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We provide a unified approach to S-estimation in balanced linear mod-
els with structured covariance matrices. Of main interest are S-estimators for
linear mixed effects models, but our approach also includes S-estimators in
several other standard multivariate models, such as multiple regression, mul-
tivariate regression and multivariate location and scatter. We provide suffi-
cient conditions for the existence of S-functionals and S-estimators, estab-
lish asymptotic properties such as consistency and asymptotic normality, and
derive their robustness properties in terms of breakdown point and influence
function. All the results are obtained for general identifiable covariance struc-
tures and are established under mild conditions on the distribution of the ob-
servations, which goes far beyond models with elliptically contoured densi-
ties. Some of our results are new and others are more general than existing
ones in the literature. In this way, this manuscript completes and improves
results on S-estimation in a wide variety of multivariate models. We illustrate
our results by means of a simulation study and an application to data from a
trial on the treatment of lead-exposed children.

1. Introduction. Linear models are widely used and provide a versatile approach for
analyzing correlated responses, such as longitudinal data, growth data or repeated measure-
ments. In such models, each subject i, i = 1, . . . , n is observed at ki occasions, and the vector
of responses yi is assumed to arise from the model yi = Xiβ + ui , where Xi is the design
matrix for the ith subject and ui is a vector whose covariance matrix can be used to model
the correlation between the responses. One possibility is the linear mixed effects model, in
which the random effects together with the measurement error yields a specific covariance
structure depending on a vector θ consisting of some unknown covariance parameters. Other
covariance structures may arise, for example, if the ui are the outcome of a time series; see,
for example, [16] or [12] for different possible covariance structures.

Maximum likelihood estimation of β and θ has been studied, for example, in [14, 19, 32];
see also [9, 12]. To be resistant against outliers, robust methods have been investigated for lin-
ear mixed effects models, for example, in [1, 4–6, 15, 29]. This mostly concerns S-estimators,
originally introduced in the multiple regression context by Rousseeuw and Yohai [34] and ex-
tended to multivariate location and scatter in [8, 20], to multivariate regression in [39], and to
linear mixed effects models in [4, 6, 15]. S-estimators are well-known smooth versions of the
minimum volume ellipsoid estimator [33] that are highly resistant against outliers. As such,
S-estimators have gained popularity as robust estimators, but they may also serve as initial
estimators to further improve the efficiency. However, the theory about these estimators is far
from complete, even in balanced models where the number of observed responses is the same
for all subjects.
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In view of this, we provide a unified approach to S-estimation in balanced linear models
with structured covariance matrices, and postpone a unified approach for unbalanced models
to a future paper. The balanced setup is already quite flexible and includes several specific
multivariate statistical models. Of main interest are S-estimators for linear mixed effects mod-
els, but our approach also includes S-estimators in several other standard multivariate models,
such as multiple regression, multivariate regression and multivariate location and scatter. We
provide sufficient conditions for the existence of S-functionals and S-estimators, establish
their asymptotic properties, such as consistency and asymptotic normality, and derive their
robustness properties in terms of breakdown point and influence function. All results are ob-
tained for a large class of identifiable covariance structures, and are established under very
mild conditions on the distribution of the observations, which goes far beyond models with
elliptically contoured densities. In this way, some of our results are new and others are more
general than existing ones in the literature.

Existence of S-estimators and S-functionals is established under mild conditions. Although
existence of the estimators seems a basic requirement, such results are missing for instance for
multivariate regression in [39] and for linear mixed effects models in [4, 6]. We obtain robust-
ness properties for S-estimators, such as breakdown point and influence function, under mild
conditions on collections of observations and under mild conditions on the distribution of the
observations. High breakdown and a bounded influence function seem basic requirements
for a robust method, but both properties are not available for linear mixed effects models [4,
6]. For multivariate regression [39], the influence function is only determined at distributions
with an elliptical contoured density. Finally, we establish consistency and asymptotic normal-
ity for S-estimators under mild conditions on the distribution of the observations. A rigorous
derivation is missing for multivariate regression [39], or is only available for observations
from a normal distribution [4, 34].

We apply our asymptotic results, such as influence function and asymptotic normality, to
the special case for which the distribution of the observations corresponds to an elliptically
contoured density. In this way, we retrieve earlier results found in [20, 34, 39]. Somewhat
surprisingly, the asymptotic variances of our S-estimators for linear mixed effects models in
which the response has an elliptically contoured density, differ from the ones found in [6].
We investigate this difference by means of a simulation study.

The paper is organized as follows. In Section 2, we explain the model in detail and provide
some examples of standard multivariate models that are included in our setup. In Section 3,
we define the S-estimator and S-functional and in Section 4 we give conditions under which
they exist. In Section 5, we establish continuity of the S-functional, which is then used to
obtain consistency of the S-estimator. Section 6 deals with the breakdown point. Section 7
provides the preparation for Sections 8 and 9 in which we obtain the influence function and
establish asymptotic normality. Finally, in Section 10, we illustrate our results by means of
a simulation and investigate the performance of our estimators by means of an application
to data from a trial on the treatment of lead-exposed children. All proofs are available as
Supplementary Material [25].

2. Balanced models with structured covariances. We consider independent observa-
tions (y1,X1), . . . , (yn,Xn), for which we assume the following model:

(1) yi = Xiβ + ui , i = 1, . . . , n,

where yi ∈ R
k contains repeated measurements for the ith subject, β ∈ R

q is an unknown
parameter vector, Xi ∈ R

k×q is a known design matrix and ui ∈ R
k are unobservable inde-

pendent mean zero random vectors with covariance matrix V ∈ PDS(k), the class of positive
definite symmetric k × k matrices. The model is balanced in the sense that all yi have the
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same dimension. Furthermore, we consider a structured covariance matrix, that is, the ma-
trix V = V(θ) is a known function of unknown covariance parameters combined in a vector
θ ∈R

l . We first discuss some examples that are covered by this setup.

EXAMPLE 1. An important case of interest is the (balanced) linear mixed effects model

yi = Xiβ + Zγi + εi , i = 1, . . . , n.

This model arises from ui = Zγ i + εi , for i = 1, . . . , n, where Z ∈ R
k×g is known

and γ i ∈ R
g and εi ∈ R

k are independent mean zero random variables, with unknown
covariance matrices G and R, respectively. In this case, V(θ) = ZGZT + R and θ =
(vech(G)T ,vech(R)T )T , where

(2) vech(A) = (a11, . . . , ak1, a22, . . . , akk)

is the unique k(k + 1)/2-vector that stacks the columns of the lower triangle elements of a
symmetric matrix A. In full generality, the model is usually overparametrized and one may
run into identifiability problems. A more feasible example is obtained by taking R = σ 2

0 Ik ,
Z = [Z1 · · · Zr ] and γ i = (γi1 . . . , γir)

T , where the Zj ’s are known k × gj design matrices
and the γij ∈R

gj are independent mean zero random variables with covariance matrix σ 2
j Igj

,
for j = 1, . . . , r . This leads to

(3) yi = Xiβ +
r∑

j=1

Zj γij + εi , i = 1, . . . , n,

with V(θ) = ∑r
j=1 σ 2

j Zj ZT
j + σ 2

0 Ik and θ = (σ 2
0 , σ 2

1 , . . . , σ 2
r ).

EXAMPLE 2. An example with an unstructured covariance is the multivariate linear re-
gression model

(4) yi = BT xi + ui , i = 1, . . . , n,

where B ∈ R
q×k is a matrix of unknown parameters, xi ∈ R

q is known and ui , for i =
1, . . . , n, are independent mean zero random variables with covariance matrix V(θ) = C ∈
PDS(k). In this case, the vector of unknown covariance parameters is given by

(5) θ = vech(C) = (c11, . . . , c1k, c22, . . . , ckk)
T ∈R

1
2 k(k+1).

The model can be obtained as a special case of (1), by taking Xi = xT
i ⊗ Ik and β = vec(BT ),

where ⊗ denotes the Kronecker product and vec(·) is the k2-vector that stacks the columns
of a matrix.

Clearly, the linear multiple regression model is a special case with k = 1. Of particular
interest may be the SUR model [42]. This concerns seemingly unrelated multiple linear re-
gression models, ys = Xsβs + εs , for s = 1, . . . , p, with ys ∈R

n, that can be reformulated as
a combined multiple linear regression model with np observations and a covariance matrix
V(θ) = � ⊗ In, where θ = vech(�) and cov(εs, εt ) = σstIn, for s, t = 1, . . . , p.

EXAMPLE 3. Model (1) also includes examples, for which u1, . . . ,un are generated from
a time series. One example is the case where ui has a covariance matrix with elements

vst = σ 2ρ|s−t |, s, t = 1, . . . , k.

This arises when the ui’s are generated by an autoregressive process of order one. The vector
of unknown covariance parameters is θ = (σ 2, ρ) ∈ (0,∞) × [−1,1]. A general stationary
process leads to

(6) vst = θ|s−t |+1, s, t = 1, . . . , k,
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in which case θ = (θ1, . . . , θk)
T ∈ R

k , where θ|s−t |+1 represents the autocovariance over
lag |s − t |.

EXAMPLE 4. Also the multivariate location-scale model can be obtained as a special
case of (1), by taking Xi = Ik , the k × k identity matrix. In this case, β ∈ R

k is the unknown
location parameter and V(θ) is the unstructured covariance matrix as in Example 2, with θ

as in (5).

Throughout the manuscript, we will assume that the parameter θ is identifiable in the sense
that

(7) V(θ1) = V(θ2) ⇒ θ1 = θ2.

This is true for all models in Examples 2, 3 and 4. This may not be true in general for the linear
mixed effects model in Example 1 with unknown vech(G) and vech(R). For linear mixed
effects models in (3), identifiability of θ = (σ 2

0 , σ 2
1 , . . . , σ 2

r ) holds for particular choices of
the design matrices Z1, . . . ,Zr .

3. Definitions. We start by representing our observations as points in R
k ×R

kq in the fol-
lowing way. For r = 1, . . . , k, let xT

r denote the r th row of the k×q matrix X, so that xr ∈ R
q .

We represent the pair s = (y,X) as an element in R
k ×R

kq defined by sT = (yT ,xT
1 , . . . ,xT

k ).
In this way, our observations can be represented as s1, . . . , sn, with si = (yi ,Xi) ∈ R

k ×R
kq .

3.1. S-estimator. S-estimators are defined by means of a function ρ : R → [0,∞) that
satisfies the following properties:

(R1) ρ is symmetric around zero with ρ(0) = 0 and ρ is continuous at zero;
(R2) There exists a finite constant c0 > 0, such that ρ is nondecreasing on [0, c0] and

constant on [c0,∞); put a0 = supρ.

The S-estimator ξn = (βn, θn) is defined as the solution to the following minimization prob-
lem:

(8)

min
β,θ

det
(
V(θ)

)
subject to

1

n

n∑
i=1

ρ
(√

(yi − Xiβ)T V(θ)−1(yi − Xiβ)
) ≤ b0,

where the minimum is taken over all β ∈ R
q and θ ∈ R

l , such that V(θ) ∈ PDS(k), with ρ

satisfying (R1)–(R2).
The S-estimator defined by (8) for the setup in (1) includes several specific cases that

have been considered in the literature. The original regression S-estimator introduced by
Rousseeuw and Yohai [34] is obtained as a special case by taking Xi = xT

i a 1 × q vector and
V(θ) = σ 2 > 0. S-estimators for multivariate location and scale, as considered in Davies [8]
and Lopuhaä [20] can be obtained by taking Xi and V(θ) as in Example 4. For the multi-
variate regression model in Example 2, S-estimators have been considered by Van Aelst and
Willems [39]. Bilodeau and Duchesne [3] and Peremans and Van Aelst [28] investigated S-
estimators for SUR models. Copt and Victoria-Feser [6] and Chervoneva and Vishnyakov [4]
consider S-estimators for the parameters in the linear mixed effects model (3).
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The constant 0 < b0 < a0 in (8) can be chosen in agreement with an assumed underlying
distribution. For the multivariate regression model in [39], it is assumed that yi | Xi has an
elliptically contoured density of the form

(9) fμ,�(y) = det(�)−1/2h
(
(y − μ)T �−1(y − μ)

)
,

with μ = Xiβ and � = V(θ) and h : [0,∞) → [0,∞). For the linear mixed effects model
in [6], it is assumed that yi | Xi has a multivariate normal distribution, which is a special case
of (9) with h(t) = (2π)−k/2 exp(−t/2). When the underlying distribution corresponds to a
density of the form (9), then a natural choice is b0 = E0,Ikρ(‖z‖), where z has density (9)
with (μ,�) = (0, Ik). Finally, it should be emphasized that the ratio b0/a0 determines the
breakdown point of the S-estimator (see Theorem 6.1), as well as its limiting variance (see
Corollary 9.2). By choosing the constant c0 in (R2), one then has to make a trade-off between
robustness and efficiency.

Note that at this point we do not assume smoothness of ρ or strict monotonicity on [0, c0].
This means that (R1)–(R2) allow the function ρ(d) = 1 − 1[−c0,c0](d), which corresponds
to the minimum volume ellipsoid (MVE) estimator in location-scale models (see [33]) and
to the least median of squares estimator in linear regression models (see [35]). Indeed, with
ρ(d) = 1 − 1[−c0,c0](d), the S-estimator (βn, θn) corresponds to the smallest cylinder

(10) C(β, θ, c0) = {
(y,X) ∈ R

k ×R
kq : (y − Xβ)T V(θ)−1(y − Xβ) ≤ c2

0
}

that contains at least n − nb0 points.

REMARK 1. Clearly, the definition of the S-estimator in (8) has great similarities with
the S-estimator for multivariate location and covariance (see [8] and [20]), defined as the
solution (tn,Cn) to the minimization problem

(11)

min
t,C

det(C)

subject to

1

n

n∑
i=1

ρ
(√

(yi − t)T C−1(yi − t)
) ≤ b0,

where the minimum is taken over all t ∈ R
k and C ∈ PDS(k). Even more so, if all Xi are

assumed to be equal to the same design matrix X of full rank, as was done in [5, 6]. However,
there is a subtle, but important difference between minimization problems (11) and (8). The
important difference is that in (11) we minimize over all positive definite symmetric k × k

matrices C, whereas in (8), we only minimize over positive definite symmetric k × k matri-
ces V(θ), which can arise as the image of the mapping θ 	→ V(θ). The latter collection is a
subset of the other: {

V(θ) ∈ PDS(k) : θ ∈ R
l} ⊂ PDS(k),

and will typically be a strictly smaller subset. This means that the properties of V(θn) and Cn

are related, but the properties of V(θn) cannot simply be derived from properties of Cn, not
even in the case where all Xi are equal to the same X. In fact, this will lead to limiting
covariances that differ from the ones found in [6]; see Corollary 9.2.
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3.2. S-functional. The concept of S-functional is needed to investigate local robustness
properties of the corresponding S-estimator, such as the influence function (see Section 8).
Let s = (y,X) have a probability distribution P on R

k × R
kq . The S-functional ξ(P ) =

(β(P ), θ(P )) is defined as the solution to the following minimization problem:

(12)

min
β,θ

det
(
V(θ)

)
subject to∫

ρ
(√

(y − Xβ)T V(θ)−1(y − Xβ)
)

dP(y,X) ≤ b0,

where the minimum is taken over all β ∈ R
q and θ ∈ R

l , such that V(θ) ∈ PDS(k), with ρ

satisfying (R1)–(R2).
As a special case, we obtain the S-estimator ξn = (βn, θn) by taking P = Pn, the empirical

measure corresponding to the observations (y1,X1), . . . , (yn,Xn). In view of this connection,
existence and consistency of solutions to (8) will follow from general results on the existence
and the continuity of solutions to (12).

The definition of the S-functionals for the multivariate location-scale model given in Lop-
uhaä [20] and for the multivariate regression model given by Van Aelst and Willems [39] can
be obtained as special cases of (12), by choosing X, β and V(θ) as in Examples 4 and 2,
respectively. Copt and Victoria-Feser [6] do not pay attention to S-functionals or the influ-
ence function in the linear mixed effects model (3). However, S-functionals for linear mixed
effects models can be also be obtained as a special case of (12), by choosing X, β and V(θ)

as in Example 1.

4. Existence. We will first establish existence of the S-functional ξ(P ) defined by (12),
under particular conditions on the probability measure P . As a consequence, this will also
yield the existence of the S-estimator, defined by (8). Recall that (y1,X1), . . . , (yn,Xn) are
represented as points in R

k × R
kq . Note, however, that for linear models with intercept, the

first column of each Xi consists of 1’s. This means that the points (yi ,Xi) are concentrated
in a lower-dimensional subset of Rk ×R

kq . A similar situation occurs when all Xi are equal
to the same design matrix, such as in [6]. In view of this, define X ⊂ R

kq as the subset with
the lowest dimension p = dim(X ) ≤ kq satisfying

(13) P(X ∈ X ) = 1.

Hence, P is then concentrated on the subset Rk ×X of Rk ×R
kq , which is of dimension k+p,

which may be smaller than k + kq .
The first condition that we require expresses the fact that P cannot have too much mass at

infinity in relation to the ratio r = b0/a0.

(C1ε) There exists a compact set Kε ⊂ R
k ×X , such that P(Kε) ≥ r + ε.

The second condition requires that P cannot have too much mass at arbitrarily thin strips in
R

k ×X . For α ∈ R
k+kq , such that ‖α‖ = 1, � ∈ R and δ ≥ 0, we define a strip H(α, �, δ) as

follows:

(14) H(α, �, δ) = {
s ∈R

k ×R
kq : � − δ/2 ≤ αT s ≤ � + δ/2

}
.

Defined in this way, a strip is the area between two parallel hyperplanes, which are symmetric
around the hyperplane H(α, �,0) = {s ∈ R

k × R
kq : αT s = �}. Since the distance between

two parallel hyperplanes αT s = �1 and αT s = �2 is |�1 − �2|, the strip H(α, �, δ) defined as
in (14) has width δ. We require the following condition.
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(C2ε) The value

δε = inf
{
δ : P (

H(α, �, δ)
) ≥ ε,α ∈ R

k+kq,‖α‖ = 1, � ∈R, δ ≥ 0
}

is strictly positive.

According to (13), in (C2ε) one only needs to consider strips in R
k ×X .

Both conditions are satisfied for any 0 < ε ≤ 1 − r by any probability measure P that is
absolutely continuous. Clearly, condition (C1ε) holds for any 0 ≤ ε ≤ 1 − r for the empirical
measure Pn corresponding to a collection of n points Sn = {s1, . . . , sn} ⊂ R

k × X . Condi-
tion (C2ε) for ε = (k + p + 1)/n is also satisfied by the empirical measure Pn, when the
collection Sn is in general position, that is, no subset J ⊂ Sn of k +p + 1 points is contained
in the same hyperplane in R

k ×X . Conditions (C1ε) and (C2ε) together are similar to condi-
tion (Cε) in [20]. The reason that (C1ε) slightly deviates from [20] is to handle the presence
of X in minimization problem (12).

REMARK 2. Note that condition (C2ε) is equivalent with

(15) ωε = inf
P(J )≥ε

inf‖α‖=1
inf
�∈R sup

s∈J

∣∣αT s − �
∣∣ > 0,

where the infima are taken over all subsets J ⊂R
k ×X with P(J ) ≥ ε, all vectors α ∈ R

k+kq ,
with ‖α‖ = 1 and levels � ∈R. Details can be found in [25].

To establish existence of the S-functional, we follow the reasoning in [20]. The idea is to
argue that one can restrict oneself to a compact set for finding solutions to (12). When the
object function in (12) is continuous, this immediately yields existence of a solution of (12).
To this end, we assume the following condition.

(V1) The mapping θ 	→ V(θ) is continuous.

The lemma below is fundamental for the existence of the S-functional. It requires that the
identity is in V = {V(θ) ∈ PDS(k) : θ ∈ R

l} and that V is closed under multiplication with a
positive scalar.

(V2) There exists a θ ∈ R
l , such that V(θ) = Ik . For any V(θ) ∈ V and any α > 0, it holds

that αV(θ) = V(θ ′), for some θ ′ ∈ R
l .

Conditions (V1)–(V2) are not very restrictive. For example, all models in Examples 1 to 4
satisfy these conditions.

For any k × k matrix A, let λk(A) ≤ · · · ≤ λ1(A) denote the eigenvalues of A. We then
have the following key lemma for the existence of S-functionals. The lemma is similar to
Lemma 1 in [20] and its proof can be found in [25].

LEMMA 4.1. Let (β, θ) ∈ R
q × R

l , 0 < m0 < ∞, 0 < c < ∞, and 0 < ε < 1, and sup-
pose that the mapping θ 	→ V(θ) satisfies (V2). Then the following properties hold:

(i) If P satisfies (C2ε) and P(C(β, θ, c))) ≥ ε, then λk(V(θ)) ≥ a1 > 0, where a1 only
depends on c and the width δε from condition (C2ε).

(ii) Suppose
∫

ρ(‖y‖/m0)dP(s) ≤ b0. Then for any solution (β, θ) of (12), which is
such that λk(V(θ)) ≥ a1 > 0, it holds that λ1(V(θ)) ≤ a2 < ∞, where a2 only depends on a1
and m0.

(iii) Let P satisfy (C2ε) and suppose that P(C(β, θ, c)) ≥ a > 0. Suppose there exists a
compact set K ∈ R

k × X , such that P(K) ≥ 1 − a + ε. If λ1(V(θ)) ≤ a2 < ∞, then ‖β‖ ≤
M < ∞, where M only depends on c, a2, the set K and a constant γε > 0 that can be deduced
from condition (C2ε).
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Lemma 4.1 will ensure that there exists a compact set that contains all pairs (β,V(θ)) that
correspond to possible solutions (β, θ) of (12). To establish that possible solutions (β, θ)

of (12) are in a compact set, we need that the preimage {θ ∈ R
l : V(θ) ∈ K} of a compact

set K ⊂ R
k×k is again compact. Recall that subsets of Rl are compact if and only if they are

closed and bounded, and note that the preimage of a continuous mapping of a closed set is
closed. Hence, in view of condition (V1), it suffices to require the following condition.

(V3) The mapping θ 	→ V(θ) is such that the preimage of a bounded set is bounded.

Condition (V3) is satisfied by all models in Examples 1 to 4, including the linear mixed
effects model of Example 1, as long as the matrix Z is of full rank. We then have the following
theorem.

THEOREM 4.2. Consider minimization problem (12) with ρ satisfying (R1)–(R2). Sup-
pose that P satisfies (C1ε) and (C2ε), for some 0 < ε ≤ 1− r , where r = b0/a0, and suppose
that V satisfies (V1)–(V3). Then there exists at least one solution to (12).

The theorem has a direct corollary for the existence of the S-estimator, when dealing with
a collections of points. Let Sn = {s1, . . . , sn}, with si = (yi ,Xi) be a collection of n points
in R

k ×X . Define

(16) κ(Sn) = maximal number of points of Sn lying on the same hyperplane in R
k ×X .

For example, if the distribution P is absolutely continuous, then κ(Sn) ≤ k + p with proba-
bility one. We then have the following corollary.

COROLLARY 4.3. Consider minimization problem (8) with ρ satisfying (R1)–(R2), for
a collection Sn = {s1, . . . , sn} ⊂R

k ×X , with si = (yi ,Xi), for i = 1, . . . , n. Suppose that V
satisfies (V1)–(V3). If κ(Sn) + 1 ≤ n(1 − r), where r = b0/a0, then there exists at least one
solution ξn = (βn, θn) to minimization problem (8).

Copt and Victoria-Feser [6] consider S-estimators for the linear mixed effects model (3).
Despite their Proposition 1 about the asymptotic behavior of solutions to their S-minimization
problem [6], equation (7), the actual existence of such a solution is not established. How-
ever, this now follows from our Corollary 4.3. In their case, V(θ) satisfies conditions (V1)
and (V2). It can be seen, that if all matrices Zj , for j = 1, . . . , r , are of full rank, then V(θ)

also satisfies (V3). The translated biweight ρ-function proposed in [6] satisfies (R1)–(R2).
Finally, under their assumption that Xi = X is the same and yi | X ∼ Nk(Xβ,V(θ)), it fol-
lows that κ(Sn) ≤ k. It then follows from Corollary 4.3 that with b0 ≤ a0(n − k − 1)/n, at
least one solution to their S-minimization problem exists.

For the multivariate regression model from Example 2, Van Aelst and Willems [39] do
not explicitly prove existence of the S-estimator. Since in their case, V(θ) = C ∈ PDS(k)

satisfies (V1)–(V3) and the conditions imposed in [39] on the ρ-function satisfy (R1)–(R2),
the existence of their S-estimator now also follows from Corollary 4.3, when b0 is chosen
suitably.

Existence of S-estimators is obtained from existence of S-functionals at the empirical mea-
sure Pn. The following corollary shows that existence can be established in general, for prob-
ability measures that are close to P . It requires the following condition on P .

(C3) Let C be the class of all measurable convex subsets of Rk × R
kq . Every C ∈ C is a

P -continuity set, that is, P(∂C) = 0, where ∂C denotes the boundary of C.
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COROLLARY 4.4. Suppose that ρ satisfies (R1)–(R2) and V satisfies (V1)–(V3). Let Pt ,
t ≥ 0 be a sequence of probability measures on R

k × R
kq that converges weakly to P , as

t → ∞. Suppose that P satisfies (C3), as well as (C1ε′) and (C2ε), for some 0 < ε < ε′ ≤
1 − r = b0/a0. Then, for t sufficiently large, the minimization problem (12) with probability
measure Pt has at least one solution ξ(Pt ).

Condition (C3) is needed to apply Theorem 4.2 in [31]. Clearly, this condition is satisfied if
P is absolutely continuous.

5. Continuity and consistency. Consider a sequence Pt , t ≥ 0, of probability measures
on R

k ×R
kq that converges weakly to P , as t → ∞. By continuity of the S-functional ξ(P ),

we mean that ξ(Pt ) → ξ(P ), as t → ∞. An example of such a sequence is the sequence of
empirical measures Pn, n = 1,2, . . . , that converges weakly to P , almost surely. Continuity
of the S-functional for this sequence would then mean that the S-estimator ξn is consistent,
that is, ξn = ξ(Pn) → ξ(P ), almost surely.

We require an additional condition for the function ρ.

(R3) ρ is continuous and strictly increasing on [0, c0].
For s = (y,X) and ξ = (β, θ), define the Mahalanobis distances by

(17) d2(s, ξ) = d2(s,β, θ) = (y − Xβ)T V(θ)−1(y − Xβ).

We then have the following theorem for the S-functional ξ(P ) = (β(P ), θ(P )).

THEOREM 5.1. Let Pt , t ≥ 0 be a sequence of probability measures on R
k × R

kq that
converges weakly to P , as t → ∞, and let ξ(Pt ) be a solution to minimization problem (12)
with probability measure Pt . Suppose that ρ satisfies (R1)–(R3) and V satisfies (V1)–(V3).
Suppose that P satisfies (C3), as well as (C1ε′) and (C2ε), for some 0 < ε < ε′ ≤ 1 − r =
b0/a0. If the solution ξ(P ) of (12) is unique, then for any sequence of solutions ξ(Pt ), t ≥ 0,
it holds limt→∞ ξ(Pt ) = ξ(P ).

Theorem 5.1 is an extension of Theorem 3.1 in [20] on the continuity of S-functionals for
multivariate location and scale. Continuity of S-functionals for multiple regression has been
investigated in [11].

Continuity of the S-functional will be used to derive the influence function of the S-
estimator in Section 8. Another nice consequence of the continuity of the S-functional is
that one can directly obtain consistency of the S-estimator. Consider the S-estimator ξn de-
fined by minimization problem (8). Recall that ξn = ξ(Pn), so that we can use Theorem 5.1
to establish consistency of the S-estimator.

COROLLARY 5.2. Let ξn be a solution to minimization problem (8). Suppose ρ satis-
fies (R1)–(R3) and V satisfies (V1)–(V3). Suppose that P satisfies (C3) as well as (C1ε′)
and (C2ε), for some 0 < ε < ε′ ≤ 1 − r = b0/a0. If the solution ξ(P ) of (12) is unique, then
limn→∞ ξn = ξ(P ), with probability one.

Theorem 5.1 and Corollary 5.2 require that ξ(P ) is the unique solution to minimization
problem (12). An example of a distribution P for which ξ(P ) is unique, is when P is such
that y | X has an elliptically contoured density (9). This situation is very similar to that of
multivariate location-scale S-estimators, for which Davies [8], Theorem 1, shows that the
corresponding S-minimization problem (12) has a unique solution. This has been extended
by Tatsuoka and Tyler [37], Theorem 4.2 together with Theorem 2.1, to a broader class,
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consisting of affine transformations of distributions on R
k , which are invariant under permu-

tations and sign changes of its components and which have densities g such that g ◦ exp is
Schur-concave (see [37] for details), that is,

(18) fμ,�(y) = det(�)−1/2g
(
�−1/2(y − μ)

)
.

The next theorem is a direct consequence of that result. Its proof can be found in [25]. Note
that elliptically contoured densities in (9) are special cases of (18) by taking g(z) = h(zT z).

THEOREM 5.3. Suppose that ρ : R → [0,∞) satisfies (R1)–(R2) and that there ex-
ists at least one solution (β(P ), θ(P )) to (12). Suppose that P is such y | X has den-
sity fμ,� from (18), with μ = Xβ0 and � = V(θ0). Suppose that either ρ is strictly increasing
on [0, c0] or g in (18) is strictly M-concave (see [37], Definition 4.4). If V satisfies (V1)–(V3)
and XT X is nonsingular with probability one, then (β(P ), θ(P )) = (β0, θ0) with probability
one.

Uniqueness for the S-functional in general cannot be expected. Some kind of symmetry
and unimodality seems to be needed to assure uniqueness. For a more detailed discussion,
we refer to Tatsuoka and Tyler [37], who provide some counterexamples. An elliptically
contoured density for yi | Xi in the context of S-estimators for specific cases of the model (1)
has been assumed in [8] for the multivariate location-scale model of Example 4, in [39] for the
multivariate regression model of Example 2 and in [6] for the linear mixed effects model (3).
More precisely, in [6] it is assumed that Xi = X and that yi | X has a multivariate normal
distribution. In that case, the function g in (18) satisfies all the conditions of Theorem 5.3.

Uniqueness of the S-estimator seems difficult to establish. Davies [7] proves uniqueness
of the MVE, which corresponds to a location-scale S-estimator with ρ(d) = 1 −1[−c0,c0](d),
at samples from an elliptically contoured density. However, it does not seem straightforward
to extend his result to general S-estimators. Tatsuoka and Tyler [37] conjecture that location-
scale S-estimators are unique with probability 1 when sampling from an absolutely contin-
uous distribution, even one for which the corresponding S-functional is not unique. Finally,
for large enough random samples from a distribution for which the S-functional is uniquely
defined, strong consistency of the S-estimators, as established in Corollary 5.2, ensures that
all possible solutions to (3.1) are within a shrinking compact set as the sample size goes to
infinity.

6. Global robustness: The breakdown point. Consider a collection of points Sn =
{si = (yi ,Xi), i = 1, . . . , n} ⊂ R

k × X . To emphasize the dependence on the collection Sn,
denote by ξn(Sn) = (βn(Sn), θn(Sn)), the S-estimator, as defined in (8). To investigate the
global robustness of S-estimators, we compute that finite-sample (replacement) breakdown
point. For a given collection Sn the finite-sample breakdown point (see Donoho and Hu-
ber [10]) of a regression S-estimator βn is defined as the smallest proportion of points from Sn

that one needs to replace in order to carry the estimator over all bounds. More precisely,

(19) ε∗
n(βn,Sn) = min

1≤m≤n

{
m

n
: sup
S ′

m

∥∥βn(Sn) − βn

(
S ′

m

)∥∥ = ∞
}
,

where the minimum runs over all possible collections S ′
m that can be obtained from Sn by

replacing m points of Sn by arbitrary points in R
k ×X .

The estimator θn determines the covariance estimator Vn = V(θn). For this reason, it
seems natural to let the breakdown point of θn correspond to the breakdown of a covari-
ance estimator. We define the finite sample (replacement) breakdown point of the S-estimator
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θn at a collection Sn as

(20) ε∗
n(θn,Sn) = min

1≤m≤n

{
m

n
: sup
S ′

m

dist
(
V

(
θn(Sn)

))
,V

(
θn

(
S ′

m

)) = ∞
}
,

with dist(·, ·) defined as dist(A,B) = max{|λ1(A)−λ1(B)|, |λk(A)−1 −λk(B)−1|}, where the
minimum runs over all possible collections S ′

m that can be obtained from Sn by replacing m

points of Sn by arbitrary points in R
k × X . So, the breakdown point of θn is the smallest

proportion of points from Sn that one needs to replace in order to make the largest eigenvalue
of V(θ(S ′

m)) arbitrarily large (explosion), or to make the smallest eigenvalue of V(θ(S ′
m))

arbitrarily small (implosion).
Good global robustness is illustrated by a high breakdown point. The breakdown point

of the S-estimators is given in the theorem below. It extends the results for S-estimators of
multivariate location and scale; see [8] and [26], and S-estimators for multivariate regression;
see [39]. For S-estimators in the linear mixed effects model considered in [6], the breakdown
point has not been established. This will now follow as a special case from the next theorem.
Its proof can be found in [25].

THEOREM 6.1. Consider minimization problem (8) with ρ satisfying (R1)–(R2). Sup-
pose that V satisfies (V1)–(V3). Let Sn ⊂ R

k × X be a collection of n points si = (yi ,Xi),
i = 1, . . . , n. Let r = b0/a0 and suppose that 0 < r ≤ (n − κ(Sn))/(2n), where κ(Sn) is
defined by (16). Then for any solution (βn, θn) of minimization problem (12),

�(n + 1)/2�
n

≥ ε∗
n(βn,Sn) ≥ �nr�

n
,

ε∗
n(θn,Sn) = �nr�

n
.

The largest possible value of the breakdown point occurs when r = (n − κ(Sn))/(2n), in
which case �nr�/n = �(n − κ(Sn))/2�/n = �(n − κ(Sn) + 1)/2�/n. When the collection
Sn is in general position, then κ(Sn) = k + p. In that case, the breakdown point of both
estimators is at least equal to �(n − k − p + 1)/2�/n. When all Xi are equal to the same X,
in [5, 6], one has p = 0 and κ(Sn) = k. In that case, the breakdown point of θn is equal to
�(n − k + 1)/2�/n. This coincides with the maximal breakdown point for affine equivariant
estimators for k × k covariance matrices (see [8], Theorem 6).

REMARK 3. Van Aelst and Willems [39] also take into account r > (n − κ(Sn))/(2n).
For this case, they show that the breakdown point is (�n − nr� − κ(Sn))/n. We could not
extend this to our general setup, but we are able to show that solutions to (8) do not break
down, when replacing at most �n − nr� − κ(Sn) − 1 points.

7. Score equations. Up to this point, properties of S-functionals and S-estimators have
been derived from the minimization problems (8) and (12). To obtain the influence function
and to establish the limiting distribution of S-estimators, we use the score equations that can
be found by differentiation of the Lagrangian corresponding to the constrained minimization
problems. To this end, we require the following additional condition on the function ρ:

(R4) ρ is continuously differentiable and u(s) = ρ′(s)/s is continuous,

and the following condition on the mapping θ 	→ V(θ),

(V4) V(θ) is continuously differentiable.

Obviously, condition (V4) implies the former condition (V1).
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7.1. General covariance structures. Let ξP = (βP , θP ) be a solution to minimization
problem (12). If we denote the corresponding Lagrange multiplier by λP , then the pair
(ξP ,λP ) is a zero of all partial derivatives ∂LP /∂β , ∂LP /∂θ and ∂LP /∂λ, where LP is
the Lagrangian given by

LP (ξ , λ) = log det
(
V(θ)

) − λ

{∫
ρ

(√
(y − Xβ)T V(θ)−1(y − Xβ)

)
dP(y,X) − b0

}
.

If EP ‖X‖ < ∞, then under conditions (R4) and (V4), one may interchange the order of
integration and differentiation in ∂LP /∂β and ∂LP /∂θ , on a neighborhood of ξP . It follows
that besides the constraint in (12), the pair (ξP ,λP ) satisfies

(21)

∫
u(d)XT V−1(y − Xβ)dP(s) = 0,

tr
(

V−1 ∂V
∂θj

)
+ λ

2

∫
u(d)(y − Xβ)T V−1 ∂V

∂θj

V−1(y − Xβ)dP(s) = 0,

for j = 1, . . . , l, where u(s) = ρ ′(s)/s and d = d(s, ξ) is defined by (17), and where we
abbreviate V(θ) by V. To solve λP from the second set of equations, we multiply the j th
equation by θj and then sum over j = 1, . . . , l. This leads to

tr

(
V−1

l∑
j=1

θj

∂V
∂θj

)
+ λ

2

∫
u(d)(y − Xβ)T V−1

(
l∑

j=1

θj

∂V
∂θj

)
V−1(y − Xβ)dP(s) = 0,

which is solved by

λP = −2 tr(V−1 ∑l
j=1 θj (∂V/∂θj ))∫

u(d)(y − Xβ)T V−1(
∑l

j=1 θj (∂V/∂θj ))V−1(y − Xβ)dP(s)
.

When we insert this back into the second equation in (21), we find

tr
(

V−1 ∂V
∂θj

)∫
u(d)(y − Xβ)T V−1

(
l∑

t=1

θt

∂V
∂θt

)
V−1(y − Xβ)dP(s)

− tr

(
V−1

l∑
t=1

θt

∂V
∂θt

)∫
u(d)(y − Xβ)T V−1 ∂V

∂θj

V−1(y − Xβ)dP(s) = 0,

or briefly

(22)
∫

u(d)(y − Xβ)T V−1Hj V−1(y − Xβ)dP(s) = 0, j = 1, . . . , l,

where

(23) Hj = tr
(

V−1 ∂V
∂θj

)(
l∑

t=1

θt

∂V
∂θt

)
− tr

(
V−1

l∑
t=1

θt

∂V
∂θt

)
∂V
∂θj

.

Because
∑l

j=1 θj Hj = 0, the system of equations (22) is linearly dependent. Similar to [20]
we subtract the S-constraint from each equation. For each j = 1, . . . , l, we subtract the term

tr
(

V−1 ∂V
∂θj

)(
ρ(d) − b0

)
from the left-hand side of equation (22). We then find that any solution ξP of (12) satisfies
the following equation:

(24)
∫

�(s, ξ)dP(s) = 0,
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where � = (�β ,�θ ), with �θ = (�θ,1, . . . ,�θ,l), where

(25)

�β(s, ξ) = u(d)XT V−1(y − Xβ),

�θ ,j (s, ξ) = u(d)(y − Xβ)T V−1Hj V−1(y − Xβ) − tr
(

V−1 ∂V
∂θj

)(
ρ(d) − b0

)
,

for j = 1, . . . , l, where Hj and d = d(s, ξ) are defined in (23) and (17), respectively, and
where we abbreviate V(θ) by V.

The regression score equation for �β with the empirical measure Pn for P in (24) coin-
cides with the one for the regression S-estimator in the linear mixed effects model (3) consid-
ered in [6] (see their equation (10)). The empirical regression score equation also coincides
with the one for the regression S-estimator in the multivariate regression model of Example 2
considered in [39] (see equation (2.2) in [38]). Similarly, the empirical score equation for �β

coincides with the one for the location S-estimator of Example 4 considered in [20].
For general covariance structures, the empirical covariance score equation for �θ does not

compare directly to existing equations in the literature. However, as we will see in the next
subsection, similar comparisons are available for models with a linear covariance structure.

7.2. Linear covariance structures. In the previous section, we solved λ from (21) and
subtracted the S-constraint, leading to score equation (24) with � given in (25). The fact that
this was done in a specific way has the following reason. In cases where V(θ) is linear, say

(26) V(θ) =
l∑

j=1

θj Lj ,

the function �θ simplifies a lot and can also be related to the covariance psi-function in [20].
Typical models of interest that have a covariance matrix of this type are the mixed linear
effects model from Example 1 and the multivariate regression model and SUR model from
Example 2. But also the multivariate location-scale model from Example 4 and the time-
series model (6) from Example 3 have linear covariance structures.

When V is of the form (26), then ∂V/∂θj = Lj and
∑l

j=1 θj (∂V/∂θj ) = V. In this

case, (23) simplifies to Hj = tr(V−1Lj )V − kLj , and �θ ,j in (25) becomes

�θ ,j (s, ξ) = tr
(
V−1Lj

)
v(d) − ku(d)(y − Xβ)T V−1Lj V−1(y − Xβ),

where u(s) is defined in (R4) and

(27) v(s) = u(s)s2 − ρ(s) + b0.

Using that tr(AT B) = vec(A)T vec(B), this can be written as

�θ ,j (s, ξ) = −vec
(
ku(d)(y − Xβ)(y − Xβ)T − v(d)V

)T vec
(
V−1Lj V−1)

.

On the right-hand side, we recognize ku(d)(y−Xβ)(y−Xβ)T −v(d)V, being the covariance
psi-function that also appears in (2.8) in [20]. For our purposes, we define

(28) �V(s, ξ) = ku
(
d(s, ξ)

)
(y − Xβ)(y − Xβ)T − v

(
d(s, ξ)

)
V.

The functions �θ,j , for j = 1, . . . , l, can be combined in one expression for the vector valued
function �θ as follows. First, note that

vec
(
V−1Lj V−1) = (

V−1 ⊗ V−1)
vec(Lj )

for j = 1, . . . , l. Define the k2 × l matrix

(29) L = [
vec(L1) · · ·vec(Ll)

]
.
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Then the column vector �θ = (�θ ,1, . . . ,�θ,l) can be written as

�θ (s, ξ) = −LT (
V−1 ⊗ V−1)

vec
(
�V(s, ξ)

)
,

where �V is defined in (28) and L in (29). Note that the dependence on s = (y,X) in �θ is
only through the function �V. We conclude that in the case of a linear covariance structure,
any solution ξP of (12) satisfies (24), where � = (�β,�θ ), with

(30)
�β(s, ξ) = u(d)XT V−1(y − Xβ),

�θ (s, ξ) = −LT (
V−1 ⊗ V−1)

vec
(
�V(s, ξ)

)
,

where d = d(s, ξ) is defined in (17), and where we abbreviate V(θ) by V.
For the multivariate regression model in Example 2, one has V(θ) = C, where θ =

vech(C). The matrix L = ∂ vec(V)/∂θT is then equal to the so-called duplication matrix Dk ,
which is the unique k2 × k(k + 1)/2 matrix, with the properties Dk vech(C) = vec(C) and
(DT

k Dk)
−1DT

k vec(C) = vech(C) (e.g., see [27], Chapter 3, Section 8). Because V has full
rank, it follows that equation (24) holds for � = (�β ,�V). The resulting score equations for
the empirical measure Pn corresponding to observations (yi ,Xi), for i = 1, . . . , n, are then
equivalent with the ones found in [39].

For the linear mixed effects model (3), the covariance matrix V(θ) has a linear structure
with the vector θ = (σ 2

0 , . . . , σ 2
r ) of unknown covariance parameters. The matrix L is then

a k2 × (r + 1) matrix and will typically be of rank r + 1 < k2. As a consequence, in this
case one cannot further simplify equation (24), by removing the factor LT (V−1 ⊗ V−1) from
the function �θ . The score equation for �β resulting from the empirical measure Pn corre-
sponding to observations (yi ,Xi), for i = 1, . . . , n, is the same as the one obtained in [6]. The
corresponding score equation for �θ differs slightly from the one in [6], because the authors
do not subtract a term with ρ(d) − b0 to remove the linear dependency of the equations (22).

8. Local robustness: The influence function. For 0 < h < 1 and s = (y,X) ∈R
k ×R

kq

fixed, define the perturbed probability measure Ph,s = (1 − h)P + hδs, where δs denotes the
Dirac measure at s ∈ R

k × R
kq . The influence function of the functional ξ(·) at probability

measure P is defined as

(31) IF(s; ξ ,P ) = lim
h↓0

ξ((1 − h)P + hδs) − ξ(P )

h
,

if this limit exists. In contrast to the global robustness measured by the breakdown point, the
influence function measures the local robustness. It describes the effect of an infinitesimal
contamination at a single point s on the functional (see Hampel [13]). Good local robustness
is therefore illustrated by a bounded influence function.

8.1. The general case. The theorem below gives the influence function for the S-
functional ξ . It extends the result for S-functionals of multivariate location and scale [20].
Under the assumption that the limit in (31) exists and P has an elliptical contoured den-
sity (9), Van Aelst and Willems [39] relate the influence function for S-functionals of mul-
tivariate regression to that of S-functionals of multivariate location and scale. For the linear
mixed effects model considered in [6], the influence function has not been established. The
influence function for these functionals now follows as a special case from the theorem below.

We will show that the limit in (31) exists and derive its expression at general P . Since
the value of θ determines the covariance matrix V(θ), we also include the influence func-
tion of the covariance functional. Consider the S-functional at Ph,s0 . From the Portmanteau
theorem [2], Theorem 2.1, it can easily be seen that Ph,s0 → P , weakly, as h ↓ 0. There-
fore, under the conditions of Corollary 4.4 and Theorem 5.1, it follows that there exist solu-
tions ξ(Ph,s0) and ξ(P ) to minimization problem (12) at Ph,s0 and P , respectively, and that
ξ(Ph,s0) → ξ(P ), as h ↓ 0.
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THEOREM 8.1. Let ξ(Ph,s0) and ξ(P ) be solutions to minimization problems (12)
at Ph,s0 and P , respectively, and suppose that ξ(Ph,s0) → ξ(P ), as h ↓ 0. Suppose that ρ

satisfies (R4) and V satisfies (V4). Let � be defined in (25) and suppose that

(32) �(ξ) =
∫

�(s, ξ)dP(s),

is continuously differentiable with a nonsingular derivative D(P ) at ξ(P ). Then for s0 ∈
R

k ×R
kq ,

IF(s0; ξ ,P ) = −D(P )−1�
(
s0, ξ(P )

)
.

For the covariance functional C(P ) = V(θ(P )), it holds that

IF
(
s0;vec(C),P

) =
(

∂ vec(V(θ(P )))

∂θT

)
IF(s0; θ ,P ).

To investigate the local robustness of S-estimators, we derive the following bound on the
influence function for ξ(P ).

COROLLARY 8.2. Suppose that ρ satisfies (R2) and (R4), and V satisfies (V4). Then
there exist 0 < C1 < ∞ and 0 < C2 < ∞, only depending on P , such that for s = (y,X) it
holds that ‖ IF(s, ξ(P ))‖ ≤ C1 + C2‖X‖.

Its proof can be found in [25].

8.2. Elliptically contoured densities. When P is such that y | X has an elliptically con-
toured density (9) and V(θ) is linear, we can obtain a more detailed expression for the influ-
ence function. This requires the following condition on the function ρ,

(R5) ρ is twice continuously differentiable,

and the following condition on the mapping θ 	→ V(θ),

(V5) V(θ) is twice continuously differentiable.

Conditions (R5) and (V5) are needed to establish that �, as defined in (32), is continuously
differentiable. Clearly, condition (V5) implies former conditions (V4) and (V1).

Suppose that P is such that y | X has an elliptically contoured density fμ,� from (9), with
μ ∈ R

k and � ∈ PDS(k). When the S-functional is affine equivariant, it suffices to determine
the influence function for the case (μ,�) = (0, Ik). However, this does not hold in general
for the S-functionals in our setting. The reason is that, for a k × k nonsingular matrix A
and θ ∈ R

l , the matrix AV(θ)AT may not be of the form V(θ ′), for some θ ′ ∈ R
l . Examples

are the (linear) covariance structure that corresponds to the linear mixed effects model (3)
considered in [6] or the models discussed in Example 3.

Nevertheless, note that for the general case with μ ∈ R
k and � ∈ PDS(k), we can still use

the fact that, conditionally on X, the distribution of y is the same as that of �1/2z+μ, where z
has a spherical density f0,Ik . As a consequence, we can still obtain the following result, which
enables one to determine the influence functions of the functionals β(P ) and θ(P ) separately.

If P itself is also absolutely continuous, then it satisfies (C3), as well as (C1ε′) and (C2ε),
for any 0 < ε < ε′ ≤ 1 − r . When ρ and V satisfy (R1)–(R3) and (V1)–(V3), it follows from
Theorem 4.2 and Corollary 4.4 that ξ(P ) and ξ(Ph,s) exist, for h sufficiently small. If h in (9)
is nonincreasing and not constant on [0, c2

0], then ξ(P ) is unique, according to Theorem 5.3,
so that ξ(Ph,s) → ξ(P ), as h ↓ 0. Hence, in order to apply Theorem 8.1, it remains to show
that � in (32) is continuously differentiable with a nonsingular derivative at ξ(P ). As a first
step, we obtain that the derivative of � is a block matrix.
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LEMMA 8.3. Suppose that P is such that y | X has an elliptically contoured density fμ,�

from (9) and E‖X‖2 < ∞. Suppose that ξ(P ) is a solution to the corresponding minimization
problem (12), such that (Xβ(P ),V(θ(P ))) = (μ,�). Suppose that ρ satisfies (R2), (R4)–
(R5) and that V satisfies (V5) and has a linear structure (26). Let � be defined in (32) with
� defined in (30). Then

∂�(ξ(P ))

∂ξ
=

⎛⎜⎜⎝
∂�β(ξ(P ))

∂β
0

0
∂�θ (ξ(P ))

∂θ

⎞⎟⎟⎠ ,

where

(33)
∂�β(ξ(P ))

∂β
= −αE

[
XT �−1X

]
,

with

(34) α = E0,Ik

[(
1 − 1

k

)
ρ′(‖z‖)

‖z‖ + 1

k
ρ′′(‖z‖)]

,

and

∂�θ (ξ(P ))

∂θ
= γ1LT (

�−1 ⊗ �−1)
L − γ2LT vec

(
�−1)

vec
(
�−1)T L,

where L = ∂ vec(V(θ(P )))/∂θT is the k2 × l matrix given in (29) and

(35)

γ1 = E0,Ik [ρ′′(‖z‖)‖z‖2 + (k + 1)ρ ′(‖z‖)‖z‖]
k + 2

,

γ2 = E0,Ik [2ρ′′(‖z‖)‖z‖2 + kρ′(‖z‖)‖z‖]
2k(k + 2)

,

The proof is tedious, but straightforward, and can be found in [25].

REMARK 4. The proof of Lemma 8.3 uses the fact that

∂�(ξ)

∂ξ
=

∫
∂�(s, ξ)

∂ξ
dP(s),

for all ξ in a neighborhood of ξ(P ). This holds for general P and any covariance
structure V(θ) that satisfies (V2)–(V3) and (V5); see Lemma 11.3 in [25]. Furthermore,
Lemma 8.3 is obtained for a linear covariance structure. However, with some additional tech-
nicalities, this result can also be shown to hold for � defined in (25) corresponding to general
covariance structures. For general covariance structures, one still obtains (33), and that

∂�θ,j (ξ(P ))

∂θs

= −α1 tr
(
�−1 ∂V(θ(P ))

∂θs

�−1Hj

)

+ α2 tr
(
�−1 ∂V(θ(P ))

∂θs

)
tr

(
�−1 ∂V(θ(P ))

∂θj

)
,

for j, s = 1, . . . , l, and where α1 = γ1/k and α2 = γ1/k − γ2, with γ1, γ2 from (35), and
where Hj is defined in (23).

The next corollary gives expressions for the influence functions of the functionals β(P )

and θ(P ) separately, at a distribution P that is such that y | X has an elliptically contoured
density. The proof is tedious, but straightforward, and can be found in [25].



S-ESTIMATION IN LINEAR MODELS WITH STRUCTURED COVARIANCES 2431

COROLLARY 8.4. Suppose that P is such that y | X has an elliptically contoured
density fμ,� from (9), such that (Xβ(P ),V(θ(P ))) = (μ,�). Let ξ(Ph,s0) and ξ(P ) be
a solution to minimization problem (12) at Ph,s0 and P , respectively, and suppose that
ξ(Ph,s0) → ξ(P ), as h ↓ 0. Suppose that E‖X‖2 < ∞ and suppose that ρ satisfies (R2)–
(R5) and that V satisfies (V5), and has a linear structure (26). Let α, γ1, and γ2 be defined
in (34) and (35), and suppose that E0,Ik [ρ′′(‖z‖)] > 0. If X has full rank with probability one,
then

IF(s0,β,P ) = u(d0)

α

(
E

[
XT �−1X

])−1XT
0 �−1(

y0 − X0β(P )
)
,

where d2
0 = (y0 − X0β(P ))T �−1(y0 − X0β(P )) and u(s) = ρ′(s)/s. If γ1 > 0 and the k2 × l

matrix L, as defined in (29), has full rank, then IF(s0, θ,P ) is given by

ku(d0)

γ1

(
LT (

�−1 ⊗ �−1)
L

)−1LT vec
(
�−1(

y0 − X0β(P )
)(

y0 − X0β(P )
)T

�−1)
+

(
−u(d0)d

2
0

γ1
+ ρ(d0) − b0

γ1 − kγ2

)
θ(P ).

Note that since Lθ(P ) = vec(V(θ(P ))) = vec(�), we can immediately obtain the influ-
ence function for the covariance functional C(P ) = V(θ(P )). From Theorem 8.1, it immedi-
ately follows that IF(s0,vec(C),P ) is given by

ku(d0)

γ1
L

(
LT (

�−1 ⊗ �−1)
L

)−1LT vec
(
�−1(

y0 − X0β(P )
)(

y0 − X0β(P )
)T

�−1)
+

(
−u(d0)d

2
0

γ1
+ ρ(d0) − b0

γ1 − kγ2

)
vec(�).

Since the functions u(s)s = ρ′(s), u(s)s2 = ρ′(s)s, and ρ(s) are bounded, it follows that
IF(s, θ,P ) and IF(s,vec(C),P ) are bounded uniformly in both y and X, whereas IF(s,β,P )

is bounded uniformly in y, but not in X. This illustrates the phenomenon in linear regression
that leverage points can have a high effect on the regression S-estimator.

For the S-estimators in the linear mixed effects model (3) with normal errors considered
in [6], the influence function is not available. The expression can now be obtained from Corol-
lary 8.4. The expression for IF(s,β,P ) in Corollary 8.4 coincides with the one found for the
multivariate regression S-functional in [39], where α > 0 is the same constant as the one in
the expression of the influence function for the location S-functional in [20]. Furthermore,
for the multivariate regression model, one has θ = vech(C) and the matrix L is equal to the
duplication matrix Dk . From the properties of Dk , the expressions for the influence functions
simplify. One finds in this case that

IF(s, θ,P ) = ku(d)

γ1
vech

((
y − Xβ(P )

)(
y − Xβ(P )

)T ) +
(
−u(d)d2

γ1
+ ρ(d) − b0

γ1 − kγ2

)
θ(P )

and the influence function of the covariance functional C(P ) = V(θ(P )) itself is given by

IF(s,C,P ) = ku(d)

γ1

(
y − Xβ(P )

)(
y − Xβ(P )

)T +
(
−u(d)d2

γ1
+ ρ(d) − b0

γ1 − kγ2

)
�.

This coincides with the expressions found for the covariance S-functionals in [39] and in [20].
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9. Asymptotic normality. To establish asymptotic normality of the S-estimators, we use
the score equations obtained from differentiation of the Lagrangian corresponding to mini-
mization problem (8). In the same way as before, we obtain score equation (24), with P equal
to the empirical measure Pn corresponding to observations s1, . . . , sn, with si = (yi ,Xi) ∈
R

k ×R
kq . From (24), we see that any solution ξn = ξ(Pn) to the S-minimization problem (8)

must satisfy

(36)
∫

�(s, ξn)dPn(s) = 0,

where � = (�β ,�θ ) is defined in (25).

9.1. General case. Writing ξP = ξ(P ), we decompose (36) as follows:

(37)
0 =

∫
�(s, ξn)dP(s) +

∫
�(s, ξP )d(Pn − P)(s)

+
∫ (

�(s, ξn) − �(s, ξP )
)

d(Pn − P)(s).

The essential step in establishing asymptotic normality of ξn, is to show that the third term on
the right-hand side of (37) is of the order oP (n−1/2). To this end, we will apply results from
empirical process theory as developed in Pollard [30]. This leads to the following theorem.

THEOREM 9.1. Suppose that ρ satisfies (R1)–(R2) and (R4), such that u(s) is
of bounded variation, and suppose that V satisfies (V4). Let ξn and ξ(P ) be solu-
tions to minimization problems (8) and (12), and suppose that ξn → ξ(P ) in proba-
bility. Suppose that �, as defined in (32) with � defined in (25), is continuously dif-
ferentiable with a nonsingular derivative D(P ) at ξ(P ) and suppose that E‖X‖2 < ∞.
Then

√
n(ξn − ξ(P )) is asymptotically normal with mean zero and covariance matrix

D(P )−1
E[�(s, ξ(P ))�(s, ξ(P ))T ]D(P )−1.

Theorem 9.1 is similar to Theorem 4.1 in [20]. Note that Theorem 9.1 confirms the well-
known heuristic that relates the limiting covariance of

√
n(ξn − ξ(P )) to the influence func-

tion of the functional ξ(·) given in Theorem 8.1,

(38) D(P )−1
E

[
�

(
s, ξ(P )

)
�

(
s, ξ(P )

)T ]
D(P )−1 = E

[
IF(s, ξ ,P ) IF(s, ξ ,P )T

]
.

Van Aelst and Willems [39] consider the limiting behavior of S-estimators in the multivariate
regression model of Example 2, but only under P for which y | X has an elliptical contoured
density. Copt and Victoria-Feser [6] consider asymptotic normality for S-estimators in the
linear mixed effects model (3) with a constant design matrix Xi = X and only consider P for
which y | X has an multivariate normal distribution.

9.2. Elliptically contoured densities. Consider the special case that P is such that y | X
has an elliptically contoured density fμ,� from (9), with μ ∈ R

k and � ∈ PDS(k). As before,
in determining the limiting normal distribution of the individual S-estimators, we cannot
use affine equivariance and restrict ourselves to the case (0, Ik). Instead, we use some of
the results obtained in Section 8.2 to establish the limiting normal distributions of the S-
estimators βn = β(Pn), θn = θ(Pn) and Cn = V(θ(Pn)).

COROLLARY 9.2. Suppose that P is such that y | X has an elliptically contoured den-
sity fμ,� from (9), such that (Xβ(P ),V(θ(P ))) = (μ,�). Let ξn and ξ(P ) be solutions to
minimization problems (8) and (12), and suppose that ξn → ξ(P ) in probability. Suppose
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that E‖X‖2 < ∞ and suppose that ρ satisfies (R2)–(R5), such that u(s) is of bounded vari-
ation. Suppose that V satisfies (V5), and has a linear structure (26). Let α, γ1 and γ2 be
defined in (34) and (35), and suppose that E0,Ik [ρ′′(‖z‖)] > 0. If X has full rank with prob-
ability one, then

√
n(βn − β(P )) is asymptotically normal with mean zero and covariance

matrix

E0,Ik [ρ′(‖z‖)2]
kα2

(
E

[
XT �−1X

])−1
.

If γ1 > 0 and the k2 × l matrix L, as defined in (29), has full rank then
√

n(θn − θ(P )) is
asymptotically normal with mean zero and covariance matrix

2σ1
(
LT (

�−1 ⊗ �−1)
L

)−1 + σ2θ(P )θ(P )T ,

where

σ1 = k(k + 2)E0,Ik [ρ′(‖z‖)2‖z‖2]
(E0,Ik [ρ′′(‖z‖)‖z‖2 + (k + 1)ρ′(‖z‖)‖z‖])2 ,

σ2 = −2

k
σ1 + 4E0,Ik [(ρ(‖z‖) − b0)

2]
(E0,Ik [ρ′(‖z‖)‖z‖])2 .

Due to the linearity of V, we can immediately establish asymptotic normality of the co-
variance estimator Cn = V(θn). From Corollary 9.2, it follows that

√
n
(
vec(Cn) − vec(�)

) = √
n
(
Lθn − Lθ(P )

) = L
√

n
(
θn − θ(P )

)
.

It follows that the limiting covariance of
√

n(vec(V(θn)) − vec(�)) is given by

2σ1L
(
LT (

�−1 ⊗ �−1)
L

)−1LT + σ2 vec(�)vec(�)T .

Corollary 9.2 is a direct consequence of Theorem 9.1. Its proof, in particular the deriva-
tions of the expressions for the limiting covariances, can be found in the Supplementary Ma-
terial [25]. Note that the constants E0,Ik [ρ′(‖z‖)2]/(kα2), σ1 and σ2, are the same as the ones
found in [20] for the location and covariance S-estimators, respectively. In fact, Corollary 9.2
is an extension of Corollary 5.1 in [20] for S-estimators in the multivariate location-scale
model of Example 4.

Asymptotic normality of S-estimators in the multivariate regression model of Example 2
follows from Corollary 9.2. These estimators have been considered in [39], but asymp-
totic normality has not been established. Under the assumption that the heuristic (38) holds,
asymptotic relative efficiencies are computed on the basis of this heuristic. Indeed, now that
Corollary 9.2 has been established, one may check that (38) holds.

Finally, note that the limiting covariances of
√

n(βn −β(P )) and
√

n(θn −θ(P )) in Corol-
lary 9.2 differ from the ones found in [6] for the linear mixed effects model (3) with Xi = X,
for i = 1, . . . , n. The results in [6] are obtained by reparameterizing Xβ = μ and interpret-
ing the model as a multivariate location-scale model. Then building on the results in [20]
for S-estimators of multivariate location-scale, the limiting covariances in [6] are found by
application of the delta method. However, in view of Remark 1 this does not seem to be a
correct approach.

REMARK 5. Although our expressions for the limiting covariances in Corollary 9.2 differ
from the ones found in Proposition 1 in [6], somewhat surprisingly, they yield the same
matrices for the example discussed in Section 5.1 in [6]. However, this is a consequence
of the specific structure of the design matrices X and Z in this example. One can easily
find other design matrices for which the limiting covariances in Corollary 9.2 yield different
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matrices as the ones found in [6]. Moreover, the corresponding confidence regions based
on the expressions in Corollary 9.2 can be substantially smaller than the ones based on the
expressions found in [6]. See the simulation in Section 10.

The constant E0,Ik [ρ′(‖z‖)2]/(kα2) represents the asymptotic efficiency of the S-estimator
for β relative to the least squares estimator. As a consequence, the cut-off constant c0 of the ρ-
function can be tuned in such a way that the asymptotic efficiency relative to the least squares
estimator is high at the normal distribution. However, the constant c0 also determines the
breakdown point of the corresponding S-estimator. Indeed, since a natural choice in (11) is
b0 = E0,Ik [ρ(‖z‖)], the lower bound on the asymptotic breakdown point b0/ρ(∞), obtained
in Theorem 6.1, is determined by c0. Unfortunately, this forces a trade-off between efficiency
and breakdown point. Typically, large values of c0 correspond to high efficiency and low
breakdown point, and vice versa for moderate values of c0. Details of varying breakdown
points and corresponding efficiencies can be found in the tables given in [20, 34] and [39].

A possible remedy is to use a high breakdown S-estimator followed by a second step
that retains the breakdown point and improves the efficiency. Well-known popular examples
are MM-estimators introduced by Yohai [40] for multiple linear regression, and extensions
thereof to multivariate location and scatter in [22, 36], to multivariate linear regression in [18],
and to linear mixed effects models in [6]. A general unified approach that covers these es-
timators can be found in [24]. Other attempts to combine high breakdown point and high
efficieny are τ -estimators introduced by Yohai and Zamar [41] for multiple regression and
extended to multivariate location and scatter in [21], or reweighted estimators [23] and CM-
estimators [17] for multivariate location and scatter.

10. Simulation and data example. We compare the asymptotic results of the S-
estimators with their finite sample behavior by means of a simulation. Moreover, we inves-
tigate the differences between the expressions found in Corollary 9.2 and the ones in Copt
and Victoria-Feser [6]. To this end, we will study the behavior of the estimators for samples
generated from a model that is close to the one in [6]:

(39) yi = Xβ + γiZ + εi , i = 1, . . . , n,

a linear mixed effects model with yi in dimension k = 4 and all subjects with the same design
matrix X for the fixed effects β = (β1, β2)

T . Following the setup in [6], the matrix X is built
as follows. The first column of X is taken to be a vector 1 consisting of ones of length four.
The four x-values in the second column are generated from a standard normal, and then X is
rescaled to a new matrix X = [1 x], such that XT X = 4I2. For our simulation, we used

X =

⎛⎜⎜⎝
1 −0.9504967
1 −0.5428346
1 1.6650521
1 −0.1717207

⎞⎟⎟⎠ .

The random effects γi are independent N(0, σ 2
γ ) distributed random variables, which are

independent from the measurement error εi ∼ N(0, σ 2
ε R). This leads to a structured covari-

ance � = σ 2
γ ZZT + σ 2

ε R, with covariance parameter vector θ = (θ1, θ2)
T , where θ1 = σ 2

γ

and θ2 = σ 2
ε . Following the setup in [6], we set β1 = β2 = 1 and θ1 = θ2 = 1.

In [6], the authors took Z = (1,1,1,1)T and R = I4. With these choices, the expression

(40) VarCVF(βn) = E0,Ik [ρ′(‖z‖)2]
kα2

(
XT X

)−1XT �X
(
XT X

)−1
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found in [6] for the limiting covariance matrix of
√

n(βn −β) (see (14) in [6]) is equal to our
expression

(41) VarLGRG(βn) = E0,Ik [ρ′(‖z‖)2]
kα2

(
XT �−1X

)−1
,

found in Corollary 9.2, and similarly for the limiting covariance matrix of
√

n(θn − θ). How-
ever, this is just the consequence of the extreme simple choices for X, Z and R. Already, if we
keep X as it is, and only take a slight variation of either Z or R, one finds severe differences
between (40) and (41), and similarly for the expression of the limiting covariance matrix of√

n(θn − θ).
We considered the following two alternatives:

1. take Z = (1,2,3,4)T and leave X and R = I4 as they are;
2. take R = (1,4,9,16)T and leave X and Z = (1,1,1,1)T as they are.

We generated 10,000 samples of size n = 100 according to model (39) and computed the
value of S-estimators βn and θn by means of Tukey’s biweight

(42) ρB(s; c) =
{
s2/2 − s4/

(
2c2) + s6/

(
6c4)

, |s| ≤ c,

c2/6, |s| > c,

and b0 = E0,Ik [ρB(‖z‖; c0)], with the cut-off value c0 chosen such that b0/a0 = 0.5. Accord-
ing to Theorem 6.1, this corresponds to the (asymptotic) breakdown point 50%. Details of
the algorithm used to compute the S-estimators and a brief discussion on its behavior can be
found in [25].

Figure 1 displays the limiting marginal and joined distributions of
√

n(βn − β) in the
first row, where we generated the samples with alternative 1. The histograms and scatterplot
correspond to the 10,000 different values of

√
n(βn − β). The dashed curves correspond to

FIG. 1. Empirical marginal and joined distributions together with limiting marginal and joined distributions of√
n(βn − β) (first row) and

√
n(θn − θ) (second row).
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the densities and 95% contour lines of the theoretical limiting marginal and joined normal
distributions using the covariance matrix in (40). The solid curves correspond to the marginal
and joined normal distributions using the covariance matrix in (41). The empirical contour
lines based on the sample mean and sample covariance of the 10,000 estimates are plotted in
dotted lines, but they are almost indistinguishable from the solid contour lines. We find

VarCVF(βn) =
(

8.13 1.78
1.78 0.72

)
and VarLGRG(βn) =

(
1.97 0.38
0.38 0.40

)
.

Clearly, the histograms of the repeated estimates for β1 and β2 match the graphs of the
(marginal) normal densities with the variances given by VarLGRG(βn), and the scatterplot
matches with the 95% contour line corresponding to VarLGRG(βn). Note that the differences
with VarCVF(βn) are quite severe. For example, this yields that the length of the confi-
dence interval for β1 based on VarCVF(βn) will be two times larger than the one based on
VarLGRG(βn).

The second row in Figure 1 displays the limiting distributions of
√

n(θn − θ), where
we generated the samples with alternative 2. In [6], the limiting covariance matrix was
given by (see (15) in [6]) (LT L)−1LT V�L(LT L)−1, where V� = σ1(Ik2 + Kk,k)(� ⊗
�) + σ2 vec(�)vec(�)T ; see Corollary 5.1 in [20]. Because (LT L)−1LT (Ik2 + Kk,k) =
2(LT L)−1LT and (LT L)−1LT vec(�) = θ(P ), the expression given in [6] becomes

VarCVF(θn) = 2σ1
(
LT L

)−1LT (� ⊗ �)L
(
LT L

)−1 + σ2θ(P )θ(P )T .

This differs from our Corollary 9.2, which gives

VarLGRG(θn) = 2σ1
(
LT (

�−1 ⊗ �−1)
L

)−1 + σ2θ(P )θ(P )T .

For the choices of X, Z and R in [6], both expressions are equal. However, for the alternative
choice for R made in alternative 2, one finds

VarCVF(θn) =
(

20.63 −1.22
−1.22 1.77

)
and VarLGRG(θn) =

(
8.57 −0.82

−0.82 0.80

)
.

Again the differences are quite large. For example, as a consequence the length of the con-
fidence interval for θ1 based on VarCVF(θn) will be 1.5 times larger than the one based on
VarLGRG(θn).

Finally, we illustrate the performance of S-estimators by an application to data from a
trial on the treatment of lead-exposed children. This data set is discussed in [12] and consists
of four repeated measurements of blood lead levels obtained at baseline (or week 0), week
1, week 4 and week 6 on 100 children who were randomly assigned to chelation treatment
with succimer (a chelation agent) or placebo. On the basis of a graphical display of the mean
response over time, it is suggested in [12] that a quadratic trend over time seems suitable. We
fitted the following model:

yij = β0 + β1δi + (β3 + β4δi)tj + (β5 + β6δi)t
2
j + γ1i + γ2i tj + γ3i t

2
j + εij ,

for i = 1, . . . ,100 and j = 1, . . . ,4, where (t1, . . . , t4) = (0,1,4,6) refer to the different
weeks, yij is the blood lead level (mcg/dL) of subject i obtained at time tj and δi = 0 if the ith
subject is in the placebo group and δi = 1, otherwise. The random effects γ i = (γ1i , γ2i , γ3i),
i = 1, . . . ,100 are assumed to be independent mean zero normal random vectors with a di-
agonal covariance matrix consisting of variances σ 2

γ1
, σ 2

γ2
and σ 2

γ3
, respectively. The mea-

surement errors εi = (εi1, . . . , εi4), i = 1, . . . ,100 are assumed to be independent mean zero
random vectors with covariance matrix σ 2

ε I4, also being independent of the random effects.
In this way, we are fitting a balanced linear mixed effects model with unknown parameters
β = (β1, . . . , β6) and θ = (σ 2

γ1
, σ 2

γ2
, σ 2

γ3
, σ 2

ε ), and a linear covariance structure.
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FIG. 2. Left picture: Standardized residuals for the S-estimates (horizontal axis) and the ML estimates (vertical
axis). Right picture: observations for the subjects in the treatment group.

We estimated (β, θ) by means of maximum likelihood and by means of the S-estimator
corresponding to Tukey’s biweight defined in (42). The tuning constant was chosen to be
c = 4.097, which corresponds to asymptotic breakdown point 0.5. For each estimate (β̂, θ̂),
we determined the estimate V(̂θ) for the structured covariance and the standardized residuals
for each subject

RESi =
√

(yi − Xi β̂)T V(̂θ)−1(yi − Xi β̂).

The residuals for both estimation procedures are visible in the left picture of Figure 2, with
the residuals determined from the S-estimate on the horizonal axis and the ones determined
from the ML estimate on the vertical axis. Both estimates identify subject 40 as an outlier, but
only the robust S-estimate also clearly identifies observation 98 as outlier. The extreme large
observation in week 6 seems to be the reason that observation 40 is identified as an outlier by
both methods; see the right picture in Figure 2. Observation 98 also seems to deviate from the
overall quadratic trend by having a suspicious low observation in week 6. The corresponding
S-residual clearly sticks out from the other S-residuals, whereas this is much less so for the
corresponding ML residual.
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