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Andreev bound states are fermionic states localized in weak links between superconductors which can
be occupied with spinful quasiparticles. Microwave experiments using superconducting circuits with InAs/Al
nanowire Josephson junctions have recently enabled probing and coherent manipulation of Andreev states but
have remained limited to zero or small magnetic fields. Here, we use a flux-tunable superconducting circuit
compatible in magnetic fields up to 1 T to perform spectroscopy of spin-polarized Andreev states up to ∼250 mT,
beyond which the spectrum becomes gapless. We identify singlet and triplet states of two quasiparticles
occupying different Andreev states through their dispersion in magnetic field. These states are split by exchange
interaction and couple via spin-orbit coupling, analogously to two-electron states in quantum dots. We also show
that the magnetic field allows to drive a direct spin-flip transition of a single quasiparticle trapped in the junction.
Finally, we measure a gate- and field-dependent anomalous phase shift of the Andreev spectrum, of magnitude
up to ∼0.7π . Our observations demonstrate alternative ways to manipulate Andreev states in a magnetic field
and reveal spin-polarized triplet states that carry supercurrent.

DOI: 10.1103/PhysRevB.109.045302

I. INTRODUCTION

Experimental results in recent years have advanced our
understanding of the Josephson effect in terms of Andreev
bound states (ABS) [1–3]. When two superconductors (S) are
separated by a normal (N) material, the transport of Cooper
pairs between them is mediated by Andreev reflections at the
N-S interfaces. The consequent formation of current-carrying,
discrete Andreev states in S-N-S junctions can be observed
with microwave spectroscopy [4–15].

In s-wave superconductors, which preserve time-reversal
symmetry, Cooper pairs are formed with opposite spins in
singlet states with zero total spin. On the other hand, in
semiconductors with strong spin-orbit coupling that are prox-
imitized by an s-wave superconductor [16,17], a parallel
magnetic field can induce a triplet p-wave component in the
superconducting pairing due to the competition of the spin-
orbit interaction and the Zeeman effect [18–21]. Such triplet
pairing is of fundamental interest, in part because it is a
key ingredient to creating topological superconducting phases
with Majorana zero modes [22–24].

*j.j.wesdorp@tudelft.nl
†gijs.delange@microsoft.com

The consequences of triplet pairing on the Josephson effect
have been widely investigated theoretically and include the
occurrence of the anomalous Josephson effect and of spin-
polarized supercurrents [25–29]. The experimental detection
has, however, proven more challenging. Early signatures of
triplet supercurrent have been reported in Josephson junctions
with magnetic materials [30–33] and more recently in ex-
periments making use of materials with spin-orbit coupling
to induce spin mixing [34–37]. In hybrid semiconductor-
superconductor systems, a precursor of triplet pairing stems
from the observation of the anomalous Josephson effect in
InAs/Al nanowires [38,39] and in two-dimensional electron
gases (2DEGs) [40]. Additionally, there are indications of
triplet pairing from microwave susceptibility measurements of
resonators made out of InAs/Al 2DEGs [41] and from spin-
polarized crossed Andreev reflection in InSb/Al nanowires
[42]. Evidence of spin-polarized triplet pairs based on mi-
crowave absorption and their associated supercurrent has,
however, been elusive.

Embedding nanowire Josephson junctions in microwave
superconducting circuits allows for probing of individual
Andreev states with a remarkable energy resolution of
∼100 MHz (i.e., ∼0.4 µeV) [8–15] and with potential spin
sensitivity [9–13]. Thus, such circuits provide an excellent
platform to study the (spin) properties of Andreev bound
states. In fact, microwave spectroscopy has already revealed
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that spin-orbit coupling [9,10] and electron-electron inter-
actions [14,15] are crucial ingredients that determine the
many-body Andreev spectrum of hybrid nanowire Josephson
junctions. However, so far, such experiments using supercon-
ducting circuits have been limited to zero or small magnetic
fields.

In this work, we demonstrate measurements of the An-
dreev spectra of an InAs/Al nanowire Josephson junction
embedded in a superconducting circuit with magnetic fields
up to ∼250 mT. The magnetic field dependence of the
microwave absorption spectrum shows clear signatures of ex-
cited Andreev levels in a triplet state. The spectrum can be
well understood based on a minimal model which includes
spin-orbit coupling, the Zeeman effect, and ferromagnetic
exchange interaction between Andreev bound states, origi-
nating from electron-electron interactions in the junction. A
particularly interesting feature of the data is the presence of
a singlet-triplet avoided crossing. Due to quasiparticle poi-
soning [43], the microwave absorption spectra also reveal
transitions between odd-parity states, which were recently
used to realize Andreev spin qubits [11]. Here, we detect the
direct driving of the spin-flip transition of an Andreev bound
state, activated by the magnetic field. Finally, at high fields
we observe a gate-tunable anomalous Josephson effect and
resolve the individual contributions of Andreev bound states
to the anomalous phase shift. In the next section, we kick off
the presentation of our results by discussing the experimen-
tal setup and the ingredients that made these measurements
possible.

II. FIELD-COMPATIBLE DESIGN AND OPERATION

Previous microwave experiments probing Andreev states
with superconducting circuits have traditionally used thick
(150-nm) coplanar waveguides [5,9,12,15] or coplanar
stripline resonators [8,10,11,14]. Here, we use thin-film
(20-nm) lumped-element resonators due to their proven re-
silience to parallel fields shown earlier in fluxonium devices
[44]. Additionally, the second harmonic of the resonator is
expected to be at higher frequencies (28.5 GHz, see Supple-
mental Material [45]) relative to the lowest mode compared
to a coplanar geometry of equal fundamental frequency. This
helps with spectroscopic measurements at frequencies up to
the superconducting gap � ≈ 44 GHz.

We fabricate multiple resonators on a chip, one of which is
shown in Fig. 1(a). The resonator is coupled to a common feed
line that is used for microwave readout. The lumped-element
resonator, with resonance frequency f0 = 4.823 GHz, con-
sists of a capacitor (Cr ≈ 47 fF) that is connected to the ground
plane via an inductor (Lr ≈ 22 nH). The inductance is domi-
nated by the kinetic inductance of the thin-film NbTiN [46].
The inductor has a width of 300 nm, such that the required
perpendicular field for vortex generation corresponding to
one magnetic flux quantum through 3002 nm2 is >20 mT in
locations where the current is strongest. This is well above
perpendicular fields expected due to misalignment when using
a vector magnet. We patterned vortex traps with a diameter of
80 nm within an 8-µm radius in the capacitor and surrounding
ground planes with a 200-nm gap from structure edges to pre-
vent flux jumps due to moving vortices [47,48]. The inductor
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FIG. 1. Field-compatible circuit design and operation principle.
(a) Device image and circuit schematic. A lumped element resonator
is capacitively coupled (Cc) to a transmission line (orange). The res-
onator consists of a capacitor (blue) with capacitance Cr to the ground
(light gray), and inductor (Lr , white) connected to the ground via a
gradiometric RF-SQUID that modulates the total inductance. (b) The
SQUID consists of two loops of inductance Ls that shunt a nanowire
Josephson junction with gate-tunable Josephson inductance LJ. A
drive line (yellow) is used for spectroscopy at frequency fd. The
gradiometric design reduces sensitivity to perpendicular field By and
the shunt inductance determines the coupling strength to Andreev
bound states in the junction. The magnetic field coordinate system
aligned to the nanowire and used throughout the text is indicated
[45]. (c) Amplitude and phase response of the resonator when the
junction is pinched off. (d) Three-dimensional sketch of the SQUID
loop. An InAs nanowire (blue) with Al shell (silver) and a 144-nm
junction [13] is suspended on gate dielectric (teal) above bottom
gates (gold). By applying an in-plane field Bx , we can thread a flux
through a vertically defined loop (dashed dots). (e) SQUID oscilla-
tions when applying B′

x . (f) Gate dependence of the junction without
applying flux. f0 increases as the critical current (inductance) of the
junction increases (decreases).

is connected to the ground via a gradiometric radio-frequency
superconducting quantum interference device (RF-SQUID)
[Fig. 1(b)] [44], which consists of a nanowire Josephson junc-
tion shunted on two sides by an inductance (Ls ≈ 0.7 nH),
forming two nearly equal sized loops. We define a Josephson
junction by selectively etching away a 144-nm section in
a ∼6-nm-thick aluminum shell that covers two facets of a
hexagonal InAs nanowire of ∼80-nm diameter [49]. The
nanowire is placed on bottom gates defined in the NbTiN
layer, which are covered with a 28-nm Si3N4 dielectric before
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nanowire placement. To each resonator, we add capacitive
coupling to an additional transmission line to drive transitions
in the junction and perform spectroscopy.

The specific gradiometric loop design [Figs. 1(b) and 1(d)]
was optimized to allow for flux-biased measurements in high
magnetic field. The phase difference over the junction ϕ =
2π�/�0 can be tuned by applying a flux � through the
SQUID, where �0 = h/2e is the magnetic flux quantum. In
a gradiometric geometry, the two loops create opposite cir-
culating currents through the nanowire Josephson junction
under applied flux by out-of-plane field By (see Supplemental
Material [45]). The effective loop area is therefore propor-
tional to the area difference between the loops, which here
is determined by the inaccuracy of the nanowire placement
with respect to the center axis of the two loops (∼300 nm).
The resulting effective loop area (∼0.77 µm2 ,�0 ∼ 2.6 mT)
is much smaller than the individual patterned loop areas
(∼50 µm2 ) and those used in previous works (>1000 µm2 )
that did not measure Andreev spectra in substantial magnetic
fields [8–11]. A small effective loop is desired to render the
SQUID insensitive to flux from out-of-plane field (By), reduc-
ing flux noise in the presence of strong external fields. The
gradiometric design also allows for picking a shunt inductance
Ls—which determines the coupling strength to the Josephson
junction—nearly independent of the loop size, which makes
for easier design and fabrication.

Additionally, our device design exploits the nanowire
placement for optimal flux tuning. That is, by placing the
nanowire on top of the bottom gates, we lift the nanowire
and thus elevate part of the loop vertically in the z-y plane
[Fig. 1(d)]. This allows flux biasing the SQUID with an
in-plane field Bx parallel to the rest of the superconducting
circuit. Since the magnetic field Bx induces currents flowing in
the same direction through the nanowire Josephson junction,
the effective flux is proportional to twice the out-of-plane loop
area (A = 0.28 µm2 , �0 ∼ 3.65 mT). This is shown in the
measured SQUID oscillations on the device over a range of
20 mT [Fig. 1(e)]. Due to the thin-film NbTiN, the area of su-
perconducting film that is exposed to parallel field Bx is much
smaller compared to the area exposed to perpendicular field
By. This is essential for flux biasing without flux jumps (see
Supplemental Material [45] for a comparison between tuning
with Bx and By), because vortex nucleation and circulating
currents are proportional to the total area of superconducting
film exposed to magnetic field [50,51].

Throughout this work we define �B as the magnetic field
aligned to the chip plane and with z along the nanowire axis
[Fig. 1(d)] and �B′ as the magnetic field direction output by
each of the coils of the used vector magnet (see Supplemental
Material for the alignment procedure [45]). We operationally
define � as � = B′

x/3.65 mT + c, where c is an offset added
to compensate for fluxoids trapped in the outer loop, flux
due to the B′

x component of applied Bz, and a small residual
(∼0.05�0, see Supplemental Material [45]).

We operate the devices by sending a near-resonant probe
tone at frequency fr through the feed line and monitoring the
transmitted complex scattering parameter S21 using a vector
network analyzer. Out of the four resonators we focus on
the only one in which the junction showed considerable gate

response ( f0 = 4.823 GHz). At fr = f0 there is a dip in the
magnitude |S21| and a ∼60◦ shift in the phase ∠S21 [Fig. 1(c)].
The Josephson junction then acts as a gate- and flux-tunable
inductor LJ [Fig. 1(b)] that changes f0 via

f0 = 1

2π
√

(Lr + Lsquid )C
,

where L−1
squid = L−1

J + 2L−1
s . Thus, by monitoring changes in

f0 we get access to LJ, which is related to the Andreev bound
state energies and their occupation [52–54]. As we increase
the gate voltage Vg on the bottom gates, we observe a trend
that more current-carrying channels start to conduct in the
junction, which decreases LJ and increases f0 [Fig. 1(f)].
The smaller modulations on top of the general trend can be
attributed to mesoscopic fluctuations of the transparency of in-
dividual Andreev states [55,56]. As shown later, we use this to
tune the Andreev energies over a large range within small mV
gate ranges. From the change in inductance at ϕ = 0 between
the junction being in an open configuration (Vg = 1.68 V) and
pinched off (Vg = 0 V, LJ = ∞), we estimate LJ = 38 nH at
Vg = 1.68 V, resulting in an estimate for the maximal critical
current Ic ≈ ϕ0/LJ = 8.5 nA. In general, the Andreev states
induce a state-dependent frequency shift [12] which generates
changes in ∠S21 monitored at fr. This allows us to perform
spectroscopy by sweeping a drive tone fd via the drive line,
which results in changes in ∠S21 when fd is equal to an energy
difference between Andreev levels of the same parity.

III. ANDREEV BOUND STATE SPECTRUM

In a nanowire Josephson junction, Andreev states arise due
to constructive interference after consecutive Andreev reflec-
tions from the hybrid superconducting leads [1,2] [Fig. 2(a)].
The energy of an Andreev state depends on an energy-
dependent phase gained while Andreev reflection occurs, as
well as a phase gained while traversing the junction. In the
presence of time-reversal symmetry, which holds at ϕ = 0 or
ϕ = π when the magnetic field is zero, the Andreev energies
are twofold degenerate because of Kramers’ theorem. The
number of Kramers doublets (manifolds) present below the
gap depends on the number of the occupied subbands in the
leads, and on the length of the junction. In what follows, we
restrict our attention to the two lowest manifolds of Andreev
levels, labeled a and b [57].

Recent works have highlighted the importance of both
spin-orbit interaction [9,10,13,58] and electron-electron in-
teraction [14,15] to understand the Andreev spectrum of
nanowire Josephson junctions. While Andreev bound states
are spin degenerate at all phases in the absence of spin-orbit
interaction, the latter may lift the degeneracy away from
ϕ = 0 and ϕ = π . This occurs in junctions of finite length
such that a phase shift accumulated due to a spin-dependent
Fermi velocity becomes relevant [25,28,58–63], see Fig. 2(b).
The typical phase dispersion of the resulting spin-split man-
ifolds is illustrated in Fig. 2(c). As inferred in Refs. [15,64],
electron-electron interaction manifests itself via a ferromag-
netic exchange interaction −J �S2 between two quasiparticles
in a state of total spin �S, each occupying a different manifold.
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FIG. 2. Hybrid nanowire Josephson junction hosting spin-split
Andreev bound states at zero field. (a) Schematic of two Andreev
reflection processes in the nanowire junction. Spin-orbit-induced
subband hybridization rotates the spins of the bottom Andreev states
and lowers the Fermi velocity (vF). Note that the time-reversed pro-
cesses are also possible (not shown), and that the Andreev states are
generally superpositions of these four Andreev reflection processes.
(b) Electron band structure indicating hybridized subbands due to
spin-orbit interaction. The anticrossings lead to a rotated spin of the
inner Andreev mode and a spin-dependent vF. (c) Phase dependence
of two low-lying spinful Andreev manifolds (a, b) in the noninteract-
ing picture [9]. Arrows denote possible parity-conserving microwave
transitions. Pairs of blue arrows indicate even-parity transitions start-
ing from the ground state. Yellow arrows indicate transitions starting
from one of the two lowest levels occupied with a quasiparticle.
(d) Evolution of even-parity transitions at phase difference ϕ = π us-
ing Eq. (1), illustrating the effect of exchange interaction J , spin-orbit
interaction, and Zeeman energy using α|| < J < �, which resembles
the experiment. J splits the four mixed states {Mab} into a singlet Sab

and three triplet transitions {T } = {T0, T+, T−}. Spin-orbit interaction
hybridizes T0 and Sa, moving the now hybridized T̃0 up and S̃a down
in energy. Finally, a magnetic field splits T±.

We now present a minimal model that captures the com-
bined effect of spin-orbit interaction, exchange energy, and
the Zeeman effect of an external magnetic field on the
two manifolds, restricting our attention to the case ϕ = π .
To do so it is convenient to consider the Andreev states
{|↓a〉 , |↑a〉 , |↓b〉 , |↑b〉} belonging to the a or b manifold and
with spin up or down with respect to the z axis, running
parallel to the nanowire. Denoting with γ

†
iσ the operator which

creates a quasiparticle with spin σ in the i = a, b manifold, the

model Hamiltonian is

H =
∑

i,σ

(Ei + σg∗
i Bz )γ †

iσ γiσ − J/2�S2

+
∑

σ

iσ̄ α⊥γ †
aσ γbσ + iα‖γ †

aσ̄ γbσ + H.c. . (1)

Here, Ei is the energy of the Andreev manifold in the absence
of spin-orbit interaction; Bz is the parallel magnetic field and
g∗

i is an effective g factor which can depend on the manifold;
�S = 1

2

∑
i,σ,σ ′ γ

†
iσ (�σ )σ,σ ′γiσ ′ is the total spin, where �σ is the

vector of Pauli matrices; and finally, iα|| and iα⊥ are the matrix
elements of the spin-orbit interaction described with a two-
dimensional (2D) Rashba model, respectively in the direction
parallel and perpendicular to the nanowire. More details about
each term are given in the Supplemental Material [45].

Within this minimal model, it is straightforward to find the
single-particle and two-particle energy levels, which deter-
mine the transitions measured in spectroscopy. In particular,
the simultaneous occupation of the junction by two quasi-
particles results in six possible states. These are two singlet
same-manifold states |Sa〉 = |↑a↓a〉 and |Sb〉 = |↑b↓b〉 as
well as four states corresponding to a mixed occupation of the
two manifolds. For the latter, it is natural to pick the basis of
simultaneous eigenstates of �S2 and Sz. These are the singlet
|Sab〉 = (|↑a↓b〉 − |↓a↑b〉)/

√
2 and the triplet states |T0〉 =

(|↑a↓b〉 + |↓a↑b〉)/
√

2, |T+〉 = |↑a↑b〉, and |T−〉 = |↓a↓b〉.
Note that without exchange interaction, a more natural basis
of mixed states would be {|T−〉 , |↑a↓b〉 , |↓a↑b〉 , |T+〉}. Also,
note that spin-orbit interaction breaks spin-rotation symmetry
by hybridizing spin and spatial degrees of freedom. Therefore,
in its presence, spin is in general not a good quantum number,
and the singlet and triplet states hybridize. Nevertheless, for
many parameter regimes the eigenstates of Eq. (1) are well
approximated by the singlet or triplet states, with expectation
values of the spin close to zero and one. With this in mind, in
the rest of the manuscript we will for simplicity keep referring
to singlet, doublet, and triplet states, except in cases where
spin-orbit effects change this simple picture appreciably.

In microwave spectroscopy, we only have access to transi-
tions between many-body states of the same fermion parity.
In Fig. 2(c) we label the possible transitions in both even- and
odd-parity sectors. In the even-parity sector, we only consider
transition from the ground state of the junction |0〉, with
no quasiparticle excitations. There are therefore six possible
transitions (pairs of blue arrows, the transition to |Sb〉 is not
shown), which we will denote by their final state. The lowest
energy transition is the singlet pair transition Sa from |0〉 to
|↑a↓a〉. The four transitions that involve breaking a Cooper
pair and splitting over the two different manifolds a and b will
be globally denoted as {Mab} [blue arrows on the right side
of Fig. 2(c)]. Note that these four transitions are degenerate in
the absence of spin-orbit interaction and exchange interaction.

In the odd-parity sector, we denote the lowest doublet in-
tramanifold transitions as Da : |↑a〉 ↔ |↓a〉. This is a direct
spin-flip of a quasiparticle occupying the lowest Andreev
manifold [left yellow arrow in Fig. 2(c)]. Furthermore, we
denote the set of four inter-manifold transitions of a sin-
gle quasiparticle from {|↑a〉 , |↓a〉} to {|↑b〉 , |↓b〉} as {Iab}
[set of yellow arrows in Fig. 2(c)]. In the data presented in
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the singlet Sa and triplet T0, denoted as S̃a and T̃0, respectively. The avoided crossing between T− and S̃a only occurs in the presence of a
spin-orbit component α|| along the wire.

Sec. IV, we find signatures of more manifolds present at
higher energies, due to additional intermanifold transitions,
i.e., {Iac}, {Iad}. However, because the even-parity transitions
corresponding to those manifolds are at frequencies outside
the measurement range at zero magnetic field and only appear
at higher fields, we restrict the modeling and data analysis to
the lowest two manifolds a, b.

In Fig. 2(d) we sketch the resulting modifications to the
two-particle spectrum as predicted by the model of Eq. (1).
The exchange interaction lowers the energy of the triplet states
and, in doing so, partially lifts the degeneracy between the
singlet transition and triplet transitions [Fig. 2(d), left panel].
The role of spin-orbit interaction is different: it breaks the
spin-rotation symmetry and lifts the degeneracy of single-
particle states away from the time-reversal invariant points
ϕ = 0, π . The combination of spin-orbit interaction and ex-
change interaction can completely lift the degeneracy of the
triplet states even at ϕ = 0, π [15]. In the minimal model, this
occurs partially, by hybridizing |T0〉 and |Sa〉. We will denote
the transitions to the hybridized states |T̃0〉 and |S̃a〉 by T̃0

and S̃a, respectively [Fig. 2(d), middle panel]. The remaining
degeneracy within the manifold of two-particle states, that of
the triplet states |T±〉, is lifted by the external magnetic field
via the Zeeman effect [Fig. 2(d), right panel].

IV. ANDREEV SPECTROSCOPY: SINGLET, DOUBLET,
AND TRIPLET TRANSITIONS

With the theory developed, we now continue with the mea-
surement results. We first measure the junction spectrum at
zero magnetic field versus applied flux � [Fig. 3(a)]. The
gate is set to Vg = 625 mV, where we have a few Andreev
transitions present and the spectrum is dominated by the low-
est two manifolds (see Supplemental Material for additional
gate dependence [45]). Due to the presence of quasiparticle
poisoning, the junction fluctuates between the even-parity
ground state |0〉 with no Andreev level occupied and, when a
quasiparticle has entered the junction due to a poisoning event,
one of the odd-parity doublet states |↑a〉, |↓a〉. In a related
work performed on the same junction, we measured typical
poisoning times of ∼0.5 ms [13], much smaller than the in-
tegration time per point ∼100 ms: thus, the measured spectra
are an average of those resulting from initial states with and
without a quasiparticle. Odd- and even-parity transitions can
be distinguished by their opposite sign in the dispersive fre-
quency shift induced on the resonator [12] and characteristic
dispersion. For instance, the phase response near � = �0/2
is negative (blue) for even parity and positive (yellow) for odd
parity.
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We first establish that we detect the same types of tran-
sitions as in recent experimental works [9,10,13]. These are
the even-parity transition with parabolic dispersion around
16 GHz at � = �0/2, and the transitions starting from the
poisoned doublet state, Iab, with the characteristic “spider-
like” shape due to the spin-orbit splitting of the Andreev levels
in manifolds a and b. Note that the lowest bundle is associated
with {Iab} and higher bundles likely correspond to transitions
from manifold a to higher manifolds c, d, . . . present in the
junction at higher energies. We investigate the splitting of the
{Iac} transitions due to Bx and Bz in the Supplemental Material
[45]. A symmetric splitting due to Bz and asymmetric splitting
due to Bx was used in Ref. [9] to infer that the direction of
the effective magnetic field generated by spin-orbit interaction
was in plane and perpendicular to their full-shell nanowire.
Here, we do not observe such a clear differentiation between
symmetric and asymmetric splitting. This leads us to suspect
that the effective spin-orbit field is not parallel to Bx, which
is consistent with recent findings indicating that, in partial-
shell wires, the spin-orbit direction depends strongly on the
direction of the local electric field in the wire, which in turns
depends on the position and number of Al facets and gate
geometry [65,66].

Furthermore, we see a second even-parity transition dis-
persing in a similar way as the first, but at higher frequency,
with a minimum around 30 GHz. The identification of the final
states in the even transitions visible at zero field is resolved
later in this section on the basis of the magnetic field depen-
dence. The horizontal bands visible in Figs. 3(a) and 3(b),
mostly at higher frequencies, are attributed to resonances in
the drive line and connected circuit, resulting in a frequency-
dependent driving strength.

Next, we measure a parallel field dependence of the An-
dreev spectrum, while keeping the gate fixed [Fig. 3(b)], in
order to investigate the spin texture of the excited states. By
aligning the magnetic field, we keep the phase drop over the
junction fixed at ϕ ≈ π (see Supplemental Material for the
alignment procedure [45]) and polarize the spins with Bz [see
Fig. 1(d)]. A rich spectrum emerges, with several notable
features in both the even and odd transitions.

We start by describing the even-parity spectrum ob-
served in Fig. 3(b). Based on the phase response at � ≈
�0/2 in Fig. 3(a) and known dispersion from earlier works
[4,5,7,8,15], we can distinguish even-parity transitions as
spectral lines with a negative (blue) response. The even tran-
sitions observed at 16 GHz and 31 GHz at Bz = 0 remain
approximately constant at low fields, as expected from a
transition to a final state with a small spin polarization, thus
essentially insensitive to the Zeeman effect. We also observe
two even-parity transitions that disperse linearly in field in
opposite directions starting at approximately 24 GHz. We thus
infer that the final states reached by these transitions are sensi-
tive to the Zeeman effect and must therefore have some degree
of spin polarization along the field direction. The fact that they
originate from nearly the same frequency as the bundle of four
odd-parity transitions Iac at � ≈ �0/2 [visible in Fig. 3(a) at
∼23 GHz] is a coincidence and depends on the specific Vg set
point. Notably, they also display an avoided crossing with the
nondispersing even transitions at Bz ≈50 mT, confirming that
these transitions are of equal parity.

In order to label the even-parity transitions correctly, we
first attempt to fit the main features of the spectrum to our
model of Eq. (1) without assuming electron-electron inter-
actions. For this, we assume the even transition at 16 GHz
in Figs. 3(a) and 3(b) is Sa, while the one at 31 GHz is
due to a second Andreev manifold, i.e., the pair transition
Sb. We then perform a best fit to the extracted transition
frequencies at Bz = 0, while imposing a constraint that J =
0. While such a fit is possible, this choice of parameters
also predicts the presence of two additional spectral lines
corresponding to the mixed final states without exchange in-
teraction ∼ |↑a↓b〉 , |↓a↑b〉. These even-parity states disperse
with the difference of the effective g factors of the two man-
ifolds and should thus appear as two additional lines with a
negative (blue) phase response, which are not observed in the
field-dependent data. We have investigated, using a standard
noninteracting tight-binding model for the nanowire Joseph-
son junction, whether the absence of these transitions could be
explained on the basis of a selection rule, i.e., vanishing matrix
elements [45]. We have indeed found cases where transitions
to |↑a↓b〉 and |↓a↑b〉 have vanishingly small matrix elements
at ϕ = π . However, even in these cases, the noninteracting
model predicts them to be typically more visible than T+ and
T− at phase differences away from ϕ = π . The latter fact
can be understood on the basis that, unlike |T+〉 and |T−〉,
the final states |↑a↓b〉 and |↓a↑b〉 do not require a spin-flip
and thus should be more easily observable at small magnetic
fields. Overall, this picture is inconsistent with additional
measurements of the phase dependence of these states at finite
magnetic field (see Supplemental Material [45]), where we did
not observe the additional transitions.

Having thus disfavored a scenario based on the absence
of interactions between Andreev states, we proceed by ana-
lyzing the consequence of setting J �= 0 in Eq. (1). Only in
the presence of both a finite spin-orbit interaction α⊥, α|| �= 0
and J �= 0 can we reproduce the spectrum produced by the
lowest two manifolds a, b for small magnetic fields, as seen
in the data [Fig. 3(c), right panel]. From the fit of the data
positions at zero field, we find J = 17 GHz and α⊥ = 4.2 GHz
(see Supplemental Material for lines on top of the data [45]).
The extracted exchange is comparable to estimated values of
the effective charging energy of the normal region in a similar
device (∼0.1�) [15], and thus singlet-doublet ground state
phase transitions are not expected. This is different from the
situation reported in Ref. [14] (∼�), or when a quantum dot
is gate-defined in the junction, such as in Ref. [67], where the
interaction is estimated to be ∼10�. With these parameters,
the two even transitions that do not disperse in field in Fig. 3
are identified with the hybridized states S̃a and T̃0, motivating
the ordering of transitions displayed in Fig. 2(d). Note that the
fit simultaneously takes into account and matches the position
of the odd-parity intermanifold transitions Iab (yellow dashed
lines) at zero field, visible in Fig. 3(a) but only occasionally
and feebly in Fig. 3(b). Iab is more visible at other flux values
shown in the phase dependence at finite Bz in the Supplemen-
tal Material [45]. The reason why the Iac transitions starting at
∼23 GHz in Fig. 3(b) are more visible at �0/2 compared to
Iab is presently unclear.

The effective g factors of the Andreev manifolds are not
varied in the fit, but fixed to values extracted separately, as
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discussed in the next section. From the fit, together with
the wire diameter, we can estimate a lower bound on the
Rashba spin-orbit strength αR of αR � 2 meVnm (see Sup-
plemental Material [45]). This is on the lower side of typical
values of 5−40 meVnm found in literature for InAs nanowires
[7,9,68,69]. Finally, the avoided crossings between T− and
S̃a, circled in Fig. 3, and between T+ and T̃0 are only repro-
duced by the model if we include a finite parallel spin-orbit
component α‖, set to 1 GHz for visibility. The extracted size
of the T−, S̃a crossing from the data, approximated by half
the frequency difference of the transitions in the center of
the crossing, is ∼ 0.5 GHz. Overall, the observation of the
triplet transitions T−, T̃0, T+, in finite magnetic field, together
with the fact that they have a strong phase dispersion (see
Supplemental Material [45]), implies that part of the super-
current flowing in the junction is carried by spin-polarized
triplet pairs. From the slope of the transition T− versus phase
at Bz = 95 mT, we can estimate a change in current of ap-
proximately 2.3 nA with respect to the supercurrent flowing
when the junction is in the ground state (see Supplemental
Material [45]). This is a measure of the supercurrent carried
by the spin-polarized pair.

At higher fields we observe a strong downward trend of the
transition frequencies. We suspect that this is dominated by
the orbital effect of the magnetic field in the nanowire [70],
since the 6-nm aluminum shell has a much higher critical
field exceeding 1 T [49]. In the Supplemental Material, we
investigate the presence of a revival of the Andreev spec-
trum in fields up to 1 T [45], motivated by observations of
a plasma mode revival on similar nanowires in a transmon
geometry [71,72] and supercurrent revival [70] due to inter-
ference effects, but we do not find it. The presence of a revival
would open up the path towards detection of signatures in the
microwave response of a topological phase transition in the
presence of multiple Andreev manifolds [73], manifesting as
the fractional Josephson effect [18,74].

V. DIRECTLY DRIVEN ANDREEV SPIN-FLIP

So far we have mostly considered the even-parity part of
the spectrum of Fig. 3(b). However, when the junction initially
is in one of the doublet states due to quasiparticle poisoning,
we can distinguish a linearly upward dispersing transition Da

with a positive (yellow) phase response [Fig. 3(b)] at finite
field. We attribute this to a directly driven spin-flip between
the spin-up |↑a〉 and spin-down |↓a〉 levels of the lowest An-
dreev manifold [Fig. 3(c)].

From the slope of Da we can extract an effective g factor
g∗

a = 5.3 of the lowest manifold. The triplet transitions T+ and
T− should disperse in field with the half-sum of the effective
g factors of the two manifolds: g∗ = ±1/2(g∗

a + g∗
b) = 7.8.

Thus, we infer that the higher doublet has a higher effec-
tive g factor of g∗

b = 10.3. These values are used for the
fit to the theory model presented in Fig. 3(c) and are con-
sistent with hybridized states, where the g factor should be
between |gAl| ≈ 2 and |gInAs| ≈ 15. On the other hand, T̃0

and Sab disperse weakly in field. We attribute this to a com-
petition between the exchange and the difference in Zeeman
energy of each manifold. By solving the model without spin-
orbit interaction, the eigenenergies of |T0〉 and |Sab〉 result in

FIG. 4. Phase dependence of the singlet Sa and directly driven
spin-flip doublet Da transition in the lowest Andreev manifold at
finite magnetic field. (a) Measured low-energy transition spectra at
Vg = 628 mV for increasing magnetic fields where the transparency
of the lowest Andreev state is at a local maximum. The spin-flip
doublet transition is visible at Bz > 50 mT. (b) Schematic of the
two transitions at zero and finite field. A magnetic field induces a
finite matrix element to allow observation of the Da : |↑a〉 ↔ |↓a〉
transition in the spectrum. (c) Extracted doublet transition frequency
versus phase at � = �0/2, indicated by stars in (a). The transition
evolves linearly versus field until spin-orbit interaction causes the
lowest Andreev level to interact with higher levels that come down
with Bz, bringing down the transition frequency.

Ea + Eb − J/2 ± √
(J/2)2 + (μBBz )2(g∗

a − g∗
b)2, which is lin-

ear in Bz when Bz � J and quadratic in Bz when Bz � J .
Thus, for large fields their dispersion converges to that of the
noninteracting states |↑a↓b〉 , |↓a↑b〉. A possible cause of the
large difference in the g factors of the Andreev manifolds is
that the Fermi velocity of the first subband is higher than that
of the second subband due to the larger distance from the band
bottom. Therefore, the effective spin-orbit strength is higher
for the first subband [75], reducing g∗

a more than g∗
b.

We note that we do not observe the intradoublet transition
Db of the higher doublet, which would have a larger slope
due to the higher g factor. This can be explained by the fact
that the initial state of this transition is too short-lived: any
quasiparticle occupying the higher manifold quickly decays
into the lowest manifold. A comparison of the measured parity
lifetimes ∼0.5 ms that we recently reported for this device
[13] to measured lifetimes ∼4 µs of an excited quasiparticle in
the higher manifold in InAs/Al nanowires [10] supports this.

So far, we have exclusively inferred the observation of a
direct Andreev spin-flip transition Da from data at � ≈ �0/2.
In order to provide additional evidence supporting this obser-
vation, we now explore the phase dispersion of Da [Fig. 4]. To
facilitate this, we exploit the gate tunability of the nanowire
Josephson junction to move to a nearby gate setting Vg =
628 mV, where the lowest manifold has a high transparency
and thus Da is energetically separated from the rest of the
spectrum (see Supplemental Material for the gate dependence
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at Bz = 0 T [45]). In Fig. 4(a) we show the evolution of the
phase dispersion when increasing Bz. At Bz = 0, we only see
the singlet transition Sa. When we increase Bz, we observe
both Sa and the odd-parity spin-flip doublet Da, as indicated in
the diagram of Fig. 4(b). As the dispersive shift in the presence
of resonator crossings in general can switch signs [12], which
would change their color in Fig. 3, we have confirmed the
odd-parity nature by performing parity-selective spectroscopy
[13] at Bz = 100 mT in the Supplemental Material [45]. As
expected, the phase dispersion of Sa stays constant at small
fields since it is spin-singlet or hybridized with T0, while Da

moves up in frequency linearly [Fig. 4(c)] with g∗
a ≈ 6.5. Note

that g∗
a differs from the previous gate setting (see Supplemen-

tal Material [45]).
The lack of Da at zero field can be explained by two

possible causes. At Bz = 0, the steady-state population of |↑a〉
and |↓a〉 could be nearly equal due to the near-degeneracy
in energy, reducing signal when driving Da. Additionally, the
matrix element to drive Da is expected to vanish at zero field
[75] (see Supplemental Material [45]), which is why recent
works on coherent manipulation of an Andreev spin qubit [11]
were forced to utilize Raman transitions to be able to achieve
population transfer. Additionally, recent observations of Da at
zero field [12] indeed observed a vanishing of the transition
around ϕ = π . A finite magnetic field in combination with
spin-orbit coupling increases the matrix element, thus facili-
tating direct driving of this transition at B > 0 [thicker yellow
line in Fig. 4(b)]. The field also favors the occupation of |↑a〉,
possibly increasing the population difference and therefore the
strength of the signal.

Although Sa has a large dispersion, Da only has a small
phase dispersion (∼2 GHz). This is consistent with expec-
tations, since the dispersion is only caused by the effective
spin-orbit splitting of the Andreev levels [58]. Finally, note
that the minimum of Da is not aligned with Sa. Using tight-
binding simulations of a similar scenario (see Supplemental
Material [45]), we found that a possible explanation could be
due to a component of the effective spin orbit field BSO parallel
to Bz, consistent with the earlier mentioned field dependence
of the interband odd-parity transitions. The observation of
the spin-flip transition in a magnetic field opens up the path
towards directly driven superconducting spin qubits [60,76]
and allows tuning the qubit frequency over a wide range of
frequency, depending on the field strength.

VI. GATE-DEPENDENT ANOMALOUS JOSEPHSON
EFFECT AT FINITE FIELDS

In Fig. 3(b) we have shown the field evolution at fixed
phase difference. The entire phase dispersion is also of in-
terest, because of the possible presence of the anomalous
Josephson effect (AJE) [25,28,62,77–81]. To investigate its
occurrence, we measured finite-field spectra at different gate
voltages, several of which are shown in Fig. 5(a) (see Sup-
plemental Material for all data [45]). We track the minima
and maxima of this transition, indicated with the white and
black stars, respectively. As we increase the gate voltage, the
transition starts to shift horizontally to the left, demonstrating

the phase shift in the spectrum. Both even- and odd-parity
transitions (offset with a nearly π phase) exhibit a shift.

In Fig. 5(d) we show the extracted shift of the maxima
for all measured spectra versus gate, resulting in a continu-
ously gate-tunable relative shift up to �ϕ = 0.72π at Vg =
629 mV with respect to the reference phase at V0 = 620.6 mV.
For these measurements, the magnetic field is set to Bz =
220 mT and we add a perpendicular component Bx = 45 mT
(equivalent to � = 12.3�0) [Fig. 5(b)]. The perpendicular
component is added to reduce flux jumps due to zero-field
crossings. Additionally, we expected the AJE to be stronger in
the presence of a perpendicular field component [38,62]. The
choice of field was limited in the Bx direction by the maximum
output of the current source. Beyond Bz = 220 mT, we lost
visibility in the two-tone spectra.

In essence, the AJE occurs because coupling between dif-
ferent Andreev levels pushes their minima away from ϕ = 0
[28,62]. The minimum of the ground state energy, which is a
sum over all the Andreev energies, then also shifts away from
ϕ = 0 and the junction will assume a phase difference that
minimizes the ground state energy at ϕ = ϕ0, or, if a phase
difference is imposed externally in a loop geometry, a finite
current will flow at zero external flux through the loop.

For the AJE to occur, breaking of time-reversal symmetry
is a necessary but not sufficient condition. Additional spatial
or spin-rotation symmetries need to be broken depending
on the setup [82–84]. A Zeeman field breaks time-reversal
symmetry and spatial symmetries can be broken by spin-orbit
interaction in the presence of a nonsymmetric potential [81]
or multiple subbands [28]. In our system we are clearly in
a regime with multiple occupied subbands [Fig. 3], evident
by the many Andreev transitions visible at higher fields. Due
to the asymmetry of the gates with respect to the junction
(see device images in Ref. [13]), we would not expect a
symmetric potential. Thus, we expect to see the AJE. In recent
experiments demonstrating the AJE, measurements of the DC
supercurrent [38–40,84], or of the ground state Josephson
energy [44], were used to probe the anomalous phase shift
caused by the summed contributions of all Andreev levels. In
Fig. 5(a) we add to this by showing the underlying micro-
scopic origin of the anomalous supercurrent: the phase shifts
of Andreev transitions, which imply shifts of the individual
Andreev levels, and which we can measure directly in mag-
netic fields strong enough to produce this effect.

To compare with supercurrent measurements, we also mea-
sure the SQUID oscillations in the resonator in the same
gate regime [Fig. 5(c)]. The blue data points in Fig. 5(d)
correspond to the maxima in the single tone (ST) resonator
traces in Fig. 5(c). The frequency shift of the resonator f0

originates from the dispersive coupling with the junction in
the ground state, and so it is a measure of the phase shift of
the ground state current-phase relation of the junction. Since
the total ϕ0 results from contributions of different channels,
which may lead to cancellation if these channels have different
phase shifts (see Supplemental Material [45] for a larger fre-
quency range than Fig. 5(a) illustrating the different shifts per
Andreev state), it is not surprising that the phase shift in f0 is
smaller than the phase shift of the individual lowest Andreev
states in Fig. 5(d).

045302-8



MICROWAVE SPECTROSCOPY OF INTERACTING ANDREEV … PHYSICAL REVIEW B 109, 045302 (2024)

FIG. 5. Gate-dependent anomalous Josephson effect of both individual Andreev transitions and aggregate supercurrent in the presence of
finite magnetic field: Bz = 220 mT and Bx = 45 mT. (a) In the two-tone spectra, we follow a transition shifting to the left with increasing gate
voltage. We suspect this is an odd-parity transition (see Supplemental Material for the identification and comparison of even- and odd-parity
phase shifts [45]). Dashed vertical lines indicate the positions of the maximum (black) and minimum (white) of the reference gate voltage.
(b) Diagram of the SQUID loop with B indicating the direction of the field. (c) SQUID oscillations in the resonator frequency in the same
field and gate settings as the spectra in (a). They undergo a leftward phase shift with an increasing gate voltage. The blue dots indicate the
positions of the maxima for each Vg. The distortion of the lines in the middle region are caused by avoided crossings between Andreev state
transition frequencies and the resonator when the transparency of the junction is high. (d) Phase shift extracted from the two-tone excitation
spectra [colored markers indicate the corresponding panel in (a)] with respect to a reference gate voltage V0 = 620.6 mV. Additionally, the
phase shift �ϕ f0 extracted from resonator SQUID oscillations (c) are shown.

A gate-induced phase shift can have other explanations
different than the AJE, and we now discuss measures we took
to rule those out. When sweeping the large vector magnet,
flux can be trapped or detrapped on chip or drift over time,
which can cause unwanted phase shifts. To rule out flux drift,
we measured the three-dimensional (3D) map in the spectra of
Fig. 5(a) by sweeping fd for each Vg before stepping flux. This
ensures that the change in phase is caused by Vg. Alternatively,
a change in total supercurrent can change the phase drop
over the junction when the shunt inductance is large due to
a nonlinear relation between � and ϕ. In the Supplemental
Material we estimate that we should be in a linear regime
for the given Ls and typical Ic [45]. Also, we measured data
at lower field strengths and we saw no anomalous shift at
B = 0 [45]. To exclude a trivial origin of the observed phase
shift by a gate-induced change in effective loop size, we have
also kept track of the difference between two maxima in the
two-tone spectra as an estimate of the total period. We saw
no clear correlation with the phase shift. Fluctuations of the
period were around �� = 6 m�0. This can at most account
for a phase shift of �ϕ = 0.14π , much smaller than what
we report here. To further investigate the cause of the gate
dependence of the AJE, we performed a series of parallel
field sweeps versus gate in the Supplemental Material [45].
Here, by inspecting the Da transition where it was visible, we

extracted g∗
a as a function of Vg, which is correlated with the

size of the phase shift. This would indicate the AJE scales with
the effective Zeeman energy of the lowest Andreev manifold.
We have also performed measurements of the AJE with the
field vector reversed, both for the SQUID oscillations and
the spectroscopy. Here, we observe a reversal of the phase
shift as expected (see Supplemental Material [45]). We thus
conclude that the observed phase shift [Fig. 5] is indeed due
to the AJE and not due to the alternative causes mentioned
above.

VII. CONCLUSIONS

In this work, we have performed microwave spectroscopy
of Andreev bound states in a nanowire Josephson junction
in a magnetic field, using a field-compatible superconduct-
ing resonator. By aligning the magnetic field parallel to the
nanowire, we have investigated the field dependence of the
many-body spectrum at fixed phase difference over the junc-
tion (ϕ = π ), for both even and odd fermion parity. In the
even-parity sector, we distinguished singlet- and triplet-like
Andreev states, hybridized by spin-orbit interaction and split
by exchange interaction. In the odd parity, at finite field, we
observed the direct doublet spin-flip transition in the lowest
Andreev manifold. At fields larger than Bz = 170 mT, we
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found a strong gate-tunable anomalous Josephson effect in
the many-body spectrum, currently of interest due to its en-
visioned application in spintronics [33]. Our findings confirm
that both spin-orbit interaction and electron-electron interac-
tions are important to understand Andreev spectra in InAs/Al
Josephson junctions.

The observed hybridization of triplet and singlet An-
dreev transitions is consistent with predictions that in a finite
magnetic field, the induced superconducting pairing in the
semiconducting nanowire is a mixture of singlet and triplet
components [18,19]. However, our measurements probe states
localized at the Josephson junction, which depend on both
local and bulk properties, and we cannot exclude that spin-
orbit interaction is only active in the junction, but not in the
leads. Thus, our measurements should be complemented with
methods that can single out the bulk properties of the nanowire
[41,85,86].

It remains an open question to explore the dependence
of the Andreev spectra on the electron density, in both the
proximitized leads and in the junction itself, which is of
importance for topological superconductivity. Signatures of
topological phase diagrams could be observable in microwave
spectroscopy [73,87,88] due to the onset of the fractional
Josephson effect, but it seems crucial to extend available
theory to understand the effect of interactions and g-factor
renormalization. To prevent the closing of the spectral gap due
to orbital interference, it would be interesting to perform these
measurements in devices with a lower density of states. This
could be aided by another choice of material, e.g., InSb, which
has a lower effective mass and smaller band offset with Al [89]
compared to InAs.

Spectroscopy of Andreev states using superconducting cir-
cuitry allow the combination of spectroscopic measurements
with high time resolution, allowing, e.g., parity-selective spec-
troscopy, as we have shown recently at zero field [13]. In the
future, when combined with on-chip flux control and paramet-
ric amplification readily available in the superconducting cir-
cuit community, this combination should allow for fast mea-
surements of the phase periodicity of individual Andreev lev-
els in time scales of GHz to MHz. This type of measurement
could provide a more controlled way towards the detection of
the fractional Josephson effect, not hindered by the presence
of quasiparticle poisoning [18] or Landau-Zener effects [90].

Additionally, the observation of the spin-flip transition as
well as a singlet-triplet avoided crossing can provide alter-
native ways to manipulate Andreev (spin) qubits [5,8,10,11],
that exploit an external field. In particular, the direct spin-flip
transition activated by the magnetic field makes it possi-
ble to circumvent the need to use used Raman techniques
[11] involving a second bound state in order to manipulate
the spin of an Andreev state [58]. Furthermore, the singlet-
triplet avoided crossing is particularly interesting as it opens
up the possibility to manipulate Andreev pairs in analogy
with singlet-triplet qubits in semiconducting quantum dots
[91,92].

Data, processing, and scripts for the presented figures are
available online via Ref. [104].
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