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Background
❖The burgeoning navigation services using digital maps provide great
convenience to drivers.

❖There are anomalies (errors and/or defects), e.g., irregular shapes, and missing
edges or corners, in lane-level rendered map images.

❖These anomalies will be equivocal for human drivers’ understanding and
decision-making during their driving routing which might result in critical
unsafe situations.

➢ Image pre-processing, which normalizes the inconsistent images into
uniform size and format;

➢ Self-supervised pre-training, which is tackled by the masked image
modeling (MiM) method.

➢ Customized fine-tuning;

➢ Post-processing;

➢ Tested models:

The framework of the proposed pipeline

Conclusions

▪ ViT

▪ BEiT

Evaluation Metrics
➢ Accuracy

➢ F1-Meassure

➢ Precision

➢ Recall

➢ True Positive Rate

➢ False Negative Rate

Results

➢ The proposed four-phase pipeline can tackle the lane rendering image anomaly detection task with super performances at high accuracy.

➢ The self-supervised pre-training with MiM can greatly improve the model accuracy.

➢ The proposed method can improve the efficiency of lane rendering image data anomaly detection reducing labor costs while keeping high accuracy.

Figure 1. The architecture of the proposed four-phase pipeline.

Aim
❖To accurately and effectively detect lane rendering image anomalies;

❖To transform the lane rendering anomaly detection problem into a muti-class

classification problem and leveraging state-of-the-art AI models;

❖To delivery excellent detection performance in regarding various metrics.
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Ⅰ. Image Pre-processing
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Model Acc AUC Precision Recall
F1-

measure
Param

Epoch 

time

Fine-tuning 

Epoch

ViT 0.9489 0.9080 0.9393 0.6178 0.7454 632.20 4210 40

BEiT 0.9413 0.9481 0.7913 0.6996 0.7427 311.53 159 15

Swin-Trans 0.9401 0.9498 0.8518 0.6121 0.7123 86.90 120 280

Swin-

Trans-UM 
0.9477 0.9743 0.7743 0.8022 0.7805 194.95 223 41

Table 1 The model performance regarding different metrics.

Table 2 The performance of the Swin-Trans-UM_2 and Swin-Trans-UM_9.

Model Accuracy AUC Precision Recall F1-measure

Swin-Trans-UM_2 0.9482 0.9756 0.7813 0.7947 0.7879

Swin-Trans-UM_9 0.9392 0.9731 0.6990 0.8745 0.7770

Swin-Trans-UM_8 0.9477 0.9743 0.7743 0.8022 0.7805 Figure 3. The confusion matrix of Swin-Trans-UM when treated as 

a 2-class classification and a 9-class multi-label classification.

Figure 2. The confusion matrix of test models.

Converted the problem of lane rendering image anomaly detection into a 

classification problem;

Various SOTA computer vision techniques and models were adopted and compared.

▪ Swin-Transformer (Swin-Trans)

▪ Swin-Transformer-UniformMasking (Swin-Trans-UM)

▪
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