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Weak-memory models are standard formal speci�cations of concurrency across hardware, programming

languages, and distributed systems. A fundamental computational problem is consistency testing: is the

observed execution of a concurrent program in alignment with the speci�cation of the underlying system?

The problem has been studied extensively across Sequential Consistency (SC) and weak memory, and proven

to be NP-complete when some aspect of the input (e.g., number of threads/memory locations) is unbounded.

This unboundedness has left a natural question open: are there e�cient parameterized algorithms for testing?

The main contribution of this paper is a deep hardness result for consistency testing under many popular weak-

memory models: the problem remains NP-complete even in its bounded setting, where candidate executions

contain a bounded number of threads, memory locations, and values. This hardness spreads across several

Release-Acquire variants of C11, a popular variant of its Relaxed fragment, popular Causal Consistency models,

and the POWER architecture. To our knowledge, this is the �rst result that fully exposes the hardness of weak-

memory testing and proves that the problem admits no parameterization under standard input parameters.

It also yields a computational separation of these models from SC, x86-TSO, PSO, and Relaxed, for which

bounded consistency testing is either known (for SC), or shown here (for the rest), to be in polynomial time.

CCS Concepts: • Software and its engineering→ Software veri�cation and validation; • Theory of

computation → Theory and algorithms for application domains; Program analysis.

Additional Key Words and Phrases: concurrency, consistency checking, weak memory models, complexity
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1 INTRODUCTION

Memory-consistency models play a crucial role in the design, use, and veri�cation of concurrent
systems spanning hardware, programming languages, and distributed computing. These models
formally de�ne the set of behaviors that the system can exhibit as a whole, accounting for the
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intricate communication patterns between its entities due to bu�ers, caching, message delays,
etc. The simplest and most widespread, general model is Sequential Consistency (SC) [Lamport
1978], which de�nes program behavior by thread interleaving. Although its simplicity is a major
advantage, SC fails to capture the additional, complex behaviors that are abundant in modern
concurrency.

In contrast, weak-memory models are richer and more faithful speci�cations of concur-
rent/distributed communication and are developed speci�cally for the system under consideration.
For example, the x86, POWER, and Arm architectures follow their own memory models [Alglave
et al. 2021, 2014; Owens 2010], programming languages provide certain primitives for writing
weak-memory concurrent programs [Batty et al. 2013], and distributed systems implement various
models of causal consistency [Bouajjani et al. 2017; Burckhardt 2014; Hutto and Ahamad 1990].
Naturally, veri�cation techniques are speci�c to the memory model at hand, so as to account for
(and verify) all the possible behaviors that the system can exhibit according to the model.

One of the core computational problems associated with a memory model is that of consistency
testing: is a high-level, observed behavior of a program in alignment with the semantics of the underlying

model [Gibbons and Korach 1997]? The observed behavior is speci�ed in terms of an abstract
execution that de�nes the sequence of instructions each process/thread executed, the shared
memory locations it read from/wrote to, along with the respective values read/written. Answering
this question requires determining the low-level, unobserved behavior of the architecture that gave
rise to the observed behavior of the program; for example, the order in which writes were made
visible to (one or more of) the threads, and the data�ow between writes and reads.

Consistency testing is a natural task in both the development and the implementation of memory
models. In particular, memory models are contracts between the designers of a system and its
users [Adve and Hill 1990]. When designing hardware architectures, memory subsystems, compiler
optimizations, and distributed-communication protocols, consistency-testing serves to validate
that the contract has been respected [Chen et al. 2009; Gibbons and Korach 1997; Manovit and
Hangal 2006; Qadeer 2003; Windsor et al. 2022]. From the opposite direction, litmus testing is a
standard approach to understanding the semantics of hardware architectures [Alglave et al. 2011,
2014] so as to design faithful models around them. Here, given a candidate memory model and
the observed execution of a litmus test, consistency checking veri�es whether the execution is a
counterexample to the model. Finally, consistency testing is also used as a separability criterion
between di�erent memory models [Kokologiannakis et al. 2023; Wickerson et al. 2017].

Consistency checks are also a widespread task in program veri�cation and testing. In stateless
model checking, the goal of the model checker is to enumerate-and-check the absence of errors
in all program executions (typically up to some bound). To reduce the load of the veri�cation
task, an abstraction mechanism partitions the space of all behaviors into equivalence classes, each
represented by an abstract execution. Instead of enumerating concrete executions, the model
checker enumerates abstract executions, which yields an exponential reduction of the search space.
Each candidate abstract execution undergoes a consistency check to ensure that the model checker
does not diverge to unrealizable parts of the search space [Abdulla et al. 2023, 2019, 2018; Agarwal
et al. 2021; Bui et al. 2021; Chalupa et al. 2017; Chatterjee et al. 2019; Kokologiannakis et al. 2022,
2019]. In runtime testing, predictive techniques aim to infer the presence of unobserved, erroneous
executions from observed executions that are bug-free. Such techniques operate by constructing
a candidate execution that manifests the bug (using the observed execution as a guide) and then
applying a consistency check (explicitly or implicitly) to verify that the execution indeed represents
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valid program behavior (hence the bug report is a true positive) [Huang et al. 2014; Kalhauge and
Palsberg 2018; Kini et al. 2017; Luo and Demsky 2021; Mathur et al. 2020, 2021; Pavlogiannis 2019].

Owing to the widespread applicability, the computational complexity of consistency testing has
been studied thoroughly for a wide variety of memory models and a wide variety of settings. The
seminal work of Gibbons and Korach [1997] showed that the problem is NP-complete for SC, even
when either the number of threads or the number of memory locations is bounded (but not both).
Later, Cantin et al. [2005] proved that the problem remains NP-complete even with a single memory
location (but with unboundedly many threads), which also implies NP-completness for all memory
models that adhere to the “SC-per-location” property, such as TSO, PSO, RA, SRA and Relaxed.
Gonthmakher et al. [2003] showed a similar NP-completeness for a Java memory model. Furbach
et al. [2015] proposed a uni�ed treatment of the consistency problem on many weak-memory
models which led to similar NP-completeness results, while the NP-completeness of consistency
testing under various causal-consistency models was proven in [Bouajjani et al. 2017].

A popular approach to tackle the intractability in consistency testing is via parameterization: an
intractable problem becomes tractable when some of its input parameters, such as the number of
threads, is bounded [Abdulla et al. 2018; Gibbons and Korach 1994; Mathur et al. 2020]. On the
other hand, all existing results that establish the NP-hardness of consistency testing in all memory
models rely on some input parameters being unbounded. For SC, this unboundedness is, in fact,
a prerequisite for intractability: the problem becomes polynomial-time when both the number
of threads and memory locations are bounded, a result that has led to e�cient parameterized
model checking [Agarwal et al. 2021]. For weak-memory, however, analogous results have thus far
remained elusive. In particular, are there any e�cient parameterized algorithms for consistency in
weak memories? How hard, actually, is weak-memory testing?

Here we resolve this question by establishing a deep hardness result for many popular weak-
memory models: consistency testing is NP-complete even in its bounded setting, where executions
contain a constant number of threads, memory locations and values, and the size of the input is
solely determined by the (unbounded) number of events. To our knowledge, this is the �rst result
that fully exposes the hardness of weak-memory testing and proves that the problem admits no
parameterization under standard input parameters. In turn, this implies that practical approaches
to testing have to resort to heuristics, while model checkers might be more performant when
exploring �ner abstractions (such as reads-from [Abdulla et al. 2019; Chalupa et al. 2017; Tunç et al.
2023], or those based on executions graphs [Kokologiannakis et al. 2017; Lahav and Margalit 2019]).

Our contributions. We study the bounded consistency testing problem for many popular weak-
memory models found in software, hardware, and distributed systems. The input is always an

abstract execution X = (E, po) consisting of a set of events E and a program order po de�ning the

order of execution of these events in each thread. The task is to determine whether X is consistent
in a given memory model. The boundedness of the problem refers to the number of threads, memory

locations, and values accessed by X being bounded (i.e., constant). It is easy to see that the problem
is in NP in all the models we consider, and we will not be establishing this fact formally. We write
M1 ≼M2 to denote that memory modelM2 is weaker than memory modelM1, i.e., any execution
that is consistent in M1 is also consistent in M2.

We begin with release-acquire semantics, as popularized by C11. We consider the Release-Acquire
model (RA), as well as its Strong (SRA) and Weak variants (WRA) [Lahav and Boker 2022]. In
addition, we consider Relaxed-Acyclic, the standard Relaxed semantics of C11 equipped with the
common assumption of causal acyclicity (aka (po∪ rf) acyclicity). This assumption is often used as
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SC

TSO

CM PSOSRA = CCv

RA

WRA = CC Relaxed-Acyclic

Relaxed
POWER

P

P

NP-complete

Fig. 1. The complexity landscape of bounded weak-memory testing. An arrowM1 → M2 means thatM1

is stronger than M2. Thick arrows represent range-hardness for all models between the endpoints. The

complexity of bounded consistency checking for all models except for SC are established in this paper.

an additional axiom [Margalit and Lahav 2021; Norris and Demsky 2013] as it has been argued that
(po ∪ rf)-cycles do not arise in practice [Lee et al. 2023]. We prove the following theorem.

Theorem 1.1. Consistency testing for bounded inputs is NP-complete for Relaxed-Acyclic as well as

for any memory model M such that SRA ≼ M ≼ WRA, even in their atomic read-modify-write

(RMW)-free fragment.

Note that Theorem 1.1 establishes hardness for Relaxed-Acyclic, WRA, RA, SRA as well as the
whole range of models between SRA and WRA. This result improves existing results on consis-
tency checking, for which hardness relied on an unbounded domain of threads and/or memory
locations [Cantin et al. 2005; Furbach et al. 2015; Gibbons and Korach 1994].

Next, we turn our attention to popular causal-consistency models [Fidge 1988; Lamport 1978].
There have been several e�orts to formalize various aspects of causal consistency, out of which
have emerged three well-accepted models, namely Causal Consistency CC [Bouajjani et al. 2017;
Hutto and Ahamad 1990], Causal Convergence CCv [Bouajjani et al. 2017; Burckhardt 2014; Perrin
et al. 2016], and Causal Memory CM [Ahamad et al. 1995; Bouajjani et al. 2017; Perrin et al. 2016].
It was recently shown that CC coincides with WRA while CCv coincides with SRA [Lahav and
Boker 2022]. Thus Theorem 1.1 extends to CC and CCv. We prove that the problem is also hard for
CM, thereby establishing hardness for the ranges de�ned by the three main models.

Theorem 1.2. Consistency testing for bounded inputs is NP-complete for any memory model M such

that (i) CCv ≼M ≼ CC or (ii) CM ≼M ≼ CC.

Next, we turn our attention to the POWER architecture. Lahav et al. [2016] show that SRA captures
precisely the guarantees of POWER for programs that are compiled from the release-acquire
fragment of C/C++. Thus Theorem 1.1 extends to the following corollary.

Corollary 1.3. Consistency testing for bounded inputs is NP-complete for POWER.

Continuing with hardware models, we study Total Store Order (TSO) as employed in x86 architec-
tures (aka x86-TSO) and its extension to Partial Store Order (PSO). It turns out that, in the bounded
setting, consistency checks become tractable in these models.

Theorem 1.4. Consistency testing for bounded threads and memory locations is in polynomial time

for TSO and PSO.
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One natural, �nal question concerns the vanilla Relaxed model, i.e., if we remove the acyclicity
condition from Relaxed-Acyclic. In this case, the problem becomes polynomial-time, which is a
corollary of the corresponding result for SC [Agarwal et al. 2021].

Corollary 1.5. Consistency testing for bounded threads is in polynomial time for Relaxed.

Although Corollary 1.5 is technically straightforward, it is conceptually interesting under the
following realization. For all of our previous results (as well as for SC), the hardness of consistency
coincides with whether the corresponding model exhibits multi-copy atomicity. In contrast, Relaxed
is non-multi-copy atomic, yet consistency testing is in polynomial time.

Following the results of this paper, Fig. 1 pictorially presents the full landscape of the tractability
and the hardness in testing weak memories.

High-level intuition. Our proofs exploit complex combinatorial properties that arise in weak
memory. Although it is hard to pinpoint one key insight that fully explains our hardness results, our
proofs rely on the fact that most of the models we consider (i) are causally consistent, and (ii) allow
(po′∪ rf ∪ fr)-cycles, where po′ is the standard program order restricted to instructions of the same
type (read-read and write-write orderings) on di�erent locations. In contrast, the polynomial-time
models SC and TSO forbid (ii), while PSO allows (ii) but also fails (i).

Outline. The rest of the paper is organized as follows.

• In Section 2, we de�ne our problem setting and the memory models we consider based on C/C++
atomics. We also develop relevant notation that will be helpful in later sections.

• In Section 3, we prove Theorem 1.1 for Relaxed-Acyclic. For readability, we prove a weaker version
of Theorem 1.1 in which the inputs use boundedly many threads and locations but manipulate
unboundedly many values. Later in Section 6, we explain how to perform simple modi�cations
to our reduction to make it work even for bounded values.

• In Section 4, we prove Theorem 1.1 for all models SRA ≼M ≼ WRA. Similarly to the previous
case, our reduction uses unboundedly many values, while the modi�cations described in Section 6
also apply to this model, to arrive at the �nal result.

• In Section 5, we establish Theorem 1.2, Corollary 1.3, Theorem 1.4 and Corollary 1.5.
• Finally, in Section 6, we present the modi�cations in the reductions of Section 3 and Section 4
that fully establish Theorem 1.1.

Due to space restrictions, the full paper appears as a technical report in [Chakraborty et al. 2023].

2 PRELIMINARIES

This section de�nes the axiomatic semantics of the SRA, RA,WRA, and Relaxed memory models.
As these are standard concepts, our exposition follows recent work on the topic (e.g., [Lahav and
Boker 2022; Margalit and Lahav 2021; Tunç et al. 2023]). In axiomatic semantics, program executions
consist of sets of events and relations between them. Given an integer 8 , we let [8] = {1, 2, . . . , 8}.

Events.An event is a tuple ⟨id, tid, lab⟩ where id, tid, lab denote a unique identi�er, thread identi�er,
and the label respectively. The label is of the form lab = ⟨op, loc,Val, ord⟩ where op, loc, Val, ord
respectively denote a read (r) or write (w) memory operation, accessed memory location, read or
written value, and memory order respectively. For the SRA, RA, andWRA models, reads and writes
are of acquire and release orders respectively. For the Relaxed model, the read and write accesses
have relaxed order. These memory orders are used to de�ne the semantics of models like C11, but
we will not be using them explicitly here. As we treat each model separately, all access orders are
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Table 1. Variants of the coherence axioms.

Release-Acquire Relaxed

irr(moG ; hb) (write-coherence) irr(moG ; po) (relaxed-write-coherence)

acy(hb ∪mo) (strong-write-coherence)

irr(rf−1;moG ; hb) (read-coherence) irr(rf−1;moG ; rf
?; po) (relaxed-read-coherence)

irr(hbG ; [W]; hbG ; rf
−1) (weak-read-coherence)

determined by the models and are never mixed. Hence, we will simply write r(C, G, E)/w(C, G, E)
to denote a read/write event of thread C , accessing location G and reading/writing value E . We
occasionally omit G and/or E , when it is irrelevant or clear from the context, while we let tid(4)
denote the thread of event 4 . We do not introduce fences or atomic read-modify-write (RMW)
events, as all our hardness results hold even with only read/write events, while our positive results
can be easily extended to handle fences and RMWs. Finally, we denote the set of read and write
accesses by R andW respectively.

Notation on relations. Let � be a binary relation over a set of events E. The re�exive, transitive,
re�exive-transitive closures, and inverse relations of � are denoted as �?, �+, �∗, and �−1, respec-
tively. We compose two relations �1 and �2 as �1;�2. [�] denotes the identity relation on a set �.
We write irr(�) and acy(�) to denote that � is irre�exive and acyclic, respectively. We occasionally

write that there exists a �-edge 4
�
−→ 4 ′ to denote that (4, 4 ′) ∈ �. We naturally extend this notation

to paths, so that a �-path % : 4
�
4 ′ is a sequence of �-edges 4 = 41

�
−→ 42

�
−→ · · ·

�
−→ 48 = 4 ′. Finally,

we write �G to restrict � on events accessing location G .

Executions and relations. An execution is a tuple X = ⟨E, po, rf,mo⟩ where E is a set of events
and po, rf, mo are binary relations over E. In particular, the program order (po ⊆ (E × E)) is a strict
total order on the events of each thread. The reads-from relation (rf ⊆ (W × R)) relates a write
and read event pair (w, r), denoting that r obtains its value from w. Every read reads from exactly
one write on the same memory location and having the same value (thus rf−1 is a function). The
modi�cation order (mo ⊆

⋃
G (WG ×WG )) is a strict total order over same-location writes in an

execution. Finally, the happens-before relation is de�ned as hb ≜ (po ∪ rf)+. Fig. 2 shows examples
of executions presented as execution graphs. In each execution graph the nodes represent events
and the edges represent relations. We omit some relation-edges that are clear from the context ∗.

Consistency Axioms. Consistency axioms capture di�erent aspects or properties of an execution,
such as coherence and causality cycles, under a memory model. These properties are interpreted
di�erently in di�erent memory models.

Coherence. In an execution, coherence enforces an ordering between same-location events. For events
using the release-acquire memory orders, write-coherence requires that eachmoG order agrees with
hb. A stronger variant is strong-write-coherence, which requires thatmo agrees with hb, transitively.
Read coherence enforces that a read r can read from a write w when there is no intermediate write
w
′ on the same-location that happens-before r. Depending upon how “intermediate” writes are
treated, two variations of read coherence are popular — in standard read-coherence, w and w

′ are
ordered by moG whereas in weak-read-coherence they are ordered by hbG . Finally, we also have
variants of write and read coherence when all accesses are relaxed. Here hb is replaced with po, as
rf-edges do not contribute to hb between di�erent memory locations.

∗It is also common to de�ne a from reads relation fr ≜ rf−1;mo. However, we will not be using fr explicitly in this paper.
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Fig. 2. Executions forbidden by (a) write-coherence, (b) strong-write-coherence, (c) read-coherence, (d) weak-

read-coherence, (e) porf-acyclicity, (f) relaxed-write-coherence, (g) relaxed-read-coherence.

Table 2. The main weak-memory models based on C11 that we consider in this work.

Release-Acquire Relaxed

WRA
porf-acyclicity

weak-read-coherence
Relaxed

relaxed-write-coherence
relaxed-read-coherence

RA
write-coherence
read-coherence Relaxed-Acyclic

relaxed-write-coherence
relaxed-read-coherence

porf-acyclicitySRA
strong-write-coherence

read-coherence

Causality Cycles. A causality cycle arises in the presence of relaxed accesses and consists of po and
rf orderings. A causality cycle may result in ‘out-of-thin-air’ behavior in an execution. To avoid
such ‘out-of-thin-air’ behavior, many consistency models and veri�cation tools explicitly disallow
such cycles [Luo and Demsky 2021; Margalit and Lahav 2021; Norris and Demsky 2013].

• acy(po ∪ rf) (porf-acyclicity)

Fig. 2 shows examples of executions forbidden by di�erent axioms. The write-coherence axiom
forbids the execution in Fig. 2a as it violates the irre�exivity of (moG ; hb). The (hb ∪mo) cycle
in Fig. 2b is forbidden by strong-write-coherence. The execution in Fig. 2c violates irre�exivity
of (rf−1;moG ; hb) and thus fails read-coherence. In Fig. 2d, we have (w(G), w(G)) ∈ hbG ; [W],
(w(G), r(G)) ∈ po ⊆ hb, and (r(G), w(G)) ∈ rf−1, violating weak-read-coherence. The execution in
Fig. 2e violates porf-acyclicity. Finally, the executions in Fig. 2f and Fig. 2g violate relaxed-write-
coherence and relaxed-read-coherence, respectively.

Memory Models.We can now describe the main memory models we consider in this work, by
listing the axioms that each execution needs to satisfy in the respective model Table 2.

Release-Acquire and variants. The release-acquire (RA) memory model is weaker than sequential
consistency and is arguably the most well-understood fragment of C11. Here, the reads-from
relation rf induces synchronization between thread threads, which is captured in the semantics by
the happens-before relation hb. Following [Lahav and Boker 2022], we consider three variants of
release-acquire models: Release-Acquire (RA), and its Strong (SRA) and Weak (WRA) variants.

SRA enforces strong-write-coherence on write accesses whereas RA enforces write-coherence. On
the other hand,WRA does not place any ordering between same-location writes bymoG . Instead, the
only orderings considered between same-location writes are through the [W]; hbG ; [W] relation.

Relaxed. All accesses in the Relaxed model satisfy the corresponding coherence axioms
relaxed-write-coherence and relaxed-read-coherence, which guarantee SC-per-location. The
Relaxed-Acyclic model strengthens Relaxed by also requiring the acyclicity of (po ∪ rf).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 66. Publication date: January 2024.
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Based on the set of allowed behaviors, these models can be partially ordered as SRA ≼ RA ≼

{WRA, {Relaxed-Acyclic ≼ Relaxed}}, where models towards the right allow more behaviors.

The consistency-testing problem. An execution X is consistent in a memory modelM, written
X |= M, if it satis�es the axioms of M. For example, the execution in Fig. 2b satis�es all axioms
except strong-write-coherence, and hence it is consistent in RA,WRA, and Relaxed(-Acyclic).

When testing the behavior of a programwithin amemorymodel, one does not have access to concrete
executions, but rather to abstract executions. The latter contains only information observed by the
program, i.e., the events it executed and the values it read/wrote. Formally, an abstract execution

X = ⟨E, po⟩ is a coarser object than concrete executions, missing the mo and rf relations, and a

concrete execution X = ⟨E′, po′, rf ′,mo′⟩ is said to be an extension of X if E′ = E and po′ = po. We

call X consistent in M, written similarly as X |= M, if there exists an rf and an mo such that the
extension X = ⟨E, po, rf,mo⟩ is an execution with X |= M. The problem of consistency testing in a

memory model M is to determine whether X is consistent in M, i.e., whether there is a way to

resolve rf and mo inM that would give rise to the observed behavior X on the program level.

Con�icting triplets. In the coming sections, we use the notion of con�icting triplets. Given an

abstract execution X = (E, po), we say that two events 41, 42 ∈ E con�ict if they access the same
location and at least one of them is a write. Given additionally a reads-from relation rf, a con�icting
triplet (or triplet, for short) is a tuple (w, r, w′) of pairwise con�icting events such that (w, r) ∈ rf.

3 HARDNESS FOR RELAXED-ACYCLIC

We start with the Relaxed-Acyclicmemory model and show that consistency testing isNP-complete
under bounded threads and memory locations. This di�ers slightly from Theorem 1.1, which states
that the problem remains hard even with bounded values. Since our proof is rather technical, we
choose to present this intermediate result here. We will make the �nal step towards Theorem 1.1 in
Section 6, which consists of a simple modi�cation of the technique presented here. In Section 3.1,
we present the hardness reduction and argue about its correctness in Sections 3.2 and 3.3.

3.1 Reduction

Our reduction is fromMonotone 1-in-3 SAT which is known to beNP-complete [Garey and Johnson
1990]. The input is a monotone formula i in conjunctive normal form, where each clause contains
three literals, all of which are positive. The task is to determine if there exists a 1-in-3 truth
assignment for i , i.e., one that sets exactly one literal to true in each clause.

We remark that our reduction is combinatorially elaborate. We found that complex interactions
between threads are necessary to expose the nuances that make the consistency problem for
the Relaxed-Acyclic memory model (or for that matter, other memory models we consider) hard.
Nevertheless, we assist the text with illustrations that help visualize and generalize the interaction
patterns that are exploited in our reduction. To further enhance readability, we distinguish di�erent
memory locations with di�erent colors (in both �gures and main text).

Let i = {C8 }8∈[<] be a monotone Boolean formula over = variables {B 9 } 9 ∈[=] and< clauses of the

form C8 = (B 9 , B: , Bℓ ). We construct an abstract execution X = (E, po) such that X |= Relaxed-Acyclic

i� i is satis�able using a 1-in-3 assignment†.

†We often use the phrase ‘i is satis�able’ to mean ‘i is satis�able by a 1-in-3 assignment’.
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Fig. 3. The schematic reduction from a monotone formula i to an abstract execution X.

High-level description. Our reduction constructs an abstract execution with $ (= ·<) events
accessing 3 = 14 memory locations in ^ = 23 threads, of which the three threads C1, C2 and C3 form
the core of the construction. Events appear in each of these threads in< phases (one phase per
clause C8 ), starting from phase 1 and going to larger phases as we go downwards in the threads.
Each phase, in turn, consists of = steps (one step per variable B 9 ), again starting from step 1 and
going to larger steps as we go downwards. In phase 8 and step 9 we have a read event r(C3, G1, E

8
9 )

that can read from either of two writes w(C1, G1, E
8
9 ) or w(C2, G1, E

8
9 ). The former case corresponds to

the assignment B 9 =⊥, while the latter case corresponds to the assignment B 9 = ⊤. See Fig. 3 for an
illustration. Our construction guarantees that the choices for the writer of r(C3, G1, E

8
9 ) are consistent

across all phases 8: either each r(C3, G1, E
8
9 ) reads from w(C1, G1, E

8
9 ), which corresponds to setting

B 9 =⊥ in i , or each r(C3, G1, E
8
9 ) reads from w(C2, G1, E

8
9 ), which corresponds to setting B 9 = ⊤ in i .

Moreover, for each clause C8 = (B 9 , B: , Bℓ ), our reduction guarantees that exactly one of r(C3, G1, E
8
9 ),

r(C3, G1, E
8
:
), and r(C3, G1, E

8
ℓ ) reads from thread C2, which implies that the corresponding assignment

on B 9 , B: and Bℓ satis�es the 1-in-3 property. To achieve all these constraints, we introduce four
gadgets, which consist of events on additional threads and memory locations, that guarantee the
desired properties. In the following, we �rst describe each gadget separately, and then explain how

to interleave them in order to obtain the abstract execution X.

The copy gadget Copy89 . The main gadget in our construction is the copy gadget Copy89 , de�ned

for each 8 ∈ [<] and 9 ∈ [=], and shown in Fig. 4. This gadget contains (i) the three focal events
w(C1, G1, E

8
9 ), w(C2, G1, E

8
9 ) and r(C3, G1, E

8
9 ) that determine the truth value of B 9 , (ii) three “mirror” events

w(C4, G2, E
8
9 ), w(C5, G2, E

8
9 ) and r(C6, G2, E

8
9 ), and (iii) other events on memory locations ~1, ~2, ~3, ~4.

The gadget couples the writers of r(C3, G1, E
8
9 ) and r(C6, G2, E

8
9 ): if r(C3, G1, E

8
9 ) reads from thread C1

then r(C6, G2, E
8
9 ) reads from thread C4 (see Fig. 4b), while if r(C3, G1, E

8
9 ) reads from thread C2 then

r(C6, G2, E
8
9 ) reads from thread C5 (see Fig. 4c).

The copy-down gadget Copy
8

9 .We use a copy-down gadget Copy
8

9 , de�ned for 8 ∈ [< − 1] and

9 ∈ [=], with structure identical to Copy89 , and shown in Fig. 5. This gadget contains (i) the three

focal events w(C1, G1, E
8+1
9 ), w(C2, G1, E

8+1
9 ) and r(C3, G1, E

8+1
9 ), (ii) the three mirror events w(C4, G2, E

8
9 ),

w(C5, G2, E
8
9 ) and r(C6, G2, E

8
9 ), and (iii) other events on memory locations I1, I2, I3, I4.
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(a) The copy gadget Copy89 .
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(b) Choosing r(C3, G1, E
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9 ) to read from C1 forces the sequence of rf and mo edges shown.

1

2

3

4
5

C1 C2 C3 51 52 53 54 55 56 C4 C5 C6

r(~1, E
8
9 )

r(~1,D
8
9 )

w(G1, E
8
9 )

r(~2, E
8
9 )

r(~2,D
8
9 )

w(G1, E
8
9 )

r(G1, E
8
9 )

w(~1, E
8
9 )

w(~2, E
8
9 )

w(~1, E
8
9 )

w(~1, E
8
9 )

w(~1,D
8
9 )

w(~1,D
8
9 )

r(~1,D
8
9 )

r(~1, E
8
9 )

w(~4, E
8
9 )

w(~2, E
8
9 )

w(~2, E
8
9 )

w(~2,D
8
9 )

w(~2,D
8
9 )

r(~2,D
8
9 )

r(~2, E
8
9 )

w(~3, E
8
9 )

r(~3, E
8
9 )

w(~2, E
8
9 )

w(G2, E
8
9 )

r(~4, E
8
9 )

w(~1, E
8
9 )

w(G2, E
8
9 )

r(G2, E
8
9 )

w(~3, E
8
9 )

w(~4, E
8
9 )

(c) Choosing r(C3, G1, E
8
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Fig. 4. The copy gadget Copy89 (a) captures the Boolean assignment to variable B 9 in phase 8 . There are

two ways to realize this gadget, by choosing which of the two writes w(G1, E
8
9 ) the read r(G1, E

8
9 ) observes.

Choosing the write of C1 (b) corresponds to se�ing B 9 =⊥ and also forces r(G2, E
8
9 ) to read from C4. Choosing

the write of C2 (c) corresponds to se�ing B 9 = ⊤ and also forces r(G2, E
8
9 ) to read from C5. This rf coupling is

formalized in Lemma 3.1. The edge numbers specify the order in which rf-edges are inferred.

While Copy89 couples the writers of the focal and mirror read events — r(C3, G1, E
8
9 ) and r(C6, G2, E

8
9 )

— belonging to the same phase, Copy
8

9 couples the writers of the focal and mirror read events —

r(C3, G1, E
8+1
9 ) and r(C6, G2, E

8
9 ) — of consecutive phases. If r(C3, G1, E

8+1
9 ) reads from thread C1, then

r(C6, G2, E
8
9 ) reads from thread C4, while if r(C3, G1, E

8+1
9 ) reads from thread C2, then r(C6, G2, E

8
9 ) reads

from thread C5. Together, Copy
8
9 and Copy

8

9 couple the writers of the focal reads r(C3, G1, E
8
9 ) and

r(C3, G1, E
8+1
9 ) across consecutive phases — either both read from thread C1 or both read from C2.

The at-most-one-true gadgetsAMOne[2]8
9,:
. Consider a clause C8 , and for each 2 ∈ [3], let (B 9 , B: )

be the 2-th pair of literals that appear in C8 (according to some arbitrary but �xed total ordering on
pairs of propositional variables). The at-most-one-true gadget AMOne[2]8

9,:
is shown in Fig. 6a and

contains (i) the six focal events w(C1, G1, E
8
9 ), w(C2, G1, E

8
9 ) and r(C3, G1, E

8
9 ); and w(C1, G1, E

8
:
), w(C2, G1, E

8
:
)

and r(C3, G1, E
8
:
), and (ii) other events on memory location 02 . The gadget guarantees that at most
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Fig. 5. The copy-down gadget Copy
8
9 is very similar to Copy89 . Choosing r(G1, E

8+1
9 ) to read from C1 (a)

corresponds to se�ing B 9 =⊥ and also forces r(G2, E
8
9 ) to read from C4. Choosing r(G1, E

8+1
9 ) to read from C2

(b) corresponds to se�ing B 9 = ⊤ and also forces r(G2, E
8
9 ) to read from C5. This rf coupling is formalized in

Lemma 3.1. The edge numbers specify the order in which rf-edges are inferred.

one of r(C3, G1, E
8
9 ) and r(C3, G1, E

8
:
) reads from thread C2, which corresponds to assigning ⊤ to at

most one of B 9 and B: (Figs. 6b to 6d).

The at-least-one-true gadget ALOne8
9,:,ℓ

. Consider a clause C8 = (B 9 , B: , Bℓ ). The at-least-one-

true gadget ALOne8
9,:,ℓ

is shown in Fig. 7a and contains (i) the nine focal events w(C1, G1, E
8
9 ),

w(C2, G1, E
8
9 ) and r(C3, G1, E

8
9 ); w(C1, G1, E

8
:
), w(C2, G1, E

8
:
) and r(C3, G1, E

8
:
); and w(C1, G1, E

8
ℓ ), w(C2, G1, E

8
ℓ )

and r(C3, G1, E
8
ℓ ), and (ii) other events on memory location 1. The gadget guarantees that at least one

of r(C3, G1, E
8
9 ), r(C3, G1, E

8
:
) and r(C3, G1, E

8
ℓ ) reads from thread C2, which corresponds to assigning ⊤

to at least one of B 9 , B: and Bℓ (shown in Figs. 7b to 7d). Note that this gadget, by itself, allows for
two or even all three of the literals to be assigned to ⊤, however, these cases are not shown as they
are prohibited by the at-most-one-true gadgets above.

Putting the gadgets together. We serially connect all gadgets in their common threads by po.

In particular, Copy8191 appears before Copy
82
92
if 81 < 82 or 81 = 82 and 91 < 92; Copy

81
91
appears before

Copy
82
92
if 81 < 82 or 81 = 82 and 91 < 92; each AMOne[2]81

91,:1
appears before AMOne[2]82

92,:2
if 81 < 82,

and �nally ALOne81
91,:1,ℓ1

appears before ALOne82
92,:2,ℓ2

if 81 < 82. As various gadgets have common

threads and events, besides connecting them, we also need to specify the interleaving between
them. However, this interleaving can be arbitrary and we will not �x it here. Finally, we have indeed
used ^ = 23 threads and 3 = 14 memory locations.
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Fig. 6. The at-most-one-true gadget AMOne[2]8
9,:

parameterized by 2 ∈ [3], and the three ways to resolve it

depending on the boolean assignment to B 9 and B: (b, c, d). These rf constraints are formalized in Lemma 3.2.

The edge numbers specify the order in which rf-edges are inferred. The crossed-out events are ignored in our

analysis for simplicity (see Lemma 3.5).

3.2 Soundness

We �rst establish the soundness of the reduction, i.e., if X is consistent (using an extension X)
within Relaxed-Acyclic, then i has a satisfying assignment. In this direction, we will establish some
intermediate lemmas. Recall that we obtain the satisfying assignment for i by assigning B 9 = ⊤
if (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf for all 8 ∈ [<], and B 9 =⊥ if (w(C1, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf for all

8 ∈ [<]. The �rst lemma is based on the copy gadgets Copy89 and Copy
8

9 , and states that each phase

of X makes consistent choices for the writer of r(C3, G1, E
8
9 ) (i.e., whether it reads from C1 or C2),

which makes the above assignment well-de�ned. It follows from the high-level description of these
two gadgets and the accompanying Fig. 4 and Fig. 5.

Lemma 3.1. Let X = (E, po, rf,mo) be a concrete extension of X with X |= Relaxed-Acyclic. For all

81, 82 ∈ [<], 9 ∈ [=], we have that (w(C1, G1, E
81
9 ), r(C3, G1, E

81
9 )) ∈ rf i� (w(C1, G1, E

82
9 ), r(C3, G1, E

82
9 )) ∈ rf.

Proof. We argue by induction that for every 8 ∈ [< − 1], we have (w(C1, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf

i� (w(C1, G1, E
8+1
9 ), r(C3, G1, E

8+1
9 )) ∈ rf. First, note that if (w(C1, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf, then the copy

gadgetCopy89 forces (w(C4, G2, E
8
9 ), r(C6, G2, E

8
9 )) ∈ rf. Indeed, we have the following inferred sequence

of rf edges (see 1 - 5 in Fig. 4b, where 1 represents (w(C1, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf).

(1) We have (r(C1, ~1, E
8
9 ), w(C3, ~1, E

8
9 )) ∈ (po ∪ rf)+ and thus (w(C3, ~1, E

8
9 ), r(C1, ~1, E

8
9 )) ∉ rf due to

porf-acyclicity. Thus r(C1, ~1, E
8
9 ) is forced to read from the only other available write of the

same value, i.e., (w(51, ~1, E
8
9 ), r(C1, ~1, E

8
9 )) ∈ rf, depicted as 2 in Fig. 4b.
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(a) The at-least-one-true gadget ALOne8
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(b) Resolving with B 9 =⊥, B: =⊥ and Bℓ = ⊤.
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(c) Resolving with B 9 =⊥, B: = ⊤ and Bℓ =⊥.
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(d) Resolving with B 9 = ⊤, B: =⊥ and Bℓ =⊥.

Fig. 7. The at-least-one-true gadget ALOne8
9,:,ℓ

(a) and the three ways to resolve it depending on the boolean

assignment to B 9 , B: and Bℓ (d, c, b). These rf constraints are formalized in Lemma 3.3. The edge numbers

specify the order in which rf-edges are inferred. The crossed-out events are ignored in our analysis for

simplicity (see Lemma 3.5).

(2) We now have (w(51, ~1, E
8
9 ), r(C1, ~1, D

8
9 )) ∈ (po~1 ∪ rf~1 )

+, and since (w(52, ~1, D
8
9 ), r(C1, ~1, D

8
9 )) ∈

rf, we have (w(51, ~1, E
8
9 ), w(52, ~1, D

8
9 )) ∈ mo due to relaxed-read-coherence. Observe that now

(w(51, ~1, E
8
9 ), w(52, ~1, D

8
9 )) ∈ (po~1 ∪ mo~1 )

+, thus due to relaxed-write-coherence, we have

(w(51, ~1, E
8
9 ), w(52, ~1, D

8
9 )) ∈ mo~1 . Since (w(52, ~1, D

8
9 ), r(53, ~1, E

8
9 )) ∈ (po~1 ∪ rf~1 )

+, we have

(w(51, ~1, E
8
9 ), r(53, ~1, E

8
9 )) ∉ rf due to relaxed-read-coherence. Thus r(53, ~1, E

8
9 ) is forced to read

from the only other available write, i.e., (w(C5, ~1, E
8
9 ), r(53, ~1, E

8
9 )) ∈ rf, depicted by 3 .

(3) We now have (r(C5, ~4, E
8
9 ), w(53, ~4, E

8
9 )) ∈ (po ∪ rf)+ and thus (w(53, ~4, E

8
9 ), r(C5, ~4, E

8
9 )) ∉ rf,

due to porf-acyclicity. Thus r(C5, ~4, E
8
9 ) is forced to read from the only other available write,

i.e., (w(C6, ~4, E
8
9 ), r(C5, ~4, E

8
9 )) ∈ rf, depicted by 4 .

(4) We now have (r(C6, G2, E
8
9 ), w(C5, G2, E

8
9 )) ∈ (po∪ rf)+ and thus (w(C5, G2, E

8
9 ), r(C6, G2, E

8
9 )) ∉ rf due

to porf-acyclicity. Thus r(C6, G2, E
8
9 ) is forced to read from the only other available write, i.e.,

(w(C4, G2, E
8
9 ), r(C6, G2, E

8
9 )) ∈ rf, depicted by 5 .
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On the other hand, if (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf, then the copy gadget Copy89 forces

(w(C5, G2, E
8
9 ), r(C6, G2, E

8
9 )) ∈ rf, by a similar analysis (see Fig. 4c, depicted by 1 - 5 ).

Finally, a similar analysis on the copy-down gadget Copy
8

9 (see Fig. 5, and the forced rf edges 1 - 5 )

concludes that (w(C1, G1, E
8+1
9 ), r(C3, G1, E

8+1
9 )) ∈ rf i� (w(C4, G2, E

8
9 ), r(C6, G2, E

8
9 )) ∈ rf, and hence we

have (w(C1, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf i� (w(C1, G1, E

8+1
9 ), r(C3, G1, E

8+1
9 )) ∈ rf, as desired. □

The next lemma is based on the at-most-one-true gadgets AMOne[2]8
9,:
, and it is used to show that

for every clause C8 and for each of the three pairs of literals (B 9 , B: ) in C8 , at most one of them is
assigned to true. Again, it follows by a direct analysis of the accompanying �gure, Fig. 6.

Lemma 3.2. Let X = (E, po, rf,mo) be a concrete extension of X with X |= Relaxed-Acyclic. For every

8 ∈ [<] and 9, : ∈ [=] such that B 9 and B: appear in clause C8 , we have (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∉ rf

or (w(C2, G1, E
8
:
), r(C3, G1, E

8
:
)) ∉ rf.

Proof. The statement follows by analyzing the at-most-one-true gadget AMOne[2]8
9,:
, where

2 ∈ [3] is such that (B 9 , B: ) is the 2-th pair of variables in C8 (see Fig. 6).

First, if (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf holds (marked 1 in Fig. 6b) then (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∉

rf. Indeed, we have the following sequence of rf edges (see 1 - 4 , Fig. 6b).

(1) We have (r(C2, 02 , E
8
9 ), w(C3, 02 , E

8
9 )) ∈ (po ∪ rf)+ and thus (w(C3, 02 , E

8
9 ), r(C2, 02 , E

8
9 )) ∉ rf due

to porf-acyclicity. Thus r(C2, 02 , E
8
9 ) is forced to read from the only other available write, i.e.,

(w(ℎ2 , 02 , E
8
9 ), r(C2, 02 , E

8
9 )) ∈ rf, depicted by 2 .

(2) We now have (w(ℎ2 , 02 , E
8
9 ), r(C2, 02 , E

8
:
)) ∈ (po02∪rf02 )

+, and due to relaxed-write-coherence, we

also have (w(ℎ2 , 02 , E
8
:
), w(ℎ2 , 02 , E

8
9 )) ∈ mo02 . In turn, this implies (w(ℎ2 , 02 , E

8
:
), r(C2, 02 , E

8
:
)) ∉ rf

due to relaxed-read-coherence. Thus r(C2, 02 , E
8
:
) is forced to read from the only other available

write, i.e., (w(C3, 02 , E
8
:
), r(C2, 02 , E

8
:
)) ∈ rf, depicted by 3 .

(3) We now have (r(C3, G1, E
8
:
), w(C2, G1, E

8
:
)) ∈ (po ∪ rf)+ and thus (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∉ rf

due to porf-acyclicity. Thus r(C3, G1, E
8
:
) is forced to read from the only other available write,

i.e., (w(C1, G1, E
8
:
), r(C3, G1, E

8
:
)) ∈ rf, depicted by 4 .

Second, if (w(C2, G1, E
8
:
), r(C3, G1, E

8
:
)) ∈ rf marked 1 in Fig. 6c), then (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∉ rf.

Indeed, we have the following forced sequence of rf edges (see Fig. 6c).

(1) We have (r(C2, 02 , E
8
:
), w(C3, 02 , E

8
:
)) ∈ (po ∪ rf)+ and thus (w(C3, 02 , E

8
:
), r(C2, 02 , E

8
:
)) ∉ rf due

to porf-acyclicity. Thus r(C2, 02 , E
8
:
) is forced to read from the only other available write, i.e.,

(w(ℎ2 , 02 , E
8
:
), r(C2, 02 , E

8
:
)) ∈ rf, marked 2 .

(2) Due to relaxed-write-coherence, we have (w(ℎ2 , 02 , E
8
:
), w(ℎ2 , 02 , E

8
9 )) ∈ mo02 We thus have

(w(ℎ2 , 02 , E
8
9 ), r(C2, 02 , E

8
9 )) ∉ rf, as this would imply that (w(ℎ2 , 02 , E

8
9 ), r(C2, 02 , E

8
:
)) ∈ (po02 ∪

rf02 ), which would violate relaxed-read-coherence. Thus r(C2, 02 , E
8
9 ) is forced to read from the

only other available write, i.e., (w(C3, 02 , E
8
9 ), r(C2, 02 , E

8
9 )) ∈ rf, marked 3 .

(3) We now have (r(C3, G1, E
8
9 ), w(C2, G1, E

8
9 )) ∈ (po∪ rf)+ and thus (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∉ rf due

to porf-acyclicity. Thus r(C3, G1, E
8
9 ) is forced to read from the only other available write, i.e.,

(w(C1, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf, depicted by 4 . □
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The third lemma is based on the at-least-one-true gadget ALOne8
9,:,ℓ

, and it is used to show that

for every clause C8 = (B 9 , B: , Bℓ ), at least one of its literals is assigned to true. Again, it follows by a
direct analysis of the accompanying �gure, Fig. 7.

Lemma 3.3. Let X = (E, po, rf,mo) be a concrete extension of X with X |= Relaxed-Acyclic. For every

8 ∈ [<] and 9, :, ℓ ∈ [=] such that B 9 , B: and Bℓ appear in clause C8 , we have (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈

rf or (w(C2, G1, E
8
:
), r(C3, G1, E

8
:
)) ∈ rf or (w(C2, G1, E

8
ℓ ), r(C3, G1, E

8
ℓ )) ∈ rf.

Proof. First, if (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∉ rf and (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∉ rf (hence both read

from C1, marked 1 in Fig. 7b) then (w(C2, G1, E
8
ℓ ), r(C3, G1, E

8
ℓ )) ∈ rf. Indeed, we have the following

forced sequence of rf edges (see Fig. 7b, 1 - 4 ).

(1) We have (r(C1, 1, E
8
9 ), w(C3, 1, E

8
9 )) ∈ (po ∪ rf)+ and thus (w(C3, 1, E

8
9 ), r(C1, 1, E

8
9 )) ∉ rf due to

porf-acyclicity. Thus r(C1, 1, E
8
9 ) is forced to read from the only other available write, i.e.,

(w(?, 1, E89 ), r(C1, 1, E
8
9 )) ∈ rf. Similarly, we have (r(C1, 1, E

8
:
), w(C3, 1, E

8
:
)) ∈ (po ∪ rf)+ and thus

(w(C3, 1, E
8
:
), r(C1, 1, E

8
:
)) ∉ rf due to porf-acyclicity. Thus r(C1, 1, E

8
:
) is forced to read from the

only other available write, i.e., (w(@,1, E8
:
), r(C1, 1, E

8
:
)) ∈ rf. These two edges are depicted 2 .

(2) We now have (w(?,1, E89 ), r(C1, 1, E
8
ℓ )) ∈ (po1 ∪ rf1)

+, and due to relaxed-write-coherence, we

also have (w(?, 1, E8ℓ ), w(?,1, E
8
9 )) ∈ mo1 . In turn, this implies (w(?,1, E8ℓ ), r(C1, 1, E

8
ℓ )) ∉ rf due to

relaxed-read-coherence. Similarly, we now have (w(@,1, E89 ), r(C1, 1, E
8
ℓ )) ∈ (po1 ∪ rf1)

+, and due

to relaxed-write-coherence, we also have (w(@,1, E8ℓ ), w(@,1, E
8
9 )) ∈ mo1 . In turn, this implies

(w(@,1, E8ℓ ), r(C1, 1, E
8
ℓ )) ∉ rf due to relaxed-read-coherence. Thus r(C1, 1, E

8
ℓ ) is forced to read

from the only other available write, i.e., (w(C3, 1, E
8
ℓ ), r(C1, 1, E

8
ℓ )) ∈ rf, depicted 3 .

(3) We now have (r(C3, G1, E
8
ℓ ), w(C1, G1, E

8
ℓ )) ∈ (po∪ rf)+ and thus (w(C1, G1, E

8
ℓ ), r(C3, G1, E

8
ℓ )) ∉ rf due

to porf-acyclicity. Thus r(C3, G1, E
8
ℓ ) is forced to read from the only other available write, i.e.,

(w(C2, G1, E
8
ℓ ), r(C3, G1, E

8
ℓ )) ∈ rf, depicted by 4 .

A similar analysis establishes that if (w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∉ rf and (w(C2, G1, E

8
ℓ ), r(C3, G1, E

8
ℓ )) ∉ rf

then (w(C2, G1, E
8
:
), r(C3, G1, E

8
:
)) ∈ rf (see Fig. 7c), as well as that if (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∉ rf and

(w(C2, G1, E
8
ℓ ), r(C3, G1, E

8
ℓ )) ∉ rf then (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf (see Fig. 7d). □

Lemma 3.1 states that our truth assignment fori is valid, while Lemma 3.2 and Lemma 3.3 guarantee
that in every clause, exactly one literal is set to true. Hence we have the following corollary.

Corollary 3.4. If X |= Relaxed-Acyclic then i is satis�able.

3.3 Completeness

We now turn our attention to the completeness property, i.e., if i is satis�able then X is consistent
in the Relaxed-Acyclic model. To this end, we construct a reads-from relation rf and a partial
modi�cation order mo as follows.

(1) For each gadget, we insert rf-edges according to Figs. 4 to 7 and the truth assignments on
literals B 9 , B: , Bℓ involved in that gadget. In particular, this implies that, for each 8 ∈ [<] and
9 ∈ [=], we have (w(C1, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf if B 9 =⊥ and (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf if

B 9 = ⊤. Observe that rf is fully speci�ed, i.e., every read has been assigned a write.
(2) For every two con�icting writes w1, w2 with (i) tid(w1) ≠ tid(w2), and (ii) there exist two reads

r1, r2 with (r1, r2) ∈ po such that (w8 , r8 ) ∈ rf for each 8 ∈ [2], we have (w1, w2) ∈ mo.
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We call a triplet (w, r, w′) on location G safe in Relaxed-Acyclic if either (w′, r) ∉ (poG ∪ rfG )
+ or

(w′, w) ∈ (poG ∪ rfG ∪moG )
+. To prove the consistency of X it su�ces to prove the following:

(1) (po ∪ rf) is acyclic, and
(2) mo is minimally coherent for Relaxed-Acyclic, namely, that (i) (poG ∪ rfG ∪moG ) is acyclic for

every location G , and (ii) every triplet is safe.

Indeed, minimal-coherence guarantees that, for each location G , there exists a total extension moG
of moG that satis�es relaxed-write-coherence and relaxed-read-coherence [Tunç et al. 2023].

To simplify our analysis, we ignore the writes in threads {ℎ2 }2∈[3] , ? and @ that are not read in
rf (crossed-out in Fig. 6 and Fig. 7). This allows us to make our formal statements more uniform,
while this omission does not a�ect the correctness of the analysis. Indeed, let InactiveWr = {w ∈
W | tid(w) ∈ {ℎ1, ℎ2, ℎ3, ?, @} and �r ∈ R. (w, r) ∈ rf}. The following lemma is straightforward.

Lemma 3.5. The following statements hold.

(1) If there is a (po ∪ rf)-cycle then there is such a cycle without any write in InactiveWr.

(2) If there is a (poG ∪ rfG ∪moG )-cycle for some memory location G then there is such a cycle without

any write in InactiveWr.

(3) If there is an unsafe triplet, then there is such a triplet (w, r, w′) where w′ ∉ InactiveWr.

Proof. We prove each item separately.

(1) We �rst observe that for any w ∈ InactiveWr, there is no outgoing rf or even mo edge. Hence

any cycle containing a write w ∈ InactiveWr must contain a sequence of edges 41
po
−−→ w

po
−−→ 42,

which can be replaced by the single edge 41
po
−−→ 42.

(2) Proof same as above.
(3) Consider a memory location G and an unsafe triplet (w, r, w′) on G . This means that there is a

(poG∪rfG )-path % : w
′ poG∪rfG

r. Since the threads {ℎ2 }2∈[3] , ? and @ contain only same-location

writes, % must be of the form % : w′
poG

w
′′ rfG
−−→ r

′′ poG∪rfG
r ,where, w′′ and r

′′ con�ict with
w
′. Note that r′′ ≠ r, otherwise w′′ = w since (w, r) ∈ rf, implying that (w, r, w′) is safe. Since
(w, r, w′) is unsafe, we have (w′, w) ∉ (poG ∪ rfG ∪moG )

+ and hence, (w′′, w) ∉ (poG ∪ rfG ∪moG )
+.

Thus (w, r, w′′) is also unsafe, while clearly w
′′
∉ InactiveWr. □

The completeness can now be established in three lemmas, one for each of the properties (1), (2i),
and (2ii) above (i.e., (po ∪ rf)-acyclicity and minimal coherence). Before we proceed, we will use
the following notation to make our analysis easier.

Notation. Given an event 4 , we say that 4 appears in phase 8 , written phase(4) = 8 , if it writes/reads

a value superscripted by 8 (i.e., of the form E8 or E8 ). Similarly, we say that 4 appears in step 9 ,
written step(4) = 9 , if it writes/reads a value subscripted by 9 (i.e., of the form E 9 or E 9 ). We
de�ne a quasi order ⪯ on the event set E with 41 ⪯ 42 if either (i) phase(41) < phase(42) or
(ii) phase(41) = phase(42) and step(41) ≤ step(42). We also write 41 ≺ 42 to denote that 41 ⪯ 42 and
42 ̸⪯ 41. Now consider an arbitrary path % = 41, . . . , 4: . We say that % crosses a thread C if tid(4ℓ ) for
some for some ℓ ∈ [:]. We call % monotonic if it linearizes ⪯, i.e., 4ℓ ⪯ 4ℓ+1 for all ℓ ∈ [: − 1].

We �rst establish the safety of each triplet.

Lemma 3.6. Every triplet (w, r, w′) is safe.
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Proof. First, observe that the following hold by construction.

(1) There is no memory location that is both written and read by the same thread.
(2) For every two con�icting writes w1, w2, if there exist two reads r1, r2 such that (w8 , r8 ) ∈ rf for

each 8 ∈ [2] and (r1, r2) ∈ po, then (w2, w1) ∉ po.

Now, let G be the location accessed by a triplet (w, r, w′), and assume there exists a (poG ∪ rfG )-path

% : w′
poG∪rfG

r. Due to Item (1), % must leave a thread and enter another at most once. Thus, %

must be of the form % : w′
po?G

w
′′ rfG
−−→ r

′′ po?G
r. If (w′′, w) ∈ po?G , we are done. Otherwise, due

to Item (2), we can’t have that (w, w′′) ∈ poG . Hence, w and w
′′ are in di�erent threads, and by the

construction of moG , we have (w′′, w) ∈ moG , implying that (w′, w) ∈ (poG ∪ moG )
+. Hence the

triplet is safe, as desired. □

Next, we establish the second ingredient of completeness, i.e., the acyclicity of (po ∪ rf).

Lemma 3.7. (po ∪ rf) is acyclic.

Proof. First, note that there is no (po ∪ rf)-cycle crossing any of 62 and 65, as these threads only
contain writes, and hence there is no way to enter them by an rf-edge. Moreover, by construction,
any (po ∪ rf)-path % that starts from a thread other than 62 and 65 is necessarily monotonic.

Indeed, all rf-edges connect events of the same phase and step, while the only po-edges 41
po
−−→

42 with phase(41) < phase(42) appear in 62 and 65. Finally, the only po-edges 41
po
−−→ 42 with

phase(41) = phase(42) and step(41) > step(42) occur in threads ℎ1, ℎ2, ℎ3, ? and @ (see Fig. 6 and
Fig. 7). However, in light of Lemma 4.5, these edges can be ignored in our analysis.

Thus, any potential (po ∪ rf)-cycle has to traverse events of the same phase and step. A straight-
forward analysis of each instantiation of each gadget (see Figs. 4b and 4c, Figs. 5a and 5b, Figs. 6b
to 6d, Figs. 7b to 7d), and their combinations on common events, establishes that no (po ∪ rf)-cycle
exists, as desired. □

Finally, we establish the acyclicity of (poG ∪ rfG ∪moG ).

Lemma 3.8. (poG ∪ rfG ∪moG ) is acyclic for all locations G .

Proof. Observe that no memory location is both read and written by the same thread in any of the

gadgets. Hence, any (poG ∪ rfG ∪moG )-cycle � following an rf-edge w
rf
−→ r enters a thread that it

cannot exit. This means that � can only contain events of the same thread, which is forbidden by
Lemma 3.7. Thus we only need to reason about the absence of (poG ∪moG ) cycles.

Observe that for every memory location G except I1 and I2, every (poG ∪moG )-path is monotonic.
Hence any potential (poG ∪moG )-cycle must traverse paths of the same phase and step, and thus
be contained in one of the gadgets. The absence of such cycles can be easily established by looking
at the instantiations of these gadgets (Figs. 4 to 7).

On the other hand, consider the case G = I1 (the analysis is similar for G = I2). Let � be a shortest
(poI1 ∪ moI1 )-cycle. If � contains only events of the same phase and step, it can be dismissed
again by looking at the gadget in Fig. 5. Otherwise, � is non-monotonic and must thus traverse

the non-monotonic edge w(62, I1, D
8+1
9 )

poI1
−−−→ w(62, I1, D

8
9 ). From there it can continue to threads 61
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(a) The copy gadget Copy89 .
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(b) Choosing r(C3, G1, E
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9 ) to read from C1 forces the sequence of rf and mo edges shown.
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Fig. 8. The copy gadget Copy89 (a) captures the Boolean assignment to variable B 9 in phase 8 . There are

two ways to realize this gadget, by choosing which of the two writes w(G1, E
8
9 ) the read r(G1, E

8
9 ) observes.

Choosing the write of C1 (b) corresponds to se�ing B 9 =⊥ and also forces r(G2, E
8
9 ) to read from C4. Choosing

the write of C2 (c) corresponds to se�ing B 9 = ⊤ and also forces r(G2, E
8
9 ) to read from C5. This rf coupling is

formalized in Lemma 4.1. The edge numbers specify the order in which rf-edges are inferred.

and thread C5, following events 4 with w(62, I1, D
8
9 ) ⪯ 4 . It can be easily veri�ed on Fig. 5 that the

next time � crosses 62, it is on an event 4 ′ with (w(62, I1, D
8+1
9 ), 4 ′) ∈ poI1 , which contradicts the

fact that � is a shortest cycle. The desired result follows. □

Lemma 3.6, Lemma 3.7 and Lemma 3.8 imply the completeness of the reduction.

Corollary 3.9. If i is satis�able then X |= Relaxed-Acyclic.

4 HARDNESS FOR WRA, RA AND SRA

In this section we prove Theorem 1.1 for the range of models SRA ≼M ≼ WRA, which also implies
hardness speci�cally for SRA, RA, and WRA. Similarly to Section 3, our reduction uses unbounded
values. Again, we will make the �nal step towards Theorem 1.1 in Section 6, which consists of a
simple modi�cation of the technique presented here.
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(a) Choosing r(C3, G1, E
8+1
9 ) to observe from C1 forces the sequence of rf and mo edges shown.
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(b) Choosing r(C3, G1, E
8+1
9 ) to read from C2 forces the sequence of rf and mo edges shown.

Fig. 9. The copy-down gadget Copy
8
9 is very similar to Copy89 . Choosing r(G1, E

8+1
9 ) to read from C1 (a)

corresponds to se�ing B 9 =⊥ and also forces r(G2, E
8
9 ) to read from C4. Choosing r(G1, E

8+1
9 ) to read from C2

(b) corresponds to se�ing B 9 = ⊤ and also forces r(G2, E
8
9 ) to read from C5. This rf coupling is formalized in

Lemma 4.1. The edge numbers specify the order in which rf-edges are inferred.

4.1 Reduction

Given a monotone formula i = {C8 }8∈[<] over = variables {B 9 } 9 ∈[=] , we construct an abstract

execution X = (E, po) with ^ = 23 threads and accessing 3 = 26 memory locations such that i is

satis�able i� X |= M, for any memory modelM such that SRA ≼M ≼ WRA. X follows the general
scheme of Fig. 3. Again, in phase 8 and step 9 we have a read event r(C3, G1, E

8
9 ) that can read from

either of two writes w(C1, G1, E
8
9 ) (corresponding to B 9 =⊥) or w(C2, G1, E

8
9 ) (corresponding to B 9 = ⊤).

We use the same types of gadgets as in the previous section to force the desirable interaction
patterns between threads. However, the contents of each gadget are di�erent to account for the
di�erent memory models. In particular, these gadgets now rely on the weak-read-coherence axiom
to couple the readers in threads C3 and C6 and force the 1-in-3 property in each clause C8 , as opposed
to the porf-acyclicity and relaxed-read-coherence axioms used in Section 3 for Relaxed-Acyclic.

The copy gadget Copy89 . The copy gadget Copy89 (Fig. 8) guarantees that r(C3, G1, E
8
9 ) reads from

thread C1 i� r(C6, G2, E
8
9 ) reads from thread C4. Besides G1 and G2, this gadget also uses locations ~1,

~2, ~3, ~4, ~5, ~6, ~7 and ~8. Moreover, the gadget also contains two hb-edges out of r(C6, G2, E
8
9 ).

Though not shown explicitly, these hb-edges can be easily enforced by an rf-edge w
rf
−→ r, where w

and r access a new memory location. These events are independent to our analysis later, and will
thus be ignored, i.e., we will only be considering the hb-edges as they appear in the gadget.

The copy-down gadget Copy
8

9 . The copy-down gadget Copy
8

9 (Fig. 9), as before, has a similar

structure to the copy gadget Copy89 and guarantees that r(C3, G1, E
8+1
9 ) reads from thread C1 i�

r(C6, G2, E
8
9 ) reads from thread C4. Together, the two copy gadgets Copy89 and Copy

8

9 ensure that

r(C3, G1, E
8
9 ) reads from thread C1 i� r(C3, G1, E

8+1
9 ) reads from thread C1, guaranteeing a valid truth

assignment on B 9 . Besides G1 and G2, this gadget also uses locations I1, I2, I3, I4, I5, I6, I7 and I8.
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(a) The at-most-one-true gadget AMOne[2]8
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(b) Resolving with B 9 = ⊤ and B: =⊥.
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(d) Resolving with B 9 =⊥ and B: =⊥.

Fig. 10. The at-most-one-true gadget AMOne[2]8
9,:

parameterized by 2 ∈ [3], and the three ways to resolve

it depending on the boolean assignment to B 9 and B: (b, c, d). These rf constraints are formalized in Lemma 4.2.

The edge numbers specify the order in which rf-edges are implied. The crossed-out events are ignored in our

analysis for simplicity (see Lemma 4.5).

Moreover, the gadget also contains two hb-edges out of r(C6, G2, E
8
9 ), which, as argued above, will

be ignored in our analysis.

The at-most-one-true gadgets AMOne[2]8
9,:
. For each 2 ∈ [3], the at-most-one-true gadget

(Fig. 10) guarantees that for every clause C8 , the 2-th pair of literals (B 9 , B: ) in C8 is such that at most
one of B 9 and B: is set to true. For each 2 ∈ [3], the corresponding gadget contains one additional
memory location 02 .

The at-least-one-true gadget ALOne8
9,:,ℓ

. The at-least-one-true gadget (Fig. 11) guarantees that

for every clause C8 with three literals B 9 , B: , Bℓ , at least one of them is set to true. It contains one
additional memory location 1.

Putting the gadgets together.We obtain the abstract execution X by appropriately connecting
all gadgets and specifying the interleaving of events in common threads.
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(d) Resolving with B 9 = ⊤, B: =⊥ and Bℓ =⊥.

Fig. 11. The at-least-one-true gadgetALOne8
9,:,ℓ

(a) and the three ways to resolve it depending on the boolean

assignment to B 9 and B: (d, c, b). These rf constraints are formalized in Lemma 4.3. The edge numbers specify

the order in which rf-edges are implied. The crossed-out events are ignored in our analysis for simplicity (see

Lemma 4.5).

First, we serially connect all gadgets in their common threads by po. In particular, Copy8191 appears

before Copy8292 if 81 < 82 or 81 = 82 and 91 < 92; Copy
81
91
appears before Copy

82
92
if 81 < 82 or 81 = 82 and

91 < 92; AMOne[2]81
91,:1

appears before AMOne[2]82
92,:2

if 81 < 82, and �nally ALOne81
91,:1,ℓ1

appears

before ALOne82
92,:2,ℓ2

if 81 < 82. Second, observe that the threads C8 , for 8 ∈ [6], appear in multiple

gadgets, thus we have to specify how to interleave their corresponding events. We do so by �rst
�xing a total order on memory locations f = ~1, ~2, ~3, ~4, I1, I2, I3, I4, 01, 02, 03, 1.

(1) The read events succeeding every r(C3, G1, E
8
9 ) in each gadget (i.e., those on locations {~ℓ , Iℓ }ℓ∈[4] ,

{02 }2∈[3] and 1) are po-ordered according to f (note that reads on some locations, such as 02 , 1,

might not appear at all after r(C3, G1, E
8
9 ), e.g., if clause C8 does not contain variable B 9 ). Moreover,

all these reads appear before any read on G1 that is a po-successor of r(C3, G1, E
8
9 ) (in particular,

reads on G1 with phase ≥ 8 or reads with phase 8 and step ≥ 9 ).
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(2) Similarly, the write events preceding every w(C1, G1, E
8
9 ) in each gadget are po-ordered accord-

ing to f . Moreover, all these writes appear after any write on G1 that is a po-predecessor of
w(C1, G1, E

8
9 ). Likewise for w(C2, G1, E

8
9 ), w(C4, G2, E

8
9 ) and w(C5, G2, E

8
9 ).

Finally, observe that we have indeed used ^ = 23 threads and 3 = 26 memory locations. For the
latter, we also count one extra memory location for each hb edge out of thread C6, thus 4 in total.

4.2 Soundness

We start with the soundness of the reduction, in particular, if X |= WRA (and thus also X |= M) then
i is satis�able. We achieve this by proving a sequence of intermediate lemmas similar to Section 3,
however, each lemma now requires reasoning about the semantics of WRA. Recall that we assign
B 9 = ⊤ if (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf for all 8 ∈ [<], and B 9 =⊥ if (w(C1, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf

for all 8 ∈ [<]. The �rst lemma is based on the copy gadgets Copy89 and Copy
8

9 , and states that each

phase of X makes consistent choices for the writer of r(C3, G1, E
8
9 ) (i.e., whether it reads from C1 or

C2), which makes the above assignment well-de�ned. It follows from the high-level description of
these two gadgets and the accompanying Fig. 8 and Fig. 9.

Lemma 4.1. Let X = (E, po, rf,mo) be a concrete extension of X that satis�es weak-read-coherence. For

all 81, 82 ∈ [<], 9 ∈ [=], we have (w(C1, G1, E
81
9 ), r(C3, G1, E

81
9 )) ∈ rf i� (w(C1, G1, E

82
9 ), r(C3, G1, E

82
9 )) ∈ rf.

The next lemma is based on the at-most-one-true gadgets AMOne[2]8
9,:
, and states that for every

clause C8 and for each of the 2 ∈ [3] pair of variables (B 9 , B: ) in C8 , at most one of them is assigned
to true. Again, it follows by a direct analysis on the accompanying Fig. 10.

Lemma 4.2. Let X = (E, po, rf,mo) be a concrete extension of X that satis�es weak-read-

coherence. For every 8 ∈ [<] and 9, : ∈ [=] such that B 9 and B: appear in clause C8 , we have

(w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∉ rf or (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∉ rf.

The third lemma is based on the at-least-one-true gadget ALOne8
9,:,ℓ

, and it is used to show that for

every clause C8 = (B 9 , B: , Bℓ ), at least one of its variables is assigned to true. Again, it follows by a
direct analysis on the accompanying Fig. 11.

Lemma 4.3. Let X = (E, po, rf,mo) be a concrete extension of X that satis�es weak-read-coherence.

For every 8 ∈ [<] and 9, :, ℓ ∈ [=] such that B 9 , B: and Bℓ appear in clause C8 , we have

(w(C2, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf or (w(C2, G1, E

8
:
), r(C3, G1, E

8
:
)) ∈ rf or (w(C2, G1, E

8
ℓ ), r(C3, G1, E

8
ℓ )) ∈ rf.

Lemma 4.1 states that our truth assignment fori is valid, while Lemma 4.2 and Lemma 4.3 guarantee
that in every clause, exactly one literal is set to true. Hence we have the following corollary.

Corollary 4.4. If X |= WRA then i is satis�able.

4.3 Completeness

We now turn our attention to completeness property, i.e., if i is satis�able then X |= SRA (and thus

also X |= M). We use the notions of phase, step, and monotonicity as in Section 3. We construct a
reads-from relation rf and a partial modi�cation order mo as follows.

(1) For each gadget, we insert rf and mo edges according to Figs. 8 to 11 and the truth assignments
on variables B 9 , B: , Bℓ involved in that gadget. In particular, this implies that, for each 8 ∈ [<]
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and 9 ∈ [=], we have (w(C1, G1, E
8
9 ), r(C3, G1, E

8
9 )) ∈ rf if B 9 =⊥ and (w(C2, G1, E

8
9 ), r(C3, G1, E

8
9 )) ∈ rf

if B 9 = ⊤. Observe that rf is fully speci�ed, i.e., every read has a write to read from. Note that
for every pair (w, r) ∈ rf we have phase(w) = phase(r) and step(w) = step(r), thus r ⪯ w.

(2) For every two con�icting writes w1, w2 such that (i) w1 ≺ w2, and (ii) (w1, w2) ∉ hb, we have
(w1, w2) ∈ mo. Thus, for any two con�icting writes w1, w2 with w1 ≺ w2 we have (w1, w2) ∈
(hb ∪mo)+.

We call a triplet (w, r, w′) safe if either (w′, r) ∉ hb or (w′, w) ∈ (hb∪mo)+. To prove the consistency

of X, it su�ces to argue that mo is minimally coherent, namely, that (i) (hb ∪mo)+ is acyclic, and
(ii) every triplet (w, r, w′) is safe. Indeed, these two conditions guarantee that mo can be linearized

to a total mo such that any extension X of X satis�es X = (E, po, rf,mo) |= SRA [Tunç et al. 2023],
which implies that also X |= M.

In order to simplify our analysis, we again ignore the writes in threads {ℎ2 }2∈[3] , ? , and @ that are
not read in rf (crossed-out in Fig. 10 and Fig. 11). This allows us to make our formal statements
more uniform, while it does not a�ect the correctness of the analysis. Indeed, let InactiveWr = {w ∈
W : tid(w) ∈ {ℎ1, ℎ2, ℎ3, ?, @} and �r ∈ R. (w, r) ∈ rf}. The following lemma is straightforward.

Lemma 4.5. The following statements hold.

(1) If there is an (hb ∪mo)-cycle then there is such a cycle without any write in InactiveWr.

(2) If there is an unsafe triplet, then there is such a triplet (w, r, w′) where w′ ∉ InactiveWr.

We start with condition (i) of minimal coherence, i.e., we need to show that (hb ∪mo) is acyclic.
Observe that each individual gadget is free from (hb ∪mo)-cycles, regardless of how we resolve
the rf edges associated with it (see Figs. 8b and 8c, Figs. 9a and 9b, Figs. 10b to 10d, Figs. 11b to 11d).
However, we have to also argue that the interleaving of these gadgets is free from (hb∪mo)-cycles.

Our �rst key lemma states that hb paths between writes are, without loss of generality, monotonic.
This is based on three observations. First, due to Lemma 4.5, we can ignore writes in the threads
ℎ1, ℎ2, ℎ3, ? and @, which contain po-edges that would violate this statement. Second, all rf-edges
connect events of the same phase and step. Third, the only po-edges that are non-monotonic enter

read events (in particular, a read r(E89 , I6, 61) or a read r(E
8
9 , I8, 64) in Copy

8

9 ). Since the only possible

continuation of an hb-path out of a read event is to take another po-edge, we can remove the �rst
non-monotonic edge (as po is transitive) and obtain a new valid hb-path. Repeating this process
results in a monotonic hb-path between the writes. Formally, we have the following.

Lemma 4.6. For every two writes w1, w2, if (w1, w2) ∈ hb then there exists a monotonic hb-path

w1
hb

w2.

We can now prove the acyclicity condition ofminimal coherence. Intuitively, any potential (hb∪mo)-
cycle � can be seen as a sequence of write events connected by hb and mo. By construction, every

edge w1
mo
−−→ w2 is monotonic, while, due to Lemma 4.6, every subpath w1

hb
w2 of � is, without

loss of generality, monotonic. Thus � is monotonic, and since it is a cycle, every event in � has the
same phase and step. The absence of such cycles can then be directly established by inspecting the
gadgets in Figs. 8 to 11.

Lemma 4.7. (hb ∪mo) is acyclic.
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Next, we turn our attention to the second condition of minimal coherence, i.e., we argue that every
triplet is safe. We �rst prove a general statement that prohibits hb-paths to a read r from writes
w
′ that are po-successors to the write w that r reads from. This will help us establish the safety of

each triplet, and will also prove useful later in Section 5.1 when we address Causal Memory.

Lemma 4.8. For every pair (w, r) ∈ rf and write w′ with (w, w′) ∈ po, we have (w′, r) ∉ hb.

To realize Lemma 4.8, we �rst argue that any path % : w′
hb

r contains events of the same phase
and step. Indeed, as no location is ever written and read by the same thread, % has the general

form % : w′
hb?

w
′′ rf
−→ r

′′
po?

−−→ r for some write w′′ and read r
′′. Due to Lemma 4.6, the subpath

w
′ hb?

w
′′ is monotonic (wlog), while the last two edges of % are also monotonic (rf-edges are

monotonic, while non-monotonic po-edges go from writes to reads). Hence % is monotonic. On the
other hand, we have w ⪯ w

′ (as (w, w′) ∈ po), while, by construction, r ⪯ w. Hence r ⪯ w
′, and since

% is monotonic, it must contain only events of the same phase and step. In particular, % must be
contained in the gadgets in Figs. 8 to 11. The absence of such paths % can then be established by a
careful inspection of these gadgets.

We can now prove the safety of each triplet (w, r, w′). Intuitively, if w′ ≺ w, then we have (w′, w) ∈ mo

by construction. On the other hand, if w ≺ w
′, Lemma 4.6 and Lemma 4.8 exclude the existence of

hb-paths w′
hb

r. Hence, it again su�ces to only consider hb-paths % : w′
hb

r that are contained
in the same gadget. Again, a careful inspection of Figs. 8 to 11 and the use of Lemma 4.8 show that
(w, r, w′) is indeed safe.

Lemma 4.9. Every triplet (w, r, w′) is safe.

Lemma 4.7 and Lemma 4.9 show that mo is indeed minimally coherent, which implies that X =

(E, po, rf,mo) |= SRA. Thus we have the following corollary.

Corollary 4.10. If i is satis�able then X |= SRA.

Together, Corollary 4.4 and Corollary 4.10 establish the correctness of the reduction, i.e., i is

satis�able i� X |= M for any memory model SRA ≼M ≼ WRA.

5 IMPLICATIONS AND OTHER MEMORY MODELS

Our proof of Theorem 1.1 is strong enough to yield hardness on other popular memory models
across di�erent domains. In this section, we explore its implications.

Causal Consistency models. In a distributed setting, consistency commonly captures the concept
of causality. Three of the most standard causal models are the basic Causal Consistency (CC), Causal
Convergence (CCv), and Causal Memory (CM) [Bouajjani et al. 2017]. It was recently shown that
CC coincides withWRAwhile CCv coincides with SRA [Lahav and Boker 2022]. Thus, Theorem 1.1
implies NP-completeness for all models between CCv and CC. In Section 5.1 we also establish
NP-completeness for CM, by extending the proof of Theorem 1.1, thereby completing Theorem 1.2.

Hardware memory models. Next, we turn our attention to some popular hardware memory mod-
els, namely, for the POWER and x86-TSO architectures, as well as PSO. We show that Theorem 1.1
implies NP-completeness for POWER, but consistency checks for TSO/PSO run in polynomial time.
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(a) CM-consistent

C1

w(I)

w(I)

w(G)

w(~)

C2

w(G)

r(I)

r(~)

r(G)

rf

rf

rf
ob

t 2

obt2

(b) CM-inconsistent

C1

w
′(G)

C2

w(G)

C3

r(G)
rfobt3

hb

(c) The argument of Lemma 5.3

Fig. 12. (a) An execution consistent in CM, as each of obt1 and obt2 is acyclic, but inconsistent in SRA. (b) An

execution inconsistent in CM, as obt2 creates a cycle, but consistent in SRA. (c) Illustration of the argument

behind Lemma 5.3. Since w′(G) reaches an earlier event in C3 than w(G), the edge w′(G)
obt3
−−−→ w(G) does not

create a new path from w
′(G) to C3.

The fully Relaxedmodel. Finally, we consider the Relaxed model which does not require (po∪rf)-
acyclicity, and remark that this brings the problem in polynomial time. Interestingly, Relaxed is the
only non-multi-copy atomic model in our list for which consistency testing is tractable.

5.1 Implications for Causal Memory

Here we prove the case (ii) of Theorem 1.2, i.e., the hardness of bounded consistency testing for
any memory modelM with CC ≼M ≼ CM. Instead of performing a separate reduction, we reuse
our reduction from Section 4. Let i = {C8 }8∈[<] be a Boolean formula over = variables {B 9 } 9 ∈[=]
and< clauses of the form C8 = (B 9 , B: , Bℓ ), for which we have to solve Monotone 3SAT. Moreover,

let X = (E, po) be the abstract execution as constructed in Section 4. Since WRA coincides with
CC [Lahav and Boker 2022], we have the following soundness corollary.

Corollary 5.1. If X |= CC then i is satis�able.

Thus, to complete the theorem, it remains to show that if X |= CM then i is satis�able. Towards
this, we next formalize CM and then prove the statement.

Causal Memory. Causal memory is similar to Causal Consistency but further requires that
each thread has a locally-consistent view of the order in which di�erent writes have been exe-
cuted [Ahamad et al. 1995; Bouajjani et al. 2017]. This is made formal by introducing one additional
relation for each thread, called the observed-before relation ob.

The observed-before relation ob. Given an event 4 , the observed-before relation‡ for 4 is the
smallest transitive relation obe ⊆ E × E with the following properties.

(1) For every (41, 42) ∈ hb such that (48 , 4) ∈ hb for each 8 ∈ [2], we have (41, 42) ∈ obe.
(2) For every con�icting triplet (w, r, w′) such that (i) (w′, r) ∈ obe and (ii) (r, 4) ∈ po?, we have

(w′, w) ∈ obe.

Intuitively, when C executed r, it must have observed w after w′, so that r indeed obtained its
value from w. The obe relation speci�es that this ordering cannot change later when C executes 4 .
Notice the �xpoint style of the above de�nition. As we order (w1, w2) ∈ obe (and since the relation
is transitive and contains hb), more and more write-read pairs satisfy property (i) (w′, r) ∈ obe,
triggering the addition of new orderings (w′, w) ∈ obe. For any two events 41, 42 with (41, 42) ∈ po,

‡Other works refer to this relation as “happened-before” for 4 . We avoid this term here to not confuse it with hb.
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we have obe1 ⊆ obe2 , i.e., ob grows monotonically as we go downwards in each thread. The
observed-before relation for a thread C is de�ned as obt = obemax , where 4max is the po-maximal
event of C . The new axiom requires that obt is irre�exive [Bouajjani et al. 2017].

• obt is irre�exive for each thread C (ob-acyclicity)

In turn, CM is equal to WRA with ob-acyclicity as an extra axiom.

• (porf-acyclicity) ∧ (weak-read-coherence) ∧ (ob-acyclicity) [CM]

Observe that WRA ≼ CM, but CM is incomparable with RA/SRA, i.e., CM allows executions that
are inconsistent in RA/SRA and vice versa. See Fig. 12a and Fig. 12b for illustrations.

Next, we prove the completeness of the construction, i.e., if i is satis�able then X |= CM. Consider
the reads-from relation rf and the partial modi�cation order mo exactly as constructed in the
completeness argument of Section 4 (i.e., following the gadgets in Figs. 8 to 11). LetX = (E, po, rf,mo)

be the executionwitnessing the SRA-consistency ofX according to Corollary 4.10. Since SRA satis�es
the porf-acyclicity and weak-read-coherence axioms, we only need to argue that X also satis�es
ob-acyclicity to conclude that X |= CM. For this, we have to establish some additional lemmas.

Our �rst lemma stems from Lemma 4.8 and states an important property of rf: for every pair
(w, r) ∈ rf, w has no hb-path to po-predecessors of r. In other words, the �rst event of the thread of

r that w can reach by means of an hb-path is r itself via the rf-edge w
rf
−→ r.

Lemma 5.2. For every (w, r) ∈ rf and event 4 such that (4, r) ∈ po, we have (w, 4) ∉ hb.

Next, we de�ne a “one-hop” variant of ob. Given an event 4 , the one-hop observed-before relation
for 4 is the smallest transitive relation ob1e ⊆ E × E with the following properties.

(1) For every (41, 42) ∈ hb such that (48 , 4) ∈ hb for each 8 ∈ [2], we have (41, 42) ∈ ob1e.
(2) For every event 4 and con�icting triplet (w, r, w′) such that (i) (w′, r) ∈ hb and (ii) (r, 4) ∈ po?,

we have (w′, w) ∈ ob1e.

Contrasting ob1e to obe, the only di�erence is in condition (2i): obe checks whether (w
′, r) ∈ obe,

while ob1e checks the weaker condition (w′, r) ∈ hb. Thus ob1e does not have the �xpoint style of
obe. Similarly to obt, we let ob

1
t = ob1emax , where 4max is the po-maximal event of thread C .

Our next lemma states that for our execution X, obe coincides with ob1e. In other words, obe reaches
a �xpoint after only one iteration. This observation stems from Lemma 5.2. Intuitively, since for

each triplet (w, r, w′), w cannot hb-reach any po-predecessor of r, traversing an edge w
′ obe
−−→ w

cannot lead to any events of the thread of r that weren’t already reachable via the hb-path w
′ hb

r

that made us insert (w′, w) ∈ obe in the �rst place (see Fig. 12c). Hence, adding such an ordering
(w′, w) ∈ obe cannot lead to further �rings of condition (2i) of obe. Formally, we have the following.

Lemma 5.3. For every thread C , we have ob1t = obt.

Finally, observe that whenever we add (w′, w) ∈ ob1e, we have (w
′, r) ∈ hb. Due to Lemma 4.9, the

triplet (w, r, w′) is safe, thus (w′, w) ∈ (hb ∪mo)+. Hence, the acyclicity of obt = ob1t follows from
the acyclicity of (hb∪mo)+ (Lemma 4.7). We thus have the following lemma, which, together with
Corollary 5.1, completes the proof case (ii) of Theorem 1.2.

Lemma 5.4. If i is satis�able, then X |= CM.
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Fig. 13. (a) An execution consistent in TSO, as well as in PSO and all other memory models we have

considered, but not SC. (b) An execution consistent in PSO, as well as in Relaxed-Acyclic but not in TSO or

even WRA. (c) An execution inconsistent in TSO/PSO, but consistent in CC/WRA.

5.2 Implications for POWER

The memory model of the POWER architecture is de�ned on load, store, atomic read-modify-write
memory accesses, and various types of fences. POWER orders memory accesses based on fences,
address, data, and control dependencies, while, again, coherence forces a total order on same-
location accesses. In addition, POWER de�nes two global orderings, namely, happens-before, and
propagation. The happens-before relation is based on dependencies, fences, and the rf relation across
threads. The propagation relation captures the propagation of read and written values by combining
fences, happens-before, rf, andmo. Based on these relations POWER de�nes its consistency axioms,
which we will not present here; instead, we refer the interested readers to [Alglave et al. 2014].

Lahav et al. [2016] showed that SRA captures precisely the guarantees of POWER for programs
that are compiled from the release-acquire fragment of C/C++. In turn, this implies that the result
established in Section 4 for SRA transfers over to POWER. We thus have the following corollary.

Corollary 1.3. Consistency testing for bounded inputs is NP-complete for POWER.

5.3 What About x86-TSO and PSO?

Our results so far prove strong hardness for testing a variety of weak-memory models. In contrast,
in this section, we outline that the problem is solvable in polynomial time for x86-TSO and PSO.
Conceptually, this is less surprising for TSO, which diverges only a little from SC, but is more so
for PSO, which allows for behaviors that are not even causally consistent.

Total Store Order. The TSO model deviates from SC by introducing a write-bu�er for each thread,
which acts as a FIFO queue [Sewell et al. 2010]. When a thread C executes a write w(C, G), this does
not modify the shared memory immediately and is thus not visible to the other threads. Instead,
w(C, G) is stored in the bu�er of C . The bu�er non-deterministically �ushes some of its writes to the
shared memory, at which point they become visible to the other threads. On the other hand, when
a thread C executes a read r(C, G), it is forced to read from the most recent write w(C, G) in C ’s bu�er.
If no such write exists then r(C, G) reads from the shared memory. See Fig. 13a for an illustration.

For capturing the complexity of consistency-testing of an abstract execution X = (E, po) under TSO,
it is helpful to switch to operational semantics. The semantics are de�ned by means of a labeled
transition system LTSO In high level, a state in LTSO is a triplet ⟨P, B,M⟩, where

(1) P ⊆ E is the set of events that have been executed so far.
(2) B: T → (W)∗ maps every thread C to a sequence of writes w(C, G1), w(C, G2), . . . , w(C, G8 ), which

represents the state of the bu�er of thread C .
(3) M: V → W maps every memory location of the shared memory to the most recent write to it.
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A counting argument shows that the size of LTSO is bounded by ^3 · =$ (^2) , for = = |E|, ^ threads,
3 locations, and thus becomes polynomial when ^,3 = $ (1).

Partial Store Order (PSO). The PSO model [SPARC International 1994] is similar to TSO, with
the di�erence that every thread has a di�erent bu�er for each location. This allows both write-
read reorderings (like TSO) and write-write reorderings on di�erent locations. This induces more
behaviors than TSO, but is incomparable to some other models likeWRA (see Fig. 13b and Fig. 13c).
The operational semantics can be de�ned by means of an LTS LPSO analogously to LTSO. A similar
analysis shows that the size ofLPSO is bounded by=$ (^ (^+3)) . Hence we have the following theorem,
which di�erentiates TSO/PSO from the other weak-memory models we have seen so far.

Theorem 1.4. Consistency testing for bounded threads and memory locations is in polynomial time

for TSO and PSO.

5.4 A Final Note on Relaxed

Finally, we turn our attention to the Relaxed model. The only two axioms of this model are relaxed-
write-coherence and relaxed-read-coherence, which concern individual memory locations, and
guarantee per-location coherence, i.e., focusing on each location individually, the corresponding

execution is SC-consistent. Given an abstract execution X, to decide whether X |= Relaxed, it

su�ces to check whether XG |= SC for each location G , where XG occurs from X by considering

only events accessing G . As each consistency check XG |= SC takes polynomial time [Agarwal et al.
2021], and we clearly have polynomially many such checks, we arrive at Corollary 1.5.

Corollary 1.5. Consistency testing for bounded threads is in polynomial time for Relaxed.

6 HARDNESS WITH BOUNDED VALUES

For ease of presentation, our reductions in Section 3 and Section 4 use a bounded number of
threads and memory locations but an unbounded value domain. Indeed, given the Boolean formula

i = {C8 }8∈[<] on< clauses and = variables, the value domain of the abstract execution X has size

Θ(= ·<). In this section we outline how to modify those reductions so that X also uses a bounded
value domain, thereby arriving at Theorem 1.1 and Theorem 1.2.

Intuition. Our two reductions are such that every read r can read from at most three writes, and
these appear in the same gadget as r. However, the values of these events are speci�c to the gadget,
and in particular, speci�c to the phase 8 and the step 9 of the events (i.e., events are of the form
r(G1, C3, E

8
9 )). Our strategy for decreasing the size of the value domain (of both reductions in Section 4

and Section 3) is by using repeating values which are not parameterized by the superscript 8 and
subscript 9 (i.e., the events in the executions constructed now look like r(G1, C3, E) or w(G1, C1, E)).
This change does not a�ect completeness but threatens soundness, as now, some read events may
read from write events in other gadgets that were previously forbidden simply because their values

were not matching. To avoid this, we slightly modify our abstract executions X by inserting a
bounded number of auxiliary write and read events between consecutive gadgets, which also access
a bounded number of values. The auxiliary write events write dummy values read by the auxiliary
read events. The e�ect of these additional reads-from edges due to auxiliary events is to create
(poG ∪ rfG )

+ paths that once again forbid the original (i.e., non-auxiliary) read events of a gadget to
access write events from other gadgets (while obeying the desired consistency axioms).

Construction. We now outline the construction. The process is similar for both the abstract
executions of Section 3 and Section 4. For this reason, we describe it generically on an abstract
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execution X. Our transformation is carried out in two steps, X X1 X2, where X1 and X2 have

the same number of threads and locations as X, and X2 additionally has a bounded value domain.

Step 1. We obtain X1 by inserting various events in X while keeping the threads and memory
locations the same. We start by �xing a total order f1 on locations, and a total order f2 on threads.

f1 = G1, G2, ~1, . . . , ~8, I1, . . . , I8, 01, . . . , 03, 1

f2 = C1, . . . , C6, 51, . . . , 56, 61, . . . , 66, ℎ1, . . . , ℎ3, ?, @

Fix a phase 8 and step 9 and let Z = (8 ∗<+ 9) mod 2. For a location G of X, di�erent from 01, 02, 03, 1,
we introduce auxiliary write and read events on G as follows: (i) if a thread C writes on G ,we insert
a write w(C, G, EC

Z
) after all events of phase 8 and step 9 in C , and (ii) if a thread C reads from G , we

insert a sequence of read events r(C, G, EC
1

Z
), r(C, G, EC

2

Z
), . . . before all events of phase 8 and step 9 + 1

(or phase 8 + 1 and step 1, if 9 = =), where C1, C2, . . . is the subsequence of f2 of threads writing to G
values read by thread C . We repeat this process for all locations G ∉ {01, 02, 03, 1} in the order of
appearance in the total order f1, placing the auxiliary writes before the auxiliary reads in each

thread. Observe that each r(C, G, EC
ℓ

Z
) event is forced to read from the respective w(C ℓ , G, EC

ℓ

Z
).

Next, we turn our attention to the locations 01, 02, 03 and 1. The auxiliary events are positioned
similarly, except for the detail about the step number 9 , because accesses to these locations span an
entire phase (in the at-most-one-true and at-least-one-true gadgets). In particular, we have Z = 8

mod 2, while auxiliary write events are placed in each thread after all events of phase 8 , and read
events are placed before events of phase 8 + 1.

Observe that since the number of threads and locations is bounded in X, the same holds for X1,
while the additional values accessed by the auxiliary events in X1 are also bounded.

Step 2. In the second step, we transform X1 to X2 so that the latter only accesses a bounded number

of values. In particular, we make X2 identical to X1 with the di�erence that, for every event of X1
that also appears in X (i.e., non-auxiliary events), we remove from its value the superscript of the

phase and the subscript of the step of that event. For example, each write w(C1, G1, E
8
9 ) in X1 becomes

w(C1, G1, E) in X2. It is straightforward to verify that X2 has a bounded domain of threads, locations,

and values. Moreover, X2 is consistent in the respective memory model i� X is, by repeating the
arguments in Section 3 and Section 4, this time also accounting for the auxiliary events.

7 CONCLUSION

We have studied the standard problem of consistency-testing for various popular weak-memory
models spanning across software, hardware, and distributed systems. We have shown that even
the bounded version of consistency testing is NP-complete in most of these models, i.e., when
every natural input parameter is bounded. This is a signi�cant improvement over an abundance of
prior hardness results which primarily stemmed from parameters such as the number of threads or
memory locations being unbounded. Our results thus highlight the true intricacies of weak-memory
testing. In particular, our results imply that the problem provably admits no parameterization with
respect to natural input parameters. Interesting future work includes the possibility of extending
our hardness to other memory models such as the one in ARM architectures, as well as recovering
tractability by imposing further restrictions (such as context/view-switching).
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