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ABSTRACT: The biocatalytic oxidative deamination of β-amino alcohols holds
significant practical potential in kinetic resolution and/or deracemization
process to access (R)-β-amino alcohols. This study exemplifies a notable
instance of acquisition and utilization of this valuable oxidative deamination
activity. Initially, the mutation N261M (M0) was identified to endow a native
valine dehydrogenase with oxidative deamination activity toward a few (S)-β-
amino alcohols. Subsequently, a phylogenetic analysis-guided, double-code
saturation mutagenesis strategy was proposed to engineer M0's side-chain
binding site. This strategy facilitated the substrate-specific evolution of M0,
resulting in the creation of a panel of mutants (M1−M4) with noteworthy
oxidative deamination activity toward structurally diverse (S)-β-amino alcohols.
Using these engineered amine dehydrogenases, termed as β-amino alcohol
dehydrogenases (β-AADHs), the complete kinetic resolution and even
deracemization of a range of β-amino alcohols have been achieved. This work
reports distinct biocatalysts and a synthetic strategy for the synthesis of enantiopure (R)-β-amino alcohols and offers an innovative
approach for substrate-specificity engineering of enzymes.
KEYWORDS: biocatalysis, amine dehydrogenases, oxidative deamination, enantiopure β-amino alcohols, protein engineering

■ INTRODUCTION
Chiral β-amino alcohols are important building blocks for the
synthesis of chiral auxiliaries, ligands in asymmetric synthesis,
and crucial intermediates in pharmaceutical synthesis (Scheme
S1).1−6 For example, (R)-2-amino-3-methyl-1-butanol is a
pivotal chiral intermediate in producing (R)-Roscovitine,7,8 a
second-generation orally available CDK inhibitor; (R)-2-amino-
3-phenylpropanol represents a central chiral moiety in
producing Solriamfetol,9 a wakefulness-promoting medication;
(R)-2-amino-4-methylpentan-1-ol serves as a foundational
precursor for synthesizing a potent and selective antagonist of
the Fractalkine receptor (CX3CR1).10 The extensive applica-
tions of chiral β-amino alcohols underscore the significant
importance of developing efficient synthetic methodologies for
their production.

Besides some chemical synthetic routes,11−15 biocatalytic
strategies have also been receiving considerable attention16−23

mostly due to their high stereoselectivity and the mild reaction
conditions. Particularly, amine dehydrogenase-catalyzed asym-
metric reductive amination24−32 and kinetic resolution33−36 are
two attractive processes to access chiral amines. Among them,
the asymmetric reductive amination of α-hydroxy ketones by
engineered amine dehydrogenase to yield β-amino alcohols has
been extensively explored, achieving remarkable conversion
rates and enantiomeric excess values of >99%.37−39 Almost all
known amine dehydrogenases exhibiting activity toward β-

amino alcohols are mutants of natural L-amino acid dehydro-
genases, exhibiting a strict (S)-stereoselectivity. Hence, (R)-
enantiomers are so far inaccessible via stereoselective reductive
amination of α-hydroxy ketone starting materials. Evolving some
natural amine dehydrogenases is a potential option to obtain
(R)-selective amine dehydrogenases toward β-amino alcohols,
such as MsmeAmDH, MvacAmDH, CfusAmDH, MicroAmDH,
and ApauAmDH (possessing opposite stereoselectivity prefer-
ence compared to engineered amine dehydrogenases).40

However, these enzymes are practically inactive on α-hydroxy
ketones, and they suffer from poor stereoselectivity. Hence,
engineering these enzymes did not appear to be an attractive
route to us.

In contrast, the kinetic resolution and/or deracemization of
readily available racemic β-amino alcohols (obtainable, e.g.,
through a simple one-step reduction of amino acids)41,42 using
amine dehydrogenases presents a promising alternative for the
synthesis of (R)-β-amino alcohols (Scheme 1). Despite this
potential, it should be noted that successful implementation
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faces considerable challenges. To the best of our knowledge, no
successful case has been reported yet, primarily due to two
significant hurdles encountered in the utilization of amine
dehydrogenase-catalyzed oxidative deamination.43,44 First,
currently available (wild-type and engineered ones) amine
dehydrogenases have been primarily developed for their
reductive amination activity, resulting in relatively low catalytic
efficiency for the oxidative deamination reaction,31,37,39,45,46

especially concerning β-amino alcohols (<10 U/g).36 Addition-
ally, the strict substrate specificity inherited from amino acid
dehydrogenases also extends to the derived amine dehydro-
genases, creating a constraint on the range of substrates that can
be converted.47,48 Despite extensive research to expand the
substrate spectra of amine dehydrogenases, in most cases, this
remains a rather intricate issue.24−27,30,49,50 This is because
almost all mutants are screened based on one or a limited set of
substrates, and their enhanced activity often lacks generality.
Consequently, when faced with novel substrates, the screening
process for suitable mutants remains time-consuming and labor-
intensive, even for enzymes that have been extensively studied.

In this work, we report an efficacious solution to develop
engineered amine dehydrogenases exhibiting remarkable
oxidative deamination activity toward structurally diverse β-
amino alcohols. These engineered amine dehydrogenases,
termed as β-amino alcohol dehydrogenases (β-AADHs), have
demonstrated their utility in kinetic resolution or deracemiza-
tion processes, yielding diverse enantiopure (R)-β-amino
alcohols with good ee values and conversion.

■ RESULTS AND DISCUSSION
Access to the Oxidative Deamination Activity of β-

AADHs.As starting point for our investigation, we chose a valine
dehydrogenase previously identified from a hot spring
metagenomic library (HsValDH3).51 Due to its considerable
stability, HsValDH3 is an attractive starting point for evolution

and future application. wt-HsValDH3 does not exhibit sizable
activity toward β-amino alcohols, which is why we first aimed at
addressing this issue. Since a crystal structure of HsValDH3 is
not available yet, we employed AlfaFold252 to construct a three-
dimensional model of HsValDH3. Subsequently, molecular
docking with its native substrate, L-valine, was conducted to
scrutinize the binding interactions (Figure 1A). According to the
model, L-valine occupies a specific binding site nestled within the
crevice formed between the substrate-binding domain and the
coenzyme-binding domain of HsValDH3 (Figure 1A).

Utilizing insights from the resolved crystal structure and
catalytic mechanism of amino acid dehydrogenases,53,54 we
partitioned the substrate-binding pocket of HsValDH3 into
three discrete regions (Figure 1B): the catalytic site, the
carboxyl-binding site, and the side-chain binding site. The
catalytic site encompasses residues Lys80 and Asp115, both of
which are pivotal for the catalytic function of amino acid
dehydrogenases (Figure 1C).53,54 The carboxyl-binding site is
constituted by residues Asn261 and Lys68, governing the
specificity for α-keto acids by forming hydrogen bonds and
electrostatic interactions with the carboxyl group of L-valine
(Figure 1C). Therefore, we targeted these two amino acid
residues using a combinatorial saturation mutagenesis strategy,
K68X/N261X (NNK degenerate codons). It is worth emphasiz-
ing here that, in contrast to previous studies,28,31,37,39,45,46 we
aimed at oxidative deamination, for which so far no efficient
high-throughput screening method was available. Fortunately,
the deamination product (i.e., the β-keto alcohol) proved to be
susceptible to spontaneous oxidation by tetrazolium red (TTC,
Figure 1D), which enabled us to establish a semiquantitative
colorimetric activity assay based on the formation of the
intensely red-colored triphenylformazan (TPF) (Figure S1).
This way, we identified three mutants (N261M, N261L, and
N261F), exhibiting oxidative deamination activity toward 2-
aminobutanol. Interestingly, N261M (M0) proved to be a better
mutant for oxidative reaction than the extensively documented
K68S/N261L (2M), while 2M shows superiority in the
reductive direction (Figure 1E). This observation reinforces
the necessity of our dedicated effort in conducting oxidative
deamination-specific screening.

To gain further insight into the molecular basis of these
differences, we performed a molecular docking analysis of (S)-2-
aminobutanol and 1-hydroxy-2-butanone for M0 and 2M,
respectively (Figure 1F). In the case of M0, hydrogen-bonding
interactions between the α-hydroxyl group of the amino alcohol
and Lys68 were observed, which positioned the starting material
in a near-attack conformation to the cofactor (NAD+). No such
interaction was observed in 2M. Rather, a new hydrogen bond
network between the amino group of (S)-2-aminobutanol and
K80 and D115 was observed, which may impede their
involvement in the catalytic cycle and therefore may account
for the drastically reduced catalytic activity in the oxidation of
(S)-2-aminobutanol. Indeed, the kinetic parameters revealed
that 2M exhibited a significantly lower kcat value for (S)-2-
aminobutanol compared to M0 (1.18 vs 5.23 s−1) (Table 1).
However, when 2M interacted with 1-hydroxy-2-butanone, the
ketone group maintained a favorable catalytic distance with the
catalytic residues, measuring 2.6 Å to K80 and 3.6 Å to D115.
Furthermore, this binding arrangement resulted in a higher
binding energy compared to M0 (−23.43 vs −21.36 kcal mol−1)
in line with the increased substrate affinity (lower Km value) and
catalytic efficiency (higher kcat Km

−1) for the α-hydroxy ketone
(Table 1).

Scheme 1. Kinetic Resolution and Deracemization Process
for the Synthesis of (R)-β-Amino Alcohols
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Substrate-Specific Evolution of M0 To Expand the
Substrate Scope. The N261M mutation successfully con-
ferred oxidative deamination activity to HsValDH3, resulting in
the “first-generation” β-AADH (M0). But M0 converted only a

rather narrow range of short-chain (S)-β-amino alcohols (Figure

S2). This outcome aligns with our expectations as natural amino

acid dehydrogenases exhibit stringent substrate specificity, and

Figure 1. Access to the oxidative deamination activity of β-AADHs. (A) Overview of the three-dimensional model of HsValDH3 docked with L-valine.
L-Valine is shown as a stick model. (B) Close-up view of the active pocket of HsValDH3. The substrate-binding pocket is shown as a surface model,
with the catalytic site, carboxyl-binding site, and side-chain binding site structure represented in red, yellow, and cyan, respectively. (C) Residues were
within the active pocket of HsValDH3. These residues constitute the catalytic site, carboxyl-binding site, and side-chain binding site, represented in
red, yellow, and cyan, respectively. Hydrogen bonds that contribute to the binding of L-valine are represented as green-colored dotted lines. (D)
Principle of the colorimetric high-throughput screening method for β-AADH. In the enzymatic system, β-amino alcohols undergo conversion into the
corresponding α-hydroxy ketones catalyzed by β-AADH, with NAD+ regeneration powered by the NADH oxidase (NOX). (E) Specific activities of
the identified mutants toward (S)-2-aminobutanol and 1-hydroxy-2-butanone. The specific activity was determined using purified proteins. All
enzymatic assays were performed in triplicate, at least, and the averaged values are reported. (F) Docking poses of (S)-2-aminobutanol and 1-hydroxy-
2-butanone with N261M (M0) and K68S/N261L (2M). Hydrogen-bonding interactions are shown and highlighted as green dotted lines, and distance
between substrates’ active group and catalytic residues is shown and highlighted as blue dotted lines.
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the resultant amine dehydrogenases typically retain similar
specificity.

Introducing the N261M (HsValDH3 numbering) mutation
to other amino acid dehydrogenases with larger binding pockets,
such as phenylalanine dehydrogenases, offers a viable way to
diversify the substrate spectrum (Figure S3). However, this
approach suffers some limitations: it proves ineffective in

generating active mutants for specific substrates, such as (S)-2-
amino-2-phenylethan-1-ol, and is hardly capable of yielding
mutants with enhanced catalytic activity for short-chain aliphatic
substrates. Hence, we propose a phylogeny-guided, double-code
saturation mutagenesis to reconfigure the side-chain binding site
within M0's substrate-binding pocket. The active site pocket
accommodating the alkyl substituent consists of nine residues:
L40, G41, G42, A113, E114, P146, G290, V291, and I294
(Figure 1C). A multiple sequence alignment with some well-
characterized amino acid dehydrogenases, particularly leucine
dehydrogenase and phenylalanine dehydrogenase (Figure
S4),54−60 revealed that residues 40, 41, 42, and 290 are
conserved, while residues 113, 114, 146, 291, and 294 showed
notable variations (Figure 2A). To accommodate sterically more
demanding alkyl substituents, targeting smaller amino acid
residues appeared reasonable. Therefore, we devised a five-site,
double-coded saturation mutagenesis library (Figure 2B)
randomly introducing two small amino acids (alanine and
glycine) to residues 113, 114, 146, 291, and 294 of M0. Notably,
this strategy reduced the screening efforts significantly, as with

Table 1. Kinetic Parameters of the Mutants toward (S)-2-
Aminobutanol and 1-Hydroxy-2-butanonea

aKinetic data were obtained using purified proteins. All enzymatic
assays were performed at least in triplicate.

Figure 2. Evolution of the substrate scope of β-AADHs. (A) Phylogenetic analysis of the residues in the side-chain binding site. LaLeuDH from
Labrenzia aggregate (WP_006932274.1); BcLeuDH from Bacillus cereus (WP_000171355.1); BsLeuDH from Bacillus sphaericus (GEC82162.1);
EsLeuDH from Exiguobacterium sibiricum (WP_012369820.1); BbPheDH from Bacillus badius (BAA08816.1); GkPheDHe from Geobacillus
kaustophilus (KJE28589.1); TiPheDH from Thermoactinomyces intermedius (BAA00524.1); and BsPheDH from Bacillus sphaericus (AAA22646.1).
(B) Representation of the five-site double-code saturation mutagenesis library. (C) Screening results. The specific activity of the three most active
mutants for each substrate was determined using purified proteins. All enzymatic assays were performed in triplicate, at least, and the averaged values
are reported. (D) Active pocket structure analysis of the β-AADHs. The pocket volumes of the β-AADHs were measured using POVME 3.0.
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only 485 transformants, a 95% coverage was obtained.61

Compared to conventional substrate-specificity engineering
strategies used for amino acid dehydrogenases or amine
dehydrogenases, such as rational site-directed mutagene-
sis27,50,62,63 and iterative saturation mutagenesis (ISM),29,31,64

our approach exhibits several significant benefits: first, the lower
screening effort enables screening for more substrates in shorter
times. Second, it allows the capture of potential synergistic
effects arising from the combination of mutations at the five
selected sites, an outcome that is nearly impossible to achieve by
using traditional engineering strategies.

As shown in Figure 2C, for all 7 model substrates screened,
several mutants with significantly increased catalytic activity
were observed. The best-performing mutants for L-valinol, (S)-
2-amino-4-methylpentane-1-ol, and (S)-2-aminohexane-1-ol
exhibited a specific activity improvement of 1.5- to 27.6-fold
compared to that of M0. Furthermore, for the four substrates
initially showing no activity with M0, the generated mutants
acquired substantial catalytic activity (0.15−1.22 U/mg).

Particularly mutants M1−M4 (M1: E114G/N261M; M2:
A113G/E114A/N261M; M3: A113G/E114A/P146A/
N261M; M4: A113G/E114A/P146A/N261M/I294G) ex-
celled in their catalytic performance.

Next, we examined the substrate-binding pocket structure of
the best mutants using POVME 3.0.65 A compelling correlation
between the active pocket size and substrate specificity (Figure
2D) was observed. As the side chains of the substrates used for
screening increased, the pocket size of the best mutants obtained
also gradually increased, indicating a notable positive
correlation. It serves to validate the effectiveness and efficacy
of our phylogenetic analysis-guided double-code saturation
mutagenesis strategy in obtaining individual optimal mutants for
each substrate.
Applications of Developed β-AADHs. To assess the

applicability of the developed β-AADHs, we conducted a
systematic evaluation of their substrate spectra. As illustrated in

Figure 3, the “second-generation” β-AADHs (M1−M4)
exhibited a remarkably expanded substrate scope compared to
M0. Catalytic activity was observed for essentially all substrates
tested.

Next, we explored the synthetic usefulness of newly generated
β-AADHs. Six representative, racemic β-amino alcohol sub-
strates (S1, S2, S3, S4, S9, and S12) were tested first in a kinetic
resolution-type reaction using the previously identified optimal
β-AADH mutant (Figure 3). For cofactor regeneration, the
recombinant NADH oxidase (NOX) from Streptococcus equiwas
used.66 As shown in Figure 4A, the majority of these model
compounds were smoothly oxidized in high enantioselectivity,
resulting in 50% conversion (i.e., full theoretical) and essentially
optically pure (R)-β-amino alcohols. In two cases, even after
prolonged reaction times, the conversions did not exceed 49%,
and consequently, the optical purities of the remaining amino
alcohols were disappointingly low (92−96% ee). The origin of
this slower reaction rate is not fully understood and will be
investigated in future studies. Possibly, low affinity toward the
starting material (high Km values), product inhibition, and/or
enzyme inactivation may account for this.

Inspired by previous work regarding deracemization of
racemic amines without α-functionalization,33 we also evaluated
the deracemization of the racemic β-amino alcohols by
extending the reaction shown in Figure 4A with an
enantioselective transamination of the undesired keto alcohol
byproduct (Figure 4B). For this, we chose the (R)-selective ω-
transaminase from Bacillus megaterium (BmTA) (Table S1).67

The stereoselectivity of available (R)-selective ω-transaminases
is generally low.19,68,69 This implies that the amino alcohols
produced by these transaminases will not be enantiomerically
pure. However, the proposed three-enzyme cascade deracem-
ization system effectively addresses this issue as undesired (S)-β-
amino alcohols are transferred back to α-hydroxy ketones by the
engineered β-AADHs. Consequently, only the (R)-product is
preserved in the system, theoretically giving excellent optical

Figure 3. Substrate spectrum evaluation of the developed β-AADHs.
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purity for various β-amino alcohol products. Gratifyingly, all six
racemic β-amino alcohols were efficiently deracemized, resulting
in the production of (R)-β-amino alcohols with ee values >99%
and conversions ranging from 90 to 99%. Even for substrates S3
and S4, which exhibited imperfect ee values in the kinetic
resolution process, the deracemization process yielded sat-
isfactory results.

Motivated by these results, we proceeded to explore the
deracemization process with higher substrate loadings (25−50
mM) (Figure 4C−E). To surmount enzyme deactivation issues
observed in prior batch reactions (Figure S5), particularly
concerning NOX and BmTA, we added these enzymes at
intervals (0, 6, 12, 24, and 36 h). Applying this strategy,
complete deracemization of 25 mM racemic S2, S4, and S9
substrates was achieved within 10, 30, and 36 h, respectively,
with optical purities surpassing 99% ee. Upon further increasing
the substrate concentration to 50 mM, S2 and S4 achieved
complete deracemization within 30 and 48 h (ee > 99%),
respectively, while the final ee value for S9 stood at 76%.

Preparative-scale deracemization reactions were performed
on a 50 mL scale with 50 mM racemic S2 and S4. These

reactions mirror the process observed in the 2 mL-scale
reactions (Figure S6). The deracemization of racemic S2 and
S4 reached completion (>99% conversion) within 34 and 48 h
(ee > 99%), respectively, yielding a final concentration of (R)-R2
and (R)-R4.

Compared with extensively explored and optimized amine
dehydrogenase-catalyzed reductive amination processes for (S)-
β-amino alcohol production,37−39 the productivity observed
here (2.1 mM h−1) somewhat falls back (up to 100 mM h−1)
albeit also using approximately 20−100 times less of the
biocatalyst. Hence, we are convinced that further reaction
engineering will yield reaction schemes at least comparable to
those of the above-mentioned (S)-amino alcohol syntheses.

■ CONCLUSIONS
In this contribution, we have expanded the biocatalytic toolbox
for chiral β-amino alcohol synthesis with a newly designed amine
dehydrogenase from a wild-type valine dehydrogenase. A
mutation N261M in the carboxyl-binding site was identified to
endow HsValDH3 with oxidative deamination activity, creating
the “first-generation” β-AADH (M0). Guided by phylogenetic

Figure 4.Kinetic resolution and deracemization process for the synthesis of (R)-β-amino alcohols. (A) Kinetic resolution of racemic β-amino alcohols.
Reaction conditions: β-AADHs (2 mg/mL purified protein), NOX (2 mg/mL purified protein), NAD+ (0.5 mM), racemic β-amino alcohols (10 mM),
pH 9.0 Tris−HCl (0.1 M), 2 mL of total volume. The reaction was performed at 37 °C and 200 rpm for 24 or 48 h. Conversion for kinetic resolution
process was defined as the percentage ratio of consumed (S)-β-amino alcohols to the initial racemic β-amino alcohol substrate. (B) Deracemization of
racemic β-amino alcohols (10 mM). Reaction conditions: β-AADHs (2 mg/mL purified protein), NOX (2 mg/mL purified protein), BmTA (2 mg/
mL for S1, S2, S3, S4; 10 mg/mL for S9 and S12, purified protein), NAD+ (0.5 mM), PLP (0.5 mM), racemic β-amino alcohols (10 mM), (S)-
phenethylamine (50 mM), pH 9.0 Tris−HCl (0.1 M), 2 mL of total volume. The reaction was performed at 37 °C, 200 rpm for 24 or 48 h. Conversion
for the deracemization process was defined as the percentage ratio of the (R)-β-amino alcohol product to the initial racemic β-amino alcohol substrate.
(C−E) Deracemization of racemic S2, S4, and S9 (25 or 50 mM). Reaction conditions: NAD+ (0.5 mM), PLP (0.5 mM), racemic β-amino alcohols
(25 or 50 mM), and (S)-phenethylamine (100 mM), pH 9.0 Tris−HCl (0.1 M), 2 mL of total volume. The enzymes [1 mg/mL β-AADHs (M1 for S2,
M2 for S4, and M3 for S9), 2 mg/mL NOX, and 2 mg/mL BmTA] were added into the reaction system at specific time points: 0, 6, 12, 24, and 36 h.
The reaction was performed at 37 °C, 200 rpm.
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analysis, double-code saturation mutagenesis in M0's substrate-
binding pocket led to the “second-generation” β-AADHs (M1−
M4) with broadened substrate spectra.

Also, the newly developed β-AADHs themselves exhibit a
significant potential for the preparative kinetic resolution and
deracemization of readily available racemic β-amino alcohols.

Further work in our laboratory will focus on the further
optimization of the methodology, generating even more active
and selective β-AADHs and embedding the deracemization in
more complex cascades to convert simple starting materials into
diverse value-added products.
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