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Uncertainty quantification for solar sails in the near-Earth environment 

Juan GARCIA-BONILLA1,˚, Livio CARZANA1 , Jeannette HEILIGERS1 

aFaculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands 

Abstract 

This paper addresses the significance of uncertainty quantification in solar-sail missions, focusing on the uncertainties 
associated with the sail’s optical coefficients, structural deformation, and attitude profiles for missions in the Earth 
environment. Due to the relatively low technological maturity of solar-sailing systems, understanding and quanti-
fying uncertainties is crucial for mission success and reliability. This paper employs the Gauss von Mises method 
for uncertainty propagation and stochastic integration of Ornstein-Uhlenbeck processes, which proved to be robust 
methodologies for quantifying and modelling uncertainties. The results show a significant impact of uncertainties in 
the optical coefficients on mission performance, exemplified by a 3-σ uncertainty of 7.5% on the increase in semi-
major axis achieved during orbit raising maneuvers using the coefficient uncertainties of the NEA Scout mission. As 
another example, the analysis on attitude uncertainty demonstrates a 3% lower mean performance in terms of alti-
tude gain compared to ideal control profiles. The research furthermore underscores the effectiveness of the Gauss 
von Mises method, offering great computational efficiency compared to Monte Carlo simulations. These findings 
highlight the necessity of considering uncertainty in solar-sail missions and provide valuable insights for improved 
mission planning, risk assessment, and decision-making. 

Keywords: Solar sailing, near-Earth environment, Uncertainty quantification, Gauss von Mises, Stochastic 
Differential Equation 

1. Introduction 
Solar sailing has revolutionized space exploration by 

harnessing the pressure of sunlight to propel spacecraft, 
offering increased maneuverability and reduced fuel re-
quirements compared to conventional propulsion sys-
tems [1]. However, the success and reliability of solar-
sail missions depend on a comprehensive understanding 
and quantification of inherent uncertainties, considering 
the relatively low technological maturity of these sys-
tems. 

Quantifying uncertainties is essential for risk miti-
gation, mission optimization, and informed decision-
making. Moreover, it enables the development of ro-
bust control strategies capable of addressing unexpected 
variations and disturbances during operation. 

Recent publications have highlighted the significance 
of uncertainty quantification in solar-sail missions. For 
instance, Yamaguchi et al. discussed the challenges 
of developing precise solar-sail force models on the 
ground and proposed estimation strategies based on or-
bital data [2]. Eldad et al. developed robust attitude 
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control algorithms that account for uncertainties in sail 
deformation, moment of inertia, and effective reflectiv-
ity [3]. Similarly, Nicolai et al. employed a polynomial 
chaos procedure to investigate the impact of uncertain 
solar-sail optical coefficients and solar irradiance on he-
liocentric trajectories [4]. Oguri et al. explored robust 
trajectory design for the NEA Scout mission, consider-
ing uncertainties in solar pressure acceleration [5]. 

This paper, on the other hand, focuses on the un-
certainties associated with the solar-sail optical coef-
ficients, structural deformation, and non-ideal attitude 
profiles for missions in the Earth environment. Quanti-
fying optical coefficients, which are influenced by com-
plex phenomena like wrinkling, presents challenges; ex-
tensive testing campaigns for the NEA Scout solar-sail 
revealed significant uncertainties [6]. Modeling sail de-
formation, on the other hand, remains uncertain due to 
the lack of experimental data. Finally, mission data 
from, for example the LightSail-2 mission, has demon-
strated the difficulty of adhering to predefined control 
profiles, resulting in notable attitude deviations [7]. 

As such, this paper provides the first insights into the 
effect of uncertainty in the solar-sail optical coefficients, 
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structural deformation, and attitude control in the Earth 
environment. Moreover, it does so by utilizing novel 
techniques in the field, such as the computationally-
inexpensive Gauss von Mises uncertainty propagation 
method or the use of Ornstein-Uhlenbeck processes to 
model attitude uncertainty [8][9]. 

While the problem of uncertainty quantification is ap-
plicable to various scenarios and sources of uncertainty, 
we delve into a specific case study to shed light on 
the broader issue of uncertainty propagation for solar 
sails within the Earth environment. The selected case 
study draws inspiration from the ACS3 mission, uti-
lizing its sail loading parameter and initial Dawn-Dusk 
Sun-Synchronous Orbit [10]. 

Following this brief introduction, the paper proceeds 
with two sections on the methodology employed, intro-
ducing the relevant dynamical models, studied uncer-
tainties, and uncertainty propagation methods. Subse-
quently, the case study is further discussed and selected 
results of the uncertainty analysis are presented, fol-
lowed by a concise conclusion. 

2. Dynamical models 

In this section, the solar-sail dynamical model and at-
titude control strategy employed in the remainder of the 
paper are presented. 

2.1. Solar sail dynamics 

The dynamics of the solar sail are expressed in the 
J2000 Earth-centered inertial reference frame through 
the following equation of motion: 

dv 
dt 

“ atotal “ 
GME 

r3 
EÑs 

r⃗EÑs ` aJ2 ` aSRP ` aaero (1) 

where GME “ 398600.4415km3 {s2 is the Earth’s grav-
itational parameter [11], r⃗EÑs is the position vector of 
the sail, aJ2 is the acceleration due the J2 coefficient per-
turbation, aSRP is the Solar Radiation Pressure (SRP) 
acceleration, and aaero is the acceleration due to aero-
dynamic forces. For this first investigation into uncer-
tainty quantification in the solar-sail near-Earth orbital 
dynamics, smaller perturbations including planetary ra-
diation pressure, third-body effects, and higher-order 
Earth gravity terms are ignored. 

The J2 acceleration, aJ2, is modeled as per Eq. 20.6 
in Ref. [11], taking values for the reference radius and 
J2 as published in the GGM03 model [12]. 

The SRP acceleration, aSRP, is modelled through 
the Generalized Sail Model (GSM) developed by Rios-
Reyes and Scheeres [13]. This method can compute the 

SRP force of non-ideal, non-flat solar sails at low com-
putational costs under the following assumptions: the 
shape is fixed over time, the same side of the sail is al-
ways illuminated, and there is no self-shadowing. 

Figure 1: Four-quadrant, square solar-sail model with billowing and 
boom bending. Lighter colors are further apart from the nominal plane 
of the sail. 

In this paper, the GSM is used to model a square-
shaped solar sail subject to constant deformations. More 
specifically, the sail is modeled as a four-quadrant bil-
lowed surface with bent linear booms along the diago-
nals, as displayed in Fig. 1. 

The sail billowing and bending are characterized by 
two parameters, the maximum billow height (hb ą 0) 
and the boom tip displacement (ztip ą 0), see Fig. 1. 
The maximum billow height represents the largest dis-
tance between the sail surface and the line connecting 
the boom tips. On the other hand, the boom tip dis-
placement measures the distance between the sail nom-
inal plane and the boom tips, assuming that the boom 
deflection is linear from root to tip. 

Apart from the sail shape parameters, the SRP ac-
celeration also depends on the sail’s optical properties, 
which are described by the reflectivity ρ, specularity s, 
the Lambertian coefficients of the front and back sides 
of the sail, Bf and Bb, respectively, and emissivity of the 
front and back sides of the sail, ε f and εb, respectively. 
For further insights into these optical coefficients, the 
reader is referred to Ref. [1]. 

The aerodynamic acceleration, aaero, is obtained by 
assuming a non-rotating flat sail in hyperthermal free-
molecular flow. This model was considered because, 
given the low angular rate of the sail compared to its 
velocity, the non-rotating sail assumption is justified. 
Moreover, given that aerodynamic forces are an order 
of magnitude weaker than solar radiation pressure, the 
sail’s deformation is considered negligible when com-
puting the aerodynamic force. 

Furthermore, the assumption of a hyperthermal free-
molecular flow has been used often in the literature to 
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describe the dynamics of air particles relative to a sail-
craft in Earth orbit [14][15]. It assumes the random 
thermal motion of the air molecules to be much slower 
than the velocity of the spacecraft and is valid for large 
Knudsen numbers, meaning that the fluid-continuum as-
sumption of the air is no longer applicable [16]. 

Section 2.3.2 of Ref. [16] contains the relevant equa-
tions to compute the aerodynamic forces, using the fol-
lowing parameters as defined in this reference: Vw{V “ 
0.05, and σt “ σn “ 0.8. Moreover, this paper as-
sumes an exponential atmosphere with reference radius 
RE “ 6378.1363 km, scale height H “ 7.02503 km, 
and reference density ρ0 “ 1.225 kg{m3 . 

2.2. Attitude control 

Both the SRP acceleration and aerodynamic forces 
strongly depend on the attitude of the sail, and thus at-
titude control is the primary control strategy for solar-
sailcraft. This paper considers ideal locally optimal 
steering laws for planet-centered solar-sailing, as de-
scribed by Macdonald and McInnes [17][18]. 

3. Uncertainty 

This section encompasses the modeling of uncertain-
ties, their propagation, and their impact on a specific 
figure of merit. 

3.1. Constant random value uncertainties 

This study considers uncertainty due to unknown 
sail deformation parameters (hb, ztip) and optical coeffi-
cients (ρ, s, Bf , Bb, ε f , εb). These values are assumed 
to be normally distributed random variables that remain 
constant during propagation. 

The uncertainty in these input parameters is prop-
agated into the uncertainty in some figure of merit 
through Monte Carlo (MC) simulations and the Gauss 
von Mises (GVM) method [8]. The GVM method is 
an uncertainty propagation method that requires only 
between 10 to 20 sample propagations to produce esti-
mates of the figure of merit distribution, compared to the 
thousands of propagations that the MC method might 
require to do the same. 

This paper presents results obtained using both the 
GVM and MC methods to demonstrate whether the 
GVM method is capable of accurately capturing output 
distributions at the benefit of being orders of magnitude 
faster than MC. As such, the MC method serves as the 
validation mechanism for the results shown in this pa-
per. 

3.2. Stochastic process uncertainties 
In order to consider uncertainties in the attitude con-

trol of the sail over the mission profile, some simula-
tions presented in this paper also consider an attitude 
offset with respect to the nominal attitude profile (i.e., 
the ideal locally optimal steering laws). This attitude 
offset is used to represent more realistic attitude profiles, 
as found in solar-sail missions with imperfect GNC sys-
tems [7]. 

γ₂ γ₁

Figure 2: Sketch of the offset sail normal (shown as a black arrow) 
and the reference sail normal (blue arrow). The angular offsets γ1 and 
γ2 are shown in red and yellow respectively. 

This attitude offset is defined by two parameters (γ1 

and γ2) which represent angular displacements along 
two arbitrarily chosen perpendicular directions with re-
spect to the sail normal, see Fig. 2. 

The angular offsets γ1 and γ2 vary randomly in time 
and are modelled as independent and identical stochas-
tic Ornstein-Uhlenbeck processes [9]. These can be re-
garded as variations of “random walks” (Wiener) pro-
cesses, in which there is a tendency to drift towards the 
mean value γ1 “ γ2 “ 0. These processes are defined 
by the following Stochastic Differential Equation [9]: 

dγi “ ´θγidt ` σdβptq (2) 

where θ and σ are the characteristic parameters of the 
Ornstein-Uhlenbeck process, and βptq is a one dimen-
sional Brownian motion process. An important charac-
teristic of these processes is that they have a bounded 
standard deviation, given by σst “ σ{ 

?
2θ. 

Because the angular offsets γ1 and γ2 impact the di-
rection of the sail normal and, therefore, the entire solar-
sail dynamics, Eqs. 1 and 2 are coupled. Consequently, 
they ought to be propagated in parallel: 

d

» 

– 
v 
γ1 

γ2 

fi 

fl “ 

» 

– 
atotal 
´θγ1 

´θγ2 

fi 

fl dt ̀  

» 

– 
0 

σst 
? 

2θ 
σst 

? 
2θ 

fi 

fl dβptq (3) 

Moreover, due to the presence of Stochastic Differen-
tial Equations in the above system of equations, prop-
agation must be performed using a stochastic integra-
tor. In this paper, the weak third-order, additive-noise 
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stochastic integrator by Debrabant is used with a time 
step of 10 seconds [19]. 

Uncertainty due to stochastic processes cannot be 
modelled through the GVM method, as this method is 
only apt for modelling random but constant variables. 
Thus, only the MC method is used to generate results 
for the uncertainty due to an attitude offset. 

4. Results 

This section introduces the test case used to evalu-
ate and validate the methodology presented in the pre-
vious sections, as well as to obtain insights into the 
wider problem of uncertainty in solar-sail missions in 
the Earth environment. Subsequently, the results of 
the uncertainty propagation analysis due to the constant 
random value uncertainties (deformation and optical pa-
rameters) and stochastic process uncertainties (attitude 
offset) are presented. 

4.1. Test case 

The following test case is inspired by the ACS3 
mission, considering a similar initial Dawn-
Dusk Sun-Synchronous orbit ra, e, i, Ω, ω, f s0 = 
r7071 km, 0, 98.16 deg, 0 deg, 90 deg, 0 degs [10]. A 
locally optimal steering law for the sail is employed 
that maximizes the rate of change of the semi-major 
axis (SMA) [17][18]. 
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Figure 3: Evolution of the semi-major axis of the nominal test case 
(without uncertainties). 

Figure 3 displays the increase in SMA for the nom-
inal test case. The inclusion of J2 perturbations in-
troduces a strong oscillatory behaviour, as seen in the 
“Non-averaged” line. Because this hampers analysis, 
a locally averaged SMA is considered, which removes 
these oscillations and provides a more accurate depic-
tion of the SMA increase due to the solar sail. Note that 
the averaged SMA increase is linear. 

In this paper, the figure of merit for analysis is the 
SMA increase after some days of orbit raising maneu-
vers (∆a). This value is defined as the difference be-
tween the averaged SMA at some time t and the same 
quantity at time t0. Finally, note that whenever reference 
values of the SMA increase ∆aref are used, these values 

refer to the SMA gain obtained in the nominal case (as 
presented in Fig. 3). 

Table 1: Nominal value and standard deviations of the input uncer-
tainties considered in the studied test case. Note that σ2 “ 2σ1. 

Nominal (Mean) σ1 σ2 

σload [kg{m2] 0.20266 - -
l [m] 7.0 - -
ρ [-] 0.910 0.005 0.010 
s [-] 0.890 0.045 0.090 
Bf [-] 0.79 0.05 0.10 
Bb [-] 0.67 0.05 0.10 
ε f [-] 0.025 0.005 0.010 
εb [-] 0.270 0.005 0.010 
hb [m] 0.100 0.025 0.0430 
ztip [m] 0.3500 0.0875 0.175 

Table 1 shows the the nominal parameters that de-
fine the solar sail considered in this paper, as well as the 
associated uncertainties that will be studied in Section 
4.2.1. The sail’s loading parameter, σload, which is the 
ratio between the sail’s mass to its area, and its boom 
length, l, are obtained from data relevant to the Ad-
vanced Composite Solar Sail (ACS3)1 . The optical co-
efficient data is obtained from the NEA Scout solar sail 
model [6]. Finally, deformation parameters have been 
chosen based on the limited data presented by Greschik 
and Mikulas, and their standard deviations were chosen 
conservatively large: a fourth and half of the nominal 
value for σ1 and σ2 respectively [20]. 

Propagation is done for either 1, 5, or 10 days, de-
pending on the analysis. 10,000 samples are used for 
every Monte Carlo simulation presented in this paper. 
When no stochastic process have to be integrated, an 
8th order Runge-Kutta integrator with 64 seconds time 
step is used. 

4.2. Constant random value uncertainties 
This section covers selected results from an analy-

sis on the effect of constant random value uncertainties 
on the figure of merit uncertainty. First, different un-
certainties are studied independently. Subsequently, a 
detailed analysis of the uncertainty due to specularity is 
presented. Finally, a coupled analysis of all uncertain-
ties is discussed. 

4.2.1. Uncertainty due to uncoupled uncertainties 
This section presents the uncertainty in SMA increase 

after 1 day of maneuvers due the input uncertainties dis-
played in Table 1. Each source of uncertainty is studied 

1Data taken from communication with the ACS3 team at NASA’s 
Langley Research Center. 

4 



independently, and two standard deviations are consid-
ered for each input uncertainty (σ1 and σ2). 

Table 2: Normalized semi-major axis gain standard deviation obtained 
after 1 day of maneuvers for different input uncertainties and accord-
ing to the Monte Carlo and Gauss von Mises simulations. Columns 
labeled “Diff” show the difference between the Gauss von Mises and 
Monte Carlo results. Values for σ1 and σ2 are provided in Table 1. 

σ∆a{∆aref [%] 
σ1 σ2 

MC GVM Diff MC GVM Diff 
ρ 0.79 0.79 -0.001 1.56 1.57 0.010 
s 2.55 2.57 0.019 4.25 4.44 0.190 
Bf 0.41 0.41 -0.003 0.78 0.82 0.040 
Bb 0.31 0.31 0.001 0.62 0.63 0.004 
ε f 0.16 0.16 0.001 0.31 0.31 0.007 
εb 0.01 0.02 0.005 0.03 0.03 0.003 
hb 0.04 0.05 0.002 0.09 0.11 0.028 
ztip 0.20 0.21 0.002 0.46 0.46 0.004 

Table 2 shows the ratio of the standard deviation and 
reference value of the SMA gain caused by each in-
put uncertainty, as obtained from the Monte Carlo and 
Gauss von Mises methods. A value of 2.5% in this ra-
tio, for example, means that for a nominal SMA gain of 
10 km, the uncertain SMA increase would have a 750 m 
3σ uncertainty. 

It is apparent that the GVM method can provide accu-
rate estimates of the true standard deviations (obtained 
from MC simulations) independently of the input un-
certainty and its magnitude, at a computational cost that 
is orders of magnitude lower than Monte Carlo simula-
tions. In most cases, the GVM method produces slightly 
larger (more conservative) standard deviations than MC. 

Table 2 additionally provides a clear hierarchy of the 
most impactful input uncertainties. The uncertainty in 
specularity has the strongest effect, followed by the un-
certainty in reflectivity. On the other hand, the uncer-
tainty due to the emissivity coefficients and the defor-
mation parameters is considerably smaller. As such, it 
is of interest to evaluate whether the effects of the latter 
uncertainties are negligible compared to the effects of 
the former in a coupled analysis, which is presented in 
Section 4.2.3. 

4.2.2. Detailed analysis of uncertain specularity 
The previous section provided a first order character-

ization of the impact of every input uncertainty on the 
figure of merit. This section, in turn, provides a deeper 
exploration of the figure of merit distribution due to a 
single uncertain input: the specularity. 

Figure 4 shows the distribution of the normalized rel-
ative SMA gain with respect to the reference SMA gain 

s = 0.03 GVM 

MC 

s = 0.06 

15 10 5 0 5 10 15 

( a aref)/ aref [%] 

s = 0.09 

Figure 4: Distribution of the semi-major axis increase after 10 days 
of maneuvers according to Monte Carlo and Gauss von Mises simu-
lations. Results are presented for three different specularity standard 
deviations, σs. 

after 10 days of maneuvers for three specularity stan-
dard deviations, σs. 

The normalized relative SMA gain measures how 
much the uncertain case underperforms or overperforms 
with respect to the nominal case. For instance, a ´5% 
relative SMA gain when the nominal gain is 10 km 
means that the uncertain case obtained a SMA gain 
of only 9.5 km. Positive relative SMA gains, on the 
other hand, produce SMA gains above the nominal case, 
which can happen for specularities that are higher than 
the nominal specularity, and thus are closer to an ideal 
solar sail and are thus more performant. 

Figure 4 also demonstrates that the SMA gain distri-
bution closely follows a normal distribution. Moreover, 
the Gauss von Mises method is capable of accurately 
capturing the same behaviour as the more computation-
ally expensive Monte Carlo simulations, independently 
of the standard deviation of the specularity. 

Additionally, Figure 4 reveals that the results for the 
GVM method extend beyond those for the MC simula-
tion for positive relative SMA gains. This means that 
the truncation behaviour that the MC method exhibits 
is not captured by the GVM method, which showcases 
how the latter method can miss certain details about the 
real distribution. 

Figure 5 shows how the SMA distribution remains 
normal during propagation, with the results from the 
GVM method once again closely agreeing with the re-
sults from MC simulations. Interestingly, the spread of 
the distributions remains similar for the three times pre-
sented. This suggests that the standard deviation of the 
SMA gain σ∆a grows like the reference value ∆aref: lin-
early. 
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t = 1 day GVM 

MC 

t = 5 days 

15 10 5 0 5 10 15 

( a aref)/ aref [%] 

t = 10 days 

Figure 5: Distribution of the semi-major axis increase due to a specu-
larity standard deviation of σs “ 0.06 according to a Monte Carlo and 
Gauss von Mises simulation. Results are presented at three different 
propagation times (after 1 day, 5 days, and 10 days of maneuvers.) 
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Figure 6: Evolution in time of the standard deviation of the increase 
in semi-major axis for three different specularity standard deviations, 
σs. Data was obtained through Monte Carlo and Gauss von Mises 
simulations. 

Figure 6 confirms that growth of the standard devia-
tion of the SMA gain is linear in time; if the standard de-
viation after 1 day of maneuvers is 100 m, for instance, 
then one could expect a standard deviation of 1 km after 
10 days of maneuvers. As shown in the figure, the slope 
of these trends is driven by the standard deviation of the 
input uncertainty, the specularity. Higher input uncer-
tainties lead to faster growing SMA uncertainties. This 
figure also shows how the GVM method tends to over-
estimate the output standard deviation, an effect that is 
more pronounced the greater the input standard devia-
tion is. 

4.2.3. Uncertainty due to coupled uncertainties 

Sections 4.2.1 and 4.2.2 have dealt with the effects 
of individual input uncertainties on the uncertainty of 
the SMA increase. This section discusses the effects of 

multiple input uncertainties simultaneously on this same 
figure of merit. The results appear in Figure 7. 

0.0 

0.2 
All uncertainties GVM 

MC 

0.0 

0.2 
Specularity 
+ Reflectivity 

0.0 

0.2 
Specularity 

15 10 5 0 5 10 15 

( a aref)/ aref [%] 

0.0 

0.6 
Reflectivity 

Figure 7: Distribution of the semi-major axis increase after 10 days 
of maneuvers according to Monte Carlo and Gauss von Mises simula-
tions. Results are presented for different sets of input uncertainties. 

Four sets of uncertainties are considered: all uncer-
tainties shown in Table 1, only specularity and reflec-
tivity, only specularity, and only reflectivity. All input 
uncertainties are normally distributed with standard de-
viations as shown in column σ1 of Table 1. As seen in 
the figure, the distribution for “Specualarity + Reflectiv-
ity” largely resembles the distribution when considering 
all uncertainties. Moreover, once again, the results from 
the Gauss von Mises method seem to agree with those 
of the Monte Carlo simulations. 

Table 3: Standard deviation of the distributions shown in Fig. 7. 

σ∆a{∆aref [%] 
GVM MC 

All uncertainties 2.644 2.575 
Specularity + Reflectivity 2.586 2.518 
Specularity 2.471 2.408 
Reflectivity 0.759 0.761 

Table 3 provides further insight into the spread of the 
distributions for the four sets of input uncertainties. As 
expected, the standard deviation is larger the more un-
certain parameters are considered. However, this table 
also shows that the specularity and reflectivity are very 
clearly dominant, with other uncertainties being essen-
tially negligible. This demonstrates that analysis effort 
might be saved if the most dominant input uncertain-
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ties (or, alternatively, the negligible ones) are identified 
early on. 

It is important to highlight that these results indicate 
a 7.5% 3σ uncertainty in SMA gain due to the opti-
cal coefficient uncertainties in the NEA Scout solar-sail 
model. For instance, if the nominal SMA increase were 
10 km, this would translate to a 3σ uncertainty of 750 m 
in the SMA increase. Such uncertainty could potentially 
have a significant and detrimental effect on mission per-
formance. 

4.3. Stochastic process uncertainties 
Previous sections dealt with constant random value 

uncertainties, where certain input parameters, such as 
the reflectivity or the billow of the sail, were random 
but fixed during propagation. This section shows results 
for the uncertainty caused by considering a randomly 
evolving offset on the nominal attitude profile. 

0 1 2 3 4 5
Time [hour] 

0.6 
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0.2 

0.0 
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0.4 

0.6 

0.8 

n z
 [-

] 

st = 1º 

0 1 2 3 4 5 

Time [hour] 

st = 5º 

= 10 2 = 10 4 = 10 6 Nominal 

Figure 8: Evolution of the z component of the sail normal direction in 
the J2000 Earth-centered inertial reference frame for different values 
of σst and θ for the first hours of propagation of the test case. The 
“Nominal” line indicates the locally optimal direction (without ran-
dom offset). 

To gain insights into the impact of the Ornstein-
Uhlenbeck parameters θ and σst (see Section 3.2) on the 
sail’s attitude, refer to Figure 8. This figure illustrates 
the evolution of the z component of the sail normal di-
rection for six different combinations of the Ornstein-
Uhlenbeck parameters. By comparing these examples 
with the nominal evolution for this parameter, one can 
better understand the influence of θ and σst on the sail’s 
behavior. 

The effect of the stationary standard deviation σst is 
relatively easy to understand: higher values of this pa-
rameter mean that the offset direction will generally be 
further away from the reference direction. The θ pa-
rameter, on the other hand, influences how “fast” the 
offset changes. As seen for the lines corresponding to 
θ “ 10´2 , the behaviour is clearly “noisy”, with the 
offset rapidly moving above and below the reference. 
Instead, for θ “ 10´6 , the offset evolves so slowly that 
it seems constant during the 10-hour window plotted in 

Fig. 8. The line for θ “ 10´4 represents a middle point: 
it is not as “noisy”, but one can see it move with respect 
to the reference. 

12.5 10.0 7.5 5.0 2.5 0.0 
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st = 3º, = 10 5 

st = 3º, = 10 7 

st = 5º, = 10 5 

st = 5º, = 10 7 

Figure 9: Distribution of the semi-major axis increase after 10 days of 
maneuvers for different Ornstein-Uhlenbeck parameters θ and σst. 

Figure 9 shows how different values of the Ornstein-
Uhlenbeck parameters θ and σst affect both the mean 
and standard deviation of the output distributions. This 
is in contrast to previous analysis showcased in this pa-
per, where the mean of the distribution always remained 
equal to the nominal performance. As such, this sec-
tion discusses the behaviour of both the mean µ∆a and 
standard deviation σ∆a as a function of the Ornstein-
Uhlenbeck parameters θ and σst. 
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Figure 10: Mean semi-major axis increase after 10 days of maneuvers 
as a function of the Ornstein-Uhlenbeck parameter σst for different 
values of θ. 

Figure 10 reveals the strong relationship between the 
stationary standard deviation σst and the mean gain in 
SMA µ∆a. In contrast, the parameter θ seems to have 
a negligible effect on this metric. As such, mean per-
formance loss due to uncertain attitude is mainly driven 
by the stationary standard deviation of the attitude with 
respect to the optimal control profile. Note that for 
all cases studied, the mean performance was below the 
nominal performance µ∆a ă ∆aref. This indicates that 
neglecting to model attitude uncertainty will always 
lead to overestimated performance expectations. 

On the other hand, Fig. 11 shows that both param-
eters θ and σst affect the spread of the SMA gain dis-
tribution. Perhaps unsurprisingly, higher values of the 
standard deviation of the attitude uncertainty σst lead to 
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Figure 11: Standard deviation of the semi-major axis increase after 10 
days of maneuvers as a function of the Ornstein-Uhlenbeck parameter 
θ for different values of σst. 

higher values of the standard deviation of the figure of 
merit σ∆a. 

In contrast, when considering smaller values of θ, 
there is a notable increase in the standard deviation of 
the relative SMA gain. These smaller values of θ cor-
respond to attitude offsets that evolve at a significantly 
slower pace, eventually reaching a point where they re-
main relatively constant for extremely small values of θ. 
Consequently, the attitude profiles across different prop-
agations exhibit substantial dissimilarities, resulting in 
a higher standard deviation in the relative SMA gain. 
Conversely, higher values of θ yield rapidly changing 
attitude offsets. As a result, individual propagations ex-
hibit comparable attitude profiles, leading to a reduced 
standard deviation in the relative increase of SMA. 

5. Conclusion 

In conclusion, this paper has shed light on the sig-
nificance of uncertainty in solar-sail mission design. 
The findings underscore the substantial impact of un-
certainty in optical coefficients on mission performance, 
as demonstrated by the NEA Scout’s sail coefficients, 
which resulted in a notable 3-σ mission performance 
uncertainty of 7.5%. Notably, specularity uncertainty 
played a the largest role in this performance uncertainty. 

Furthermore, the study on attitude uncertainty re-
vealed not only its impact on mission performance un-
certainty, but also highlighted that assuming an ideal 
control profile may lead to overestimated performance 
expectations. By incorporating the Ornstein-Uhlenbeck 
process with tunable parameters, different types of noise 
in attitude profiles were modeled, resulting in perfor-
mance distributions with different means and spread. 

The Gauss von Mises method proved to be an effi-
cient and effective uncertainty propagation technique, 
demonstrating its capability at the benefit of a consider-
ably lower computational cost compared to Monte Carlo 
simulations. 

Future research will expand upon the analysis pre-
sented in this study by considering different test cases. 

This includes exploring other initial orbits, such as or-
bits with shadowing effects, as well as investigating al-
ternative control strategies, such as inclination change 
maneuvers. Such endeavors will further enhance our 
understanding of uncertainty in solar-sail mission de-
sign and contribute to the development of more robust 
and reliable mission planning strategies. 
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