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1. Introduction
Characterizing an earthquake is essential for a number of reasons. First, its source parameters (centroid, magni-
tude, slip direction, etc.) determine, to a large extent, the damage it may cause (Lui et al., 2016). This is because 
the depth, size, and type of rupture all affect the amount of shaking produced (Trippetta et al., 2019). Second, 
source characterization may help to improve our understanding of an event's nucleation, which is essential for 
developing reliable earthquake hazard models (Ellsworth et al., 2015). In addition, an increased understanding 
of source characteristics can potentially be used to improve earthquake early warning systems by providing 
(additional) information that can be used to generate alerts before strong shaking takes place (Peng et al., 2021).

Seismologists distinguish between “natural” and “induced” earthquakes. Induced earthquakes usually emit shorter 
period signals compared to tectonic earthquakes (Li et al., 2020). This is because, on average, induced events 
have relatively low magnitudes compared to (stronger) tectonic earthquakes, although some induced events are 
reported to be as high as 5.8 (Foulger et al., 2018). In addition, induced events usually occur at relatively shallow 

Abstract The Hamiltonian Monte Carlo algorithm is known to be highly efficient when sampling 
high-dimensional model spaces due to Hamilton's equations guiding the sampling process. For weakly 
non-linear problems, linearizing the forward problem enhances this efficiency. This study integrates this 
linearization with geological prior knowledge for optimal results. We test this approach to estimate the source 
parameters of a 3.4 magnitude induced event that originated in the Groningen gas field in 2019. The source 
parameters are the event's centroid (three components), its moment tensor (six components), and its origin 
time. In terms of prior knowledge, we tested two sets of centroid priors. The first set exploits the known fault 
geometry of the Groningen gas field, whereas the second set is generated by placing initial centroid priors on 
a uniform horizontal grid at a depth of 3 km (the approximate depth of the gas reservoir). As for the forward 
problem linearization, we use an approach in which the linearization is run iteratively in tandem with updates 
of the centroid prior. We demonstrate that, in the absence of a sufficiently accurate initial centroid prior, the 
linearization of the forward model necessitates multiple initial centroid priors. Eventually, both prior sets 
yield similar posteriors. Most importantly, however, they agree with the geological knowledge of the area: the 
posterior peaks for model vectors containing a centroid near a major fault and a moment tensor that corresponds 
to normal faulting along a plane with a strike almost aligning with that of the major fault.

Plain Language Summary Earthquake source parameters, such as depth, time, and type of faulting, 
can be estimated using the recordings (or seismograms) of this (induced) earthquake. Being able to do this 
such that the uncertainty of the estimated parameters is also quantified is particularly valuable. This, however, 
requires the use of a probabilistic algorithm. A disadvantage of probabilistic algorithms is their computational 
cost. In this study, we simplify the relationship between the earthquake source parameters and the seismograms 
to significantly reduce computational costs. Specifically, we demonstrate that the simplified relation between 
the earthquake source parameters and the earthquake recordings requires the probabilistic algorithm to be 
provided with a sufficiently accurate (prior) estimate of these very earthquake source parameters. By means of 
a magnitude 3.4 induced event that originated in the Groningen gas field in 2019, we show that a geologically 
inspired prior can be helpful to partly overcome this: we use (known) existing faults in the reservoir to kick start 
the probabilistic algorithm. As such, we recover earthquake source parameters that are in line with subsurface 
geological information.
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depths. Combined, shallower depths and higher frequencies imply that induced events may still cause significant 
damage to buildings and infrastructure (Vlek, 2018). In addition, ground motions are exacerbated by high ampli-
fication factors in some areas (Bommer et al., 2017).

A notable example of induced seismicity is the events occurring in the Groningen gas field, the Netherlands 
(Sarhosis et al., 2019). The Groningen gas field, located in the northern part of the Netherlands, is the largest gas 
field in Europe. Since the first reported induced earthquake in 1986, there has been a gradual increase in seis-
mic activity in the field (van Thienen-Visser & Breunese, 2015). Because of the societal unrest associated with 
the earthquakes (Nepveu et al., 2016), the Dutch government has recently taken steps to reduce the extraction 
of natural gas from the Groningen gas field. The field will close down permanently on 1 October 2024, with 
production expected to be halted on 1 October 2023. Concurrent with the production reduction, an extensive array 
of seismometers was installed by the Dutch meteorological institute (KNMI, which stands for Koninklijk Neder-
lands Meteorologisch Instituut), funded by NAM (Nederlandse Aardolie Maatschappij), the major operator in the 
Groningen gas field (Ntinalexis et al., 2019). The array also includes borehole seismometers, enabling improved 
source characterization in the area (Smith et al., 2020), that is, due to a significant increase of the signal-to-noise 
ratio (SNR) at depth (Ruigrok & Dost, 2019).

An earthquake source can be parameterized in several ways (Aki & Richards, 2002). In this study, we consider a 
moment tensor (MT) representation (Jost & Herrmann, 1989). This implies that the seismic event is collapsed to 
a single position (point-source representation), which is usually referred to as “the centroid.” Such a representa-
tion is justified in case the waveform data is analyzed at periods for which the seismic source is effectively a 
point source (Aki & Richards, 2002). Additionally, assuming instantaneous rupturing, we end up with 10 source 
parameters. The first six are the moment tensor components, where the MT's magnitude is a measure of the 
amount of energy released. This MT can be decomposed into isotropic (ISO), double-couple (DC), and compen-
sated linear vector dipole (CLVD) components (Jost & Herrmann,  1989). The other four parameters are the 
event's east, north, and depth coordinates and the origin time.

Various data sets and techniques have been utilized to estimate the source characteristics of Groningen earth-
quakes. Willacy et al. (2018) adopt a deterministic approach to estimate moment tensors and centroids. These 
authors employed a detailed 3D subsurface model of Groningen but restricted the search space to DC sources. In 
contrast, Dost et al. (2020) used a probabilistic approach to estimate the centroid and full moment tensor (imply-
ing that they allowed for the ISO and CLVD components as well) but employed (locally) 1D models. Determin-
istic approaches often provide faster computations compared to probabilistic approaches. However, probabilistic 
approaches quantify the uncertainty of the different parameters; in this case, these are the uncertainties of the 10 
earthquake source parameters. Also, the use of 3D subsurface models has a clear advantage over 1D subsurface 
models. This is because 3D models take into account the subsurface lateral heterogeneity that will affect the shape 
(amplitude and phase) of the seismogram generated from simulating an earthquake event using those 3D models.

In this study, we investigate the combination of a probabilistic approach with 3D subsurface models to estimate 
the source parameters of a real event in Groningen. To mitigate the aforementioned “inefficiency” of probabilistic 
approaches, we modify the workflow described in Masfara et al. (2022). This workflow relies on a variant of the 
Hamiltonian Monte Carlo (HMC) algorithm and has previously been tested using synthetic recordings generated 
using the 3D Groningen subsurface velocity model. For this study, we consider the 2019 3.4 local magnitude 
earthquake below the village of Westerwijtwerd (Figure 1). Since we estimate the full moment tensor, our estima-
tion does not limit the search space to just DC components but includes the ISO and CLVD components. Also, 
the inclusion of origin time in the estimation quantifies the trade-off between origin time and estimated depth. 
In what follows, we first describe the theory underlying the workflow. We subsequently introduce and discuss 
the (retrieval of the) recordings used to estimate the parameters, including the prior information that is used to 
increase the computational efficiency of the workflow. Finally, we compare our results to results obtained in other 
studies and draw conclusions, including the outlook of applying the same approach to a larger set of events in the 
Groningen area.

2. Methodology
To enable source characterization, the formal relationship between the observed data and the source (model) 
parameters is introduced and detailed in the first subsection. Subsequently, we introduce Bayes' theorem and, 
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assuming Gaussianity, cast it in a form allowing us to utilize it. In Section 2.3, we then introduce the HMC 
algorithm. Finally, in Sections  2.4 and  2.5, we describe how the algorithm's efficiency can be enhanced via 
line arization of the forward problem and by choosing meaningful prior information, respectively.

2.1. The Forward Problem

In this study, the posterior probability of the model parameters is estimated by means of a Markov process. The 
generation of such a Markov chain is detailed further below (Section 2.3), but, at this point, it should be understood 
that for each sample in the chain, forward-modeled data is compared against measured data. In the context of our 
problem, a specific model m (or sample) implies assigning a specific value to each of the 10 aforementioned source 
parameters (MT, centroid, and origin time). The measured data d obs consists of the induced event's waveform data, 
which, in our case, are recordings of particle displacement recorded by KNMI instruments. Computation of the 
likelihood ρ(d obs|m) yields the probability of these recordings given a model m and involves quantification of the 
misfit between the recorded particle displacements and numerically modeled particle displacements. The latter is 
computed by numerically solving the wave equation, that is, they are the result of solving (what is usually referred 
to as) “the forward problem.” Mathematically, the forward problem can be written as

𝑢𝑢𝑖𝑖
(

𝐱𝐱
(r), 𝑡𝑡

)

=

3
∑

𝑗𝑗=1

3
∑

𝑘𝑘=1

𝑀𝑀𝑗𝑗𝑘𝑘(𝑡𝑡, 𝑡𝑡0) ∗ 𝐺𝐺𝑖𝑖𝑗𝑗,𝑘𝑘

(

𝐱𝐱
(r), 𝑡𝑡; 𝐱𝐱(a)

)

, (1)

Figure 1. Map of the research area. The inverted triangles indicate the location of the KNMI seismometers, and the blue star is the epicenter of the 2019 
Westerwijtwerd earthquake, as estimated by the KNMI. Axes indicate location using the Dutch RD coordinate system. This specific coordinate system gives the 
geodetic coordinates for European Netherlands and is used in official national maps. The inset at the bottom right shows the location of the study area.
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where ui is the ith component of the particle displacement vector (u = (u1, u2, u3) where 1, 2, 3, correspond 
to the east, north, and down direction, respectively), Mjk represents an element of the 3 × 3 moment tensor 
M at position x (a), that is, the centroid. Note that j and k indicate the axis along which the force is acting and 
the direction in which the arm is pointing, respectively (Aki & Richards, 2002). Furthermore, x (r) denotes 
the position where the displacement is recorded, G is the Green's tensor, * represents temporal convolution, 
and T0 denotes the origin time. The comma after the second subscript of an individual element of the 3 × 3 
Green's tensor implies a spatial derivative in the k direction with respect to x (a). To make the computation of 

𝐴𝐴 𝐮𝐮

(

𝐱𝐱
(r), 𝑡𝑡

)

 for a large number of potential centroids (i.e., a large number of x (a)) more efficient, we invoke reci-
procity (Aki & Richards, 2002). In this study, the numerically modeled particle displacements are generated 
using SPECFEM3D (Komatitsch & Tromp, 2002). For this purpose, we use the 3D subsurface models of the 
Groningen gas field by Romijn (2017).

2.2. Bayes' Theorem

The probabilistic workflow used in this study relies on Bayes' theorem (or rule). In general, Bayes' theorem 
describes how, in the presence of prior knowledge, the probability of a hypothesis (or model) m depends 
on the available data d obs. The prior knowledge is accounted for by the prior probability distribution (often 
simply referred to as “the prior”). Ignoring the marginal probability (or “evidence”), Bayes' theorem can be 
written as

𝜌𝜌
(

𝐦𝐦|𝐝𝐝
obs
)

∝ 𝜌𝜌
(

𝐝𝐝
obs
|𝐦𝐦

)

𝜌𝜌(𝐦𝐦), (2)

where ρ(m|d obs) is the posterior probability distribution (or simply “the posterior”), ρ(d obs|m) the likelihood, and 
ρ(m) the prior probability distribution. The model vector m is a ten-component vector containing the centroid 
x (a) (where a Cartesian east-north-down coordinate system implies that 𝐴𝐴 𝐱𝐱

(a) =
(

𝑥𝑥
(a)

1
, 𝑥𝑥

(a)

2
, 𝑥𝑥

(a)

3

)

 ; hence three model 
parameters), the moment tensor M (six independent elements and hence six model parameters), and the origin 
time T0 (one model parameter). This implies that ρ(m) represents the prior probability of these 10 parameters.

Assuming Gaussian observational errors and a Gaussian distributed prior probability, the posterior in Equation 2 
can be written as (Fichtner & Simutė, 2018; Masfara et al., 2022):

𝜌𝜌
(

𝐦𝐦|𝐝𝐝
obs
)

∝ exp

(

−
1

2

(

𝐝𝐝(𝐦𝐦) − 𝐝𝐝
obs
)⊤
𝐂𝐂

−1

𝑑𝑑

(

𝐝𝐝(𝐦𝐦) − 𝐝𝐝
obs
)

−
1

2

(

𝐦𝐦 −𝐦𝐦
(0)
)⊤
𝐂𝐂

−1
𝑚𝑚

(

𝐦𝐦 −𝐦𝐦
(0)
)

)

. (3)

Here, 𝐴𝐴 𝐝𝐝(𝐦𝐦) contains the numerically modeled displacement recordings (solution of Equation  1) and d obs the 
observed ones. Explicitly, for a total of Nr three-component instruments, 𝐴𝐴 𝐝𝐝(𝐦𝐦) is a concatenation of all 3 × Nr 
modeled seismograms and d obs a concatenation of all 3 × Nr recorded seismograms. Cd, Cm, and m (0) are the data 
covariance matrix, prior covariance matrix, and prior mean, respectively. Evaluating Equation 3 results in the (a 
posteriori) probability of the model parameters, that is, their probability given observations and prior knowledge 
of the system (Tarantola, 2006).

2.3. Hamiltonian Monte Carlo

Although Bayes' theorem describes how the posterior probability distribution depends on the available data d obs 
(through the likelihood) and prior knowledge ρ(m), that posterior can usually not be estimated directly (Tarantola 
& Valette, 1981). In particular, a large number of model parameters and non-linearity prohibit this. To overcome 
this, we generate a sequence of specific models (often called “samples”) in what is referred to as a “Markov 
chain.” The density of these samples reflects the density of the posterior distribution we seek to find.

Numerous sampling algorithms are available to estimate ρ(m|d obs), all with their own advantages and disadvan-
tages. In this study, we implement a workflow that relies on the Hamiltonian Monte Carlo (HMC) algorithm. 
HMC was derived from classical mechanics, applied to statistical mechanics (Betancourt, 2017), and considered 
one of the most efficient probabilistic algorithms for exploring high-dimensional model spaces. HMC relies on 
the sequential calculation of two quantities. These are the “potential energy” U, which is a function of the model 
vector m, and the “kinetic energy” K, which, in our framework, is solely a function of the momentum vector p. 
This momentum vector is an auxiliary vector that has the same dimension as m (10 in our case). Together, m and 
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p make up what is often referred to as the “phase space,” and their joint probability is described by the “canonical 
distribution” 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) .

The canonical distribution can be written in terms of an invariant function 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) , that is,

𝜌𝜌(𝐩𝐩,𝐦𝐦) = 𝑒𝑒−𝐻𝐻(𝐩𝐩,𝐦𝐦). (4)

Here, 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) is referred to as “the Hamiltonian,” and its value in phase space is usually called “the energy” at 
that point (Neal, 2011). As such, a model m can be looked upon as the position of a “particle” (Betancourt, 2017).

Rewriting Equation 4, and substituting the posterior probability (i.e., 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) → 𝐴𝐴
(

𝐩𝐩,𝐦𝐦|𝐝𝐝
obs
)

 ), we have

𝐻𝐻
(

𝐩𝐩,𝐦𝐦|𝐝𝐝
obs
)

≡ −ln
(

𝜌𝜌
(

𝐩𝐩,𝐦𝐦|𝐝𝐝
obs
))

= −ln[𝜌𝜌(𝐩𝐩|𝐦𝐦)] − ln
[

𝜌𝜌
(

𝐦𝐦|𝐝𝐝
obs
)]

= 𝐾𝐾(𝐩𝐩,𝐦𝐦) + 𝑈𝑈 (𝐦𝐦).

 (5)

Here, U(m) ≡ − ln ρ(m∣d obs).

Equation 5 describes the more general case; in our implementation, 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) is merely a function of the momen-
tum vector and hence 𝐴𝐴 𝐴𝐴(𝐩𝐩,𝐦𝐦) → 𝐴𝐴(𝐩𝐩) . Specifically, it is given by (Fichtner & Simutė, 2018; Masfara et al., 2022)

𝐾𝐾(𝐩𝐩) = 𝐩𝐩
𝑇𝑇


−1
𝐩𝐩∕2, (6)

where the mass matrix 𝐴𝐴  acts as a tuning parameter (Fichtner et al., 2019, 2021), allowing the particle to move 
through the desired areas of phase space with corresponding potential and kinetic energy (Betancourt, 2017).

Starting from an initial estimate of m with some prescribed initial momentum, Hamilton's equations, which read

𝑑𝑑𝐦𝐦

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝐩𝐩
,

𝑑𝑑𝐩𝐩

𝑑𝑑𝑑𝑑
= −

𝜕𝜕𝜕𝜕

𝜕𝜕𝐦𝐦
, (7)

will efficiently explore areas with relatively low potential energies (corresponding to the a posteriori more prob-
able areas of the model space; see Equation 5). Here, the quantity τ is the “artificial time” that is used to prop-
agate (the particle) from the initial model along trajectories of constant H. This propagation occurs for some 
(to-be-determined) time τlp, where the subscript “lp” stems from “leap” as we use the leapfrog algorithm to 
evaluate 7. The model reached at τlp, that is, m(τlp), is subsequently accepted with probability

𝜃𝜃 = min

[

1,
𝜌𝜌
(

𝐩𝐩

(

𝜏𝜏lp

)

,𝐦𝐦
(

𝜏𝜏lp

))

𝜌𝜌(𝐩𝐩,𝐦𝐦)

]

, (8)

which is usually referred to as the “metropolis rule” (Tarantola, 2005). If the model m(τlp) is not accepted, the 
process will be repeated by introducing a new (different) momentum vector to the initial model. If accepted, the 
model m(τlp) will serve as the starting point for a new deterministic trajectory after being endowed with momentum.

One of the main advantages of using HMC over generic probabilistic sampling algorithms such as 
Metropolis-Hasting (MH) algorithms is its ability to sample the posterior distribution more efficiently, which 
is illustrated in Figure 2. In MH (left figure), new samples are randomly drawn based on specified proposal 
distributions. This behavior is represented by the red balls around the current sample, which for the first itera-
tion, are close to the starting model. In HMC (right figure), the iterative endowment with the momentum of the 
current sample results in a combination of short and long trajectories, reducing the correlation between samples. 
Furthermore, the inclusion of the gradient of the target distribution via the computation of Hamilton's equations 
enables HMC to stay in the “typical set,” constituting areas where the posterior probability is elevated. Therefore, 
with a combination of short and long trajectories, and the ability to slide along the typical set, HMC can explore 
the posterior distribution more efficiently with fewer iterations/samples. This type of exploration is particularly 
useful when sampling complex posterior distribution in high-dimensional model spaces. The main computational 
burden of HMC is the computation of 𝐴𝐴 𝐴𝐴𝐴𝐴 ⁄𝐴𝐴𝑑𝑑 . This computational burden increases as the number of model 
parameters increases. To mitigate this, we adopt an approach in which we linearize the forward problem, which 
we will now briefly describe.
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2.4. Linearization of the Forward Problem

To ease the computation of the gradient of the potential energy in the model space, Fichtner and Simutė (2018) 
linearize Equation  1 by means of a Taylor expansion around the prior mean m (0) (see Appendix A). Simutė 
et al. (2022) use this same modification and 3D Earth models to characterize tectonic earthquakes below the Japa-
nese peninsula. In these studies, m (0) is obtained from an earthquake catalog, which is not always directly availa-
ble for induced earthquakes. Replacing, in d(m), the numerically modeled displacements u(x (r), t) by numerically 
modeled displacements resulting from a linear approximation of Equation 1 implies that we assume m (0) to be 
“sufficiently close” to the true model parameters. This merely applies for the centroid x (a) and origin time T0. 
That is, since the particle displacement depends linearly on the moment tensor components, the linearization does 
not impose an approximation when it comes to the moment tensor components. Importantly, “sufficiently close” 
means that the centroid x (a) and origin time T0 should be at sub-wavelength and sub-period distance from the true 
centroid and origin time, respectively.

In our case, the assumption that m (0) is sufficiently close to the true model parameters is usually not met. This will 
render the application of HMC ineffective (to state the least). In order to apply HMC (including a linear approxima-
tion of Equation 1) to induced earthquakes, two main challenges, therefore, need to be addressed. First, the recorded 
seismograms are often dominated by high-frequency signals (>1 Hz), increasing the non-linearity of the forward 
problem. Second, as mentioned earlier, the prior information is often unavailable or rather inaccurate. To address 
these challenges, in this study, we use the multi-stage workflow introduced by Masfara et al. (2022). This means that 
we iteratively update m (0), which is detailed in the remainder of this section. In addition, we run this workflow multi-
ple times (in parallel), each starting from a different m (0). This is explained in Section 2.5. In the remainder of this 
paper, we will refer to the HMC variant that involves a linearization of the forward problems as “linearized HMC.” It 
should be understood, however, that this does not involve a linearization of Hamilton's equations itself.

Figure 3 illustrates the embedding of linearized HMC in the proposed multi-stage workflow. Iteratively updat-
ing m (0) partly overcomes deviations of the estimated posterior from the true posterior, thus addressing the first 
challenge. Given a first m (0), the three quantities in Equations A4–A6 need to be computed only once in order 
to sample a “local posterior” around that m (0). These quantities are used to compute the gradient of the potential 
energy and hence evaluate Hamilton's equations and the Hamiltonian itself (Equations 7 and 5, respectively). 
Importantly, in the absence of a linearization of the forward problem, the computation of Equations 7 and 5 
requires the forward problem to be evaluated during each deterministic trajectory. Linearization of Equation 1, 
resulting in the three aforementioned quantities, renders this unnecessary for each individual stage (Masfara 
et al., 2022).

Figure 2. Illustration of model space exploration using Metropolis-Hastings (a) and Hamiltonian Monte Carlo (b) 
algorithms. Note that with a similar number of accepted samples, HMC explores the distribution more efficiently via a 
combination of iterative short and long trajectories. This is achieved by prescribing a different momentum for each trajectory 
and iterative computation of Hamilton's equations. Mind that we only show the rejected samples of the first two moves/
accepted samples for both algorithms.
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When m (0) does not coincide with the true model parameters, the linearized HMC algorithm will explore a “local 
posterior” that deviates from the true posterior distribution despite being computationally efficient. This is illustrated 
in Figure 3a, where the linearized HMC can only explore the area above the orange curve. To obtain a better approxi-
mation of the posterior, the workflow uses the result of exploring the local posterior in Figure 3a to obtain a new m (0) 
(essentially taking the mean of the local posterior and using that as m (0)). Linearization of the forward problem about 
the updated m (0) and re-computation of the aforementioned quantities allows for a new exploration of the model space 
in Figures 3b and 3c. After five Taylor expansions about the new m (0), six local posteriors are estimated. The associated 
distributions are, for each stage, depicted in Figure 3d. Having the results from all stages in (d), the workflow then uses 
variance reduction (e.g., Masfara et al., 2022; Mustać & Tkalčić, 2016) as a criterion to select stages that should be 
included in the estimate of the final posterior. This is depicted in Figure 3e.

2.5. The Importance of the Prior

Having an inaccurate m (0) can only partly be overcome by updating m (0) in progressive stages. That is, the 
multi-stage workflow will still be ineffective when the initial m (0) is located in a “local mode” of the poste-
rior distribution (i.e., associated with a local minimum of the potential energy). The chance of this happening 
increases with an increase in the non-linearity between the model parameters and the observed displacement 
recordings (i.e., higher frequencies). In practice, this happens when the centroid x (a) and origin time T0 in m (0) 
are separated from the true centroid and true origin time by more than (approximately) half a wavelength or half 
a period, respectively. To address this, we additionally use multiple initial m (0) concatenated in a list which we 
denote by 𝐴𝐴 𝐦𝐦

(0)

list
 (the list consists of 𝐴𝐴 𝐦𝐦

(0)

1
 , 𝐴𝐴 𝐦𝐦

(0)

2
 , …. 𝐴𝐴 𝐦𝐦

(0)

𝑁𝑁
 with N being the total number of m (0)). These initial 𝐴𝐴 𝐦𝐦

(0)

𝑖𝑖
 

differ to the extent that the centroid position is different for each of them. The use of 𝐴𝐴 𝐦𝐦
(0)

list
 is to ensure some of the 

individual 𝐴𝐴 𝐦𝐦
(0)

𝑖𝑖
 are contained in the global minimum. The same criterion is used to select which (local posterior) 

distributions can be included in the final posterior (i.e., which stages). That is, the variance reduction is now 
computed for all stages associated with the individual (initial) 𝐴𝐴 𝐦𝐦

(0)

𝑖𝑖
 in 𝐴𝐴 𝐦𝐦

(0)

list
 . We illustrate the process of using 

multiple m (0) in Figure 4. We depict three initial m (0), with one located in the “correct” lobe, that is, 𝐴𝐴 𝐦𝐦
(0)

2
 . Each of 

the m (0) will then be updated in a similar fashion as shown in Figure 3. While 𝐴𝐴 𝐦𝐦
(0)

1
 and 𝐴𝐴 𝐦𝐦

(0)

3
 ended up sampling the 

wrong lobe, the updated 𝐴𝐴 𝐦𝐦
(0)

2
 enables the linearized HMC algorithm to sample the correct lobe. In Figure 4b, we 

detail the last stage of the multi-stage workflow that started with 𝐴𝐴 𝐦𝐦
(0)

2
 in the red circle.

We end this section by emphasizing that although being very efficient in sampling the posterior distribution 
(through the potential energy), the proposed multi-stage workflow (including the use of multiple initial priors 

𝐴𝐴 𝐦𝐦
(0)

𝑖𝑖
 ) ultimately only results in an approximate posterior distribution. This is because the true observational 

Figure 3. Illustration of linearized HMC embedded in the multi-stage workflow detailed in Masfara et al. (2022). Panel (a) to (c) depict the sampling of a local 
posterior associated with different m (0). In (a), m (0) is the initial prior mean. In the next stage (b), m (0) is updated using the results of the exploration of the local 
posterior associated with this initial prior mean until m (0) (almost) coincides with the most likely model (c). The workflow's progression up to five stages is shown in 
(d). Panel (e) is the final posterior composed using variance reduction criterion, which discriminates the first two stages from stages 2–5.
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errors are not necessarily Gaussian and uncorrelated (which we assume in this study) and because we linearized 
the relation between observed particle displacement and model parameters. In addition, the 3D velocity model 
used to model (numerically) displacement recordings (according to Equation 1) is assumed to coincide with the 
true velocity model. Since this will not be the case, another “source of error” is introduced, which in practice 
will result in a deviation of the estimated posterior from the true posterior. Moreover, since a Markov process 
only approaches the true posterior asymptotically, a Markov-chain-based estimate of the posterior is, by defi-
nition, an approximation. Whereas the latter two cannot be circumvented (we don't have the exact subsurface 
model  and  also cannot run a Markov chain for an infinite amount of time), the linearization is, in principle, not 
necessary, and also Gaussian observational errors do not need to be assumed. Not doing so, however, would make 
the computational demands prohibitively large.

3. Data
In this study, d obs contains the 3 × Nr recordings of displacements (u obs) due to an induced event that occurred 
close to the village of Westerwijtwerd in 2019, the province of Groningen (see Figure 1). The KNMI estimates 
the magnitude of the earthquake to be 3.4 local magnitude. We collected u obs from ten G-network seismome-
ters. These seismometers are selected based on their distance and azimuthal coverage with respect to the esti-
mated epicenter. In Figure 5a, we depict the 10 seismometers as white inverted triangles and the location of the 
KNMI-estimated epicenter by a blue star. The seismometers are part of the KNMI borehole network: each bore-
hole contains four vertically-separated seismometers. The number at the end of their ID indicates their depth, that 
is, their IDs run from 1 to 4, with the instruments numbered 1 being at 50 m depth and the instruments numbered 
4 being at 200 m depth. We illustrated the configuration of a string of borehole seismometers in Figure 5b.

From the four seismometers in each borehole, we solely used the seismograms recorded by the deepest seismom-
eters: they have a higher signal-to-noise ratio than the shallower seismometers (Dost et al., 2012). Furthermore, 
all seismometers experience a horizontal rotation while lowering them in the borehole. Consequently, a rotation 
needs to be carried out for projecting the horizontal recordings to specific preferred orientations, which in our 
case are to the east-west(x1-axis) and north-south(x2-axis) orientations, respectively. In Figure 5b, we illustrate 
the orientation of the deepest borehole seismometer. The axes H1 and H2 are proxies of east and north. We then 
rotate the data to the true east and north using the angles given in Ruigrok et al. (2019). We depict the original 
seismograms (obtained from the KNMI) and the rotated seismograms of the selected seismometers in Figure 6.

Dost et al. (2020) have used the same recordings to characterize the Westerwijtwerd event probabilistically. These 
authors, however, use local 1D velocity models to solve the forward problem. Furthermore, they separately use 0.5 
and 1 s windows of P and S waves, respectively, where the P-wave is given more weight and evaluated at higher 
frequencies (i.e., 2–4 Hz for P and 1–3 Hz for S-wave). The P-wave waveform is given a higher weight because of 
the higher accuracy of the employed P-wave velocity models (compared to the S-wave velocity models). Also, these 

Figure 4. (a) Illustration of using multiple initial m (0) while sampling a complex/multimodal posterior distribution using linearized HMC. (b) Zoom of the last stage of 
the multiple stages associated with the initial model prior 𝐴𝐴 𝐦𝐦

(0)

2
 .
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Figure 5. (a) Depth of top Rotliegend (reservoir) in area of interest. Solid black dots delineate mapped faults (Bourne & Oates, 2017). The inset at the bottom right 
shows the location of the study area. (b) Illustration of borehole seismometers in the G-network.

Figure 6. Observed seismograms before (green) and after rotation/polarity switch (black). Recordings are normalized (individually) with respect to maximum particle 
displacement (written in blue).
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authors only use the vertical components of the recorded P-wave and the transverse component of the recorded 
S-waves. To account for inaccuracy in the velocity models, they allow individual, station-specific shifts of 0.1 s for 
both wave types. Another study in the area is by Smith et al. (2020), which uses a coherence method. This study 
focuses on determining the hypocenter. They find most Groningen earthquakes to systematically originate approx-
imately 200 m above the reservoir layer. In this study, we exclusively use P-wave seismograms due to the signif-
icantly higher accuracy of the P-wave model. Furthermore, we use both the vertical and horizontal components 
and filter the recordings using a passband of 1–4 Hz, similar to the frequency range used by Dost et al. (2020). 
As for the length of the measurement window, we use 2.5 s for all components and taper both ends with a 0.5 s 
cosine taper. For the data covariance, we use a diagonal matrix representing uncorrelated noise and estimate this 
to be 5% of each component's maximum amplitude. By taking a certain fraction of the maximum amplitude, we 
overestimate the “true noise.” The reason for this is that we want to account for (part) of the waveform misfit arising 
from the deviation of the employed velocity model Romijn (2017) from the true (unknown) velocity model. Before 
applying it to the field data, we perform a synthetic experiment, which is detailed in the next section.

4. Synthetic Experiment
In this section, we test the validity of the proposed workflow and data processing parameters (i.e., frequency 
band, length of the measurement window, and noise criteria) on a synthetic event. For this, we first generate 
synthetic data using the KNMI-estimated hypocenter as the centroid of our synthetic earthquake. We then set T0 
to 3 s, and for the MT, we use the values of 0.2E13 Nm, 2.86E13 Nm, −3.07E13 Nm, 0.76E13 Nm, −0.45E13 
Nm, −1.71E13 Nm for Mnn, Mee Mdd, Mne, Mnd, and Med respectively. These values represent pure shear normal 
faulting (rake of −90°) along a geological fault with a strike of 165°, a dip of 60°, and a moment magnitude of 3. 
We then corrupt the data in the frequency domain to simulate the presence of uncorrelated noise. This is imple-
mented using the same approach as Mustać and Tkalčić (2016). In the time domain, the uncorrelated noise results 
in amplitude variations that affect the estimation of our centroid and MT, and shift the observed recordings in 
time (resulting in uncertainty in T0). To effectively test the workflow, we first choose a (single) m (0) that signif-
icantly deviates from the actual value (i.e., the synthetic earthquake parameters). For the centroid, we impose a 
shift of 200 m along each axis, that is, the centroid in m (0) deviates 200 m from 𝐴𝐴 𝐴𝐴

(a)

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 , 𝐴𝐴 𝐴𝐴

(a)

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 , and 𝐴𝐴 𝐴𝐴

(a)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 . For the 

MT, we simply assign a uniform value to each MT component, and for T0, we impose a shift of 0.5 s. We then run 
our workflow for 20 stages (i.e., the prior mean m (0) is updated 20 times). The results are presented in Figure 7.

The yellow stars represent the initial m (0), and the red lines represent the true synthetic earthquake parameters. 
The black dots are the samples generated from all 20 stages, which are equivalent to samples used to build all the 

Figure 7. Marginal posterior probabilities obtained through applying the proposed linearized HMC workflow to synthetic recordings. The stars represent the initial 
m (0). The black and green dots represent all accepted samples from all 20 stages and samples from selected stages (i.e., the VR-score exceeds 0.95) used to compose 
the final posterior, respectively. The red lines represent the true (synthetic) model parameters, and the red dots are the samples generated running the generic 
(non-linearized) HMC algorithm.
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histograms from exploring local posteriors in Figure 3d. Whereas the green dots are the samples from selected 
stages based on a VR criterion, equivalent to the samples from the selected stages in Figure 3e. The red dots 
represent samples resulting from a generic HMC run (i.e., HMC without linearizing the forward problem). This 
run was terminated as soon as the number of times for which the forward problem needed to be solved coincided 
with the number of times the forward problem was solved while running the multi-stage workflow in which the 
forward problem was linearized. Mind that each solution of the forward problem involves the computation of 
3 × 10 seismograms (recall from Section 3 that Nr = 10).

Let us demonstrate the computational benefit of the multi-stage workflow (in conjunction with a linearization 
of the forward problem) over generic HMC (which does not involve this linearization). The number of times the 
forward problem needs to be solved in order to generate four model samples using generic HMC (represented by 
the star and the red dots in Figure 7) is 404. Here, each “solution of the forward problem” in practice involves 
a separate computation of the 𝐴𝐴 𝐴𝐴𝑖𝑖

(

𝐱𝐱
(r), 𝑡𝑡

)

 in Equation 1. We arrive at 404 as follows: it depends on the number of 
generated samples Ns (4 in this case), the number of leaps Nlp to arrive at m(τlp) (here we use 5), and the number of 
model parameters Nm (10 in our case). First, with the prescribed five leaps to arrive at a new model started from the 
current model, we evaluate Equation 7 five times. Second, the evaluation of Equation 7 requires the computation 
of 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝐦𝐦
 . For that, we use a central difference approximation, which means that for each of the 10 parameters in m, 

we must evaluate U twice. Additionally, after the five leaps, we still have to compute 𝐴𝐴 𝐴𝐴
(

𝐩𝐩

(

𝜏𝜏lp

)

,𝐦𝐦
(

𝜏𝜏lp

))

 to evaluate 
Equation 8, which requires one additional solution of the forward problem per sample. Consequently, the total 
number of forward problem solutions coincides with Ns × Nlp × 2Nm + Ns = 404. Linearization of the forward prob-
lem reduces this number dramatically. In fact, for every stage of the multi-stage workflow, the number of samples 
that can be generated is unlimited in the sense that it does not require additional solutions to the forward problem. 
The forward problem just needs to be run 2 × Nm = 20 times per stage. This number stems from the (one-time) 
computation of the derivatives of U. These derivatives are included in the Apq, bp, and c (Equations A4, A5, and A6 
in appendix Appendix A, respectively). Therefore, to generate all samples for a total of 20 stages (i.e., 20 updates 
of m (0)), the number of times the solution to the forward problem needs to be computed is just 400.

We use the mean of the approximate posterior resulting from our multi-stage workflow to generate displacement 
recordings. In Figure 8, we compare these recordings with the observed (synthetic) recordings. The observed 
recordings are depicted in brown (recall that noise is added to these seismograms). The recordings associated 
with the mean values of our estimated posterior are depicted in gray and align well with the noise-free recordings 
associated with the true source parameters (depicted in green).

5. Prior Knowledge
In Subsection 2.5, we discussed the importance of using 𝐴𝐴 𝐦𝐦

(0)

list
 to avoid getting trapped in a local mode. For the 

purpose of generating 𝐴𝐴 𝐦𝐦
(0)

list
 , we make use of the available fault map of Groningen's subsurface by Bourne and 

Oates (2017). This is inspired by research that reveals a strong correlation between hypocenters and major faults 
in Groningen's subsurface (Pickering, 2015; Spetzler & Dost, 2017; Willacy et al., 2018). In this context, we 
also evaluate the importance of the displacement along the horizontal components for the estimated posterior. 
The reason for this is potential errors arising from possible incorrect rotations of the horizontal displacements 
(see Section  3). Combined, we, therefore, investigate three different cases: two centroid prior configurations 
(i.e., with different 𝐴𝐴 𝐦𝐦

(0)

list
 ) of which one is used in conjunction with both the vertical component recordings and 

the three-component recordings. The configuration that uses known faults in the reservoir as a basis to gener-
ate the 𝐴𝐴 𝐦𝐦

(0)

list
 , in conjunction with the vertical component recordings only, is referred to as “1C-fault.” The same 

configuration, but used to estimate the posterior based on the recordings by all three components, is referred to 
as “3C-fault.” The other centroid prior configuration we consider consists of a square grid that covers not just the 
fault but also the surrounding area. This configuration of 𝐴𝐴 𝐦𝐦

(0)

list
 is only used in conjunction with the recordings by 

all three components and is referred to as the “3C-grid’. This centroid prior configuration is considered to evalu-
ate whether the recovered posterior might peak at a centroid position that deviates from the known fault geometry. 
The two different centroid prior configurations are depicted in Figure 9.

To generate the entries (individual m (0)) in 𝐴𝐴 𝐦𝐦
(0)

list
 of the two considered prior configurations, we first draw a circle 

with a 1 km radius around the epicenter estimated by the KNMI. The enclosed area is colored dark green in 
Figure 9. Next, we discretize the fault inside the circle using a spatial sampling criterion based on the approximate 
seismic P-wave velocity within the circle and the highest frequency we use while fitting the waveforms. This 
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criterion provides a rough estimate of the minimum “wavelength” of the posterior distribution. By discretizing 
the fault such that the individual centroids (associated with individual 𝐴𝐴 𝐦𝐦

(0)

𝑖𝑖
 ) in 𝐴𝐴 𝐦𝐦

(0)

list
 are separated by less than half 

this wavelength, we therefore, ensure that at least one of the initial priors is located in the “correct” lobe, that is, 
similar to what we have illustrated in Figure 4. Given the P-wave velocities at reservoir depth and a maximum 
frequency of 4 Hz (recall that we filter the recordings using a passband of 1–4 Hz), we arrive at a value of 200 m 
for this criterion. This is hence the separation along the fault at which individual centroid priors are placed. We 
depict these initial centroid priors in Figure 9 as yellow stars. At the same time, the fault orientations at these 
positions are used to determine the six moment tensor entries in the initial priors. As for the depth and origin 
time T0 in the 𝐴𝐴 𝐦𝐦

(0)

𝑖𝑖
 , we use the values estimated by the KNMI for both configurations (i.e., 3 km for the depth 

and 2019-05-22T03:49:00.075s for the origin time). In total, 19 individual m (0) are concatenated in 𝐴𝐴 𝐦𝐦
(0)

list
 for 

1C-fault and 3C-fault. For the third case, we consider a centroid prior configuration consisting of a square grid 
of 2 km × 2 km, with the center again being the epicenter estimated by the KNMI. We use the same criterion 
(200 m) to determine the horizontal spacing between the individual centroid priors. In Figure 9, we depict these as 
green stars. For the depth and origin time, we use identical values. Furthermore, for the MT, we assign a uniform 
value to each MT component for each individual m (0). In total, we obtain 121 initial m (0) for this configuration.

6. Application to Field Data
For all cases described above (1C-fault, 3C-fault, 3C-grid), our multi-stage workflow consists of 20 stages. For 
the centroid prior configuration derived from the geometry of the known faults within the reservoir 𝐴𝐴 𝐦𝐦

(0)

list
 contains 

N = 19 m (0), which implies a total of 380 stages. For the 3C-grid, a total of 121 initial priors serve as the starting 
model of the 121 multi-stage workflows (see Figure 9), resulting in a total of 2,420 stages for this configuration. 

Figure 8. Seismograms modeled using the posterior mean (gray) compared to the modeled observed recordings with noise added (brown) and the modeled observed 
recordings without noise (green).
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For each stage, we then compute the VR score based on the recordings 𝐴𝐴 𝐮𝐮

(

𝐱𝐱
(r), 𝑡𝑡;𝐦𝐦

)

 associated with the mean 
model 𝐴𝐴 𝐦𝐦 of all 3,000 individual models within that stage. Stages for which the VR score exceeds 0.95 are subse-
quently used to build our final posterior distribution. For each of the three cases considered, and for each of the 
initial centroid prior means, we show in Figure 10 the VR score associated with that 𝐴𝐴 𝐦𝐦

(0)

𝑖𝑖  of the 20 m (0) in 𝐴𝐴 𝐦𝐦
(0)

list
 for 

which the VR score attains its maximum. Note that this model's centroid is usually not at the location of the initial 
centroid prior mean (i.e., the centroid in 𝐴𝐴 𝐦𝐦

(0)

0
 ) because the models for which the waveforms best fit the observed 

recordings are often found in one of the later stages; see also Figure 3. For all three cases considered here, the 
highest VR scores are obtained in those chains for which the initial centroid prior mean is close to a fault.

Figure 9. Horizontal positions of the different centroid priors for the two different prior configurations considered. The first 
configuration is guided by the known fault geometry inside the green circle and is represented by the yellow stars. This circle 
has a 1 km radius and is centered at the epicenter estimated by the KNMI (blue star). The second centroid prior configuration 
uses a 2 km × 2 km grid with the KNMI-estimated epicenter at its center. These centroid priors are depicted as green stars.

Figure 10. Maximum VR score in each of the chains associated with the different initial m (0) for the three different cases considered (from left to right: 1C-fault, 
3C-fault, and 3C-grid, respectively). Note that here we represent them by plotting the initial prior means (of the lateral positions) of the centroid.
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6.1. Estimated Posterior

In Figure 11, we display the 1D marginal posterior distributions obtained from the selected stages of each config-
uration. In general, the mean value of these posteriors is fairly consistent across configurations, especially for 
3C-fault and 3C-grid. For the 1C-fault case, the mean of the posteriors slightly deviates while at the same time 
having a slightly broader distribution compared to the other two cases. We attribute this to the fact that, for 
3C-fault and 3C-grid, the additional data reduces the uncertainty of the estimates. In Figure 12, and for 3C-fault, 
we also plot the progression of the different stages associated with one of the individual centroid priors included 
in one of the m (0) in 𝐴𝐴 𝐦𝐦

(0)

list
 . Specifically, we show the progression of that workflow (i.e., starting from that 𝐴𝐴 𝐦𝐦

(0)

i
 ) that 

contains the stage that results in the overall maximum VR score. The vertical lines represent the start of different 
stages, and the red horizontal lines are the posterior means computed using the selected stages (after evaluating 
the VR scores for all stages). The progression follows a trend identical to the illustration in Figure 3d, especially 

Figure 11. 1D marginal posterior distributions for the three different cases considered. “1C-fault”: initial centroid prior configuration derived from the geometry of 
the known faults within the reservoir, and only the vertical particle displacement recordings are used. “3C-fault”: initial centroid prior configuration derived from the 
geometry of the known faults within the reservoir, but both horizontal and vertical particle displacement recordings are used. “3C-grid”: initial centroid prior located on 
a regular grid in a horizontal plane at the approximate (expected) depth of the event, and both horizontal and vertical particle displacement recordings are again used.

Figure 12. Progression of 20 stages from using one of the m (0) in the 3C-fault configuration. The vertical lines represent different stages, whereas the red lines are the 
posterior mean (i.e., the mean of the green distributions in Figure 11) obtained from the selected stages based on the VR criteria for 3C-fault configuration.
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for the origin time T0, with a slight variation for some others, such as for the depth and Mnd that shift monoton-
ically to lower values. It is important to add that an initial estimate of T0 was obtained using the envelope of the 
traces. This is described in detail in Section 6.1 of Masfara et al. (2022).

6.2. Traces Associated With the Posterior Distribution

Using the posterior mean in Figure 11, we generate synthetic data and compare these with the observed data in 
Figure 13. In our workflow, the misfit in Equation A1 is based on 2.5 s of the observed particle displacement, 
bandpass filtered between 1 and 4 Hz. Here, for consistency, we adopted the same values for these parameters. 
Additionally, we show in Figure 13 the maximum and minimum bounds using synthetic data generated from 
1,000 models drawn from the posterior distribution. We depict those bounds as a shaded area in Figure 13.

6.3. Source Characteristics

To investigate the source characteristics of the analyzed induced event, we first decompose the MTs of the poste-
riors shown in Figure 11. In this study, we do not limit our solutions to a single mechanism. We, therefore, decom-
pose our moment tensor solutions into their ISO, DC, and CLVD components. We do this for each case (1C-fault, 
3C-fault, and 3C-grid) and depict the decompositions in the Hudson plots in Figure 14. The mean MT for each 
case is represented by the beachball with the red outline. For all cases, the DC “region” is densely clustered (i.e., 
the center of the plot), with negative ISO components clearly outnumbering positive ISO components. This is 
often attributed to the compaction due to the gas extraction (Dost et al., 2020). We show the posterior distri-
butions of the different MT components in Figure 15 (bottom row). Furthermore, in the top row, we depict the 
translation of the MT solutions in Figure 14 to distributions of strike, dip, and rake. Here, we only show solutions 
with strikes between 90° and 180°, which are in accordance with the orientation of the fault close by (given  the 
centroid posterior distributions).

We visualize the centroid posterior distributions using horizontal and vertical slices of the Groningen subsurface 
(Figure 16). In the top row, we show the depth of the top reservoir as a contour map, including the location of 
faults from Bourne and Oates (2017) at that depth. On top of these contour maps, we show the samples used to 
generate the 2D marginal posterior distributions of the lateral position of the centroids. We also plot the result 
from Dost et  al.  (2020) and the KNMI as the black beachball and blue star, respectively. The red beachball 
represents the mean MT which is also depicted in Figure  14 (beachball with red outlines). Not only do the 
posterior means of the (lateral) centroid positions coincide with the known fault, but also, the moment tensor 
solution agrees quite well with the strike of the nearby fault. On the vertical slices (middle and bottom rows), 
we depict the depth of the top reservoir as solid black lines. The location of the east-west vertical cross section 
and the north-south vertical cross section are shown as red and blue lines in the contour maps, respectively. For 
this specific earthquake, we find the posterior mean of the centroid to be slightly shallower than the centroid 
estimated by Dost et al. (2020). In fact, instead of being within the reservoir, we find the probability of having 
the earthquake nucleated above the reservoir is higher. The earthquake (model) parameter that has the strongest 
trade-off with depth is origin time. This is because an earlier origin time can be translated to an earthquake occur-
ring at greater deeper and vice versa. In this study, origin time uncertainty is considered, and the result shows 
that the estimated T0 from the KNMI is lagging by a few milliseconds. As a caveat, however, we do not consider 
the uncertainty in the 3D velocity models, which may not only introduce amplitude variations but also affect the 
origin time and/or depth. For a more detailed comparison, in Table 1, we list the mean and standard deviation of 
our estimated parameters (for the MTs, we convert these into strike, dip, and rake solutions) and compare them 
with the result of Dost et al. (2020) and the KNMI (hypocenter only).

7. Discussion and Conclusion
Using a probabilistic workflow incorporating the HMC algorithm, we estimate the source characteristics of a 3.4 
ML induced earthquake associated with gas extraction from the Groningen gas field. Specifically, we estimate the 
posterior probability density of 10 earthquake parameters using two different sets of initial prior probabilities, of 
which one is used in conjunction with two sets of data: one consisting only of vertical component displacement 
recordings and a second one composed of the particle displacement in all three directions (east, north, down). 
We find that the posteriors estimated using both horizontal and vertical components of the seismograms (i.e., 
the latter data set) have similar shapes. At the same time, the one that only depends on the vertical component 
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recordings yields a posterior that deviates (slightly) from the results of the other two cases while simultaneously 
being slightly broader. However, we find no substantial difference in the modeled seismograms associated with 
the different posterior means. In terms of runtime, using an 8-core MacBook Pro (2018 version), it took us a 
maximum of 3 min to run the 19 multi-stage workflows of the 1C-fault and 3C-fault case, and 12 min for the 121 
multi-stage workflows of 3C-grid.

The main factor that affects the shape of the posteriors is uncertainty, which, in this case, is formulated as data 
and model uncertainty. In our study, we choose a uniform distribution for the model parameters to encode a state 

Figure 13. The comparison between observed and numerically modeled seismograms. The modeled seismograms are generated given the posterior mean for estimated 
for each of the considered cases (see Figure 11). The shaded area is within the maximum and minimum bounds of a total of 1,000 waveforms generated using 1,000 
models drawn from the posterior distributions in Figure 11. Each seismogram is filtered and tapered using the same parameters used in the multi-stage HMC workflow. 
The duration of each trace plotted here is 3.25s.

 23335084, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
003184 by T

u D
elft, W

iley O
nline L

ibrary on [16/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth and Space Science

MASFARA AND WEEMSTRA

10.1029/2023EA003184

17 of 21

of ignorance (i.e., σm → ∞). Whereas the data uncertainty is estimated individually for each component on each 
seismometer (and hence captured by σri in Apq, see Equation A4, where the indices r and i are associated with 
a specific receiver and component, respectively). It is assumed that the noise is uncorrelated. Prescribing the 
noise to be correlated will make the workflow more complex and computationally more costly and require us to 
estimate data covariance matrices. In addition, a study by Gu et al. (2018) reveals that in the case of induced seis-
micity, accounting for (potentially) correlated noise has relatively little effect compared to the uncertainty arising 
from the inaccuracy of the velocity model. Ideally, the latter is also formally included. The relation between a 
specific source model (i.e., a specific set of model parameters) and the particle displacement at the surface will, 
in that case, be quantified by means of a probability density function (Tarantola & Valette, 1981). Due to limited 
computational resources, however, we disregard the uncertainty associated with the velocity model. Including it 
(for our 3D velocity model) will require enormous computational effort as each “cell” in the model must be varied 
according to their variance when computing the forward problem represented by Equation 1 (effectively, the 
Green's functions will become probability density functions). While using 1D velocity models, lateral heteroge-
neity is not considered, and therefore, the number of cells will be exponentially reduced hence the computational 
burden. In general, using 3D models has improved the characterization of earthquake sources since they better 
represent the subsurface compared to 1D models (Hejrani et al., 2017; Hingee et al., 2011; Wang & Zhan, 2020).

Many studies involving MT inversions limit the model space to purely double-couple sources. Often, this 
limitation is justified by (presumed) a priori information of the source type. For example, a DC mechanism is 
usually sufficient to explain faulting in tectonically active areas where volumetric components can be expected 
to be negligible. In the context of induced seismicity, however, numerous studies have found that non-DC 

Figure 14. Hudson plot that shows the decomposition of the source mechanisms given the posterior distributions in Figure 11. The beachball with the red outlines 
represents the mean MT.

Figure 15. Top: The distributions of strike, dip, and rake solutions given the beachballs in Figure 14. Here we only show one part of the solutions closer to the 
orientation of the nearby major faults. Bottom: The marginal posterior distributions for different earthquake mechanisms given the decomposition in Figure 14.
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components explain a substantive part of the observed recordings (Caputa et al., 2021; Cesca et al., 2013; Šílenỳ 
& Milev, 2008). In the context of the gas extraction below Groningen, a study by Willacy et al. (2019) uses wave-
form data to obtain  moment tensor solutions assuming that the earthquakes can be explained by DC mechanisms. 
Hence, they only estimated the best DC mechanisms of each observed earthquake. Meanwhile, another study by 
Kühn et al. (2020) (also focusing on the events in Groningen) reveals that ignoring non-DC components signifi-
cantly affects the solution and data fit. In this study, we find the DC component to be dominant but still need the 
ISO and CLVD components to be non-zero in order to explain the data.

Figure 16. Comparison of samples used to generate centroid posterior distributions in Figure 11 (east, north, and depth) with the centroid estimated by Dost 
et al. (2020) and the KNMI. The samples are color-coded with the density of centroid posteriors. The black line in the last two rows represents the top reservoir obtained 
from slicing the top reservoir map based on the red and blue lines in the top row.

Configuration Strike [°] Dip [°] Rake [°] North [m] East [m] Depth [m] T0 [s]

1C-fault 163.9 ± 16.9 71.5 ± 10.6 −100.7 ± 11.4 593,562 ± 125 239,086 ± 111 2,722 ± 115 0.652 ± 0.018

3C-fault 162.5 ± 15.0 69.8 ± 10.0 −99.8 ± 11.7 593,554 ± 116 239,088 ± 91 2,744 ± 96 0.649 ± 0.016

3C-grid 162.2 ± 12.4 70.6 ± 8.6 −100.7 ± 8.0 593,543 ± 117 239,081 ± 97 2,742 ± 94 0.649 ± 0.016

Dost et al. (2020) 163 ± 15 70 ± 10 −100 ± 12 593,295 238,931 2,953 ± 94 –

KNMI – – – 594,247 239,268 3,000 –

Note. Specifically for T0, the value is relative to the origin time estimated by the KNMI.

Table 1 
Comparison Between Earthquake Parameters Estimated in This Study With Estimation From Dost et al. (2020) and the KNMI
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As for the centroid, we find that it is likely that the earthquake nucleated above the reservoir. In our case, the 
posterior mean is located a bit above 2.8 km depth. This is a small shift from the estimate by Dost et al. (2020), 
who estimated the earthquake to be located inside the reservoir. A recent study by Smith et al. (2020), however, 
finds that most of the Groningen earthquakes nucleated just above the reservoir, although this study does not 
include the event we are using here. Considering both the centroid and MT solution, we find that the models that 
best explain the recorded particle displacements correlate well with the nearby fault (see Figure 16).

For the workflow to be applied to a larger number of induced earthquakes, we believe a couple of additions would 
be beneficial. The first is related to the estimation of the data uncertainty. Since the workflow relies on Bayesian 
inference, the data uncertainty is rather critical while shaping reliable final posterior distributions. A second addi-
tion would be to allow for correlated noise. Particularly for the Groningen earthquakes, the effect of correlated 
noise for source characterization is not considered in any of the publications cited in this manuscript. Quantifying 
its effect on source parameters estimations would therefore be relevant.

Appendix A: Linearization of the Forward Problem
In the context of Hamiltonian Monte Carlo, a model m can be interpreted as the position of a particle in the 
2Nm-dimensional phase space (Betancourt, 2017). Using Equation 3, this particle's potential energy U, which is 
defined as U(m) ≡ − ln ρ(m∣d obs), therefore reads (Fichtner & Simutė, 2018; Masfara et al., 2022)

𝑈𝑈 (𝐦𝐦) =
1

2

(

𝐝𝐝(𝐦𝐦) − 𝐝𝐝
obs
)⊤
𝐂𝐂

−1

𝑑𝑑

(

𝐝𝐝(𝐦𝐦) − 𝐝𝐝
obs
)

−
1

2

(

𝐦𝐦 −𝐦𝐦
(0)
)⊤
𝐂𝐂

−1
𝑚𝑚

(

𝐦𝐦 −𝐦𝐦
(0)
)

. (A1)

where we have, for convenience, ignored the proportionality constant (this does not affect our results as it is 
independent of m.)

In this study, the HMC variant that involves a linearization of the forward problems is referred to as “linearized 
HMC.” Linearization of the forward model implies a Taylor expansion of Equation 1 about the prior mean m (0), 
and subsequently dropping higher order terms. The linear approximation of ui reads (Fichtner & Simutė, 2018)

𝑢𝑢𝑖𝑖
(

𝐱𝐱
(r), 𝑡𝑡;𝐦𝐦

)

= 𝑢𝑢𝑖𝑖
(

𝐱𝐱
(r), 𝑡𝑡;𝐦𝐦(0)

)

+

𝑁𝑁𝑚𝑚
∑

𝑝𝑝=1

𝜕𝜕

𝜕𝜕𝑚𝑚𝑝𝑝

𝑢𝑢𝑖𝑖
(

𝐱𝐱
(r), 𝑡𝑡;𝐦𝐦(0)

)(

𝑚𝑚𝑝𝑝 − 𝑚𝑚
(0)
𝑝𝑝

)

. (A2)

Substituting this approximation in Equation A1, U(m) can be written as follows:

𝑈𝑈 (𝐦𝐦) =
1

2

𝑁𝑁𝑚𝑚
∑

𝑝𝑝𝑝𝑝𝑝=1

(

𝑚𝑚𝑝𝑝 − 𝑚𝑚
(0)
𝑝𝑝

)

𝐴𝐴𝑝𝑝𝑝𝑝

(

𝑚𝑚𝑝𝑝 − 𝑚𝑚
(0)
𝑝𝑝

)

+

𝑁𝑁𝑚𝑚
∑
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(

𝑚𝑚𝑝𝑝 − 𝑚𝑚
(0)
𝑝𝑝

)

+
1

2
𝑐𝑐𝑝 (A3)

where Apq, bp, and c read
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respectively. Here, 𝐴𝐴 𝐴𝐴−2
𝑟𝑟𝑟𝑟

 encodes the data uncertainty for receiver number r and component i. This formulation implies 
that the noise is assumed to be uncorrelated. Similarly, a pairwise uncorrelated prior probability of the model param-
eters is considered. (i.e., Cm is diagonal). Using the three quantities above, 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝐦𝐦
 in Equation 7 can be replaced by

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑝𝑝

=

𝑁𝑁𝜕𝜕
∑

𝑞𝑞=1

𝐴𝐴𝑝𝑝𝑞𝑞

(

𝜕𝜕𝑞𝑞 − 𝜕𝜕
(0)
𝑞𝑞

)

+ 𝑏𝑏𝑝𝑝. (A7)
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