0.086 0.333 0.333 

200 - 300 0.917 0.042 0.012 0.005 0.003 0.012 0.333 0.333 

Curve 
angle 
(grad) 

Preceding curve speed: 100 - 120 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

010 - 100 0.012 0.042 0.086 0.132 0.622 0.974 0.333 0.333 

100 - 200 0.012 0.042 0.901 0.743 0.378 0.025 0.333 0.333 

200 - 300 0.975 0.917 0.012 0.125 0.000 0.002 0.333 0.333 

Curve 
angle 
(grad) 

Preceding curve speed: 120 - 140 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

010 - 100 0.333 0.333 0.167 0.333 0.052 0.167 0.963 0.901 

100 - 200 0.333 0.333 0.792 0.333 0.943 0.792 0.035 0.086 

200 - 300 0.333 0.333 0.042 0.333 0.005 0.042 0.003 0.012 

Curve 
angle 
(grad) 

Preceding curve speed: tangent 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

010 - 100 0.001 0.141 0.404 0.599 0.893 0.631 0.538 0.795 

100 - 200 0.230 0.003 0.594 0.401 0.107 0.369 0.462 0.205 

200 - 300 0.769 0.856 0.002 0.000 0.000 0.000 0.000 0.000 

 

  



Appendix E Conditional Probability Tables 167 

Table E-9 CPT of node “Warning sign”. 

Warning 
sign 

Advice speed: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.707 0.992 0.938 0.938 0.500 0.500 0.500 0.500 

Not present 0.293 0.008 0.063 0.063 0.500 0.500 0.500 0.500 

Warning 
sign 

Advice speed: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.664 0.981 0.992 0.500 0.500 0.500 0.500 0.500 

Not present 0.336 0.019 0.008 0.500 0.500 0.500 0.500 0.500 

Warning 
sign 

Advice speed: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.063 0.799 0.981 0.063 0.500 0.500 

Not present 0.500 0.500 0.938 0.201 0.019 0.938 0.500 0.500 

Warning 
sign 

Advice speed: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.500 0.938 0.981 0.500 0.500 

Not present 0.500 0.500 0.500 0.500 0.063 0.019 0.500 0.500 

Warning 
sign 

Advice speed: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.063 0.981 0.500 0.992 0.500 

Not present 0.500 0.500 0.500 0.938 0.019 0.500 0.008 0.500 

Warning 
sign 

Speed limit: 50 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.664 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Not present 0.336 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Warning 
sign 

Speed limit: 60 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500 

Not present 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500 

Warning 
sign 

Speed limit: 70 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.063 0.664 0.334 0.500 0.500 0.500 

Not present 0.500 0.500 0.938 0.336 0.666 0.500 0.500 0.500 

Warning 
sign 

Speed limit: 80 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.938 0.008 0.500 0.500 0.500 

Not present 0.500 0.500 0.500 0.063 0.992 0.500 0.500 0.500 

Warning 
sign 

Speed limit: 90 km/h 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Not present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Warning 
sign 

No speed limit 

Expected safe speed (km/h) 

060 - 069 070 - 079 080 - 089 090 - 099 100 - 109 110 - 119 120 - 129 130 - 140 

Present 0.001 0.008 0.019 0.067 0.100 0.087 0.000 0.100 

Not present 0.999 0.992 0.981 0.933 0.900 0.913 1.000 0.900 
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F Some Relevant Safe Speed Expectations 

The letters to the left of the TANs represent the letters in Table 6-5. 

 

  

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriageway 100%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 71%

A100_200 29%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 0%

Two 100%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 4%

S100_109 5%

S110_11934%

S120_12911%

S130_14046%

Expected safe speed

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriageway 100%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 61%

A100_200 39%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 0%

S100_10913%

S110_11929%

S120_12957%

S130_140 0%

Expected safe speed

A

B
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Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 100%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 61%

A100_200 39%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_09955%

S100_109 0%

S110_11944%

S120_129 0%

S130_140 0%

Expected safe speed

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 100%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 64%

A100_200 36%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_08913%

S090_09948%

S100_10924%

S110_119 7%

S120_129 7%

S130_140 0%

Expected safe speed

C

D
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Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 100%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 64%

A100_200 36%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 0%

Two 100%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 0%

S100_10922%

S110_11924%

S120_12954%

S130_140 0%

Expected safe speed

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 100%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 39%

A100_200 15%

A200_310 46%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_06910%

S070_07945%

S080_089 0%

S090_09921%

S100_10918%

S110_119 5%

S120_129 0%

S130_140 0%

Expected safe speed

E

F
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Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 100%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 100%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 0%

Speed sign

Present 100%

Not_present 0%

Curve sign

A010_100 63%

A100_200 37%

A200_310 0%

Angle

Present 100%

Not_present 0%

Warning sign

One 0%

Two 100%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 0%

S100_10914%

S110_11950%

S120_12937%

S130_140 0%

Expected safe speed

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 100%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 100%

Not_present 0%

Curve sign

A010_100 12%

A100_200 24%

A200_310 63%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_06982%

S070_079 1%

S080_089 0%

S090_09912%

S100_109 5%

S110_119 0%

S120_129 0%

S130_140 0%

Expected safe speed

G

H
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Left 100%

Right 0%

Direction

Connector_road 100%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 100%

S120_140 0%

Tangent 0%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 100%

A100_200 0%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 0%

S100_10940%

S110_11959%

S120_129 0%

S130_140 0%

Expected safe speed

Left 100%

Right 0%

Direction

Connector_road 100%

Deceleration_lane 0%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 100%

S120_140 0%

Tangent 0%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 0%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 0%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 100%

Speed sign

Present 0%

Not_present 100%

Curve sign

A010_100 79%

A100_200 21%

A200_310 0%

Angle

Present 0%

Not_present 100%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_089 0%

S090_099 0%

S100_10951%

S110_11948%

S120_129 1%

S130_140 0%

Expected safe speed

I

J
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Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 100%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 47%

Adv_speed_60 0%

Adv_speed_70 1%

Adv_speed_80 0%

Adv_speed_90 0%

Speed_limit_50 49%

Speed_limit_60 0%

Speed_limit_70 1%

Speed_limit_80 1%

Speed_limit_90 0%

No_speed_sign 0%

Speed sign

Present 70%

Not_present 30%

Curve sign

A010_100 0%

A100_200 0%

A200_310 100%

Angle

Present 68%

Not_present 32%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_06998%

S070_079 2%

S080_089 0%

S090_099 0%

S100_109 0%

S110_119 0%

S120_129 0%

S130_140 0%

Expected safe speed

Left 0%

Right 100%

Direction

Connector_road 0%

Deceleration_lane 100%

Fork 0%

Main_carriagew ay 0%

Merge 0%

Weaving_section 0%

Preceding roadw ay type

S060_080 0%

S080_100 0%

S100_120 0%

S120_140 0%

Tangent 100%

Preceding curve speed

Adv_speed_50 0%

Adv_speed_60 2%

Adv_speed_70 0%

Adv_speed_80 0%

Adv_speed_90 6%

Speed_limit_50 0%

Speed_limit_60 0%

Speed_limit_70 13%

Speed_limit_80 0%

Speed_limit_90 0%

No_speed_sign 79%

Speed sign

Present 25%

Not_present 75%

Curve sign

A010_100 100%

A100_200 0%

A200_310 0%

Angle

Present 17%

Not_present 83%

Warning sign

One 100%

Tw o 0%

Three 0%

Four 0%

Number of lanes

S060_069 0%

S070_079 0%

S080_08911%

S090_09939%

S100_10940%

S110_119 5%

S120_129 5%

S130_140 0%

Expected safe speed

K

L
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G Supplementary Data 

The research of this dissertation generated several data sets. This data is available through the 
4TU/Researchdata repository. The datasets available are: 

• Data underlying the publication: How do Dutch drivers perceive horizontal curves on freeway 
interchanges and which cues influence their speed choice? This dataset contains the raw output 
from the survey in chapter 2. The dataset can be found at: 
https://doi.org/10.4121/68fb060e-226f-4aad-903e-c924b498ff86  

• Data underlying the publication: Speed behaviour upon approaching freeway curves. This dataset 
contains the aggregated database used for the analysis of the individual speed profiles in 
chapter 3, along a file explaining the different variables in the database. The dataset can be 
found at: https://doi.org/10.4121/e298fc48-daa8-436f-a5f7-a12030f6ebed  

• Data underlying the publication: Speed development at freeway curves based on high frequency 
floating car data. This dataset contains the aggregated database used for the generation of 
the parsimonious models in chapter 4. The variables in the database are explained in an 
additional sheet. The dataset can be found at: https://doi.org/10.4121/5cad48c2-2767-
49a2-9e2c-cc7f84ab9182  

• Which Visual Cues do Drivers Use to Anticipate and Slow Down in Freeway Curve Approach? An 
Eye-Tracking and Think-Aloud On-road Study - Dataset. The collected data in the on-road 
study in chapter 5 is shared in this dataset and contains: 

o GPS data of the researched sections 
o Filtered Eye-tracking data, containing the fixations, timestamps and AoI labels 
o Verbalisations 
o 6 muted video’s of the HD-camera from the eye-tracker, containing fixation data (a 

video for each curve, from a single participant) 
o Output from the questionnaires 

The dataset can be found at: https://doi.org/10.4121/21069820.  

 

The dataset used in the Bayesian Belief Network (chapter 6), will be published once the paper is 
published. The data is however derived from the data used in chapters 3 and 4. 

 

 

https://doi.org/10.4121/68fb060e-226f-4aad-903e-c924b498ff86
https://doi.org/10.4121/e298fc48-daa8-436f-a5f7-a12030f6ebed
https://doi.org/10.4121/5cad48c2-2767-49a2-9e2c-cc7f84ab9182
https://doi.org/10.4121/5cad48c2-2767-49a2-9e2c-cc7f84ab9182
https://doi.org/10.4121/21069820
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Summary
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and the number of lanes, as opposed to traditional factors like horizontal radius 

or speed signs, when starting to decelerate. The study advocates for integrating 

driver perspectives into road design.            
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