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Molecular tagging is used to study the dispersion and deformation of patterns written
in turbulent air. The writing is done by fusing O2 and N2 molecules into NO in the focus
of a strong ultraviolet laser beam. By crossing several of these laser beams, patterns that
have both small and large scales can be painted. The patterns are visualized a while later
by inducing fluorescence of the NO molecules with a second UV laser and registering the
image. The width of the lines that make the pattern is approximately 50 µm, a few times the
Kolmogorov length η, the smallest length scale in turbulence, while the largest size of
the patterns (≈4 mm) is inside the inertial range of the used turbulent jet flow. At
small scales molecular clouds disperse under the joint action of molecular diffusion and
turbulence. The experiments reveal this highly nontrivial interaction. At inertial-range
scales (≈200 η) we verify the Batchelor dispersion of objects whose size is inside the
inertial range. Patterns are compressible objects and spontaneously develop concentration
fluctuations. We show for the first time the nontrivial statistical properties of these fluctu-
ations. Finally, we use the information in written and deformed lines to quantify turbulent
intermittency, obtaining results that agree with the established scaling anomaly of velocity
structure functions.

DOI: 10.1103/PhysRevFluids.9.014502

I. INTRODUCTION

In molecular tagging the molecules of the flow are used as flow tracers [1,2]. Tagging is accom-
plished by exciting available molecules to a metastable state [3] using laser excitation, or by creating
new molecules that are not part of the base flow [4,5]. The initial pattern of tagged molecules is
shaped by focusing the writing laser in lines, or in more complicated structures. Reading—seeing
how the pattern has evolved—is done by observing phosphorescence or laser-induced fluorescence.

In this paper we will discuss the application of molecular tagging to a turbulent flow of air at
Taylor-scale Reynolds numbers Rλ = O(500). We will argue that molecular tagging is well suited
to study small-scale turbulent mixing of gases, perhaps even better than it is suited to measure the
velocity field.

The length and timescales of turbulence define the context of molecular tagging. Turbulent
motion is characterized by a range of spatial scales which goes from the largest stirred scale to
the smallest one, the Kolmogorov scale η where the scale-to-scale energy flux ε is dissipated by
molecular viscosity ν. The intermediate scales are called the inertial range, characterized by an
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algebraic scale dependence of turbulence statistics. At the Reynolds numbers cited, the smallest
length scales are O(10 µm) and the smallest timescales are O(10 µs), which sets the minimum
lifetime of tagged molecules.

In this paper we study turbulent mixing and velocimetry through the dispersion of small clouds
of NO molecules in air. The writing is done by weakly focusing UV laser beams with a wavelength
of 193 nm in a turbulent air flow emerging from a jet, and fusing the O2 and N2 molecules into
the long-lived molecular tracer NO [4]. Tracer molecules are made visible by exciting them with a
second laser and observing the UV fluorescence using an intensified camera [6].

This is one of a few techniques (coined APART in Ref. [4]) for molecular tagging in a flow
of a gas which have been explored in the past few years. We will now provide a brief review;
more extended reviews of molecular tagging velocimetry (MTV), also in flows of liquids, can be
found in Refs. [1,2,7]. In our research we have been inspired by the RELIEF technique [3], where
oxygen molecules are tagged by exciting them to a metastable vibrational state by means of a ns
pulsed laser. Reading is done by inducing fluorescence with UV light a while (≈10 µs) later. Other
techniques include hydroxyl tagging, where OH is made by photodissociation of water vapor [8],
or the creation of ozone molecules by photodissociating O2 [8], followed by the [slow O(20 µs)]
recombination to O3. The addition of (toxic) NO2 molecules allows one to create NO tracers by
photodissociation, coined VENOM in Ref. [9]. With femtosecond laser electronic excitation N2 can
be dissociated, which is followed by recombination and emission of visible light during O(10µs).
This velocimetry scheme has been named FLEET [5]. Finally we mention tagging of added biacetyl
molecules, which decay by slow phosphoresence [10,11]. It turns out that in biacetyl tagging the
spatial resolution is compromised by collisional quenching [11]. To the best of our knowledge, only
two molecular tagging techniques have been used to obtain quantitative turbulence data that can be
compared to the result of more conventional techniques [6,12]. However, a great promise of MTV
techniques is their application in harsh environments, such as combustion, or in flows that cannot
be seeded.

For gases, mass diffusion approximately equals the diffusion of momentum; their ratio, the
Schmidt number, ν/Dmol ≈ 1. Specifically, for our experiment, NO in air, Sc = 0.62. This implies
that mass diffuses in a time interval over which the smallest vortices in turbulence remain coherent.
It imposes a fundamental constraint on turbulent velocimetry of motion on the smallest length and
timescales: they will remain uresolved.

In the context of dispersion of a passive substance, a fundamental question is how molecular
diffusion and turbulence interact. Specifically, will the joint action of turbulence and molecular
diffusion be just additive, or will the result be less or more than the sum? In a seminal paper Saffman
[13] concluded that the spreading of a cloud with respect to its center of mass is more than the sum,
while the dispersion of the center of mass itself is less than the sum. The point is that the Lagrangian
trajectories of the Brownian particles of the diffusing substance do not coincide anymore with the
trajectories of fluid parcels. This question is most acute in gases where Sc = O(1), which befits the
present paper.

Early experiments by Townsend [14,15] on the dispersion of heat spots in decaying turbulence
appeared to support his analysis, but a sign error was noted in Ref. [13]. The dispersion of heat is
characterized by the Prandtl number, in air Pr = 0.72, which is comparable to the Schmidt number
of molecular substances. The shape and decay of thermal wakes was measured in an Eulerian frame,
and compared to exact solutions of the convection-diffusion equation in regions of constant shear.
The comparison to the experimental results showed that the size of these regions extends to 15 η,
suggesting that the turbulent velocity field is smooth on scales much larger than the Kolmogorov
scale η [14]. However, intermittency should lead to smaller length scales which are relevant for
high-order statistics [16].

Experiments by Mickelsen [17] in grid turbulence on the dispersion of light (He) and heavy
molecules (CO2) with widely different diffusivities concluded that there is no interaction effect: in
these experiments turbulent dispersion and molecular diffusion were found to be independent and
simply additive.
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Mazzino and Vergassola [18] found that the manner in which molecular diffusion interacts with
turbulent dispersion is determined by the Lagrangian velocity autocorrelation function. This was
demonstrated using a model calculation involving a synthetic velocity field. If Dtot is the total
dispersion rate of a diffusing substance in turbulence, then the difference Dtot − Dmol could be made
both to increase or decrease with increasing Dmol, with the understanding that Dmol is a substance
property, and Dtot also embodies the properties of the flow.

The dispersion of point clouds in a turbulent channel flow was studied numerically by Kon-
tomaris and Hanratty [19] where molecular diffusion was modeled using a stochastic process. In
this inhomogeneous flow, both a diffusive enhancement or depletion of the convective contribution
to dispersion was found, depending on the spatial direction chosen. Because the turbulent velocity
field is incompressible, next to expanding, also contracting regions exist and a blob of passive
tracer material develops a filamentary structure. This affects the contribution of molecular diffusion,
which will be more rapid in regions of steep gradients. Several exact solutions embodying these
phenomena are discussed in Ref. [20]. Similarly, for laminar shear flow, the interaction with
molecular diffusion—Taylor dispersion [21] was analyzed in several geophysically inspired flow
models by Ref. [22].

The subject of the interaction between turbulence and molecular diffusion is not without contro-
versy. Taylor states that the dispersion of a passive scalar is determined by the motion of fluid
parcels only, independent of the molecular diffusivity [23]. More specifically, Pope [24] states
that the probability of the local scalar concentration C(x, t ), conditioned on the velocity u(x, t ),
is independent of the molecular diffusivity Dmol in the limit of infinite Reynolds number. However,
while this may hold for global averages, and modeling of scalar transport, small-size structures—the
subject of this paper—will still spread due to molecular diffusion.

The organization of this paper is as follows. In Sec. II we describe models for the widening
of written lines. The experimental setup and image analysis is discussed in Sec. III. Results on
the dispersion of lines and dots are shown in Sec. IV. Written lines are stretched, folded and
compressed by turbulence and develop large concentration fluctuations. The statistical properties
of these fluctuations are discussed in Sec. IV E. Finally we discuss the measurement of velocity
structure functions and their anomalous scaling in Sec. V. A brief account of the results already
appeared in Ref. [25]. The present paper describes the details of the experimental methods and
expands on the results, further extending them to include large-scale concentration fluctuations and
velocimetry.

II. TURBULENCE AND MOLECULAR DIFFUSION

In case of purely diffusive spreading the linear size σ (t ) of a Gaussian cloud with one-
dimensional concentration profile C(x, t ) ∝ exp[−x2/σ 2(t )] that starts from a point grows in time
as σ̃ 2(t̃ ) = 4

Sc t̃ , where the size of the cloud was made dimensionless with the Kolmogorov length η,
σ̃ = σ/η, and time t was made dimensionless with the Kolmogorov time τη, t̃ = t/τη. The question
now is how this simple form is changed in the presence of turbulence.

Saffman [13] showed that the interaction between turbulence and molecular diffusion is subtle:
the dispersion of a tracer cloud relative to its point of release is less than the sum of turbulent
dispersion and diffusion. The argument is that molecules forget their history more quickly than
fluid parcels. However, the dispersion of clouds around their center of mass is more than the sum
of turbulent dispersion and molecular diffusion. The constructive interaction results in an extra
contribution which is third-order in time,

σ̃ 2(t̃ ) = 4

Sc

(
t̃ + 1

9
t̃3

)
. (1)

The prefactor 1/9 is consistent with the assumption of homogeneous isotropic turbulence. The t̃3

dependence was already concluded by Townsend [15], but with a prefactor tailored to the case of
decaying turbulence. It must be noted that all previous experiments [14,15,17] involved spreading
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of a substance or heat from a fixed source. This is not the context of Eq. (1), which only holds in the
Lagrangian frame of turbulence.

The interaction term Eq. (1) was reproduced by the stochastic analysis of Sawford and Hunt [26]
and Buaria et al. [27,28] who also allowed for the finite initial size σ (0) of the cloud. This led them
to the following expression for the growth of a molecular cloud in turbulence:

σ̃ 2(t̃ ) = σ̃ 2(0) + σ̃ 2(0)

(
t̃2

3
− 7 Sε

18
√

15
t̃3

)
︸ ︷︷ ︸

a

+ 4

Sc

(
t̃ + 1

9
t̃3

)
︸ ︷︷ ︸

b

, (2)

where Sε is the dissipation skewness, Sε ≈ 0.5 [29], and where term (a) expresses the influence of
turbulence, while term (b) is the interaction between turbulence and diffusion of Eq. (1).1

In part (a) of Eq. (2) the growth of the cloud due to turbulence starts quadratically in time. In
fact, the analysis of Buaria et al. [27] assumes for the contribution linear in time

2〈r(0) · S(0) · r(0)〉 t = 0, (3)

with the strain tensor Si j = (∂ui/∂x j + ∂u j/∂xi )/2, and where averages are over turbulence real-
izations and orientation e(0) of the initial pair separation, r(0) = r(0)e(0). Equation (3) is justified
when e(0) is uncorrelated with the rate-of-strain tensor S, so that the average involves a factor 〈S〉
which is zero in isotropic turbulence. As was argued by Dhariwal and Bragg [31], whether this
assumption holds or not depends on the statistical state of the system. If, at t = 0, the particles are
inserted in the flow randomly, e.g., as they would be in the numerical simulation of Ref. [27], then
〈e(0) · S(0) · e(0)〉 = 0. If, however, the particles have experienced the history of the flow, then their
relative orientation e(0) should be correlated with the strain tensor S. This more natural condition
is the context of our experiment. It would be very hard to realize in a numerical simulation, as a
prohibitive amount of particles must be traced to find two particles separated by � η at initial time.

We conclude that the growth of a cloud due to turbulence in our experiment should involve a term
linear in time, 2 σ̃ 2(0) τη〈r(0) · S(0) · r(0)〉 t . An upper limit of this term is reached when e(0) is
directed along the eigenvector of S with the largest eigenvalue λ1, which leads to the simple model,

σ̃ 2(t ) = σ̃ 2(0)
(
1 + 2 S t̃

) + 4

Sc

(̃
t + 1

9
t̃3

)
, (4)

with S = λ1τη = 0.357 [32].2 The correlation between e(0) and S(0) will also affect the higher
order terms in part (a) of Eq. (2), which will completely change the analysis of Ref. [27].

The linear approximation of Eq. (4) defines an effective diffusion coefficient Deff , σ 2(t ) =
σ 2(0) + 4Deff t , with

Deff = Dmol + σ 2(0) S/2τη, (5)

where Dmol is the molecular diffusion coefficient. The effective diffusion coefficient depends on the
turbulence intensity through the Kolmogorov timescale τη; in quiescent flow, τη → ∞ and Deff =
Dmol.

The t̃3 dependence in Eqs. (2) and (4) owes to the enhanced diffusion in regions of strain-Taylor
dispersion- and should not be confused with Richardson’s famous t3 law [34]. This law was inferred

1Note that Eq. (2.17) in Ref. [27] is for the squared separation of molecular pairs, which is twice the squared
cloud size [30]. However, the squared Gaussian width σ is half the squared cloud size. Also, Eq. (2.17) in
Ref. [27] is for the particle separation in three dimensions whereas we consider one-dimensional Gaussian
cross sections, which leads to a factor 3. In summary, there is a factor 3 between term b of Eq. (2) and the
corresponding term in Eq. (2.17) of Ref. [27].

2This is close to the dimensional estimate τη〈(∂u/∂y)2〉 = (2/15)1/2 = 0.365 for homogeneous isotropic
turbulence [31,33] which was used here and in our earlier paper [25].
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FIG. 1. Experimental setup for writing in air. (a) Writing single lines. The beam of an Ar-F excimer laser
(a) at λ = 193 nm is focused into the 6.4 × 6.4 mm2 field of view (b) by lenses (c). A while later the created
NO molecules are illuminated by a light pulse from the dye laser (d) at λ = 226 nm using a broad beam that
embraces the written pattern. This wavelength is blocked by an absorption filter (e) which transmits the induced
fluorescence. The UV image is registered by a gated, intensified camera (f). The turbulent flow emanates from
a jet; in the field of view the flow is approximately homogeneous and isotropic, with typical mean velocity
V = 45 m/s, root-mean-square velocity v = 12 m/s, Taylor-scale Reynolds number Rλ = 514, Kolmogorov
scale η = 14 µm, and Kolmogorov time τη = 13 µs. (b) By crossing the writing beam several times with a
secondary beam, using a lens and spherical mirror (g) to focus it, a double cross can be written.

from a rather daring analysis of experiments on the dispersion of clouds, volcano ash and balloons.
It holds for times that are so long that the vortices in which the scalar started have lost coherence.
In Sec. IV D we will argue that these times are out of reach in our experiment. For very long times,
t 	 τη, but with δx within the inertial range, δx(t ), will increase exponentially [31,33].

III. EXPERIMENT

We here describe the generation of a strongly turbulent jet flow, the optics to write and read
patterns, and the processing of the fluorescence images.

Our experimental setup is sketched in Fig. 1. Two variants of this setup were used: with one
writing laser beam we studied the widening of lines (initial width δ ≈ 50 µm ≈ 3.6 η) with three
intersecting laser beams [as shown in Fig. 1(b)], and employing the nonlinearity of the writing
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process [6] we define two dots whose separation 
 ≈ 3.4 mm lies in the inertial range (
 ≈ 200 η),
while the dot size is comparable to the beam width δ. By measuring the width of lines σ (t ) and the
separation of dots 
(t ), turbulent mixing both on small and large scales is studied in a frame that
moves with the flow: the Lagrangian frame.

A. Turbulent flow

Strong turbulence in air was created in the efflux of a jet. At its orifice (with d = 1 cm diameter)
the velocity is near sonic, but it slows down to a mean velocity V = 40 m/s at a distance 40 d
from the orifice where all measurements were done. The turbulence was characterized using
hot-wire anemometry, using probes with a sensitive length of 200 µm and time response 50 µs.
At the operating conditions the typical time and length scales of our experiment (τη = 15 µs and
η = 15 µm) are too small for a measurement of the turbulent dissipation rate ε using hot-wire
anemometry. Therefore, the well-established scaling behavior of the turbulence properties of a jet
was used to obtain the characteristics at the operating conditions from a measurement at much lower
velocities.

In particular, the turbulent dissipation rate ε follows from the Kolmogorov relation

ε = Cε

v3

L
, (6)

with L the integral length scale, and v the turbulent velocity. Assuming isotropy, ε was measured
from a velocity signal v(t ) of the stationary probe,

ε = 15ν
〈
(dv/dy)2

〉 = 15
ν

V 2

〈
(dv/dt )2

〉
, (7)

where we have used Taylor’s frozen turbulence hypothesis. The time and space resolution of the
hot-wire anemometer allowed measurement of ε up to V = 8 m/s. Taking the orifice diameter as
the integral scale L, an effective Cε = 0.47 was determined, which compares well to that found in
Ref. [35]. At the conditions of our tagging experiments, the finite width of the lines, σ = 4 η at the
instant of writing, and the further widening of the lines due to turbulent dispersion and molecular
diffusion (σ = 6 η at t = τη) prevents direct measurement of ε from velocity gradients. However,
the turbulent velocity v can be determined sufficiently accurately and can then be used together with
Eq. (6) to find ε (and thus the turbulence length and timescales η and τη, respectively).

B. Writing and reading

Tracer NO molecules are formed in the waist region of a gently focused, tunable ArF excimer
laser beam (�-Physik, various models).

Along this focus NO is formed over a length of approximately 1 cm. Therefore, the line extends
outside the 6.4 × 6.4 mm2 field of view of the camera. The tagged line has a waist diameter of about
50 µm. The duration of the writing laser pulse is ≈20 ns, which is instantaneous on the timescale
of the turbulence. Using lenses and (spherical) mirrors, the main excimer beam can be crossed two
times, resulting in a written pattern consisting of two crosses. The beam is refocused in each of the
two crosses.

The reading laser is fired with delays ranging from 3 µs to as much as 35 µs with respect to
the tagging laser. This frequency-mixed Nd:YAG-pumped dye laser is operated at a wavelength of
226 nm to visualize the created NO tagging molecules. The probe laser excites the γ bands of NO,
and the resulting LIF emission from the excited (A) state is detected with the camera system. In
the experiments the dye laser beam is aligned anticolinearly to the main excimer beam and both
travel perpendicularly to the mean flow direction. The beam cross section was adjusted to result in
maximal intensity while still encompassing the written line. Also the reading of the advected and
deformed line is instantaneous on the timescale of the turbulence.
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The UV fluorescence from the NO molecules is observed with an intensified gated CCD camera.
The light incident on the camera is filtered using a high-pass filter that removes Rayleigh scattered
light from both lasers while transmitting most of the NO fluorescence. The write-read delay t is
controlled by timing the respective laser pulses using a multi-channel delay generator (Stanford
DG535), which also synchronizes the camera gate to the read laser pulse. The 10242 pixel camera
images are captured using a 12 bits frame grabber and then stored for off-line processing.

C. Image processing

The wrinkled lines of the deformed patterns are traced using an image processing technique
based on active contours which finds their backbone xi(s) [36]. Next, the profiles of perpendicular
sections of instantaneous lines i are determined by fitting Gaussians to the line intensity I l

i ,

I l
i (ζ , s) = Ii(s) e−ζ 2/σ 2

i (s,t ), (8)

where ζ is measured perpendicular to the line center xi(s), σi(s, t ) is the line width, s is the
curvilinear coordinate, and t the time since writing.

Briefly, an active contour in an image is a line, endowed with physical properties (such as
elasticity), which is evolved dynamically to find a best fit to the corresponding image object.
Technically, this is done by turning the image into a potential energy surface with an energy
minimum at the sought image object, i.e., the image of the fluorescing NO line [37,38].

In the sequel, all statistical properties of wrinkled lines involves this backbone. Its location
xi(s) = (xi(s), yi(s)) has noise, which is mainly due to photon noise in the registered images.
Further, the coordinates (xi(s), yi(s)) may suffer from errors made in tracing the line’s backbone.

In addition to the position xi(s) and Gaussian width σi(s) of the lines, we will also be interested
in the intensity Ii(s) on their backbone, which provides information on the fluctuating scalar
concentration on lines xi. A point of concern in our experiments is the illumination inhomogeneity
of the laser beams. The writing laser beam is (weakly) focused with an intensity maximum in the
center of the image. The reading laser beam, which is used to visualize the NO tracer distribution by
inducing fluorescence, embraces the wrinkled lines, but the intensity in a beam cross section is not
homogeneous. A map of these intensity variations on the x-y plane can be made by registering the
intensity Ii(s) at the line positions xi(s) in a turbulent flow. These lines randomly sample an interval
on the y axis. Due to the mean flow its location on the y axis shifts to larger values with increasing
delay time while its size grows. The result of this experiment at delay times t = 20 µs and t = 30 µs
is shown in Fig. 2, which demonstrates that at t = 30 µs the fluctuating lines have not yet reached
the limits of the Gaussian reading beam.

The intensity variation along x is modeled by a quadratic fit, which was used to normalize the
intensity of lines Ii(s). No correction was made for the intensity profile of the reading beam cross
section, as we only have information about its two-dimensional projection. The intensity of both
writing and reading laser varies from shot to shot, that is from one line to the other. Therefore, the
intensity of each line was normalized by the line-averaged intensity, Ĩi(s) = Ii(s)/〈Ii(s)〉s.

D. Turbulence characterization

A few typical images of lines are shown in Fig. 3. As the delay time between writing and reading
increases, the lines become increasingly wrinkled. In Fig. 3 we show the variation of both mean
and turbulent velocities across the field of view of the camera. These experiments were done at the
highest jet back pressure. The relative variation of v(x) is 2.5%, which illustrates the homogeneity
of the turbulent velocity field over the field of view. In our experiments we use the measured v(x)
and Eq. (6), to infer the small-scale turbulence characteristics, η and τη as in Eqs. (6) and (7).
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(a) (b)

(c) (d)

FIG. 2. Map of the laser intensity distribution made by 4 × 103 turbulent lines at two delay times between
writing and reading (a, c) t = 20 µs, (b, d) t = 30 µs. The intensity variation depends on the fine tuning of the
laser, which was different for the two delay times. (a, b) Full lines: mean profiles in x; dashed lines: quadratic
function used in the normalization of the intensity profiles Ii(s) of lines.

IV. RESULTS ON TRACER DISPERSION

We show results at very short times, where turbulent dispersion and molecular diffusion act
additively and then discuss line widening at long times (up to 4τη) where the effects of the interaction

FIG. 3. (a) Written lines, seen at a delay of 10 µs (top) and 30 µs (bottom). The bright lines indicate
the centroids (backbones) of the lines. They were determined from the images using the technique of active
contours [36]. As can be seen at the largest time delay, these fits are not perfect. The arrow points to a loop that is
missed. (b, c) Mean (upper lines) and rms velocity (lower lines) in the field of view of our camera. (b) At a time
delay of t = 10 µs, (c) at t = 30 µs. At t = 10 µs, the turbulent velocity v varies from v = 12.3 . . . 12.6 m/s
across the image, while at t = 30 µs, v = 12.1 . . . 12.7 m/s.
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FIG. 4. (a) Diffusion coeffcient of NO in still air. Symbols are 〈σ 2(t )〉, dashed line is σ 2(0) + 4 Dmol t , with
Dmol = 2.42 × 10−5 m2s−1. At short times (gray area) the diffusion is anomalous due to the tagging process
[6]. (b) Dots: experiment, Deff = (〈σ 2(t )〉 − 〈σ 2(t0)〉)/4 (t − t0) measured from the width of lines for a range
of turbulent velocities u and times t ranging from (t − t0)/τη = 0.1 to (t − t0)/τη = 0.5. The initial time is
t0 = 10 µs, when diffusion has become normal. The error bars are the rms variation of Deff along the written
line. Dashed line: model Eq. (5); solid line: using Eq. (2). The gray line indicates the molecular diffusion
coefficient.

between turbulence and diffusion play a role. We next focus on dots, instead of lines, and study their
growth with time. By separating two dots over an inertial range distance at initial time, we retrieve
Batchelor dispersion, which should also be influenced by the interaction effect.

A. Effective diffusion

At short times, the Gaussian width of lines grows diffusively, σ 2(t ) = σ 2(0) + 4 Defft , where
in the absence of turbulence Deff = Dmol. In the first 10 µs after the writing laser pulse, Fig. 4(a)
shows that diffusion is anomalous due to the heat released in writing; after that time we find Dmol =
2.42 × 10−5 m2s−1, which is larger than the literature value, Dmol = 1.99 × 10−5 m2 s−1 [39]. Both
the anomaly at short times, and the elevated value of Dmol are related to the tagging process [6]. We
measure Deff from the growth of the line width from (t − t0)/τη = 0.1 to (t − t0)/τη = 0.5,

Deff =
〈
σ 2

i (t )
〉
i − 〈

σ 2
i (t0)

〉
i

4 (t − t0)
. (9)

The initial time is t0 = 10 µs, when diffusion has become normal.
We varied the turbulent velocity u, and thus the Kolmogorov time τη by varying the mean flow

velocity of the jet, as explained in Sec. III A. Averages 〈 〉i were done over ≈103 independent lines
i, and over the central 2 mm of the lines, where the width is constant.

We compare the experimental result, shown in Fig. 4, to the model Eq. (5), and to the finite
difference computed from Eq. (2). At these small times, t 
 τη, the influence of the interaction
term is negligible. The effective diffusion Deff in Eq. (5) depends on the initial squared width of
the line: the measured σ (0) is 6.0 ± 0.1 µm. The simple model agrees well with the data, while
there is a large discrepancy with the prediction of Eq. (2). As explained in Sec. II the context of
our experiment, where tracers are indigenous to the flow, differs from the context of the analysis in
Buaria et al. [27] where particles are inserted at will. Consequently, a term linear in t is missing in
part (a) of Eq. (2), which causes the discrepancy with the experiment.
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(a)

(b) (c)

FIG. 5. The widening of lines written in a strongly turbulent flow is due to both molecular diffusion and
turbulent dispersion. (a) The line has been registered a time t = 35 µs after it was written. It is shown together
with a fit x(s) of its backbone; these fits were made using the technique of active contours [36]. The line
profile was fitted by Gaussians I l (ζ , s) = I (s) exp(−ζ 2/σ (s)2) where ζ is measured perpendicular to the line
backbone, which determined their width σ (s), where s is the curvilinear coordinate. At each time delay the
average of σ 2(s, t ) was done over 4 × 103 independent lines and over each individual line. (b) Symbols:
〈σ 2(t )〉, the error bars are the rms variation of the time-averaged σ over the extent of the line. Solid line:
prediction of Eq. (2) [27]; dashed line: Eq. (2) without the interaction term, 1

9 t̃3. Dash-dotted line: prediction
of Eq. (4). (c) Probability Density Functions (PDF) of ξ [Eq. (10)] at time delays t = 15, 30, and 50 µs
(t̃ = 1.1, 2.3, and 3.8, respectively).

B. Cloud dispersion at long times

To observe the widening of lines over long times (a few times τη) we have written single straight
lines i in a strongly turbulent flow (Rλ = 460) and measured their average squared width 〈σ 2

i (s, t )〉i,
as a function of the delay time t between writing and reading. Averages 〈 〉i were done over 4 × 103

lines, and over the extent of each individual line. Figure 5 shows the prediction of Eq. (2) [27],
while the result of Eq. (4) is also compared to the experimental result. For short delay times Eq. (2)
disagrees with the experiment, consistent with the result in Fig. 4. For longer delay times both the
model Eqs. (4) and (2) are in fair agreement with the experiment, an agreement which owes to
the ∝ t̃3 interaction term. Thus, this experiment demonstrates the interaction between molecular
diffusion and turbulent dispersion.

The average line widening is but one aspect of turbulent dispersion. The stretching and squeezing
of lines is caused by local gradients of the turbulent flow. In strong turbulence, the statistical
properties of these gradients are highly non-Gaussian, with (stretched) exponential tails of the PDF;
this should be inherited by the instantaneous line widths σ . Figure 5(c) shows the PDF of the scaled
(squared) width ξ defined as

ξ = σ 2(t̃ ) − 〈σ 2(0)〉
2 t̃ 〈σ 2(0)〉 − 2

Sc 〈σ̃ 2(0)〉
(

1 + 1

9
t̃2

)
, (10)

at times t̃ = 1.1, 2.3, and 3.8. According to Eq. (4), the average of ξ is the dimensionless strain
rate S, suggesting that the fluctuations of ξ reflect the fluctuations of the strain rate. The PDF of
the linewidths in Fig. 5(c) has long tails, which approximately scale with delay time t , such that the
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(a) (b)

FIG. 6. The widening of dots in a turbulent flow. The dots are small molecular clouds that were created at
the intersection of two laser beams, using the nonlinarity of NO formation. (a) Influence of the nonlinearity of
the writing process. The intensities of the crossing lines are I1 and I2, while I0 is the intensity of the intersection
point. In the case of quadratic nonlinearity (β = 2), I0 = 2(I1 + I2). (b) Open circles: 〈σ 2(t )〉; the closed dots
show the influence of the deformation of the cross due to turbulence, 〈σ 2(t ) sin2(α2 − α1)〉. The statistical
uncertainty is smaller than the symbol size. Full line: prediction of Eq. (2) [27]; dashed line: Eq. (2) without
the interaction term 1

9 t̃3. Dash-dotted line: prediction of Eq. (4).

fluctuations of ξ are approximately independent of delay time. This indeed suggests a link with the
statistics of the strain rate.

C. Dispersion of 3D blobs

The creation of the NO tracer molecules through irradiation by an intense UV laser is a nonlinear
process, and we have previously shown that the tagged NO molecule concentration depends
quadratically on the laser intensity. This offers the opportunity to write three-dimensional blobs
in the perpendicular intersection region of two laser beams [6].

Assuming Gaussian beam profiles with Gaussian widths σ , the concentration profile of a blob is

C(x, y) = C0[e−x2/σ 2 + e−y2/σ 2
]β, (11)

where the intersection is assumed to be in the origin, and where β = 1 in the case that the written
concentrations may simply be added and β = 2 for a writing process with quadratic nonlinearity.
These two cases are illustrated in Fig. 6. In the case β = 2, the NO concentration profile has the
shape of a cross with a highlighted center which is approximately Gaussian.

At initial time, the tagged NO lines cross at right angles, but at later times these lines will rotate,
and we fit the intensity profile

I (x, y) = I0
[
e−(y cos α1−x sin α1 )2/σ 2 + e−(y cos α2−x sin α2 )2/σ 2]2

, (12)

where α1 is the angle of the initial horizontal line with the x axis, and α2 is the angle of the initial
vertical line with the x axis; at t = 0, α1 = 0 and α2 = π/2. In the analysis of the NO fluorescence
images, the lines and their intersections were found using the technique of active contours, after
which the function I (x, y) was fitted to the intersection region, with the parameters I0, σ, α1, and
α2 determined in a least squares procedure. The intensity profile Eq. (12) is not a simple Gaussian.
Due to the nonlinearity, the fitted σ over-estimates the true width. In addition, the apparent width
changes due the deformation of the cross, such that α2 − α1 �= π/2.

The initial concentration profile will disperse as time progresses, both its scale σ and its profile
C(x, y) will change. For β = 2, the cross term in Eq. (11) remains a solution of the diffusion
equation. Therefore, we assume that σ remains appropriate for the change of scale.

Our laser beams are a mere 50 µm wide, and crossing them exactly in space is a challenge. The
degree of spatial overlap can be monitored by a measurement of the fluorescence intensity I0 in the
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intersection point, compared to I1,2 of the crossing lines (see Fig. 6). In the case of perfect overlap
and quadratic nonlinearity, the quantity I0/(I1 + I2) = 2β−1 (in case that I1 = I2). In our case we
find a fair degree of overlap with an average ratio I0/(I1 + I2) = 1.5 ± 0.4, where the error is the
root-mean-square (rms) fluctuation.

The result of σ as a function of delay time is shown in Fig. 6, together with the predictions of
Eqs. (2) and (4). Identifying crosses and fitting them is challenging, and the fate of these blobs could
only be followed over limited time (̃t � 3). The results agree with those for the spreading of lines.
The discrepancy with the model Eq. (2) at small times is again evident, while both models highlight
the importance of the interaction contribution.

D. Turbulent dispersion at inertial-range scales

A surprising consequence of the interaction of molecular diffusion with turbulence is that the
center of mass of molecular clouds lags behind the dispersion of fluid parcels (while the growth of
their size is enhanced) [13].

Two points x1, x2, which are separated by a distance 
 which lies in the inertial range will for
short times separate ballistically; x1,2(t ) = x1,2(0) + u1,2 t , where the fluid velocities u1,2 are taken
at their initial positions x1,2(0) and t = 0. The fluctuation of their separation 
(t ) is then given
by the statistics of the velocity difference u2 − u1 across 
, that is, by the second-order velocity
structure function. This is expressed by the well-known Batchelor formula [30],

〈
2(t )〉 − 
2
0 = 11

3
C2 (ε
0)2/3t2, (13)

where C2 = 2.1 is the universal constant of the inertial-range scaling law of the second-order
longitudinal Eulerian structure function [40], 〈[(u2 − u1) · �(0)/
(0)]2〉 = C2ε

2/3 
(0)2/3. and the
factor 11/3 owes to the isotropy of the velocity field. The question is until which delay time
t the result Eq. (13) holds, and whether this result also applies to physical clouds, rather than
mathematical points. Surprisingly, it was recently found experimentally that Eq. (13) holds to times
t/τη ≈ 30, that is until after many small-eddy turnover times, when the assumption of linear-in-time
displacement has become highly questionable [41].

In our experiment we write a double cross, with 
(t ) the separation of its nodes [see Fig. 6(a)].
These nodes are the intersection points of the centroids of the lines that make the double cross.
Before discussing the separations 
 we show in Figs. 7(c)–7(f) the mean and rms positions of the left
and right intersection points, 〈x〉, 〈y〉, and 〈(x − 〈x〉)2〉1/2, 〈(y − 〈y〉)2〉1/2, respectively. Both mean
and rms positions increase linearly with time, defining mean U,V and turbulent u, v velocities.
The mean velocities are (U,V ) = (1.6, 35.6) m/s and (1.1, 37.2) m/s for the left and right dots,
respectively, corresponding to the vertical orientation of the jet. The turbulent velocities, (u, v) =
(7.8, 9.2) m/s and (7.6, 9.2) m/s indicate a slight anisotropy of the flow.

In homogeneous and isotropic turbulence with zero mean flow, the mean separation 〈�i(t )〉i

would be constant and equal to �0. To correct for the slight inhomogeneity and anisotropy in our
flow, we define the initial separation at each time delay t as the mean �0 = 〈�i(t )〉i.3 Writing
a double cross and registering it a time t later is repeated 4 × 103 times at each t . From these
images we collect the statistics of �(t ) = x2 − x1. The results are shown in Fig. 6(c), and compared
with Batchelor’s prediction Eq. (13). Because we measure 
(t ) in a two-dimensional projection of
the actual separation, the isotropy factor 11/3 in Eq. (13) now becomes 7/3. We emphasize that
the computation of Batchelor’s prediction does not involve adjustable parameters; the dissipation
rate ε was measured in a separate experiment. The statistical error of 〈
2(t )〉 − 
2

0 is smaller than

3This makes the left-hand side of Eq. (13) equivalent to that used in Ref. [41], which involves the difference
〈|�(t ) − �0|2〉. Interestingly, in Ref. [42] the authors of Ref. [41] find that the proper Eq. (13) does not agree
with their data.
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(a)

(b)

(c) (d)

(e) (f)

(g)

FIG. 7. The dispersion of two dots in turbulence that at t = 0 have an inertial-range separation 
(0) =
200 η. The separation 
(t ) is defined as the distance between the intersection points of three lines written in
a turbulent flow. (a) Image of double cross, t = 10 µs after it was written, (b) delay time of t = 40 µs. (c, d)
Mean displacement of the left and right intersection point, dots: 〈y〉, open circles: 〈x〉. The corresponding
mean velocities are (U,V ) = (1.6, 35.6) m/s and (1.1, 37.2) for the left and right dots, respectively. (e,
f) Root-mean-square displacement, dots: 〈(y − 〈y〉)2〉1/2, open circles: 〈(x − 〈x〉)2〉1/2. The corresponding
turbulent velocities are (u, v) = (7.8, 9.2) m/s and (7.6, 9.2) for the left and right dots, respectively. Mean
and rms velocities were found from linear fits [gray lines in panels (c–f)]. (g) Dots: measured 〈
2(t )〉 − 
2(0)
as function of delay time t . Line: prediction of the Batchelor formula, dashed line: Batchelor formula including
interaction of diffusion with turbulence.

the size of the dots in Fig. 6. What remains are systematic errors due to pointing stability of the laser
beams.

The excellent agreement of Batchelor’s formula Eq. (13) with the experiment is remarkable
because the measured 
(t ) is the separation between the centroids of big molecular clouds whose
size grows to ≈10 η at the longest delay time. This growth is mainly due to the churning of
small-scale eddies. Clearly, our results demonstrate that this small-scale growth and the large-scale
dispersion are independent.

The interaction with molecular diffusion causes the centroids of the molecular clouds to lag
behind the fluid parcels that carry them. In dimensionless units, the squared distance lags by
4t̃3/3 Sc [13]. As the largest time in our experiment is t̃ ≈ 3, and the largest distance is 
̃2 ≈ 103,
this effect is smaller than the accuracy of our experiment.

The largest time delay in our experiment is 60 µs ≈ 3 τη. At times t > (
2
0/ε)1/3 [dimensionless

t̃ > 
̃
2/3
0 ], the large eddy with size 
0 that contains the two intersection points breaks up and
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(a)

(b)

(d) (e)
(f)

(c)

FIG. 8. (a) Image of a line of NO molecules for delay time t = 30 µs (2.3 τη ). The black line traces its
backbone x(s). (b) Normalized line intensity Ĩ (s) as a function of the curvilinear coordinate s along the line
(the length of this line is larger than the 6.4 mm width of the image). The intensity Ĩ (s) has been filtered
using a binomial filter with width 2 η. (c) Rms intensity fluctuation along lines as a function of delay time
between writing and reading. (d) PDF of increment δĨ (r) for separations r = 20 η and 200 η and delay time
t = 50 µs (3.8 τη ). (e) Structure functions G1/p

p (r) = 〈(Ĩi(s + r) − Ĩi(s))p〉1/p
i,s for orders p = 2, 4 and delay time

t = 50 µs. Dashed lines: fits of inertial range behavior Gp(r) ∼ rζp , with ζp ≈ 0.1 p. Gray line: G1/2
2 of lines at

t = 2 µs, which provides an estimate of the uncertainty of the results at t = 50 µs. (f) Joint histogram P(κ, I ) of
curvature κ and intensity I , line: mean 〈κ〉 as a function of intensity I . Curvatures were computed over intervals
lc = 15 η. The shades of gray are on a logarithmic scale. The correction for the intensity variation of writing
and reading lasers over the image plane was discussed in Sec. III B.

the separation is predicted to follow Richardson’s statistics, 〈
2(t )〉 = g ε t3, with g the universal
Richardson constant [34,43]. If we take 
̃0 = 30 as the smallest separation inside the inertial
range, then t̃ > 10. Even for the smallest length scale in our experiments, 
̃0 ≈ 4, t̃ > 2.5 before
Richardson scaling can be observed. Therefore, the Richardson regime is inaccessible in this
experiment.

E. Concentration fluctuations

Well-mixed tracers in an incompressible homogeneous turbulent flow remain well-mixed. This
is not so for a subset of tracers that are tagged at initial time in a specific region, such as the written
lines in our experiment. Lines are stretched and wrinkled by turbulence and tracers along the line
are redistributed, leading to lumps and even rupture. This is illustrated in Fig. 8 where we show
a wrinkled line together with the intensity I (s) on the line backbone x(s). Throughout we assume
that the intensity I (s) is proportional to the NO tracer concentration. The question is now about the
statistical properties of I (s).
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It is well known that an unmixed tracer distribution C(r) in a turbulent flow develops large
concentration fluctuations at small scales. These fluctuations are characterized by the Eulerian
structure functions of order p, Gp(rê) = 〈[C(x + r ê) − C(x)]p〉x. In the inertial range Gp(r) has
scaling behavior, Gp(r) ∼ rζp , which does not depend on the direction vector ê in isotropic scalar
turbulence. The traditional view has been that the value of the scaling exponent ζp is inherited from
a self-similar velocity field, ζp = p/3: the Kolmogorov-Obukhov-Corrsin theory [44]. However,
it was found recently both in experiments and direct numerical simulations that ζp is strongly
anomalous, that is, it is much less than p/3, and actually could reach an asymptote for large p [45].
In addition, the return to isotropy at small scales (small r) is marred by the emergence of ramp-cliff
structures which are inherited from the imposed large-scale concentration gradients [46–49].

The statistical properties of the intensity variation along the line, Ĩ (s) can be quantified using
the increments 
Ĩi = Ĩi(s + r) − Ĩi(s), with moments 〈(
Ĩi )p〉s,i, and averages 〈· · · 〉s,i over the
curvilinear coordinate s and lines i. These moments can be compared to the concentration structure
function Gp(r), with r an increment of the curvilinear coordinate. Note that this concentration
structure function differs both from the Eulerian and Lagrangian ones, it describes the spatial
increments along a deforming Lagrangian object. Similar mixed Eulerian–Lagrangian structure
functions have been discussed by Calzavarini et al. [50].

Probability density functions P(
Ĩ ) at separations r = 20 η and 200 η are shown in Fig. 8(d).
The PDF’s are non-Gaussian, but contrary to the PDF’s of the velocity increments (see Sec.V), the
shape does not vary strongly across the inertial range. Structure functions G1/p

p of order p = 2, 4 are
shown in Fig. 8(e). They exhibit a clear inertial-range (r � 20 η) scaling behavior, Gp(r) ∼ rζp , but
with a scaling exponent ζ2 ≈ 0.2 which is completely different from the Kolmogorov one, ζ2 = 2/3.
Moreover, the scaling exponents are self-similar, ζp ≈ 0.1 p, which, again, is very different from
self-similar turbulence, ζp = p/3. Scaling exponents of Lagrangian scalar concentration structure
functions, Gp(τ ) = 〈[C(x(t + τ )) − C(x(t ))]p〉, have been studied numerically by Bec et al. [51].
Their self-similar form would be Gp(τ ) ∼ τ p/2.

Registered lines suffer from photon collection noise, leading to noise in Ĩi(s). The effect on
structure functions can be estimated from lines measured at short delay times that are unaffected
by turbulence; these results are also shown in Fig. 8(e), and demonstrate the significance of our
conclusions.

The fluctuating intensity on the line—a Lagrangian object—is clearly outside the context of the
Kolmogorov-Obukhov-Corrsin phenomenology [44]. Inspection of Fig. 8(a) suggests a relation be-
tween the concentration maxima and the curvature of the line backbone. The folding and stretching
of material lines in numerical turbulence was recently discussed by Bentkamp et al. [52]. They
observed a stationary, algebraic PDF of local curvatures, even after a short time (4.16 τη).

We measured line curvatures κ (s0) at x(s0) by fitting quadratic polynomials to x(s) and y(s)
over intervals [s0 − lc/2, s0 + lc/2], from which κ (s0) = [x′′2(s0) + y′′2(s0)]1/2 was determined. The
smaller lc, the larger curvature can be detected. For material lines there is no lower limit on lc. In
Ref. [52] curvature radii as small as 10−7 η are found.4 For the physical lines in our experiment, lc is
bounded by diffusion, and thus by σ . Smaller lc than 8η gives larger curvature, but it is determined
by photon noise.

The joint PDF of curvature κ and intensity I and the dependence of the average κ on intensity in
Fig. 8(d) indeed suggest a weak correlation between the average curvature and intensity I .

V. VELOCIMETRY

Velocimetry can be done by registering the displacements of lines, however, it is not unambigu-
ous. Crudely, the vertical displacement 
y(x) of a point x on the line in a time t gives the vertical

4If lines in Ref. [52] were physical instead of mathematical, then the required Schmidt number, which follows
from lc ≈ (4Sc−1t/τη )1/2 η, would have been Sc ≈ 1012, which is unphysical.
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FIG. 9. Velocimetry of turbulent flows from the deformation of lines that is visualized a time t after
writing. (a) We infer the v component of the velocity from the perpendicular displacement 
y of the point
1 → 2′, v = 
y/t , while the true Lagrangian displacement is 1 → 2. Overhangs and self-intersections in the
two-dimensional projection are replaced by their convex hull (dashed lines). (b) Full lines: probability density
functions P[
v(r)] of transverse velocity increments at r/η = 31, and r/η = 293, respectively [indicated by
the gray lines in panel (c)]. Dashed lines (mostly hidden by the full lines): fits of stretched exponential to
the tails of the PDF’s, P(
v) = a exp(−α|
v|β ). Velocities are from line displacements after a delay time
t = 10 µs. To illustrate the symmetry of the PDF’s, P(
v) and P(−
v) are shown overlayed. (c) Structure
functions with p = 1, . . . , 8 measured from line displacements at a delay t = 10 µs. The structure functions
have been raised to the power 1/p; in a self-similar picture they would show inertial-range (r � 30 η) algebraic
behavior, G1/p

p (r) ∼ rζ (p)/p with the same slope ζ (p)/p = 1/3. Dashed line: Kolmogorov prediction G2 =
4
3C2ε

2/3r2/3. Gray line: hot-wire measurement at Rλ = 200, dash-dot line: Kolmogorov prediction. (d) Same
as panel (c), but now for a time delay t = 30 µs. (e) Open circles: scaling ζ (p)/p exponents determined from
structure functions summed over 2 time delays (t = 6, and 8 µs). Closed dots, same ζ (p)/p but now normalized
such that ζ (3) = 1. Open squares (partly obscured by closed dots): results of Noullez et al., which were
determined from plots of log Gp versus log G3 [12]. Dash-dotted line: Kolmogorov’s self-similar prediction
[16], dashed line: log-Poisson model [54].

component of the velocity v(x) = 
y/t . The situation is sketched in Fig. 9(a). The problem is the
error made when translating Lagrangian line displacements into Eulerian velocities. Errors arise
from ignoring the horizontal u-velocity component of a point on a written line, and from the 2D
projection of the deformed line which may even result in apparent self-intersections. In the analysis
of our results, these loops are replaced by their convex hull [see Fig. 9(a)]. The same procedure was
applied to line overhangs. These errors aggravate for longer time delays t .

From the velocities v(x) we can form the increments 
v(r) = v(x + r) − v(x), their probability
density function P[
v(r)] and its moments. Structure functions quantify the statistical properties
of the velocity difference 
v(r) measured across a distance r. In isotropic turbulence there are two
distinct ways to define this velocity increment. In the longitudinal case, the velocity component
points in the same direction as the separation vector r while in the transverse case they are
perpendicular. In our experiments we infer the transverse structure functions Gp(r) from line
displacements in the y direction:

Gp(r) = 〈[
vp(r)]〉 = 〈[v(x + r) − v(x)]p〉,
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which can be phrased in terms of the probability density functions (PDF) Pr (
v),

Gp(r) =
∫ ∞

−∞
Pr (
v) (
v)pd (
v).

As we write and observe single lines with a repetition rate which is set by the pulse rate of the
laser (10 Hz), our lines are completely independent and longitudinal velocity increments can not be
determined.5

Figure 9(b) shows probability density functions P[
v(r)] measured for two different separations,
r/η = 31 and r/η = 293, respectively. The velocity increments inferred from line displacements
were accumulated for 4 × 103 lines and delay time t = 10 µs (t̃ = t/τη = 0.8). Contrary to the
longitudinal case, the statistics of transverse velocity increments should be perfectly symmetric,
P(
v) = P(−
v) in homogeneous turbulence. This is demonstrated by overlaying P[
v(r)] and
P[−
v(r)] in Fig. 9(b). For large separations r the probability density functions tend to Gaussian
since the velocities at x + r and x become increasingly decorrelated, while for small separations
their large 
v tails are compatible with stretched exponentials, Pr (
v) = a e−α|
v|β , with β < 1. A
fit of these stretched exponentials is also shown in Fig. 9(b). The change of β from β < 1 at small
separations r to β = 2 for the Gaussian case at large r is characteristic of intermittency and leads to
a nontrivial dependence of the scaling exponents ζp of the structure functions on the order p.

We note, as also do Noullez et al. [12], that very large velocity differences are observed over
very short distances: they have been found as large as 30 m s−1 over a mere 400 µm. This must be
compared to the mean velocity V = 45 m s−1 and rms velocity v = 12 m s−1.

To illustrate our argument that MTV in a gas cannot resolve motion on the smallest scale, we
note that for the data of Fig. 9 the initial line width is σ̃ (0) = 3.7, which doubles after a delay of
t̃ = 0.7 (t = 10 µs). Even when σ̃ (0) = 1 (the Kolmogorov length), it would have increased by a
factor 2.5 after t̃ = 1 (the Kolmogorov time).

To study the influence of the time delay t on high-order structure functions, we plot in Figs. 9(c)
and 9(d) transverse structure functions of orders 1 to 8 in a log-log plot for t = 10 µs = 0.8 τη

and t = 30 µs = 2.3 τη. Their deviation from self-similarity is illustrated by plotting G1/p
p (r). If

Kolmogorov’s (1941) self-similar turbulence description would hold, then structure functions would
scale algebraically with the same exponent G1/p

p (r) ∼ r1/3 [16].
While at t = 10 µs a clear inertial range can be observed, it is virtually absent at t = 30 µs due to

the large line deformations. A compromise must be sought as to the delay time used. Shorter delay
times lead to less accurate velocities, but also to less severe line deformations. The Kolmogorov
prediction for the second-order structure function is G2(r) = 4

3 C2 ε2/3 r2/3, with the Kolmogorov
constant C2 = 2.1 [40], and where the factor 4/3 emerges because of the transverse arrangement; see
Fig. 9(c). The measured G2 has a larger scaling exponent, and under-estimates the dissipation rate
ε. Indeed, its estimate from G2 at the smallest separation r′, ε = 15

2 ν G2(r′)/r′2 = 7.7 × 104 m2s−3

is smaller than the estimate from Eq. (7), ε = 9.1 × 104 m2s−3. Hot-wire experiments were used
to calibrate the setup at lower Reynolds numbers. A transverse structure function from these
measurements is shown in Fig. 9(c); it perfectly agrees with the Kolmogorov prediction.

We have determined the exponents ζp from velocity structure functions summed over time delays
t = 6, and 8 µs, corresponding to 8 × 103 lines, with 1024 velocity increments each. However, it is
not enough to determine the high orders sufficiently accurately. Because of the symmetry of the PDF
of transverse velocity increments, the odd moments p = 1, 3, . . . vanish and we define all moments
in terms of absolute values |
v|.

The exponents ζp are shown in Fig. 9(e). After normalizing them, such that ζ3 = 1, ζp follows the
prediction of the log-Poisson model [54] which appears to correctly parametrize most experimental

5Experiments on anisotropic turbulence involving more general structure functions were discussed by Cekli
and van de Water [53].
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results. Our normalized results agree with those of Noullez et al. which are also shown in Fig. 9(e)
[12]. Much as theirs, the present results are nonintrusive measurements of transverse structure
functions, while the other experiments use hot-wire probes, mostly in the arrangement which
necessitates invocation of Taylor’s frozen turbulence hypothesis.

Noullez et al. [12] were the first to measure high-order transverse structure functions using
molecular tagging. Although our normalized results agree, there are differences. Contrary to that
of Ref. [12] our exponent ζ3 is significantly larger than 1. It appears that this anomaly increases
with increasing delay time. The scaling exponents in Fig. 9(c) were determined directly, whereas
Ref. [12] found them by plotting structure functions Gp(r) as a function of G3(r) [55]. Finally, the
molecular tracers in Ref. [12] are oxygen molecules excited to fragile metastable vibrational states,
with a lifetime limited to ≈10 µs by collisions with water molecules. Our results do not support a
stronger anomaly of the transverse scaling exponents compared to the longitudinal ones. It has been
suggested that the transverse velocity increments are more intermittent than the longitudinal ones
because of the greater ease to capture violent events in the transverse configuration [12]. However,
here this issue remains undecided as the statistical accuracy of our experiments does not allow to
reach large moments p.

VI. CONCLUSION

Molecular tagging in a turbulent gas can be used for velocimetry [12,56], but it fundamentally
cannot resolve motion on the smallest scales due to the interaction with diffusion [6]. This severely
limits its use as a tool for velocimetry. However, we have shown that it can retrieve the known
anomalous scaling of transverse structure functions. However, tagging molecules opens up a unique
view on small-scale turbulent mixing. This avenue has been followed in the present paper.

The structures that we write in a strongly turbulent flow probe the initial episode of turbulent
mixing. It is characterized by the subtle interplay between molecular diffusion and turbulent strain:
without diffusion two very close points would take an infinitely long time to separate to the
Kolmogorov scale. Once the cloud becomes sizable, turbulent dispersion takes over. Specifically,
in the presence of diffusion, a point with initial size σ̃ (0) = 0 will grow to σ̃ 2 = 4 in a time t̃ = 1,
but without diffusion it would take an initial size σ̃ 2(0) = 2 for a blob to grow to σ̃ 2 = 4 in the same
time interval.

Before they are dispersed by the large-scale eddies, objects such as lines and clouds develop large
concentration fluctuations. Structure functions show scaling behavior and an inertial range, but with
scaling exponents that cannot be compared to the ones known from the fluctuations of the velocity
field, or from the concentration fluctuations of dispersion driven by a large-scale gradient.
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