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Bayesian Analysis of Benchmark Examples for
Data-Driven Site Characterization

Antonis Mavritsakis1; Timo Schweckendiek, Ph.D.2; Ana Teixeira, Ph.D.3;
Eleni Smyrniou4; and Jonathan Nuttall, Ph.D.5

Abstract: Data-driven site characterization (DDSC) aids geotechnical engineering by inferring and mapping soil parameters of the
subsurface domain. In practice, the limited availability of site investigation data may hinder the performance of traditional machine learning
methods and implies significant uncertainty in the predictions, which is typically not quantified. In this study, a framework for Bayesian site
characterization (BaySiC) is applied on a benchmark example. Adopting Bayesian statistics enables the framework to deal with small training
data sets and allows for coherent quantification of uncertainty, which is valuable to engineering practice for assessing the reliability and the
determining characteristic values. BaySiC uses site investigation data to infer statistical estimators of cone penetration test (CPT) parameters
and their dependence, as well as to learn spatial correlations. Consecutively, it generates a three-dimensional (3D) map of the subsurface by
predicting the CPT parameter values and classifying the material type over the soil domain. For the benchmark example, the study formulated
two models within the BaySiC framework and demonstrated their conduct in several cases of varying complexity. Eventually, the performance
of the models was evaluated and compared in both deterministic and probabilistic terms. One of the models proved highly effective in
predicting the material type at new locations of the subsurface domain, whereas the other provided accurate mapping of the CPT parameters
even in complex stratigraphic cases. Also, investigating and comparing the results of the models led to insights regarding the effectiveness of
their formulation. Moreover, the paper used hypothesis testing as a means of assessing the predictive power of the model independently from
the validation data set. Stemming from the benchmark example, the paper draws conclusions that are meaningful to geotechnical engineering
and decision-making. DOI: 10.1061/AJRUA6.RUENG-975. © 2023 American Society of Civil Engineers.

Introduction

Data-driven site characterization (DDSC) comprises techniques
that aim to characterize the subsoil of a project site solely by using
measured data (Phoon et al. 2022a). With the rapid growth of the
fields of artificial intelligence and machine learning over the last
years, developing, reexamining, and improving DDSC methods be-
comes more relevant than ever. To that end, Phoon et al. (2022b)
have provided a DDSC benchmark example as a means for devel-
opment and comparison of techniques.

The use of cone penetration test (CPT) readings lies at the core
of the benchmark example. Specifically, the example entailed train-
ing a model using CPT measurements at training locations and
predicting CPT parameter values at specific validation locations
in an artificial, multilayered subsoil domain. The CPT parameters

of interest are the cone resistance (qt) and sleeve friction (fs).
Moreover, the example required the prediction of the material type
at the validation locations of the subsoil, as classified using CPT
measurements. Eventually, the predictions of the model were evalu-
ated using metrics defined by the benchmark exercise.

The setting in which the benchmark exercise took place is
highly relevant to geotechnical practice. Site characterization is
a fundamental step in all geotechnical projects. In addition, CPT
soundings have traditionally been used in assessing geotechnical
parameters of soils and deriving the stratigraphy of the subsoil.
Apart from inferring CPT parameters, DDSC methods are percep-
tive of the spatial counterpart of CPT data, so they can address the
spatial variability of CPT parameters. Thus, the benchmark exercise
can stimulate fruitful developments that are meaningful to geotech-
nical practice.

This paper approaches the benchmark example from a Bayesian
perspective by presenting two methods within a Bayesian site char-
acterization framework (BaySiC), building further on the work of
Mavritsakis et al. (2022). Opting for Bayesian statistics holds sig-
nificant advantages. First, Bayesian inference techniques are effec-
tive in thoroughly exploring complex probability domains, leading
to more effective quantification of uncertainty. Second, Bayesian
statistics can support inference even with small training data sets,
a feature that bears value as long as the associated uncertainty is
properly quantified in the results. Also, Bayesian statistics aligns
well with the geotechnical engineering mindset (Baecher 2017).

This study used random fields (RFs) for modelling the soil
domain. RFs represent random variables per point of the domain
(Vanmarcke 2010) and can be used to model spatially variable
parameters. The RF can be conditioned to observations of the var-
iables, a feature that enables inference and prediction using spatial
data. Moreover, the joint distribution of a subset of the variables can
be derived by marginalizing the RF over the rest of the variables.
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Last, RFs for different parameters can be correlated by compiling
their joint distribution, which is enabled by introducing cross-
correlation hyperparameters (Zhu et al. 2017).

This paper aimed to provide a solution to the DDSC problem
presented by the benchmark example by adopting Bayesian statistics
and is structured as follows. The “Methodology” section formulates
the Bayesian models for inference and prediction. Moreover, it pro-
vides the statistical formulations for (1) the evaluation of the metrics
defined by the benchmark example; and (2) hypothesis testing the
predictive power of the models. The “Implementation in the Bench-
mark Exercise” section starts by introducing the setting of the
benchmark example. It then discusses the implementation of two
different Bayesian models in one of the benchmark cases with the
purpose of exploring the behavior and evaluating their perfor-
mance. In the section “Results for All Benchmark Cases,” the re-
sults for all benchmark cases are examined to determine the effect
of problem complexity on the performance of the models. Last,
“Conclusions” draws conclusions regarding the operation and
performance of BaySiC.

Methodology

Random Field Modelling

In the context of the benchmark exercise, BaySiC adopts cross-
correlated RF modelling in order to infer and predict the considered
CPT parameters, qt and fs. The CPT parameter values per point,
whose three-dimensional (3D) coordinates are indicated by the
vector z (z ∈ R3þ), are denoted by qt (z) and fs (z), respectively.
The variables of the RFs are put together into the vector of the
parameters per point, denoted by YðzÞ [Eq. (1)]. As suggested by
Geyer et al. (2021), observations (Ym) per measurement point (of
coordinates zm) can be described by the RF variable of the point
plus a measurement error e, as indicated in Eq. (2). In this study, the
measurement error was considered negligible. This means that the
observation Ymi

per domain point equals the point-specific distri-
bution Yðzmi

Þ of the RF variables

YðzÞ ¼ ½qtðzÞ; fsðzÞ�T ð1Þ

Ymi
¼ Yðzmi

Þ þ e ð2Þ

When jointly modelling RFs, the following hyperparameters are
used: the mean, standard deviation, and autocorrelation of each RF,
as well as the cross-correlation between them. In this case, the joint
distribution is given by Eq. (3) (Ching and Phoon 2019), which
assumes that the CPT parameters follow a multivariate normal
distribution (Phoon et al. 2022b). For simplicity, both RFs are
assumed to follow the same spatial variability pattern. In detail, μ is
the vector containing the mean per parameter (μ ¼ ½μqt ;μfs �), Σ
is the covariance matrix of the parameters given by Eq. (4), and
ρ is the cross-correlation coefficient between the CPT parameters.
The symbol 1n simply represents an nx1 vector of ones, where n is
the number of locations in the RF. The implementation takes
advantage of the Kronecker product (indicated by the symbol ⊗)
to combine the autocorrelation of the field and the cross-correlation
of the parameter into the expression of the joint distribution for the
cross-correlated RF. Last, the approach assumes stationarity, which
practically means that RFs are modelled with constant means and
the autocorrelation structure is the same for all points (Mariethoz
and Caers 2014)

YðzÞ ∼ Nð1n ⊗ μ;C ⊗ ΣÞ ð3Þ

Σ ¼
� σqt 0

0 σfs

�
×

�
1 ρ

ρ 1

�
×

� σqt 0

0 σfs

�
ð4Þ

The autocorrelation matrix between a subset of the domain
points is calculated through an autocorrelation function R and
the autocorrelation lengths (θ) in each direction [Eq. (5)]. Also,
qt and fs share the same autocorrelation structure, meaning that
their RFs are described by the same autocorrelation lengths.
Because the benchmark exercise considers horizontal spatial vari-
ability isotropic, θ has only a vertical and one horizontal compo-
nent: θ ¼ ½θh; θv�T

C ¼ Rðθ; zÞ ð5Þ

The implementation described previously suggests that the
RF model is similar to a Gaussian process regression (GPR)
(Rasmussen and Williams 2006) for two cross-correlated outputs,
a concept that is akin to the regression method of co-Kriging
(Helterbrand and Cressie 1994). These two concepts are not used
later in the paper, even though the RF model strongly resem-
bles them.

The RF model is described by a set of hyperparameters: the mean
and standard deviation per CPT parameter, the cross-correlation
between them, and the autocorrelation lengths. The hyperparameters
are collected into the hyperparameter vector X [Eq. (6)]

X ¼ ½μqt ;μfs ;σqt ;σfs ; θv; θh; ρ�T ð6Þ

Bayesian Inference

The RF jointly models the parameter distributions YðzÞ per point of
the domain, and at the same time, its behavior on the domain level
is determined by a set of hyperparameters X. Bayesian inference
aims at identifying X by conditioning the RF on the observations
Ym at the measurement points. Because the Bayesian model focuses
on inferring the hyperparameter vector of the RF,Xwill be denoted
as the model parameter vector in the continuation of the study.

Bayesian inference employs Bayes’ theorem [Eq. (7)] in order to
draw conclusions on the random variable (X) by conditioning on
observations Ym (Gelman et al. 2013). Bayesian inference entails
the setup of a statistical model that distinguishes the sources of epi-
stemic (reducible) and aleatory (irreducible) uncertainty present in
the examined problem. Also, Bayesian inference aims to reduce
epistemic uncertainty and provide a better description of aleatory
uncertainty. Key components of every Bayesian model are the prior
distribution PðXÞ and the likelihood function LðYmjXÞ. The former
expresses initial information on X, whereas the latter evaluates the
accuracy of X in describing the observations. Bayes’ theorem com-
bines the two components into the posterior distribution PðXYmÞ,
which reflects the updated knowledge on X

PðXjYmÞ ¼
LðYmjXÞPðXÞR
LðYmjXÞPðXÞdX

ð7Þ

According to Gelman et al. (2013), Bayesian inference is per-
formed in three steps. First, a full probabilistic model is formulated,
which jointly models all quantities of the problem. This step com-
prises the definition of the prior distribution and the likelihood
function of the model. Second, the model is conditioned on the
observations in order to derive the posterior distribution. Last, the
predictive model is set up, allowing for prediction and evaluation of
the fit achieved by inference. The following sections describe how
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these steps are applied within BaySiC toward solving the bench-
mark exercise.

Formulation of the Bayesian Model

Prior Distributions
The prior distribution of the model parameters reflects initial
knowledge on the problem. However, the notion of initial knowl-
edge is not so relevant in an artificial case such as the benchmark
example because the geotechnical background of the examined
case is missing. Some prior knowledge was available for the model
parameters. For example, it was known that all parameters but
ρ should be nonnegative and that ρ was bound in the range ½−1; 1�.
Also, the alternative of adopting noninformative prior distributions
was rejected because the use of specific prior distributions for com-
putational convenience did not constitute a strong rationale, espe-
cially when performing Bayesian inference with modern Markov
chain Monte Carlo (MCMC) methods. Therefore, the study opted
for the use of weakly informative prior distributions.

In the context of this analysis, weakly informative prior distri-
butions are designed to bound the model parameters in reasonable
ranges of values without conveying significant information regard-
ing the parameters themselves. Such boundaries were described at
the beginning of this section. Also, BaySiC assumes that the model
parameters are a priori uncorrelated. Thus, instead of using one
prior distribution to model initial knowledge, a set of prior distri-
butions can be employed. For the mean and standard deviation
parameters, this is achieved by adopting half-normal distributions
that are truncated at zero. The used variance of those priors is set to
be orders of magnitude greater than the expected values of the
model parameters. The prior distribution for ρ is set to be a beta
distribution with parameters a ¼ 2, b ¼ 2, modified to support
ρ ∈ ½−1; 1�. Last, uniform distributions are assigned to the autocor-
relation lengths, which means that no specific preference is attrib-
uted to any values of θ. The formulation of the prior distributions
per model parameter is given by Table 1.

By adopting weakly informative prior distributions, the Baye-
sian model gives greater weight to the likelihood function and so
inference is dominated by the data. This approach leads to a sol-
ution of the benchmark problem that minimizes the influence of
the subjectiveness of the analyst in the end results. In a real-case
application, informative priors should be adopted when possible.

Likelihood Function
So far, the components of the RF generation and the role of the
elements of the model parameter vector X are defined. The latter
is subject to inference by Bayesian updating, which means that the
formulation of the likelihood function must describe each measure-
ment Ymi

using X.
First, all measurements are collected in the measurement matrix

Ym per Eq. (8). As explained, the relationship between qt and fs of

all domain points is described by a multivariate normal distribution.
At this point, it is acknowledged that a distribution that disables
negative values (such as the lognormal) would have been more suit-
able, but the multivariate normal is adopted as in Phoon et al.
(2022b) for the sake of result comparability within the context of
the benchmark. In order to account for both covariance between
CPT parameters Σ and autocorrelation between points Cm, the
covariance of said distribution is the Kronecker product of the
two components Σkronm [Eq. (9)]. Both components are functions
of elements of X, as given by Eqs. (4) and (5). Naturally, when
deriving the formulation of the likelihood function, only measure-
ment points of the RF are considered in the derivation of Cm. Last,
the multivariate distribution is also parameterized by a mean vector.
In this case, the mean vector μkronm is derived by the Kronecker
product of a vector of ones of size mx1 ð1mÞ, where m is the num-
ber of training points) and the vector of means per CPT parameter
[Eq. (15)]

Ym ¼ ½Ym1
;Ym2

; : : : ; Ymk
�T ð8Þ

Σkronm ¼ Cm ⊗ Σ ð9Þ

μkronm¼ 1m ⊗ ½μqt ;μfs � ð10Þ

The components defined here, which are all functions ofX, con-
trol the mean and uncertainty of the RF. The likelihood function
takes the form of the probability density function (PDF) of the
multivariate normal distribution (Gut 2009), but it is parameterized
by the components defined previously. Ultimately, the likelihood
function ofX given the measurements Ym is formulated as a multi-
variate distribution parameterized by said components, as given
by Eq. (11)

LYm
ðXÞ ¼ det ð2πΣkronmÞ−

1
2 exp

×

�
− 1

2
ðYm − μkronmÞTΣ−1

kronm
ðYm − μkronm

�
ð11Þ

When defining the likelihood function, the matter of separabil-
ity of variance and covariance is considered. According to Dutil-
leul (1999), inference explicitly addresses the covariance Σkronm ,
which is a Kronecker product, but not its components, the indi-
vidual autocorrelation and cross-correlation matrices, which are
keys for predictions at the validation points. Essentially, inference
will return combinations of Cm and Σ that lead to the same Σkronm .
The issue is also inflated by the lack of strong priors on the model
parameters determining the components. Because Σkronm is a sepa-
rable covariance structure, the likelihood function can take the
form of a matrix normal distribution (Gupta and Nagar 1999)
[Eq. (12), modified for the examined situation]. In this case,
the observations are put in an kx2 matrix denoted by Y 0

m. Rows
indicate different training points, whereas two columns represent
the CPT parameters. Hence, the row correlation is Cm, and the
column covariance is Σ. In this way, a distinction of the influ-
ence of the two components is achieved to some level. In this
case, where the autocorrelation follows a pattern imposed by the
autocorrelation function, opting for the matrix normal distribution
does not lead to reduction of the model parameters. Ultimately,
the matrix normal likelihood function is adopted in the analysis.
The graph of the Bayesian model formulated in the section
“Methodology” is illustrated in Fig. 1

LY 0
m
ðXÞ ¼

exp

�
− 1

2
tr½Σ−1ðY 0

m − μÞTC−1
m ðY 0

m − μÞ�
�

ð2πÞkjΣjk=2jCmj
ð12Þ

Table 1. Prior distribution per model parameter

Model
parameter

Prior distribution
type

Distribution
parameters

μqt Half normal μ ¼ 0, σ ¼ 10

μfs Half normal μ ¼ 0, σ ¼ 100

σqt Half normal μ ¼ 0, σ ¼ ffiffiffiffiffi
10

p
σfs Half normal μ ¼ 0, σ ¼ 10

ρ Beta½−1;1� a ¼ 2, b ¼ 2

θv Uniform a ¼ 0, b ¼ 10

θh Uniform a ¼ 0, b ¼ 200

© ASCE 04023008-3 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
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Probabilistic Model Conditioning

The Bayesian inference problem is solved by conditioning the
Bayesian model on the available observations. Although several
techniques are available for applying Bayes’ theorem and deriving
the posterior distribution, many of them are unable to deal with a
large number of random variables or Bayesian models of greater
complexity. This study adopts the Markov chain Monte Carlo
method for performing inference.

This study used the Hamiltonian Monte Carlo (HMC) algo-
rithm, a member of the MCMC algorithmic family. HMC simulates
sampling from the posterior with a physics analogue; the sampler is
represented as a solid whose motion through the variable domain is
described with Hamiltonian mechanics (Neal 2011). The gradient
of the log-posterior to the random variables is central to the oper-
ation of HMC. Its calculation can be computationally exhausting in
traditional programming paradigms but is undertaken by modern
statistical packages. Aside from that, HMC is efficient in terms of
sampling because it exhibits competency in approximating the
typical set of the posterior distribution (Betancourt 2017). Further-
more, it is able to achieve greater acceptance rates than traditional
MCMC algorithms (Wang et al. 2019) and reduces the correlation
between successive samples, mitigating the MCMC issue of burn-
in period (Meyn and Tweedie 1993). This study used the no U-turn
sampler (NUTS) variation of HMC for its efficiency because it has
been shown to typically require fewer evaluations of the likelihood
function (Hoffman and Gelman 2014).

Probabilistic programming (PP) is the programming archetype
that enhances the development of probabilistic models and enables
automatic inference (van de Meent et al. 2018). The Python PP pack-
age PyMC3 (Salvatier et al. 2016) is adopted for probabilistic mod-
elling. According to the PP paradigm, orchestrating a Bayesian model
in PyMC3 requires only the definition of the prior distribution of the
random variables and the formulation of the likelihood function.
Moreover, PyMC3 allows for efficient HMC sampling through the
use of automatic differentiation (AD). PyMC3 translates the opera-
tions of the Bayesian model in graph structure, breaking them down
to simple mathematical operations. By application of the chain rule,
AD is able to efficiently calculate the gradient of the log-posterior
(Rall 1981), as required by the HMC sampler. Even though the use
of the gradient byHMC posed as a computational obstacle, PyMC3 is
able to overcome it and fully exploit the efficiency of HMC.

Predictive Model

After conditioning the Bayesian model to the data of the measure-
ment points, the posterior distribution of the model parameter

vector X is retrieved. Through a predictive model, the posterior
can be used to make predictions of qt and fs at the prediction points
of the soil domain. The multivariate normal distribution is used in
the predictive model for its computational ease. The matrix normal
distribution was adopted for inference because it displayed advan-
tages over its multivariate normal counterpart. However, for predic-
tion it is equivalent to a multivariate normal distribution, whose
covariance is the Kronecker product of the autocovariance and
cross-covariance.

This multivariate normal distribution is again parameterized by
X. Its autocorrelation matrix poses as the means of connecting the
measurement and prediction points. Eq. (13) provides an update of
the autocorrelation matrix that includes all points of the RF. Essen-
tially, the greater autocorrelation matrix can be broken down to four
submatrices: Cmm connects the measurement points, Cpp connects
the prediction points and Cmp and Cpm establish a connection
between measurement and prediction points. Developing further,
the covariance matrix of the multivariate normal distribution between
all points of the RF is the Kronecker product between the cross-
covariance matrix S and the new autocorrelation matrix [Eq. (14)].
Inherited byC, similar submatrices exist forΣkron. Last, the mean of
the multivariate normal μkron distribution is the Kronecker product
of a vector of ones of size mþ p ð1mþpÞ, where p is the number of
the prediction points in the RF and the vector of global means
[Eq. (15)]. The mean vector can be divided in a part of size mx2
for the measurement points and one of size px2 for the predic-
tion points, even though the values of the mean per parameter
are the same. Ultimately, the PDF of the multivariate normal dis-
tribution f for all variables Y of the RF is given by Eq. (16) and is
a function of X

C ¼ Rðθ; zÞ ¼
�Cmm Cmp

Cpm Cpp

�
ð13Þ

Σkron ¼ C ⊗ Σ ¼
�Σkronmm Σkronmp

Σkronpm Σkronpp

�
ð14Þ

μkron¼ 1mþp ⊗ ½μqt ;μfs � ð15Þ

fðYjXÞ ¼ det ð2πΣkronÞ−1
2 exp

�
− 1

2
ðY − μkronÞTΣ−1

kronðY − μkron

�
ð16Þ

In order to make predictions of Y at the prediction points, the
multivariate distribution needs to be conditioned to the measure-
ments. According to Marriott and Eaton (1984), the conditional
distribution of all Ypj

¼ Yðzpj
Þ, j ¼ 1; 2; : : : ;p at the prediction

points is again multivariate normal and depends on the values
of Ym at the measurement points. Its mean μpjYm

and covariance
ΣpjYm

are estimated by Eqs. (17) and (18), respectively. The
conditional distribution of the CPT parameters at the prediction
points Yp is a function of X, and the PDF fpjYm

ðXÞ is given
by Eq. (19)

μpjYm
¼ μp þ ΣkronpmΣ

−1
kronmm

ðYm − μmÞ ð17Þ

ΣpjYm
¼ Σkronpp − ΣkronpmΣ

−1
kronmm

Σkronmp
ð18Þ

fpjYm
ðYpjXÞ ¼ det ð2πΣpjYm

Þ−1
2 exp

×

�
− 1

2
ðYp − μpjYm

ÞTΣ−1
pjYm

ðYp − μpjYm

�
ð19Þ

Fig. 1. Graph of the two-parameter Bayesian model.
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Following, Eq. (20) conditions the parametrization of the pre-
dictive model to the observations by marginalizing the conditional
distribution fpjYm

over the posterior distribution of X [PðXjYmÞ].
Additionally, because the posterior distribution is only known
through the samples collected by the HMC sampler (of number N),
the predictive model is also formulated in a discretized form by
Eq. (21) (Krüger et al. 2016). Essentially, the predictive model can
be employed for the generation of RFs that are conditional to the
data at the measurement points

PðYpjYmÞ ¼
Z

fpjYm
ðYpjXÞPðXjYmÞdX ð20Þ

PðYpjYmÞ ¼
1

N

XN
i¼1

fpjYm
ðYpjXiÞ ð21Þ

Bayes Estimators

Representative point estimates of the posterior can be derived by
minimizing Bayes risk (Murphy 2022). Bayes risk is defined as the
expectation of a loss function (l) over the posterior [Eq. (22)]. The
loss function quantifies a distance metric between the selected
estimator X̂ and any value of X. The Bayes estimator connected
to a distance metric is the value of X that minimizes the Bayes risk
[Eq. (23)]

BRðXÞ ¼ EPðXjYmÞ½lðX; X̂Þ� ¼
Z

lðX; X̂ÞPðXjYmÞdX ð22Þ

X̂ ¼ argminðBRÞ ð23Þ

Widely adopted loss functions are the mean square error (MSE)
and the 0–1 loss function. In the first instance, the estimator that
minimizes Bayes risk is the expectation of the posterior [Eq. (24)].
This estimator is expected to provide the minimum risk on average.
For the case of the 0–1 loss function, the optimizer of Bayes risk is
known as the maximum a posteriori (MAP), or simply the mode of
the posterior [Eq. (25)], that is, the most likely M according to the
posterior (Lehmann and Casella 1998)

X̂MSE ¼ EPðXjYmÞ½X� ð24Þ

X̂MAP ¼ argmaxðPðXjYmÞÞ ð25Þ

Prediction Evaluation Metrics

The benchmark exercise provides a set of qt and fs values for all
points in the subsoil domain, which means that apart from the
observations at the measurement points Ym, a validation data set
at the prediction points Yp is given. The latter can be used for the
validation of the efficacy of BaySiC by comparing Yp with the pre-
dictions at the prediction points, much like a cross-validation
scheme. Phoon et al. (2022b) arbitrated the effectiveness of their
approach in terms of two loss-based metrics, and so it is convenient
to adopt the same metrics for the sake of approach comparability.

The first metric is the root mean squared error (RMSE) of the qt,
which is a form of quadratic loss function. The RMSE is a means of
assessing the average distance between the cone resistance of the
validation data set Yp;qt and the prediction per location [Eq. (26)].
Because the RMSE does not consider the uncertainty of the pre-
diction, an estimator Ŷp;qt of the qt predictive distribution is used
in the evaluation of the RMSE per prediction point

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp
i¼1

ðYp;qt − Ŷp;qtÞ
s

ð26Þ

The second metric is the identification rate (IR), which acts as a
0–1 loss function and estimates the average number of prediction
points where the predicted soil type matches the one estimated by
the validation data. The soil type is indicated by the soil behavior
type (SBT), as introduced by Robertson (2016). The SBT is deter-
mined from Ic, which in turn is calculated based on the predictions
of qt and fs [Eq. (27)]. Following, the IR is quantified by Eq. (28),
with 1ðzpi

Þ being the indicator function that returns 1 when the
SBT prediction at the prediction point zpi

matches the SBT of the
validation data and returns 0 otherwise. As with the RMSE calcu-
lation, the Ic and SBT are estimated for an estimator Ŷ of the
predictive distribution per prediction point

Ic ¼ Icðqt; fsÞ ¼ IcðYÞ ð27Þ

IR ¼ 1

k

Xk
i¼1

1ðzpi
Þ ð28Þ

As mentioned, both the RMSE and IR are evaluated for the
estimators Ŷ derived from the predictive distribution per prediction
point. The selected estimators are connected to the posterior estima-
tors introduced in the “Methodology” section. Assuming that X̂
represents either the MSE or the MAP estimator (X̂MSE or X̂MAP,
respectively), then a plug-in of the posterior distribution can be
given by a Dirac delta function δ, as in Eq. (29) (Murphy 2022).
The plug-in can be used in Eq. (20) to derive the predictive distri-
bution for a specific value of the posterior. Ultimately, the predic-
tive distribution after plug-in takes the form of Eq. (30). Even
though the full posterior distribution appears not to contribute in
prediction anymore, the derivation of X̂ heavily depends on the
posterior. Consequently, the expectation of the plug-in predictive
distribution is selected as the estimator Ŷ for the evaluation of
the metrics [Eq. (31)]. Ŷ is the vector of conditioned means as
defined by Eq. (17), evaluated at X ¼ X̂. Because the predictive
distribution is normal, Ŷ is both the mean and mode of the predic-
tion. Aversion of Y exists for each variation of X̂, which are labeled
as ŶMSE and ŶMAP for the MSE and MAP estimators, respectively.
This method lets the fully Bayesian approach adopted by BaySiC
degenerate to a point estimate in the sake of for comparability and
simplicity

Pplug-inðXjYmÞ ¼ δðX − X̂Þ ð29Þ

PðYpjYmÞ ¼
Z

fpjYm
ðYpjXÞδðX − X̂ÞdX ¼ fpjYm

ðYpjX̂Þ ð30Þ

Ŷ ¼ E½YjX ¼ X̂� ¼
Z

fpjYm
ðYjX̂ÞdY ð31Þ

Last, both metrics are expected to incorporate the impact of both
observed variables in an explicit or even implicit fashion. For
example, the RMSE is evaluated for the cone resistance, but cone
resistance predictions are influenced by the sleeve friction via the
correlation between the two.

Bayesian Hypothesis Testing

Even though estimation of metrics in a cross-validation setting is
already applied in order to assess the accuracy of BaySiC, hypoth-
esis testing is adopted because it can lead to generalized insights
regarding the predictive power of the framework. Hypothesis
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testing is the statistical procedure of examining whether the avail-
able data can reject a particular hypothesis with sufficient con-
fidence (Wasserman 2004). In a simple setting, two competing
and collectively exhaustive hypotheses are compared, with Ho
traditionally indicating the status quo, whereas H1 represents
new insights gained by the data. Hypothesis testing can either
reject Ho or fail to reject, with none of the possible outcomes
indicating the credibility of H1. Hypotheses are compared by
the means of a test statistic Ψ. Frequentist statistics offers a vari-
ety of options for Ψ, but this study chose to construct it from a
Bayesian perspective.

In order to dismiss the suggestion that the patterns identified
though Bayesian inference are not credible, hypothesis testing is
focused on random variables of X that control the predictive power
of the models. Such variables are the cross-correlation coefficient ρ
and the vertical and horizontal autocorrelation lengths (θv and θh),
which define cross-correlation and autocorrelation, respectively.
The status quo accepts that no correlation exists. In order to estab-
lish the cross-correlation between qt and fs, ρ should be nonzero
and thus is tested by Eq. (32). Because autocorrelation is strictly
nonnegative, θv and θh are tested to be greater than cut-off values
(θmin

v and θmin
h , respectively) that lead to almost zero autocorrelation

between points [Eqs. (33) and (34)]. The cut-off values are defined
based on the distances between points of the domain in the follow-
ing section

H0∶ρ ¼ 0; H1∶ρ ≠ 0 ð32Þ

H0∶θv < θmin
v ; H1∶θv ≥ θmin

v ð33Þ

H0∶θh < θmin
h ; H1∶θh ≥ θmin

h ð34Þ

The current goal of hypothesis testing is to constrain the prob-
ability of Type I error, that is, the probability that H0 is true but
gets rejected. Typically, a significance level of 5% is adopted as
the constraint for the Type I error. Given that Ψ is a suitable test
statistic, the constraint of Type I error probability is expressed by
Eq. (35)

PðTypeIÞ ¼ PðΨ ¼ 1jH0Þ ≤ 0.05 ð35Þ

As suggested by Kruschke (2013), Bayesian statistics can pro-
vide a powerful testing alternative to frequentist testing. The 95%
highest density interval (HDI) is the neighborhood of the X pos-
terior distribution that possesses two properties: first, every X in
the HDI has greater probability density that any point outside,
and second, the probability mass of the HDI is equal to 0.95.
The suggested test consists of checking whether H0 is included
in the 95% HDI. Furthermore, Kruschke (2018) expands by de-
fining the region of practical equivalence (ROPE), the neighbor-
hood of H0 that practically yields the same effect as H0 on the
predictive power of the model. Then, hypothesis testing consists
of checking whether the ROPE and HDI overlap. In case of no over-
lap, H0 can be rejected with sufficient confidence. It is assumed that
no correlation is reflected with a correlation coefficient in the range
of (−0.3, þ0.3), which constitutes the ROPE for ρ. Also, the ROPE
for the autocorrelation lengths is of the form ROPEθ ¼ ½0; θmin�.
The hypothesis tests take the forms given by Eqs. (36)–(38), where
1 is the indicator function returning 1 if the expression in the paren-
thesis is true and 0 otherwise. If the tests returnΨ ¼ 1 using the 95%
HDI, then H0 is rejected with confidence 0.95

Ψρ ¼ 1ðROPEρ ∩ HDIρ ¼ ∅Þ ð36Þ

Ψθv ¼ 1ðROPEθv ∩ HDIθv ¼ ∅Þ ð37Þ

Ψθh ¼ 1ðROPEθh ∩ HDIθh ¼ ∅Þ ð38Þ

whereas the selected hypothesis tests examine each component of
covariance individually, hypothesis testing for the predictive
power of the model is required on the final correlation matrix
of Eq. (14), which is a product of the cross-correlation and auto-
correlation. Clearly, rejecting the null hypothesis for either of the
components does not guarantee rejection of the equivalent null
hypothesis formulated for the final correlation matrix. Therefore,
all tests should be performed simultaneously (in the sense of
multiple hypothesis testing), and the total probability of Type I
error should be below the adopted significance level. However,
a different, tailor-made hypothesis testing approach was adopted
in this study that aimed to check for the predictive power of the
specific model.

In this instance, where data on both qt and fs are available at all
training locations, the cross-correlation coefficient does not affect
the predictive radius of the model, the maximum distance between
training and validation points for which the model can establish
sufficient correlation (greater than 0.3). The cross-correlation coef-
ficient adjusts the relationship between predictions of qt and fs at
validation points, a feature that can be of high importance for pre-
dicting the soil type and evaluating competent metrics. Hence,
hypothesis testing for ρ can be performed independently from θv
and θh. Also, isolating the cross-correlation coefficient for hypoth-
esis testing can lead to conclusions on the relationship between qt
and fs that bear geotechnical value. The predictive radius is deter-
mined by the autocorrelation matrix, and performing hypothesis
testing on it is equivalent to testing for the combined contribu-
tion of θv and θh in the model. Such a test can be performed by
constructing the posterior of the autocorrelation matrix using the
posterior samples of the scales of fluctuation.

Implementation of a Single-Parameter Model

The “Methodology” section described how inference and predic-
tion are achieved when using a two-parameter model for qt and
fs. Here is a simpler version of the model for a single parameter,
which is used later in the analysis.

The single-parameter model creates an RF for only one param-
eter. Thus, it is similar to the two-parameter model but uses a
reduced version of the model parameter vector X 0 [Eq. (39)] by
removing the mean and standard deviation of the second parameter,
as well as the cross-correlation coefficient. No specific names are
given to the hyperparameters because this model is intended for
inference of any parameter

X 0 ¼ ½μ; σ; θv; θh�T ð39Þ

In the “Methodology” section, the matrix normal distribution
was applied by making a distinction between the autocovariance
and cross-covariance matrices. Because the latter is not present
in this setup, the matrix normal distribution can be used as the like-
lihood function of the single-parameter model to distinguish
between the vertical and horizontal autocorrelation matrices (Cvm
and Chm , respectively) [Eq. (40)]. These matrices are derived by
applying the autocorrelation function R separately per dimension.
Also,Chm is multiplied by σ2 and is considered a covariance matrix.
The observations are reorganized in columns per CPT, with rows
being different depths, and thus the variable matrix Y 0

m is of size
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nrow × ncol. The graph of the single-parameter model is presented
in Fig. 2

LY 0
m
ðX 0Þ ¼

exp
�
− 1

2
tr½C−1

hm
ðY 0

m − μÞTC−1
vm ðY 0

m − μÞ�
�

ð2πÞnrowncol
2 jChm j

nrow
2 jCvm j

ncol
2

ð40Þ

Similarly to the two-parameter model, prediction can still be
achieved using a multivariate distribution whose covariance is
the Kronecker product Cvm ⊗ Chm . Adjusting the description
from the “Methodology” section to the single-parameter model,
conditioning of the multivariate normal distribution to the ob-
servations and the derivation of the predictive model is
achieved.

The mathematical devices explained in the “Methodology”
section can be modified for the single-parameter model. Thus,
it is considered that the Bayes estimators, metric evaluation,

and hypothesis test are already available for the single-parameter
model.

Implementation in the Benchmark Exercise

Introduction to the Benchmark Exercise

The design of the benchmark exercise was introduced in Phoon
et al. (2022b). The exercise is divided in four different cases
(S-VG1 to S-VG4), with each one having a different stratigraphy
of the subsoil domain always composed of clay, sand, and silt
layers, as shown in Fig. 2 of Phoon et al. (2022b). Fig. 3 illus-
trates the training and validation locations of the CPT soundings
in the domain. The exercise allows inference using two sets of
training CPT locations of different sizes; set T1 includes only
three CPT soundings, whereas set T2 includes six. The valida-
tion set includes 12 CPT soundings. The training and validation
locations of the CPTs are common between all stratigraphic
cases. Combining the stratigraphic cases with the different train-
ing sets, the exercise provides eight cases for solving. Moreover,
Table 2 presents the actual parameter used in generating the
benchmark RFs.

In the current section, a first application of BaySiC is presented
in order to showcase practical details about its operation and per-
formance. Hence, it is sensible to use BaySiC in the simplest case
among all combinations: stratigraphic case SVG-1, which is com-
posed of horizontal soil layers without any depth trend, and training

Fig. 2. Graph of the single parameter Bayesian model.

Fig. 3. Locations of the training and validation locations of the CPT soundings in the top view of the domain. (“Benchmark examples for data-driven
site characterisation,” K.-K. Phoon, T. Shuku, J. Ching, and I. Yoshida, Georisk: Assessment and Management of Risk for Engineered Systems and
Geohazards, © 2022, reprinted by permission of Taylor & Francis Ltd., http://tandfonline.com.)

Table 2. Parameter per layer type used in generating the data per case

Input parameter Sand Clay Silt

μqt ðMPaÞ 9.00 2.00 55.00
μfsðkPaÞ 110.00 75.00 85.00
σqt ðMPaÞ 2.16 0.40 1.32
σfs ðkPaÞ 26.40 15.00 20.40
θvðmÞ 1.00 1.20 1.00
θhðmÞ 10.00 15.00 10.00
ρ 0.70 0.70 0.70

Source: Data from Phoon et al. (2022b).
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set T2, which is larger and thus expected to convey more informa-
tion (case: SVG-1-T2).

Strategy of Analysis

Aggregated Model
The aggregated model perceives a single soil material throughout
the entire domain. In this approach, no distinction is made between
layers, and BaySiC is applied as if a single soil layer exists.
Although this model does not infer the CPT parameters per
material, which means that the derived posterior distributions are
not directly comparable to the distributions that were used in gen-
erating the data sets (Table 2), it is able to establish relationships
between points of the domain and thus make predictions. Essen-
tially, BaySiC chooses to infer and predict qt and fs as fundamental
parameters that describe soil behavior and then derive Ic based on
prediction of said parameters. This perspective aims to infer the
correlation structures between qt and fs over the soil domain,
which are expected to affect the determination of Ic.

The aggregated model was set up according to the “Methodology”
section and aimed to infer all model parameters of X. Even though its
fundamental assumption of a single layer was expected to increase
model bias, the aggregated model managed to incorporate information
of both qt and fs.

Split Model
The split model performs inference individually per soil material
recognized at the training CPT locations. Thus, it infers the param-
eters of the Bayesian model for each soil formation separately and
leads to results similar to the ones given by Table 2. However, this
model suffers from a serious drawback; because the material type is
unknown at the validation points, the framework is incapable of
selecting the material whose parameters should be used, and so pre-
diction is disabled. At this point, elements of the aggregated model
can be used to avoid this pitfall.

The split model is adjusted to operate in two steps. In the first
step, a single-parameter, aggregated model is used to infer and pre-
dict Ic and so the material type per validation point. Specifically, an
aggregated model for Ic is set up using the single-parameter model
from the “Methodology” section for performing inference and pre-
diction. The Ic training data is determined by qt and fs data per
training point. Through Ic, this step predicts the material type per
validation point. In the second step of the split model, a two-
parameter model is used to infer X per material type and predict
qt and fs at every validation point. A two-parameter model is
trained for each material recognized at the training points. Then,
the posterior distribution of X for a material type is used to predict
qt and fs at the validation locations where the first step of the split
model predicts the same material.

The split model holds two conceptual benefits. First, it allows
the derivation of posterior parameters per material, which makes
sense for geotechnical engineering. Second, it uses the single-
parameter model for soil type prediction, which is able to separate
the contributions of the vertical and horizontal autocorrelations
through the use of the matrix normal distribution as a likelihood
function. The latter feature is expected to distinguish the influence
of θv and θh more effectively, leading to enhanced prediction
accuracy.

Last, another setup of the split layer model is explained. In case
the single-parameter model can lead to greater prediction accuracy,
it would be appropriate to use it in inferring qt per layer in the
second step of the split layer model. Such a device would solely
aim to enhance prediction accuracy for qt and achieve lower RMSE
scores. However, the goal of this study is to present a robust

framework with general applicability. This means that equal atten-
tion is paid to both qt and fs, and the results of inference are mean-
ingful for geotechnical engineering. Therefore, this study decided
not to adopt this approach, and the two-parameter model is used for
the second step of the split layer model.

Analysis of SVG-1-T2

Model Tuning
The first step in analyzing case SVG-1-T2 is tuning the examined
models by selecting an appropriate autocorrelation function. To that
end, three kernel functions are tested: the Markov, Gaussian, and
Matern 32 kernels, as given by Eqs. (41)–(43). The values of Δh
and Δv are the distances between two points of the domain in the
horizontal and vertical direction, respectively

RMarkovðθ; zÞ ¼ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2Δv
θv

�
2

þ
�
2Δh
θh

�
2

s
ð41Þ

RGaussðθ; zÞ ¼ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δv
2θv

�
2

þ
�
Δh
2θh

�
2

s
ð42Þ

RMatern32ðθ; zÞ ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
3Δv2

p

θv

��
1þ

ffiffiffiffiffiffiffiffiffiffiffi
3Δh2

p

θh

�

× exp

�
−
� ffiffiffiffiffiffiffiffiffiffiffi

3Δv2
p

θv
þ

ffiffiffiffiffiffiffiffiffiffiffi
3Δh2

p

θh

�
ð43Þ

According to Murphy (2022), the most appropriate model M̂
over all possible modelsM is the one that maximizes the likelihood
of the model given the data [Eq. (44)]. Because all autocorrelation
functions employ the same number of variables, using the likeli-
hood as a comparison metric will yield the same result as adopting
a metric that penalizes models for the number of their parameters.
The metric is checked using the likelihood scores gathered during
HMC sampling. Thus, Bayesian analysis is performed per autocor-
relation function, and the achieved likelihoods of the associated
X̂MAP estimators are compared to identify the most fitting kernel

M̂ ¼ argmaxm∈M½pðmjYmÞ� ð44Þ

The process described previously is performed for the aggre-
gated and split models, and Table 3 presents the log-likelihood
results per kernel function. The table shows the log-likelihood
for the single-parameter Ic model used in the first step of the split
model. Evidently, the Markovian kernel leads to the most descrip-
tive aggregated model. For the split model, the Gaussian kernel
marginally achieves the highest log-likelihood score. Even though
the respective results are not presented here, the Markovian kernel
is adopted for the second step of the split model.

Table 3. Log-likelihood score of the X̂MAP for the two models model per
autocorrelation function

Model
Autocorrelation

function
Log-likelihood of the
aggregated model

Log-likelihood of
the split model

1 Markov –3,183 162.9
2 Gauss –3,268 163.5
3 Mattern 32 –3,711 163.1
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Summary of the Results for SVG-1-T2
In the analysis of case SVG-1-T2, inference for both models is
performed using four HMC chains, with each one retrieving
2,500 samples from the posterior distribution. Also, each chain
draws 1,000 samples for warm-up that are discarded later. The run-
times for inference and prediction of the aggregated and split mod-
els are approximately 1,500 and 640 seconds, respectively. Clearly,
BaySiC could easily handle a site characterization task of the same
magnitude as case SVG-1-T2 in a real project setting. For refer-
ence, the analysis was performed on a laptop with an Intel i7
processor at 2.80 GHz and 32 GB of RAM.

Posterior Distribution Analysis
Fig. 4 provides a visualization of the posterior sample for the ag-
gregated model. By examining the marginal histograms, located in
the diagonal, it is evident that all variables follow a unimodal dis-
tribution. Moreover, the two Bayes factors, X̂MSE and X̂MAP, lie
close in the variable domain for all variables. In the cases of σqt ,
σfs , θv, and θh, more samples have been drawn at neighborhoods of
higher values, leading to slight positive skewness. The same var-
iables, which control the correlation between points of the domain,
appear to be highly and positively correlated, as exhibited by their
respective two-dimensional histograms. A strong positive correla-
tion between σqt and σfs is present because of the cross-correlation
coefficient ρ. Additionally, the standard deviation variables are
strongly correlated to the scales of fluctuation. When the scales
of fluctuation increase, the autocorrelation rises, and so likelihood
scores that are accepted by the sampler are achieved even by

samples of greater standard deviations. Furthermore, μqt and μfs
are correlated because they are the means of a bivariate distribution
between qt and fs, whose correlation is defined by ρ.

The posterior investigation was also performed for the split
model. Fig. 5 visualizes the posterior of the first step, which infers
model parameters for Ic. Again, θh is positively correlated to the
standard deviation σIc . Opposite the aggregated model, θh and
θv are negatively correlated. Moreover, Fig. 6 presents the posterior
histograms of θv, θh, and ρ per material derived by the second step.
In this figure, X̂MSE is compared to the actual value that was used in
generating the RF for the benchmark. The autocorrelation lengths
are approximated sufficiently well by the posterior mean for all
cases, except for θh for the silt material. Training points along the
interface between the sand and clay layers are consistently clas-
sified as silt due to their SBT value, which complicates further the
inference of the autocorrelation length for silt. Also, the cross-
correlation coefficient is not estimated adequately for all materi-
als. A possible cause for this can be limited data availability.
For example, if inference is performed using a common cross-
correlation coefficient for all materials (because all of them have
the same actual ρ), then the posterior of approaches the actual
value sufficiently, as validated by running BaySiC in the associ-
ated setting.

Hypothesis Testing of Inference Results
After examining the posterior distributions, hypothesis testing was
performed in order to draw insights regarding the predictive power
of the model.

Fig. 4. Histogram of the posterior samples per variable and scatter plot of posterior samples per variable combination of the aggregated model with
indication of X̂MSE and X̂MAP.

© ASCE 04023008-9 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2023, 9(2): 04023008 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
01

/2
9/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



The autocorrelation lengths play a central role in prediction
because they establish the relationship between the training and val-
idation points of the domain. As discussed in the “Methodology”
section, θmin

v and θmin
h are the minimum values of the respective

lengths that lead to autocorrelation values greater than 0.3 and
are defined based on the interpoint distances met in the domain.
The critical validation point for prediction is the one with the great-
est distance to its closest training point. This approach is acknowl-
edged to be conservative, considering that the autocorrelation
matrix can establish connections between validation and training
points through other validation points. Moreover, because the
points of the domain are aligned in vertical profiles over regular
vertical distances, identifying the critical point can be performed
individually per direction. A further implication of this is that θv
does not affect the predictive radius of the model but strongly af-
fects the predictive power by influencing the magnitude of autocor-
relation. As a result, θmin

v and θmin
h can be estimated independently.

For the horizontal direction, the critical point and distance are iden-
tified by examining the matrix of horizontal interdistances between
points. Due to the vertical stratification of the points with regular

intervals, the critical distance in the vertical direction is the interval
distance. After identifying the critical distance for the vertical and
horizontal directions, θmin

v and θmin
h can be evaluated as the values of

θv and θh that lead to an autocorrelation of 0.3 when the autocor-
relation function is evaluated individually per direction.

Table 4 lists the ROPE per variable for hypothesis testing in the
aggregated model, including the values of θmin

v and θmin
h as esti-

mated with the procedure described previously and the result of
the respective hypothesis test. Fig. 7 visualizes the histogram per
variable, along with the 95% HDI and ROPE. For all variables, the
HDI does not overlap with the ROPE, which means that the null
hypothesis can be rejected with sufficient confidence. An implica-
tion of rejecting the null hypothesis is that the scales of fluctuation
can be inferred by the model on the specific training point grid. A
typical problem with learning θh is that the horizontal distances
between training points are too large to perform meaningful infer-
ence of the parameters.

Similarly, Table 5 provides the ROPE and hypothesis testing
results for the split model. For the first step, θmin

v and θmin
h have been

adjusted for the Gaussian kernel autocorrelation function. The model

Fig. 5. Histogram of the posterior samples per variable and scatter plot of posterior samples per variable combination of the split model with
indication of X̂MSE and X̂MAP.
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rejects the null hypothesis for θh but fails to reject for θv, meaning
that low autocorrelation is expected in the vertical direction. How-
ever, as explained previously, the role of the vertical autocorrelation
is limited because CPT data are provided in columns, and missing
data is not a problem in this exercise. Furthermore, the null hypoth-
esis is not rejected for the cross-correlation coefficient of the sand
and clay materials. As shown in Fig. 8, inference was not that ef-
fective for these parameters, and their posterior distributions are
located within the ROPE. Moreover, the model fails to reject the
null hypothesis for θh in sand and clay. However, this is not a short-
coming of inference; the model is approximating the actual values
used in setting up the RF. This means that the setup of the bench-
mark exercise leads to validation locations that are outside the pre-
dictive radius of the model.

Hypothesis testing can lead to further conclusions regarding the
prowess of the aggregated model by assessing its predictive radius
and area of influence per training point. First, a two-dimensional
mesh of points is constructed in the horizontal and vertical direc-
tions with the purpose of representing distances from point (0, 0).
In this instance, point (0, 0) represents a training point, and

prediction will be carried out at all points in the mesh. Because
θh is taken to be isotropic, a single horizontal distance component
suffices. Next, posterior samples of the autocorrelation matrix C
for the mesh are formed by evaluating the autocorrelation function
for the posterior samples of X. Hypothesis testing on all terms of
C for ROPE ¼ ½0; 0.3Þ and an HDI of 95% indicates whether suf-
ficient autocorrelation can be established between the training
point and the points in the mesh based on the posterior of X. Fig. 9
presents the result of this analysis for the aggregated model. The
area of the domain where the null hypothesis is rejected resembles
the predictive area of the model.

The analysis shows that the horizontal predictive radius of the
aggregated model is 17.0 m, whereas the vertical one is 0.78 m. The
shape of the predictive area is determined by the autocorrelation
function, as well as the values of the of θv and θh posterior samples
and the correlation between them. The same figure displays the val-
idation locations as vertical profiles, which are placed from the
training point at their respective critical distances. This illustration
shows that all validation locations are well within the horizontal
predictive radius, a point that was already validated by defining the
critical point and distance in the derivation of θmax

h . Also, because
training points are placed over the entire depth of the domain, val-
idation points of the profiles that lie outside the predictive area are
covered by training points of greater depths. Hence, attention in the
analysis is given to the horizontal direction.

Furthermore, Fig. 9 also visualizes the lower bound of the 95%
HDI of C over the mesh in contours. This plot displays the auto-
correlation coefficient that is expected to be surpassed with a con-
fidence of 95% and thus indicates a minimum boundary for the

Fig. 6. Posterior histograms of θv, θh, and ρ per material type, with indication of X̂MSE and the actual value used in generating the RF of the exercise.

Table 4. ROPE per examined variable and result of the associated
hypothesis testing for the aggregated model

Variable ROPE Hypothesis test outcome

ρ ð−0.30; 0.30Þ Reject H0

θvðmÞ ½0.00; 0.17� Reject H0

θhðmÞ ½0.00; 14.98� Reject H0
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expected predictive power per validation location. These results
only quantify the impact of the closest training location per vali-
dation location and do not consider additional influence arriving
from other training points.

This extension of hypothesis testing leads to valuable conclu-
sions regarding the predictive power of the model that cannot be
derived through cross-validation. The insights gained by perform-
ing cross-validation with a set of validation locations are valuable,
as long as the set is representative of the situations expected to be
met in practice. Otherwise, cross-validation only offers a quantifi-
cation of the predictive power of the model within a limited extent

of the cases that could be actually met. On the other hand, the use of
hypothesis testing allows BaySiC to answer application-oriented
questions. First, testing for ρ checks the premise that qt and fs
are correlated. Second, hypothesis testing for C enables the def-
inition of the predictive radius of the model, which demonstrates
the area of influence per training point, as well as the area of
the site where credible predictions should be expected. Ulti-
mately, hypothesis testing in BaySiC facilitates practice-oriented
use of the framework, quantifies the impact of training data, and
promotes advanced applications, such as prediction-driven site
investigation.

Fig. 7. Posterior histograms with 95% HDI and ROPE per parameter examined in hypothesis testing for the aggregated model.

Table 5. ROPE per examined variable and result of the associated hypothesis testing for the split model

Variables

First step Second step

ROPE Ic ROPE Sand Clay Silt

ρ — — ð−0.30; 0.30Þ Fail to reject H0 Fail to reject H0 Reject H0

θvðmÞ ½0.00; 0.15Þ Fail to reject H0 ½0.00; 0.17Þ Reject H0 Reject H0 Reject H0

θhðmÞ ½0.00; 1.13Þ Reject H0 ½0.00; 14.98Þ Fail to reject H0 Fail to reject H0 Reject H0

Fig. 8. Posterior histograms with 95% HDI and ROPE per parameter examined in hypothesis testing for the first step of the split model.
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Even though it is not presented here for conciseness, a similar
analysis has been performed for the split model. Comparable con-
clusions regarding its predictive area are drawn.

Metric Evaluation
By examining the metrics of the two models, it is clear that the split
model outperforms the aggregated model. Table 6 summarizes the
results of the aggregated and split models per metric and estimator
in terms of average, minimum, and maximum values. For the split
model, the IR achieved by the first step is significantly higher than
that of the aggregated model. Also, the IR score demonstrates that
the split model is highly effective in predicting the material type per
validation point. This prediction is the basis for the second step,
which estimates a substantially lower RMSE than the aggregated
model. In summary, whereas the aggregated model approximates
the performance of the analysis shown in (Phoon et al. 2022b), the
split model surpasses it and achieves better metrics. Also, the X̂MSE
and X̂MAP lead to almost identical results, which was expected due
to the proximity of the estimator values. Because of this, the paper
will only report the results of X̂MSE from now on because it is con-
sidered a more convenient estimator.

Fig. 10 presents the mean prediction of the aggregated model for
qt as derived using X̂MSE against the validation data over a vertical
profile per validation location. Although the prediction follows the
general behavior of the data, it often misses localized fluctuations.
This is a result of adopting the aggregated model, which leads to
the estimation of scales of fluctuation that describe well the soil

domain in general, but do not offer sufficient flexibility to capture
layer-specific variations. Also because of the aggregate layer ap-
proach, the prediction is making smooth transitions between layers
instead of sharp changes as seen in the data. The framework does
not perceive the existence of layers and thus does not exhibit sharp
changes on layer interfaces.

Moreover, Fig. 10 visualizes the prediction uncertainty in the
form of the 95% prediction interval of the predictive distribution
per validation point. The illustration of the 95% prediction interval
aims to provide insight regarding prediction uncertainty because
the presented metrics do not directly demonstrate its quantification,
which is one of the main reasons for adopting Bayesian statistics.
The greatest share of the validation data is covered by the envelope
of the prediction interval. This happens even in cases where the
mean prediction does not capture intense local fluctuations of
the data, which implies that even if the accuracy of the prediction
is lower, the prediction uncertainty can capture the variations of the
data. Furthermore, the impact of adopting the aggregated model is
demonstrated again. Although the prediction is precise in the sand
and silt layers, as evidenced by the coefficient of variation (CoV)
being close to 0.20, it is not so precise for the clay layer, where the
CoV increases. The aggregated model tends to average out the
standard deviations of all layers, and this leads to high CoV values
for clay, where the mean qt is significantly smaller than other
layers.

Fig. 11 presents the mean prediction of the aggregated model for
the SBT as derived using X̂MSE against the validation data over a
vertical profile per location. The model can identify the sand and
clay layers with limited competency but largely misclassifies the
silt layer. For instance, a predictive anomaly consistently appears
over the silt layer. A part of the layer is misclassified as sand
(SBT ¼ 6), and the anomaly region can change depths or sizes
but persists at all locations. Because the full RF of the benchmark
exercise has not been made available, this issue cannot be settled
reliably. However, this behavior may be explained to some extent
by the weak correlation between qt and fs. Because Ic and SBT are
calculated using both CPT parameters and inference could not
approximate well the strong correlation between the two, it might

Fig. 9. Predictive area and lower bound of the 95% HDI of the autocorrelation for the aggregated model with validation profiles placed at critical
horizontal distances.

Table 6. Estimators of RMSE and IR for X̂MSE and X̂MAP of the aggregated
model

Metric
estimator

Aggregated model Split model

X̂MSE X̂MAP X̂MSE X̂MAP

RMSE IR RMSE IR RMSE IR RMSE IR

Average 1.23 0.81 1.23 0.81 1.13 0.92 1.14 0.92
Minimum 0.89 0.73 0.89 0.72 0.92 0.89 0.93 0.89
Maximum 1.71 0.89 1.73 0.89 1.58 0.96 1.58 0.96
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be that material prediction is hampered, even if the approximation
of qt validation data is satisfactory.

On the other hand, Fig. 12 shows that the split model is con-
siderably more competent in classifying the material type at vali-
dation points. The SBT prediction of the split model is able to
match well the SBT per layer. The validation SBT data exhibit sev-
eral cases of pockets of foreign material within a layer. Although
the model cannot find all of them, it is still potent in detecting a
good amount, sometimes even if they appear as a single, localized
anomaly. Moreover, the results show a low amount of misclassified
points due to falsely predicted anomalies, as happened with the
aggregated model. Ultimately, Ic acts as a strong predictor for the
material type because it incorporates information of both qt and fs.

Additionally, Fig. 13 demonstrates the prediction of the split
model for qt. In this case, the prediction is able to make swift
changes along layer interfaces because the predictions per material
are independent. The mean prediction is successful in approximat-
ing the fluctuations of qt for the clay and silt layers not only in
terms of general trend but also when they appear as pockets within
other layers. In such occasions, the mean prediction changes and

the 95% CI expands sharply to account for localized uncertainty.
For example, such an instance is met at a depth of 4.0 m in vali-
dation location 18. On the other hand, the prediction is less flexible
for sand. The predictive distribution per point tends to be fixated to
the mean of the material and compensates with a larger standard
deviation instead of following the fluctuations of the qt data. This
can be a result of the low θh met during inference in the sand layer,
which notably is also the actual θh used in generating the RF. This
behavior validates the conclusions drawn by hypothesis testing re-
garding the predictive power of the model in sand. Specifically,
because such a low θh is met for the sand layer, prediction in sand
is limited by low autocorrelation and is destined to be close to the
mean of the layer. In case more accurate prediction was required,
CPT soundings should be performed in a denser grid.

Fig. 14 shows the RMSE and IR score of the split model per
validation location over the map of the domain. In general, points
that lie at the center of the domain tend to perform better than points
at the perimeter. This is because they are expected to be closer to
training points, gaining a better autocorrelation and receiving sig-
nificant influence from multiple training soundings simultaneously.

Fig. 11. SBT prediction of the aggregated model according to X̂MSE, along with the SBT validation data per validation location.

Fig. 10. Average prediction of the aggregated model for qt 95% prediction interval according to X̂MSE, along with the validation data per validation
location.
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Also, predictions at points lying in the perimeter of the domain are
achieved by extrapolation of the predictive model, which is ex-
pected to have lower accuracy and precision. Soundings 208 and
289 are instances of validation locations that lie at the center of the
domain and pose as the best performers in terms of RMSE and IR,
respectively. Both soundings are surrounded by training CPTs,
whose strong influence on prediction accumulates. At the same
time, the distances to their respective closest training neighbors
are the lowest among the validation locations, yielding the greatest
estimates of expected autocorrelation. On the other hand, some
perimetrical points outperform center points. For example, Point
381 exhibits considerably low RMSE values, whereas high RMSE
values are expected, just as met in other perimetrical points, like 18
and 22. This pattern was encountered in the results of both models,
as well as in the results of Phoon et al. (2022b). This behavior
strengthens the notion that the accuracy of predictions is not only
a function of the predictive power of the model but of the training
and test data. This topic cannot be explored further dependably be-
cause the full RF of the benchmark exercise has not been made
available.

Results for All Benchmark Cases

This section presents and compares the performance of the aggre-
gated and split models in each benchmark case. The four stratigraphic
cases reflect situations of increasing complexity. A distinction is also
made for each set of training CPT soundings to showcase the effect of
the size of the training data.

Fig. 15 summarizes the average of the performance metrics
per stratigraphic case and training set size. Although the split
model outperforms the aggregated model in all cases and train-
ing sets for the IR, the picture is not the same for the RMSE.
The RMSE of both models increases with greater complexity,
but this rise is more intense for the split model. Whereas the
split model outperforms the aggregated model for SVG-1, this
changes from SVG-2 and so on. Low data availability is the
cause for this shift.

The split model consistently leads to better IR scores, meaning
that the first step of the model is quite competent in identifying
the material type. Thus, the steep RMSE increase is attributed to
the second step, which maps qt over the subsoil. In more complex

Fig. 12. SBT prediction of the split model according to X̂MSE, along with the SBT validation data per validation location.

Fig. 13. Average prediction of the aggregated model for qt 95% prediction interval according to X̂MSE, along with the validation data per validation
location.
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stratigraphic cases, training per individual layer can prove challeng-
ing because the ability of inference in capturing the spatial variabil-
ity patterns can be hindered by the limited amount of data available
per layer. On the other hand, the aggregated model concept has an
advantage in such settings. At this point, the authors speculate that
with larger training data sets, the split model would get an edge
even in cases of greater complexity.

Last, the effect of training data set size is investigated. As ex-
pected, the larger training data set leads to better metrics. In all
cases, models trained with set T2 outperform those trained with
set T1. An exception is raised for the IR of the aggregated model
in case SVG-3, which possibly occurs due to the complexity of the
setting; in this case, the CPT parameters follow a linear trend over
depth, and the model formulation has not been prepared accordingly.
Moreover, the spread between the split models for T1 and T2 diverge

for both RMSE and IR, with increasing case complexity. This point
highlights that the amount of training data has a greater impact in
more complex stratigraphic settings.

Conclusions

The paper demonstrates a Bayesian approach to the DDSC problem
by using a framework for Bayesian site characterization in a bench-
mark example. The BaySiC models used in the paper achieve ac-
curate predictions through uncertainty reduction. Random field
modelling of the CPT parameters in the subsoil is the basis of
the models in both inference and prediction. The article showcases
the formulation of the aggregated and the split models and their
implementation on the benchmark example.

Fig. 14. (a) RMSE; and (b) IR scores per validation location for Bayes estimator X̂MSE of the split model.

Fig. 15. Comparison of the average: (a) RMSE; and (b) IR for each case as estimated by X̂MSE per model and training set.

© ASCE 04023008-16 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

 ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2023, 9(2): 04023008 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
01

/2
9/

24
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



In inference, BaySiC deals with separable covariance structures,
so the matrix normal distribution is adopted as the likelihood func-
tion. Specifically, the aggregated model separates the spatial vari-
ability, which is represented by the autocorrelation matrix, and
cross-correlation of the CPT parameters. The aggregated model de-
scribes all materials with a single set of parameters. Although this
modelling approach is inherently biased, it is able to exploit the full
training data set. On the other hand, the novelty of the split model
lies in distinguishing the horizontal and vertical autocorrelations.
The split model, which infers the parameters per material, leads
to parameter posterior distributions that are meaningful to geotech-
nical engineering but in some cases appears to be hindered by low
data availability per material.

Both strategies demonstrate their own advantages in predic-
tion. The split model leads to consistently high identification
rates of the material type. On the other hand, the aggregated
model is more accurate in predicting the cone resistance in com-
plex cases. Also, the precision of model predictions is quantified
through the visualization of the 95% prediction interval, which
can be used in reliability assessments or the derivation of char-
acteristic profiles.

Moreover, the paper shows the value of Bayesian hypothesis
testing as an alternative means for validating the predictive power
of the model. Because the full RFs of the benchmark cases are not
available, the capacity of the model for prediction can only be
quantified by metrics at validation locations. Given the limited size
of the validation data set, conclusions on model performance have
to be treated with care because random effects can be relevant. On
the other hand, hypothesis testing is independent of the validation
data and can evaluate the predictive power of the model on a prob-
abilistic level. In this study, hypothesis testing was used to assess
the predictive radius of each training CPT sounding per model and
the autocorrelation expected at each validation location. This infor-
mation can be used further in geotechnical investigation, decision-
making, and optimization.

Last, BaySiC has shown efficient performance in the benchmark
exercise, which highlights the potential of the framework for ap-
plication in real cases. The aggregated model exhibits runtimes
of approximately 25 min for inference and prediction. For the split
model, the respective figure lies close to 10 min. Such runtimes
render the use of BaySiC feasible within a project setting and sug-
gest it would remain appropriate with even larger data sets.
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