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A Self-Bias-Flip With Charge Recycle Interface
Circuit With No External Energy Reservoir for

Piezoelectric Energy Harvesting Array
Zhen Li , Student Member, IEEE, Zhiyuan Chen , Member, IEEE, Jing Wang , Jiawei Wang,

Junmin Jiang , Member, IEEE, Sijun Du , Senior Member, IEEE, Xu Cheng ,
Xiaoyang Zeng, Senior Member, IEEE, and Jun Han , Member, IEEE

Abstract—This article presents a piezoelectric energy harvesting
(PEH) interface circuit using a new self-bias-flip with the charge
recycle (SBFR) technique without employing any additional en-
ergy reservoir. Traditional designs, including synchronous-switch
harvesting on inductor (SSHI), synchronous-switch harvesting on
capacitor (SSHC), synchronous electric charge extraction (SECE),
etc., require additional capacitors or inductors to reverse the volt-
age on the PEH at the zero-crossing point. This design innovatively
uses the inherent capacitors of the piezoelectric harvesters as the
flipping capacitors. In order to improve the extract efficiency of
the interface, the zero-crossing state is split into a charge recycle
stage and a voltage-flip stage. For a piezoelectric array with 2n

PEHs, a configuration with (n-1) phases in the charge recycle stage
is adopted to reduce the loss caused by direct charge neutralization.
The charge redistribution loss is reduced by employing (2n+1)
phases in the voltage-flip stage. The proposed principle has been
implemented with discrete components and is verified by three
different prototypes. The measurement results show that a flipping
efficiency of 67% is achieved by utilizing SBFR with four PEHs.
And the proposed interface can provide up to 5.2x improvement
when compared with the full-bridge rectifier (FBR).

Index Terms—Energy harvesting, maximum output power
improving rate (MOPIR), multiple input, piezoelectric energy
harvester (PEH), self-bias-flip, synchronous-switch harvesting on
inductor (SSHI).
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I. INTRODUCTION

W ITH the emergence of the Internet-of-Things (IoT) era,
sensor nodes are required in almost all fields such as

manufacturing, medical care, and security to achieve a better
interaction between humans and the environment. The charac-
teristics of sensors include small size, long working life, remote
placement [1], and high disassembly cost, which cause power
supply difficulties. The emergence of energy harvesting technol-
ogy is expected to solve this problem [2]. The popular ambient
energy sources include solar, thermal, and various vibrations
in the environment. Compared to other sources, piezoelectric
energy harvesters (PEHs) have the advantages of high energy
density [3], easy scalability, and high output voltage [4]. Thus,
research projects involving PEH have been a point of interest.

The commonly used PEH adopts a cantilever structure. One
end of the beam is fixed to the base, and the free end usually
carries a proof mass to adjust the resonance frequency and
enhance the output power [5], [6], [7]. The cantilever vibrates
under an external kinetic force and converts the deformation
into a potential difference based on the piezoelectric effect.
However, the output of the PEH is an ac voltage whose amplitude
varies with the vibration intensity. Thus, an interface is required
to rectify the PEH’s output for the dc load. The full-bridge
rectifier (FBR) is widely used as an interface for the advantages
of simple implementation and stable performance, as shown
in Fig. 1(a) [8]. When the PEH electromechanical coupling is
relatively weak, the equivalent electrical model of PEH is usually
simplified as an inherent capacitance CP in parallel with the
ac current source IP . In the process of energy harvesting, the
polarity of IP changes periodically, which leads to repeated
charging and discharging of CP resulting in energy loss. In
view of this, researchers have proposed three popular solutions:
synchronous-switch harvesting on inductor (SSHI) [9], [10],
[11], [12], [13], synchronous-switch harvesting on capacitor
(SSHC) [14], [15], [16], [17], and synchronous electric charge
extraction (SECE) [18], [19], [20], [21], [22], [23].

The principle of SSHI/C technique is shown in Fig. 1(b).
At the zero-crossing point, the charge on CP is flipped to the
other side efficiently with the aid of external energy reservoirs,
so that the polarity of the CP ’s voltage and IP are always
kept in the same direction. The voltage-flip operation makes
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Fig. 1. Structure of the conventional and proposed interface: (a)FBR;
(b)SSHI/C; (c)SECE; (d)Proposed SBFR.

Fig. 2. Splitting the monolithic electrode of a PEH into a 4-input array.

the charge accumulated on the CP reused, which significantly
improves the energy extraction efficiency. The basic structure
of SECE is shown in Fig. 1(c). During the nonzero-crossing
time, IP continues to charge CP . When IP crosses zero, the
harvested energy is first transferred to the inductor by the LC
loop composed of the inductor and theCP , and then the inductor
and CRECT constitute a new LC loop to transfer the energy
to the load. Besides, there are various hybrid schemes such as
SSHIC, SICE, etc., [24], [25], [26], [27], [28]. All of the above
schemes inevitably use the extra energy reservoirs to achieve
highly efficient energy extraction. However, employing the pas-
sive elements (capacitors and inductors) not only decreases the
power density of the system, but also contradicts the trend of
miniaturization in the IoT era.

In this article, we attempt to avoid using additional capacitors
and inductors for voltage flipping at the cost of array self-
flipping. As shown in Fig. 2, the PEH array is implemented
by splitting the monolithic electrode of a PEH into several
mechanically connected piezoelectric elements, with indepen-
dent electrical terminals. Two novel techniques, the self-bias-flip
(SBF) and the self-bias-flip with charge recycle (SBFR), based
on piezoelectric array input are proposed. Different from the
traditional piezoelectric energy multiinput systems [29], [30],
where each PEH is only used as a power supply, this scheme
uses part of the inherent capacitators in the PEH array as the

Fig. 3. Operation of the proposed SBF2 technique.

flipping capacitors during the zero-crossing time of IP as shown
in Fig. 1(d). Three prototypes, the SBF2, SBF4, and SBFR4

with 3, 5, and 6 phases, respectively, are implemented using
discrete components to validate the effectiveness of our proposed
topology. In addition, a general version of a 2n-input SBFR
interface circuit with 3n phases is proposed and analyzed theo-
retically. Compared to the conventional SSHI, SSHC, and SECE
techniques, the proposed interface circuits can extract piezo-
electric energy efficiently without the aid of additional passive
energy storage elements. The rest of this article is organized as
follows. Section II aims at introducing the proposed SBF2, SBF4

and SBFR4 as examples and conducts theoretical analysis and
simulation verification. Section III derives and summarizes the
general topological transformation of SBFR based on 2n input
and provides the trend of performance when the input nodes
scale increases. In order to experimentally validate the concept,
Section IV carries out the test verification of the proposed SBFR
piezoelectric energy harvesting interface. Finally, Section V
concludes this article.

II. PROPOSED SBF AND SBFR TECHNIQUE

A. Proposed SBF Technique Based on 2-Input (SBF2)

Fig. 3 shows the basic form SBF2 that utilizes two input PEHs
(PEH<1,2>) and transforms in 3 phases (PHBF<0,2>) during the
zero-crossing time of IP . SBF2 operates in two states, including
energy harvesting state and zero-crossing state. In the energy
harvesting state, PEH1 and PEH2 are parallel to serve as energy
sources and followed by a rectifier to extract power. Under

Authorized licensed use limited to: TU Delft Library. Downloaded on January 15,2024 at 07:25:50 UTC from IEEE Xplore.  Restrictions apply. 
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periodic excitement, the peak values of the equivalent ac current
of PEH1 and PEH2 are IP1 and IP2, respectively. Since the free
ends of the two PEHs are tightly fixed on the same mass, their
phases and currents are exactly the same (e.g., IP1 = IP2 = IP ).
When the current IP 〈1,2〉 crosses zero, the interface enters the
voltage-flip stage. During this stage, the inherent capacitor of
PEH2 is used as the flipping capacitor, which is filled with gray
in Fig. 3. Considering the direction of PEH will change during
the bias-flip process, the positive terminal of PEH is represented
by a solid line, while the negative terminal of PEH is represented
by a dotted line. In order to quantitatively analyze the circuit’s
performance, the theoretical derivation will be carried out in the
following content.
CP is the inherent capacitance of the whole piezoelectric ma-

terial, and it is divided into two parts, PEH1 and PEH2. In order
to obtain the optimal ratio of PEH1 and PEH2, it is assumed that
the inherent capacitance of PEH1(PEH2) is CP1(CP2), where
CP1 + CP2 = CP , and CP1 = m× CP2. The SBF2 operates
as follows. First, entering the PHBF0 phase, the ports of PEH2

are shorted and the charge is cleared to zero. At this time, the
voltages VC1 and VC2 across the PEH1 and PEH2 are

VC1 = VRECT VC2 = 0 (1)

where VRECT is the voltage at the output of the rectifier. The
inherent capacitanceCP2 of PEH2 will act as a flipping capacitor
after clearing the charge. The interface circuit enters the PHBF1

phase, PEH1 and PEH2 are switched to parallel connection, and
the charge accumulated on CP1 is partially transferred to CP2

through charge sharing

|VC1| = |VC2| = CP1

CP1 + CP2
· VRECT . (2)

When completing the charge sharing, it enters PHBF2 phase to
clear the residual charge on CP1, resulting in

VC1 = 0 |VC2| = CP1

CP1 + CP2
· VRECT . (3)

After finishing the voltage-flip, the interface returns to the energy
harvest state, and PEH1 and PEH2 are connected in parallel
again. The voltage polarities ofVC1/VC2 and IP turn to identical.
The rebuilt voltage VRBT is equal to

|VRBT | = CP1 · CP2

(CP1 + CP2)2
· VRECT . (4)

Based on the rebuilt voltage, the charge loss Q0.5lost during the
entire flipping process is

Q0.5lost =
(CP1 + CP2)

2 − CP1 · CP2

CP1 + CP2
· VRECT . (5)

Meanwhile, the total charge Q0.5cy generated by PEH<1,2> in
each half cycle is

Q0.5cy = 2 · (CP1 + CP2) · VP (6)

where VP is the peak of PEH1/2 open circuit voltage

VP =
IP

ωP × CP
(7)

where ωP = 2πfP and fP is the frequency with which the PEH
is excited. The output power PRECT during one period can be
expressed as follows:

PRECT = (Q0.5cy −Q0.5lost) · VRECT · 2fP (8)

substitute (5)–(7) into (8), the PRECT can be calculated as

PRECT = [2 · CP · VP − (m+ 1)2 − (m+ 1) + 1

(m+ 1)2

· CP · VRECT ] · VRECT · 2fP . (9)

Substituting k = m+ 1 into (9)

PRECT = [2 · VP − k2 − k + 1

k2
· VRECT ]

· VRECT · CP · 2fP . (10)

By differentiating (10) with respect to VRECT and equating the
result to zero, the PEH voltage at maximum power point for
SBF2 can be obtained as

VRECT =
k2

(k2 − k + 1)
· VP . (11)

By substituting (11) into (10), we can obtain the maximum power
of the SBF2 as

PRECT,MAX =
2 · k2

k2 − k + 1
· V 2

P · CP · fP . (12)

Maximum output power improving rate (MOPIR) is commonly
used for performance evaluation when analyzing piezoelectric
interface circuits, which is defined as the ratio of the maximum
extract power of the interface to the FBR maximum output
at the same vibration level [2] (e.g., MOPIR=PRECT,MAX /
PFBR,MAX )

PFBR,MAX = CP × V 2
P × fP . (13)

Hence, the MOPIR is equal to

MOPIR =
2 · k2

k2 − k + 1
(k > 1). (14)

According to formula (14), we draw the curve of MOPIR with
respect to k under SBF2 in Fig. 4. With the increase of k,
MOPIR gradually increases and reaches the peak value of 2.66x
when CP1 = CP2. However, when CP1 < CP2, the MOPIR
gradually decreases due to charge clearing in the PHBF0 phase.
In contrast, if CP1 > CP2, the residual charge in PHBF2 will
reduce energy efficiency significantly. Hence, in the following
analysis and implementation, the input used as flipping capac-
itors accounts for half of the total inputs in order to obtain the
maximum MOPIR.

B. Proposed SBF Technique Based on 4-Input (SBF4)

The previous discussion shows that SBF2 can improve the
MOPIR by 33% compared with switch only rectifier (SOR) [2].
However, there are only three phases in SBF2, which result in
large charge redistribution loss so as to limit the improvement
of MOPIR. In order to reduce the charge redistribution loss, it
is necessary to split PEH into more units to extend the phase
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Fig. 4. Relationship between MOPIR and CP1/CP2 in SBF2.

Fig. 5. Zero-crossing state of the proposed SBF4.

number during the voltage-flip stage. More phases aim to re-
duce voltage difference before charge sharing so as to obtain a
higher MOPIR. Fig. 5 shows the SBF4 that utilizes four input
PEHs (PEH<1,4>) and transforms in five phases (PHBF<0,4>)
during the zero-crossing time of IP . The equivalent ac current
of PEH<1,4> in this structure are exactly the same by default,
and their respective inherent capacitors CP<1,4> are also equal
(e.g., CP1 = CP2 = CP3 = CP4 = 0.25CP ). Accomplishing
the voltage-flip, the rebuilt voltage is

VRBT =
9

25
· VRECT . (15)

Similar to (11) and (12), we can calculate the maximum output
when VRECT = 25

16 · VP

PRECT,MAX =
25

8
· V 2

P · CP · fP . (16)

According to (13) and (16), the MOPIR is equal to 3.12x, which
is about 17.3% higher than SBF2. It shows that dividing the PEH
into more input units to increase the phase number in voltage-flip
stage is helpful to reduce charge redistribution loss. As a result,
the MOPIR will be improved significantly.

Fig. 6. Zero-crossing state of the SBFR4.

C. Proposed SBFR Technique Based on 4-Input (SBFR4)

Increasing the flipping phases can reduce the charge redis-
tribution loss but is incapable of decreasing the energy waste
caused by charge clearing in the PHBF0 phase. In order to
effectively take advantage of the charge on PEH<3,4> to im-
prove MOPIR, SBFR4 is proposed to further improve harvesting
efficiency from SBF4. Fig. 6 shows the SBFR4 that utilizes four
input PEHs (PEH<1,4>) and transforms in six phases (PHCR,
PHBF<0,4>) during the zero-crossing time of IP . The difference
between SBFR4 and SBF4 lies in the charge recycle stage in the
zero-crossing state. SBF4 discards all charges on the PEH<3,4>

in order to employ it as a flipping capacitor. This operation
leads to 50% charge of input being wasted. However, the SBFR4

divides the zero-crossing state into two stages: charge recycle
stage and voltage-flip stage. The inherent capacitors of gray
filled PEH<3,4> are used as the flipping capacitors. In the charge
recycle stage, through connecting PEH<3,4> in series, half of the
charge on PEH<3,4> can be output to CRECT so as to reduce
the waste due to charge clearing. The operation of SBFR4 is
as follows. When IP crosses zero, the interface first enters the
PHCR phase. During PHCR phase, PEH<3,4> are connected in
series to transfer power to the load. The contribution of PHCR

phase to the average power transferred to CRECT over a time
period of vibration can be expressed as

PRECT,CR = CSERI · (2 · VRECT − VRECT ) · VRECT · 2fP

=
1

8
· CP · V 2

RECT · 2fP (17)

where CSERI is the series capacitance of CP3 and CP4. The
voltage-flip process of SBFR4 from PHBF0 to PHBF4 is the same
as SBF4 and the output power PRECT,V F during this period is

PRECT,V F =

[
2·CP · VP − 16

25
·CP ·VRECT

]
· VRECT ·2fP .

(18)
By summing (17) and (18), we can calculate that the total

output PRECT of one SBFR4 cycle is

PRECT = CP · fP ·
[
4 · VP · VRECT − 103

100
· V 2

RECT

]
.

(19)
Similar to (11) and (12), when VRECT = 200

103 · VP , PRECT

attains the maximum power PRECT,MAX

PRECT,MAX =
400

103
· V 2

P · CP · fP . (20)
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Fig. 7. Relationship between the MOPIR and VP for VD = 0.05 V, 0.25 V,
and 0.7 V of SBFR4.

The calculation shows that without the aid of extra energy
reservoirs, the output power enhancement of SBFR4 can reach
up to 3.88x, which is 46% higher than that of the SBF2, and 24%
improvement over SBF4. In the above calculations, the diodes
are assumed to be ideal devices. But the influence of diode’s
forward voltage VD cannot be ignored. When considering VD,
the total output power PRECT,PRAC of one SBFR4 cycle is

PRECT,PRAC = CP · fP ·
[(

4 · VP − 206

100
· VD · VRECT

− 103

100
· V 2

RECT

]
. (21)

According to (13) and (21), the MOPIR is derived to be

MOPIR =

[(
4 · VP − 206

100 · VD

) · ( 200103 · VP − VD)
]

V 2
P

−
103
100 · ( 200

103 · VP − VD

)2
V 2
P

. (22)

As can be seen from the formula (22), MOPIR is related to both
VP and VD, where VP is proportional to the vibration level, and
VD is related to the type of diode. When employing active diodes,
VD can be limited within 100 mV; and theVD of Schottky diodes
are usually about 0.25 V. If using standard diodes, the classical
value of VD is about 0.7 V. The above mentioned three typical
values of VD are selected for scanning, and the trend of MOPIR
is shown in Fig. 7. It can be seen that the actual value of MOPIR
approaches the theoretical maximum value in the case of larger
excitation intensity and smaller VD.

In order to verify the above calculation results, we simulated
SBFR4 with the Cadence Virtuoso software. In the simulation,
the frequency of IP is 200 Hz, CP 〈1,4〉 = 22 nF and VP = 2 V,
and the diodes employ the ideal model with threshold equal
to 0 V. Fig. 8 depicts the waveforms of the voltages across
PEH1/2(PEH3/4) during operation and the zoomed-in view of
the zero-crossing state waveform. With the arrival of the zero-
crossing time, the circuit first enters the PHCR phase, half of the

Fig. 8. Simulation waveforms of the SBFR4.

Fig. 9. Simulation results of PRECT versus VRECT for the structure of
SBF2, SBF4, SBFR4, and FBR.

charge on PEH〈3,4〉 is transferred to theCRECT , and the value of
VPEH<3,4> are simultaneously reduced to 0.5VRECT . Then the
interface turns into the voltage-flip stage. In PHBF0, the charge
on PEH〈3,4〉 is first cleared, and then the absolute value of the
voltage on CP<3,4> gradually increases due to charge transfer.
Meanwhile, the absolute voltage on CP<1,2> is progressively
reduced due to charge sharing and is cleared at the PHBF4 phase.
When the interface circuit returns to the energy harvest state
again, the rebuilt voltage is 0.36VRECT . The simulation results
are consistent with the theoretical calculations, which verify the
feasibility of the scheme.

Fig. 9 shows the simulated POUT comparison among an
ideal FBR and the three interface circuits mentioned above.
Note that the piezoelectric devices considered for simulation
have different structures, depending on the number of elements
with independent electrical terminals needed, but the resonance
frequency and the total amount of piezoelectric material are the
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Fig. 10. In the proposed SBFRz . (a) Structure of 2n-input array. (b) Connec-
tion examples for PAi,j.

same. The maximum output power of the SBF 2 is 184.5 μW,
and the corresponding MOPIR is about 2.66x. Employing the
SBFR 4 can improve the maximum power up to 267.1 μW,
which achieves a MOPIR of 3.88x compared with ideal FBR.
The theoretical output power of SBFR 4 is 1.94 times that of
SSH_ SW technique. Compared with the SBF2, the SBFR4 has
a substantial improvement in MOPIR of about 46%.

III. PROPOSED SBFR INTERFACE BASED ON

2n-INPUT (SBFRz)

Through the above analysis, it can be discovered that the
piezoelectric material of the same area can be split into more
PEH units equally to increase the number of phases during the
zero-crossing state, thereby decreasing the loss and improving
the flipping efficiency. SBFR4 can be extended to SBFRz , where
z is the number of PEHs, which can be expressed as z = 2n. By
simply using z reconfigurable PEHs, 3n phases can be achieved
in the zero crossing state, where n− 1 phases are in the charge
recycle stage and 2n+ 1 phases are in the voltage-flip stage.

Fig. 10 shows the grouping diagram of the array with the
connection examples, where PEHs in the piezoelectric array are
divided into two groups. The equivalent intrinsic capacitance of
the total piezoelectric material is assumed to be CP , which is
split into 2n piezoelectric units. The first 2n−1 units are served
as energy sources and can be configured as required. When they
form an array of 2i rows× 2j columns, which is named as PAi,j ,
and the equivalent capacitance of the array is 1

2(n+i−j) · CP ,
where i+j=n-1. The rest 2n−1 units are filled with gray, which
are employed as flipping capacitors in the zero-crossing state.
Similarly, when they form an array of 2p rows and 2q columns,
it is named as PBp,q . At this time, the equivalent capacitance of
the array is 1

2(n+p−q) · CP , where p+q=n-1.
Fig. 11 shows the operation process of SBFRz , with two

operating states including energy harvesting and zero-crossing.
In energy harvest state, all units are configured in parallel as
ac sources and followed by a rectifier to extract power. The
entire zero-crossing state can be divided into two stages: charge
recycle and voltage-flip. In the charge recycle stage, the PA is
disconnected from the system, while the PB is connected to the
FBR followed by the CRECT , and the charges stored on it are

transferred toCRECT in steps. In PHCR1 phase, p=1, q=n-2. At
this time, the voltage across PB1,(n−2) is 2VRECT . The charge
on it is shared to the CRECT through FBR, and the equivalent
output power PCR1 is

PCR1 = (1/2)3 × CP × (VRECT )
2 × 2fP . (23)

In the PHCR2 phase, p=2, the voltage across PB rises to
2VRECT again and transfers the energy of PCR2 to CRECT ,
where PCR2 is equal to

PCR2 = (1/2)5 × CP × (VRECT )
2 × 2fP . (24)

Generally, in the phase of PHCR(n-1), the PB outputs power of
PCR(n−1) to the CRECT is

PCR(n−1) = (1/2)2n−1 × CP × (VRECT )
2 × 2fP . (25)

After the charge recycle stage, most of the charges accumulated
on the PB have been transferred to CRECT . Then, the interface
circuit enters the voltage-flip stage. In the PHBF0 stage, the
residual charge on the PB is first cleared. The subsequent phases
can be divided into two parts.

1) In the phase of PHBF<1,n>, PA0,(n−1) keeps the same
structure, and the units in PB are gradually converted from
series to parallel for reducing the sharing loss due to the
voltage difference.

2) In the phase of PHBF<(n+1),(2n−1)>, PB0,(n−1) remains
unchanged, while the units in the PA are switched from
parallel to series step by step, so as to transfer as much
charge as possible to PB. Finally, in phase PHBF(2n), the
residual charge on the PA is cleared. After completing
the voltage-flip, the interface circuit returns to the energy
harvest state. At this time, 2n-inputs are back to parallel
combination, and the phase of rebuilt voltage VRBT is
consist with IP .

The blue curve in the Fig. 12(a) shows the flipping efficiency
with respect to the PEH number (z). As expected, the flipping ef-
ficiency improves as z increases. The orange curve in Fig. 12(a)
represents the normalized total charge transferred from PB to
CRECT . When z is less than 4, the interface is unable to establish
the charge recycle stage. As z increases, more of the charge on
PB is transferred to CRECT . Fig. 12(b) depicts the relationship
between the MOPIR and the PEH number. Compared with
SBFR2, the MOPIR of SBFR4 is greatly improved by 45.9%,
which is mainly due to the utilization of the charge stored on the
PB. The output power can be improved by increasing z, but the
improvement flattens as z becomes larger. As z increases, the
associated increase in the circuit complexity can lead to a higher
switching loss that limits the achievable MOPIR.

IV. CIRCUIT IMPLEMENTATION AND TEST ANALYSIS

To validate the concept, this section describes the circuit
implementation and the measured performance of SBF and
SBFR circuits.

A. Setup and Characterization

Fig. 13(a) shows the test bench schematic of the proposed
SBFR 4. The 4 PEH-input based interface is selected to design

Authorized licensed use limited to: TU Delft Library. Downloaded on January 15,2024 at 07:25:50 UTC from IEEE Xplore.  Restrictions apply. 



11636 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 9, SEPTEMBER 2023

Fig. 11. Structure transformation of 2n-input array in zero-crossing state of the proposed SBFRz .

Fig. 12. Performance calculation with input nodes of 1, 2, 4, 8, and 16 of
SBFRz . (a) Flipping efficiency versus PEH number; (b) MOPIR versus PEH
number.

the PCB circuit, so as to balance the harvesting efficiency and
circuit complexity. PEHs adopt the type of PPA-1021, and FBR
consists of 4 Schottky diodes, the typical forward voltage of
which is 0.25 V. The PCB circuit uses discrete analog switches
to form a switch array for topology transformation. Fig. 14(a)
shows the circuit implementation of SBF2 using eight switches.
Table I tabulates the control phases of each switch. If z is greater

TABLE I
CONTROL PHASES OF EACH SWITCH IN SBF2

than 4, routing and implementation of the array become more
complex. Therefore, ASIC designs are more suitable for achiev-
ing the required performance. In this case, the switches can be
implemented using transmission gates to ensure the switch con-
ductance at different source voltages during reconfigurations,
with active body biasing to reduce the switch ON-resistance [14],
as shown in Fig. 14(b). If an ASIC chip is used to control the
PEH array, the structure of the control circuit is similar to the
circuit in [17], and the power consumption of the control circuit
is estimated to be about 3.8 μW.

The combination of the switch array is determined by the
control signals PS OPERA, PSCR, and PSBF〈0,4〉, whose wave-
forms are shown in Fig. 13(b). The pulse widths of PSCR and
PSBF〈0,4〉 are set to 10 μs to ensure the charge is transferred
sufficiently. The interval between adjacent pulses is 500 ns to
avoid overlapping. The duration tZC of the zero-crossing state is
42.5 μs. Hence, when fP = 100 Hz, the zero-crossing state only
occupies 0.85% of the whole period. Note that we can change the
interface structure by altering the output of FPGA. Specifically,
if the PSCR signal is set to zero, the rest control signal can realize
the SBF4. Similarly, if the PSCR, PSBF1, and PSBF3 signals
are set to zero simultaneously, SBF2 can be implemented. The
proposed technique is verified with the discrete components.
The types of devices and the development board used in the
experiment are shown in Table II.

The entire experimental setup is shown in Fig. 15. The 4 PEHs
are tightly mounted on the shaker (KDJ-50), which receives
periodic excitations from a function generator together with
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Fig. 13. Principle of the test. (a) Test bench schematic. (b) Control signal.

Fig. 14. Circuit implementation of SBF2. (a) Structure of the switch array.
(b) Transmission gate with active body bias.

TABLE II
COMPONENT TYPE

a power amplifier (KD5708). The details of the 4-node PEH
array and designed PCB circuit are shown in Fig. 15(b) and
15(c), respectively. The source meter unit (Keithley 2614B) is
employed as the load of the rectifier, which can adjust the output
voltage while measuring the output current.

B. Experimental Results

The influence of the CP value on the flipping efficiency
is tested based on the SBF 2 scheme. In order to reduce the
influence of VD, the open-circuit voltage is adjusted to 3 V.
Fig. 16 shows that when CP = 88 nF, the theoretical maximum
output power of the ideal FBR is only 79 μW, while the mea-
sured value can be increased to 208 μW with the operation of
SBF2, and the corresponding MOPIR is 2.63x. However, when
CP = 44 nF, the MOPIR decreases to 2.49x. According to (14),
the MOPIR of both should theoretically equal to 2.66x. However,
due to the relatively fixed power losses of switch leakage current
and parasitic capacitance, these nonideal factors have a greater
impact at low power. Therefore, when CP is 44 nF, the deviation
between MOPIR and the theoretical value is greater.

Fig. 17 shows the measurement results of the impact of
CP1/CP2 on POUT . As shown in Fig. 15, we utilized four PEHs
in the test. If three of them are connected in parallel to form
CP1, then they will form CP1/CP2 (3:1) with the remaining
one. Similarly, we can obtain 1:1 and 1:3 by grouping without
changing the total PEH number. The highest power occurs when
CP1: CP2 is 1:1, while the POUT of the ratio 1:3 and 3:1 are
approximately equal and relatively small, which are consistent
with the theoretical analysis results in Fig. 4.

Fig. 18 depicts the measured voltage across PEH〈1,2〉 and
PEH〈3,4〉, where VRECT is set to 1 V. When the voltage
across the PEH exceeds 1.25 V, the PEH outputs power to the
load. The zoomed-in view of the waveform in zero-crossing
state shows the difference between the voltage waveforms of
VPEH<1,2> andVPEH<3,4>. The value ofVRBT is about 34.5%
of the VPEH<1,2> before flipping, while the flipping efficiency
reaches 67%.

The measured results of the rectifier output power (PRECT )
versus VRECT are shown in Fig. 19. Note that FBR(VD = 0) on
Figs. 19 and 20 is the ideal calculated result of PFBR. For a fair
comparison, we use the following formula [2] to calculatePFBR

when VD is zero to avoid changes in VD at different power levels

PFBR = 4 · CP · (VP − VRECT ) · VRECT · fP . (26)

When VRECT = 4.4 V, the PRECT of SBFR 4 reaches the
maximum value of 281 μW with the VP of 3 V. Compared
with the output power of FBR formed by the Schottky diodes
(VD = 0.25 V), the corresponding MOPIR reaches 5.2x. With-
out PH CR, the measured PRECT of SBF4 drops to 239 μW
when VP is 3 V, and the corresponding MOPIR is decreased to
3.02x, which indicates that the PHCR phase makes significant
contribution to the performance improvement.

Fig. 20 shows the measured maximum output power of SBF2,
SBF4, and SBFR4 with respect to VP , respectively. As the
vibration level increases, the impact of nonideal factors such
as diode forward voltage and transistor resistance decreases.
The MOPIR of SBFR4 gradually increases from 2.4x to 3.56x,
approaching the ideal value of 3.88x. Note that with the presence
of the Vth of the CMOS switches, the conduction loss at low
input will significantly increase, thereby reducing the efficiency
of harvesting. Fig. 21 shows the measured effect of zero-crossing
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Fig. 15. Experimental setup. (a) Overview. (b) 4-input PEH array. (c) PCB circuit.

Fig. 16. Measured effect of CP area on harvested power with SBF2 and FBR.

Fig. 17. Measured influence of area ratio on harvested power with SBF2 and
FBR.

deviation. When there is no deviation, the corresponding MOPIR
is 3.56x. However, when the zero-crossing point deviates from
10%, the MOPIR decreases to 3.19x, which decreases by about
10.4%.

The performance of SBFR4 compared with the state-of-the-
art is presented in Table III. The “Normalized Volume” (includ-
ing IC and all OFF chip components) is an estimate of each

Fig. 18. Measured waveform of the VPEH with SBFR4.

state-of-the-art interface circuit. The IC chips are assumed to
occupy 10 mm3. Each OFF-chip capacitor or resistor is assumed
to occupy 0.75 mm3. The unit volume for a highly compact
inductor is assumed to be 100 mm3/mH [16]. Compared to
other techniques, this work has much less volume and achieves a
greater FoM by avoiding the use of OFF-chip component (except
for load capacitors). It is especially suitable to be cointegrated
with a custom micro-electromechanical systems (MEMS) piezo-
electric transducer with its electrode layer equally split into
multiple regions [17]. If employing MEMS to realize SBFR4,
the volume of 4-node PEH array is about 28 mm3 [17]. The
total volume can be limited to about 40 mm3, which can be
used in the volume strict application. The maximum output
power of a cubic centimeter sized PEH can attains to a few
milliwatt, and the power consumption of the control circuit is
about tens of microwatts [15]. When scales to MEMS PEH, the
maximum output power is limited to hundreds of microwatts
due to the small size of the piezoelectric material, and the power
consumption of the control circuit can optimize to about a few
microwatts [17]. The low cost, ultracompact solution with a
measured high MOPIR reveals the proposed technique as a
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TABLE III
PERFORMANCE COMPARISON

Fig. 19. Measured harvested power versus VRECT with SBF4, SBFR4, and
FBR.

Fig. 20. Measured harvested power versusVP with SBF2, SBF4, SBFR4, and
FBR.

Fig. 21. Measured relationship between the zero-crossing offset and the
MOPIR of SBFR4.

promising solution for piezoelectric energy harvesting applica-
tions, especially for deep-tissue implant implementations such
as implantable micro-oxygen generator (IMOG) [31] or gastric
seed [32].

V. CONCLUSION

This article proposes a self-bias-flip with charge recycle in-
terface circuit with no external energy reservoir (except for load
capacitors). The theoretical analysis is carried out beginning
with the SBF2, and the design method of SBF4 and SBFR4

is gradually deduced. The generalized SBFR topology based
on 2n-input by employing the inherent capacitors as flipping
capacitors are also illustrated. Except for theoretical analysis,
the three prototypes are verified by discrete components. The
test results indicate that SBFR4 can achieve a 67% flipping
efficiency and the MOPIR can reach up to 5.2x. The scheme
conforms to the trend of miniaturization of interfaces in the IoT
era, and provides a new design method for piezoelectric harvest
systems.
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