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“The path is the goal.”
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SUMMARY

P HYSICAL human-robot cooperation (pHRC) has the potential to combine human and
robot strengths in a team that can achieve more than a human and a robot working

on the task separately. However, how much of the potential can be realized depends on
the quality of cooperation, in which awarenes of the partner’s intention and preferences
plays an important role. Preferences tend to be highly personal, and additionally de-
pend on the cooperation partner and the cooperation itself. They can be hard to define
in terms a robot would understand, and may change over time. This thesis focuses on
learning ‘useful models’ from observed behavior, to let our robot adapt its behavior to
better match its human partner’s preferences, and thus improve the cooperation.

The aim is to capture personalized approximate models of human preferences –how
a person likes to do something– from very few interactive observations, providing only
small amounts of imprecise data, such that the robot can use the model to improve each
user’s comfort. First, we learn a model to predict and optimize the human ergonomics
in a pHRC task, such that our robot can propose a plan, for both the human and itself,
to solve the task in a way that is more ergonomic for its human partner. However, peo-
ple do not necessarily prefer to act ergonomically, nor do we want to impose on them
what a robot thinks best. Therefore, next, we apply inverse reinforcement learning (IRL),
to capture less restrictive preference models: 1) path and velocity preferences for mo-
tion planning, and 2) on a higher level of abstraction, which (grasp or motion) action
to initiate for proactive physical support. For learning to take the correct action in co-
operation, we developed the disagreement-aware variable impedance (DAVI) controller
to smoothly transition between providing active guidance and allowing the human to
demonstrate alternative behavior.

In Chapter 2, we present a model to predict the ergonomics of the human partner, for
optimization during collaborative task planning, of sequential tasks involving pHRC over
the entire duration of the task (not just handing something over). We consider tasks that
are planned as a sequence of where a human and a mobile bimanual robot are holding
an object. Specifically, we test our model on the task of cooperatively rotating a large box.
From a small data set of poses observed when the user performed the task with another
human, we train a rough inverse kinematics (IK) transformation to obtain a personal
estimate of the full-body pose given where the hands will be. Additionally, we estimate
the load on the hands from first principles. From the full-body pose and load estimates,
the ergonomic cost is computed, using a metric widely accepted for ergonomic evalua-
tion and validated by experts in the field. The resulting ergonomic cost term is added to
the objective function of the existing planner to which we compare, both in simulation
and in a small user study. We also verify the load estimation on the robot hands. For
different users, the ergonomic planner proposed different solutions which considerably
reduced the time spent in poses with “high ergonomic risk” as defined by the ergonomic
cost metric. It is advised to re-evaluate with engineers and ergonomics experts which

xi
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ergonomic cost metric should best be used.

Next, in Chapter 3, we present a framework to capture both path and velocity pref-
erences, on a trajectory level, from very few physical corrections. We consider tasks in
which a robot arm is to meet a user’s preferences while transporting an object around
an obstacle. The user can correct the robot by kinesthetically demonstrating an alterna-
tive trajectory. We apply IRL to learn parameterized path and velocity preferences from
these demonstrations. The parameterization makes our model independent of the spe-
cific context (e.g. between which points to move). The key of our method being able
to learn both path and velocity preferences is the separation of the two in the optimiza-
tion phase: first, the path is optimized; then, the velocity is optimized along the path. It
offers users the flexibility to demonstrate their path and velocity preferences either si-
multaneously or in separate demonstrations. The robot has optimization objectives of
its own, separate from the learned human preference model. These two parts of the cost
function, which provides robot’s optimization criterion, counterbalance each other. In
a user study, users were free to chose their own preferences. Regardless of their choice,
they felt the robot understood both their path and motion preferences, and could gen-
eralize them well over different contexts, requiring low effort. The users confirmed the
consistency of the preferences in a separate test testing the generalization. An additional
comparison study, supported by simulation results, discusses the structural differences
of the proposed method compared to two methods from literature.

To learn human preferences during physical cooperation, we developed the Disa-
greement-Aware Variable Impedance (DAVI) controller presented in Chapter 4. It al-
lows the robot to transition smoothly between providing active guidance and being pas-
sive with zero stiffness, except for gravity compensation, allowing the human partner
to demonstrate new behavior. The algorithm detects disagreement based on the in-
teraction forces. The impedance that made the robot track its trajectory is gradually
decreased as long as a disagreement is detected. It is increased again if the user stops
disagreeing, and kept at zero once it reaches zero. This allows both haptic negotiation
of where to go between user and robot, and teaching the robot alternative behavior in
case of disagreement. We demonstrate smooth interaction with a small group of users,
although preferences differ about how fast the robot should give in, among other things.

This DAVI controller is then used in Chapter 5, where we present a method for inten-
tion-aware preference learning during cooperation; how to solve a sequential task that
requires simultaneous physical action of both human and robot, without explicit com-
munication of the human intention, i.e., what specific goal the human wants the team to
achieve. Modeling the task as a Markov Decision Process (MDP), the robot starts off with
a nominal policy and an initial estimate of the human preferences. The human prefer-
ence model (reward function) is IRL updated after every episode in which the human-
robot team try the task, corrected for the influence of the robot. The robot solves a Par-
tially Observable (PO) MDP, as it has no access to the human intention. The intention is
estimated at runtime from the observed human actions. The method is tested in simu-
lation and with a group of novice users, on a cooperative carrying task defined in a dis-
crete state space connected by pre-programmed primitive robot actions. The presented
Learner outperformed the baseline taking fewer wrong actions and providing support in
previously unseen states generalizing over intentions. Users felt that their preferences
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and intentions were better understood, found it easier to work with the learner, and
trusted the robot more. An additional simulation study provided additional insights in
the effect of learning parameters and increased task complexity.

Overall, this thesis presents a number of methods that were successful in capturing
personalized models of people for improved human-robot cooperation, from very little
data. The closing outlook presents a vision of how the separate contributions could be
combined in the future in a single framework that would enable robots to provide per-
sonalized physical assistance to improve people’s ergonomics as well as their perceived
comfort.





SAMENVATTING

F YSIEKE mens-robot samenwerking (pHRC) heeft de potentie om de sterke punten
van een mens en een robot te combineren in een team dat meer kan bereiken dan

een mens en een robot die afzonderlijk aan de taak werken. Hoeveel van het potentieel
gerealiseerd kan worden hangt echter af van de kwaliteit van de samenwerking, waar-
bij bewustzijn van de intentie en voorkeuren van de partner een belangrijke rol speelt.
Voorkeuren zijn vaak zeer persoonlijk en bovendien afhankelijk van de samenwerkings-
partner en de samenwerking zelf. Ze kunnen moeilijk te definiëren zijn in termen die
een robot zou begrijpen, en kunnen in de loop van de tijd veranderen. Dit proefschrift
richt zich op het leren van ‘bruikbare modellen’ uit geobserveerd gedrag, zodat onze ro-
bot zijn gedrag kan aanpassen om het beter overeen te laten komen met de voorkeuren
van zijn menselijke partner en zo de samenwerking te verbeteren.

Het doel is om gepersonaliseerde benaderende modellen van menselijke voorkeu-
ren vast te leggen –hoe iemand iets graag doet– op basis van zeer weinig interactieve ob-
servaties, die slechts kleine hoeveelheden onnauwkeurige gegevens opleveren, zodat de
robot het model kan gebruiken om het comfort van elke gebruiker te verbeteren. Eerst
leren we een model om de menselijke ergonomie in een pHRC-taak te voorspellen en te
optimaliseren, zodat onze robot een plan kan voorstellen, voor zowel de mens als zich-
zelf, om de taak op een manier op te lossen die ergonomischer is voor zijn menselijke
partner. Mensen geven er echter niet noodzakelijk de voorkeur aan om ergonomisch te
handelen en we willen hen ook niet opleggen wat een robot het beste vindt. Daarom
passen we invers versterkend leren (IRL) toe om minder beperkende voorkeursmodel-
len vast te leggen: 1) pad- en snelheidsvoorkeuren voor het plannen van bewegingen,
en 2) op een hoger abstractieniveau, welke (grijp- of bewegings)actie te initiëren voor
proactieve fysieke ondersteuning. Om de juiste actie te leren kiezen tijdens het samen-
weren, hebben we de onenigheid-bewuste variable weerstandsregelaar (disagreement-
aware variable impedance, DAVI, controller) ontwikkeld om soepel te schakelen tussen
het geven van actieve ondersteuning en het toelaten dat de mens alternatief gedrag de-
monstreert.

In Hoofdstuk 2 presenteren we een model om de ergonomie van de menselijke part-
ner te voorspellen, voor optimalisatie tijdens gezamenlijke taakplanning, van opeenvol-
gende taken waarbij gedurende de hele taak fysieke interactie plaatsvindt (niet alleen
iets overhandigen). We beschouwen taken die gepland zijn als een reeks handelingen
waarbij een mens en een mobiele tweearmige robot een object vasthouden. Specifiek
testen we ons model op de taak: het samen roteren van een grote doos. Op basis van een
kleine dataset van houdingen die zijn geobserveerd toen de gebruiker de taak uitvoerde
met een andere mens, trainen we een ruwe invers kinematische (IK) transformatie om
een persoonlijke schatting te verkrijgen van de volledige lichaamshouding gegeven waar
de handen zich zullen bevinden. Daarnaast schatten we de belasting op de handen van-
uit natuurkundige basisprincipes. Op basis van de schattingen van de lichaamshouding

xv
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en de belasting wordt de ergonomische last berekend met behulp van een maatstaf die
algemeen geaccepteerd is voor ergonomische evaluatie en gevalideerd is door deskun-
digen op dat gebied. De resulterende term voor de ergonomische last wordt toegevoegd
aan het optimalisatiecriterium van de bestaande planner waarmee we vergelijken, zowel
in simulatie als in een klein gebruikersonderzoek. We verifiëren ook de schatting van de
belasting van de robothanden. Voor verschillende gebruikers stelde de ergonomische
planner verschillende oplossingen voor die de tijd die werd doorgebracht in houdingen
met een “hoog ergonomisch risico”, zoals gedefinieerd door gebruikte de ergonomische
maatstaf, aanzienlijk verminderden. Er wordt geadviseerd om samen met ingenieurs en
ergonomie-deskundigen opnieuw te evalueren welke ergonomische maatstaf het beste
gebruikt kan worden.

Vervolgens presenteren we in Hoofdstuk 3 een raamwerk om zowel pad- als snel-
heidsvoorkeuren vast te leggen op bewegingsniveau, op basis van zeer weinig fysieke
correcties. We beschouwen taken waarbij een robotarm moet voldoen aan de voorkeu-
ren van een gebruiker terwijl hij een object rond een obstakel verplaatst. De gebruiker
kan de robot corrigeren door kinesthetisch een alternatief traject aan te tonen. We pas-
sen IRL toe om geparametriseerde pad- en snelheidsvoorkeuren te leren op basis van
deze demonstraties. De parametrisatie maakt ons model onafhankelijk van de speci-
fieke context (bijvoorbeeld tussen welke punten te bewegen). De sleutel van onze me-
thode om zowel pad- als snelheidsvoorkeuren te leren, is de scheiding van de twee in de
optimalisatiefase: eerst wordt het pad geoptimaliseerd, daarna wordt de snelheid langs
het pad geoptimaliseerd. Het biedt gebruikers de flexibiliteit om hun pad- en snelheids-
voorkeuren gelijktijdig of in afzonderlijke demonstraties te tonen. De robot heeft zijn
eigen optimalisatiedoelen, los van het geleerde menselijke voorkeursmodel. Deze twee
delen van de kostenvergelijking, die het optimalisatiecriterium van de robot vormt, hou-
den elkaar in evenwicht. In een gebruikersonderzoek waren gebruikers vrij om hun ei-
gen voorkeuren te kiezen. Ongeacht hun keuze hadden ze het gevoel dat de robot zo-
wel hun pad- als bewegingsvoorkeuren begreep en deze goed kon generaliseren over
verschillende contexten, waarbij weinig inspanning nodig was. De gebruikers bevestig-
den de samenhang van de voorkeuren in een afzonderlijke test waarin de generalisatie
werd getest. Een aanvullende vergelijkende studie, ondersteund door simulatieresulta-
ten, bespreekt de structurele verschillen van de voorgestelde methode vergeleken met
twee methoden uit de literatuur.

Om menselijke voorkeuren tijdens fysieke samenwerking te leren, hebben we de
onenigheid-bewuste variable weerstandsregelaar ontwikkeld die in Hoofdstuk 4 wordt
beschreven. Hiermee kan de robot soepel schakelen tussen actieve sturing en passief-
zijn zonder stijfheid, behalve voor zwaartekrachtcompensatie, zodat de menselijke part-
ner nieuw gedrag kan laten zien. Het algoritme detecteert onenigheid op basis van de
interactiekrachten. De stijfheid die de robot zijn traject liet volgen wordt geleidelijk ver-
laagd zolang er een onenigheid wordt gedetecteerd. De stijfheid wordt weer verhoogd
als de gebruiker het niet langer oneens is, en wordt op nul gehouden wanneer deze een-
maal nul is. Dit maakt zowel haptische onderhandeling tussen gebruiker en robot mo-
gelijk, als het aanleren van alternatief gedrag aan de robot in het geval van onenigheid.
We demonstreeren een soepele interactie met een kleine groep gebruikers, hoewel de
voorkeuren verschillen over onder andere hoe snel de robot zou moeten toegeven.
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Deze DAVI-controller wordt vervolgens gebruikt in Hoofdstuk 5, waar we een me-
thode presenteren voor het intentiebewust leren van voorkeuren tijdens samenwerking;
hoe los je een taak op die bestaat uit een opeenvolging van handelingen die gelijktij-
dige fysieke actie vereisen van mens en robot, zonder expliciete communicatie over de
menselijke intentie, d.w.z. welk specifiek doel de mens wil dat het team bereikt. Door
de taak te modelleren als een Markov-beslissingsprobleem (Markov decision process,
MDP), begint de robot met een nominaal beleid en een initiële schatting van de mense-
lijke voorkeuren. Het menselijke voorkeurenmodel (beloningsfunctie) wordt bijgewerkt
door middel van IRL na elke episode waarin het mens-robotteam de taak probeert, ge-
corrigeerd voor de invloed van de robot. De robot lost een gedeeltelijk waarneembaar
(Partially Observable, PO) MDP op, omdat het geen toegang heeft tot de menselijke in-
tentie. De intentie wordt tijdens de uitvoering van de taak geschat op basis van de ge-
observeerde menselijke acties. De methode is getest in simulaties en met een groep be-
ginnende gebruikers, op een samenwerkingstaak voor het dragen van een object, gede-
finieerd in een discrete toestandsruimte verbonden door voorgeprogrammeerde basis-
robotacties. De gepresenteerde leerder presteerde beter dan de alternatieve basis door
minder verkeerde acties uit te voeren, en biedt ondersteuning in voorheen ongeziene
toestanden door te generaliseren over intenties.

Over het geheel genomen presenteert dit proefschrift een aantal methoden die suc-
cesvol waren in het vastleggen van gepersonaliseerde modellen van mensen voor ver-
beterde samenwerking tussen mens en robot, uit zeer weinig gegevens. De afsluitende
vooruitblik geeft een visie op hoe de afzonderlijke bijdragen in de toekomst gecombi-
neerd zouden kunnen worden in één enkel raamwerk dat robots in staat zou stellen
om gepersonaliseerde fysieke hulp kunnen bieden om de ergonomie en het comfort van
mensen te verbeteren.
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INTRODUCTION

“All models are wrong,
but some are useful.”

George Box
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C OOPERATION has the potential to combine multiple actors’ strengths, such that the
overall achievement is more than what can be achieved when the actors are acting

separately. For example, a single person may be able to push a sofa, if it is not too heavy
and the friction between the sofa and the floor is low enough. A threshold may be a
serious obstacle, one that may not be possible to overcome if it crosses an opening that
is not much wider than the sofa and does not allow walking around to lift first one side
through and then the other. Stairs are even worse. With two people, one on each end,
it becomes much easier to maneuver the sofa, and previously insurmountable obstacles
may become negotiable.

Introducing a robot into a cooperative team potentially allows the combination of
strengths of the human and the robot. Humans are typically flexible, good at overseeing
the bigger picture, and finding creative solutions (just to name a few), while robots can
be built to provide strength, precise coordination, and repeatable reliable behavior. To
return to the example of the sofa, the robot may do the heavier lifting or very precise
avoidance of doorposts.

However, both the achievement and the experience of the people involved depend
very much on the quality of the cooperation. A key factor in that is consideration of each
other’s preferences. Some preferences in the sofa example could be: to hold it below
or by the sides, thus holding it at a different height; rotating it when passing through
doorways; steering more or less wide around obstacles; the speed at which to move it. If
the partner on the team does not understand that you want to do something differently,
it may lead to annoyance, increased effort of solving the task, or even failure to complete
the task.

Different actors tend to have different preferences. Additionally, in cooperative sce-
narios, preferences also depend on the partner(s) in the cooperation and on the coop-
eration itself. For example, during the first time cooperating as a team, you might want
to take it slowly. Probably, you would grasp an object somewhere else if your partner is
much taller, shorter, or stronger than you. Preferences may also be not so easy to define
or explain explicitly. People generally find it hard to define what they prefer specifically.
Even if they would know, it would be hard to describe their preferences in a way that a
robot would ‘understand’. Instead, it is much easier for people to demonstrate, or try
out, how they would like to do something.

The challenge taken on in this thesis is to make a robot learn a ‘useful model’ from
observed behavior, that allows it to adapt its cooperative behavior to better match its
partner’s preferences and thus improve the overall cooperation. Specifically, the focus
of this thesis is on physical human-robot cooperation (pHRC), more specifically, on co-
operatively moving around large and/or bulky objects. It would be really helpful to have
a robot that could take most of the weight of an object, and actively help maneuver it,
while the human determines where it should go and has a preference on how to move it
there. The earlier example of moving a sofa is just one example. If the object is a (grand)
piano, it is even more important that the team moving it works well together. Yet also for
smaller and lighter objects, physical help may be very welcome, for example to people
who lack the necessary strength.

Before further introducing the topics researched in this thesis, I will first clarify some
important terminology. Then, after posing the research questions, I will discuss the rel-
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Figure 1.1: Two motivating examples, of cooperatively moving respectively a glass panel (left) and a sofa as part
of loading a van for moving (right)1.

evant general background on which this thesis continues to build, before elaborating on
the taken approaches. The section closes with a summary of the contributions and the
outline of the remainder of the thesis.

1.1. TERMINOLOGY

E VEN when all appear to speak the same language, different people use the same
words for different things depending on context and professional or personal back-

ground, among (probably many) other things. Therefore, before elaborating any further
on the content of this thesis, this section is an attempt to get all readers on the same page
regarding a number of concepts that are fundamental to the work.

AGENTS

The term ‘agent’ is used quite generally as someone or something that acts, in the world
or on something more specifically. (It can be an animal hunting for food, or a chemical
eroding some material.) In its most general meaning, this is very abstract. In this thesis
‘agent’ refers to a robot or human involved in a task (which can be cooperative). When-
ever the theory might apply regardless of the agent being a human or a robot, I will use
the word ‘agent’.

TASKS AND CONTEXTS

Tasks can be considered at many levels of abstraction, from tightening a bolt to cooking
dinner. In general, we could say that a task involves one or more actors who act in or
upon their environment in order to achieve some change, whether that may be a tight-
ened bolt or ingredients turned into dinner.

In this thesis, I consider tasks the same if the differences can be parameterized. E.g.,
“tightening a bolt” remains the same task, regardless of the position of the bolt, its size or
the shape of its head. Parameters could capture task specifics like position, orientation,
head shape, size, tightening torque. We call these context parameters. By varying such
parameters, we can change the context within a task and test how well an agent is able
to do a task independent of the specific context.

1Pictures fall under a CC NC license.
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PREFERENCES AND INTENTIONS

While working on a task, agents can have preferences and intentions. In literature, the
terms preference and intention are used interchangeably to point to the same concepts.
In my work, I make the following explicit distinction:

• Intention – the thing an agent wants to achieve, what someone is trying to do. This
may be a long-term goal, or just a first objective in a chain that may eventually lead
to a higher goal.

• Preference – the way to go about fulfilling the intention, how someone likes to do
something. Generally, one goal can be achieved in multiple ways. The specific way
someone likes to go about it can be highly personal.

Considering the task of moving a box, the intention would be where to move the
box to, and a preference to slide it until it needs to get lifted onto or over something.
Considering the task of restacking a stack of boxes, the intention would be how to have
them restacked in the end, and preferences would be in what order to move them and
through what intermediate configurations. Comparing these two examples, we see that
a preference in a more complex task can be viewed as the intention of a subtask.

A task with discrete actions could model any task of which the actions can be consid-
ered subtasks. Tasks at the trajectory level with preferences in the continuous space and
time domain, such as over which path and how fast to slide the above-mentioned box,
are considered fundamental in this thesis, as they are non-trivial to break down further
into subtasks. By looking into tasks both at this fundamental level and at a level above, I
aim to prepare the way to learn more complex multi-layered preferences in future work,
including the corresponding inference of intentions on the multiple levels.

In this thesis, preferences are seen as personal traits, whereas we assume intentions
are universal. The human with whom we want to make our robot cooperate will have
certain preferences, and act (in an attempt) to fulfill a certain intention. For every in-
tention, the human will feel most comfortable if they can act fully according to all their
preferences. The robot objective is to let the human act as close as possible to this (very
subjective) optimum.

In Chap. 2, we assume the intention (task goal) to be known, and we assume the hu-
man prefers to perform the task ergonomically. In later chapters, I drop these assump-
tions. In Chap. 4 and 5, neither preferences nor the intention will be shared explicitly
with the robot. –For more complex tasks, people would not want to communicate their
intention for every subtask.– Then, the robot additionally needs to correctly infer the
human intention, to match its task goal before a mismatch can cause any discomfort.

MODELS AND SYSTEMS

Few words are used to mean so many different things. Role models and scale models
aside, even the variety of mathematical models is large. Models can be as diverse as the
systems they describe. From a system perspective, a good model captures the relevant
system properties. This may serve further analysis of the system to obtain a deeper un-
derstanding and discover additional properties, or it may serve to predict the behavior
of the system, whether that system is a fundamental particle, local legislation, a robot
arm, or even a person.
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It depends very much on what we want to do with, or know about, our system, what
kind of model is useful. If we want to know if a chair will hold a person, an approximate
model of the person’s geometry and weight will suffice. If we want to predict how the
person will respond to something we say, we need a very different kind of model.

On the other hand, it depends on what we can measure/compute what model we
can construct. If we know the geometry, materials, and actuator properties of our robot
arm, we can construct a model of what signals we need to send to the actuators to let the
arm move the way we want. Some measurements may be necessary to infer additional
properties (e.g., friction in the joints) to make the model sufficiently accurate. (What is
“sufficiently accurate” depends on the application.) However, if we again want to predict
a person’s reaction to spoken text, our knowledge of the human brain is insufficient to
construct a model the way we did for the robot arm.

Every model is an approximation. Sometimes, the approximation can be very accu-
rate, but usually at the cost of increased complexity. Complex models tend to get costly
in terms of time and resources, or even mathematically impossible, to verify or solve.
Mistakes are easily made and hard to find. Nor does increased complexity guarantee im-
proved accuracy. From the engineering perspective in this thesis, the model we use only
needs to be as accurate as is useful for the application.

In this thesis, I seek to model the tasks, the robot, and the human/partner agent
involved in such a way that a robot optimizing its actions according to the models in-
creases the human comfort on the task. In different chapters, we try out different metrics
to measure the human comfort, ranging from computing ergonomics scores and mea-
suring interaction forces to questionnaires. In what way we model the human depends
on which aspect(s) of comfort we try to optimize for.

As people are very diverse and act on all kinds of personal preferences, we cannot
model them following “laws of mechanics of human behavior”. Instead, we seek to learn
a model of the person whose comfort we want to optimize for, solely for that purpose
within the objective of solving the (cooperative) task.

1.2. PROBLEM DEFINITION AND CHALLENGES

I N this thesis, my focus is to learn a model that captures human preferences in such a
way that the user comfort increases, and users need no prior training or knowledge on

robotic systems. Specifically, I focus on tasks which involve a physical robot, preferably
physically cooperating with a human partner in order to achieve a goal which the human
decides on.

The main research question of this thesis is how to learn a useful model that captures
human preferences already from very little data, to improve the physical cooperation of
a robot with this person. We learn personal models, capturing the preferences of one
specific person, for tailored cooperation behavior.

Standard machine learning methods generally require a lot of data, orders of magni-
tude more than can feasibly be provided by a human. This is even more the case if we
want to learn personalized behavior for a single person. When we want to learn coop-
eration preferences during cooperation, collecting data becomes even harder and thus
more expensive. Next to that, it is very hard to verify high-dimensional or continuous-
domain preferences with high precision. In many cases, people themselves are already
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not very precise in their preferences. In contrast to the robot learning (or control) prob-
lems of “just” solving some task, without caring about what a human may feel about
it, there is no analytical, or even pre-trained, model available for human behavior and
preferences that I could apply to the pHRC setting I consider in this thesis. Even if we
would pre-train such a model, or construct it from principles in psychology, it would
not be personal, and preferences can vary a lot between different people. Therefore, I
choose to focus on learning approximate models that let the robot improve its behavior
from a similar number of iterations as we would expect an average fellow person to need
to learn, generalizing between similarly structured contexts. I take on the challenges of
learning from imprecise data, as well as having very little data available to learn from.

First, we sought to improve the physical cooperation by modeling and optimizing the
ergonomics of the human partner (Chap. 2). Here, we looked into how to learn a person-
alized model that allowed us to predict the human posture and load on the hands due
to the task. Especially predicting the posture is a challenge, as many different postures
can be assumed without seeing any difference on the object that is moved (to name an
example of a cooperative task). The mapping from holding an object in a certain way
to full-body pose is very redundant, and therefore very personal. Furthermore, again,
people do not necessarily show precise, or even consequent, behavior when it comes to
choosing a posture to hold something. This research focused on learning a personalized
model capturing the human posture and load on the hands in such a way that it could be
used for optimal planning: allowing our robot to compute a solution for a task requiring
four hands, minimizing the ergonomic cost for its human partner.

However, while testing the developed method, we obtained evidence supporting the
suspicion that many people’s preferences cannot be explained by an ergonomic model.
People do not necessarily prefer what is healthy for them, nor do they like to be forced to
make large changes. Habits can be strong (Verplanken and Orbell, 2022). Whether or not
an aim for the future is to subtly influence people’s behavior for the benefit of their health
–with careful consideration of the moral implications and risks of misuse–, the first step
is to gain a better understanding of people’s personal preferences. Therefore, the rest
of the PhD focused on learning a model of people’s preferences with fewer underlying
assumptions. I approached this on two different levels of abstraction:

1. learning path and velocity preferences for improved motion planning to move be-
tween arbitrary locations in space, in the presence of an obstacle (Chap. 3);

2. learning which preferred (grasp or motion) action to initiate next for proactive ob-
ject carrying support (Chap. 5).

Although literature discusses various methods for learning trajectory preferences, it
is non-trivial to additionally learn velocity preferences. Rather than merely allowing dif-
ferent user speeds, or learning a frequency to a periodic motion, we wanted to be able to
learn velocity preferences such that they would generalize over paths and contexts. We
took on the challenge to incorporate learning of such velocity preferences into an inverse
reinforcement learning (IRL) framework, to make our robot learn a combination of path
and velocity preferences from a small number of feedback iterations, where we let users
provide corrective feedback showing their preferences in an intuitive way, by physically
moving the robot arm (Chap. 3).
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On the higher level, we assume the robot knows how to do “primitive actions”, e.g.
grasp or move from some point A to another point B. In a cooperative setting, where both
actors (human and robot) are involved to complete a task, we need the robot initially
already to be capable to help solving the task. Starting from a solution that is safe, or
perhaps conceived by the robot as optimal, we want the robot to improve its behavior
to better match its partner’s preferences, learning from its partner while cooperatively
executing the task.

For this, we need to control the robot actions in such way that it will recognize when
it is being corrected by the human. In physical cooperation, haptic communication, via
interaction forces, is much more direct and intuitive than explicit communication (Pez-
zulo et al., 2021). Therefore, we set to develop a controller that would smoothly and
safely transition between providing active guidance and allowing the partner to demon-
strate alternative (more desired) behavior, in response to haptically detected disagree-
ment (Chap. 4).

This controller allowed us to then further address the problem of learning from hap-
tic feedback on the task: which action to take to best support the human-preferred way
of solving the task (Chap. 5). Again, we want to learn from only a handful of interactive
trials. Adding to the challenge is that the robot needs to learn the human preferences
from observations it is influencing by its own actions. Additionally, we consider that the
human in question does not explicitly communicate the intended task goal, e.g. where
to ultimately place the object that is being moved cooperatively. The intention has to be
inferred from the observed actions, so the robot can match it.

In all cases, we learn task-parameterized models, such that the learned preferences
transfer between contexts. We test this by changing the start, obstacle (if applicable),
and/or goal locations in between task episodes.

1.3. THE ROBOTS
During my research, I tested the developed methods on the following two robots (de-
picted in Fig. 1.2).

HRI BIMANUAL DEXTEROUS COOPERATION ROBOT

This robot, stationed at the Honda Research Institute Europe (HRI-EU) in Offenbach,
consists of two Kuka LBR iiwa 820 arms mounted on a vertically actuated slide, which
is in turn mounted on a mobile platform. The mobile platform is omni-directional, it
can instantaneously translate and rotate on the horizontal plane. Each robot arms has a
payload capacity of 14 kg, which includes the six-axis force torque sensor and seven DoF
Schunk dexterous 3-finger hand with tactile pads mounted on each of the arms. More
information on the robot can be found in Gienger et al. (2018).

With this robot, we tested the ergonomics prediction and optimization presented in
Chap. 2. In Chap. 5, the robot reappears as an actor in the more complex of the two pre-
sented scenarios, the one on which the presented method was tested only in simulation.

FRANKA EMIKA PANDA

A couple of these Panda robots are owned by the research group at the department of
Cognitive Robotics at the mechanical Engineering faculty of the Delft University of Tech-
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Figure 1.2: The two robots: (a) the HRI Dexterous Cooperation Robot, and (b) the Franka Emika Panda at TU
Delft, with custom fingertips for improved grip.

nology. The 7 DoF arm, developed by Franka Emika, is certified to be safe in a workspace
shared with humans. All joints have torque sensors and can be directly torque con-
trolled. The control interface allowed us easy integration with Robot Operating System
(ROS). The version of the hardware I used had to remain mounted standing on its base.
It has a reach of 0.855 m and can carry a payload up to 3.0 kg.

This type of robot was used to conduct the user studies in Chap. 3 to 5.

1.4. CONTRIBUTIONS AND OUTLINE

I N the papers presented in the following chapters, the following contributions were
made in modeling different subjective aspects of a human partner, all with the pur-

pose of improved planning or optimization in control:

• In Chap. 2, we 1) develop a model that predicts the ergonomics of the human
within a human-robot collaborative task, and 2) integrate the predictor in sequen-
tial task planning, resulting in a joint plan for the human and robot movements
optimized for human ergonomics. Ergonomic optimization is applied to the task
of manipulating, specifically rotating, a large object, which requires continuous
interaction between the robot and the human partner.

• In Chap. 3, we propose a novel framework for optimizing trajectories in object-
transportation tasks that meet the user’s path and velocity preferences, where we
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first optimize the path and then the velocity on the path. Learning the path and ve-
locity separately provides users with the option to avoid the challenge of providing
a temporally consistent demonstration at each iteration. It offers users the flexi-
bility to demonstrate their path and velocity preferences either simultaneously or
in separate demonstrations. IRL is applied to update a task-parameterized prefer-
ence model of the human from these demonstrations. Given a general task (e.g.,
move an object), the model is parameterized such to allow learning and generaliz-
ing preferences across different contexts (i.e., arbitrary but known start, goal, and
obstacle locations).

• In Chap. 4, we present a control framework which modulates the robot stiffness as
a function of perceived disagreement of the human, for learning high-level target
policies. The control of the task is traded between the human and the robot, and
when the robot is passive, it is interactively updating its belief of the desired policy.
We focus on tasks where human and robot move an object to a new location in
space, only communicating intuitively through the interaction forces.

• In Chap. 5, we present a novel method for learning a human preference model
for intention-aware cooperation, from collaborative episodes in which the human
does not explicitly communicate their intention. The method 1) learns a personal-
ized model of a human partner from physically cooperating with this partner, from
scratch or improving a nominal model; 2) models human preferences as an explicit
function of intention, enforcing inherent intention awareness; 3) applies second
order Theory of Mind (ToM) reasoning to model the human’s preferences separate
from the robot’s, resulting in explicit partner awareness. This allows the robot to
optimize an objective different from the human for improved cooperative behav-
ior. We consider the problem of cooperatively moving an object, on the abstract
level where the two agents choose their actions from a predefined set of primitive
actions (e.g., “grasp object”, “pull towards position . . . in space”). The robot infers
at runtime what is the most likely intended goal where its human partner wants to
place the object.

Additionally, the models and derived optimized robot plans, trajectories, and policies
have been tested in user studies of different sizes:

• All methods are tested with a real robot and real people.

• The participants of the user studies conducted in Chap. 3 to 5 were free to choose
their own preferences.

• The quality of the preference learning, in Chap. 3 and 5, is evaluated with a suf-
ficiently large group of mostly novice users to yield significant subjective results
from questionnaires on the user experience.

Chap. 6 closes this thesis with an overarching conclusion and discussion of the pre-
sented research, followed by an outlook that presents a vision of how separate contribu-
tions might be combined in the future into a single common framework.





2
PREDICTING AND OPTIMIZING

ERGONOMICS IN PHYSICAL

HUMAN-ROBOT COOPERATION

TASKS

This chapter presents a method to incorporate ergonomics into the optimization of action
sequences for bi-manual human-robot cooperation tasks with continuous physical inter-
action. Our first contribution is a novel computational model of the human that allows
prediction of an ergonomics assessment corresponding to each step in a task. The model
is learned from human motion capture data in order to predict the human pose as re-
alistically as possible. The second contribution is a combination of this prediction model
with an informed graph search algorithm, which allows computation of human-robot co-
operative plans with improved ergonomics according to the incorporated method for er-
gonomic assessment. The concepts have been evaluated in simulation and in a small user
study in which the subjects manipulate a large object with a 32 DoF bimanual mobile
robot as partner. For all subjects, the ergonomic-enhanced planner shows their reduced
ergonomic cost compared to a baseline planner.

The contents of this chapter have been slightly modified from the paper of the same name, by Linda van der
Spaa, Michael Gienger, Tamas Bates, and Jens Kober, published in IEEE International Conference on Robotics
and Automation, 2020.
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2. PREDICTING AND OPTIMIZING ERGONOMICS IN PHYSICAL HUMAN-ROBOT

COOPERATION TASKS

2.1. INTRODUCTION

I NDUSTRIAL robots have begun to leave their cages, but are not yet anywhere near the
point where they can cooperate with humans at an equal level. Through physical as-

sistance and cooperation, robots have a large potential to make human lives easier and
prevent muskuloskeletal disorders (MSDs). However, physical Human-Robot Interac-
tion (pHRI) is still largely restricted to handling, lifting, and positioning scenarios in
which robots do not have the autonomy to plan their provided assistance themselves
(Villani et al., 2018).

For example, consider the case of moving a large object that is too heavy or bulky
to be safely and comfortably manipulated by one person. In such cases a cooperative
robot providing physical assistance could take most of the weight, or at least support the
object in a way that allows the human to remain in a comfortable, ergonomic posture.
Non-ergonomic poses are very high on the list of causes of work-related MSDs (da Costa
and Vieira, 2010), closely followed by heavy physical work and lifting. Product lifecycle
management software, like Siemens Jack (Siemens PLM Software, 2019), is used in indus-
try to optimize the ergonomics of products or processes, including collaborative robot
arms (Maurice et al., 2017), in the design phase. However, such tools are typically useful
for static environments or processes which do not involve any on-the-fly customization
or adaptation to specific users. Incorporating human ergonomics measurements in the
decision-making process of cooperative robots at run-time has the potential to improve
the long-term impact on workers even when the task and physical environment may be
highly dynamic or unknown in advance.

In this chapter, ergonomic optimization is applied to the task of manipulating a large
object, which requires continuous interaction between the robot and the human part-
ner. The presented ergonomic planner extends the sequential planner of Gienger et al.
(2018) to select a sequence of states which is ergonomically optimal for the human part-
ner. The new planner is applied to the task of rotating large objects (Fig. 2.1).

The contribution of this chapter is twofold: 1) We develop a model that predicts the
ergonomics of a human within a human-robot collaborative task (Sec. 2.4). 2) This er-
gonomics predictor is integrated in sequential task planning (Sec. 2.5), resulting in a joint
plan for the human and robot movements optimized for human ergonomics. Subse-
quently, Sec. 2.6 explains how this method is applied to our test case. The presented
ergonomic planner is compared to a baseline planner which optimizes solely for a min-
imum time solution, without additionally optimizing for the partner ergonomics. The
simulation results and user study evaluation are presented in Sec. 2.7. Our findings are
concluded and discussed in Sec. 2.8. But first, related work is discussed in Sec. 2.2 and a
system overview given in Sec. 2.3.

2.2. RELATED WORK

L ITERATURE shows various research on physical human-robot cooperation (pHRC),
improving ergonomic working conditions, and some steps towards integrating the

two.
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Figure 2.1: Robot test setup of the human-robot cooperative planner. A: The human partner wears a full-body
motion capture suit (for validation). B: The screen displays the cooperative plan for both partners.

2.2.1. PHYSICAL HUMAN-ROBOT COOPERATION

An important area of pHRC research focuses on a human and robot jointly manipulat-
ing a single tool (Ficuciello et al., 2015; Nemec et al., 2018; Roveda et al., 2019). These
problems require a form of impedance control, which allows stiffnesses to be varied
to achieve improved trajectory tracking while decreasing the human task effort. This
form of co-manipulation has been extended to cooperative carrying of objects, still us-
ing impedance control to manage the interaction forces between the robot and human
(Agravante et al., 2019; Gribovskaya et al., 2011). Instead of using the position of the
manipulator or manipulated object for impedance control, EMG signals have been suc-
cessfully used as an input “intention estimate” for controlling cooperative object manip-
ulation (DelPreto and Rus, 2019; Peternel et al., 2016).

A different form of cooperative physical interaction is observed in object hand overs.
Much research in this area has focused on predicting where the human will move his/her
hand (Bütepage et al., 2018) or, incorporating knowledge of a task model, classifying the
intended (next) action (Hawkins et al., 2014; Maeda et al., 2017).

More complex, sequential, tasks that require regrasping during co-manipulation of
objects have been addressed in Stouraitis et al. (2018), in which a planner was developed
for dyadic collaborative manipulation, which includes a model of the human as an active
agent who shares the task objective.

2.2.2. OPTIMIZING ERGONOMICS IN PHRC
Ergonomic optimization has made a recent appearance in the field of pHRC. So far two
trends have been observed.
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COOPERATION TASKS

The first trend is the task of holding a workpiece in the optimal position in space
while a human works on it. For example, in tasks like drilling in which a human applies
a tool to an object, the position of the object held by a robot has been ergonomically
optimized to minimize joint torques (Kim et al., 2018; Peternel et al., 2017), muscular
effort (Marin et al., 2018) or the RULA score (McAtamney and Corlett, 1993; Shafti et al.,
2019).

The second trend, in the domain of sequential tasks, is in optimizing the ergonomics
for short moments of interaction during the handover of objects (Busch et al., 2018).
In these cases the human pose only depends on the robot in the brief instants of the
handover, and each handover pose is independent of the previous ones.

2.2.3. ERGONOMIC MEASURES
Extensive bio-mechanical models exist (e.g. AnyBody Technology A/S (2017)) which can
be used to simulate human bodies to extract information that cannot be directly ob-
tained from sensors. However, the complexity of full muskuloskeletal models makes
them computationally expensive to use. In Marin et al. (2018), a full muskuloskeletal
model is used to train a low dimensional latent variable model, which is then used for
minimizing muscle activation in a bimanual drilling task. In Kim et al. (2018) and Peter-
nel et al. (2017), a weighted sum of joint torques has been used as an ergonomic mea-
sure, in which the joint torques were obtained from the full-body pose combined with
the estimated respectively measured center of pressure.

Many methods in practical use are based on tables and checklists (David, 2005) de-
signed for manual evaluation of tasks by an ergonomics expert. A generally accepted
and popular method for full-body evaluation, verified by ergonomic experts and easy to
automate, is the Rapid Entire Body Assessment (REBA) (Hignett and McAtamney, 2000)
(which is the full-body extension of RULA (McAtamney and Corlett, 1993)). REBA re-
quires measurement of the full-body pose and estimation of the external forces acting
on the body.

2.3. SYSTEM OVERVIEW

T HE focus of this chapter is the design of a method for ergonomic planning of tasks in
which both human and robot need to coordinate their movements to satisfy the con-

straints of the task (e.g. do not drop the object). To this end, we developed a method to
estimate the ergonomic cost based on a prediction model of the human’s pose and loads
(Sec. 2.4). This predicted ergonomic cost is then incorporated in a sequential planner
(Sec. 2.5). A schematic overview of the two components and their interaction is given in
Fig. 2.2.

2.4. ERGONOMICS PREDICTOR

I N order to estimate the ergonomics (Sec. 2.4.1) of the hand poses, we need to predict
the postures the human will use to obtain these hand poses, as well as the load that

will act on the human in these postures (Fig. 2.3). For predicting the posture, we employ
a learned pose predictor combined with an inverse kinematics correction to estimate
the full-body pose of the human based on his/her hand poses (Sec. 2.4.2). The load is
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Figure 2.2: System overview: The task model provides a goal. In order to reach this goal, the planner proposes
sequences of hand poses. An ergonomics estimator is developed to evaluate the ergonomic cost of these hand
poses, such that minimizing this cost results in an ergonomic task solution.
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Figure 2.3: Predicting the ergonomic cost from hand poses.

estimated based on the hand poses of the human and the robot, combined with the
physical properties of the manipulated object (Sec. 2.4.3).

2.4.1. ERGONOMIC ASSESSMENT
In this chapter, we chose REBA (Hignett and McAtamney, 2000) as the ergonomics as-
sessment method. By using a standardized ergonomics metric, we expect that our re-
sults will be compatible with existing ergonomics practices. Even so, the metric is easily
replaceable by any other measure derivable from pose and load information. The choice
of another metric will likely lead to a different pose to be considered optimal. However, it
will not influence the pose and load estimators and thus not impact their performance.

REBA applies a set of tables to evaluate the human posture from joint angles aug-
mented with some additional information, e.g., external loads (Sec. 2.4.3) or whether
the human is standing on one leg. The resulting score ranges from 1 (negligible risk) to a
maximum of 12 (high risk: 8-10, very high risk: 11+).

The original REBA assessment considers only one active arm. For the bimanual tasks
we are considering, we evaluate the arm that is the least ergonomic in order to compute
the worst-case REBA score. The full-body pose score is integrated over time to evaluate
and compare plans.
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2.4.2. FULL-BODY POSE ESTIMATOR
For the ergonomic assessment, we need to infer a full-body pose given the hand poses.
Mapping hand poses to a full-body pose is a redundant problem, which we chose to
solve in the following two steps:

LEARNED POSE PREDICTOR FROM DATA

The pose predictor maps the two human hand poses to the human’s full-body pose by
means of supervised learning. Given that the training data does not always cover the
whole input space, there might be small errors in these predictions.

Since the mapping from hand poses to full-body poses is not unique, we need to train
a model to predict likely full-body poses. We train a separate model for each human, so
we capture a personal model to predict the full-body poses each specific human typi-
cally employs. The datasets contain full-body joint angles (59 degrees of freedom) and a
corresponding forward kinematic model. We train a nearest neighbor (NN) map and an
LWPR model (Vijayakumar and Schaal, 2000) on the hand poses obtained by the forward
kinematics model from the recorded poses. Evaluation and selection of the models is
discussed in Sec. 2.6.

In any case, the hand positions and orientations of the estimated full-body pose will
not exactly match the target. This is corrected in the next step:

INVERSE KINEMATIC (IK) POSE CORRECTION

The IK pose correction step corrects the pose such that the hands of the full-body pose
match the given human hand poses. Additional constraints are applied to align the feet
with the ground plane, and to keep the overall center of mass balanced. See Gienger et
al. (2005) for details.

2.4.3. HAND LOAD ESTIMATOR
The load on each human hand is estimated based on the hand poses of the human and
robot as well as physical properties (such as the mass, geometry, and friction parame-
ters) of the manipulated object. To do so, we solve the following optimization problem:
each of the hands is allowed to exert a normal force FN and a tangential force FT (as
depicted in Fig 2.4). Static balance is assumed at all times. Two reasons support this
assumption: all (allowed robot) motions are slow, and the planner only considers con-
figurations in which it should be possible to halt the plan, for example, to wait for a
confirmation to continue.

The optimization criterion is the square of the resultant forces summed over all hands
in contact, which expresses the desire to hold the object as lightly as possible. Given
which hands are in contact with the object, Eq. (2.1) describes the optimization prob-
lem:

min
∑

i=hands_in_contact

(
F 2

N ,i +F 2
T,i

)
(2.1)

subject to the following bounds for each of the hands:

−
√

F 2
maxPull,i −F 2

maxT,i ≤ FN ,i ≤
√

F 2
maxPush,i −F 2

maxT,i (2.1a)

−FmaxT,i ≤ FT,i ≤ FmaxT,i (2.1b)
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Figure 2.4: An object supported at four points, by: c1: robot right, c2: robot left, c3: human right, and c4:
human left hand. At each contact point, the total force F is the vector sum of the normal force FN , acting in
direction θ, and a tangential force FT , which can be decomposed into vectors pointing in y and z direction.
The x direction is defined from the human to the robot.

and the static balance constraints,∑
i Fx,i = 0,

∑
i Fy,i = 0,

∑
i Fz,i = mg , (2.1c)∑

i Mx,i = 0,
∑

i My,i = 0,
∑

i Mz,i = 0, (2.1d)

where FmaxPull,i , FmaxPush,i , and FmaxT,i are the maximum pulling, pushing, and tangen-
tial forces for each of the (robot and human) hands in contact. Gravity g is acting on the
object’s mass m in the negative z-direction (Fig. 2.4). The solution of this optimization
problem is the set of minimum hand forces required to hold the object in static balance.

2.5. ERGONOMIC PLANNER

F OR planning, the general planning architecture of Gienger et al. (2018) has been ex-
tended to include the ergonomic cost of the human partner. Given some goal state

provided by the task model (Fig. 2.2), the state space is searched for a sequence of states
to reach the goal with minimum cost. This plan can be converted to smooth motion tra-
jectories for the robot’s hands, and through full-body IK, motor commands for the robot
hardware can be computed. For further details, the reader is referred to Gienger et al.
(2018).

Given an object of known size and weight, the tasks we consider are formulated in
terms of the desired position and orientation (pose) of the object. In order to plan how
best to cooperatively manipulate the object to achieve this goal, the underlying state de-
scription comprises the object pose as well as the contact locations for robot and human
hands. Fig. 2.5 depicts the discrete state description for the box object used in our study.
However, the face of the object can have an arbitrary shape. Possible contact locations
are defined evenly distributed around the graspable surface of the object, with the hand
normal vector always perpendicular to the object surface. In this way, the index of the
contact location suffices to describe the position and orientation of each hand.
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Figure 2.5: State description. The numbers in the circles enumerate the contact locations on one side of the
object. Discretized height h (from ground) and angleΦobject define the position and orientation of the object.

An A∗ graph search is applied to find a state sequence which is optimal with respect
to some cost criterion. Costs accumulate as the planner explores possible next states in
the sequence and each transition from one state to the next has an associated cost. In
Gienger et al. (2018), this transition cost was proportional to the time the robot needed
for the transition.

In the ergonomic planner, the transition cost is extended by the predicted ergonomic
cost of the human partner. With the method presented in Sec. 2.4, the REBA score can be
computed for each of the states proposed by the planner. It is assumed that subsequent
states are close enough, and the change between them slow enough, that the properties
(such as pose and load) during the transition between the states can be estimated suffi-
ciently by linear interpolation between the enclosing states. Currently, we assume each
state transition to have a fixed duration. Therefore, we assume the ergonomics of the
transitions can be compared by taking the average REBA score of the enclosing states.

The human ergonomic cost term is scaled to dominate the robot cost described pre-
viously by one order of magnitude. When different possible successor states have the
same cost, the planner is biased towards selecting the next state which requires the least
movement. If the ergonomic cost has the same order of magnitude as the trajectory cost,
the robot is less likely to plan a trajectory that involves more robot motion and takes
longer to execute for the benefit of improved ergonomics for the human partner.

While not exploited in the experiments, it should be stated that our planning archi-
tecture allows for specifying an upper bound on the permissible ergonomic cost. This
can easily be incorporated into the employed planner by rejecting states with an er-
gonomic cost larger than a given limit.

2.6. EVALUATION SCENARIO

I N this chapter, the method is applied to a cooperative object rotation task in which the
object is held on one side by the robot and on the other side by a human. A proof-of-

concept user study with four subjects was conducted with a rectangular box of dimen-
sions 0.63× 0.36× 1.0m, weighing 10 kg (Fig. 2.1). The box is rotated in the 2D plane
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Table 2.1: Model estimation errors, mean±std, for the NN and LWPR predictors with different angle weight
factors.

Angle weight factor 0.0 0.1 0.2 0.3 0.4 0.5

NN |⃗x| in cm 13±8.2 13±8.2 13±7.5 14±7.6 15±8.3 15±8.7
∠ in deg 30±34 21±18 17±10 15±9.6 14±8.9 14±8.5

LWPR |⃗x| in cm 15±10 14±9.1 16±10 15±9.3 17±8.7 14±8.3
∠ in deg 39±35 36±31 30±37 22±26 26±34 16±22

around the axis pointing from the human to the robot. Translation is only allowed in the
vertical direction, as specified by h. The state space is defined as in Fig. 2.5, with angles
Φobject ∈

{
0◦,∆Φ, . . . ,360◦−∆Φ}

,∆Φ= 30◦ and heights h ∈ {0.5,0.5+∆h, . . . ,2.0} ,∆h = 0.1
in meters. This section presents the relevant implementation details to the simulation
tests and user study discussed in Sec. 2.7.

2.6.1. POSE ESTIMATION

Each participant was equipped with a motion capture suit for data collection, and was
asked to move and rotate the box with a human partner. A corresponding dataset of
about 1.5 min with a sampling time of 4 ms was recorded. Participants were guided to
move the box through a large range of positions in the overall task space. The obtained
dataset was used to train a subject-specific pose predictor which, after IK correction,
provides a pose estimate that reflects the respective participant’s personal pose behavior.
The smaller the IK correction can be kept, the more human-like the predicted poses will
be, and the more personal behavior is captured.

The pose predictor is trained to estimate the full-body pose from hand positions and
orientations. A weight factor scales the importance of the orientations with respect to
the positions. One set of training data (18k samples) was used to train the NN and LWPR
predictors with different angle weight factors. The models were evaluated with a differ-
ent dataset (25k samples) containing similar poses of the same person. The results are
shown in Table 2.1.

In general, the NN prediction results in a lower mean error and smaller standard de-
viation compared to the LWPR. The differences are small for the position precision, but
the NN predictor performs much better when it comes to predicting the correct angles
of the hands. An angle weight factor of 0.3 was chosen for the subsequent experiments,
trading off position and orientation.

The body pose estimation, especially the IK correction step, is too computationally
expensive for the planner to run on every state evaluation. As the set of states considered
during planning is discrete and finite, we generate a table which contains the full-body
pose stored for every set of unique human hand states and object heights. Then, during
search, only this table needs to be evaluated in order to obtain the pose for ergonomic
evaluation.



2

20
2. PREDICTING AND OPTIMIZING ERGONOMICS IN PHYSICAL HUMAN-ROBOT

COOPERATION TASKS

Table 2.2: Parameters and constraint values for the load estimation

maximum human pulling force Fh,maxPull 0.0 N
maximum robot pulling force Fr,maxPull 0.0 N
maximum human pushing force Fh,maxPush 98.1 N
maximum robot pushing force Fr,maxPush 137.3 N
friction coefficient human µh 1.1
friction coefficient robot µr 1.1
object (box) mass m 10.0 kg

2.6.2. LOAD ESTIMATION
Currently, we disallow grasping (and hence pulling). For the robot this will always be the
case, as it is not able to grasp the objects. The people in the study were instructed not to
grasp, only support, the object. Thus, all forces in x direction, perpendicular to the object
face (Fig. 2.4), are assumed to be zero. Therefore, the maximum allowed tangential forces
depend on the normal forces and the friction coefficients, i.e., FmaxT,i =µi |FN ,i |, with the
friction coefficients µi .

The parameter values used in the presented cases are listed in Table 2.2. Since REBA
considers a maximum load of 10 kg, this was set as the maximum allowed human push-
ing load. The robot arms have a maximum load specification of 14 kg. The friction co-
efficients are an estimate based on the friction coefficients of combinations of materials
the human and robot hands and the box are made of.

As for the full-body poses, the loads are precomputed and stored in a table for fast
retrieval during planning.

2.7. EXPERIMENTAL RESULTS

T HE ergonomic planner is tested in a small user study of four people (1 female, 3 male),
ranging in height between 1.70 and 1.95 m and in BMI between 20 and 27 kgm−2, on

the task of collaboratively rotating the box 180◦, clockwise and counterclockwise. The
subjects were specifically chosen for their differences in size and build in order to prove
the concept. The study was approved by the Ethics Committee of the Honda Research
Institute Europe on 03/09/2019.

The ergonomic performance of the planner is compared to that of the planner with-
out the ergonomic cost term. In order to evaluate the quality of the ergonomic planner,
the participants need to follow the robot’s collaborative plan for them. The plan is dis-
played on a large screen next to the robot.

The planner is evaluated in simulation and in an experimental setup with the robot
depicted in Fig. 2.1. During the experiments, the participants wear an Xsens motion
capture suit (Roetenberg et al., 2009) to measure their poses. The REBA scores are com-
puted from the predicted, respectively measured, poses combined with the estimated
loads. Measurements of the robot hand forces show an average force estimation error
of 0.4 N, with a standard deviation of 9.8 N. Compared the average predicted force of
25.9 N, this is accurate enough for our purposes.

Fig. 2.6 shows seven states out of a sequence proposed by the ergonomic (top row)
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Figure 2.6: Ergonomic planner (top) versus baseline planner (bottom) showing seven states of the planned
sequence for rotating the box +180◦. At the bottom of each subfigure the REBA score is printed. The states
correspond to the dashed lines in Fig. 2.7.
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Figure 2.7: Predicted ergonomic scores for the ergonomic and the baseline planner for rotating the box +180◦.
The dashed lines correspond to the states depicted in Fig. 2.6 is reached. In case of states C and D the two
planners differ in when the state is reached (see lines in corresponding colors).

and baseline (bottom row) planners for the goal of rotating the box 180◦. The original
planner just tries to minimize the time to task completion. As a result, the height of
the object is held constant and, by default, the robot always regrasps first. For a fair
comparison between the two planners, the height of the object in the initial state is the
ergonomically optimal height of the starting pose according to the human pose model.

The ergonomic planner adjusts the height to optimize ergonomics. Who regrasps
first also depends on what is most ergonomic for the human. This can be observed in
states C and D in Fig. 2.6. The baseline planner requires the human to stay in a very uner-
gonomic pose until the robot has regrasped twice, while the ergonomic planner allows
the human to regrasp to a more ergonomic pose as quickly as possible and to stay in the
more ergonomic pose as long as possible.

Figures 2.7 and 2.8 show the predicted, respectively the measured, REBA scores from
the ergonomic and baseline planners. The dashed lines indicate the seven states cor-
responding to the snapshots in Fig. 2.6. Due to safety reasons, the robot takes 6.0 s for
regrasping or rotating the object. Height adjustments can be performed much faster and
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Figure 2.8: Measured ergonomic scores for the ergonomic and the baseline planner for rotating the box +180◦.
As in Fig. 2.7, the dashed lines correspond to the states depicted in Fig. 2.6.

Table 2.3: Predicted and measured REBA scores of the ergonomic and baseline planner for rotating a 10 kg ob-
ject by 180◦, mean±std for four different people and two rotation tasks each (clockwise and counterclockwise
rotation).

Average REBA Maximum REBA % of time with REBA ≥ 8

Planned ergonomic planner 4.6±0.2 6.5±1.1 0.9±1.5
baseline planner 6.0±0.7 7.8±0.4 25.2±24.2

Measured ergonomic planner 5.1±1.2 7.9±0.9 5.9±6.3
baseline planner 5.5±1.6 8.0±1.3 17.7±18.0

when it is the human’s turn to regrasp, a 3.0 s transition time is much more comfortable
for the human. With a longer transition time, the humans would need to take active care
not to be too fast. This results in some state changes in the ergonomic planner occurring
at a different time than in the baseline planner.

Fig. 2.7 shows lower REBA scores for the ergonomic planner whenever a more er-
gonomic alternative can be found. The results in Fig. 2.8 also generally show a REBA
score below the score associated with the baseline planner. Up to about 35 s, the pre-
dicted REBA scores are reflected in the measurements, except for the ergonomic plan
not actually getting the REBA score as low as 3. Around 30 s and in the last 7 s, the base-
line plan was executed surprisingly ergonomically, resulting locally in a lower REBA score
for the baseline planner.

The ergonomic plan differs from person to person, which indicates the planner ac-
counts for subject-specific differences. Table 2.3 lists the combined results of the plan-
ners for all participants of the user study, each of whom rotates the box clockwise and
counterclockwise, once in simulation and once together with the physical robot. Av-
eraged over all generated plans, the predicted average REBA score is clearly lower for
the ergonomic planner compared to the baseline planner, and the standard deviation
is smaller. In a single case, the predicted maximum REBA score was as high for the er-
gonomic planner as for the baseline planner. This is the case when no more ergonomic
alternative is known by the pose estimator. Except for one single case (state B in Fig. 2.6
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and Fig. 2.7), the ergonomic planner could avoid plans including poses in the “High Risk”
category, i.e., REBA ≥ 8.

The REBA scores observed during the experiments show smaller differences between
the two planners. Though large differences were observed between participants, in gen-
eral the ergonomic planner still yields a lower ergonomic cost, and the amount of time
spent in poses with a ‘high’ ergonomic risk is reduced considerably. In all cases the stan-
dard deviation is lower for the ergonomic planner.

2.8. CONCLUSION AND DISCUSSION

T HIS chapter presents a novel concept for computing optimal ergonomics-enhanced
plans in cooperative physical human-robot interaction tasks. The first contribution

is a novel human model which allows for prediction of an ergonomic assessment corre-
sponding to a state within a task. It consists of a learned pose model and a computa-
tional load model. The pose model is trained with human motion capture data in order
to predict the human pose as realistically as possible. The load model assumes some
prior knowledge of the task, such as the mass and geometry of the manipulated object.
Given a state within the task, the pose and load models provide the human pose and
corresponding interaction forces for calculating a corresponding ergonomics score. Our
prediction model gives a subject-specific estimate of the ergonomics of the states within
a task.

The second contribution is the integration of this prediction model with a planning
algorithm. The presented planner incorporates states and actions for both robot and hu-
man. This allows the computation of sequential plans optimized for human ergonomics.
It is also possible to compute plans with a guaranteed upper bound on the permissible
ergonomics score.

We have shown in simulation and robot experiments of a collaborative human-robot
box-rotating task that the proposed concepts lead to improved human ergonomics, with-
in the presented experiment with 4 subjects. Although the results look promising, fur-
ther testing with a larger group of users is necessary. Also, evaluation of the proposed
ergonomics-enhanced planner in more complex collaborative tasks remains for future
work.

For the conducted study, the simple pose predictor sufficed. However, the errors
corrected by the IK are currently around 14 cm and 15◦, which definitely leaves room for
improvement.

In this chapter, we selected the REBA score for ergonomic assessment. However, the
system is flexible enough to allow for incorporating other ergonomics indicators. For
future use of the proposed method, exploration into the effects of incorporating alter-
nate ergonomics indicators is recommended, as the discrete nature of REBA sometimes
causes a large difference in ergonomic cost for very small posture changes. This, together
with the small number of study participants, contributes to the large standard deviations
observed in the results.

This chapter demonstrates our approach to be capable of finding a plan which af-
fords improved ergonomics for people working with a robot. After additional verifica-
tion, future work will focus on concepts to encourage the human to follow the ergonomic
plan, and react appropriately when the human does not.
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AN INCREMENTAL INVERSE

REINFORCEMENT LEARNING

APPROACH FOR MOTION

PLANNING WITH SEPARATED PATH

AND VELOCITY PREFERENCES

Humans often demonstrate diverse behaviors due to their personal preferences, for in-
stance, related to their individual execution style or personal margin for safety. In this
chapter, we consider the problem of integrating both path and velocity preferences into
trajectory planning for robotic manipulators. We first learn reward functions that rep-
resent the user path and velocity preferences from kinesthetic demonstration. We then
optimize the trajectory in two steps: first the path and then the velocity, to produce trajec-
tories that adhere to both task requirements and user preferences. We design a set of pa-
rameterized features that capture the fundamental preferences in a pick-and-place type of
object-transportation task, both in shape and timing of the motion. We demonstrate that
our method is capable of generalizing such preferences to new scenarios. We implement
our algorithm on a Franka Emika 7-DoF robot arm, and validate the functionality and
flexibility of our approach in a user study. The results show that non-expert users are able
to teach the robot their preferences with just a few iterations of feedback.

The contents of this chapter have been slightly modified from the paper of the same name, by Armin Avaei∗,
Linda van der Spaa∗, Luka Peternel, and Jens Kober, published in MDPI Robotics, Vol. 12, No. 2, 2023.
∗These authors contributed equally to this work.
The work in this chapter received partial additional support by the European Research Council Starting Grant
TERI “Teaching Robots Interactively” (project reference 804907) and the European Space Agency through the
project “Rhizome: Off-Earth Manufacturing and Construction”.
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3. AN INCREMENTAL INVERSE REINFORCEMENT LEARNING APPROACH FOR

MOTION PLANNING WITH SEPARATED PATH AND VELOCITY PREFERENCES

Figure 3.1: Leveraging demonstrations as means of understanding the human’s preferences in an object-
carrying task: The robot originally plans the blue trajectory without knowledge of human preferences. The
user demonstrates the orange trajectory which in this instance contains the following preferences: “Stay close
to the table surface", “Keep larger distance from the obstacle", and “Pass on the far side of the obstacle". We
develop a method for learning and generalizing such preferences to new scenarios (i.e., new start, goal or ob-
stacle positions).

3.1. INTRODUCTION

A UTONOMY is increasingly being discussed under the aspect of cooperation. A gentler
breed of robots, “cobots”, have started to appear in factories, workshops and con-

struction sites, working together with humans. A challenge in the deployment of such
robots is producing desirable trajectories for object-carrying tasks. A desirable trajec-
tory not only meets the task constraints (e.g. collision-free movement from start to goal),
but also adheres to user preferences. Such preferences may vary between users, envi-
ronments and tasks. It is infeasible to manually encode them without exact knowledge
of how, with whom, and where the robot is being deployed (Jain et al., 2015). Manual
programming is even more detrimental in cooperative environments, where robots are
required to be easily and rapidly reprogrammed. In this context, learning preferences
directly from humans emerges as an attractive solution.

We address the challenge of learning personalized human preferences, starting from
a robot plan that may not match the execution style or safety standards of a specific
human user (e.g. robot carries the object closer to the obstacle than the user prefers).
Fig. 3.1 illustrates how a user may demonstrate a trajectory encoding multiple implicit
preferences to correct the original robot plan.
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One way to adhere to human preferences is by means of variable impedance control
(Duchaine and Gosselin, 2007; Peternel et al., 2014). While such strategies can ensure
safe and responsive adaptation, they suffer from being purely reactive (i.e., they do not
remember the corrections). The robot should not only conform to a new trajectory, but it
has to update its internal model in order to understand the improvement of the corrected
trajectory (Bajcsy et al., 2017; Losey et al., 2022; Losey and O’Malley, 2019). Thus, ideally,
we should encode knowledge of humans’ desired trajectories as a set of parameters that
are incrementally updated based on the corrected trajectory.

To this end, Learning from Demonstration (LfD) approach enables robots to en-
code human-demonstrated trajectories. LfD frameworks have the advantage of enabling
non-experts to naturally teach trajectories to robots. A widespread trajectory learning
method in LfD is Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2002). In ad-
dition to encoding trajectories, DMPs are able to adapt the learned path by updating
an interactive term in the model (Gams et al., 2016; Kulvicius et al., 2013). Additionally,
they can adapt the velocity of the motion by estimating the frequency and the phase of
a periodic task (Peternel et al., 2014), or learning a speed scaling factor (Nemec et al.,
2018). As a result, DMPs can capture human path and velocity preferences on a trajec-
tory level. Losey and O’Malley (2019) demonstrated that such velocity preferences can
also be learned online, from interactive feedback, although with some effort. However,
these methods lack any knowledge about the task context or why the trajectory was ad-
justed in the first place. Hence, such an approach fails to generalize user preferences to
new scenarios of the same task due to the lack of a higher-level understanding of human
actions. We show this in the supplementary comparison study presented in Sec. 3.4.

A better approach is to pair parameters with features that capture contextual infor-
mation (e.g. distance to obstacle), and utilizes this information to find an optimal solu-
tion in new scenarios. Such generalization can be achieved by learning a model of what
makes a trajectory desirable. Modeling assumptions can be made to form a conditional
probability distribution over trajectories and contextual information, e.g. as in Ewerton
et al. (2016). While proven effective in simple reaching tasks, whether such models can
directly capture complex human preferences in a contextually rich environment remains
an open question. However, Inverse Reinforcement Learning (IRL) approaches have al-
ready proven to be capable of this (Wirth et al., 2017).

Unlike traditional IRL methods requiring expert demonstrations (Ratliff et al., 2006;
Ziebart et al., 2008), more recently derived algorithms allow preference learning from
user comparisons of sub-optimal trajectories (Wirth et al., 2017). Potentially, a much
wider range of human behavior can be interpreted as feedback for preference learning
in general (Jeon et al., 2020). In this chapter, however, we focus on reward learning for
robot trajectories. A model-free approach can be used to learn complex nonlinear re-
ward functions (Ibarz et al., 2018), but such an approach requires many queries to learn
from, which is time-intensive. Therefore, we keep a simple linear reward structure. To
shape this reward, we identified four fundamental preference features of the pick-and-
place type of object-transportation tasks in the literature: height from table/ground (Ba-
jcsy et al., 2017; Jain et al., 2015; Losey et al., 2022), distance to obstacle (Bıyık et al.,
2022; Jain et al., 2015), obstacle side (Kirby et al., 2009; Kretzschmar et al., 2016), and
velocity (Nemec et al., 2018; Peternel et al., 2014). These features are relatively scenario-
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unspecific, and therefore suitable for generalization in object-transportation tasks of the
kind we consider in this chapter: pick-and-place tasks in the presence of obstacles. To
the best of our knowledge, there is no method to account for all these features together
in a unified framework.

Given such a set of features, coactive learning (Shivaswamy and Joachims, 2015) can
be used to learn a reward function. In coactive learning, the learner and the teacher
both play an active role in the learning process: the learner proposes one or multiple
solutions and learns from relative feedback provided by the teacher in response. Coac-
tive learning has an upper boundary on regret, leaving room for noisy and imperfect
user feedback. Furthermore, it is an online algorithm, i.e., the system can learn incre-
mentally from sequential feedback. An adapted version of coactive learning was applied
in Jain et al. (2015) to learn trajectory preferences in object-carrying tasks. To this end,
users iteratively ranked trajectories proposed by the system. Although selected based on
the learned reward, the trajectories were generated using randomized sampling, which
increases the number of feedback iterations necessary for convergence. Methods in Ba-
jcsy et al. (2017) and Losey et al. (2022) adapt the robot trajectory to a user’s preferences
based on force feedback and optimize the remaining trajectory with online correction in
a specific scenario. However, these methods cannot capture velocity preferences on top
of path preferences.

To address this gap in the state-of-the-art, we propose a novel framework for opti-
mizing trajectories in object-transportation tasks that meet the user’s path and velocity
preferences, where we first optimize the path and then the velocity on the path. The
objective function for the optimization comprises a human preferences reward function
and a robot objective function that ensures the safety and efficiency of the trajectories.
This explicit separation of the agents’ objectives allows for negotiation, where the robot
is recognized as an intelligent agent which may give valuable input of its own.

The approach takes a full demonstrated trajectory as the feedback for the learning
model, comparing it to the robot’s previous plan at each iteration. A minimum acceler-
ation trajectory model significantly reduces the size of the task space, hence increasing
the optimization efficiency. To capture the preferences, we design a set of features that
correspond to the four preferences, covering both the motion shape and timing, which
we identified from the literature to be fundamental for the considered pick-and-place
tasks.

Unlike Bajcsy et al. (2017) and Losey et al. (2022), we request iterative feedback and
employ an optimization scheme that samples from the global trajectory space. While
this is less efficient in terms of human effort for teaching preferences in a specific sce-
nario (i.e., the user has to provide at least one full task demonstration), it allows us to ad-
ditionally capture velocity preferences on top of the path preferences. Furthermore, our
method enables the separation of velocity and path preferences both during the learn-
ing and in the trajectory optimization stage. With our combination of a trajectory op-
timization scheme and carefully selected preference features, we can generalize to new
contexts without needing (many) additional corrective demonstrations. We show this
in our user study. In contrast to Jain et al. (2015), we learn from a few informative feed-
back demonstrations, and give special attention to the trajectory sampling by employing
model-based trajectory optimization. This facilitates fast learning and generalization of
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preferences to entirely new contexts.
We evaluate the proposed method in a user study on a 7-DoF Franka Emika robot

arm. In the key previous user studies of learning human preferences (Bajcsy et al., 2017;
Losey et al., 2022; Palan et al., 2019), the experimenter instructed the human partici-
pants what preference to demonstrate to the robot. Differently, in our user study, we
let the participants freely select their own preferences while demonstrating the task ex-
ecution to the robot. Additionally, our study examines whether the users can actually
distinguish the learned trajectory capturing their preference from the trajectories cap-
turing only part of their preference. In a supplementary study, we qualitatively compare
our method to two relevant methods from the literature. We discuss the structural dif-
ferences between the methods, and show in simulation how these differences affect the
learning of preferences from human (corrective) demonstrations.

In summary, this chapter’s main contribution is a methodology that is able to capture
velocity preferences on top of path preferences by separating the velocity optimization
from the path optimization. Learning the path and velocity separately provides users
with the option to avoid the challenge of providing a temporally consistent demonstra-
tion at each iteration. This offers users the flexibility to demonstrate their path and ve-
locity preferences either simultaneously or in separate demonstrations. Secondly, the
learned preferences are transferred to new scenarios by exploiting a trajectory model.
Importantly, we perform a user study to validate whether the proposed method can learn
and generalize freely chosen preferences, in contrast to the many user studies in the liter-
ature which prescribe user preferences. Additionally, we perform a supplementary study
to compare pros and cons of the proposed approach to two common methods from the
literature.

The rest of the chapter is organized as follows: In Sec. 3.2, we explain the algorithm
and methodology in detail. The user study is described in Sec. 3.3, and the experimental
results are shown and discussed. A supplementary study is presented and discussed in
Sec. 3.4. Finally, we present our conclusion and view on future work in Sec. 3.5.

3.2. METHOD

T HE problem is defined in the following manner: given a context C describing start,
goal, and obstacle positions, the robot has to determine the trajectory ξ= [sss1,sss2, . . . ,

sssN ] ∈Ξ (set of state sequences) that conforms to the human preferences and meets the
task goals. The states are defined as sssk = [xxxk ; ẋxxk ] (position and velocity), with k indicat-
ing trajectory samples.

In our setting, the true reward functions are known by the user but not directly ob-
servable by the robot. Hence the problem can be seen as a Partially Observable Markov
Decision Process (POMDP) (Bajcsy et al., 2017). Our reward functions have parame-
ters that are part of the hidden state, and the trajectories provided by the user are ob-
servations about these parameters. Solving such problems, where the control space is
very complex and high-dimensional, is challenging. Therefore, we simplify the problem
through approximation of the policy by separating planning and control, and treating it
as an optimization problem. Furthermore, we make the problem tractable by reducing
our state space to one of viable smooth trajectories.

The resulting framework, depicted in Fig. 3.2, first learns the appropriate reward
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Collect feedback

from human

Figure 3.2: The human user provides demonstrations ξH , which are used to learn a distribution over reward
functions via coactive learning given a context C . We use the learned rewards, RP for the position and RV for
the velocity, to optimize the robot’s trajectory according to the human preferences. The resulting trajectory
ξR is executed using an impedance controller, which sets the robot joint torques τ. We repeat this process,
querying the human for preferred trajectories until convergence. The human can then be taken out of the
loop.

functions, then plans a trajectory maximizing the rewards via optimization. Once the
trajectory is defined, we use impedance control to track it in a safe manner. Notably,
we separate the problem of path and velocity planning in the learning and optimization
steps. Updating the path and velocity weights separately provides users with the op-
tion to avoid the challenge of providing a temporally consistent demonstration at each
iteration. As a result, users have the flexibility to demonstrate their path and velocity
preferences either simultaneously or in separate demonstrations.

3.2.1. LEARNING HUMAN REWARD FUNCTIONS FROM DEMONSTRATION
We follow previous IRL work (Jain et al., 2015; Ratliff et al., 2006) in assuming that the
reward functions are a linear combination of features φ with weights θ. Accordingly, we
define path and velocity reward functions RP and RV as

RP (xxx;C ,θHP ) = θT
HPΦP (xxx;C ), (3.1a)

RV ( ¯̇x, x̄xx;C ,θHV ) = θT
HVΦV ( ¯̇x, x̄xx;C ), (3.1b)

where θHP and θHV denote the unknown weights that respectively capture the human
path and velocity preferences. In case of the velocity reward, we divide the trajectory into
equal segments (i.e., range of samples) indicated by r . Then, x̄xxr and ¯̇xr are the average of
the position vectors and the velocity norms in a segment. ΦP andΦV are the total path
and velocity feature counts along the trajectory:

ΦP (xxx;C ) =
N∑

k=1
φP (xxxk ;C ) , ΦV ( ¯̇x, x̄xx;C ) =

M∑
r=1

φV

(
¯̇xr , x̄xxr ;C

)
. (3.2)

Note that the velocity features are a function of both the segment’s velocity and position,
allowing us to capture position-dependent velocity preferences.
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To have comparable rewards, all trajectories are re-sampled to contain a fixed num-
ber of N states. The velocity inherently affects the number of samples within a trajectory,
which is why we divide the trajectory into M segments and consider the average velocity
within each segment (M <N ). Features are directly computed from the robot state and
context of the task. We describe them in the next subsection.

During kinesthetic demonstration, the robot is in gravity compensation mode. That
gives the human full control over the demonstrated trajectories, which we assume to
correlate exponentially to the human’s internal reward, following the Maximum Entropy
assumptions (Ziebart et al., 2008) and Boltzmann’s principle of rationality, as in Bajcsy
et al. (2017):

P (ξH |C ,θHP ,θHV ) ∝ eθ
T
HPΦP (ξH ;C )+θT

HVΦV (ξH ;C ), (3.3)

which, for brevity, we can write as P (ξH |C ,θH ) ∝ eθ
T
HΦ(ξH ;C ).

Assuming that the human behavior is approximately optimal with respect to the true
reward (i.e., their preferences), we use a variant of coactive learning introduced in Bajcsy
et al. (2017) to learn the weights θHP ,θHV . However, we can only compute our ΦP ,ΦV

(3.2) over full trajectories. Therefore, instead of updating the weights based on an esti-
mate of the human’s intended trajectory from physical interaction, we use a full kines-
thetic trajectory demonstration by the human after each task execution to update the
sum of the features over the trajectory (3.2). This results in the following incremental
update rule:

θi+1
H = θi

H +α
(
Φ

(
ξi

H ;C
)
−Φ

(
ξi

R ;C
))

, (3.4)

at iteration i , with learning rate α ∈ (0,1]. Intuitively, the update rule is a gradient that
shifts the weights in the direction of the human’s observed feature count. It should be
noted that we update the path preferences only using the position part of the state, and
the velocity preferences are updated depending on where in space the velocities were
observed.

3.2.2. FEATURES AND REWARDS
We define the objective function for trajectory optimization as a combination of human
rewards and robot objectives. The human rewards consist of features that capture hu-
man preferences (3.1), whereas the robot objectives define a basic behavior for the robot.
Moreover, the robot objectives counterbalance the effect of the human rewards in the
optimization. While we learn the weights in the human rewards (Sec. 3.2.1). The weights
in the robot objectives are hand-tuned. In this section, we first describe the features
associated with the human rewards, and then the robot objectives.

The human preferences are captured via the four features listed below (see Fig. 3.1
for an example of the listed path preferences). We chose these features as they character-
ize dominant behaviors in manipulation applications that depend on user preferences.
Additionally, the features cover the different dimensions of the workspace (in space and
time), creating a complete definition of motion behavior.

Height from the Table: The preferred height from the table, on a range of ‘low’ to

‘high’ is captured by the sigmoid function φh = 1
1+e−λ(h+p) with h indicating the verti-

cal distance from the table, p the center of the function (an arbitrary ‘medium’ height
above the table), and λ the parameter defining the shape of the function. The choice of a
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sigmoid function is to hinder the effect of this preference when close to upper and lower
boundaries during the weight update (e.g., a demonstration at 75 cm above the table
should not impact the weight update very differently from a demonstration at 70 cm).
The decreasing slope at the boundaries additionally allows other objectives to have a
higher impact on the trajectory in such regions during the optimization.

Distance to the Obstacle: We encode the user’s preferred distance to the obstacle, on a

range of ‘close’ to ‘far’ using the exponential featureφd = e−βd 2
, where d is the Euclidean

distance to the center of the obstacle, and β is the shape parameter. This exponential
function gradually drops to 0 at a certain distance from the obstacle. This distance is a
threshold outside which the local behavior of the optimization is no longer affected by
the distance to the obstacle. Importantly, if a negative weight is learned associated with
this feature, the trajectory is still attracted towards the obstacle even if the initial tra-
jectory lies outside of this threshold. This is because our optimization strategy globally
explores different regions of the workspace, and in this case it would detect that there is
a reward associated with being closer to the obstacle.

Obstacle Side: We define this feature on a range of ‘close’ (the side of the obstacle
closer to the robot) to ‘far’ (the side of the obstacle far from the robot) via the tangent
hyperbolic function φs = 2

1+eγS − 1. Here, S is the lateral distance between a trajectory
sample and the vertical plane at the center of the obstacle, and γ is a shape parame-
ter. This symmetric function is designed to have a large span in order to be active in all
regions of the workspace. However, as the gradient of this function decreases at larger
lateral distances, so does the influence of this function in the local trajectory optimiza-
tion.

Velocity: To capture the user’s velocity preferences, we adopt a different approach
using a discretized linear combination of uniformly distributed Radial Basis Functions
(RBFs) in a range [ẋmin, ẋmax]. For each segment r , we map the average velocity norm ¯̇xr

onto these RBFs, given by:

ψ j
(

¯̇xr
)= e−

(
ε ¯̇xr −c j

)2

, (3.5)

where shape variable ε defines the width, and c j defines the center of the j th RBF, with
j = 1,2, . . . ,n (we use n=9).

Inspired by Fahad et al. (2018), we discretize the above feature to two bins, based on
the distance dr of each segment center to the obstacle. Hence, we have two cumulative
feature vectors: ΦV 1 for dr ∈ [0,dc ), and ΦV 2 for dr ∈ [dc ,∞). This allows us to approx-
imate the speed of motion separately in areas considered to be respectively ‘close’ to or
‘far’ from the obstacle based on the distance threshold dc (obtained from demonstration
data). This way, we capture velocity preferences relative to the obstacle position. Sim-
ilarly, features can be defined relative to other context parameters, to capture velocity
preferences that depend on other parameterized positions.

However, the issue might arise that the two trajectories do not have the same number
of segments in each distance bin. In such a case, we employ feature imputation using the
mean of the available values.

The robot’s objectives are composed of the following:
Path Efficiency Reward: We calculate the total length of a trajectory, which we use as

a negative reward. Penalizing the trajectory length is essential in counterbalancing the



3.2. METHOD

3

33

human preference features in the optimization process. Essentially, it pulls the trajecto-
ries towards the straight line path from start to goal and rewards keeping them short.

Collision Avoidance Reward: We use the obstacle cost as formulated by Zucker et al.
(2013), which increases exponentially once the distance to the obstacle drops below a
threshold. The negative cost is our reward.

Robot Velocity Reward: This reward achieves a low and safe velocity in absence of
human velocity preferences and is defined based on (3.5). In IRL, it is beneficial to learn
how people balance other features against a default reward (Vasquez et al., 2014).

3.2.3. MOTION PLANNING VIA TRAJECTORY OPTIMIZATION
We discuss the problem of motion planning in two parts. First, we address the optimiza-
tion of the path of the trajectory in the workspace. We then address the optimization of
the velocity along this path, defining the timing of the motion.

Solving the path optimization problem over the Cartesian task-space would be com-
plex and inefficient. Instead, we employ a trajectory planning algorithm (MathWorks,
2018) that interpolates between waypoints with piecewise clothoid curves. This algo-
rithm minimizes the acceleration which results in a smooth and realistic motion. We
exploit this algorithm to significantly reduce the search space for the path optimization,
and sample trajectories using a vector of waypoint coordinates p and its corresponding
time vector tP , ξ= f (p,tP ).

We consider three waypoints p = [ps ;pm ;pg ], corresponding respectively to the start
position, an arbitrary position within the path, and the goal position. We further simplify

the problem by fixing the time vector to tP = t g [0; D(pm )
D(pg ) ;1]T , where D(·) indicates the Eu-

clidean distance of a waypoint to ps , and t g is the time, just for the path optimization, we
assume all trajectories take to finish1. An uneven distribution of waypoints would bias
the reward value. Setting up the time vector in this manner ensures a constant velocity
throughout the trajectory, which results in an even distribution of samples over the path.
Trajectories can then be sampled only as a function of waypoint positions ξ= f (p).

We then solve for the optimal waypoint vector p∗ using the following nonlinear pro-
gram formulation:

p∗ = argmax
p

(
RP (p;C ,θHP )+θT

RPΦRP (p;C )
)
,

subject to: h(p) = 0, plow ≤ p ≤ pupp.
(3.6)

Here, the objective function consists of the human path reward RP and the robot’s path
objective, which is a linear combination of predetermined weights θRP and the afore-
mentioned path reward functions ΦRP . The equality constraint ensures the start and
goal positions are met. As a result, we are effectively searching for the waypoint pm that
maximizes the objective function. The upper and lower boundaries plow and pupp limit
the trajectory to stay within the robot’s workspace. Once p∗ is found, we construct the
full trajectory using ξ∗P = f (p∗,tP ). Fig. 3.3 shows an example of the convergence of the
optimizer towards a path that adheres to ‘low height’, ‘close side’, and ‘close to obstacle’
preferences.

1The shape of the paths is not affected by t g in the time ranges of our manipulations, therefore we assume the
path to be independent of velocity.
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Figure 3.3: An example of convergence towards the optimal path. The optimizer places pm in different loca-
tions in the workspace to generate different paths. The paths explored by the optimizer are indicated in gray.
The orange path indicates the output of the path optimizer, resulting from placing the middle waypoint at the
location indicated by the blue circle.

Having the optimal path ξ∗P , we divide the trajectory into M segments (as described
in Sec. 3.2.1). Next, we store the positions of the waypoints at the end of the segments
in p∗

V = [p1,p2, . . . ,pM ]. This vector is fixed to maintain the shape of the trajectory. The
corresponding timestamps, stored in t = [t1, t2, . . . , tM ], are the variables we optimize.
Thus, trajectories sampled by the optimizer are only a function of the time vector ξ =
f (t). By optimizing t we optimize the average velocity of each segment. The optimal
time vector

t∗ = argmax
t

(
RV (t;C ,θHV )+θRV φRV (t;C )

)
,

subject to: g (t) ≤ 0, t ≤ tupp,
(3.7)

where the objective function is composed of RV and the robot’s velocity objective φRV ,
which provides a reward for carrying objects at ẋrobot with a fixed weight θRV . The in-
equality constraint g (t) bounds the velocity over each segment to ẋmin and ẋmax, not
allowing the timestamps to get too close or far from each other. The upper boundary on
t acts as a limit on the total duration of motion.

Finally, the trajectory that adheres to both the path and velocity preferences is con-
structed using ξR = f (p∗

V ,t∗). The full method is summarized in Algorithm 1.
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Algorithm 1: Learning human preferences from kinesthetic demonstration

1 Record ξ0
H = {xxxk , tk }N

k=1, obtain context C

2 ẋxxk ← d
d t xxxk , compute ¯̇xr and x̄xxr

3 Initialize θ0
H ,θR ,ξ0

R
4 Set i = 0
5 while executing task do
6 if Received Human Feedback then
7 θi+1

H = θi
H +α(

Φ
(
ξi

H ;C
)−Φ(

ξi
R ;C

))
8 p∗ ← Optimize(θi+1

HP ,θRP ,C )

9 t∗ ← Optimize(p∗,θi+1
HV ,θRV ,C )

10 ξR = f (p∗,t∗)
11 τ← Impedance(ξR )
12 i = i +1

3.3. METHOD VALIDATION WITH USER STUDY

T O validate our framework we conduct two user experiments on a Franka Emika 7-
DoF robot arm. Thereby we show a proof-of-concept of our approach in a real-world

scenario with non-expert users. In both experiments, we use a set of three pick-and-
place tasks in an agricultural setting as shown in Fig. 3.4. The primary goal of each task
was moving the tomatoes from the initial position to the goal without any collisions with
the obstacle. The experiments were approved by the Human Research Ethics Committee
at the Delft University of Technology on 06/09/2021. Informed consent was obtained
from all subjects involved in the study.

We recruited 14 participants (4 women, 10 men) between 23 and 36 years old (mean
= 26.8, SD = 3.6), six of whom had prior experience with robotic manipulators, but none
of whom had any exposure to our framework.

Each user first took approximately 10 minutes to get familiar with physically manipu-
lating the robot in the workspace. In this period, we also instructed users about the goal
of the task and the preferences the robot could capture, just to help them define and
generalize their own preference relative to the table and obstacle. Users then proceeded
with the two experiments. To subjectively assess whether the framework can capture a
range of different behaviors, in the first experiment we let the users freely choose their
path and velocity preferences. Once users were more familiar with the framework, in
the second experiment we assessed how effectively they could teach a set of pre-defined
preferences to the robot. The overview of the user study is provided in Fig. 3.5. We dis-
cuss each experiment in the following subsections. A video of the experiments can be
found here: https://youtu.be/hhL5-Lpzj4M.

3.3.1. USER-DEFINED PREFERENCES

In the first experiment, we investigate how our framework performs when users openly
choose their set of preferences. We are specifically interested in assessing how well the
robot plans motions in new task instances with a context it has not seen before (i.e.,

https://youtu.be/hhL5-Lpzj4M
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Figure 3.4: From left to right Scenarios 1–3. ‘A’ and ‘B’ indicate the start and goal positions respectively. The
obstacle to be avoided is the bag of tomatoes. Scenario 1 and 2 shared the same starting positions, and Scenario
2 and 3 shared the same obstacle positions. Notice the difference in height of the goal position in Scenario 1
compared to Scenarios 2 and 3.

Figure 3.5: The experimental protocol. Users started with workspace familiarization, then went through the
first experiment assessing the performance of the framework in understanding their preferences. Finally, in
the last experiment, they provided ground truth demonstrations and evaluated the demonstrated trajectories
in adhering to the set of predefined preferences. The numbers indicate the number of demonstrations given,
either by the human (training/correction/ground truth) or the robot (experiment). The order in which the
dummy trajectories were shown to the users was different in every scenario, to not induce a bias by making it
too easy for the users to guess the “right” answer. The ‘Q’ symbols indicate when participants were provided
with questionnaires.

generalization of preferences to new scenarios). We also evaluate the user experience in
terms of acceptability and effort required from the user’s perspective. Accordingly, we
test the following hypotheses:
H1. The proposed framework can capture and generalize user preferences to new task
instances.
H2. Users feel a low level of interaction effort.
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PROCEDURE AND MEASURES

Users first performed a demonstration in Scenario 1 (Fig. 3.4) for path preferences with
the robot in gravity compensation mode. Notably, we did not limit users to a discrete
set of preferences. For instance, instead of asking users to pass on either the close or
far side of the obstacle, we asked them to intuitively demonstrate how far to either side
of the obstacle they would prefer to pass. They could, for example, decide to pass right
above the obstacle which would correspond to a “stay to the middle of the obstacle” for
the “obstacle side” path preference.

We then collected a second separate demonstration for the velocity preferences. Dur-
ing velocity demonstrations, the robot was only compliant along a straight line path cov-
ering the full range of distances to the obstacle. This allowed the users to demonstrate
their preferred speed without having to care about the path. The velocity optimization
step can take up to 3 minutes2, therefore we simplified the method for learning and plan-
ning velocity preferences to find the velocity c j with the highest feature count in this part
of the study.

Users were instructed to provide corrections via additional kinesthetic demonstra-
tions (max 10 min per scenario) until they were satisfied with the resulting trajectory.
However, the users were informed that the trajectory speed was only trained once and
would not be updated further. When a user was satisfied with the robot’s trajectory in
a scenario, the robot would proceed to the next, generalizing what it had learned to the
new context. Users were instructed to provide additional demonstrations in each new
scenario if they felt the robot’s trajectory did not sufficiently match their preferences.

After observing each trajectory, the users filled out a subjective questionnaire for
qualitative evaluation, rating the following statements on a 7-point Likert scale:

1. The robot accomplished the task well.

2. The robot understood my path preferences.

3. The robot understood my motion preferences.

To evaluate the effort, we counted the number of times a user-provided feedback, and
let the participants fill out the NASA Task Load Index (TLX) at the end of this experiment.
The independent variables of this experiment are the contexts which are varied for each
scenario for assessing workload.

While we do not provide a baseline here to which to compare results, NASA-TLX is
still appropriate since it can capture absolute results (Hart and Staveland, 1988). The
statements we asked the users to rate for the qualitative evaluation are phrased in a sim-
ilar non-relative way. This way, the users evaluated our method not relative to a condi-
tion we provided, but rather to their own internal ground truth of what they perceived as
sufficient understanding of their preferences and acceptable task load.

RESULTS

Users demonstrated a multitude of path preferences, including “Keep low distance to
the obstacle” and “Stay at medium height above the table”. Similarly, for velocity prefer-
ences, while the majority opted for a constant “medium” speed, both the preference of

2The constrained nonlinear optimization is solved using the Matlab function fmincon.
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Figure 3.6: Results of the first experiment. (A) An average number of feedback provided to the system for
each task. The dot represents the mean score, the error bars represent the standard deviation, and the crosses
indicate individual data points. (B) Results of the Likert questionnaire for the first resulting trajectory in every
task (i.e., prior to any additional demonstrations) - the error bars correspond to standard deviation.

going “slower when close to the obstacle” and “faster when close to the obstacle” were
demonstrated at least once.

Fig. 3.6(A) shows that the average amount of feedback given to the system after the
first task drops3, with the majority of the users satisfied with the results of generalization
after the initial demonstration (we count the training step in Task 1 as feedback). This
result is also reflected in Fig. 3.6(B), showing that the users scored the first trajectory pro-
duced in every scenario consistently high for all three statements, supporting the claim
that the framework can generalize both path and velocity preferences to new instances
of the given task. This provides strong evidence in favor of both H1 and H2.

The NASA-TLX results in Fig. 3.7 show that the users experienced low mental and
physical workload. Although kinesthetic teaching is normally associated with high ef-
fort, our framework’s effort scores remain mostly on the lower side of the scale. Just
looking at the scores in Fig. 3.7, it may seem that the perceived “Effort” is correlated with
the “Temporal Demand”. However, looking at the individual results, users who felt a large
temporal demand did not perceive a large effort (to achieve desired performance) and
the other way around. One participant was particularly strict on a height preference the
algorithm failed to capture, resulting in 3 iterations of feedback in Scenario 1. Overall,
the results in Fig. 3.7 support H2.

3.3.2. PRE-DEFINED PREFERENCES
To objectively evaluate the accuracy, and the user’s ability to discern preferences, we
conduct an experiment where users are asked to adhere to the following path prefer-
ences (we did not consider velocity preferences in this experiment):

• Pass on the side of the obstacle that is closer to the robot.

• Stay far from the obstacle.

• Keep a high elevation from the table.

3A two-tailed Wilcoxon signed rank test for paired samples, as the data is not normally distributed, shows
that fewer corrections were made in Scenario 2 compared to Scenario 1 with p = 0.0023 and in Scenario 3
compared to Scenario 2 with p = 0.046
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Figure 3.7: Results of the NASA-TLX questionnaire after the first experiment.

Exactly how to express these preferences, and how to trade off between them if necessary,
is left to the users. We test the following hypotheses:

H3. The method remains consistently accurate in all scenarios.

H4. Users can clearly distinguish that the output of the framework is following the spec-
ified preferences.

PROCEDURE AND MEASURES

We collected four demonstrations per scenario. For half of the participants, we trained
the model on the mean of the four demonstrations from the first scenario, and for the
other half, we used the mean of data from the third scenario. This is to establish that
our method generalizes over the tested contexts, even when changing the set used as the
training data.

After that, the users were shown 3 trajectories per scenario: the output of our frame-
work, and two dummy trajectories (Fig. 3.8). The dummy trajectories were designed to
adhere to 2 out of 3 path preferences. This allowed us to observe if users could distin-
guish our method’s results compared to sub-optimal trajectories.

As an objective measure of the accuracy of our method, we computed, per scenario,
the total Euclidean distance of samples within each trajectory with respect to the mean
of the demonstrations (using N =80). Furthermore, we compare the total feature counts
along each trajectory and measure the error with respect to the ground truth in the fea-
ture space.

Subjectively, users rated a 7-point Likert scale per trajectory: “The robot adhered to
the demonstrated preferences”.
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Figure 3.8: Scenario 2 results (second experiment) for a single user. The dummy trajectories, in light and
dark blue, are designed not to meet the ‘height from table’ and ‘obstacle side’ preferences respectively. The
green dashed and solid lines are the mean of human ground truth demonstrations and the robot trajectory
respectively. The black sphere represents the obstacle. The framework was trained on data from Scenario 3
and had no access to the ground truth shown.

Table 3.1: Average distance error of trajectory samples w.r.t. the ground truth, normalized w.r.t. distance of start
to goal, in meters: mean [min, max].

Scenario 1 Scenario 2 Scenario 3

Optimized 0.14 [0.09, 0.18] 0.20 [0.12, 0.27] 0.17 [0.13, 0.24]
Dummy 1 0.24 [0.13, 0.34] 0.26 [0.16, 0.38] 0.30 [0.21, 0.41]
Dummy 2 0.27 [0.18, 0.33] 0.39 [0.28, 0.47] 0.23 [0.18, 0.28]

Figure 3.9: Total feature count errors of each path preference (all participants), w.r.t. the ground truth (i.e.,
smaller values for each axis are favored).
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Figure 3.10: Result of Likert questionnaire for experiment 2. Crosses indicate individual ratings, while the dot
and error bar, respectively, represent mean and standard deviation. Users clearly recognize and highly rate the
output of the framework in terms of adhering to path preferences.

RESULTS

Fig. 3.8 shows a generalization result of our method under the aforementioned path pref-
erences. The robot attempts to capture and optimize for each user’s personal interpreta-
tion of the preferences (e.g. one user’s definition of ‘high’ is different from another). We
show the combined results of all users in Tab. 3.1, listing the trajectories’ mean, min and
max Euclidean distance to the ground truth, normalized relative to the start-to-goal dis-
tance in each scenario (respectively 1.08, 0.74, 0.88 m). The optimized trajectories have
the smallest error, but the results only partially support H3, as the error in Scenario 2 and
3 is slightly larger than in Scenario 1. This scenario has the longest distance from start to
goal, for which the framework seems to perform better.

Fig. 3.9 shows the errors of the trajectories in feature space. In all scenarios, our op-
timization result occupies the smallest area. However, in Scenario 2 and 3 the optimized
trajectories occupy a slightly larger area than in Scenario 1, showing the same trend of
performance loss in scenarios with the shorter length. Furthermore, in Scenario 2 and
3, dummy trajectories occasionally perform slightly better for one of the preferences.
Nevertheless, we see in Fig. 3.10 that users clearly score the output of our framework
higher, which strongly supports H4. This indicates that users prefer all preferences to be
satisfied simultaneously. The best performing dummy (S3-D2), with the smallest area
in Fig. 3.9 and lowest values in Tab. 3.1, correlates to a high rating in Fig. 3.10. This also
supports H4, suggesting that non-expert users intuitively recognize such preferences in
trajectories.
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3.3.3. DISCUSSION

As the state-of-the-art methods do not have the same functionalities (e.g., path-velocity
separation) as the proposed method, we conducted a user study only on the proposed
method itself. To account for that, we employed absolute types of metrics (i.e., Likert
and NASA-TLX), which can be interpreted independently, rather than tied to a specific
external baseline. For example, the Likert scale is tied to an agreement with the given
statements and the natural point on the agreement scale serves as a general baseline.
Therefore, the result is not tied to a specific relative baseline. If methods that enable the
same functionalities are developed in the future, the same Likert scale/questionnaire
can be employed to compare the subjective results independently of a specific baseline.
When such methods are developed, a direct comparison is recommended, as it will pro-
vide stronger results.

An advantage of the proposed method is that it learns fast. During the first part of
the user study, participants spent on average 16.5 s interacting with the robot before
expressing satisfaction with the results. This is partially due to having access to kines-
thetic demonstrations. This method of demonstration has been criticized as challeng-
ing in applications involving high DoF manipulators (Akgun et al., 2012; Jain et al., 2015).
However, the separation of learning and control in our framework means that users do
not have to provide the correct configuration of the arm in their demonstrations. This
feature made it significantly easier for the users to provide demonstrations, which is re-
flected in the reported low mental and physical loads (Fig. 3.7).

The separation of path and velocity planning has additional benefits. Formulating
the optimization as a multi-objective problem with both position and velocity features
results in undesirable interaction of objectives. For instance, when velocity features re-
ward high speeds, the trajectory would converge to a longer path. Conversely, path fea-
tures with high rewards in specific regions of space would result in slow motion in those
regions to increase the density of samples and consequently the overall reward. On the
other hand, the separated trajectory optimization has the limitation that it cannot ac-
count for dynamical quantities such as joint velocity and acceleration, and the efficiency
of movements in robot’s joint space can not be considered.

A challenge with our definition of robot and user objectives is that the trajectory op-
timization outcome does not always align with task requirements. For instance, a strong
“stay close to the object” preference can result in a minimum cost for a trajectory that is
briefly in a collision. Tuning the collision weight can only partially solve this issue, as at
a certain point this cost can interfere with the path preferences.

Our user study results showed that non-expert users can intuitively use our method
to quickly teach a wide range of preferences to the robot. While the generalization re-
sults to different task instances show that we do not always reproduce trajectories with
the exact desired shapes in the workspace (see Fig. 3.8), the subjective performance eval-
uation shows that users still deem these trajectories highly suitable in terms of task ac-
complishment and the preferences achieved. State-of-art LfD methods are very capable
of producing accurate and complex dynamic movements (Mülling et al., 2013). However,
in tasks where there are multiple ways of achieving the same goal, we prefer to trade off
motion accuracy for achieving planning propensities on a higher level.

Unfortunately, our approach inherits the limitations of IRL approaches that require
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specifying reward features by hand. Both features and robot rewards depend on sev-
eral parameters which require tuning. The problem becomes especially difficult as our
features simultaneously govern the behavior of reward learning and trajectory optimiza-
tion. For instance, high gradients in the feature function lead to erratic behavior of the
optimizer, leading to poor solutions and convergence to local optima. Yet, for certain
features, a sufficiently high gradient is required to facilitate the learning of preference
weights that are large enough to counterbalance each other. As a result, we had to re-
sort to further tuning of parameters, such as the learning rate in (3.4). An interesting
direction for future work would be to test if and how well these issues can be alleviated
by feature learning from additional demonstrations, as was done in Bobu et al. (2022).
Furthermore, an approach in (Katz et al., 2021) could be employed to learn the relative
weighting among features and add additional features through nonlinear functions us-
ing neural networks.

In feature engineering or learning, the definition of the context determines how ex-
pressive the features are. We considered a limited set of vectors as the context in this
work (i.e., obstacle position, start and goal positions). It is possible to include additional
information, such as object properties (e.g. sharp, fragile or liquid) (Jain et al., 2015), hu-
man position (Bajcsy et al., 2017; Losey et al., 2022), and number of objects. The more
rich the context, the more preferences the model can capture in complex environments.
However, training diversity can become an issue with contextually rich features, as the
model would require more demonstrations to cover a wider range of situations. This will
increase training time. An evaluation of the trade-off between improved generalization
and higher training time is left for future work.

3.4. SUPPLEMENTARY COMPARISON STUDY

T HE purpose of this supplementary study is to highlight different aspects and prop-
erties of our method in comparison to two common methods from the literature:

Dynamic Movement Primitives (DMPs) (Calinon and Lee, 2019) modified with potential
fields for obstacle avoidance (Gams et al., 2016), and the method used in Bajcsy et al.
(2017) (referred to as PHI). Since these methods are different conceptually and by design
(i.e., optimize for different properties), we examine their aspects in a practical trans-
portation task qualitatively. These aspects are: adherence to preferences, robot objec-
tives, trajectory feasibility, and online learning. In the next subsections, we first discuss
the different aspects in more detail, before showing the effects in the transportation task
and discussing the pros and cons of the different methods.

3.4.1. CONCEPTUAL DIFFERENCES PER ASPECT

ADHERENCE TO PREFERENCES

The methods capture preferences in a different way. Even though we added obstacle
awareness to the DMPs we compare to, they lack an explicit notion of preferences. A forc-
ing function is learned to match the shape and velocity distribution of the demonstra-
tion, but without any parameterization over features that may capture behavior relative
to the context. The potential fields for obstacle avoidance add a basic level of context-
awareness, but a predefined one.
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Both our method and PHI learn an explicit preference model that is structured as a
linear combination of context-parameterized features. Like our model, PHI considers
the “Height from the Table” and “Distance to the Obstacle”. We additionally consider the
“Obstacle Side”, such that our features cover the different dimensions in space and allow
us to capture the preferences in every direction. PHI instead considers other features,
such as “Distance to Human” and “Efficiency”.

Our features are counterbalanced by explicit robot objectives (Sec. 3.4.1). In PHI, it
is possible to replace the features with the features we use, including the ones for the
robot which will not be updated during learning. This way, we can test the effects of the
change of features and the change of method.

ROBOT OBJECTIVES

In contrast to PHI, we chose to explicitly separate objectives such as “Path Efficiency”
and “Collision Avoidance”, from the preferences we try to capture. Instead, we let the
robot have a reward function of its own. The same effect can be achieved in PHI by
fixing the weights of selected features.

The effects of the trade-off between the learned human rewards and the given robot
objectives visible in the iterative updates can be viewed as a negotiation between the
preferences of two independent agents. We believe that this separation and negotiation
will be beneficial especially as tasks become more complex and the artificial agent has
knowledge complementary to the human. The benefits may be less visible in the simple
task considered in this chapter.

As DMPs do not explicitly model an objective function to be optimized, this attribute
does not apply.

TRAJECTORY FEASIBILITY

Our method does not automatically check if the planned trajectory is feasible to execute
by the robot. A motion feasibility objective can be added to the robot objective function
to take this into account in the path optimization. Alternatively, it is possible to rely on
a lower-level controller to take care of the feasibility. However, the lower-level controller
will be agnostic to the optimization that provided the target trajectory. Therefore, it is
better to take the feasibility into account already during the optimization.

Rather than weighing the learned preferences against robot objectives, PHI ensures
motion feasibility by optimizing the trajectory in the robot configuration space. This
requires an additional simulation step, incorporating the kinematic model of the robot,
during trajectory optimization. But then, no corrections need to be applied in hindsight
to ensure trajectory feasibility.

ONLINE LEARNING

Our method requires a full trajectory to learn from, whereas PHI updates the internal
model at each time step. This potentially makes our method less efficient. On the other
hand, it allows us to capture velocity preferences in addition to path preferences. Also,
because we separate the demonstration from the execution, we obtain a more ‘clean’
observation of the preferences, as we do not have to deduce from the interaction forces
what the human demonstration would have looked like without the robot interference.
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This is likely to benefit generalization. In case of large user corrections, it may even re-
duce the user’s effort to demonstrate their preferences without the robot interfering. Es-
pecially velocity preferences have been found cumbersome to correct in an online man-
ner (Losey and O’Malley, 2019).

When it comes to online updates, DMPs are the fastest, because there is no complex
underlying model that needs to be updated. But the trade-off of having a much simpler
model is that it lacks the ability to capture preferences in a way that might generalize to
changes in the scenario.

All three methods update their model to reduce the error with respect to the latest
observation from demonstration. A learning rate trades off learning and overfitting on
the corrective demonstration. DMPs updates correct the behavior on the trajectory level,
whereas PHI and our method update at a higher level where the observed trajectories are
considered a consequence of a human reward model. Nevertheless, future observations
that appear contradictory to earlier ones will cause (partial) unlearning of the earlier
updates. This results in erroneous behavior learned from imperfect corrections to be
corrected, but may in some cases also lead to undesired unlearning.

3.4.2. COMPARISON

We will now present a qualitative comparison between the three methods, PHI with two
different feature sets: _φorig, _φour. Our aim is to show the effects of the conceptual
differences discussed in Sec. 3.4.1. To make the comparison as fair as possible, we let
all the models learn from the same demonstration data. All methods have access to and
consider the obstacle position for planning.

We modify PHI to bypass the estimation of the human desired trajectory from forces,
as we have direct access to the desired trajectory from demonstration. We compute the
“human correction” every time step from the mismatch between the planned trajectory
and the demonstration. The trajectory optimization in PHI requires a robot model for
the optimization. As our trajectory optimization does not take the robot dynamics into
account, we use a fully actuated point mass for the trajectory optimization. In order to
achieve comparable smooth optimal paths, we interpolated the trajectory with a spline
instead of linearly as was done originally. For both sets of features, the feature weight
ranges and update rates were hand-tuned to achieve as close a trajectory match in the
initial scenario as we could manage. This initial scenario is illustrated in Fig. 3.11.

We consider a situation where the user has a preference for “passing on the close
side of the obstacle” due to the existence of a wall on the other side that the robot is not
aware of. Furthermore, we want to “remain close to the obstacle”, and to “slow down
when passing close to the obstacle”. We use a single kinesthetic demonstration contain-
ing these three preferences as the input to all methods. For PHI_φorig, we obtained the
correct choice of obstacle side in Fig. 3.11 by assuming a person standing on the other
side of the obstacle and making use of their “human feature”, learning not to come too
close to the human.

Fig. 3.11 shows the demonstration we use for training, as well as the trajectories ob-
tained from the three methods. As the results are generated for the same context as in
the demonstration, these results reflect the performance prior to any generalization of
preferences. As PHI updates its internal model at every time step, we observe partial un-
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Figure 3.11: Training scenario with the human demonstrated trajectory (green diamonds) and the learned
reproductions: ours in dark blue circles, PHI_φorig in red plus signs, with an intermediate learning result in
dots, PHI_φours in purple crosses, and DMP in yellow squares. By placing the markers at equal time intervals,
we display the velocity on the trajectories (i.e., the closer the markers, the slower the motion). As PHI does not
support differences in velocity, all red and purple markers are spaced equally along the trajectory. The black,
cyan, blue, and green circles respectively represent the obstacle, robot, goal (bottom), and start (top) positions.
For this study, we set dc = 22.5 cm (indicated by the dashed circle). We consider points within this region as
“close” to the obstacle.

learning of some features towards the end of the trajectory. This is particularly visible
for the “Obstacle Distance” in PHI_φorig. In Fig. 3.11, we show an additional trajectory
PHI_φorig,τ=0.45, which is generated by PHI with the original features and the weights
learned at 45% of the trajectory. We see that PHI_φorig,τ=0.45 is considerably closer to
the demonstrated trajectory. The demonstrated trajectory has many waypoints close to-
gether, quite close to the obstacle, as it slows down when passing it. PHI, on the other
hand, has its waypoints equally spaced. As a result, towards the end of the trajectory, a
considerable batch of PHI waypoints is further away from the obstacle by default. When
the weights continue to update on the difference, we obtain the trajectory PHI_φorig,
which lies closer to the obstacle. With our features, in PHI_φour, the effect is less pro-
nounced as the features trade off differently, yet the learned path is still different from
Our Trajectory, as PHI uses a different trajectory optimization method.

Especially considering PHI_φour, all three methods perform reasonably well in terms
of adhering to the aforementioned path preferences, with a slight variation in how close
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Figure 3.12: We demonstrate generalization by modifying the goal (top), start (middle), and obstacle (bottom)
positions. The yellow, blue, and red and purple trajectories correspond respectively to the output of the DMPs,
our framework, and the two versions of PHI. The thickness of the line indicates the inverse of normalized
velocity (i.e., the thicker the line, the slower the trajectory).

the robot passes by the obstacle. As discussed in Sec. 3.4.1, PHI is not able to capture any
velocity preferences. Notably, DMP performs well in this aspect as it is able to replicate
the demonstrated behavior in terms of both path and velocity.

Next, we modify the scenario nine times, in three different ways: changing respec-
tively the goal, start, and obstacle positions. We compare how each method is able to
generalize the initial observation to the different contexts. Fig. 3.12 displays trajectories
produced by the three methods in the nine new scenarios, PHI with the two different
feature sets.

We observe that the trajectory by our method (shown in dark blue) passes on the left
side of the obstacle, close to the robot, in every case. This does not necessarily mean that
person providing the original demonstration would generalize the exact same way. In
the bottom left case, this is even quite unlikely. If we look just at the path, PHI performs
reasonably well, with both feature sets, proposing a more likely path in the bottom left
case, but passing through the obstacle most clearly in the top right case. However, PHI
is not able to capture any velocity preferences. The velocity preference, of slowing down
when passing close to the obstacle, is only achieved by our framework.
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Table 3.2: Qualitative evaluation of the different aspects of the three methods: DMPs, PHI, and ours. The
marker ‘o’ indicates a value between ‘-’ and ‘+’.

Adherence to preferencesa Robot objectivesb Trajectory feasibilityc Online learningd

DMPs - - - +
PHI o o + o
Ours + + o -

a The criteria, based on Fig. 3.12, where ‘-’ is given for adherence to only a few, or inconsistently many, prefer-
ences, and ‘+’ for adherence to most preferences in most of the cases.
b The criteria, based on the model structure, where ‘-’ is given when no robot objectives can be added, and ‘+’
when arbitrary robot objectives can be added.
c The criteria where ‘-’ indicates no guarantees for trajectory feasibility, and ‘+’ indicates trajectory feasibility
can be guaranteed at all times.
d The criteria where ‘-’ indicates the inability to learn in real-time, and ‘+’ indicates the ability to learn and
re-plan while the task is being executed.

3.4.3. DISCUSSION

The comparison with DMPs illustrates how a lack of higher-level knowledge about why
a trajectory was demonstrated in a specific manner leads to failure in generalization to
new contexts. These results emphasize the need for consideration of human models,
such as our reward in (3.1), in LfD methods. PHI, with its model, does considerably bet-
ter. However, we observe that the internal trajectory optimization reacts differently to
the different sets of features, resulting in slight differences in generalized trajectories.
The main point, regardless of the applied features, remains that PHI is not able to cap-
ture velocity preferences. Tab. 3.2 summarizes the strengths and weaknesses of the three
methods with respect to the aforementioned aspects.

PHI optimizes the trajectory in the joint space, which can be done fast since inverse
kinematics is only required at waypoints. It ensures the planned trajectories are feasi-
ble for the robot, which can be interpreted as implicit robot objectives being satisfied.
On the other hand, our method optimizes the trajectory in task space, thus additional
inverse kinematics computations are necessary together with an explicit description of
corresponding robot objectives. The use of inverse kinematics can also be problematic
when there are redundant DoF or when there are potential self-collisions. Nevertheless,
planning in the task space is closer to where the human preferences typically are (i.e.,
more intuitive) and can handle obstacle avoidance in a manner that is more predictable
for a non-expert human.

It should be noted that our framework does take up to two minutes of optimization
due to the constrained nonlinear optimization steps for both path and velocity. We did
not optimize our path and velocity optimizations as they were fast enough for our cur-
rent purpose. Considerable computation speed can potentially be gained by more care-
ful choices of optimization algorithm. Nevertheless, DMPs will still be faster to compute,
as they do not require any further optimization after training. However, there is no guar-
antee that the DMPs will encode and generalize the desired preferences.
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3.5. CONCLUSION AND FUTURE WORK

W E presented a novel approach for learning and executing human preferences in
robot object-carrying tasks. Our user study showed fast convergence of the algo-

rithm, in terms of number of human corrections, and a proof-of-concept for generalizing
path and velocity preferences between contexts within a given task. The efficiency and
accuracy of our approach were validated in a real-world scenario. Our supplementary
study compares the performance of our framework to two common methods from the
literature, providing additional insights into the benefits and drawbacks caused by the
structural differences between the methods. Both in the user study and in the supple-
mentary study, a single informative feedback sufficed (in all cases except one) to capture
the human preferences. In the user study, this was tested without prescribing a pref-
erence to the users. Our framework was in most cases successful in generalizing these
preferences to previously unseen scenarios. Our results support that our model con-
tributes to personalized planning of object-carrying tasks with low interaction effort.

Future studies comparing our method (with just path preferences) to PHI (Bajcsy et
al., 2017; Losey et al., 2022) in a user study could lead to useful insights into people’s
preferences on iterative versus online learning. Further research could consider a com-
bination of our method and PHI that would benefit from the advantages of both, namely
achieving generalization both in-task and over new task instances through learning from
online interaction. Next to that, the trajectory model we used to make the problem
tractable is quite simplistic and does not describe human motion behavior very well. Fu-
ture research can aim to replace this model with a library of motion primitives generated
from demonstrations to better capture the shape of the trajectories. More accurate tra-
jectory models can enable the extension of the framework to settings where the human
and robot come into contact with each other through a shared object (physical human-
robot collaboration). Furthermore, it should be studied whether more complex nonlin-
ear formulations of the reward function using Gaussian Processes (Bıyık et al., 2020) or
Neural Networks (Ibarz et al., 2018), and/or learning them from user input (Bobu et al.,
2022; Katz et al., 2021), can effectively capture context-aware preferences without the
need for rigorous feature engineering. We believe the presented framework is especially
effective in collaborative settings where knowledge of the preferences of a partner is es-
sential to the execution of the task.
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IMPEDANCE CONTROL FOR ONLINE

LEARNING OF PHYSICAL

HUMAN-ROBOT COOPERATION

TASKS

In order to make the coexistence between humans and robots a reality, we must under-
stand how they may cooperate more effectively. Modern robots, empowered with reliable
controls and advanced machine learning reasoning can face this challenge. In this arti-
cle, we presented a Disagreement-Aware Variable Impedance (DAVI) Controller, where the
robot stiffness is regulated as a function of the perceived disagreement with the human
cooperator. We tested the algorithm on a 7 DoF Franka Emika Panda robot performing
the learning of a pick&place task with continuous adaptation of the goal location and the
via-points with human interactive corrections, triggered by our proposed approach. A pi-
lot study was conducted with 5 users in order to understand the reliability of the method.

The contents of this chapter are based on the paper of the same name, by Linda van der Spaa, Giovanni
Franzese, Jens Kober, and Michael Gienger, published in IEEE International Conference on Robotics and Au-
tomation full day workshop – Shared Autonomy in Physical Human-Robot Interaction: Adaptability and Trust,
2022.
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OF PHYSICAL HUMAN-ROBOT COOPERATION TASKS

Figure 4.1: Scenario for (cooperatively) moving a cup to one of the available coasters. Initially, the robot does
not know where or how to move the cup. The robot can be guided even when the human moves the cup
without touching the robot.

4.1. INTRODUCTION

T HE strength of a team depends very much on the ability of its members to cooperate.
Humans and robots have different strengths and weaknesses. Potentially, teaming

up a robot with a human would allow the partners in the team to complement each other
to the benefit of both. However, the actual benefit depends on the cooperation skills of
both the human and the robot. In case these are lacking, the attempted cooperation may
instead inadvertently lead to reduced performance.

Successful cooperation requires partner-awareness, as well as the ability to commu-
nicate and negotiate on personal preferences (how to do something), intentions (what
to achieve) and constraints. Factors like preferences depend, at least partially, on the
partners in the team and the cooperation between them. Therefore, we argue that most
effective cooperation can be achieved when learned online; i.e. while trying to cooper-
ate, the agents update their behavior to improve on the overall result. As cooperation
skills grow over time, preferences may change as well as what cooperative behavior may
be optimal. Life-long learning is required in order to keep adapting accordingly.

Our specific interest is in physical human-robot cooperation (pHRC) tasks with pro-
longed physical interaction continuing over a sequence of dependent actions. In such
tasks, haptic communication has been shown effective in integrating intentions in sha-
red decision making (Groten et al., 2012), and is actually able to lead to faster optimal
decisions than explicit communication (Pezzulo et al., 2021). We focus on tasks where
human and robot move an object to a new location in space, only communicating intu-
itively through the interaction forces (see Fig. 4.1).
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Ultimately, the robot has to learn how the human prefers to do the task, in order to
provide appropriate support. Starting from an initial solution which allows the human to
finish the task together with the robot, we want the robot to learn to adhere to the human
partner’s personal preferences, learning from feedback the human implicitly provides in
the interaction. Before we can focus on this rather complex problem in the next chapter,
we need a control framework to handle the physical interaction. Specifically, we need
a controller that can detect the human partner’s disagreement from the physical inter-
action and in response smoothly transition to a learning mode that allows the robot to
update or extend any existing internal model.

In this chapter, we set up a toy learning scenario for illustrative purposes (Algo-
rithm 2), for the sake of testing our proposed control framework (Algorithm 3). We learn
some high level target policy π(x), but more importantly allow a modulation of the robot
stiffness as a function of the disagreement with the human. The control of the task is
negotiated between the human and the robot and when the robot is passive, the task
model and desired policy are updated interactively.

The variable admittance/impedance of the robot for a safer human robot interaction
was already proposed in the literature. For example, in Khoramshahi and Billard (2020),
the robot admittance is increased when the human applies sufficient positive work to
the system, effectively and smoothly changing the robot behavior to that of a passive
follower but without interactively improving or modifying the desired execution of the
task. Alternatively, Franzese et al. (2021) proposes to decay the stiffness as a function of
the epistemic uncertainty of the policy encoded with a Gaussian Process.

We show equally smooth transitioning for impedance controlled trajectory tracking,
ramping down the impedance upon detection of significant interaction force to the point
that the robot can become fully passive, handing over all control to the human to learn
from the new demonstration. Our method is not limited to using the interaction force as
the metric of disagreement.

In this chapter, we present a control framework for pHRC which 1) has disagreement-
awareness in physical interaction, 2) responds smoothly to detected disagreement in-
cluding a negotiation phase in which the control is transferred to the human, and 3)
allows a higher-level learning algorithm to learn from both the disagreement and subse-
quent corrections. We evaluate our framework in a cooperative pick-and-place scenario
with a 7 DoF Franka Emika Panda robot and a small number of users.

4.2. METHOD

O UR DAVI controller is designed to allow and recognize user disagreement on the
trajectory level and handle it in a user friendly way, with the objective to allow a

cooperative robot to try out supportive policies and learn from its mistakes. Before we
give a detailed description of the controller, we will first present a toy learning example
to provide a context for the controller (Sec. 4.2.1), also for later testing. After that, we
will explain the impedance control basis (Sec. 4.2.2) on top of which we built the DAVI
controller (Sec. 4.2.3).
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Algorithm 2: Illustrative toy policy learner

1 Initialize: states set S = {x0}, goal states set Sg =;, policy transitions T =;
2 while Learning do
3 Start episode in x = x0

4 while Episode do
5 if x ∈Sg then
6 deactivate DAVI (as if disagreement detected)
7 quit Episode
8 if not isActive(DAVI) ∧ ẋ = 0 then
9 if x ̸= xk then

10 S ←S ∪x
11 π(xk ) = f (xk ,x,C ), T ←T ∪π(xk )
12 k ← k +1, xk ← x
13 else if timeout then
14 Sg ←Sg ∪x
15 if ((isActive(DAVI) ∧ x = xk+1) ∨ (not isActive(DAVI) ∧ x ∈S )) ∧ π(x) ∈T

then
16 k ← k +1, xk ← x
17 xk+1 = finalState(π(xk ))
18 activate DAVI(x,π(xk ))

4.2.1. STATE AND ACTION LEARNING FROM INTERACTIONS

We define a discrete set of states S as the points (in continuous space) through which
the human may want the robot to pass when doing the task. Some of these states may be
terminal states in which an episode is considered finished. These are stored in Sg . We
consider a 3D end-effector workspace with a fixed end-effector orientation, not caring
about the robot’s joint configuration. Initially, the state space only contains the starting
position x0, and no actions π(x) are known, resulting in an empty transition set T (L. 1
in Algorithm 2).

We let all episodes start with the robot end-effector position x in start state x0 (L. 3).
Episodes then run for as long as the robot is not in a goal state x ∈ Sg (L. 5-7). Since
state x measured at the robot end-effector is a continuous state, all conditions check-
ing whether x is in a set with sampled values (e.g., S and Sg ), as well as equality and
inequality conditions, are implemented by checking whether x is closer to one of the
stored values than a predefined small distance ε, which we set at 2 cm. To help the hu-
man feel where these states are, we let the robot transition to active attraction to states
in S within 10 cm distance.

When the robot is stopped in an new position (L. 8-9) for 0.25 seconds, it is consid-
ered a new state and added to S if it is not close to any value already in the set (L. 10).
Whether or not S already contained x, the state is stored as the desired next state, pos-
sibly with an action trajectory description which may also be a function of the previous
state xk and context parameters C , the desired policy π(xk ) to be followed, the next time
xk is visited. This is stored or updated in the transition set T (L. 11). The data aggrega-
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tion is communicated to the user by a haptic vibration of the end-effector and the index
keeping track of the visited (waypoint) states in S is incremented (L. 12).

If the robot is not moved from a state for at least 5 seconds (L. 13), the state is flagged
as a final goal state (L. 14). Before the state is added, the robot hand signals with a count-
down of three vibrations to alert the human. This would allow them to continue the
demonstration if the state was not their intended final goal.

Whenever the robot reaches a state which is either the next state to which the robot
was actively moving (L. 15, first condition) or a state recognized while passively being
moved past it (L. 15, second condition), it is checked if T contains a policy for that state
(L. 15, third condition). If so, the next desired state is extracted from the stored policy
(L. 17) and the DAVI controller is activated to follow the stored policy (L. 18).

The DAVI controller (Algorithm 3) runs on a separate thread and has direct access to
the position, orientation, forces, and torques measured at the end-effector. Upon activa-
tion (L. 1), the reference trajectory for the impedance controller (Sec. 4.2.2) is initialized
to start at the actual current position of the robot (L. 2).

For the demonstration of the DAVI controller, it is of little importance what specific
target trajectories we provide for tracking. Therefore, we keep it simple and connect
the current state and the next desired one with a straight-line trajectory, assuming the
absence of obstacles. The methods we use are not limited to linear trajectories.

4.2.2. CARTESIAN IMPEDANCE CONTROL
As a base control layer, we use a Cartesian impedance controller (Algorithm 3). Briefly,
in Cartesian impedance control (Hogan, 1984), the end-effector dynamics are modeled
in the form of a mass-spring-damper system

Λ(q)ẍ = K∆x−Dẋ+ fext, (4.1)

where Λ(q) is the physical system’s Cartesian inertia matrix, K is a diagonal matrix with
the desired stiffness in the principal directions, D is the corresponding critical damping
matrix, and fext are the external forces. The external forces are estimated using the pro-
vided model of the robot (mass matrix, Coriolis, gravity) and the estimated joint friction
provided in Gaz et al. (2019).

We distinguish between active and passive mode. In active mode, the end-effector is
controlled to follow a trajectory. We employ a relatively low impedance (of ≤ 600 N/m)
for safe physical interaction. To keep ∆x from growing too large, we apply online attrac-
tor distance modulation (Gams et al., 2009) to allow a reactive following with a limit on
the force exerted by the robot according to

x̂ = x0 +α(x1 −x0) 0 ≤α≤ 1 (4.2)

α̇= vref

∥x1 −x0∥
1

1+∥x− x̂∥/l
(4.3)

where α determines the progress of the (in this case linear) trajectory, l is the equivalent
tracking error that makes the progress rate to drop to half, and vref (of 0.3 m/s) is the
desired velocity along the trajectory.

In passive mode, the end-effector stiffness and damping are set to zero. In this cir-
cumstance the robot is still gravity compensated. At any time during active mode, a
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Algorithm 3: DAVI controller

1 Function activate(x, ζ):
2 Initialize: reference trajectory ζ, target position x̂ = x
3 isActive = True
4 run()
5 Function run():
6 while isActive do
7 x̂ = g (x, x̂,ζ) Eq. (4.2)
8 γ= Disagreement(fext)
9 K̇ = ImpedanceModulation(γ), K ∈ [0,Kmax] Eq. (4.6)

10 ImpedanceControl(x̂,K )
11 isActive = (K > 0)

detected disagreement triggers a transition to passive mode; this allows the human to
kinesthetically demonstrate the new desired behavior. At all times, the robot records the
states and actions it observes during interactive task execution so it can learn from them.

4.2.3. DISAGREEMENT DETECTION AND DAVI CONTROL
Intuitively, disagreement can be detected based on interaction force/torque, or devia-
tions from the expected trajectory. The two are coupled by the set robot impedance(s).
Alternatively, we can detect disagreement based on the human virtual work, the work
they would do if the robot would not exert a force. In contrast to reacting to the actual
work the human does (Khoramshahi and Billard, 2020), this also detects disagreement
when the human keeps the robot from moving.

The energy the human is injecting into the system is the virtual work done by the
external forces. Substituting Eq. (4.1), we can write the linear approximation:

Eext =−fext∆x = fT
extK−1 (

fext −Λ(q)ẍ−Dẋ
)

. (4.4)

We will now take a closer look at the terms in this equation to see how we may simplify.
The equation is meaningful as long as the stiffness K is positive. The inertia Λ(q) and
damping D are positive by default. Only if the human partially gives in to the robot,
the velocity and external force may have directions such that the product fT

extDẋ results
in a negative number. If the human is decelerating the robot, fT

extΛ(q)ẍ is still positive.
When the robot is starting an action, it may be that the human only partially counteracts
its acceleration towards the (low) target velocity and fT

extΛ(q)ẍ can briefly be negative as
well. At the ending of a robot action, the human could similarly counteract the robot
decelerating, e.g., when the human does not want the robot to stop at the position it is
aiming for. In all other cases, approximating Eq. (4.4) by the simple square

Eext = fT
extK−1fext (4.5)

will result in an overestimate of the actual injected energy. As the moments in which
the human partially counteracts the robot as described above are brief transient phases,
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occurring at low velocity and acceleration (with a lightweight robot), we feel justified to
further just consider the simplification of Eq. (4.5).

Thus considering that the injected external energy can be estimated as a function of
the norm of the external force (and controlled stiffness), we assign a negative value to our
disagreement constant γ every time the external force is beyond a safety threshold fth

ext
and positive otherwise (Algorithm 3 L. 8). Because of the simplification from Eq. (4.4) to
Eq. (4.5), it may be that described transient phases take slightly longer than they would
if we would respond instead to a full estimate of Eext.

The stiffness changes according to

K̇ = sign(γ)Kmax/∆ttransition. (4.6)

The stiffness value will saturate when it goes beyond the set max limit. The hyperpa-
rameter ∆ttransition regulates the desired stiffness rate during the negotiation phase on
whom has fully control of the task. If an external force was applied unintentionally,
as long as the interaction was not longer than ∆ttransition, then the impedance has not
dropped entirely to zero and hence the passive mode is not activated. When the force
drops again below the safety threshold, positive γ of Eq. (4.6) will ramp the stiffness back
up to the maximum. This hysteresis time band helps to prevent unintentional switching
from robot to human control (Hoque et al., 2021). Once the impedance on the trajectory
the robot was following has become zero, the robot changes to passive mode. From now
on, it keeps track of its proximity to the states it has stored in its model. The robot transi-
tions back to active mode, i.e., γ becomes positive, when it detects itself in a state (other
than the one it just came from) where it knows what action to take. The full algorithm is
summarized in Algorithm 3.

4.3. EXPERIMENTAL EVALUATION

W E test our general framework on the pick&place task shown in Fig. 4.1. The cup
can be moved to one of the other coasters, but our robot has no information on

them or any prior on how it might move. For a parameterized behavior, knowledge of
the environment, such as where the coasters are, would improve generalizability. But
just for showing the use of interactive learning with disagreement-awareness, we test in
a fixed environment, only using the end-effector position and external force data.

We asked five people to teach the same task of pick&place of Fig. 4.11. Their expertise
in robotics ranged from beginner to expert. The goal was to challenge the algorithm
robustness with all possible interactions, from under to over-confident. The participants
first showed the robot to place the cup on one of the other coasters, with an arbitrary
number of intermediate states. Next, they altered the trajectory to pass through at least
one additional or alternative state. At least once, they were asked to steer the robot to
another coaster, a new goal state. Each participant was asked to disagree with the robot
at least once, moving the robot to a different point in space, unknown and known, in
each of the following ways:

1The study was performed as a pilot for the larger study conducted in Ch. 5, which was already approved by
the Human Research Ethics Committee at the Delft University of Technology. A separate, retrospective ethics
approval for this specific pilot study was granted by the same committee on 10/01/2024.
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• moving the robot in a different direction w.r.t. the trajectory followed initially,

• stopping the robot on the trajectory it is executing,

• making the robot move over a state without stopping there, teaching it to move to
a further lying state instead.

Figure 4.2 shows the position and force result of a disagreement case. A new state is
learned on the executed trajectory. It is a typical force profile for all cases of disagree-
ment. Cases in which a state is added in a different region in space generally only show
a higher force peak. After the disagreement phase, the human is free to teach the robot
a new state, which it registers when its motion is stopped. This is observed at t = 96.7s.
After that, we see the the force on the end-effector increase again. Since the robot has
arrived in a state it had not seen before, the user is performing a kinesthetic demonstra-
tion to show the robot what it should do the next time it arrives in the state that was just
observed.

Of the few people we tested, the less experienced users struggled considerably more
with deciding through which points in space to move and remembering them. While
they could teach the robot the same things, they experienced increased difficulty. They
tended to be more surprised when the robot would activate to start moving towards a
state it had recognized as close. We let that be the robot’s way of asking the human: “is
this where you want to go?” But less experienced users reflexively let go, or at least did
not immediately resist the robot, which the robot would interpret as confirmation, until
the human would actively disagree again. This led to some confusion, stiffness going up
and down and some additional interaction forces. However, when the users understood
they were basically negotiating with the robot, they could successfully push their point
and make the robot understand.

Figure 4.3 shows a state set that is learned with an inexperienced user. At the start,
the robot only knows the state marked “t=0.0”. Each state is marked with the time it was
added to the robot’s state set. The recorded end-effector trajectories are also shown in
the figure. Both states and trajectories are color coded a lighter shade for each newly ob-
served one. The figure shows the new states learned on the demonstrated trajectories.
Changes in preferred state sequence could be demonstrated with smooth trajectories
made possible by the smooth mode transitions, and once it was recognized that new
behavior was being demonstrated, the robot lets the human demonstrate without in-
terference. A video of the experiment, as well as our code, can be found in our GitHub
repository2.

4.4. DISCUSSION

B Y responding to interaction forces by changing the impedance and sending haptic
cues on model updates, there is two-way communication between the human and

the robot in the physical interaction. This communication allows gradual mode switch-
ing between human and robot control without taking the human attention off the phys-
ical task, the way pressing a button would do. We expected this to make the interaction

2https://github.com/LindavdSpaa/DAVI_controller

https://github.com/LindavdSpaa/DAVI_controller
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Figure 4.2: Position, resultant force and stiffness of the end-effector during an action that is corrected to a
new position in space on the trajectory the robot was executing. The colors in the position plots indicate x
(blue), y (orange) and z (green) respectively. The phase bar shows first the robot is in control. Upon detecting
disagreement, the control transferred to the human.

Figure 4.3: States and trajectories from which they were observed colored in order of learning from dark to
light. Time stamps show when a state was added to the robot state space.



4

60
4. DISAGREEMENT-AWARE VARIABLE IMPEDANCE CONTROL FOR ONLINE LEARNING

OF PHYSICAL HUMAN-ROBOT COOPERATION TASKS

intuitive for users. Some of the users who tested our framework agreed. On the other
hand, we also received the remark that switching at a button-press better disambiguates
for the human when the robot is accepting the demonstration. A future study is nec-
essary to compare and evaluate the intuitiveness of our implicit mode switching w.r.t.
explicit switching, with a more representative group of subjects.

The comfort experienced with the mode switching and reactivation on model recog-
nition varies with people’s expectations and preferences. When and how fast (or slow)
the robot responds currently depends on a number of preset variables. Ideally, these
variables or a more general model defining the interaction and learning dynamics should
be learned to match people’s individual preferences.

In the current setting, the robot remembers every state it has seen from the moment
we set it to start learning. At every point in its state space, it has stored a corresponding
subsequent state it was shown to go to. For some participants, it was harder to remember
the states and sequences they had taught the robot. Indeed, it may not always be desir-
able for the robot to remember all it has seen in the past. How and what to selectively
forget is out of the scope of this study.

The disagreement detection in the presented implementation is based on a force
threshold. Hence is would also trigger if a user is pushing in the direction the robot
is going, e.g., to speed up the movement. This issue can be resolved by additionally
considering the direction of the force. Similarly, for tasks requiring applying a force to
an object or the environment, the disagreement detection will need to be modified to
consider the difference to the expected force.

4.5. CONCLUSION AND FUTURE WORK

W ITH the presented framework, we showed how to smoothly transition between let-
ting the robot execute the task and demonstrating alternative behaviors. At least,

we concluded smoothness of the transition based on the observed trajectories such as
the one shown in Fig. 4.3. Testing the subjective user perception remains future work
and should be tested with a larger group of users.

By actively recognizing when the human is demonstrating, in contrast to only let-
ting the human take the lead during execution (Khoramshahi and Billard, 2020), the task
execution can be interactively corrected using the given human feedback.

For generalization, states can be parameterized with respect to objects’ reference
frames. We do this in the next chapter with a pre-defined states set. When learning
the states set online, it introduces the additional complexity of solving the possible am-
biguity in the selection of the right frame for the given goal (Franzese et al., 2020). Fur-
thermore, the linear trajectory assumption defined in Eq. (4.2) can be relaxed and a non-
linear trajectory or a dynamical system can be learned during the kinesthetic teaching
interaction (Franzese et al., 2021). For this reason, we believe that the presented frame-
work opens up many further directions of future work, as it allows online learning of
(parameterized) high-level pHRC policies on real hardware with real (non-expert) users
in the loop, as we will show in the next chapter.
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SIMULTANEOUSLY LEARNING

INTENTIONS AND PREFERENCES

DURING PHYSICAL HUMAN-ROBOT

COOPERATION

The advent of collaborative robots allows humans and robots to cooperate in a direct and
physical way. While this leads to amazing new opportunities to create novel robotics ap-
plications, it is challenging to make the collaboration intuitive for the human. From a
system’s perspective, understanding the human intentions seems to be one promising way
to get there. However, human behavior exhibits large variations between individuals, such
as for instance preferences or physical abilities. This chapter presents a novel concept for
simultaneously learning a model of the human intentions and preferences incrementally
during collaboration with a robot. Starting out with a nominal model, the system ac-
quires collaborative skills step-by-step within only very few trials. The concept is based on
a combination of model-based reinforcement learning and inverse reinforcement learn-
ing, adapted to fit collaborations in which human and robot think and act independently.
We test the method and compare it to a baseline that imitates the human, both in simula-
tion and in a user study with a Franka Emika Panda robot arm.

The contents of this chapter have been slightly modified from the paper of the same name, by Linda van der
Spaa, Jens Kober, and Michael Gienger, currently under review in Autonomous Robots.
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5.1. INTRODUCTION

P HYSICAL human-robot collaboration (pHRC) is becoming increasingly popular, as
it has the potential to increase flexibility and efficiency in industrial automation

(Hanna et al., 2022) as well as support people in home environments (Fitter et al., 2020).
To realize a fluent and intuitive collaboration, such novel robot systems should ideally
be capable of understanding the intentions of the human partner, and to adapt their
behavior accordingly. From a system’s perspective, autonomously learning to interpret
human intentions will make it easier and more intuitive for humans to engage in joint
tasks, an important step towards cooperative intelligence (Sendhoff and Wersing, 2020).
This requires a learning algorithm that is fast, needs little data, and learns in a way that
is safe for both the robot and its environment.

In cooperation, the success of a task depends on the combination of what all actors
do. Moreover, how a task is best completed depends additionally on the individual ac-
tors’ preferences and the interaction dynamics. A team learning to work together needs
to learn how the ‘system’ (including their colleagues) is responding. They need to learn
how to follow/express their preferences within the bounds imposed by both the task and
their teammates’ preferences and capabilities.

This chapter addresses the challenge of enabling a robot to learn to cooperate with
a human. In the setting we consider, the robot does not know the exact intention of the
human and simultaneously attempts to act according to the human’s preferences. We
make an explicit distinction between intentions: what (sub)goal someone currently has,
and preferences: how the person likes to approach the (sub)goal. Figure 5.1 shows two
example scenarios: The robot needs to learn how to help the human move the object, a
wheel or a clothes hanger, to the goal intended by the human.

We consider the problem on the abstract level where the two agents (human and
robot) have pre-learned/programmed skills, e.g., grasp the object, or, pull towards x, y, z
in space. Compliant control lets the success of actions depend on the physical interac-
tion. This allows us to focus on the learning problem in this chapter, without simultane-
ously having to consider the specific mechanics of physical human-robot interaction.

This chapter’s first contribution is a novel method for learning a human preference
model for intention-aware cooperation, from collaborative episodes. The method 1)
learns a personalized model of a human partner from physically cooperating with this
partner, from scratch or improving a nominal model; 2) models human preferences as an
explicit function of intention, enforcing inherent intention awareness; 3) applies second
order Theory of Mind (ToM) reasoning to model the human’s preferences separate from
the robot’s, resulting in explicit partner awareness. This allows the robot to optimize an
objective different from the human for improved cooperative behavior. The process is
iterative: after each collaborative episode, the robot updates its internal models based
on the observed partner response and the intention observed in hindsight at the end of
the episode. As its internal models improve, so does the robot’s response. Since most
optimization is done internally in the modeled environments, the robot requires very
few experimental episodes for learning. We achieve this by combining existing Rein-
forcement Learning (RL) and Inverse Reinforcement Learning (IRL) methods in a novel
way.

Secondly, we contribute by testing our method in a user study with a diverse group of
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Figure 5.1: Two cooperative scenarios: The robot needs to learn how best to assist the human to move the ob-
ject between support points A, B, and C. Two colors of arrows indicate different paths along which the human
may prefer to move the object (the wheel on the left (a), the clothes hanger on the right (b)). The dashed lines
indicate how the preferences may generalize when the goal is different.
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mostly novice users. We compare our “Learner” to an “Imitator” baseline which lets the
robot merely imitate its partner. Users were free to choose their preferences (within the
limits of the setup). We evaluate the user experience and the performance both quan-
titatively and qualitatively. In simulation, we additionally try our method in a scenario
with increased complexity for further evaluations and insights for directions of future
work.

Sec. 5.2 discusses the related literature. Then, the method is presented in Sec. 5.3. Im-
plementation considerations are discussed in Sec. 5.4. We describe the scenarios shown
in Fig. 5.1 in Sec. 5.5, on which we evaluate our method’s performance in a user study in
Sec. 5.6, and in additional simulations in Sec. 5.7, before we conclude in Sec. 5.8.

5.2. RELATED WORK

B EFORE we present our method to learn a behavioral model of a human partner for
improved intention-aware planning, we will first discuss relevant literature in the

three main directions related to our work: intention-aware planning, behavioral model-
ing, and model learning.

5.2.1. INTENTION-AWARE PLANNING

Literature on intention estimation for human-robot cooperation (HRC) tends to fall into
one of the following three categories: (sub)goal estimation – predicting which (sub)goal
out of a set of possibilities the human is trying for (Karami et al., 2009; Malik et al., 2018);
action prediction – predicting which (primitive) action the human will take next (Belar-
dinelli et al., 2022; Gienger et al., 2018; Hawkins et al., 2014); motion extrapolation – pre-
dicting how fast the human will continue in which direction (Bai et al., 2015; Duchaine
and Gosselin, 2007), or along which trajectory (Park et al., 2019; Ranatunga et al., 2015).

The last category is useful for collision avoidance (e.g., to independently navigate
the same environment (Bai et al., 2015; Park et al., 2019)), and for motion following (e.g.,
steering a single tool (Duchaine and Gosselin, 2007; Ranatunga et al., 2015)). More ab-
stract level planning needs higher-level action predictions. On the top level, an estimate
of the goal the human wants to reach will allow a robot to plan further ahead. Some-
where in between are reaching and placement tasks, where the intention encodes both
the motion and the goal (Koert et al., 2019), and, in the pHRI case, the interaction forces
(Haninger et al., 2022; Lai et al., 2022).

Instead, we consider tasks consisting of a chain of actions, and different possible
goals can each be reached in multiple ways. We seek to learn human preferences in
(physical) cooperation while we have no direct access to the human partner’s intention.
Similar to Koppula et al. (2016) and Park et al. (2019), we define the problem as a Markov
Decision Process (MDP). Intentions can be incorporated as a ‘hidden state’, resulting in
a Partially Observable MDP (POMDP) (Bai et al., 2015; Karami et al., 2009), or a Mixed
Observability MDP (MOMDP) (Ong et al., 2009). This definition allows us to use standard
techniques for learning a fitting robot policy, determining when it will take which action
given the observations.

For robot-robot cooperation in the MDP domain, Multi-Agent Reinforcement Learn-
ing (MARL) techniques have been derived from single-agent techniques (Buşoniu et al.,
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2010). Some of those methods could be applied to human-robot cooperation problems,
but have the disadvantage of requiring a large number of trials which is impracticable
for learning in interaction.

5.2.2. HUMAN BEHAVIOR MODELING

For directed cooperation, a robot needs a model of the agents with whom it should co-
operate (Choudhury et al., 2019). Agents can be modeled by a black box model, such as
a neural network (Schmerling et al., 2018; Zyner et al., 2019). Although such a model can
give accurate predictions, collecting sufficient representative data in a pHRC scenario
is expensive from a human perspective. More recently, Shih et al. (2022) and Parekh et
al. (2022), Wang et al. (2022), and Xie et al. (2021) solved this by learning a low-rank la-
tent space in different ways from few demonstrations which allows for interpolation to
predict previously unseen partner policies or strategies respectively. Shih et al. (2022)
and Parekh et al. (2022) show the effectiveness of the approach with human subjects.
Nevertheless, these models lack a structure providing more detailed insight into how the
prediction is obtained, which makes it non-straightforward to allow for goal uncertainty
induced by the partner such as the intentions we consider. As the methods do show great
promise, it is an interesting direction for future work to research how this approach could
incorporate hidden but leading partner intentions.

Alternatively, gray box models have a structure which offers insight into the predic-
tion process and increases data efficiency, if a proper structure is provided. A simple
single parameter can already improve a robot’s cooperative skills (Nikolaidis, Hsu, et al.,
2017). More complex structures may be derived from dynamics (Stouraitis et al., 2020) or
from Theory of Mind (Choudhury et al., 2019). ToM originates from the fields of psychol-
ogy and philosophy (Baker and Tenenbaum, 2014) and reasons about the reasoning of
others. For example, a robot may model a human as an agent with its own internal model
of the task and the world. When such a model includes the human’s reasoning about the
robot’s reasoning about them, etc. (infinite regress), it is no longer practical. Successful
implementations limit the regress to one or two levels (Buehler and Weisswange, 2018;
Malik et al., 2018; Sadigh et al., 2016). ToM can be considered as an IRL problem (Jara-
Ettinger, 2019). We follow this example, using IRL to learn a mental model of the human
partner, which we can then use to optimize our robot’s collaborative actions.

5.2.3. INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning focuses on inferring the underlying reward function
from demonstrated samples. However, the problem of reward reconstruction is ill-posed:
more than one reward function could describe the same demonstrated policy. Maximum
Entropy IRL (ME-IRL) offers a solution to this problem which is the least biased on the
demonstrations (Zhifei and Joo, 2012; Ziebart et al., 2008). Derived methods have been
applied successfully to learn from non-expert data (Boularias et al., 2011) or incremen-
tally update the model as data comes in (Jin et al., 2011; Rhinehart and Kitani, 2018), or
both and from physical interaction (Losey et al., 2022).

In Cooperative IRL (CIRL) as described in Hadfield-Menell et al. (2016), the human
and the robot optimize the same Q-function. This is also the case in Malik et al. (2018),
where the human and the robot are modeled as different actors. Instead, we explicitly
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treat our robot and human as independent agents by learning/keeping separate reward
functions for each, without giving up on the overall cooperative objective. This has been
more common in autonomous driving (Mehr et al., 2023; Peters et al., 2023; Schwarting
et al., 2019) following dynamic game theory, but not yet in pHRC.

5.3. METHOD

I N order to optimize the robot response in cooperation, we learn a model of the human
partner’s behavior, including their response to the robot. We break this loop into three

interconnected learning processes, indicated by the ellipses in Fig. 5.2. We start off with a
nominal (safe) robot policy πR and an initial estimate of the human reward function RH.
After every episode we try the collaborative task, we update our human reward estimate
on the observed human actions in ζ and intention ι. To the human reward estimate, we
apply RL to compute the most likely human response π̂H, which we then use to compute
an improved robot response πR. Thus, we iterate.

A key element of the presented method is the explicit modeling of the human’s in-
tention, a variable which is not directly observable but assumed to uniquely define a
person’s response. The intention ι is a discrete variable. We assume the set of possible
intentions I is known. The human preference model, captured in RH, is a function of
this intention, which allows it to be inferred by comparing the model to the observed
actions. A real-valued parameter vector is updated in RH after every episode to improve
the feature match to the observed paths from the start to the intended goal.

To summarize, the preferences are captured by a human reward function RH learned
through IRL, while the intentions are captured by a variable ι that the robot cannot access
directly but needs to infer from observed human actions.

We consider a discrete state-action space, where the state s is the combined state (for
the robot, human, objects, environment, etc.) and we have separate actions for the robot
aR and the human aH. The states and actions we employ in our experiments are detailed
in Sections 5.4 and 5.5. As the model improves, so does the robot’s response, decreasing
cooperation effort.

First, Sec. 5.3.1 briefly recaps the necessary background on MDPs, Q-iteration, and
soft-max policy optimization. Sec. 5.3.2 explains how these concepts have been modi-
fied to fit our collaborative case with hidden intention. Sec. 5.3.3 briefly discusses ME-
IRL and its application to our multi-agent learner before Sec. 5.3.4 summarizes our algo-
rithm.

5.3.1. MDPS AND THEIR MODEL-BASED SOLUTION
An MDP is defined by the tuple {S ,A ,T,R,γ}, consisting of a state space S containing
states s, action space A containing actions a, transition model T (s′ | s, a), reward func-
tion R(s, a, s′) and discount factor γ ∈ [0,1). In the model-based case, where the entire
tuple is available, the value indicating the desirability of each state-action pair can be
computed via Q-iteration:

Q(s, a) ← ∑
s′∈S

T (s′ | s, a)R(s, a, s′)+γV (s′), (5.1)

with value function V (s) = max
a∈A

Q(s, a).



5.3. METHOD

5

67

Figure 5.2: Method overview, showing the learning processes in ellipses, other processes in dotted-lined
rounded rectangles, models in solid-lined rectangles, and functions and data on the arrows. The human pref-
erence model RH is updated by the IRL process based on observed state sequence ζ and intention ι. The two
RL processes compute human policy estimate π̂H and robot policy πR.

The Q-function is a sound basis for extracting a policy π(a | s) an agent can use to
decide which action to take in a state. We select our policies by taking the weighted soft-
max as described by Tijsma et al. (2016):

π(ai | s) = eτQ(s,ai )∑
a eτQ(s,a)

. (5.2)

The exponential relationship between an action’s Q-value and its probability to be se-
lected results in directed exploration around the optimal policy. Exploration can be de-
creased by weighting the Q-values by a temperature parameter τ ≥ 1. A small amount
of directed exploration tends to speed up learning. It will mitigate modeling errors in
cases multiple actions come up with similar values and which one shows up best de-
pends heavily on an inaccurate model. This may very well happen in our case, since all
internal MDPs depend on the human preference model, which is being learned.

For the robot, we do restrict exploration with a lower bound on the acceptable action
Q-value: η maxaR QR(s, aR). This way, we prune potentially bad actions. Additionally,
the bound can be set to only allow actions with a value at least as high as a baseline
deterministic policy.

5.3.2. MULTI-AGENT POLICY OPTIMIZATION WITH HIDDEN INTENTION
In our collaborative case, there are two necessary adaptations if we are to use the MDP
principles of the previous subsection. First, we need to account for a collaborative part-
ner whose actions we assume we cannot control. Second, one state variable—this part-
ner’s intention—is hidden for the robot. We assume the human knows their own inten-
tion, so we treat it as a regular state variable within the human model. However, the
robot does not know this true intention, and we hence need to maintain the uncertainty
over it in the robot model.
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To solve the first problem, we extract the single-agent transition function for the
agent we are interested in from the combined transition function T (s ′ | s, aR, aH), where
aR is the robot’s action and aH the human’s. This is done by substituting the partner
policy. For the robot transition function T R we replace aH by an estimate of the human
policy π̂H, resulting in T R(s ′ | s, ι, aR) = T (s ′ | s, aR, π̂H(s, ι)). For the human transition
function T H we replace aR by the robot policy πR, resulting in T H(s ′ | s, ι, aH) = T (s ′ |
s,πR(s, ι), aH). Note that the single-agent transition function is a function of intention ι

because the partner policy depends on the intention.
For predicting the human policy πH, we need an estimate of how the human per-

ceived the robot policy πR, hence a second order ToM. We cut the regression by using
the most recent robot policy. It is an overestimate of what the human can know, but it is
the best we have. If we would assume instead that the human models the robot as a ran-
dom agent, the human would be modeled without any trust in the robot policy, which
will make it much harder to learn policies that actually rely on the robot taking a cer-
tain action. Since our robot is learning, we cannot model human learning of the robot
reward as in Nikolaidis, Nath, et al. (2017), nor can we follow Tian et al. (2023) and dis-
regard the large effect of our robot’s actions on the discrete state transitions within the
human model. Modeling how the human partner would learn to trust the robot is out of
scope of the current chapter, although interesting to explore in future work.

The resulting human policy estimate π̂H(aH | s, ι) is used to obtain the robot transi-
tion function. The robot reward function RR(s, aR, aH, s ′), additionally depends on the
human actions to explicitly encode cooperation objectives. Here, π̂H is substituted in
the same way as in the robot transition function T R, resulting in RR(s, ι, aR, s ′) = RR(s, aR,
π̂H(s, ι), s ′).

The human policy estimate is a function of the intention, which the robot cannot
observe directly. We assume that the human acts consistently under a given intention,
which enables the robot to infer the intention from observations of the taken human
actions. Since it is only one-dimensional and very small-sized, it is computationally fea-
sible to resolve this second problem by computing the MDP and its solution for each
possible intention ι ∈I . For larger problems, we advise to adapt a MOMDP solver (Ong
et al., 2009).

At runtime, a belief distribution is estimated over the possible intentions, using a
Bayes filter:

b(ι′) =C π̂H(aH | s, ι′)
∑
ι∈I

P (ι′ | ι)b(ι), (5.3)

with normalizing constant C . The intention transition probability is the likelihood of the
observed human action combined with the chance of keeping or changing the intention:

P (ι′ | ι) =
{
β, ι′ = ι
1−β
n−1 , ι′ ̸= ι (5.4)

with ‘intention bias’ β ∈ [ 1
n ,1] and n possible intentions. The closer β is chosen to 1,

the harder it is for the robot to understand, and thus adapt to, the situation when the
estimated intention does not match the human’s. This may happen because the hu-
man changed intention, or the estimate may have been wrong because of errors in the
learned model. Smaller β results in faster robot adaptation (at runtime), but too small
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a β makes it impossible for the robot to effectively exploit its intention parameterized
internal model.

Having the belief estimate, the final robot Q-function is obtained by superposition
(Schweitzer and Seidmann, 1985):

QR(s, aR) = ∑
ι∈I

b(ι)QR
ι (s, aR). (5.5)

5.3.3. IRL HUMAN MODEL UPDATES
The IRL objective is to maximize the total reward of the optimal trajectory ζ∗. The reward∑

s j ∈ζ∗
R(s j ) = θTφζ∗ = θT

∑
s j ∈ζ∗

φ(s j ) (5.6)

is a linear combination of the features φ observed in the trajectory, weighed by θ. Ex-
pert demonstrations ζ̃i are assumed representative for the optimal trajectory. ME-IRL
maximizes the log-likelihood of the observed trajectories (Ziebart et al., 2008):

θ∗ = argmax
θ

L(θ) = argmax
θ

∑
i

logP (ζ̃i | θ,T ), (5.7)

This can be solved by gradient descent θk+1 = θk +λ∇L, where ∇L equals the difference
in feature counts between the observed trajectories and the expected feature counts ac-
cording to the model. The expected feature counts are computed by internal soft-max
Q-iteration, using the human transition model T H. Here, we only consider the intention
observed during the episode. Like other incremental IRL methods (Jin et al., 2011; Rhine-
hart and Kitani, 2018), we perform a single gradient descent update after each episode.

In our interactive case, we must be somewhat selective in providing demonstration
data to the learning algorithm. States are now visited because of both the human and the
robot action. If the robot made a wrong choice and the human had to wait or correct,
this should not be interpreted as optimal, just because it was observed. To resolve this,
any loops between states that are visited multiple times are assumed to be caused unde-
sirably by inexperience, and are therefore removed before updating the human model.

5.3.4. THE COMBINED ALGORITHM
Algorithm 4 shows the full method. After initialization of the human model (L. 2), the
learning loop starts. The robot models are extracted (L. 4–5) and the Q-functions are
optimized per intention (L. 6). During a cooperative episode (initialized in L. 7), the
robot Q-values are computed for the current state (L. 9). The policy in the current state
is obtained (L. 10) using the bounded soft-max discussed in Sec. 5.3.2. When the robot
and the human have performed their actions and the state is updated (L. 11), so are the
robot belief (L. 12) and the state-action trace ζ (L. 13). The episode continues until a goal
is reached (L. 14), then the state-action trace and the human intention (the reached goal)
are returned to the model environment (L. 15). States are selected for learning (L. 16) and
the human transition model is extracted (L. 17). The IRL step updates the feature weights
of the human preference model (L. 18) using the state-action sequence observed during
the latest episode and the human transition model given the observed intention. The
human reward model (L. 19), Q-function (L. 20), and policy estimate (L. 21) are updated,
and the cycle repeats.
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Algorithm 4: Learning human-aware cooperation

1 Given: transition model T (s ′ |s, aR, aH), robot reward RR(s, aR, aH, s ′), featuresφ(s, ι)

2 Initialize: human reward θ = θ0, RH(s, ι) = θTφ(s, ι), policy estimate π̂H(s, ι) ←U (s)
3 while True do
4 T R(s ′ | s, ι, aR) = T (s ′ | s, aR, π̂H(s, ι))

5 RR(s, ι, aR, s ′) = RR(s, aR, π̂H(s, ι), s ′)
6 QR

ι (s, aR) ← QITER(T R,RR) ∀ι ∈I

7 Initialize: initial state s0, belief b0(ι) ←U (ι), state-action trace ζ←;
8 while Collaborative Episode do
9 QR(s t , aR) =∑

ιb(ι)QR
ι (s t , aR)

10 πR ← BOUNDEDSOFTMAX(QR)

11 s t+1, aH
t , aR

t ← DOACTION(πR)

12 bt+1 ← UPDATEBELIEF(bt , s t , aH
t )

13 ζ← UPDATESTATEACTIONTRACE

14 if ISGOALSTATE(s) then
15 return ζ, ιH

16 ζ̃← SELECTSTATESFORLEARNING(ζ)

17 T H(s ′ | s, ι, aH) = T (s ′ | s,πR(s, ι), aH)

18 θ← IRL(ζ̃,T H(ιH),θ)

19 RH(s, ι) = θTφ(s, ι)

20 QH(s, ι, aH) ← QITER(T H,RH)

21 π̂H(s, ι) ← SOFTMAX(QH)

5.4. IMPLEMENTATION

W E test our method in two different scenarios in which a human and a robot coop-
eratively need to move an object from one support to another. The robot knows

where the supports are, but not which one the human intends to move to. This section
describes how we model such scenarios as an (MO)MDP for learning. In the final sub-
section (Sec. 5.4.6), we describe the baselines we compare our learning method to. The
code to this research can be found in our GitHub repository1.

5.4.1. STATES
The physical states s are defined from the perspective of the manipulated object, defin-
ing its position p , orientation q , and affordance (Koppula et al., 2016)—in our case its

manipulability µ: s = [
pT q T µ

]T
. We consider positions in 3D (x, y, z). Depend-

ing on the scenario, q can be a single angle or a quaternion. The manipulability defines
how the object may be moved depending on by whom it is held (e.g., the object may
only be moved if it is held by both human and robot). Concretely, µ is an integer encod-
ing who is holding the object.

The object must be held by both human and robot anytime it is not resting on a

1https://github.com/LindavdSpaa/learning_collaborative_preferences

https://github.com/LindavdSpaa/learning_collaborative_preferences
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Table 5.1: Actions and their necessary state conditions.

Action State pre-conditions

wait/passive

grasp object resting, not held by actor

let go object resting, held by actor

take off (support) object resting, held by both actors

put on (support) object at mounting point2

rotate3 object held in free space

move over4 object held in free space

move up/down5 object held in free space

support, which may be anything that will keep the object in a stable position without
the help of an actor. Each support provides a possible start or goal state, with a specific
object position and orientation. The human may intend to put the object on any of these
supports.

In between these supports, a small number of strategically chosen waypoints define
key locations in space. Examples are the position from which to mount the object onto
a support – which is assumed to be the same as the position to which the object can be
unmounted – or a position below such a “mounting point” at a height which is comfort-
able for the human to carry the object. The space in between waypoints is assumed to
be free of obstacles.

Next to the physical state s, there is the human intention ι encoding the desired goal
to put down the object. This may be any of the available supports. The robot has no
direct access to this variable. The initial intention estimate is set to zero at the initial
support and distributed uniformly for the others.

5.4.2. ACTIONS

The general set of high-level actions and their pre-conditions are listed in Table 5.1. It
depends on the state which actions are allowed. In free space, where the object is only
supported by the robot and the human, neither is allowed to let go. Rotation is allowed
around a single axis at a time. Movement between waypoints is allowed either horizon-
tally or vertically, along straight-line trajectories. We made this choice purely for demon-
stration purposes, to define easily distinguishable possible preferences while keeping
the state space small. From and to a support, the motion is defined based on the geom-
etry of the object and the support.

In simulation, we only consider the discrete states connected by the abstract actions.
On the hardware, the way the robot grasps and lets go of the object is pre-programmed.

2next to support, oriented correctly
3around a single axis
4to waypoint at same height
5to waypoint at same (x, y)-coordinate
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The other actions are defined along straight-line trajectories, either in linear or in rota-
tional space, and tracked applying disagreement-aware variable impedance (DAVI) con-
trol (Ch. 4). In order to track the straight-line trajectories between our states in a robust
way with our 7 DoF robot arm, we extend the DAVI controller with the following null-
space component: We train a Gaussian Process (GP) (Williams and Rasmussen, 2006) on
a small set of feasible arm configurations (one per gripper pose) to obtain a consistent
reference for the redundant degree of freedom. During actions, we control both the grip-
per position and orientation (6 DoF) and the joint configuration (7 DoF), one set of DoF
with lower impedance than the other to resolve the redundant control. Close to state
positions and orientations, the Cartesian impedance on the gripper dominates the joint
impedance, to make sure the robot reaches the state. As the distance to the known states
increases, so does the impedance on the joints, while the Cartesian impedance on the
gripper is reduced. This way we smoothly bend our straight-line trajectories a little bit to
avoid joint limits and allow the elbow of the robot arm to change side when necessary.

The robot always has the option not to act. In this “passive mode”, the robot just com-
pensates the gravity with zero stiffness and the human is free to drag the robot around
with the object.

5.4.3. TRANSITIONS
The abstract physics of the problem, considered by the internal model, are simple: an
object can be moved if both actors have a grasp on it. A robot action may either have the
desired effect or no effect at all, if the human counteracts the action. The DAVI controller
ensures smooth transitioning from active to passive in case of counteractive action, so
the human is always in control of where the object is moved to.

If the robot is in passive mode, the human fully determines the transition. The hu-
man can also choose to passively follow the robot. Human partners are instructed only
to do actions which end up in a valid next state.

5.4.4. OBSERVATIONS
In simulation, the abstract states and actions are observed directly. In the robot experi-
ment, the closest abstract state is considered to be the state arrived at. This state is used
to infer the action the human took to realize the transition, and to estimate the next ab-
stract human action and choose a matching abstract robot action. The corresponding
motion trajectory is always planned from the actual robot position and orientation, not
from the abstract one the robot is expected to be at.

At the supports, there is the additional bound that the actual position should be close
to the expected one. Furthermore, the velocity and interaction forces must be close to
zero before letting go of the object is allowed, assuming the human will stop trying to
move the object when it is stably supported, and using that as a sign that it is safe for the
robot to let go.

In the experiment, the robot does not directly observe the human grasp on the object.
Instead, we generally assume the human is holding the object, until the object has been
non-moving for a number of seconds. We instruct our users to keep a hold on their end
of the object when the robot is active on the task, and make sure not to activate the robot
when they have not, so that the assumption holds.



5.4. IMPLEMENTATION

5

73

5.4.5. REWARDS

As described in Sec. 5.3, we have separate reward functions for the human and the robot.
The human reward, RH(s, ι), is defined by the learned preference model (Sec. 5.3.3),
which is a function of features describing each state’s relation to the start, the intended
goal, and unintended alternative goal candidates. The features in the human prefer-
ence model are the product of two Gaussian Radial Basis Functions (RBFs) and a binary
component. The first set of RBFs are a measure of linear distance and are centered at
points defined relative to the intended goal support, another support, or the world (e.g.,
comfortable carrying height). These points cover the waypoints, but multiple waypoints
relative to different supports map to the same feature point if the supports are not the in-
tended goal. The second set of RBFs are a measure of angular distance and are centered
at the allowed absolute orientations and at the final intended orientation. The standard
deviations of the RBFs are chosen at 2 cm and 10◦ respectively. The binary component
indicates the manipulability. With our choice of waypoints, this results in a total of 26
features. The feature vectors are normalized per state, θ is scaled to −1 ≤ θi ≤ 1, and
initialized at 0.1 at the intended support, -1 at the other supports, and 0 elsewhere.

The reward the robot receives for state transitions, RR(s, aR, aH, s ′), punishes actions
which are counteracted by the human, or do not change the state, by r− = −1. Passive
behavior, when a supportive alternative exists, is punished less severe, by r 0 ∈ (−1,0).
The reward factor r 0 is deciding for the robot behavior. A smaller magnitude makes pas-
sive robot behavior more desirable as, relatively, the punishment for choosing a wrong
action increases: the robot is “more afraid” of taking a wrong action. If r 0 = r−, the robot
does not care about taking wrong actions and the benefit of learning an internal model
disappears. The effect of different values of r 0 is evaluated in Sec. 5.7.

5.4.6. BASELINE AGENTS

Both in simulation and in the real-world experiment, we compare our Learner agent to
1) an Imitator and 2) a Passive agent. In the user study, we added an additional ablation
study, comparing to 3) a plain ME-IRL agent.

The Passive agent is hard coded to grasp at the start and let go when the object rests
at a support. In between it just compensates the gravity, i.e., is in “passive mode”. This
passive policy is also the internal baseline the robot compares its actions to when com-
puting its policy.

The Imitator agent follows the passive policy in states where it has yet to observe a
human action. Otherwise, it takes the action it has observed most recently. This can
capture most of the preference, but because it has no notion of intention, it will always
have a chance of nι−1

nι
, with nι the number of possible intentions, of choosing wrongly

in the deciding state. If the human decides to return the object to the start support,
the Imitator will not understand and keep trying to move elsewhere (if it observed an
action in that state before, coming from the same start support). The way we defined the
Imitator, allowing the start support to be also a goal support would mean that the robot
will not hold on to the object to let the human move it away from the start, as it does not
have an internal model to consider that option.

The plain ME-IRL agent learns its policy applying plain ME-IRL on the observed tra-
jectories to learn its reward function, without having an explicit internal model of the
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human. This is similar to Losey et al. (2022), except for that we update the model only
at the end of each episode, as we cannot observe the human intention (where the hu-
man wanted to go) before observing the final state of the episode. We use the same
intention-parameterized features as for our Learner, nor did we change any of the other
parameters. We initialize the feature weight as in the human model of our Learner. A
maximum likelihood estimate of the intention is obtained based on how often each in-
tention occurred in the current state given the start state. A more intelligent estimate
would improve the agent’s behavior. However, designing such an intention estimate is
not the topic of this chapter. It could be interesting for future work.

5.5. SCENARIOS

W E test our learning algorithm in two different cooperative scenarios. The scenario
of moving a clothes hanger (Fig. 5.1a) has a state space that allows human users a

number of different preferences while moving a clothes hanger between three possible
supports (intentions). We designed this scenario such that we could run it on a Franka
Emika Panda robot arm, to test our algorithm in a user study.

The scenario of moving a wheel between stands (Fig. 5.1b) has a larger state and
action space, that allows human preferences to include seemingly inefficient detours. In
this scenario, we test our algorithm only in simulation. In simulation, we can also easily
test the generalization to cases where the stands change position and height.

In both scenarios, we use the following learning parameters: For the iterative IRL,
a learning rate λ = 0.1 is used. The robot action exploration is restricted by a soft-max
temperature τR = 5, and, for the robot, with an additional bound η= 0.9. The human is
assumed to explore even less, τH = 25. The intention bias is chosen at β= 0.95.

5.5.1. CLOTHES HANGER SCENARIO

In the “Hanger Scenario”, we use a quaternion to define the object(=hanger) orientation.
We consider just a single rotation, around the vertical axis. There is no reason to not hold
the hanger with the hook on top, but the peg (A) (Fig. 5.1a) we can hang it on is oriented
differently than the rail on which we have our support points B and C.

Supports B and C are at the same height, support A is considerably lower. To each of
the supports, there is a mounting point, a bit over a hanger ‘radius’ away in ‘unhooking’
direction, so that the hanger is sufficiently clear to be rotated. In between these mount-
ing points, we define additional waypoints in space by recombining their (x, y) and z
positions. With only the two distinct heights, there are 24 states and between 2 and 6
actions per state, including not acting.

We set r 0 = −0.33, which gives us balanced behavior: reasonably careful not to take
wrong actions, yet not too afraid to act. For learning, we use discount factor γ= 0.9.

5.5.2. WHEEL SCENARIO

In the “Wheel Scenario”, we describe the object(=wheel) orientation by a single angle,
around the axis pointing from the robot to the human. The wheel can hang ‘vertically’
on the rack, or be placed ‘horizontally’ on one of two stands (Fig. 5.1b). The affordanceµ,
whether the robot and the human have a grasp on the wheel, is considered to be directly
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observable.

The rack and the two stands are all at different heights, respectively at 1.7, 1.0 and
1.2 m. Every episode, we initialize the positions of the stands at random, at a distance
between 1.6 and 3.6 m from the rack and between 1.0 and 2.2 m from each other. In-
termediate waypoints are defined as in the hanger scenario. Additionally, we define a
“comfortable carrying height”, at 0.95 m, below each mounting position. When working
with real people, this height should be adjusted according to how tall the user is. If a
point in space would collide with a stand, the point is projected in negative x-direction
by a bit over a wheel radius distance.

Moving up or down to different heights, are all separate actions. At each height, there
is the possibility to move over towards each of the other supports. All actions, of both
robot and human, are assumed to be directly observable by the robot. In total, there are
36 states and up to 8 possible actions per state.

We test different r 0. To better allow our human model to capture detour preferences,
and the robot model to support it, we lower our discount factor to γ= 0.6. As the human
model is learned from demonstrations that reach a goal, and the robot receives pun-
ishment for not supporting the human, the learned policies still terminate releasing the
wheel at a support, despite the low discount factor.

5.6. USER STUDY: CLOTHES HANGER SCENARIO

5.6.1. EXPERIMENT

We did a user study with a Franka Emika Panda robot arm and 24 users (16 male, 8 fe-
male) of an age between 19 and 77 years old, with the median at 28 and the interquartile
range between 25 and 35. Five of the participants had participated before in a user study
involving a similar robot arm; one participant had multiple years experience with collab-
orative robot arms including the Franka Emika Panda, although not in a setting that in-
volved physical interaction; one other participant had experience programming indus-
trial robot arms; and there was one participant with experience with physical human-
robot collaboration in terms of lane-keeping assistance.

The clothes hanger scenario was explained to the participants, including that the
robot would never be given the information of where the users were asked to hang the
hanger next (i.e., the intention). The users were informed that the robot could perform
only a few distinct actions between the supports and six distinct points in the interme-
diate space.

All participants went through the same familiarization phase, in which they first
moved the hanger around with the robot in passive/gravity compensation mode. Next,
the robot would play a pre-programmed sequence of actions, letting the human follow
and feel how it feels when the robot is maximally assistive. Then, the users were asked to
follow the same sequence of motions they had observed the robot to lead previously, but
this time with the robot trying to move elsewhere in each of the decision points in space.
This way, the users would get comfortable disagreeing with the robot in case it would not
follow their preference or intention. The participants could try each of the ‘modes’ until
they felt comfortable with whatever the robot would do during the actual experiment.

Now that the users felt somewhat familiar with the task and the robot, they were
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Table 5.2: Experimental episodes

Nr. from, to remarks

1 B, A initial behavior
2 A, B
3 B, A for the second time
4 A, C starting from A with different intention
5 C, B new region in the state space
6 B, C starting from B with different intention
7 C, A starting from C with different intention
8 A,(B)A changing intention: turning back halfway
9 A, B starting from A like in Episode 2

asked to specify their preference, segmenting the movement to the lower and rotated
support in {moving over horizontally, moving down, rotating} in the order of their choice,
as well as the way back. During the remainder of the experiment, they were instructed to
stick as closely to this preference as they could manage, no matter what the robot would
do.

The actual experiment then consisted of moving the hanger nine times to a next
hanging point (as listed in Tab. 5.2), while the robot would update its internal model
in between. The whole sequence took between 2.5 and 4 minutes. This was done once
with the robot applying the proposed IRL method, and once running an imitator base-
line. Half of the users experienced the Learner first, half of them the baseline, approxi-
mately alternating between participants, to average out the learning effect of the users.
After each set of learning episodes, the users filled out a questionnaire on what they felt
about the robot learning (on a 7-point Likert scale), and the NASA TLX questionnaire to
assess their personal experience. A demonstration of the experiment can be found here:
https://youtu.be/k-JYV4hyTs8.

The experiments were carried out in accordance with the guidelines and regulations
of the lab and the equipment. The experimental protocols were approved by the Human
Research Ethics Committee at the Delft University of Technology on 19/11/2021. All par-
ticipants signed their written informed consent before participating. All collected data
was anonymized before storage.

5.6.2. HYPOTHESES
The Learner tries right from the start to be of assistance. When in doubt of the user pref-
erence or intention, it does not act, as the punishment is less for letting the human lead
than for choosing a wrong action, such that the waiting “action” has largest expected
reward. However, once close to a support with little choice of actions left, it acts with-
out needing to observe the human first. Once it has observed previous roll-outs of the
task, the parameterized internal model tries to generalize the learned preferences across
the possible intentions. So once a side of the rack appears to be chosen, the robot may
provide assistance without before having observed the human move in that direction.
However, the awareness of multiple possible intentions, with our choice of r 0, leads to
there always being one state in which the robot leaves the initiative to the human, nec-

https://youtu.be/k-JYV4hyTs8
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essary to observe/predict the human’s intention.
The Imitator does not do anything until the task starting from a support has been

observed at least once. Then it copies what it observed the previous time. When en-
tering a new region in the state space (coming from a specific support), it stays again
passive. Without a notion of intentions, once starting the task from a support observed
previously, the robot never hesitates to act. It provides maximum support if the human
wants to go the same way. If not, the human has to ‘fight’ the robot, make it understand
the desired action goes elsewhere. This will be the case in the state where the human
chooses to take the turn to another support, and also in the case the human moves back
to the start support. The Imitator is by design not capable of understanding the start
support as goal support (Sec. 5.4.6).

Based on these differences, we expect the Learner to be overall more supportive in
the sense of taking the right action at the right time and being less passive in tasks and
states that were not observed before. We formulate the following hypotheses (w.r.t. the
Imitator baseline):
H1. The Learner will be better able to support the human preferences and intention.

As a result, we expect:
H2. The Learner makes the task easier for the human, in terms of reducing both physical
and perceived effort.

Furthermore, we test if:
H3. The user feels more comfortable when cooperating with Learner.

We test H1 objectively by comparing the relative number of actions the robot initi-
ated both correctly and wrongly. A large percentage of correct actions indicates a match
of preference, while a mismatch of intention increases the number of wrong actions.
Subjectively, we compare the questionnaire results on perceived understanding of pref-
erences and intentions, learning speed, and trust.

To test H2 objectively, we compare the force and torque exerted on the robot inte-
grated over the duration of the task. For subjective evaluation, users graded how easy
they felt the robot made the task, next to filling out the NASA TLX questionnaire. Addi-
tionally, the questionnaires allow us to evaluate H3.

Next to these hypotheses, we will qualitatively check the convergence of the learned
policy.

5.6.3. RESULTS
Fig. 5.3 shows the percentage of ‘correct’ and ‘wrong’ abstract actions taken by the robot,
lightly colored for the Imitator and darker colored for our Learner. For the plain ME-IRL
agent, we use the state sequences observed with the Learner, which are most clean of the
influence of wrongly initiated robot actions, and compare the actions the plain ME-IRL
agent would have taken. The results are shown in gray. The uncolored space in between
the bars indicates the number of state transitions in which the robot did not initiate an
action.

Actions are considered ‘correct’ if the next recognized proximal state corresponds to
the state the robot started acting towards in the previous state. This means an action
is registered as correct even when in between disagreement was detected and the robot
aborted its action. Considerable ‘false disagreements’ were detected when users found
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Figure 5.3: Percentage of active actions taken by the Imitator, Learner, and plain ME-IRL agent, for the nine
episodes of moving the hanger as tabulated in Tab. 5.2. The correct actions (number of times when the next
state recognized by the robot coincided with the state the robot decided to act towards in the previous state)
are shown from the bottom up, the wrong actions (times when the next state did not match the initiated action)
from above. To indicate the spread of the data, the dots represent the individual data points.

the robot too slow or pulled the robot with some force to the same next state but not via
the straight line the robot tried to track. On the other hand, users occasionally disagreed
close enough to the state the robot was acting towards to have the action registered as
‘correct’ before moving on to where they wanted to go. In those cases, the wrong action
taken is registered as a ‘correct’ plus a passive action. Because of this effect, we expect
the number of wrong actions for the plain ME-IRL agent to register slightly lower if they
were recorded with the actual users.

Episode 3 is the episode in which pure imitation should give the optimal result (de-
pending on the quality of the demonstration in Ep. 1). It is the only episode in which the
intention matches the previous episode starting from the same start state. Indeed, we
observe for this one (and only) episode that the Imitator outperforms the Learner. We
see that the plain ME-IRL agent overfits considerably on the policy it thinks best. Like
the imitator, it does very well in Ep. 3. However, as its learned model covers the full state
space, already at initialization, it chooses more wrong actions than the Imitator in all
other episodes. In many episodes, it also chooses more correct actions than the Imitator.
In Ep. 9, the Imitator has full state information, but no recent observation of the specific
intention. In Ep. 4, many users moved quite close to support B before moving over to
C. This resulted in the Imitator’s action going to B being registered as correct, while the
Learner waited to observe the intention, and then taking one wrong action believing the
user might intend to go to B. In all the other episodes, we see the Learner take at least as
many, and often considerably more, correct actions. The plain ME-IRL agent is seen to
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** * ***

Figure 5.4: Questionnaire results to statements from left to right: The robot made it easier for me to perform
the task. The robot understood my preferences, how I wanted to do the task. The robot was supporting me to
go where I wanted to go (intention). I was comfortable with what the robot was doing. The robot learned fast.
I trusted the robot. Significant differences between the methods are indicated by * (p < 0.1) and ** (p < 0.02).

generalize its observations less well, as it chooses fewer correct actions in most episodes.
Over all the episodes, the Learner takes significantly more correct and fewer wrong

actions compared to both the Imitator and the plain ME-IRL agent. We observe with sim-
ilar significance that the plain ME-IRL agent is estimated to choose both more wrong and
more correct actions than the Imitator. A two-tailed Wilcoxon signed rank test for paired
samples (as the data is not normally distributed) shows the differences to be significant
with p < 10−6 for all compared action percentages. These results support H1.

We see H1 further supported by how the users graded different aspects of the robot
performance (Fig. 5.4). The results for the two methods are compared using a two-tailed
paired t-test, testing if the Learner was perceived as a significant improvement over the
Imitator. The p-values are tabulated in the top half of Tab. 5.3. Significant differences are
indicated by * and ** in the figure.

The most significant results are: the users 1) found the task easier to perform with the
Learner compared to the Imitator, and 2) felt their intentions were better understood by
the Learner. Additionally, with 0.02 < p < 0.1, there is an indication that the users also
felt their preferences were better understood, and they trusted the Learner more than
the Imitator.

No difference is visible when it comes to how fast the users felt the robot was learning
from their input. Interestingly, if we look at the individual results, more than half of the
users felt the second method they observed learned faster. Since we alternated which
method was tried first, this change in perception is canceled out in the results.

As an objective measure of effort, we consider the forces and torques integrated over
the duration of the tasks. The duration is measured from the moment the robot starts
grasping until the robot has let go at the intended goal state. Since the Imitator never
let go between Episodes 8 and 9, these episodes are separated manually. Time in which
the robot lost grasp on the hanger and was not moving is subtracted. As the trend in the
resulting linear and angular impulse look very similar, we show only the linear impulse



5

80
5. SIMULTANEOUSLY LEARNING INTENTIONS AND PREFERENCES DURING PHYSICAL

HUMAN-ROBOT COOPERATION

Figure 5.5: Linear impulse (interaction forces integrated over time) with the Imitator and Learner for the nine
episodes of moving the hanger as tabulated in Tab. 5.2.

*

Figure 5.6: Results of the NASA TLX questionnaire. A lower score is better. Significant differences between the
methods are indicated by * (p < 0.1).

in Fig. 5.5. The imitator performs very badly in Episode 9, where it could not understand
that the human wanted to go back and had to be physically corrected until disagreement
on the last action made it abort and not attempt any further actions.

In general, comparing Figs. 5.5 and 5.3, we see that the registered impulse increased
when the robot was more active, regardless of the quality of the actions taken, with the
exception for Episode 3. This lack of support for H2 may be largely due to the preference
mismatch on the action level. People generally found the straight-line trajectories un-
natural, and several users seemed to prefer the robot to go faster. The presented method
focuses on preferences on the level of discrete states, extending it to additionally learn
preferences on how to transition between those states (Ch. 3), will likely lead to improve-
ment on this result. In the individual results, we observe (unsurprisingly) that most users
experienced lower mental demand the second time they did the task with the robot.
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Table 5.3: Results of the questionnaires for the Learner and Imitator compared with a two-tailed paired t-test.
The statements are phrased for the Learner w.r.t. the Imitator, as perceived by the users. P-values < 0.1 are
printed bold, indicating a significant result. Values between parentheses indicate the answers to a question
were not normally distributed (with p < 0.1) for one or both of the methods.

Statement p-Value

Robot made task easier 0.013
Robot understood preferences 0.070
Robot supported the user intention 0.013
User was comfortable with robot (0.137)
User thought robot learned fast 0.312
User trusted robot 0.062

Lower mental demand 0.521
Lower physical demand 0.286
Lower temporal demand (0.933)
Higher performance 0.072
Lower effort (0.173)
Lower frustration (0.175)

Subjectively, when explicitly questioned about the effort and demand of the task
(Fig. 5.6, Tab. 5.3), the users did not grade the methods significantly different. However,
they did feel they performed the task slightly better with the Learner compared to the
Imitator. Furthermore, the users very significantly found the task easier to perform with
the Learner compared to the Imitator (Fig. 5.4, Tab. 5.3). This does provide some weak
support to H2.

People did not report a significant increase in comfort with the Learner, but there is
an indication that they trusted the robot more and, more significantly, that they found it
easier to cooperate with. We can interpret this as a weak support to H3.

To check if this trust is well placed, we have a look at the policy the robot learned.
We need to look at this per preference, as the policy the robot learned is preference spe-
cific. Since our users were free to choose their preferences, we have more data on some
preferences than on others. Our users chose 9 different preferences in total. To get the
best impression of the variance between the users and how well the robot was able to
learn, we look at the most frequently chosen preference, which is marked in Fig. 5.1a by
the blue lines. Important states, in which different actions can be chosen, resulting in a
different preference, are marked in circles for the intentions to go from support B to A,
and from A to B.

Fig. 5.7 shows the learned action probabilities in those four critical states to those two
intentions for the preference chosen by most users: From the rack to the peg (intention
A): first move down (top left), then move over (top right), and finally rotate before hang-
ing; and on the way back (intention B): first move over (bottom left), then rotate (bottom
right), and finally move up before hanging the hanger on the rack. The actions shown
in the figure are the actions defining the preference. The lines show the likelihood of
the robot choosing the correct action compared to not taking an action (the dash-dotted
line at 1.0). In blue, we show the expected relative action probability obtained from 100
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Figure 5.7: The relative probability of the preferred action being chosen for a specific intention, in the four
states defining the preference that was chosen by the largest number of participants, as it was learned over the
episodes. The states s1, . . . , s4 are marked in Fig. 5.1a. The solid lines show the data from the five individual
users who had this preference. The blue area is the interquartile region of a 100 simulations that were run with
random start and goal supports, the dashed line shows the median.

simulations where the start and goal supports are chosen at random every episode, but
the human follows the said preference perfectly.

From the simulation results, we see that our learner is able to capture some action
preferences slower than others. This is due to the feature parameterization we chose.
Nevertheless, in most of the critical states and with most of the users, the robot learns
within a few episodes to recognize the correct action with a probability larger than the
probability of staying passive.

We need to make a distinction here between the states on the left and on the right of
Fig. 5.7. In states s1 and s4, in Fig. 5.1, we see a dashed line, an alternative path, going
to intention C. The action the human will take in these states depends very much on the
intention, while the states visited up to these states gave no information of the inten-
tion. In states s1 and s4, the Learner will not know where its partner wants to go. Not
to accidentally choose a wrong action, we expect the Learner to learn to wait in these
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states. The small number of wrong actions shown in Fig. 5.3 indicates that this is indeed
generally the case. It means that unless the Learner learns some really wrong behavior
in these states, the final performance is not visibly affected by the preference model in
these states. In these states we observe the largest effects of preference unlearning for
certain intentions.

Specifically, we see the following four cases in Fig. 5.7 (from left to right, top to bot-
tom): In s1 (or the equivalent state when coming from C), the moving down action is only
observed for intention A, in episodes 1, 3 and 7 (Tab. 5.2). In all other episodes, this pre-
ferred actions is slightly forgotten. This is also clearly illustrated by the wide blue band of
the interquartile region of the simulated results. It suffices to move to A once in a while to
keep the unlearning in check. Once moved down to the height of the goal, in s2, moving
over is quickly learned with little variance. This action is shared between all intentions
as the next action to take. In s4 when going to C (Ep. 4), it turned out to be physically very
hard to follow a more or less straight line to s5. In all of the recorded cases, the users first
moved to s3 before continuing to s5, confusing the robot, and unlearning that the human
wants to move over directly in the direction of the intended goal. Our features could not
capture the preference of choosing in state s3 whether or not to continue on to C. In s3,
learning to rotate before moving up to the final intended height was somewhat harder
to learn than the moving over to A in s2. Mostly the episodes going to A were confusing
here. Nevertheless, clear learning of this preference is observed.

Additionally, there is a large dip at Episode 8. There, the human changed intention
halfway to go back. This option was not included in the simulations shown in blue. At
runtime, we saw that the policy the robot learned is robust to such a change of intention.
However, it did confuse the model in the learning update, as our model takes the final
observed intention as the baseline intention for the entire episode.

5.7. ADDITIONAL SIMULATION STUDY: WHEEL SCENARIO

I N this section, we demonstrate the effect of different choices of r 0, which we choose
in Sec. 5.6 to maximize the learning effect, as well as the effect on the learning perfor-

mance of people acting less as deterministic agents. Because we can test with a larger
state and action space in simulation, we can now also investigate how well our Learner is
able to capture “inefficient” preferences, visiting more intermediate states than strictly
necessary. Also, we can easily move our supports around in the simulation to demon-
strate that our state space parameterization lets our agent generalize between contexts,
similar to Avaei et al. (2023).

Both human and robot are simulated using the world model. The human can be
controlled via a user interface, but for testing, we use pre-programmed human policies.
Two human policies πH(s, ι) were provided to the simulator, characterizing the different
preferences shown in Figure 5.8 (elaborating Fig. 5.1b). To these preferences, we can add
a probability of the human being passive.

Of the different r 0 we tested, we present the results to the following values:

r 0 =−0.25 Low punishment – the robot will wait when unsure which action to take.

r 0 =−0.50 Medium punishment – the robot may try an action if it believes it could be
better than waiting.
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Figure 5.8: Two preferences for moving the wheel between supports: 1. take the shortest path with the least
changes of direction, rotating at the last moment when necessary; 2. rotate the wheel to horizontal at the first
opportunity and move over at comfortable carrying height.

The start support and intention are chosen at random at the start of each episode. In
each simulation, our Learner starts learning from an initial human model without initial
preference (Sec. 5.4.5), and the Imitator starts with an empty list of actions to imitate.

Figures 5.9(a-b) show the mean and interquartile regions of the robot cooperation re-
ward for a hundred simulations per preference, for r 0 =−0.25 and r 0 =−0.5 respectively.
With a deterministic partner, we see our Learner converge within 4-8 episodes. The Im-
itator, after it has observed every combination of start and goal, settles down to take one
wrong action with a 50% chance per episode: in the state where the human shows their
intention. Here, we do not consider the possibility of going back to the start support.
Since moving between supports B and C requires one action less (the wheel does not
need to be rotated), the passive policy shows an interquartile range corresponding to
the one passive action difference.

For low waiting punishment, the learned robot policy converges to waiting only in
the state where the human shows their choice of intended goal. For the longer route
(Preference 2), this may take up to six episodes, for the shorter route, three episodes
already suffice. This is really fast. For medium waiting punishment, the robot is less
hesitant to take an action, even if it is not very certain it is correct, as long as it could
provide a higher reward. For a higher waiting punishment, the Learner converges to a
policy where, in the choice state, it randomly selects a goal, performing similarly to the
Imitator. The optimal value for r 0 depends on the scenario, as well as on how careful or
daring the human prefers their robot partner to behave.

For sufficiently low waiting punishment, the Learner outperforms the Imitator. De-
pending on the objective (provide as much active support as possible or offer the least
wrong support), the Imitator may approach the Learner’s performance once it has seen
which actions to imitate, if there are few enough possible partner intentions.

The Learner is also naturally able to cope well with cases where the human might
start to rely on the robot once it has learned the preference to steer the large part of the
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Figure 5.9: Learning behavior compared, mean and interquartile regions comparing the Learner with the Imi-
tator and Passive agent for the two different punishments for not acting (a,b), and (c) with a human who does
not act for 20% of the time.

Figure 5.10: Learned human policy estimate (top) and resulting robot policy (bottom) of Preference 1 (straight)
for the two different punishments for not acting (a,b), and (c) with a human who does not act for 20% of
the time. The colored lines, with interquartile bounds, correspond to the following state-action pairs, for the
intention to go to rack A (Fig. 5.1: 1. s = horizontal right above a stand (B or C), a = move over to rack; 2. s =
horizontal low next to rack, a = move up to final height; 3. s = horizontal high next to rack, a = rotate; 4. s =
vertical high next to rack, a = put on rack; 5. s = on rack, a = let go of wheel; for the intention to go to a stand (B
or C): 6. s = vertical high right next to rack, a = move over to intended stand; 7. s = vertical high above stand,
a = move down to just above stand; 8. s = vertical right above stand, a = rotate; 9. s = horizontal right above
stand, a = put on stand; 10. s = on stand, a = let go of wheel.
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Figure 5.11: Learned human policy estimate (top) and resulting robot policy (bottom) of Preference 2 (detour)
for the two different punishments for not acting (a,b), and (c) with a human who does not act for 20% of
the time. The colored lines, with interquartile bounds, correspond to the following state-action pairs, for the
intention to go to rack A (Fig. 5.1: 1. s = horizontal right above a stand (B or C), a = move to comfort height; 2.
s = horizontal low next to stand, a = move over to rack; 3. s = horizontal low next to rack, a = move up to final
height; 4. s = horizontal high next to rack, a = rotate; 5. s = vertical high next to rack, a = put on rack; 6. s =
on rack, a = let go of wheel; for the intention to go to a stand (B or C): 7. s = vertical high right next to rack, a =
rotate; 8. s = horizontal high right next to rack, a = move down to comfort height; 9. s = horizontal low next to
rack, a = move over to intended stand; 10. s = horizontal low next to stand, a = move up to just above stand;
11. s = horizontal right above stand, a = put on stand; 12. s = on stand, a = let go of wheel.

trajectory and the human can follow passively. The Imitator could be programmed not
to update its action table when the human is passive, but this would add another prior.
The beauty of the proposed learning algorithm is that it does not need any prior and
learns very fast nevertheless.

In Fig. 5.9, the only prior is the nominal passive policy which we used as a working
baseline, but we obtained similar results without it, or when we initialize with a different
preference.

Figures 5.10 and 5.11 show the human policy estimate and the robot policy in terms
of action probabilities that should be dominant in the states along the preferred trajec-
tory, to each of the cases in Fig. 5.9. We see that in every case, the human policy estimate
converges to the same almost equally fast, even when the partner is partially passive.

In Fig. 5.11, we see our model has trouble capturing one specific human action. This
explains why our learner struggles more to learn the presented detour case. In that state,
the robot remains unsure about which corresponding action to take, resulting in an extra
passive action most of the times it passes through that state.

5.8. CONCLUSION

T HIS chapter presents a novel method for learning a human preference model for
intention-aware cooperation from collaborative episodes. This enables our robot

system to learn a personalized model of its human partner for improved collaboration.
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Our main contribution is a concept for learning human preferences as an explicit func-
tion of intention, exploiting Theory of Mind to the second order. The acquired model
captures preferences of how to collaboratively move objects, as well as how to infer the
human’s intention from the collaborative actions. We could show that our model al-
lows the robot to take proactive actions that match both its partner’s preferences and
intention, with fewer mistakes than an imitation learner would make, or a plain ME-IRL
learner without a human model.

A user study revealed that participants using our learning algorithm feel significantly
more understood and supported in their preferences and intentions compared to an
agent that just imitates their actions. Furthermore, the users felt that the task was much
easier to perform with our agent, and felt it improved their performance. The fact that
this was observed during only nine episodes, with seven different combinations of start
position and intention, demonstrates how the generalizing capabilities of our method
make our agent learn really fast.

The proposed concepts come with some limitations and assumptions. Firstly, we
overestimate the knowledge of the human of the robot’s policy, by giving the model ac-
cess to the actual most recent robot policy. Secondly, preference learning and inten-
tion estimation were restricted to prescribed motions between a small set of predefined
waypoints. Future work will focus on relaxing this assumption. Thirdly, the large set of
hand-designed features used in the Inverse Reinforcement Learning limits the scalabil-
ity of the method. Future work should explore and integrate learning of a minimal set
of optimal intention-parameterized features, e.g., following Bobu et al. (2022). Despite
these assumptions, our methods enable a robot system to learn the user’s preferences
as well as to estimate their intentions from only a very few interactive episodes. This al-
lows robots to quickly learn how to provide people with personalized proactive support,
improving human-robot interaction and physical cooperation.
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I N this thesis, I successfully captured personalized models of the people with whom I
set our robots to cooperate, whether the model concerned the user’s ergonomics, or

path or task preferences. In all studies, a sufficient model for the robot to work with,
and make a significant difference, was captured requiring only minutes of interaction
time with the specific user. All methods were tested with a physical robot that interacted
physically with actual people on a physical lab setup (not just in simulation).

In Chap. 2, we measured improved ergonomics in our users, which can be seen as a
factor improving comfort. In the user studies of Chap. 3 and 5, which were performed
with a larger group of mostly novice users, our users generally reported they felt comfort-
able physically interacting with our robot. In Chap. 5, our users compared our robot to a
neutral baseline during physical cooperation. On several measures indicating comfort,
our robot was scored significantly higher. Therefore, I conclude I have been successful
in making our two robots learn useful personalized models that capture user behavior
from very little data, for the improvement of the user’s comfort during cooperation with
the robot.

The following two sections provide a more detailed discussion of the conclusions to
the presented ergonomic optimization and preference learning. This chapter concludes
with an outlook, a vision of of how in the future the topics presented separately in the
different chapters may be combined into a single common framework.

6.1. OPTIMIZING ERGONOMICS

I N Chap. 2, we presented a novel concept for computing optimal ergonomics-enhan-
ced plans in cooperative physical human-robot interaction tasks. In a small proof-

of-concept user study, we demonstrated that our approach is capable of finding a plan
which affords improved ergonomics for people working with a robot. Our predictor cap-
tures a pose model that is specific to a person. Yet, there is room for improving the
model to predict either the most likely pose (from previous observations) or the most
ergonomic configuration. The expected optimum is to be able to predict the most er-
gonomic pose the person is likely to assume. To capture an accurate model, the inter-
dependence between poses may very likely no longer be neglected. Additionally, people
may be more or less consequent and precise in their movements. To accurately cap-
ture, or learn, a personalized model of someone’s postural behavior, ideally containing
parameterized task dependencies, is a whole field of research in itself.

Fortunately, already with a simple ergonomics predictor such as the one presented
in Chap. 2, robots can make cooperative plans with minimum, or at least bounded, er-
gonomic cost. We tested this by letting our users follow the plan the robot had optimized.
Future research steps would be to validate the robot plans while leaving the users free to
make their own decisions on the task (similar to Vianello et al. (2021), but allowing users
to change grasp), and to let the robot update its internal models to improve its predic-
tions.

In the later chapters, we worked towards the latter, although without further consid-
ering the ergonomics. From users’ responses, we concluded that the assumption that
ergonomics can explain people’s preferences was too strong.

Nevertheless, users would still benefit when the cooperation is optimized ergonom-
ically. However, the performance of the ergonomic optimization and the quality of the
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result highly depends on the ergonomics metric used to evaluate the ergonomic cost.
On the one hand, current ergonomic metrics which are validated by ergonomics experts
are ill-suited for optimization in continuous joint space. On the other hand, metrics
that make perfect sense from an engineering perspective have not been verified by er-
gonomics experts. We chose to stay as close as we could to an expert-validated metric.

Very important for further progress in ergonomic optimization of dynamic tasks,
supported by automation, is to have ergonomics models suitable for such optimiza-
tion verified by ergonomics experts. This is future work that requires collaboration of
ergonomists and engineers.

6.2. LEARNING PREFERENCES

T O leave people their freedom of preferences, I built Chap. 3 and 5 on the principle of
inverse reinforcement learning (IRL). User studies supported that we were successful

in capturing people’s preferences in a short window of interaction with our robot while
leaving the people the freedom to choose their own preferences.

As it turned out that existing methods still had a hard time including velocity prefer-
ences, we set out to achieve that in Chap. 3. We were successful by separating the path
and the velocity preferences into two optimization steps. A comparison study showed
the sensitivity of both our method and the closest related method from literature, which
is also IRL-based, to the choice of features used for learning. In this thesis, we used
hand-designed features, as was done in the closest related method in literature, chosen
strategically to be able to generalize between the different contexts we presented to our
robot and users. Ideally, we would also get rid of this restriction and design an algorithm
capable of extracting relevant parameterizations and features from the observations as
well, unbiased by the engineer who designed the learning framework. This was out of
the scope of this thesis and left for future work.

To be able to learn preferences during physical interaction with a robot, we devel-
oped the DAVI controller presented in Chap. 4. In a small user study, we verified its
capability to smoothly transition between letting the robot execute the task and letting
the human demonstrate alternative, possibly previously unseen, behaviors. The two-
way haptic communication between the human and the robot allows intuitive mode
switching between human and robot control without taking the human attention off the
physical task, the way pressing a button would do. However, not all users agreed on the
intuitiveness of the haptic cues. We witnessed different users preferring different cues
and (speed of) robot response. This showed the relevance of a new direction for fu-
ture work: to also learn people’s preferences regarding the learning process itself and the
communication of it.

In Chap. 5, we were successful in making a robot learn a personalized model of its
human partner for improved collaboration. We showed that our model exploiting two-
level theory of mind (ToM) reasoning allows the robot to take proactive actions that
match both its partner’s preferences and intention. The robot’s explicit awareness that
its partner could have one out of several intentions let our users feel significantly more
understood and supported than the baseline algorithm to which we compared, which
imitated its previous observations. With the internal models we added, of the task and
the human partner, our users, in general, agreed that it was easier to do the task with the
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robot, and that they were better at it as a team. Further improvement is to be expected
when further refining the applied ToM, and when the robot additionally learns its part-
ner’s preferences on the trajectory level. This is further discussed in the vision presented
in the next and final section of this thesis.

6.3. OUTLOOK

T HIS thesis discussed a number of separate topics which combined have the potential
to make an impact beyond the sum of the individual contributions. Here, I will build

up my vision in reverse topic order.
Consider the following complex task: For moving, all household items have to be

packed into a van: boxes, furniture, plants, and other odd items. The overall goal is
clear: in the end, everything needs to be packed into the van. The exact intention of
what should end up exactly where is not so straightforward for people to decide and not
something you would want to have to tell a robot.

Next to common sense (e.g., heavy stuff on which other things can be stably stacked
should go at the bottom, fragile objects on top), preferences apply when such rules are
less clear (e.g., what may be packed to the back and what is rather kept in front). From
that, the final intended goal configuration will become clear as the packing progresses.
While packing, a robot learning these preferences can help plan ahead to arrive at a fea-
sible goal configuration that meets the preferences (extending the research presented in
Chap. 5).

When the robot has learned what may be stacked where, the person leading the pack-
ing can still have multiple intentions of what should go where. While helping the person
carry, the robot may infer from the trajectory where the person is likely to want to go
(applying the intention recognition of Chap. 5 on the trajectory level of Chap, 3). With-
out knowing what may be stacked where, the number of possible intentions is larger.
After stacking a couple of things, patterns may be observed in the recognized intentions
for learning the preference of what may be stacked where in the larger plan. This is a
hierarchical application of the learning problem treated in Chap. 5.

For moving the objects, it would be of great support if the robot would learn what
paths and velocities around the other objects (obstacles) are preferred, from the force
feedback (pushing and pulling) it witnesses during the carrying (extending the research
of Chap. 3 to the online learning during cooperation setting of Chap. 5).

Ultimately, it would be even better if the robot would additionally be aware of the
ergonomics of its partner. Combining all chapters in a common framework, the robot
could optimize its partner’s ergonomics, for example by taking most of the weight and
holding it at the optimal height (Chap. 2) within or on the bounds provided by the prefer-
ences it learned. Ideally, the posture prediction presented in Chap. 2 gets updated on the
new posture data obtained on the task (preferably without requiring users to wear a sen-
sor suit). As the ergonomics prediction gains accuracy, the robot may subtly pull its part-
ner to more ergonomic poses. If the human adapts, the robot will update its trajectory-
level preference model and may be able to continue improving the human ergonomics
to the benefit of its partner without annoying its partners by suggesting sudden large
changes in behavior.

Many research steps remain to be taken before this vision can become reality. In this
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thesis, I provided a number of ingredients that may help us get personal physical robot
support to that level one day in the future.
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