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BNN-DP: Robustness Certification of Bayesian Neural Networks via Dynamic
Programming

Steven Adams 1 Andrea Patanè 2 Morteza Lahijanian 3 Luca Laurenti 1

Abstract
In this paper, we introduce BNN-DP, an efficient
algorithmic framework for analysis of adversarial
robustness of Bayesian Neural Networks (BNNs).
Given a compact set of input points T ⊂ Rn,
BNN-DP computes lower and upper bounds on
the BNN’s predictions for all the points in T .
The framework is based on an interpretation of
BNNs as stochastic dynamical systems, which
enables the use of Dynamic Programming (DP)
algorithms to bound the prediction range along the
layers of the network. Specifically, the method
uses bound propagation techniques and convex
relaxations to derive a backward recursion proce-
dure to over-approximate the prediction range of
the BNN with piecewise affine functions. The al-
gorithm is general and can handle both regression
and classification tasks. On a set of experiments
on various regression and classification tasks and
BNN architectures, we show that BNN-DP out-
performs state-of-the-art methods by up to four or-
ders of magnitude in both tightness of the bounds
and computational efficiency.

1. Introduction
Adversarial attacks (small and often imperceptible pertur-
bations to input points that can trigger incorrect decisions)
have raised serious concerns about the robustness of models
learned from data (Biggio & Roli, 2018; Goodfellow et al.,
2015). Bayesian Neural Networks (BNNs), i.e., neural net-
works with distributions placed over their parameters, have
been proposed as a potentially more robust machine learning
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2023 by the author(s).

paradigm compared to their deterministic counterpart (Car-
bone et al., 2020; McAllister et al., 2017). While retaining
the advantages intrinsic to deep learning (e.g., representation
learning), BNNs enable principled evaluation of model un-
certainty, which can be used for flagging out-of-distribution
samples and robust decision making (Kahn et al., 2017).
However, existing methods that formally (i.e., with certified
bounds) evaluate the robustness of BNNs (Berrada et al.,
2021; Wicker et al., 2020; Lechner et al., 2021) are limited
to posterior distributions with bounded support, thus not
supporting the majority of the algorithms commonly em-
ployed to train BNNs (Blundell et al., 2015; Zhang et al.,
2018a; Osawa et al., 2019) and lack scalability to BNNs
with non-negligible posterior variance estimates.

In this paper, we present BNN-DP, a novel algorithmic
framework that quantifies the adversarial robustness of
BNNs with formal (strong) guarantees. BNN-DP is scalable
and supports posterior distributions of unbounded support,
as commonly used in BNNs, e.g., Gaussian distributions.
We consider both regression and classification settings. For
a compact set of input points T ⊂ Rn0 , we study the robust-
ness of the BNN’s decision, i.e., argmax of the expectation
of the softmax in case of classification and expectation of the
output of the BNN for regression, for all the points in T. As
exact computation of these quantities is infeasible (Berrada
et al., 2021), we focus on computing piecewise affine (PWA)
upper and lower bounds. Inspired by Marchi et al. (2021),
we take a unique view of BNNs as stochastic dynamical sys-
tems that evolve over the layers of the neural network and
show that the computation of the BNN robustness can be
formulated as the solution of a Dynamic Program (DP). This
allows us to break the computation of adversarial robustness
into a set of simpler sub-problems (one for each layer of
the BNN). Critically, while each of these problems is still
possibly non-convex, we show that accurate and efficient
PWA relaxations can be derived for each by relying on tools
from Gaussian processes and convex optimizations.

We validate our framework on several regression and clas-
sification tasks, including the Kin8nm, MNIST, Fashion
MNIST, and CIFAR-10 datasets, and a range of BNN ar-
chitectures. For all tasks, the results show that our method
outperforms state-of-the-art competitive approaches in both
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precision and computational time. For instance, on the Fash-
ion MNIST dataset, our approach achieves an average 93%
improvement in certified lower bound compared to Berrada
et al. (2021), while being around 3 orders of magnitude
faster. In summary, this paper makes the following main
contributions:

• we introduce a framework based on stochastic dynamic
programming and convex relaxation for the analysis of
adversarial robustness of BNNs,

• we implement an efficient algorithmic procedure of our
framework for BNNs trained with Gaussian variational
inference (VI) in both regression and classification
settings,1 and

• we benchmark the robustness of a variety of BNN
models on five datasets, empirically demonstrating how
our method outperforms state-of-the art approaches by
orders of magnitude in both tightness and efficiency.

Related Works Many algorithms have been developed
for certification of deterministic (i.e., non Bayesian) neural
networks (NNs) (Katz et al., 2017; Weng et al., 2018; Wong
& Kolter, 2018; Bunel et al., 2020). However, these methods
cannot be employed to BNNs because they all assume the
weights of the network have a fixed value, whereas in the
Bayesian setting they are distributed according to the BNN
posterior. Methods for certification of BNNs have recently
presented in (Wicker et al., 2020; Berrada et al., 2021; Lech-
ner et al., 2021). Wicker et al. (2020) consider a different
notion of robustness than the one in this paper, not directly
related to adversarial attacks on the BNN decision. Further-
more, that work considers a partitioning procedure in weight
space that makes it applicable only to small networks and/or
with small variance. The method proposed in (Berrada et al.,
2021) is based on dual optimization. Hence, it is restricted
to distributions with bounded support and needs to solve
non-convex problems at large computational costs for clas-
sification tasks. Separately, Lechner et al. (2021) aims to
build an intrinsic safe BNN by truncating the posterior in the
weight space. Cardelli et al. (2019a); Wicker et al. (2021) in-
troduced statistical approaches to quantify the robustness of
a BNN, which however, does not return formal guarantees,
which are necessary in safety-critical settings. Empirical
methods that use the uncertainty of BNNs to flag adversar-
ial examples are introduced in (Rawat et al., 2017; Smith
& Gal, 2018). These, however, consider only point-wise
uncertainty estimates, specific to a particular test point and
do not account for worst-case adversarial perturbations.

Various recent works have proposed formal methods to com-
pute adversarial robustness for Gaussian Processes (GPs)

1Our code is available at https://github.com/
sjladams/BNN_DP.

(Cardelli et al., 2019b; Smith & Gal, 2018; Patanè et al.,
2022; Smith et al., 2022). In BNNs, however, due to the
non-linearity of activation functions, the distribution over
the space of functions induced by a BNN is generally non-
Gaussian, even if a Gaussian distribution in weight space is
assumed. Hence, the techniques that are developed for GPs
cannot be directly applied to BNNs.

2. Robust Certification of BNNs Problem
2.1. Bayesian Neural Networks (BNNs)

For an input vector x ∈ Rn0 , we consider fully connected
neural networks fw : Rn0 → RnK+1 of the following form
for k = 0, . . . ,K:2

z0 = x, ζk+1 = Wk(z
T
k , 1)

T ,

zk = ϕk(ζk), fw (x) = ζK+1,
(1)

where K is the number of hidden layers, nk is the number
of neurons of layer k, ϕk : Rnk → Rnk is a vector of
continuous activation functions (one for each neuron) in
layer k, and Wk ∈ Rnk×nk+1 is the matrix of weights and
biases that correspond to the kth layer of the network. We
denote the vector of parameters by w = (WT

0 , . . . ,WT
K)T

and the mapping from ζk1
to ζk2

by fw
k1:k2

: Rnk1 → Rnk2

for k1, k2 ∈ {0, ...,K}. ζK+1 is the final output of the
network (or the logit in the case of classification problems).

In the Bayesian setting, one starts by assuming a prior distri-
bution p(w) over the parameters w and a likelihood function
p(y|x,w). We adopt bold notation to denote random vari-
ables and write fw to denote a BNN defined according
to Eqns. (1). The likelihood is generally assumed to be
Gaussian in case of regression and categorical for classi-
fication, where the probability for each class is given as
the softmax of the neural network final logits (MacKay,
1992). Then, given a training dataset D = {(xi, yi)}ND

i=1,
learning amounts to computing the posterior distribution
p(w|D) via the Bayes rule (MacKay, 1992). The poste-
rior predictive distribution over an input x∗ is finally ob-
tained by marginalising the posterior over the likelihood,
i.e., p(y∗|x∗,D) =

∫
p(y∗|x∗, w)p(w|D)dw. The final out-

put (decision) of the BNN, ŷ(x∗), is then computed by
minimising a loss function L averaged over the predictive
distribution, i.e.,

ŷ(x∗) = argmin
y

∫
L(y, y∗)p(y∗|x∗,D)dy∗.

2Note that the formulation of neural networks considered in
Eqn (1) also includes convolutional neural networks (CNNs). In
fact, the convolutional operation can be interpreted as a linear
transformation into a larger space; see, e.g., Chapter 3.4.1 in (Gal
& Ghahramani, 2016). This allows us to represent convolutional
layers equivalently as fully connected layers, and do verification
for CNNs as we show in Section 7.
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In this paper, we focus on both regression and classification
problems. In regression, an l2 loss is generally used, which
leads to an optimal decision ŷ(x∗) given by the mean of the
predictive posterior distribution (Neal, 2012), i.e., ŷ(x∗) =
Ey∼p(y|x∗,D) [y] .

3 For classification, ℓ0−1 loss is typically
employed, which results in

ŷ(x∗) = argmax
i∈{1,...,nK+1}

Ew∼p(w|D)

[
softmax(i)(fw (x∗))

]
,

where softmax(i) is the ith component of the nK+1-
dimensional softmax function.4 Unfortunately, because
of the non-linearity introduced by the neural network ar-
chitecture, the computation of the posterior distribution
and consequently of ŷ(x∗) cannot be done analytically.
Therefore, approximate inference methods are required.
In what follows, we focus on mean-field Gaussian Varia-
tional Inference (VI) approximations (Blundell et al., 2015).
Specifically, we fit an approximating multivariate Gaus-
sian q(w) = N (w | µw; Σw) ≈ p(w | D) with mean
µw and block diagonal covariance matrix Σw such that for
k ∈ {0, . . . ,K} and i ∈ {1, . . . , nk}, the approximating
distribution of the parameters corresponding to the ith node
of the kth layer is

q(W
(i,:)
k ) = N

(
W

(i,:)
k | µw,k,i; Σw,k,i

)
(2)

with mean µw,k,i and covariance matrix Σw,k,i. 5

Remark 1. While our primary focus is on VI, the techniques
presented in this paper can be applied to other approximate
inference methods, such as HMC (Neal, 2012) and Dropout
(Gal & Ghahramani, 2016). In these cases, the prediction
of the BNN is obtained by averaging over a finite ensemble
of NNs. For this setting, the dynamic programming prob-
lem in Theorem 1 reduces to computing piecewise linear
relaxations for each layer of a weighted sum, i.e., an aver-
age, of deterministic neural networks, and propagating the
resulting relaxations backward.

2.2. Problem Statement

Given a BNN fw trained on a dataset D, as common in
the literature (Madry et al., 2017), for a generic test point
x∗, we represent the possible adversarial perturbations by
defining a compact neighbourhood T around x∗ and mea-
sure the changes in the BNN output caused by limiting the
perturbations to lie within T .

3In the remainder, we may omit the probability measure of an
expectation or probability when it is clear from the context.

4Analogous formulas can be obtained for the weighted classifi-
cation loss by factoring in misclassification weights in the argmax.

5BNN-DP can be extended to Gaussian approximation distri-
butions with inter-node or inter-layer correlations. In that case,
to solve the backward iteration scheme of Theorem 1, the value
functions need to be marginalized over partitions in weight space.

Definition 1 (Adversarial Robustness). Consider a BNN
fw, a compact set T ⊂ Rn0 , and input point x∗ ∈ T . For a
given threshold γ > 0, fw is adversarially robust in x∗ iff

∀x ∈ T, ∥ŷ(x)− ŷ(x∗)∥p ≤ γ,

where ∥ · ∥p is an ℓp norm.

Definition 1 is analogous to the standard notion of adversar-
ial robustness employed for deterministic neural networks
(Katz et al., 2017) and Bayesian models (Patanè et al., 2022).
As discussed in Section 2.1, the particular form of a BNN’s
output depends on the specific application considered. Be-
low, we focus on regression and classification problems.

Problem 1. Let T ⊂ Rn0 be a compact sub-
set. Define functions I(y) = y and softmax(y) =

[softmax(1)(y), ..., softmax(nK+1)(y)] . Then, for a BNN
fw, h ∈ {I, softmax}, and i ∈ {1, ..., nK+1}, compute:

π
(i)
min(T ) = min

x∈T
Ew∼q(·)

[
h(i)(fw (x))

]
,

π(i)
max(T ) = max

x∈T
Ew∼q(·)

[
h(i)(fw (x))

]
.

(3)

In the regression case (h = I), Problem 1 seeks to compute
the ranges of the expectation of the BNN for all x ∈ T .
Similarly, in the classification case (h = softmax), Eqns. (3)
define the ranges of the expectation of the softmax of each
class for x ∈ T . It is straightforward to see that these
quantities are sufficient to check whether fw is adversarially
robust for x ∈ T ; that is, if supx∈T ||ŷ(x)− ŷ(x∗)||p ≤ γ.

Remark 2. Our method can be extended to other losses, i.e.,
other forms of h in Eqns. (3), as long as affine relaxations
of h can be computed.

Approach Outline Due to the non-convex nature of fw

and possibly h, the computation of Ew∼q(·) [h(f
w (x))] is

analytically infeasible. To solve this problem, in Section 4,
we view BNNs as stochastic dynamical systems evolving
over the layers of the neural network. Through this, we
show that adversarial robustness can be characterized as the
solution of a dynamic programming (DP) problem. This
allows us to break its computation into K simpler optimiza-
tion problems, one for each layer. Each problem essentially
queries a back-propagation of the uncertainty of the BNN
through h and from one layer of the neural network to the
next. Due to the non-convex nature of the layers of the BNN,
these problems still cannot be solved exactly. We overcome
this problem by using convex relaxations. Specifically, in
Section 5, we show that efficient PWA relaxations can be
obtained by recursively bounding the DP problem. In Sec-
tion 6, we combine the theoretical results into a general
algorithm called BNN-DP that solves Problem 1 efficiently.
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3. Preliminaries on Relaxations of Functions
To propagate the uncertainty of the BNN from one layer
to the other, we rely on upper and lower approximations
of the corresponding Neural Network (NN), also known as
relaxations. For vectors x̌, x̂ ∈ Rn, we denote by [x̌, x̂]
the n-dimensional hyper-rectangle defined by x̌ and x̂, i.e.,
[x̌, x̂] = [x̌(1), x̂(1)] × [x̌(2), x̂(2)] × . . . × [x̌(n), x̂(n)]. We
consider two types of relaxations, interval and affine.

Definition 2 (Interval Relaxation). An interval relaxation
of a function f : Rn → Rm over a set T ⊆ Rn are two
vectors b̌, b̂ ∈ Rm such that f(x) ∈ [b̌, b̂] for all x ∈ T .

Definition 3 (Affine Relaxation). An affine relaxation of
a function f : Rn → Rm over a set T ⊆ Rn are two
affine functions Ǎx+ b̌ and Âx+ b̂ with Ǎ, Â ∈ Rm×n and
b̌, b̂ ∈ Rm such that f(x) ∈ [Ǎx+ b̌, Âx+ b̂] for all x ∈ T .

Interval and symbolic arithmetic can be used to propa-
gate relaxations through the layers of a NN. Let, [α]+ :=
max{α, 0} and [α]− := min{α, 0} represent the saturation
operators on α. For a vector or matrix, [·]+ and [·]− rep-
resent element-wise max and min, respectively. We adopt
the notation of Liu et al. (2021) and write interval arith-
metic w.r.t. a linear mapping M compactly as ⊗ where
M ⊗ [b̌, b̂] :=

[
[M ]+b̌+[M ]−b̂, [M ]+b̂+[M ]−b̌

]
, and use

the similar notation for symbolic arithmetic.

4. BNN Certification via Dynamic Program
As observed in Marchi et al. (2021), NNs and consequently
BNNs can be viewed as dynamical systems evolving over
the layers of the network. In particular, for k ∈ {0, ...,K},
Eqn. (1) can be rewritten as:

zk+1 = ϕk+1(Wk(z
T
k , 1)

T ) (4)

with initial condition z0 = x. Since, in a BNN, weights and
biases are random variables sampled from the approximate
posterior q(·), Eqn. (4) describes a non-linear stochastic
process evolving over the layers of the NN. This obser-
vation leads to the following theorem, which shows that
Ew∼q(·) [h(f

w (x))] can be characterized as the solution to
a backward recursion DP problem.

Theorem 1. Let fw (x) be a fully connected BNN with
K hidden layers and h : RnK+1 → Rl be an integrable
function. For k = 0, ...,K, define functions Vk : Rnk → Rl

backwards-recursively as:

VK(z) = EWK∼q(·)
[
h(WK(zT , 1)T )

]
, (5a)

Vk−1(z) = EWk−1∼q(·)
[
Vk(ϕk(Wk−1(z

T , 1)T ))
]
. (5b)

Then, it holds that Ew∼q(·) [h(f
w (x))] = V0(x).

The proof of Theorem 1 is reported in Appendix A.1 and ob-
tained by induction over the layers of the NN by relying on

Figure 1. Illustration of the DP algorithm in Theorem 1 for a BNN
with two hidden layers. Value functions Vk are mappings from
the latent and input spaces of the BNN to the mean of the output
distribution. For each mapping, the distribution and mapping
of a single point is displayed in orange. Starting from the last
hidden layer, we recursively compute PWA approximations of the
mappings. The true mean of the BNN for all z2 ∈ Z2 is in the
green oval, which we over-approximate by the blue hexagon.

the law of total expectation and independence of the param-
eters distribution at different layers.6 Figure 1 illustrates the
backward-iteration scheme of Theorem 1 for a two-hidden-
layer BNN. Starting from the last layer, value functions Vk

are constructed according to Eqns. (5a) and (5b) describing
how the output of layer k is transformed in the previous
layers. Theorem 1 is a central piece of our framework as it
allows one to break the computation of Ew∼q(·) [h(f

w (x))]
into K + 1 (simpler) sub-problems, one for each layer of
the BNN. In fact, note that Vk is a deterministic function.
Hence, all the uncertainty in Vk−1 depends only on the
weights of layer k − 1. This is a key point that we use to
derive efficient methods to solve Problem 1. Nevertheless,
we stress that since Vk(z) is obtained by propagating z over
K−k layers of the BNN, this is still generally a non-convex
function, whose exact optimisation is infeasible in practice.
Consequently, we employ the following corollary, which
guarantees that, to solve Problem 1, it suffices to recursively
bound Vk following Eqns. (5a) and (5b).

Corollary 1.1. For k ∈ {1, . . . ,K}, let functions V̌k, V̂k :
Rnk → Rnl be relaxations of Vk(zk), i.e, ∀zk ∈
Rnk , V̌k(zk) ≤ Vk(zk) ≤ V̂k(zk). Then

EWk−1∼q(·)
[
V̌k(ϕk(Wk−1(z

T , 1)T ))
]
≤ Vk−1(zk) ≤

EWk−1∼q(·)

[
V̂k(ϕk(Wk−1(z

T , 1)T ))
]
.

6 While the vast majority of VI algorithms make this assump-
tion, Theorem 1 can be generalized to the case where there is
inter-layer correlation by marginalizing Eqn. (5a) and (5b) over
partitions in correlated weight-spaces.
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Further, for i ∈ {1, . . . , l}, it holds that π
(i)
min(T ) ≥

minx∈T V̌
(i)
0 (x) and π

(i)
max(T ) ≤ maxx∈T V̂

(i)
0 (x).

Corollary 1.1 allows us to recursively find relaxations of
Vk via Theorem 1. In what follows, we focus on finding
PWA relaxations V̌k and V̂k. To achieve that, there are two
basic steps: (i) initialization of V̌k, V̂k via Eqn. (5a), and
(ii) backward propagation of V̌k, V̂k through a hidden layer
of the BNN via Eqn. (5b). In Section 5, we first show an
efficient method to perform step (ii) and then focus on (i).

5. PWA Relaxation for Dynamic Programming
Our goal in this section is to find PWA relaxations of Vk. To
do that, we first show how to propagate affine relaxations of
the value function backwards through a single hidden layer
of the BNN via Eqn. (5b) and then generalize this result
to PWA relaxations. Note that, because the support of a
BNN is generally unbounded, affine relaxations of Eqn. (5b)
and (5a) lead to overly conservative results (an affine func-
tion should over-approximate a non-linear function over an
unbounded set). Thus, PWA relaxations are necessary to
obtain tight approximations. Finally, in Subsection 5.3 we
show how to compute relaxations for Eqn. (5a).

5.1. Affine Value Functions

For the sake of presentation, we focus on upper bound V̂k−1;
the lower bound case follows similarly. Let V̂k : Rnk → Rl

be an affine upper bound on Vk. Then, by Corollary 1.1 and
the linearity of expectation, it holds that

V̂k−1(z) = V̂k(EWk−1∼q(·)
[
ϕk(Wk−1(z

T , 1)T )
]
). (6)

Recall that here q is a Gaussian distribution (see Section 2.1).
Hence, due to the closure of Gaussian random variables w.r.t.
linear transformations, we can rewrite Eqn. (6) as:

V̂k−1(z) = V̂k(Eζ∼N (mk(z); diag(sk(z))) [ϕk(ζ)]), (7)

where mk : Rnk−1 → Rnk and sk : Rnk−1 → Rnk

≥0 are
defined component-wise as

m
(i)
k (z) = µw,k−1,i(z

T , 1)T ,

s
(i)
k (z) = (zT , 1)Σw,k−1,i(z

T , 1)T ,
(8)

for all i ∈ {1, . . . , nk} with µw,k−1,i,Σw,k−1,i being mean
and covariance of the ith node of the kth layer. diag(s) is a
diagonal matrix with the elements of s on the main diago-
nal. Note that Eqn (7) reduces the propagation of the value
function to the propagation of a Gaussian random variable
(ζ) through an activation function (ϕk). In Proposition 2,
we show how this propogation can be achieved analytically
for ReLU activiation functions. Generalization to other
activation functions is discussed in Remark 3.

Proposition 2. For k ∈ {1, . . . ,K}, let V̂k be an affine
function and Z ⊂ Rnk−1 be a compact set. Define func-
tion rk : Rnk−1 → Rnk

≥0 as rk(z) =
√
sk(z), and let

řk, r̂k : Rnk−1 → Rnk

≥0 be an affine-relaxation of rk w.r.t. Z.
Further, define g : R2 → R as

g(µ, σ) =
µ

2

[
1− erf

(
−µ

σ
√
2

)]
+

σ√
2π

e−(µ/σ
√
2)2 ,

and, let ǧi, ĝi : R2 → R be an affine-relaxation of g w.r.t.
{(m(i)

k (z), r
(i)
k (z)) | ∀z ∈ Z}, Then, for Ǎ, Â ∈ Rnk−1×nk

and b̌, b̂ ∈ Rnk defined as, ∀i ∈ {1, . . . , nk},

Ǎ(i,:) = [∇zg(m
(i)
k (z), r

(i)
k (z))]z=z∗ ,

b̌(i) = g(m
(i)
k (z∗), r

(i)
k (z∗))− Ǎ(i,:)z∗,

[·, Â(i,:)z + b̂(i)] = (m
(i)
k , r̂

(i)
k )T ⊗ [ǧ, ĝ],

with z∗ ∈ Z and ∇z being the gradient w.r.t. z, it holds
that ∀z ∈ Z, Eζ∼N (mk(z); sk(z))

[
V̂k(ReLU (ζ))

]
∈ V̂k ⊗

[Ǎz + b̌, Âz + b̂].

The proof of Proposition 2 is based on the convexity of
the expected value of a rectified Gaussian w.r.t. its mean
and variance. The proof and detailed procedures for obtain-
ing affine relaxations of g and r are reported in Appendix
B.1. Next, we show how the result of Proposition 2 can be
extended to PWA relaxations of the value functions.

Remark 3. The results of Proposition 2 (as well as Propo-
sitions 4 and 5 below) extend to any continuous activation
function ϕk. That is, as shown in (Benussi et al., 2022),
every continuous activation function can be under and over-
approximated by PWA functions ϕ̌k, ϕ̂k : Rnk → Rnk

such that ϕ̌k ≤ ϕk ≤ ϕ̂k. Consequently, E
[
ϕ̌k(ζ)

]
≤

E [ϕk(ζ)] ≤ E
[
ϕ̂k(ζ)

]
, which allows the extension of

Proposition 2 from ReLU to general continuous ϕk.

5.2. Piecewise Affine Value Functions

For N ∈ N, let Zk = {Zk,1, . . . , Zk,N} ⊆ Rnk be a parti-
tion of the support of fw

0:k , and let V̌k,j , V̂k,j : Rnk →
Rl be an affine relaxation of Vk(zk) w.r.t. Zk,j for all
j ∈ {1, . . . , N}, i.e., ∀zk ∈ Zk,j Vk(zk) ≤ V̂k,j with
V̂k,j := Âk,jzk + b̂k,j . Then, by Eqn. (5b) and the law of
total expectation, we obtain an upper bound on Vk−1:

Vk−1(z) ≤
N∑
j=1

b̂k,j Pζ∼N (mk(z); diag(sk(z))) [ζ ∈ Zk,j ]︸ ︷︷ ︸
9a

+

Âk,j Ẽζ∼N (mk(z); diag(sk(z))) [ϕk(ζ) | ζ ∈ Zk,j ]︸ ︷︷ ︸
9b

, (9)

where Ẽζ∼p [ζ | ζ ∈ Z] := Eζ∼p [ζ | ζ ∈ Z]Pζ∼p [ζ ∈ Z].
The lower bound on Vk−1 follows similarly. Term 9a is

5
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simply the probability that a Gaussian random variable (ζ)
is in a given set (partition Zk,j). If the partition is hyper-
rectangular, in Lemma 3 we express Term 9a in closed-form.

Lemma 3. For k ∈ {1, . . . ,K}, ζ̌, ζ̂ ∈ Rnk , it holds that 7

Pζ∼N (mk(z); diag(sk(z)))

[
ζ ∈ [ζ̌, ζ̂]

]
= (10)

1

2nk

nk∏
i=1

erf

 ζ̂
(i)

−m
(i)
k (z)√

2s
(i)
k (z)

− erf

 ζ̌
(i) −m

(i)
k (z)√

2s
(i)
k (z)


Term 9b is the conditional expectation of the random vari-
able propagated through an activation function. The follow-
ing shows that we can decompose this term in expectations,
which we can bound using the result of Proposition 2, and
probabilities for which Lemma 3 can be applied.

Proposition 4. For k ∈ {1, . . . ,K}, vectors ζ̌, ζ̂ ∈ Rnk ,
and ζ ∼ N (mk(z); diag (sk(z))), it holds that8

Ẽ
[
ReLU (ζ) | ζ ∈ [ζ̌, ζ̂]

]
=

E
[
ReLU

(
ζ + [ζ̌]+

)]
− E

[
ReLU

(
ζ + [ζ̌]+

)]
+

[ζ̌]+P
[
ζ ∈ [[ζ̌]+,∞)

]
− [ζ̂]+P

[
ζ ∈ [[ζ̂]+,∞)

]
.

Next, we show how these results can be extended to un-
bounded sets in partition Zk, i.e., unbounded support fw

0:k.

Unbounded Support If fw
0:k has an unbounded support,

then there must necessarily be at least a region that is un-
bounded in the partition Zk. While for this region we can
still apply Lemma 3 to compute Term 9a, we cannot use
Proposition 4 to compute a bound for Term 9b. Instead, we
rely on Proposition 5 (below), which derives relaxations
based on the fact that Gaussian distributions decay exponen-
tially fast (thus, faster than a linear function).

Proposition 5. For k ∈ {1, . . . ,K}, i ∈ {1, . . . , nk}, and
vector ζ̌ ∈ Rnk , it holds that9

1

2
[m

(i)
k (z)]− ≤

Ẽζ∼N (mk(z); diag(sk(z)))
[
ReLU (ζ) | ζ ∈ [ζ̌,∞)

]
≤ 1

2
[m

(i)
k (z)]+ +

√
s
(i)
k (z)

2π
.

7A similar result holds for unbounded regions defined by vector
ž, that is, ζ ∈ [ž,∞) or ζ ∈ (∞, ž], as shown in Appendix B.2.

8 A similar relation can be obtained for ϕk being the identity
function, as shown in Appendix B.3.

9A similar relation can be obtained for ϕk being the identity
function, as shown in Appendix B.4.

Algorithm 1 Adversarial Robustness for Classification

1: function Classification(T , {Nk}K+1
k=1 )

2: for k ∈ {1, . . . ,K + 1} do
3: Zk,main = [ζ̌k, ζ̂k] (Prop 7)

4: {Zk,j}Nk−1
j=1 = REFINE(Zk,main)

5: Zk = {Zk,j}Nk−1
j=1

⋃
ZC
k,main

6: end for
7: {[V̌K+1,j , V̂K+1,j ]}NK+1

j=1 = IBPSoftmax(ZK+1)
8: for k ∈ {K + 1, . . . , 1}, for l ∈ {1, . . . , Nk} do
9: [V̌k−1,l, V̂k−1,l] =

BP({[V̌k,j , V̂k,j ]}Nk
j=1, Zk, Z(l)

k−1)
10: end for
11: Return: minx∈T V̌0(x), maxx∈T V̂0(x)
12: end function

5.3. Relaxation of the Last Layer of BNN

We show how to compute interval relaxations of Eqn (5a).
For the regression case (h = I), the process is simple since
Eqn. (5a) becomes an affine function. That is, VK(z) =
mK(z), where mK(z) as defined in Eqn. (8), and hence no
relaxation is required. For classification, however, further
relaxations are needed because h = softmax, i.e., the output
distribution of the BNN (the logit) is propagated through the
softmax. The following proposition shows that an interval
relaxation can be obtained by relaxing the distribution of
WK(zT , 1)T by Dirac delta functions on the extremes of h
for each set in the partition of the BNN’s output.

Proposition 6. For N ∈ N, let {Z1, . . . , ZN} ⊆ RnK+1 be
a partition of supp(fw (x)). Then, for i ∈ {1, . . . , nK+1}
and w ∼ q(·), it holds that

N∑
j=1

[min
ζ∈Zj

h(i)(ζ)]P [fw (x) ∈ Zj ] ≤ E
[
h(i)(fw (x)

]
≤

N∑
j=1

[max
ζ∈Zj

h(i)(ζ)]P [fw (x) ∈ Zj ] .

A particularly simple case is when there are only two sets
in the partition of the BNN’s output layer. Then, the follow-
ing corollary of Proposition 6 guarantees that, similarly to
deterministic NNs (Zhang et al., 2018b), we can determine
adversarial robustness by simply looking at the logit.

Corollary 6.1. Let {[ζ̌, ζ̂], Z} ⊆ RnK+1 be a partition of
supp(fw). Then, for i, j ∈ {1, . . . , nK+1} and w ∼ q(·),
it holds that

eζ̂
(j)

− eζ̌
(i)

+ (
1

P
[
fw(x) ∈ [ζ̌, ζ̂]

] − 1)

nK+1∑
l=1

eζ̂
(l)

≤ 0

=⇒ E
[
softmax(j)(fw(x))− softmax(i)(fw(x))

]
≤ 0.

6
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(a) BNN with 1 hidden layer and 2048 nodes. (b) BNN with 2 hidden layers and 64 nodes per layer.

Figure 2. Certified affine bounds on the mean of BNNs trained on the 1D Noisy Sine dataset w.r.t. the grey marked interval of input.

6. BNN-DP Algorithm
We summarize our overall procedure to solve Problem 1 in
an algorithm called BNN-DP. Algorithm 1 presents BNN-
DP for the classification setting; the procedure for the regres-
sion setting follows similarly and is provided in Appendix
D. Algorithm 1 consists of a forward pass to partition the
latent space of the BNN (Lines 2-4), and a backward pass to
recursively approximate the value functions via Eqns. (5a)
and (5b) (Lines 7-10). The last layer of the BNN (Eqn. 5a) is
handled by the IBPSoftmax function in Line 7 using the
results of Proposition 6. The BP function in Line 9 performs
the back-propagation over the hidden layers of the BNN
(Eqn. 5b) using the results of Lemma 3 and Proposition 4
and 5. The detailed procedures of IBPSoftmax and BP
can be found in Appendix D. In what follows, we describe
how we partition the support of the latent space of the BNN,
and discuss the computational complexity of BNN-DP.

Partitioning Recall that our results rely on hyper-
rectangular partitions. Hence, for each layer k, we employ
the following proposition to find a hyper-rectangular subset
of the support of each layer that captures at least 1 − ϵ of
the probability mass of supp(fw

0:k).

Proposition 7. For k ∈ {1, . . . ,K}, let ϵ ∈ [0, 1] be a
constant, and Z ⊂ Rnk−1 be a compact set. Then, for
vectors ζ̌k, ζ̂k ∈ Rnk defined such that ∀i ∈ {1, . . . , nk},

ζ̌
(i)

k = max
z∈Z

[
erf−1 (−η)

√
2s

(i)
k (z) +m

(i)
k (z)

]
, (11)

ζ̂
(i)

k = min
z∈Z

[
erf−1 (η)

√
2s

(i)
k (z) +m

(i)
k (z)

]
, (12)

where η = (1− ϵ)
1

nk , it holds that, ∀z ∈ Z,

Pζ∼N (mk(z); diag(sk(z)))

[
ζ ∈ [ζ̌k, ζ̂k]

]
≥ 1− ϵ.

Here, Eqns (11) and (12) are convex minimization problems,
which can be efficiently solved via, e.g., the gradient descent
algorithm. We denote the resulting region obtained via
Proposition 7 as Zk,main ⊂ supp(fw

0:k). Then, Zk,main can
be further refined by interval splitting.

Computational Complexity Similarly as for linear
bounding procedures for deterministic neural networks, see
e.g. [Zhang et al. 2018], the cost of computing piecewise-
affine relaxations of a BNN with K layers and n neurons
per layer is polynomial in both K and n. Refinement, which
is not part of the main algorithm, has exponential cost in
n. In practice, however, in NNs and consequently in BNNs,
only a few neurons are generally active, and those are the
ones that most influence the posterior (Frankle & Carbin,
2018). Therefore, the refining procedure can focus only on
these neurons. Because of this, in almost all the experiments
in Section 7, only 2 regions in the partition per hidden layer
were required to certify robustness, even in cases where the
BNN had large posterior variance and thousands of neurons.

7. Experimental Results
We empirically evaluated BNN-DP on various regression
and classification benchmarks. We ran our experiments on
an AMD EPYC 7252 8-core CPU and train the BNNs using
Noisy Adam (Zhang et al., 2018a) and variational online
Gauss-Newton (Khan et al., 2018). We first validate the
bounds obtained by BNN-DP for BNNs trained on samples
from an 1D sine with additive noise (referred to as the 1D
Noisy Sine). We then analyse a set of BNNs with various
architectures trained on the 2D dimensional equivalent of
1D Noisy Sine and the Kin8nm dataset.10 The latter dataset
contains state-space readings for the dynamics of an 8 link
robot arm, and is commonly used as a regression task to
benchmark BNNs (Hernández-Lobato & Adams, 2015; Gal
& Ghahramani, 2016). Last, we turn our attention to classi-
fication and evaluate BNNs trained on the MNIST, Fashion
MNIST and CIFAR-10 datasets. 11

As a baseline for our experiments, we consider the state-of-
the-art approach of Berrada et al. (2021), to which we refer
as “FL”. In fact, FL is the only existing method that can
provide robustness certification for BNNs in similar settings
as our BNN-DP. Nevertheless, we must remark that even

10Available at http://www.cs.toronto.edu/˜delve.
11Our code is available at https://github.com/

sjladams/BNN_DP.
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Table 1. Comparison between BNN-DP and FL on various fully connected BNN architectures, with K being the number of hidden layers,
and nhid the number of neurons per layer. The results are the average over 100 test point, and the computation times are averaged over all
architectures. The best values for each comparison are reported in bold.

(a) γ-Robustness Regression Tasks

2D Noisy Sine Kin8nm

K ϵ nhid BNN-DP FL (5 std) FL (3 std) BNN-DP FL (5 std) FL (3 std)

1 1e-2 64 0.041 1.8 0.8 0.044 0.7 0.3
256 0.04 3.0 1.2 0.040 45.4 24.7
512 0.039 6.4 2.5 0.041 12.6 6.0

2 1e-3 64 0.109 718.1 101.1 0.070 31.3 10.8
128 0.239 112.2 20.1 0.240 1459.8 420.9
256 0.376 599.3 92.1 0.968 9420.9 2715.9

3 5e-4 64 0.477 699.2 74.8 0.348 12638.5 59304.6
128 0.629 11214.4 1142.8 0.964 433149.4 232811.6
256 14.180 275408.1 2882.3 69.488 3441470.8 21877545.4

Cmp. Time (sec.) 8.0 7.8 7.7 13.2 7.5 7.6

(b) ϵ-Robustness Classification Tasks

MNIST Fashion MNIST

K nhid BNN-DP FL (5 std) FL (3 std) BNN-DP FL (5 std) FL (3 std)

1 64 0.0150 0.0090 0.0102 0.0128 0.0077 0.008
128 0.0145 0.0091 0.0131 0.0065 0.0041 0.0045
256 0.0137 0.0082 0.0090 0.0081 0.0043 0.0046
512 0.0131 0.0070 0.0073 0.0092 0.0044 0.0048

2 64 0.0073 0.0041 0.0042 0.0048 0.0024 0.0026
128 0.0062 0.0028 0.0035 0.0021 0.0018 0.0019
256 0.0049 0.0023 0.0023 0.0032 0.0016 0.0016

3 64 0.0032 0.0014 0.0016 0.0015 0.0006 0.0008
256 0.0018 0.0009 0.0009 0.0007 0.0006 0.0007

Cmp. Time (sec) 15.2 859.2 805.3 22.1 767.6 760.2

FL is not fully formal; it works by truncating the Gaussian
posterior distribution associated to each weight at a given
multiple of its standard deviation (std), disregarding a large
part of the posterior distribution. Hence, the returned bound
is not sound over the full posterior but only a subset of it.
More importantly, the disregarded portion of the posterior
grows exponentially with the number of weights of the net-
works. Already for a two hidden layer BNN with 48 neurons
per layer, FL verifies only 0.1% of the BNN posterior when
truncated at 3 std. Thus, the bounds computed by FL are
optimistic and not mathematically guaranteed to hold. In
contrast, not only BNN-DP returns formal bounds account-
ing for the whole posterior, but also the benchmark results
show that BNN-DP bounds are much tighter than FL ones.

7.1. Bound Validation

We validate and qualitatively compare the bounds obtained
by BNN-DP and FL on BNNs with 1 and 2 hidden layers
trained on 1D Noisy Sine. The results of these analyses are
reported in Figure 2. Visually, we see that BNN-DP is able
to compute tight affine relaxations (blue lines) on the mean
of the BNNs over the grey shaded intervals. In contrast,
already in this simple scenario, and even when truncating
the posterior distribution at just 1 std, FL returns as guaran-
teed output intervals [−1.68, 0.59] and [0.23, 0.71] for the 1
and 2 hidden layer BNN, respectively. Hence, even though
FL disregards most of the BNNs posterior, BNN-DP still
produces tighter bounds. When using 3 std, the FL inter-
val bounds become even wider, that is [−7.07, 9.31] and
[−0.65, 1.54], for the 1 and 2 hidden layer BNN, respec-
tively. Intuitively, the major improvement of the bounds
can be explained by the fact that, while BNN-DP directly
averages the uncertainty of each layer by solving the DP in
Theorem 1, FL solves an overall optimisation problem that
at each layer considers the worst combination of parame-
ters in the support of the (truncated) distribution, leading to
conservative bounds. In fact, the bound computed by FL is

looser in the one-hidden layer case than in the two-hidden
layers one by one order of magnitude, precisely because
of the higher variance of the former BNN compared to the
second. In what follows, we see that analogous observations
apply to more complex deep learning benchmarks.

7.2. Regression Benchmarks

We consider a set of BNNs with various architectures trained
on the 2D Noisy Sine and Kin8nm regression datasets. To
asses the certification performance of BNN-DP, we compute
the difference between the upper and lower bounds on the
expectation of the BNNs, referred to as the γ-robustness, for
its input in a ℓ∞-norm ball of radius ϵ centered at a sampled
data point. Clearly, a smaller value of γ implies a tighter
bound computation. Results, averaged over 100 randomly
sampled test points, are reported in Table 1a. For all experi-
ments, BNN-DP greatly improves the value of γ-robustness
provided by the FL-baseline by 1 to 4 orders of magnitude
with similar computation times. We also note that the larger
the BNN is, the larger the improvement in the (tightness
of the) bounds are, which empirically demonstrates the su-
perior scalability of BNN-DP. Figure 3 explicitly shows
the impact of the model size and variance on the certified
γ-robustness. For BNNs with 1 hidden layer, BNN-DP
guarantees small γ-robustness (and hence tighter bounds)
irrespective of the number of neurons as well as the amount
of uncertainty. In contrast, as already observed for the 1D
Noisy Sine case, FL is particularly impacted by the variance
of the posterior distribution. For BNNs with two hidden lay-
ers, BNN-DP requires partitioning the latent space, which
leads to a positive correlation with the value of γ-robustness
and the number of hidden neurons. A similar, but more
extreme, trend is also observed for FL.
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(a) 1 hidden layer - 2D NS (b) 2 hidden layers - 2D NS (c) 1 hidden layer Kin8nm (d) 2 hidden layers Kin8nm

Figure 3. Analysis of γ-robustness illustrated as bars (in log-scale), and uncertainty of the posterior distribution (black stars), for BNNs
architectures trained on 2D Noisy Sine (NS) and Kin8nm.

7.3. Classification Benchmarks

We now evaluate BNN-DP on the MNIST, Fashion MNIST
and CIFAR-10 classification benchmarks. In order to quan-
titatively measure the robustness of an input point x∗, we
consider the maximum radius ϵ for which the decisions on
ℓ∞-norm perturbations of x∗ with radii ϵ is invariant. That
is, any perturbation of x∗ smaller than ϵ does not change
the classification output; hence, the larger ϵ in x∗, the more
robust the BNN in the specific point. Results are reported
in Table 1b and 2. For the fully connected BNN architec-
tures, BNN-DP not only is able to certify a substantially
larger ϵ compared to the baseline, but also it does so by
orders of magnitude smaller computation time. This is
because our approach uses interval relaxations (Proposition
6) to bound the softmax, whereas FL explicitly considers a
non-convex optimization problem, which is computationally
demanding. For the Bayesian CNN architectures, FL is able
to certify a slightly larger ϵ, at the costs of magnitudes of
orders increase of computation time. This can be explained
by the decreasing support of the BNN posterior certified by
FL for increasing network size, whereas, the ϵ certified by
BNN-DP holds for the whole posterior.

Table 2. Comparison of the ϵ-robustness obtained with BNN-DP
and FL for various BNN architectures, with Kconv convolutional
layers concatenated to K fully connected hidden layers, and nhid

neurons per fully connected layer. The convolutional layers have
nkern kernels of size 4×4 with stride 1. Inference on the convolu-
tional and linear layers is performed using Dropout and Bayes by
Backprop, respectively. The results are the average over 100 test
points, and the computation times are averaged over all architec-
tures. The best values for each comparison are reported in bold.

Dataset Kconv nkern K nhid BNN-DP FL (5 std) FL (3 std)

Fashion MNIST 1 2 1 64 0.00065 0.00112 0.00122
2 2 1 64 0.00061 0.00109 0.00117

Cmp. Time (sec) 3.7 545.5 319.3

CIFAR-10 2 4 0 - 0.00007 0.00009 0.00010
3 3 0 - 0.00011 0.00019 0.00021

Cmp. Time (sec) 1.8 250.7 201.2

8. Conclusion
We introduced BNN-DP, an algorithmic framework to cer-
tify adversarial robustness of BNNs. BNN-DP is based on
a reformulation of adversarial robustness for BNNs as a
solution of a dynamic program, for which efficient relax-
ations can be derived. Our experiments on multiple datasets
for both regression and classification tasks show that our
approach greatly outperforms state-of-the-art competitive
methods, thus paving the way for applications of BNNs in
safety-critical applications.
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A. Proofs Section 4
A.1. Proof Theorem 1

By the law of total expectation and because of the independence of the weights distribution at different layers it holds that

Ew∼q(·) [h(f
w (x))] = Ew∼q(·)

[
EWK∼q(·)

[
h(WK(fw

0:K(x)T , 1)T )
]]

= Ew∼q(·) [VK(fw
0:K(x))]

= Ew∼q(·)
[
EWK−1∼q(·)

[
VK(ϕK(WK−1(f

w
0:K−1(x)

T , 1)T ))
]]

= Ew∼q(·)
[
VK−1(f

w
0:K−1(x))

]
Repeating this procedure backwards over the layers of the neural networks, we obtain Ew∼q(·) [h(f

w (x))] = V0(x).

A.2. Corollary 1.1

If, for k ∈ {1, . . . ,K}, we have that ∀zk ∈ Rnk , V̌k(zk) ≤ Vk(zk) ≤ V̂k(zk). Then, for any probability density distribution
p : Rnk → R≥0 it holds that∫

supp(p)
V̌k(z)p(z)dz ≤

∫
supp(p)

Vk(z)p(z)dz ≤
∫

supp(p)
V̂k(z)p(z)dz,

or rewritten in terms of expectations,

Ez∼p(·)
[
V̌k(z)

]
≤ Ez∼p(·) [Vk(z)] ≤ Ez∼p(·)

[
V̂k(z)

]
.

Furthermore, by Theorem 1, V̌0(x) ≤ Ew∼q(·) [h(f
w (x))] ≤ V̂0(x). Consequently, for i ∈ {1, . . . , l}, it holds that

min
x∈T

Ew∼q(·) [h(f
w (x))] ≥ min

x∈T
V̌

(i)
0 (x), max

x∈T
Ew∼q(·) [h(f

w (x))] ≤ max
x∈T

V̂
(i)
0 (x).

B. Proofs Section 5
For the proof of Proposition 2 we rely on some properties of rectified Gaussian Distributions (Harva et al., 2004; Winn et al.,
2005; Socci et al., 1997) that we will first introduce below.

In the special case of ϕk being the ReLU function, the dynamics of the BNN over hidden layer k can be described by the
so-called rectified Gaussian Distribution, as illustrated in Figure 4, and formally defined as follows.

Figure 4. Gaussian probability density function and its related rectified version.

Definition 4 (Rectified Gaussian Distribution). Let z be a random variable with Gaussian distribution N
(
µ; σ2

)
with

mean µ ∈ R and standard deviation σ ∈ R≥0. Then, max(z, 0) is a rectified Gaussian random variable.

The probability density function (pdf) of rectified Gaussian distributions is obtained by a mixture of a discrete distribution at
z = 0 and a trunctated Gaussian distribution with interval (0,∞), that is the distribution of max(z, 0) is:

NR
(
z | µ; σ2

)
:= Φ

(
0 | µ;σ2

)
δ(z) +N

(
z | µ; σ2

)
U(x),

12
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where Φ : R → R≥0 is the cdf of the standard normal distribution, δ is the Dirac delta function, and U is the unit step
function.

There are various important properties of a rectified Gaussian random variable that we will rely on in this proof. First of all,
there exists a closed-form expression for the expected value of rectified Gaussian distributions (Harva et al., 2004). Hence,
in the case of ϕk being the ReLU function, we have a closed form-expression for Equation (7). Second, as a consequence of
the convexity properties of the expectation of rectified Gaussian variables presented in the following two Lemmas, we can
employ convexity to efficiently find an affine relaxation of Equation (7).
Lemma 8. For µ ∈ R and σ ∈ R≥0, it holds that Ez∼NR(µ; σ2) [z] is convex w.r.t. (µ, σ)T .

Proof. Let us denote the closed-form expression for the expected value of rectified Gaussian distributions as derived in
(Harva et al., 2004) by function g : R2 → R, that is, we have that,

Ez∼NR(µ; σ2) [z] := g(µ, σ) =
µ

2

[
1− erf

(
−µ

σ
√
2

)]
+

σ√
2π

exp

(
− µ2

2σ2

)
. (13)

Then,

∂2g

∂µ2
=

1

σ
√
2π

exp

(
− µ2

2σ2

)
∂2g

∂σ2
=

µ2

σ3
√
2π

exp

(
− µ2

2σ2

)
∂2g

∂σ∂µ
= − µ

σ2
√
2π

exp

(
− µ2

2σ2

)
Therefore, the Hessian of g w.r.t. (µ, σ)T , that is,

H(µ,σ) =

(
∂2g
∂µ2

∂2g
∂σ∂µ

∂2g
∂σ∂µ

∂2g
∂σ2

)
can be written as

H(µ,σ) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
ccT

where c = (1, 1
σ )

T ∈ R2. To determine whether H(µ,σ) is semipositive definite (spd), that is, whether ∀z ∈
R2, zTH(µ,σ)z ≥ 0, first observe that ∀(µ, σ) ∈ R × R≥0, we have that 1√

2πσ
exp

(
− µ2

2σ2

)
≥ 0. Next, we observe

that ccT is spd, because ccT is a symmetric matrix with all (leading) principal minors equal to zero. Hence, H(µ,σ) is spd
and, consequently, g is convex w.r.t. (µ, σ).

Lemma 9. Let m : Rn → R be a linear function defined as m(x) := µTx, with µ ∈ Rn and s : Rn → R be a quadratic
function s(x) := xTΣx with Σ ∈ Rn×n a positive definite matrix, then it holds that Ez∼NR(m(x); s(x)) [z] is convex w.r.t.
x ∈ Rn.

Proof. Define g : Rn → R as in Eqn. (13). Then, the Hessian of g w.r.t. x, that is, Hx = ∂2g
∂x2 , can be written as

Hx =
1√

2πs(x)
(ccT +Σ− ddT ),

where c = µ− m(x)
s(x) Σx and d = 1√

s(x)
Σ. To prove the convexity of g w.r.t. x, it suffices to show that matrix Hx is spd for

all x ∈ Rn. We can conclude directly that 1√
2πs(x)

> 0 and ccT is a spd matrix, since for any c ∈ Rn, ccT is a symmetric

matrix with all (leading) principal minors equal to zero. Next, we observe that

xxT (Σ− ddT ) = xxT

(
Σ− ΣxxTΣ

xTΣx

)
= 0n,n

where 0n,n ∈ Rn×n is the zero matrix. Notice that both matrices xxT and 0n,n are spd. Then, since that the product of two
symmetric psd matrices is psd iff its product is symmetric, we conclude that matrix Σ− ddT is psd. Then, since the sum of
spd matrices is spd, Hx is spd and consequently g is convex w.r.t. x.
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B.1. Proof Proposition 2

Without any loss of generality, we assume that m : Rn → R is a linear function defined as m(z) = µT z, with µ ∈ Rn and
s : Rn → R is a quadratic function s(z) = zTΣz, with Σ ∈ Rn×n being a positive definite matrix, and define the function
r : Rn → R as r(z) =

√
s(z).

The expectation of a rectified Gaussian distributed variable is given by function g : R2 → R1 as defined in Eqn. (13), such
that

Eζ∼NR(m(z); s(z)) [ζ] = g(m(z), r(z)).

Since g is convex w.r.t. z as shown in Lemma 9, for z ∈ Z, g can be lower bounded by its tangent at some point z∗ ∈ Z,
that is, for ǎ ∈ Rn and β̌ ∈ R defined as

ǎ = [∇zg(m(z∗), r(z))]x=z∗ , β̌ = g(m(z∗), r(z∗))− ǎT z∗,

where ∇z denotes the gradient of g w.r.t.z, it holds that g(m(z), r(z)) ≥ ǎTx+ β̌. Here, the gradient of g w.r.t. z in terms
of m(z) and r(z) is given by

∇zg(m(z), r(z)) =
1

2

[
1− erf

(
−m(z)

r(z)
√
2

)]
µ+

Σz

r(z)
√
2π

exp

(
−
(

m(z)

r(z)
√
2

)2
)
.

By the convexity of g w.r.t. z, we could upper bound g by finding its maximum, located at on the boundary of Z, and
fitting a hyperplane through the maximum and n− 2 other points on the edge of Z. However, due to the potentially high
dimensionality of the Z, this direct procedure is infeasible in practice.

Instead, we first find affine relaxations ǧ, ĝ of g w.r.t. (m(z), r(z)) ∈ {(m(z), r(z)) | ∀z ∈ Z}. After that, we use symbolic
arithmetic to propagate affine relaxations (m(z), ř), (m(z), r̂) of (m(z), r(z)) w.r.t. z ∈ Z, through the symbolic interval
[ǧ, ĝ] to obtain an affine relaxation of g w.r.t. z ∈ Z, that is

[·, âx+ β̂] = (m(i), ŝ(i))T ⊗ [ǧ, ĝ].

This completes the proof of the proposition. In the remainder, we explain how in practice ǧ, ĝ and r̂ can be found.

We denote the set of possible (m(z), r(z)) as P ⊂ R × R≥, that is P := {(m(z), r(z)) | ∀z ∈ Z}. To find an affine
relaxation of g w.r.t. (m(z), r(z)) ∈ P , we use the result of Lemma 9, that states that g is convex w.r.t. (µ, σ), and for ǧ
take the tangent of g at some point in P and compute ĝ by fitting a hyper-plane through the largest 3 points on the edge of a
convex over-approximation of P .

To find r̂ such that r(z) ≤ r̂(z), ∀z ∈ Z, we use symbolic arithmetic to propagate an affine relaxation š, ŝ of s w.r.t. z
through an affine relaxation řs, r̂s of r w.r.t. s. Notice that, since the square root is a strictly increasing function, such that
r̂(z) = r̂s(ŝ(z)), we only require ŝ and r̂s to find r̂s. As r is concave w.r.t. s, we take r̂s the tangent of r at s(z∗) with
z∗ ∈ X , that is r̂s(z) ≤ s(z)

2
√

s(z∗)
+ 1

2

√
s(z∗). In the case that Σ is a diagonal matrix, finding ŝ boils down to bounding

n one-dimensional quadratic functions. In the case that Σ has non-diagonal terms, we first find a transformation matrix
T ∈ Rn×n, such that TTΣT becomes a diagonal matrix. Then, we bound s in the transformed space induced by T , and
transform the bounds back to the original space using the inverse transformation to obtain ŝ.

B.2. Proof Lemma 3

Due to random variable (ζ) being independent for each dimension, the computation of the probability that ζ is in hyper-
rectangle [ζ̌k, ζ̂k] can be split over the dimension of ζ:

Pζ∼N (mk(z); diag(sk(z)))

[
ζ ∈ [ζ̌k, ζ̂k]

]
=

∏
i∈{1,...,n}

P
ζ(i)∼N

(
m

(i)
k (z); s

(i)
k (z)

) [ζ(i) ∈ [ζ̌
(i)

k , ζ̂
(i)

k ]
]
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where ∀i ∈ {1, . . . , n}

P
ζ(i)∼N

(
m

(i)
k (z); s

(i)
k (z)

) [ζ(i) ∈ [ζ̌
(i)

k , ζ̂
(i)

k ]
]
=

1

2

erf

 ζ̂
(i)

k −m
(i)
k (z)√

2s
(i)
k (z)

− erf

 ζ̌
(i)

k −m
(i)
k (z)√

2s
(i)
k (z)

 .

Using limx→∞ erf (x) = 1 and limx→∞ erf (−x) = −1, the above result can be extended to unbounded intervals as follows

P
ζ(i)∼N

(
m

(i)
k (z); s

(i)
k (z)

) [ζ(i) ∈ [ζ̌
(i)

k ,∞)
]
=

1

2

1− erf

 ζ̌
(i)

k −m
(i)
k (z)√

2s
(i)
k (z)

 .

B.3. Proof Proposition 4

Since the distribution of ζ has a diagonal covariance matrix and [ζ̌k, ζ̂k] is a hyper-rectangle, we have that

Ẽ
[
ϕk(ζ) | ζ ∈ [ζ̌k, ζ̂k]

]
= E

[
ϕk(ζ) | ζ ∈ [ζ̌k, ζ̂k]

]
P
[
ζ ∈ [ζ̌k, ζ̂k]

]
=

∫ ζ̂k

ζ̌k

ϕk(z)N (z | mk; diag (sk))

P
[
ζ ∈ [ζ̌k, ζ̂k]

] dzP
[
ζ ∈ [ζ̌k, ζ̂k]

]

=

∫ ζ̂k

ζ̌k

ϕk(z)N (z | mk; diag (sk)) dz

=

(∫ ζ̂
(1)

ζ̌
(1)

ϕk(z)N
(
z | m(1)

k ; s
(1)
k

)
dz, . . . ,

∫ ζ̂
(nk)

ζ̌
(nk)

ϕk(z)N
(
z | m(nk)

k ; s
(nk)
k

)
dz

)T

where we ignore the dependence of mk and sk on z to simplify the notation. For i ∈ {1, . . . , nk}, the integral can be split
in two parts:∫ ζ̂

(i)

ζ̌
(i)

ϕk(z)N
(
z | m(i)

k ; s
(i)
k

)
dz =

∫ ∞

ζ̌
(i)

ϕk(z)N
(
z | m(i)

k ; s
(i)
k

)
dz −

∫ ∞

ζ̂
(i)

ϕk(z)N
(
z | m(i)

k ; s
(i)
k

)
dz.

For ϕk = I , using the substitution rule for integration, the former relation can be written as∫ ζ̂
(i)

ζ̌
(i)

zN
(
z | m(i)

k ; s
(i)
k

)
dz =

∫ ∞

0

(z + ζ̌
(i)
)N
(
z + ζ̌

(i) | m(i)
k ; s

(i)
k

)
dz−∫ ∞

0

(z + ζ̂
(i)
)N
(
z + ζ̂

(i)
| m(i)

k ; s
(i)
k

)
dz,

which can be rewritten in terms of expectations and probabilities to obtain the final relation for ϕk = I:

E
[
ζ(i) | ζ(i) ∈ [ζ̌

(i)
, ζ̂

(i)
]
]
P
[
ζ(i) ∈ [ζ̌

(i)
, ζ̂

(i)
]
]
=

E
z∼N

(
m

(i)
k ; s

(i)
k

) [ReLU
(
z + ζ̌

(i)
)]

− E
z∼N

(
m

(i)
k ; s

(i)
k

) [ReLU
(
z + ζ̂

(i)
)]

+

ζ̌
(i)P

z∼N
(
m

(i)
k ; s

(i)
k

) [z ∈ [ζ̌
(i)
,∞]

]
− ζ̂

(i)
P
z∼N

(
m

(i)
k ; s

(i)
k

) [z ∈ [ζ̂
(i)
,∞]

]
.

The relation for ϕk = ReLU follows directly from the result for ϕk = I , since ∀i ∈ {1, . . . , nk} it hods that∫ ζ̂
(i)

ζ̌
(i)

ReLU (z)N
(
z | m(i)

k ; s
(i)
k

)
dz =

∫ [ζ̂]
(i)
+

[ζ̌]
(i)
+

zN
(
z | m(i)

k ; s
(i)
k

)
dz.
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B.4. Proof Proposition 5

Recall from the proof of Proposition 4 that, ∀i ∈ {1, . . . , nk}, we can write the product of the conditional expectation and
probability as

E
[
ζ(i) | ζ(i) ∈ [ζ̌

(i)
,∞)

]
P
[
ζ(i) ∈ [ζ̌

(i)
,∞)

]
=

∫ ∞

ζ̌
(i)

ζN
(
ζ | m(i)

k (z); s
(i)
k (z)

)
dζ,

We can apply substitution q =
ζ−m

(i)
k (z)√

2s
(i)
k (z)

to rewrite the integral as

∫ ∞

ζ̌
(i)

ζN
(
ζ | m(i)

k (z); s
(i)
k (z)

)
dζ =

1√
π

∫ ∞

ζ̃
(i)
(q

√
2s

(i)
k (z) +m

(i)
k (z)) exp

(
−q2

)
dq,

where ζ̃
(i)
(z) =

ζ̌
(i)−m

(i)
k (z)√

2s
(i)
k (z)

. We then solve the integral to obtain

∫ ∞

ζ̌
(i)

ζN
(
ζ | m(i)

k (z); s
(i)
k (z)

)
dζ =

m
(i)
k (z)

2
(1− erf

(
ζ̃
(i)
(z)
)
) +

√
s
(i)
k (z)

2π
exp

(
−(ζ̃

(i)
(z))2

)
. (14)

The above result naturally extends to the case of relu-activation functions, which results in

∫ ∞

ζ̌
(i)

ReLU (ζ)N
(
ζ | m(i)

k (z); s
(i)
k (z)

)
dζ =

m
(i)
k (z)

2
(1− erf

(
[ζ̃

(i)
(z)]+

)
) +

√
s
(i)
k (z)

2π
exp

(
−[ζ̃

(i)
(z)]2+

)
. (15)

Since, ∀x ∈ R, 0 ≤ erf ([x]+) ≤ 1 and 0 ≤ exp
(
−x2

)
≤ 1, the closed form solution for the integral can be bounded as

follows

1

2
[m

(i)
k (z)]− ≤

∫ ∞

ζ̌
(i)

ReLU (ζ)N
(
ζ | m(i)

k (z); s
(i)
k (z)

)
dζ ≤ 1

2
[m

(i)
k (z)]+ +

√
s
(i)
k (z)

2π
, ∀z ∈ Rn,

where,
√

s
(i)
k (z) is convex w.r.t. z. Hence, the above upper bound can easily be transformed into a piece-wise affine upper

bound.

B.5. Proof Proposition 6 and Corollary 6.1

Let us define function c : RnK+1 → R to simplify notation. By the law of total expectation it holds that

E [c(ζK+1)] =
∑

j∈{1,...,N}

E [c(ζK+1) | ζK+1 ∈ Zj ]P [ζK+1 ∈ Zj ]

where ζK+1 = fw (x) and w ∼ q(·). Here, the conditional expectations can be lower- and upper-bounded by substituting
the distribution of random variable ζK+1 by a dirac-delta function placed at the min- and max value of h(i) over Zj ,
respectively, that is,

E [c(ζK+1)] ≥
∑

j∈{1,...,N}

[min
ζ∈Zj

c(ζ)]P [ζK+1 ∈ Zj ]

and
E [c(ζK+1)] ≤

∑
j∈{1,...,N}

[max
ζ∈Zj

c(ζ)]P [ζK+1 ∈ Zj ] .

Hence, if we take c(ζ) = softmax(j)(ζ)− softmax(i)(ζ), for which holds that

−1 ≤ max
ζ∈Rm

(softmax(j)(ζ)− softmax(i)(ζ)) ≤ 1,
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we have that
E [c(ζK+1)] ≥ −P [ζK+1 ∈ Z1] +

∑
j∈{2,...,N}

[min
ζ∈Zl

c(ζ)]P [ζK+1 ∈ Zj ]

and
E [c(ζK+1)] ≤ P [ζK+1 ∈ Z1] +

∑
l∈{2,...,N}

[max
ζ∈Zj

c(ζ)]P [ζK+1 ∈ Zj ] (16)

Then, in the special case of N = 2, Equation (16) provides a sufficient condition to conclude on adversarial robustness. In
particular, we obtain that

max
ζ∈Z1

(
exp ζ(j) − exp ζ(i)∑
l∈{1,...,nK+1} exp(ζ

(l))

)
≤ −P [ζK+1 ∈ Z0]

P [ζK+1 ∈ Z1]
=⇒ E [c(ζK+1)] ≤ 0.

where we used the definition of the softmax functions. We can rewrite the former as follows

max
ζ∈Z1

(
exp ζ(j) − exp ζ(i)∑
l∈{1,...,nK+1} exp(ζ

(l))

)
≤ −η =⇒ E [c(ζK+1)] ≤ 0. (17)

where η ∈ R≥0 is defined as η := P[ζK+1∈Z0]
P[ζK+1∈Z1]

= 1−P[ζK+1∈Z1]
P[ζK+1∈Z1]

. Notice that since, supp(fw (x)) = Rnk and hence
supp(ζK+1) = Rnk , it is guaranteed that P [ζK+1 ∈ Z1] ̸= 0. Since the maximization problem in Eqn. (17) is highly
non-convex it can only be solved via exhaustive enumeration as discussed in (Berrada et al., 2021). Hence, to improve
computational efficiency, we use that

max
ζ∈Z1

(
exp ζ(j) − exp ζ(i)∑
l∈{1,...,nK+1} exp(ζ

(l))

)
≤ maxζ∈Z1

(exp ζ(j) − exp ζ(i))

maxζ∈Z1
(
∑

l∈{1,...,m} exp(ζ
(l)))

,

to obtain the following condition

max
ζ∈Z1

(exp ζ(j) − exp ζ(i)) ≤ −ηmax
ζ∈Z1

 ∑
l∈{1,...,nK+1}

exp(ζ(l))

 =⇒ E [c(ζK+1)] ≤ 0,

which, in the case that Z1 is a hyper-rectangle defined by vectors ζ̌, ζ̂ ∈ RnK+1 , reduces to

exp ζ̂
(j)

− exp ζ̌
(i)

+ η
∑

l∈{1,...,nK+1}

exp(ζ̂
(l)
) ≤ 0 =⇒ E [c(ζK+1)] ≤ 0.

C. Proofs Section 6
C.1. Proof Proposition 7

Recall that for [ζ̌, ζ̂] a hyper-rectangle, according to Lemma 3, computing the probability that ζ is in Zk reduces to computing
the product of Gaussian CDFs (error functions), that is

Pζ∼N (mk(x); diag(sk(x)))

[
ζ ∈ [ζ̌k, ζ̂k]

]
=

∏
i∈{1,...,nk}

1

2

erf

 ζ̂
(i)

−m
(i)
k (x)√

2s
(i)
k (x)

− erf

 ζ̌
(i) −m

(i)
k (x)√

2s
(i)
k (x)

 .

To ensure that Pζ∼N (m(x); diag(s(x))) [ζ ∈ Zk] = 1− ϵ, we enforce that for each i ∈ {1, . . . , l}, it holds that

1

2

erf

 ζ̂
(i)

−m
(i)
k (x)√

2s
(i)
k (x)

− erf

 ζ̌
(i) −m

(i)
k (x)√

2s
(i)
k (x)

 = (1− ϵ)
1

nk .
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Next, we choose to place ζ̂ and ζ̌ symmetrical around m(x), that is, ∀i ∈ {1, . . . , nk}, we choose ζ̂
(i)

and ζ̌
(i)

such that

erf

 ζ̂
(i)

−m
(i)
k (x)√

2s
(i)
k (x)

 = (1− ϵ)
1

nk , and erf

 ζ̌
(i) −m

(i)
k (x)√

2s
(i)
k (x)

 = −(1− ϵ)
1

nk .

Then, by taking the inverse of the error function for both qualities, we obtain the following expressions for ζ̌ and ζ̂:

ζ̂
(i)

= erf−1
(
(1− ϵ)

1
n

)√
2s

(i)
k (x) +m

(i)
k (x),

ζ̌
(i)

= erf−1
(
−(1− ϵ)

1
n

)√
2s

(i)
k (x) +m

(i)
k (x).

Notice that, these expressions depend via s(x) and m(x) on x which can take values in X . Hence, to ensure that ∀x ∈ T ,
Pζ∼N (m(x); diag(s(x))) [ζ ∈ Zk] ≥ 1− ϵ, it should hold that

ζ̂
(i)

≥ min
x∈X

[
erf−1

(
(1− ϵ)

1
n

)√
2s

(i)
k (x) +m

(i)
k (x)

]
,

ζ̌
(i) ≤ max

x∈X

[
erf−1

(
−(1− ϵ)

1
n

)√
2s

(i)
k (x) +m

(i)
k (x)

]
.

Hence, the optimal choice for ζ̌
(i)

and ζ̌
(i)

is such that above constraints hold by equality. Notice that for ϵ ∈ [0, 1], both
optimization problems reduce to convex minimization problems.

D. Algorithms
The interval relaxation procedure of the softmax layer is summarized in Algorithm 2. The algorithm employs the result of
Proposition 6. The back-propagation of a PWA relaxation of the value function is summarized in Algorithm 3, to which we
refer as BP. For partition {Zk,j}Nj=1 of supp(fw

0:k) and a compact subset Zk−1 of supp(fw
0:k−1), BP computes the relaxations

of Terms 9a in Line 4 and 9b in Line 6 w.r.t. zk−1 ∈ Zk−1. It employs Lemma 3 for Term 9a, and Proposition 4 or 5 for
Term 9b. Finally, the relaxations of Terms 9a and 9b are combined with PWA relaxation of Vk w.r.t. partition {Zk,j}Nj=1,
denoted as {V̌k,j , V̂k,j}Nj=1, following Eqn. (9) in Line 8-9. Lastly, Algorithm 4 presents BNN-DP for the regression setting.

Algorithm 2 Interval relaxation procedure for Eqn. 5a with h = softmax

1: function IBPSoftmax({Zj}Nj=1)
2: for j ∈ {1, . . . , N} do
3: if Zj is a hyperrectangle then
4: Initialize ž, ẑ such that Zj = [ž(0), ẑ(0)]× . . .× [ž(n), ẑ(n)]
5: for i ∈ {1, . . . , n} do
6: β̌

(i)
j = exp ž(i)

exp ž(i)+
∑N

l=1,l ̸=i exp ẑ(l) ,

7: β̂
(i)
j = exp ẑ(i)

exp ẑ(i)+
∑N

l=1,l ̸=j exp ž(l)

8: end for
9: else

10: β̌j = 0, β̂j = 1
11: end if
12: end for
13: Return: {[β̌j , β̂j ]}Nj=1

14: end function
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Algorithm 3 Back-Propagation of PWA Relaxations.

1: function BP({[V̌k,j , V̂k,j ]}Nj=1, {Zk,j}Nj=1, Zk−1)
2: for j ∈ {1, . . . , N} do
3: For z ∈ Zk,j , compute P̌j , P̂j ∈ [0, 1] s.t.
4: Pζ∼N (mk(z); sk(z)) [ζ ∈ Zk,j ] ∈ [P̌j , P̂j ],
5: compute Ěj , Êj : Rnk−1 → Rl s.t.
6: Ẽζ∼N (mk(z); sk(z)) [ϕk(ζ) | ζ ∈ Zk,j ] ∈ [Ěj , Êj ]
7: end for
8: [V̌k−1, ·] =

∑N
j=1 Ǎk,j ⊗ [Ěj , Êj ] + b̌k,j ⊗ [P̌j , P̂j ]

9: [·, V̂k−1] =
∑N

j=1 Âk,j ⊗ [Ěj , Êj ] + b̂k,j ⊗ [P̌j , P̂j ]
10: end function

Algorithm 4 Adversarial Robustness for Regression

1: function Regression(T , {Nk}K+1
k=1 )

2: for k ∈ {1, . . . ,K − 1} do
3: Zk,main = [ζ̌k, ζ̂k] (Prop 7)

4: {Zk,j}Nk−1
j=1 = REFINE(Zk,main)

5: Zk = {Zk,j}Nk−1
j=1

⋃
ZC
k,main

6: end for
7: V̌K(z), V̂K(z) = mK(z),
8: ZK = {RnK}
9: for k ∈ {K, . . . , 1}, for l ∈ {1, . . . , Nk} do

10: [V̌k−1,l, V̂k−1,l] = BP({[V̌k,j , V̂k,j ]}Nk
j=1, Zk, Z(l)

k−1)
11: end for
12: Return: minx∈T V̌0(x), maxx∈T V̂0(x)
13: end function
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