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Solar sailing is a flight-proven low-thrust propulsion technology with strong potential for innovative scientific
missions. All previous solar-sail missions employed a solar-sail system design consisting of four triangular sail
quadrants supported by deployable booms. As an alternative to such a fixed and flat sail-system design, this
paper investigates the dynamics of the heliogyro. The heliogyro is a helicopter-like sail design that utilizes a
set of long slender blades which are deployed and flattened by spin-induced tension and whose orientations
can be individually controlled. The main advantages of such a design are the easier stowage and deployment,
and potentially lower structural mass. Moreover, the individual blade orientation allows higher authority on
the forces and moments produced by the sail, but at the same time complicates the heliogyro dynamics. The
heliogyro’s translational and rotational motions are strongly coupled, with non-trivial relationships between
the control inputs and the forces and moments produced by the sail. The purpose of this paper is to investigate
for the first time the coupled roto-translational motion of the heliogyro. As tantalizing application, the paper
analyzes the heliogyro’s performance for Earth-to-Mars stopover cycler trajectories, which could aid the
exploration of Mars by providing recurrent propellant-less logistics links between Earth and Mars. Two
numerical models to describe the heliogyro coupled roto-translational dynamics are derived; a spin-averaged
and a non-averaged model. To design time-optimal heliogyro Earth-to-Mars stopover cycler trajectories, a
multiple shooting algorithm is employed and the feasibility of the concept is demonstrated. The resulting
trajectories are then compared to those of a traditional fixed-area and flat sail-system design, demonstrating
that the heliogyro can perform similar trajectories as the traditional fixed-area and flat sailcraft, without the
need of an additional system to control the sailcraft attitude.
Keywords: Heliogyro, Solar sailing, Cycler, Mars, Coupled attitude-orbital motion

Nomenclature

Symbols
A Total sail area
ÆR Aspect ratio
a Pitch profile amplitude angle
a Acceleration vector
C Speed of light
c Chord length
c Constraint vector
F Force vector
I Identity matrix
J Mass moment of inertia
J Mass moment of inertia matrix
k Constant
L Luminosity
M Moment vector
m Mass
N Number
n Sail normal direction
O Objective
P Solar pressure

R Blade span
r Distance
r Position vector
S Sensitivity matrix
s Solar radiation direction
u Control vector
X State vector

α Cone angle
β Sail lightness number
β0 Sail lightness number with zero payload
δ Clock angle
ϵ Bus mass ratio
η Sail efficiency
θ Second sailcraft attitude angle
ϑi Blade i pitch angle
κ Smoothness constant vector
λ Payload ratio
µ Standard gravitational parameter
ξi Angle between blade i and blade 1
σ Solar loading parameter
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Φ State transition matrix
ϕ First sailcraft attitude angle
φ Pitch profile phase angle
χ Vector of design variables
ψ Third sailcraft attitude angle
ψi Blade i orientation angle
ω Angular velocity vector

Other notation

□̇ First order time derivative

□̈ Second order time derivative

□̂ Unit-vector
□̄ Averaged value
[IJ ] Rotation from reference frame I to J

Superscripts
k Denotes phase/ leg
T Transposed
[∗] Expressed in reference frame *

Subscripts
1, 2, 3 Denote axis of a reference frame
a Arrival
b Blade
bus Bus
c Cycler
co Collective
cy Cyclic
d Departure
E Earth
e Empty
hp Half-pitch
M Mars
t Transfer
s Sail system
syn Synodic
sc Sailcraft
u Payload
w Waiting
⊙ Sun

Acronyms

ACS Attitude Control System
EM Earth-Mars
ME Mars-Earth
MMOI Mass Moment Of Inertia
NLP Non-Linear Programming
RPM Rotations Per Minute
SRP Solar Radiation Pressure
STM State Transition Matrix

1. Introduction

Solar sailing is a promising propulsion method that
exploits the Solar Radiation Pressure (SRP) over
a large highly reflective sail membrane to generate
thrust [1]. It is a highly attractive option for high-
energy missions and space exploration as the thrust
is produced without the use of propellants [1]. Solar
sailing was first considered as an option in the early
1970s for the design of the Comet Halley Rendezvous
Mission, which was later canceled [1]. Since then,
solar-sailing technology has significantly progressed
and its feasibility has been proven by missions such
as IKAROS [2], NanoSail-D2 [3], and LightSail 1 and
2 [4]. Exciting upcoming missions such as NEA Scout
[5], Solar Cruiser [6], and ACS3 [7] will continue to
increase the technology readiness level and further es-
tablish solar sailing as a serious option for any future
solar-system exploration mission.

The solar-sail designs of all previously mentioned
missions consist of a square-shaped fixed-area sail
supported by deployable booms, but other sailcraft
designs have been proposed as well. Among the al-
ternative sailcraft designs, the heliogyro stands out as
a promising option due to the many potential advan-
tages over square-shaped fixed-area sailcraft. The he-
liogyro was developed by Richard MacNeal in the late
1960s and was the first sailcraft design proposed for
the aforementioned Comet Halley Rendezvous Mis-
sion [1, 8, 9].

The heliogyro sailcraft consists of several slender
sail blades kept in tension by the sailcraft spin, with
a central hub where the bus and payload are located.
The orientation of the sail blades (pitch angle) can
be modified to control the generated SRP forces and
moments, thereby giving the sailcraft a higher control
authority compared to traditional fixed-area sailcraft
[10, 11]. As moments can be generated and controlled
by pitching the sail blades, no separate Attitude Con-
trol System (ACS) for the heliogyro is needed, in con-
trast to fixed-area solar sails that need a system such
as sail vanes, sliding masses, or reflectivity control
devices to control the sailcraft attitude [12, 13]. As
the heliogyro’s blades can be stored in spools during
launch and deployed through the sailcraft spin, the
heliogyro has a significantly easier stowage and de-
ployment process compared to traditional fixed-area
solar sails. In addition to that, less supporting struc-
ture is required to support the sail thanks to the
spin-induced rigidity, potentially allowing for lower
mass, larger sailcraft performance, and better scala-
bility compared to traditional fixed-area sailcraft [1].

After the initial developments by MacNeal [8,
9] and subsequent research on the heliogyro by
Blomquist [14, 15, 16], limited research was performed
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in the following years. Interest in the heliogryo in-
creased again in the 2010s with NASA’s HELIOS mis-
sion proposal [17], a conceptual low-cost sailcraft to
showcase heliogyro technology developments ongoing
at NASA [18]. A complete overview of the heliogyro
sailcraft design and ongoing research is given in Guer-
rant’s PhD thesis [19]. Current research about the
heliogyro is focused on the major uncertainties of the
sailcraft concept: the dynamics, structural stability,
and control of the flexible sail blades [20, 21, 22, 23];
as well as the modeling of the rotational and trans-
lational dynamics of the sailcraft for mission design
[10, 24, 25, 26].

In the scarce amount of research on the heliogyro,
the rotational and translational dynamics of the sail-
craft are usually analyzed independently. Limiting
assumptions are often introduced, such as modeling
the sailcraft’s area as variable and neglecting the sail
blades’ orientations. These sail blades’ orientations
directly control both the SRP forces and moments
generated by the sail, which directly influence both
the rotational and translational motion of the sail-
craft. Such forces and moments are strongly depen-
dent on the position and orientation of the sailcraft
relative to the Sun. The rotational and translational
dynamics of the sailcraft are therefore tightly coupled
and should be analyzed as such.

The purpose of this paper is to develop two novel
models describing the coupled roto-translational dy-
namics of the heliogyro: a spin-averaged model and a
non-averaged model. The non-averaged model mod-
els the heliogyro rotational motion including the spin-
rotation, while the spin-averaged model only models
the translational and spin-axis motion, averaging the
forces and moments over the heliogyro’s spinning ro-
tation. This spin-averaged model is used to design
heliogyro stop-over cycler trajectories between Earth
and Mars for validation and to showcase its capa-
bilities. A stop-over solar-sail cycler between Earth
and Mars can provide a continuous propellant-less lo-
gistic connection between the two planets, periodi-
cally transporting cargo without the need for refuel-
ing. Solar-sail cyclers have been analyzed in the past
[27, 28, 29] demonstrating that a solar-sail cycler with
a period of two Earth-Mars (EM) synodic periods (ap-
proximately 780 Earth days) is possible with mid- to
far-term sailcraft performance [28, 29] .

To achieve the aforementioned purpose, this pa-
per is organized as follows. Firstly, in section 2, the
heliogyro SRP forces and moments models are de-
scribed. These models are used for the development
of the sailcraft coupled roto-translational dynamics,
presented in section 3. Section 4 defines the cycler
problem analyzed in this paper, while the trajectory

design methodology is presented in section 5. The re-
sulting heliogyro cycler trajectories are presented in
section 6 with a comparison to equivalent fixed-area
sailcraft cycler trajectories and an analysis of the cou-
pled roto-translational motion of the heliogyro.

2. Heliogyro force & moment models

In this section, the models to compute the heli-
ogyro SRP force and moment vectors are presented.
Firstly, in subsection 2.1, a set of reference frames are
defined. Later, in subsection 2.2, the “pitch profiles”
describing the sail blade orientation are presented, fol-
lowed by the non-averaged and spin-averaged force
and moment models in subsections 2.3 and 2.4, re-
spectively.

2.1 Reference frames definition

Several reference frames need to be defined to
model the heliogyro dynamics. Note that the refer-
ence frames in this work slighly differ from the ones
in similar works on the heliogyro [10, 11, 24].

Firstly, two Sun-centered reference frames are de-
fined and visualized in Figure 1. The Solar reference
frame S (̂s, l̂, p̂) is defined with axis ŝ along the Sun-
spacecraft vector, l̂ parallel to the ecliptic plane and
perpendicular to ŝ, and axis p̂ that completes the
right-handed reference frame (p̂ = ŝ× l̂). The Solar
reference frame is complemented by the Inertial ref-
erence frame I (̂i1, î2, î3), which does not rotate dur-

ing the propagation of the dynamics, with î1 along
the same direction as the J2000 epoch mean vernal
equinox, î3 normal to the mean ecliptic plane, and î2
completing the frame (̂i2 = î3×̂i1). This frame is used
as a base frame for all propagations as it is inertial.

Two other frames are defined, both with the origin
in the center of mass of the heliogyro, as shown in Fig-
ure 2. First, the Body reference frame B(b̂1, b̂2, b̂3) is
defined with b̂1 along blade 1, b̂3 along the heliogyro
spin-axis, and b̂2 completing the right-handed frame
(b̂2 = b̂3× b̂1). The direction of the B(b̂1, b̂2, b̂3)

frame relative to the I (̂i1, î2, î3) base frame is de-
scribed through a rotation sequence of three Euler
angles (3-2-3) ϕ, θ, and ψ, as shown in Figure 2. Sec-
ond, the Despun reference frame D(d̂1, d̂2, d̂3) is de-
fined. One of the most commonly used approaches
for modeling heliogyros is to average force and mo-
ments over two rotations, thereby assuming that the
spacecraft is rotating uniformly around its spinning
axis b̂3 [11]. When using this assumption it is use-
ful to define the Despun reference frame, visualized
in Figure 3a, with d̂1 along blade 1 at the start of a
rotation, d̂3 aligned with the heliogyro spin-axis, and
d̂2 completing the right-handed frame (d̂2 = d̂3×d̂1).

IAC–22–C1.9.6 3
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Fig. 1: Relation between the Solar and Inertial ref-
erence frames, adapted from [10].

Fig. 2: Relation between the Body, Despun and Iner-
tial reference frames, adapted from [30].

The Despun reference frame is one of the intermedi-
ate frames in the reference frame transformation from
I (̂i1, î2, î3) to B(b̂1, b̂2, b̂3), as it is the result of the
second rotation over the Euler angle θ, as shown in
Figures 2 and 3a.

Finally, for each blade i, a local Blade reference
frame Li(x̂i, ŷi, ẑi) is defined, as shown in Figure 3b,
centered at the central point of the ith blade’s root,
with axes x̂i, ŷi and ẑi along the ith blade span, root
chord and normal to blade i respectively.

It is useful to introduce two angles describing the
direction of the SRP acceleration vector produced by
the sailcraft. These angles are named the “cone” and
“clock” angles (α and δ) and are defined relative to
the sunlight direction, as shown in Figure 4. The cone
angle α is defined as the angle between the sunlight
direction ŝ and the SRP acceleration vector, while the
clock angle δ is defined as the angle between the axis
p̂, perpendicular to the sunlight direction, and the
projection of the SRP acceleration vector on the p̂ -
l̂ plane [1].

2.2 Pitch profiles

Forces and moments acting on the heliogyro can be
controlled by varying the pitch angle of each blade.
Literature proposes three pitch control laws: collec-
tive, cyclic and half-p [8, 11, 14, 19, 25], as visualized
in Figure 5. Each profile is explained in the following
paragraphs including their use when the spin-axis is
aligned with the sunlight direction.

The collective profile pitches all blades at the same
constant angle. It is useful to generate a spin-axis mo-
ment, for example during blade deployment [19]. The
half-p profile pitches the blades sinusoidally over two
rotations generating significant torque in the d̂1 − d̂2

plane, which can be useful for slewing (spin-axis pre-
cession). In addition to moment, the half-p profile
generates a force along the sunlight direction [19].
The cyclic profile pitches the blades sinusoidally over
one rotation, generating a force along the sunlight
direction and laterally, in the d̂1 − d̂2 plane. No mo-
ments are generated [19]. The capacity to generate
a lateral force when the sail is perpendicular to the
sunlight is unique to the heliogyro as fixed-sailcraft
can only generate a force along the sunlight direction
in such attitude.

At heliogyro orientations different from Sun-
pointing, each pitch profile may generate forces and
moments different from what is discussed above. Fur-
thermore, multiple profiles can be used together to
combine multiple effects (though note that forces and
moments of different profiles do not super-impose
[19]). The pitch angle of any blade i can be directly

IAC–22–C1.9.6 4
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Fig. 3: Visualization of the reference frames Despun,
Body, and Blade, adapted from [10]. In a) the
relation between the Despun and Body reference
frames is shown. In b) the Body and Blade refer-
ence frames are visualized.

Fig. 4: Visualization of the cone and clock angles of
the SRP acceleration vector, aSRP , adapted from
[10].

defined using five control variables [24]:

ϑi (ψi) =− aco + acy sin (ψi − φcy)+

ahp sin

[
1

2

(
ψi − φhp −

π

2
sign (ahp)

)] [1]

with aco, ahp, and acy the amplitudes of the collec-
tive, half-p, and cyclic profiles, φhp and φcy the phase
angles of the half-p and cyclic profiles, and ψi as:

ψi = ψ + ξi; ξi = 2π
i− 1

Nb
[2]

with Nb the number of heliogyro blades.

The phase angles φhp and φcy can be interpreted
geometrically when the spin-axis is aligned with the
sunlight direction: with positive half-p amplitude and
zero half-p phase angles a lateral moment is produced
around the d̂1 direction. A negative amplitude pro-
duces a lateral moment around the −d̂1 direction.
The phase angle rotates the direction of the lateral
moment around the d̂3 axis to span the full d̂1 − d̂2

plane. The same interpretation is valid for the lateral
force of the cyclic profile through the phase angle ϕcy.

2.3 Non-averaged models

To derive the SRP force and moment vectors, the
following assumptions are made: the solar radiation
pressure is assumed to vary with an inverse square
law, all sail membranes are assumed to be flat, and
photons are assumed to specularly reflect. The SRP
forces acting on each blade, expressed in the Blade
reference frame as shown through the superscript Li,

IAC–22–C1.9.6 5
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Fig. 5: Heliogyro blade pitch profiles, with dashed lines representing the blade pitch at the second rotation
(for half-p), adapted from [10].

can be defined as [1]:

F
[Li]
i =

2PηA

Nb

(
ŝ[Li] · n̂[Li]

i

)2

n̂
[Li]
i

=
L⊙ηA

2πCNb||r[I]||2
(
ŝ[Li] · n̂[Li]

i

)2

n̂
[Li]
i

[3]

where P is the solar radiation pressure, η is the re-
flectivity coefficient of the sail material, A is the total
area of the heliogyro sail, L⊙ is the solar luminosity
constant, C is the speed of light, r[I] is the heliogyro
position relative to the Sun expressed in the Inertial
reference frame with ||r[I]|| as the sailcraft distance
from the Sun, ŝ[Li] is the vector along the incoming
solar radiation, and n̂[Li] is the normal vector to the
blade sail surface (all expressed in the Blade reference
frame) [10]:

n̂[Li] =
[
0 0 sign

(
ŝ
[Li]
3

) ]T
[4]

with s
[Li]
3 the third component of the ŝ[Li] vector. The

values used for constants such as C and L⊙ are doc-
umented in Table 1.

Table 1: List of constants.

Variable Value Unit
L⊙ 3.83× 1026 W
C 299792458 m/s
µ⊙ 1.327× 1020 m3/s2

rE 1 AU
rM 1.5237 AU

The total instantaneous SRP force acting on the
heliogyro, specified in the Inertial reference frame,
can be computed as:

F[I] =

Nb∑
i=1

F
[I]
i =

Nb∑
i=1

[ILi]F
[Li]
i [5]

with [ILi] the rotation matrix from the Blade refer-
ence frame to the Inertial reference frame.

To compute the moment generated by the blades
the following assumptions are made: the SRP forces
are uniformly distributed across the blade surfaces,
the center of mass lies on the b̂1 − b̂2 plane, and
the distance between the blades’s root chord and the
center of mass is neglected. Under these assumptions,
the moments acting on the heliogyro around its center
of mass is computed in the Body reference frame as:

M[B] =

Nb∑
i=1

R

2
x̂
[B]
i ×F

[B]
i =

RL⊙ηA

4πCNb||r[I]||2

Nb∑
i=1

x̂
[B]
i ×

(
ŝ[B] · n̂[B]

i

)2

n̂
[B]
i

[6]

with R the blade span.

2.4 Averaged models

For long-term propagations, it is convenient to
compute the average forces and moments over two
spin rotations, averaging out high-frequency varia-
tions due to the periodic pitch profiles [19].

The averaged SRP force and moment can be com-
puted by integrating the forces and moments acting

IAC–22–C1.9.6 6
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on one of the blades (see Eq. 5 and 6) over two spin
rotations of the heliogyro, dividing by 4π and multi-
plying by the number of blades:

F̄[I] =
L⊙ηA

8π2C||r[I]||2∫ 4π

0

[IB]

[(
ŝ[B] · n̂[B]

1

)2

n̂
[B]
1

]
dψ

[7]

M̄[D] =
RL⊙ηA

16π2C||r[I]||2∫ 4π

0

[DB]

[
x̂
[B]
1 ×

(
ŝ[B] · n̂[B]

1

)2

n̂
[B]
1

]
dψ

[8]

In Equations 7 and 8, blade 1 was used to compute
the averaged SRP force and moment, but any other
blade would yield the same result. Finally, note that
the force and moment vectors are now expressed in
the Inertial and Despun reference frames and the ef-
fect of the pitch profile control variables is included

in the direction of the blade normal n̂
[B]
1 .

The definite integrals in Equations 7 and 8 are eval-
uated numerically using the trapezoidal rule with 50
segments. This number of segments is selected as a
suitable compromise between accuracy of the result
and required computational effort.

3. Coupled roto-translational dynamics

The rotational and translational motions of the
heliogyro are deeply intertwined, as both the forces
and moments affecting the dynamics are dependent
on the sailcraft attitude, its position relative to the
Sun, and the current pitch profile control variables.
Consequently, in order to produce feasible heliogyro
trajectories, the two motions need to be coupled and
modeled simultaneously.

In this section, two novel models to characterize
the heliogyro coupled roto-translational dynamics are
presented, a non-averaged dynamical model and an
spin-averaged dynamical model, similarly to the force
and moment models from section 2. Firstly, the gen-
eral basic rotational and translational models adopted
are described in subsection 3.1. Later, in subsec-
tion 3.2, the non-averaged coupled roto-translational
model is presented, followed by the spin-averaged one
in subsection 3.3.

3.1 Adopted models

As the focus of this paper is on the coupling of the
rotational and translational motions and not the fi-
delity of the resulting trajectories, a simple two-body
dynamical model is adopted, similarly to other sail-
craft cycler trajectories research [27, 28]. This model

only accounts for the gravitational effect of the central
body (Sun). Only interplanetary trajectories are an-
alyzed, without any flybys and ignoring the planetary
escape and capture phases.

As previously mentioned in subsection 2.1, the sail-
craft attitude is described relative to the Inertial ref-
erence frame through the Euler angles ϕ, θ, and ψ.
The heliogyro is assumed to be a rigid body and ro-
tational dynamics are then described through Euler’s
rotation equations [31]:

J[B] · ω̇[B] + ω[B] × (J[B] · ω[B]) = M[B] [9]

where J[B] is the heliogyro Mass Moment Of Inertia
(MMOI) matrix, as later developed in subsection 4.1,
ω[B] the sailcraft angular velocity vector relative to
the Inertial reference frame, expressed in the Body
reference frame, and the dot notation representing the
first-order derivative relative to time.

The relationship between the Euler angle deriva-
tives and body-fixed angular velocities ω[B] in the
Body reference frame is obtained following the
methodology presented in [30, 31]: ϕ̇

θ̇

ψ̇

 =
1

sθ

 −cψ sψ 0
sθsψ sθcψ 0
cθcψ −cθsψ sθ

ω[B] [10]

with s and c representing the sine and cosine func-
tions.

3.2 Non-averaged model

The non-averaged model couples the full rotational
motion of the heliogyro with the translational one and
is described with a set of 12 first-order differential
equations. The state X is defined as:

X =
[
r[I], ṙ[I], ϕ, θ, ψ,ω[B]

]T
[11]

For brevity, the superscripts describing the ref-
erence frames in the which the state variables and
MMOI are defined will be omitted from now on.

Two sailcraft performance parameters are defined:
the solar loading parameter σ as the ratio between
the the sailcraft total mass and its area and the sail-
craft lightness number β as the ratio between SRP
acceleration and solar gravitational acceleration [1].
The lightness number can be computed as[1]:

β =
ηL⊙A

2πµ⊙Cm
=

ηL⊙

2πµ⊙Cσ
[12]

where m is the sailcraft mass and µ⊙ as the Sun’s
standard gravitational parameter, see Table 1.

IAC–22–C1.9.6 7
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Using the aforementioned simplified two-body
model, Eq. 5, and Eq. 12, the time derivative of the
heliogyro velocity ṙ is obtained as:

r̈ =− µ⊙

||r||2

[
1− β

Nb

Nb∑
i=1

[ILi]
(
ŝ[Li] · n̂[Li]

i

)2

n̂
[Li]
i

] [13]

The time-derivative of the Euler angles ϕ, θ, and
ψ is computed using Eq. 10, while the time derivative
of the body-fixed angular velocities ω is found by re-
arranging and combining Eq. 6, Eq. 9, and Eq. 12:

ω̇ =
µ⊙RσβA

2Nb||r||2
J−1

[
Nb∑
i=1

x̂
[B]
i ×

(
ŝ[B] · n̂[B]

i

)2

n̂
[B]
i − ω × (J · ω)

] [14]

3.3 Averaged model

Simulating the non-averaged rotational model of
the heliogyro is computationally intensive due to the
high-frequency variation of the Euler angle ψ, which
represents the heliogyro rotation around its spin-axis.
Therefore, an averaged model eliminating the ψ state
is also developed, to be used for fast propagations and
trajectory optimization, exploiting the spin-averaged
force and moment models presented in subsection 2.4.

A set of nine first-order differential equations is
used to model the averaged dynamics, with the full
state X̄ as:

X̄ = [r, ṙ, ϕ, θ, ω3]
T

[15]

where ω3 is the third component of the body-fixed
angular velocity vector ω[B].

Analogously to the non-averaged model, the trans-
lational dynamics are described using Eq. 13 as:

r̈ =− µ⊙

||r||2

[
1− β

4π∫ 4π

0

[IB]

[(
ŝ[B] · n̂[B]

1

)2

n̂
[B]
1

]
dψ

] [16]

with the double dot notation representing the second-
order derivative relative to time.

The averaged rotational motion can be described
by rewriting Eq. 9 relative to the Despun reference
frame, as done in the “Generalized Spinning Model”
[32]:

J[D] · ˙̃ω
[D]

+ ω̄[D] × (J[D] · ω̃[D]) = M̄[D] [17]

with J[D] the MMOI in the Despun reference frame,
equal to J[B] due to the sailcraft’s axis-symmetry,
ω̃[D] the angular velocity of the Body reference frame
relative to the Inertial reference frame expressed in
the Despun frame, and ω̄[D] the angular velocity vec-
tor of the Despun frame relative to the Inertial frame:

ω̃[D] =
[
ωd̂1

, ωd̂2
, ω3

]
; ω̄[D] =

[
ωd̂1

, ωd̂2
, 0
]

[18]

When again omitting the superscripts indicating
the frame in which the variables are defined, the time
derivative of the angular velocity components in the
Despun frame can be computed by rewriting Eq. 17
as [32]:

˙̃ω =


−J3

J ω3ωd̂2

J3

J ω3ωd̂1

0

+ J−1M̄[D] [19]

with J3 indicating the MMOI around the heliogyro
spin-axis d̂3, while J represents the MMOI for the
remaining (axis-symmetric) axes.

For a spinning sailcraft it is usually reasonable
to assume that the change in spin-axis direction is
much slower than the spinning and nutation motion,
therefore leading to a slower time-variation of M[D]

compared to the aforementioned motions [32]. Us-
ing these assumptions, an averaging method can be
applied to Eq. 19 to isolate the low-frequency compo-
nents from the angular velocities [32]:

ωd̂1
=

−M̄d̂2

J3ω3
; ωd̂2

=
M̄d̂1

J3ω3
; ω̇3 =

M̄d̂3

J3
[20]

where M̄d̂1
, M̄d̂2

, and M̄d̂3
are the three components

of M̄[D].

Finally, adapting Eq. 10 for the body-fixed angular
velocity expressed in the Despun reference frame (ω̃,
setting ψ to zero), the following first-order averaged
rotational equations of motion are found:


ϕ̇

θ̇

ω̇3

 =


M̄d̂2

J3ω3 sin θ

M̄d̂1

J3ω3

M̄d̂3

J3

 [21]
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4. Problem definition

In this section, the problem to be solved is defined,
starting with a description of the heliogyro’s design in
subsection 4.1. In subsection 4.2, the concepts related
to the stop-over cycler are presented. The optimal
control problem is defined in subsection 4.3, while all
simulation cases are presented in subsection 4.4.

4.1 Heliogyro design

The total sailcraft mass m is composed of the sail
system mass ms, the payload mass mu, and the mass
of the bus mbus. The sailcraft empty mass me equals
the sum of the sail system mass ms and bus mass
mbus. The bus mass ratio ϵ and the payload ratio λ
are defined as:

ϵ =
mbus

me
=

mbus

mbus +ms
[22]

λ =
mu

m
[23]

The total sailcraft mass can then be rewritten as:

m = me +mu = ms +mbus +mu;

1 =
σsA

m
+

mbus

mbus +ms

m−mu

m
+
mu

m
=

=
σsA

m
+ ϵ(1− λ) + λ;

m =
σsA

(1− ϵ)(1− λ)

[24]

where σs is the sail system loading parameter defined
as the ratio between the sail system mass ms and the
sail area A.

The two sailcraft performance parameters, solar
loading σ and sail lightness number β introduced in
section 3, can be rewritten as:

σ =
σs

(1− ϵ)(1− λ)
[25]

β =
ηL⊙ (1− ϵ) (1− λ)

2πCµ⊙σs
= β0(1− λ) [26]

with β0 representing the solar lightness number with
no payload.

A baseline heliogyro design is presented in Table 2,
based on existing mission proposals for heliogyro sail-
craft and their expected mid-term sail performance
[1, 9, 16, 18, 19]. The blade aspect ratio ÆR (ratio
between blade span R and chord c) is conservatively
selected to be 500, half of the maximum aspect ra-
tio for which blades are expected to be still opera-
ble in space [16]. These parameters result in a blade
span and chord of 912 and 1.8 meters, respectively,
and a baseline zero-payload lightness number β0 of
0.153. Note that the lightness number is larger than

the expected lightness number in the mid-term for a
fixed-area sailcraft due to the increased performance
of the heliogyro design [19], as mentioned earlier in
section 1. The baseline case furthermore assumes a
payload ratio λ of 0.347, which results in a lightness
number β of 0.1. The heliogyro spin rate ω3 influences
the blade structural dynamics and stress experienced
at the root of the blade [8]. A baseline value of 0.26
Rotations Per Minute (RPM) is selected based on the
spin rate of MacNeal’s Halley’s rendezvous heliogyro
design and other historical heliogyro’s designs [9, 16].
The spin rate is constrained to remain constant dur-
ing the propagation of the dynamics due to structural
reasons, in order to avoid situations where controlling
the flexible blades might become unfeasible.

The MMOI of the fully-deployed heliogyro is domi-
nated by the sail blades due to their length [19], allow-
ing the assumption R2 >> c2. Neglecting all other
minor MMOI contributions apart from the sail blades
(payload, bus, sail supporting structure, and so on)
and modeling the blades as uniform-mass thin flat
plates, the overall MMOI of the sailcraft is approxi-
mated as:

J1J2
J3

 ≈ ms

(
R2

3
+
c2

12

) 1
2
1
2
1

 ≈ msR
2

3

 1
2
1
2
1


=
AσsR

2

3

 1
2
1
2
1

 =
A2σsÆR

3Nb

 1
2
1
2
1

 [27]

4.2 Stop-over cycler definition

In this paper, heliogyro trajectories for a stop-over
EM cycler are designed. Stop-over indicates that the
sailcraft’s translational states (Cartesian position and
velocity) match the planets’ states at departure and
arrival.

The trajectories of the two planets are approxi-
mated as circular and co-planar for simplicity and to
allow for cycler periodicity. This approximation is
considered valid as the focus of this paper is on the
coupling of the sailcraft’s translational and rotational
motions, so the trajectories are supposed to be only
preliminary estimates for mission design. The prob-
lem is therefore initially reduced to two-dimensions,
with the third components of r and ṙ constrained to
zero, as well as the Euler angle θ limited to ±π

2 . How-
ever, note that the validity of the approach for the 3D
case will be demonstrated in subsection 6.3.

The synodic period tsyn of Earth and Mars can be
computed as:
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Table 2: Sailcraft parameters used, based on heliogyro designs from [9, 16, 19]. Parameters that define the
design on the left, derived parameters on the right.

Variable σs A ϵ η λ Nb ÆR β0 β R c m me mu

Value 7.2 20000 0.2 0.9 0.347 12 500 0.153 0.1 912 1.8 275.6 180 95.6

Unit g/m
2

m2 - - - - - - - m m kg kg kg

tsyn =
2π√

µ⊙
r3E

−
√

µ⊙
r3M

[28]

with rE and rM the distance of Earth and Mars from
the Sun, respectively equivalent to the orbits semi-
major axes due to the circular orbit approximation.
Using the values shown in Table 1, the synodic period
is computed to be approximately 780 Earth days.

The total cycler period tc will be the sum of all
waiting times and transfer times:

tc = tEM
t + tMw + tME

t + tEw [29]

where tMw and tEw are the waiting times at Mars and
Earth, while tEM

t and tME
t are the transfer times of

the EM and Mars-Earth (ME) leg, respectively.
The waiting times are computed as:

tMw = tME
d − tEM

a + kM tsyn

tEw = tEM
d − tME

a + kEtsyn
[30]

where tEM
a , tEM

d , tME
a and tME

d are the arrival and
departing epochs of the EM and ME cycler legs and
kM and kE are the smallest non-negative integers that
make the waiting times positive. The transfer times
of the two cycler legs tEM

t and tME
t are computed as:

tEM
t = tEM

a − tEM
d

tME
t = tME

a − tME
d

[31]

The total period of the cycler will be a multiple of
the Earth-Mars synodic period, and can be computed
by summing all waiting and transfer times. The cycler
problem is parameterized by the departure and trans-
fer times of each leg. January 1st, 2024 at midnight
(Barycentric Dynamical Time) is used as a reference
time.

4.3 Optimal control problem definition

The heliogyro cycler problem can be described
though an optimal control problem consisting of two
legs, the EM leg and the ME leg. In order to limit the
required computational effort, the problem dynamics
for both legs are modeled through the averaged heli-
ogyro dynamics described in subsection 3.3, reducing

the problem to co-planar (̂i1 − î2 plane). Note that
the assumption of averaged dynamics will be tested
against the non-averaged dynamics in subsection 6.3.

The optimal control problem objective O is to min-
imize the sum of the transfer times tEM

t and tME
t

of the heliogyro cycler (which maximizes the waiting
times at the two planets and the number of round-
trips between them within a set time-frame):

Minimize: O = tEM
t + tME

t [32]

The reduced state vector X̄r(t) is composed of the

four co-planar components (̂i1−î2 plane) of the Carte-
sian position and velocities, the first Euler angle ϕ
describing the heliogyro orientation on the î1 − î2
plane, and the spin rate ω3. As described earlier, the
non-coplanar Cartesian position and velocities com-
ponents are set to zero, while the second Euler angle is
set to to −0.5π. All states are unbounded, except the
spin rate which is constrained to the baseline value
of 0.26. The reduced control vector ur(t) consists of
the time-varying pitch profile angles aco, acy, ahp de-
scribed in subsection 2.2, and are bounded between
±0.5π. The phase angles are not included for the co-
planar case and are set to a constant value of −0.5π to
generate forces only in the î1− î2 plane and moments
in d̂2 direction. For both legs, the problem can be
fully described at any epoch t through the heliogyro
state X̄r(t) and control vector u(t).

For each leg, boundary conditions are set such that
the heliogyro position and velocity match the ones of
the origin and target planets (at the departure and
arrival time, respectively).

4.4 Study cases

The cases analyzed in this paper are presented in
Table 3 and further elaborated in section 6.

Case 1a is the baseline case, using the baseline he-
liogyro design described in subsection 4.1 and the av-
eraged dynamical model from subsection 3.3 reduced
to a 2D co-planar case, as explained earlier in subsec-
tion 4.2.

Cases 1b and 1c all use the same baseline heliogyro,
but vary the dynamical model. Case 1b simulates
part of the EM leg using the non-averaged dynamical
model from subsection 3.2, in order to validate the
assumptions of the averaged model and to analyze the
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Table 3: List of cases simulated. “Dec.” indicates “decreasing”, “inc.” indicates “increasing”.

Case ID Dynamics βEM βME λEM λME ω3 [RPM]
1a Averaged 0.1 0.1 0.347 0.347 0.26
1b Non-averaged 0.1 - 0.347 - 0.26
1c Averaged, 3D 0.1 - 0.347 - 0.26
2 Averaged Dec. from β0 Dec. from β0 Inc. from 0 Inc. from 0 0.26
3 Averaged Dec. from 0.1 β0 Inc. from 0.347 0 0.26
4 Averaged 0.1 0.1 0.347 0.347 Inc. from 0.1

heliogyro rotational dynamics. For this case the state
used is the non-averaged state from Eq. 11 and the
full pitch profiles control variables aco, ahp, acy, φhp,
and φcy. Case 1c simulates the full EM leg using
the averaged dynamical model but in 3D, in order to
show the validity of the model also in the out-of-plane
direction. For the latter case, a non-circular non-co-
planar Keplerian approximation of the ephemerides
of Earth and Mars is used [33]. The full averaged
state from Eq. 15 is used (adding the non-co-planar
position component, velocity component, and second
Euler angle θ compared to the state from the baseline
case 1a), as well as the full pitch profile control vector.

Cases 2, 3 and 4 all use the same state, controls and
dynamics as the baseline case 1a, but vary a design
parameter of the heliogyro. Case 2 analyzes the sen-
sitivity of the baseline trajectory to the payload ratio
(equal for both the EM and ME leg) and therefore
the sailcraft performance through the lightness num-
ber β. The payload ratio is varied from a value of zero
to the maximum value for which the cycler can still
be performed within the same amount of EM synodic
periods as the baseline case, using uniform steps in
the lightness number steps of 0.005.

In case of a resupply mission to a Martian outpost,
it might be convenient to maximize the payload ratio
for the EM leg, and return to Earth with no payload.
This is studied in Case 3, setting the ME payload ratio
to zero, and varying the EM payload ratio from the
baseline value to the maximum value for which the
cycler can still be performed within the same amount
of EM synodic periods as the baseline case. Uniform
steps in the EM payload ratio of 0.025 are used.

Finally, Case 4 analyzes the sensitivity of the base-
line trajectory to the spin rate ω3. The spin rate
is varied from 0.1 RPM to the maximum value for
which the cycler can still be performed within the
same amount of EM synodic periods as the baseline.
Uniform steps in the spin rate of 0.01 RPM are used.
Note that these simulations also potentially represent
the sensitivity of the trajectory to design parameters
that affect the heliogyro’s MMOI and generated mo-

ments such as Nb, A and ÆR.

5. Trajectory design

In this section, the methodology used to design
the heliogyro cycler trajectories is presented. A mul-
tiple shooting algorithm is adopted to transcribe the
continuous problem into a Non-Linear Programming
(NLP) problem, as described in subsection 5.1. It is
preferable to initialize such algorithms with an initial
trajectory close to the expected solution to aid con-
vergence, therefore the generation of initial guesses is
a critical step. The process of generating such guesses
is presented in subsection 5.2.

5.1 Multiple shooting method

A multiple shooting algorithm is selected to tran-
scribe the continuous problem into an NLP prob-
lem, as it is relatively simple to implement, has high
parallelization potential, and has been used for sim-
ilar solar-sailing and astrodynamics research works
[34, 35]. Multiple shooting improves several issues
of single-shooting algorithms, including more robust-
ness for highly non-linear problems, with the down-
side of increasing the dimensionality of the problem
[36, 37, 38].

The trajectory of each leg is split into several seg-
ments and the state and control vectors at the be-
ginning of each segment are included in the design
variables to optimize. Each segment initial state is
propagated numerically until the end of the segment
and the differences (named defects) between the final
propagated states and the initial states of the next
segment are enforced to be zero using equality con-
straints, as shown in Figure 6.

The initial and final propagation times are included
in the design variables, such that the complete design
variables vector χ describing both the EM and ME
legs is:

χ = [X̄EM
r;0 , X̄

EM
r;1 . . . X̄EM

r;Ns
,UEM

r , tEM
d , tEM

t ,

X̄ME
r;0 , X̄

ME
r;1 . . . X̄ME

r;Ns
,UME

r , tME
d , tME

t ]
[33]

IAC–22–C1.9.6 11



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved.

Fig. 6: Visualization of the multiple shooting tran-
scription [38].

with Ns the number of segments, X̄k
r;j the initial he-

liogyro state (reduced averaged model, see subsec-
tion 4.3) of the jth segment of leg k, and the vector
Uk

r as:
Uk

r = [uk
r;0,u

k
r;1 . . .u

k
r;Ns

] [34]

with uk
r;j the reduced control vector (see subsec-

tion 4.3) at the initial time of the jth segment of leg
k. The control vector is linearly interpolated as a
function of time between the Ns +1 grid-points. The
subscript notation to indicate the reduced state and
controls is omitted from now for simplicity.

For cases 1b and 1c the definition of the design vec-
tor is extended from the one in Eq. 33 with the com-
plete control vectors and state vectors as described in
subsection 4.4.

The number of segments for the optimization is
set to 48, in order to match the number of available
parallelization threads in the workstation used, max-
imizing computational efficiency. Analyses have been
performed that highlight that a lower number of seg-
ments often result in divergence problems, while a
higher number does not improve the quality of the
solution (in terms of objective).

The initial conditions of all segments are numer-
ically propagated to the final time using a RK4 in-
tegrator, a constant time-step numerical integration
method. Variable time-step methods were not consid-
ered as they can lead to discontinuities when propa-
gating the State Transition Matrix (STM) [39], there-
fore leaving constant time-step methods as the most
suitable choice. RK4 is chosen because of its popu-
larity and high efficiency compared to other constant
time-step numerical integration methods, in terms of
numerical accuracy relative to the number of function
evaluations [36, 40]. A time-step of 1× 10−3 synodic
periods (i.e. approximately one Earth day) is adopted
as it was found to be a good compromise between nu-
merical accuracy and computational effort.

Due to the multiple shooting transcription, the
majority of the equality constraints are the defects
enforcing a continuous trajectory between segments.

For a segment j of leg k, the defect constraint relative
to the following segment is defined as:

ckj = ˜̄Xk
j+1 − X̄k

j+1 [35]

where ˜̄Xk
j+1 is the state at the beginning of segment

j+1, propagated from the initial condition of segment
j.

The boundary conditions from subsection 4.3 are
applied at the initial and final segment as equality
constrains. Two inequality constraints are set enforc-
ing that the waiting times at Earth and Mars are
higher than 0.01 EM synodic periods (approximately
a week). Additional constraints are added to enforce
moments M̄d̂1

and M̄d̂3
to be equal to zero to keep

the spin-rate ω3 constant and restrict the sailcraft mo-
tion to be co-planar with the planets (except for cases
1b and 1c for which the motion is not constrained
as co-planar). Other constraints are added to ease
the convergence of the optimizer. First, inequality
constraints limiting the time derivative of the pitch
profiles angles within two degrees per day (absolute
value) are introduced, as high angular rates are not
expected for long interplanetary trajectories. In ad-
dition to that, other constraints are included to avoid
sudden jumps on the control vector, by enforcing a
constraint in the maximum absolute value of the “con-
cavity” at each grid-point j:

|uk
j+1 + uk

j−1 − 2uk
j | ≤ κ [36]

with κ as an arbitrary vector of constants tuned to
achieve the desired results (0.01 radians).

The problem is scaled to avoid numerical errors,
as the quantities involved have significantly different
orders of magnitude. Positions are normalized in as-
tronomical units, times are scaled by one EM synodic
period, and angular velocities are expressed in RPM.

The heliogyro dynamics are implemented in
Python. WHORP (version 1.14) is used to solve the
discretized optimal control problem as it is partic-
ularly suited to solve highly dimensional non-linear
problems, often used in space applications [41], it
is robust, and has a Python interface through the
Pygmo library [42]. As WORHP is a derivative-based
solver, the derivatives of the constraints and objective
relative to the design vector χ need to be computed.

Omitting the leg notation for simplicity, the deriva-
tives of the defect constraints relative to the segment
j initial state, segment j + 1 initial state, and the
vector U are:
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∂cj
∂X̄j

=
∂ ˜̄Xj+1

∂X̄j
= Φ(tj+1, tj)

∂cj
∂X̄j+1

= −I

∂cj
∂Ū

=
∂ ˜̄Xj+1

∂U
= S(tj+1, tj)

[37]

where I is the identity matrix, Φ is the STM, and
S is the sensitivity matrix (the latter two both from
time tj to time tj+1). Similar derivatives for defects,
boundary condition, constraints, and objective, are
also computed relative to each component of the de-
sign variables vector, but they are not included in this
paper for brevity.

During each propagation, the STM and sensitiv-
ities matrices are computed through the numerical
integration of the variational equations [40]:

Φ̇(t, tj) =
∂ ˙̄X(t, X̄(t))

∂X̄(t)
Φ(t, tj)

Ṡ(t, tj) =
∂ ˙̄X(t, X̄(t))

∂X̄(t)
S(t, tj) +

∂ ˙̄X(t)

∂U

[38]

The derivatives needed to compute the STM, sensi-
tivity matrices, and Jacobian matrices are computed
numerically though central finite difference. Spar-
sity of the Jacobian matrix is exploited to lower the
computational effort, computing only the numerical
derivative for the non-zero terms. The Hessian matrix
is approximated numerically within WORHP [41].

A tolerance of 1 × 10−5 is set on the scaled con-
straints to achieve easier convergence. Finally, a con-
vergence criterion is set such that the optimizer stops
when reaching a scaled optimality of 1 × 10−3 (see
the TolOpti parameter from the WORHP user man-
ual [43]). All other WORHP settings are set at the
default value.

5.2 Initial guess generation

The generation of initial guesses is critical for the
convergence of the NLP solver when dealing with a
highly dimensional non-linear problem. The multi-
step process visualized in Figure 7 is adopted, starting
with a simple problem and increasing its complexity
at each stage, such that for each step the solution
of the previous problem can be used as initial guess.
This approach is adopted to ease the convergence of
the algorithm at each step.

The first step is to find suitable approximate de-
parture dates for both the EM and ME leg, modeling
the continuous low-thrust trajectory analytically us-
ing logarithmic spirals [1]. The transfer time can be

approximated using [1]:

tEM
t =

1

3

(
r
3/2
M − r

3/2
E

)√
1− β cos3 α

β2µ⊙ cos4 α sin2 α

tME
t =

1

3

(
r
3/2
E − r

3/2
M

)√
1− β cos3 α

β2µ⊙ cos4 α sin2 α

[39]

with the lightness number β set to 0.1 from the base-
line heliogyro design described in subsection 4.1. The
cone angle α is optimal at ±35.6◦[1], positive if in-
creasing the orbital semi-major axis and negative if
decreasing it. After computing the transfer times, a
grid-search is performed varying the departure times
for both legs throughout a full EM synodic period to
find their values that minimize the miss distance at
arrival (from the target planet). The departure time
of the ME trajectory is enforced to be after the arrival
time of the EM trajectory. The logarithmic spiral tra-
jectories (sailcraft position and velocity) and the de-
parture and transfer times are used as an initial guess
for the next step.

The second stage for initial guess generation nu-
merically optimizes the trajectories of a fixed-area
solar sail for both the EM and ME legs. The tra-
jectories are combined into the cycler problem, with
the waiting time constraints and the objective of min-
imizing the sum of transfer times, as explained in sub-
section 4.3. The dynamics used are those in Eq. 13
(therefore omitting the sailcraft rotational dynamics),
with the SRP forces from the ideal model in Eq. 3
(setting Nb to 1). WORHP and the multiple shoot-
ing transcription are used to solve the optimal control
problem, as explained in subsection 5.1, with the sail-
craft state and design vector of each leg k as:

Xk
sc = [r, ṙ]

χk
sc =

[
Xk

sc;0 . . .X
k
sc;Ns

, ϕ0 . . . ϕNs , t
ME
d , tME

t

] [40]

where the subscript sc indicates that it is the
state/design vector for a fixed-area solar sail, other
numerical subscripts indicating the segment number,
and the Euler angle ϕ used as the only control variable
(the problem is reduced to 2D as explained in sub-
section 4.2). The optimal control solution χk

sc fully
describes the optimal EM and ME trajectories for a
fixed-area solar sail.

The fixed-area solar-sail trajectory can be used as
an input for the baseline case described in subsec-
tion 4.2 (case 1a). The Euler angle ϕ is converted
from a control to a state, because the rotational dy-
namics are simulated in the baseline case. The pitch
profiles control vector uk

j is initialized by solving a re-
duced inverse problem [24], computing the amplitude
angles (aco, ahp, and acy) that generate the required
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Fig. 7: Visualization of the process to generate initial guesses.

moment and sailcraft acceleration (Equations 7 and
8) to match the initial guess. Firstly, the phase an-
gles (φhp and φcy) are set to −π

2 to generate forces
and moments in the required direction. The required
time derivative ϕ̇ is computed numerically (central
finite difference) from the initial guess and inserted
into Eq. 8 to compute the required moment. The re-
quired acceleration is computed from the ideal model
in Eq. 3 based on the ideal trajectory (r and ϕ). Fi-
nally, the Nelder-Mead algorithm is used to numer-
ically find the pitch profiles amplitude angles that
minimize the acceleration and moments errors, with
a convergence criterion of 1×10−7 m/s2 and 1×10−7

Nm, respectively. This algorithm is selected as it is
simple, available through the SciPy library [44], does
not require derivatives (which would have to be nu-
merical for the averaged force and moment models)
and works for multi-dimensional problems. In cases
of failed convergence for specific time-steps, the con-
verged solution of the nearest time-step is used.

The solution of case 1a is then used as an initial
guess for all other cases. For the sensitivity analyses
in cases 2 to 4 a continuation method is used such that
the solution of the problem with the closest varying
input parameter is used as an initial guess.

6. Results & discussion

In this section, the results of the cases defined in
subsection 4.4 are presented, following the order de-
scribed in Figure 7 and subsection 5.2. Cases are
named following the nomenclature given in Table 3.

Firstly, the results of the systematic search to ana-
lyze the solar-sail cycler feasibility and optimal depar-
ture time are presented in subsection 6.1. The results
of that analysis are used to generate a fixed-area so-
lar sail cycler solution and the baseline heliogyro cy-
cler solution (case 1a). These results are shown and
compared in subsection 6.2. In subsection 6.3, an
in-depth analysis of the heliogyro coupled-roto trans-
lational motion is performed and presented, analyz-
ing the non-averaged motion results (case 1b) and the

non-planar averaged case (case 1c). Finally, in subsec-
tion 6.4, sensitivity analyses of the baseline heliogyro
cycler are performed for varying lightness numbers,
payload ratios of the EM leg, and spin-rates.

6.1 Cycler departure time systematic search

As explained in subsection 5.2, an analytical model
is used to generate very preliminary interplanetary
transfer trajectories. The results of the systematic
search are shown in Figure 8, where the departure
time of each leg is varied throughout two synodic pe-
riods (horizontal axis) and the miss distance at ar-
rival is computed and displayed on the vertical axis.
To generate the results, the initial state of the sail-
craft from each departure time is forward propagated
for 0.55 synodic periods, the transfer times of both
the EM and ME legs found from Eq. 39. The miss
distances at arrival are computed as the position dif-
ferences between the sailcraft and the target planet
at the arrival times.

The figure shows that for both legs the miss dis-
tance is periodic (one synodic period) and has minima
around zero, as expected. From the figure, the first
optimal opportunity to initiate the EM leg is approx-
imately at tEM

d = 0.275, while the optimal departure
opportunity for the ME leg is at tEM

d = 1. The dif-
ference between the departure times of the ME and
EM legs is significantly larger than the transfer time
of 0.55 synodic periods, therefore allowing the sail-
craft to transfer between the two planets in time and
indicating that a cycler with a period of two synodic
periods is feasible. Note that the transfer times for
later results are expected to be longer than this pre-
liminary estimation as the planets’ velocities are not
matched using the analytical model approximation.

6.2 Heliogyro/fixed-area solar sail comparison

The cycler trajectories for the baseline heliogyro
cycler (case 1a) and fixed-area solar sail cycler are
generated solving the optimal control problems pre-
sented in subsection 5.1 and subsection 5.2 , respec-
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Fig. 8: Arrival miss distance as a function of depar-
ture time for both cycler legs.

tively.

The optimal fixed-area solar sail cycler solution is
shown in Figure 9. In Figure 9a the two co-planar
trajectories for the two legs are shown in the Inertial
reference frame with arrows showing the magnitude
and direction of the SRP acceleration. In Figure 9b
the cone angle of the SRP acceleration vector is visu-
alized as a function of time, while the clock angle is
not shown as the problem is co-planar (therefore the
clock angle is constant).

From the arrows’ magnitude and color, it can be
seen that the SRP force magnitude is larger when the
sailcraft is closer to the Sun, as expected. It can also
be observed that the cone angle of the SRP acceler-
ation vector varies around the analytical model opti-
mum of ±35.6 degrees and is axis-symmetric (around
the horizontal axis) for the two legs. As expected,
the cone angle is positive for the EM leg as the sail-
craft needs to increase its velocity, and negative for
the ME leg to slow down. Note that for fixed-area
solar sails (using an ideal SRP force model) the cone
angle of the SRP acceleration vector also describes
the sail attitude, as the force is always aligned with
the sail normal [1]. This is not necessarily the case
for the heliogyro as will be demonstrated later.

Using the fixed-area sailcraft trajectory as an ini-
tial guess, the baseline heliogyro cycler solution is
computed (case 1a). The transfer and waiting times
of the heliogyro and fixed-area solar sail solutions are
shown in the first two rows of Table 4, while the re-
sulting heliogyro trajectories for the two legs, as well
as the required controls and cone angles of the SRP
acceleration vector are shown in Figure 10.

As shown in the table, the total transfer time for
the heliogyro is only marginally longer than the fixed-

Fig. 9: Fixed-area solar-sail cycler solution. In a) the
two legs are presented with arrows to show the
force magnitude and direction, while in b) the cone
angle of the SRP acceleration vector as a function
of time is visualized.

area sailcraft (less than 5%). This is a remarkable
finding as the heliogyro is controlling both the sail-
craft rotational and translational motion, meaning
that no additional ACS is needed. This is not the
case for the fixed-area sailcraft as the rotational dy-
namics aren’t taken into account and an additional
suitably-sized ACS would be needed, degrading the
sailcraft performance. In addition to this, as already
mentioned in section 1 and subsection 4.1, fixed-area
sailcraft in general would have a smaller zero-payload
lightness number compared to heliogyros due to the
heavier sail supporting structure, while in this re-
search work they are taken as equivalent.

From Table 4 it is also clear that the waiting time
at Mars is equal to 0.01 synodic periods (the min-
imum allowable value) for both cyclers. From these
results, it can be concluded that the waiting time con-
straint at Mars is active and limiting for both cycler
solutions.

The heliogyro cycler trajectory is displayed in Fig-
ure 10a together with the SRP acceleration magni-
tude and direction. It can be seen that the heliogyro
cycler legs appear to be similar to the fixed-area solar
sail legs. The shorter waiting time at Earth of the
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Table 4: Comparison of transfer and waiting times between fixed-area sailcraft cycler, heliogyro baseline
cycler (case 1a) and cycler with zero-ME payload (case 2) .

Transfer time
[synodic periods]

Waiting times
[synodic periods]

EM ME Total Earth Mars
Fixed-area solar sail 0.66 0.65 1.31 0.68 0.01
Baseline heliogyro
(case 1a)

0.68 0.68 1.36 0.63 0.01

Zero-ME payload heliogyro
(case 2; λEM = 0.347; λME = 0)

0.65 0.55 1.20 0.75 0.05

Fig. 10: Case 1a, baseline heliogyro cycler solution. In a) the two leg are presented, with arrows to show the
force magnitude and direction, in b) the cone angle of the SRP acceleration vector as a function of time
is visualized, while in c) the pitch profile controls ur(t) are shown.
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heliogyro cycler is also visible when comparing with
the fixed-area solar-sail trajectory in Figure 9, as also
already highlighted previously in Table 4.

Figure 10b displays the cone angle of the SRP
acceleration vector (this time not equivalent to the
sailcraft orientation) as a function of time. The
plot shows that the cone angle is once again vary-
ing around the analytical optimal value of ±35.6 de-
grees and is approximately axis-symmetric around the
horizontal axis for the two legs, very similarly to the
fixed-area sailcraft shown in Figure 9b. The direction
of the heliogyro’s spinning axis is not shown in the
figure but it differs up to a maximum of 7 degrees
from the acceleration direction.

Finally, Figure 10c shows the controls ur(t) (pitch
profiles angles) as a function of time. A few large
and sudden amplitude angle variations are visible and
are attributed to the numerical noise of the deriva-
tives used to solve the NLP problem, as previously
explained in subsection 5.1. This effect is emphasized
by the low sensitivity of the sailcraft state derivatives
to the pitch profile angles, as some of the variations of
three to five degrees have limited effects on the states
derivatives. A relatively constant value (between five
and six degrees) of the half-p amplitude (ahp) is vis-
ible, while the other two pitch profile amplitudes are
varying around zero. The positive half-p amplitude
is needed to generate moments around the d̂2 axis
that produce the required rotation rate of the sail-
craft (ϕ̇, see Eq. 21) to keep the heliogyro’s spinning
axis direction close to the the sunlight direction as the
sailcraft revolves around the Sun. On the other hand,
the other pitch profile variations are needed to cancel
out any moment around d̂3 (to keep ω3 constant) and
provide the other required force and moment correc-
tions to obtain the optimal trajectory.

Overall, comparing the fixed-area sailcraft cycler
with the heliogyro cycler through Table 4, Figure 9,
and Figure 10, it can be concluded that the cycler
trajectories do not present any major differences. It
is shown that the heliogyro performs similarly to the
fixed-area solar sail, while not requiring an additional
ACS that would degrade sailcraft performance.

6.3 Heliogyro coupled roto-translational motion

The coupled roto-translational motion of the heli-
ogyro is analyzed in this subsection by analyzing the
heliogyro motion of cases 1b and 1c from Table 3.
Both cases use the heliogyro design from the baseline
case 1a, but with different dynamical models.

Case 1b uses the non-averaged dynamical model
from subsection 3.2 to validate the assumptions of
the averaged model for the interplanetary trajecto-
ries analyzed within this paper. A one-week section

of the EM leg is simulated and the results are visu-
alized in Figure 11. In Figure 11a and b the posi-
tion and velocity of the heliogyro are shown for the
the averaged and the non-averaged models. It can
be seen from the two plots that the two dynamical
models produce extremely similar trajectories. The
final averaged model error is negligible (less than one
kilometer in position and one micron per second in ve-
locity). Figure 11c shows the Euler angle ϕ describ-
ing the heliogyro orientation as a function of time,
once again demonstrating the similarity between the
averaged and non-averaged models. As seen in the
detail, the non-averaged model produces some high-
frequency variations, with the averaged model run-
ning through the average of the variations. The high-
frequency variations are periodic with a frequency
equal to ω3

2 , corresponding to the period of the half-p
profile.

In order to show that the trajectory design ap-
proach and coupled roto-translational model pre-
sented in this paper are also valid for non-co-planar
cases, the EM leg is simulated in three-dimensions
with case 1c. The resulting EM leg solution is shown
in Figure 12. The trajectory itself is shown in Fig-
ure 12a, with projections on the three planes of the In-
ertial reference frame I (̂i1, î2, î3). Note that the mo-

tion out of the î1 -̂i2 plane is exaggerated by stretching
the î3 axes. The control amplitudes and phases as-
sociated with the trajectory are shown in Figure 12b
and c. The cone and clock angles of the SRP accel-
eration vector are displayed as a function of time in
Figure 12d, as well as the second Euler angle θ that
describes the heliogyro orientation out of the plane î1-
î2 plane. The first Euler angle ϕ is not displayed as
it simply monotonically increases throughout the tra-
jectory starting from a value around 180 and keeping
the angle relative to the Sun around ±35.6 degrees,
similarly to case 1a.

As shown in Figure 12d, the second Euler angle θ
is always approximately -90 degrees which indicates
that the d̂1 axis is always approximately aligned with
the î3 axis. The collective profile amplitude is close to
zero throughout the trajectory, in order to generate
zero moment M̄d̂3

(see Eq. 21). The half-p profile am-
plitude is a relatively constant positive angle in order
to keep the heliogyro spin-axis close to the sunlight
direction as the sailcraft revolves around the Sun.

As a reminder for the reader, a positive half-p am-
plitude with a zero phase angle produces a moment
around the d̂1 axis (the exact effect depends on the
sailcraft orientation). The half-p phase angle rotates

this moment around the d̂3 to span the full d̂1-d̂2

plane. The same is valid for the cyclic profile, which
generates a lateral force component towards the d̂1
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Fig. 11: Case 1a/1b, non-averaged model/averaged model comparison. Figures a) and b) display the position
and velocity of the heliogyro, respectively, while c) shows the Euler angle ϕ describing the heliogyro
orientation.

Fig. 12: Case 1c, non-co-planar EM trajectory. Figure a) shows the heliogyro trajectory on three perpen-

dicular planes. Note that the î3 axes are stretched to show the heliogyro motion out of the î1-̂i2 plane.
The pitch profile controls u are shown in b) and c) (amplitude and phases, respectively). Cone and
clock angles of the SRP acceleration vector, as well as the second Euler angle θ describing the heliogyro
orientation out-of-plane are displayed in d).
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axis with a positive amplitude and zero phase angle
(in addition to a component in the d̂3 direction, with
the exact effect dependent on the sailcraft orienta-
tion). The lateral force component rotates around

the d̂3 axis as a function of the cyclic phase angle
(positive phase angle produces a positive rotation) to

span the full d̂1-d̂2 plane.

Analyzing Figure 12c, the half-p phase angle varies
around -90 degrees, to obtain a moment around −d̂2

which produces a positive ϕ̇, see Eq. 21, considering
that the Euler angle θ is approximately -90 degrees.
Variations above -90 degrees also generate a moment
component around the positive d̂1 direction, therefore
producing a positive θ̇, as explained in Eq. 21 and seen
in Figure 12d. Similarly, half-p phase angles below -90
degrees produce negative θ̇. This movement out-of-
plane is required to match Mars’ orbital inclination.

The cone angle of the SRP acceleration vector has
a similar profile as the one from case 1a explained
earlier in subsection 6.2. The clock angle of the SRP
acceleration vector varies around 90 degrees, mean-
ing that the forces are mostly directed towards the l̂
axis, as expected, to increase the sailcraft tangential
velocity. Initially, the clock angle is slightly below
90 degrees, meaning the force vector is also pointing
slightly towards the p̂ axis, which also corresponds
approximately to the d̂1 direction and the î3 direc-
tion, as mentioned previously. This upward move-
ment is needed to match Mars’ orbital inclination.
Later, the clock angle goes above 90 degrees, which al-
lows the sailcraft to move towards −î3 to reach Mars.

The generation of these out-of-plane (̂i1-̂i2 plane)
forces that are visible in the clock angle profile from
Figure 12d can be explained by looking at the com-
bination of amplitude and phase angles of the cyclic
profile (acy and φcy): when the amplitude is positive
and the phase is above -90 degrees, a force compo-
nent towards +d̂1 is generated (corresponding to a
clock angle less than 90 degrees). A force component

towards +d̂1 is also generated when the amplitude is
negative, and the phase angle is below -90 degrees.
Instead, when the amplitude angle is positive and the
phase angle is below -90 degrees, a force component
towards −d̂1 is generated (corresponding to a clock
angle larger than 90 degrees).

Overall, the heliogyro is capable of completing
the three-dimensional EM leg in 0.71 synodic peri-
ods, which constitutes an increase of less than 5%
compared to the co-planar trajectory transfer time.
Through the two cases, it is shown that the aver-
aged model is suitable for modeling the coupled roto-
translational motion of the heliogyro for co-planar in-
terplanetary trajectories. In addition to that, it is
demonstrated that the trajectory design approach is

capable of solving the heliogyro interplanetary trans-
fer problem also in the non-co-planar cases to gener-
ate more realistic trajectories.

6.4 Heliogyro trajectory sensitivity analysis

This sub-section presents the sensitivity of the
baseline cycler (case 1a) by independently varying the
payload ratio of both legs (same for both legs, case
2), the payload ratio of only the EM leg (with pay-
load ratio of the ME leg set to zero, case 3), and the
spin-rate (case 4), as described in subsection 4.4 and
Table 3.

The results of the sensitivity analysis relative to
the payload ratio of both legs (and therefore light-
ness number, case 2) are visualized in Figure 13. The
resulting cycler trajectories as a function of lightness
number are shown in Figure 13a. Different colors indi-
cate different lightness numbers/payload ratios. The
transfer and waiting times of the resulting trajectories
are shown in Figure 13b. It can be seen how the trans-
fer times decrease for larger sailcraft performance,
i.e. smaller payload ratio or larger lightness number,
while the waiting times increase, as expected. For
all cases, the sum of all waiting and transfer times
equals two synodic periods, the cycler period. The
waiting time at Mars is the limiting constraint which
makes the two-synodic periods cycler unfeasible for
lightness numbers less than 0.098 (λ = 0.36). Fur-
thermore, even at maximum lightness number, β0,
the sum of the transfer times is above one synodic
period, therefore indicating that a much larger sail-
craft performance is needed for a one-synodic period
cycler. Even if the sum of the transfer times would
be slightly below one synodic period, the cycler still
would not have a period of one synodic period due to
the non-optimal relative position between Earth and
Mars, which would force the sailcraft to have non-
negligible waiting times.

The cycler trajectory when only transporting pay-
load on the EM leg (case 3) is shown in Figure 14.
Two trajectories are shown to highlight the dif-
ferences: in orange the baseline cycler (case 1a,
λEM = 0.347; λME = 0.347) and in blue the case
transporting payload only on the EM leg (λEM =
0.347; λME = 0). The waiting and transfer times of
the aforementioned cases are also shown in the second
and third row of Table 4.

From the table it becomes clear that both transfer
times of the zero-ME-payload are shorter. The differ-
ence between the two trajectories is also clearly visible
in the figure. The EM leg of the zero-ME-payload cy-
cler has a shorter transfer time and departs slightly
later to arrive with more optimal conditions at Mars
(as there are looser constraints on the returning ME
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Fig. 13: Case 2, sensitivity analysis relative to the payload ratio of both legs/lightness number. In a) the
cycler trajectories are shown with different colors for each lightness number. In b) the transfer and
waiting times are plotted as a function of lightness number.

Fig. 14: Cycler trajectory comparison between base-
line case (case 1a) and cycler with λEM = 0.347
and λME = 0 (case 3).

Fig. 15: Case 3, cycler transfer and waiting times as
a function of EM payload ratio; with zero ME
payload ratio.
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Fig. 16: Case 4, cycler sensitivity as a function of
spin-rate ω3. In a) the waiting and transfer times
are shown as a function of spin-rate, while in b)
the mean amplitude of the half-p pitch profile is
plotted as a function of the spin-rate for the two
legs separately.

leg because of the shorter transfer time). After wait-
ing at Mars, the ME leg arrives back at Earth sig-
nificantly earlier than the baseline cycler, due to the
shorter transfer time thanks to the better sailcraft
performance with zero-payload.

The waiting and transfer times of the cycler tra-
jectories are displayed as a function of EM payload in
Figure 15. Note that the ME payload ratio λME is set
to zero. Transfer times of the ME legs are constant,
while the transfer time of the EM leg increases with
increasing EM payload ratio. This is expected as the
sailcraft performance is the same for all ME legs while
it decreases for the EM legs with larger EM payload
ratio. Waiting times also decreases with increasing
EM payload ratio, up to the highest feasible EM pay-
load ratio of 0.46 which makes the waiting time at
Mars approach zero. By increasing the payload ratio
by approximately 11% (from 0.347 to the maximum
of 0.46), 60% more payload mass can be transported,
making this option very attractive in case no payload
from Mars to Earth needs to be transported.

Finally, the results of the sensitivity analysis of the
cycler trajectory with respect to the spin-rate ω3 are
displayed in Figure 16. In Figure 16a the transfer and
waiting times are shown as a function of the spin-rate.
The transfer time increases with increasing spin-rate,
but the trend is not as clear as the other sensitivity

analyses presented earlier. The mean amplitude of
the half-p profile for each leg is shown as a function
of spin-rate in Figure 16b. This is shown because the
required moment to achieve the same sailcraft rota-
tion rate ϕ̇ varies as a function of spin-rate ω3 (see
Eq. 21) and the generated SRP moment magnitude
is a function of the amplitude of the half-p profile
ahp. As expected, there is a direct proportionality
between the mean amplitude of the half-p profile and
the sailcraft spin-rate. For a larger spin-rate, a larger
moment is needed to generate the same sailcraft ro-
tation rate ϕ̇ (gyroscopic stiffness, see Eq. 21). This
larger moment is generated by increasing the ampli-
tude of the half-p profile. The maximum spin-rate
that still allows for a non-zero waiting time at Mars
is 0.29 RPM.

Overall, the sensitivity analyses in this section
demonstrate that the heliogyro has significant flexi-
bility in terms of enabling a two-synodic period cycler
even when varying many of the most critical design
parameters.

7. Conclusion

Two novel models describing the heliogyro coupled
roto-translational dynamics have been presented in
this paper. The spin-averaged model was used to de-
sign Earth-to-Mars cycler trajectories with a cycler
period of two Earth-Mars synodic periods (approxi-
mately 780 Earth days).

The heliogyro coupled roto-translational motion
was showcased and analyzed both in two and three
dimensions, demonstrating that the spin-averaged
model can be used for trajectory design as a part
of initial mission design. The results of the non-
averaged model were compared to the spin-averaged
model demonstrating the validity of the assumptions
underlying the spin-averaged model in the context of
interplanetary trajectories.

The heliogyro trajectories were compared to fixed-
area sailcraft cycler trajectories with equivalent
sailcraft-performance. It was shown that the heli-
ogyro achieves similar transfer times as the fixed-
area sailcraft trajectories, without the need of an
additional attitude control system that may degrade
the sailcraft performances. Finally, several sensitiv-
ity analyses were performed to demonstrate the flex-
ibility and robustness of the heliogyro design which
demonstrated that a two-synodic-period cycler is fea-
sible even when varying critical design parameters of
the heliogyro.
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