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E N G I N E E R I N G

Four-dimensional computational ultrasound imaging of 
brain hemodynamics
Michael D. Brown1,2*, Bastian S. Generowicz1, Stephanie Dijkhuizen3, Sebastiaan K. E. Koekkoek3, 
Christos Strydis1,4, Johannes G. Bosch5, Petros Arvanitis1, Geert Springeling6, Geert J. T. Leus7, 
Chris I. De Zeeuw3,8, Pieter Kruizinga1,7

Four-dimensional ultrasound imaging of complex biological systems such as the brain is technically challenging 
because of the spatiotemporal sampling requirements. We present computational ultrasound imaging (cUSi), an 
imaging method that uses complex ultrasound fields that can be generated with simple hardware and a physical 
wave prediction model to alleviate the sampling constraints. cUSi allows for high-resolution four-dimensional 
imaging of brain hemodynamics in awake and anesthetized mice.

INTRODUCTION
The advent of ultrafast ultrasound (>5000 frames per second) imag-
ing over the past 20 years, enabled by increased computational power 
and parallel receive electronics, has spurred the development of mul-
tiple imaging modes for biomedical ultrasound (1, 2). The forma-
tion of complete images within a short (<1 ms) temporal window 
allows for accurate quantification of tissue, blood, and contrast 
agent motion. This facilitates measurement of tissue elasticity and 
arterial stiffness (3, 4), superresolution via localization and tracking 
of individual microbubbles (5, 6) and vastly enhanced imaging of 
blood flow over a wide field of view (7). The latter has resulted in 
the emergence of functional ultrasound imaging (fUS or fUSi) a 
neuroimaging technique, which is able to detect small changes in 
cerebral blood volume induced by neurovascular coupling (8, 9). In 
comparison to other neuroimaging modalities such as functional 
magnetic resonance imaging, fUS offers greater ease of use at sub-
stantially lower cost while delivering a higher spatiotemporal reso-
lution, with a recent demonstration, in conjunction with contrast 
agents, of its capability to detect vascular activity with a 6.5-μm 
spatial resolution (10).

Ultrafast ultrasound imaging, however, remains, principally, a 
two-dimensional (2D) technique due to the stringent spatiotemporal 
sampling requirements of the imaging process. This imaging 
process necessitates the transmission of a sequence of planar or 
diverging waves at high frame rates (≥5 kHz) while recording, in-
parallel, the backscattered signals over a surface sampled spatially 
and temporally at Nyquist rates (1). In the case of 3D imaging, this 
typically requires thousands of elements (as compared with 64 to 
256 for 2D imaging) and a corresponding number of independent 
data channels with associated radio frequency digitizers. Recent 
works have reported 1024 channel systems for 3/4D cardiac imag-
ing (11, 12), superresolution (13, 14), and functional imaging in 
rats (15). However, these required the use and synchronization of 

multiple data acquisition systems which are both extremely costly 
and technically complex, making it infeasible for most clinical 
applications. To reduce the number of necessary independent data 
channels, two approaches are conventionally considered: (i) retain-
ing a fully sampled array but using more complex readout schemes 
using application-specific integrated circuits (ASICs) to combine 
and prebeamform signals (16–18) and (ii) sparse arrays that strate-
gically subsample an aperture with an element distribution de-
signed to minimize side lobes (19, 20). However, both methods 
impose compromises on the image formation process and such 
arrays are technically complex to realize. Moreover, the small element 
sizes (on the order of the acoustic wavelength λ ∼ 100 to 300 μm) 
imposed by Nyquist on all conventional arrays result in poor indi-
vidual element sensitivity. For hemodynamic imaging, particularly 
in small animals that suffers from small signal amplitudes, this poses 
a substantial challenge.

To address the aforementioned challenges, we introduce compu-
tational ultrasound imaging (cUSi). The complex hardware require-
ments and sensitivity challenges associated with sparse or ASIC 
addressed arrays are avoided with the use of a simple, fully popu-
lated, matrix probe that is undersampled using acoustically large, 
and therefore highly sensitive, elements. Inherently, these large 
elements are extremely directional (Fig. 1A) and thus incapable of 
high-resolution imaging. To compensate for this loss of resolution, 
we attach a plastic encoding mask and acoustic waveguide to the 
probe (see Materials and Methods). The encoding mask scrambles 
the transmitted fields, while the waveguide confines them to our 
imaging window. By modifying the field in this way, we more evenly 
sample the k-space of our imaging aperture while avoiding any sym-
metries that would give rise to artifacts such as grating lobes (Fig. 1B) 
(21). This more uniform sampling of k-space increases the lateral 
resolution of the imaging system at the expense of increased clutter/
side lobes, which can be seen in the imaging performance of the 
bare probe versus the probe with mask (cUSi) on a numerical phan-
tom (Fig. 1B). The challenge introduced, however, by imaging with 
complex wave fields is that it prohibits the use of the conventional, 
geometry-based, processing (e.g., delay-and-sum) that is routinely 
used in ultrasound for image formation (22). Instead, we recon-
struct images using a model-based approach after calibrating the 3D 
imaging response of our system using a one-time measurement (Fig. 
1C and Materials and Methods) (23). As in the traditional ultra-
fast imaging, we coherently compound multiple transmissions to 
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Fig. 1. cUSi of blood flow with a matrix probe. (A) Rendering of the cUSi imaging hardware. We modified a matrix probe populated with acoustically large, sensitive 
elements by attaching a plastic encoding mask that scrambles the transmit and receive wavefields. We coupled the mask to a waveguide that confines the transmitted 
fields and provides the necessary imaging offset. (B) Scrambling the transmitted wavefield provides a broader sampling of k-space and allows us to trade lateral resolution 
and side-lobe intensity. We illustrate this with the two renderings, which compare the imaging performance of the bare (without mask) and cUSi (with mask) probe on a 
numerical spiral phantom occupying an 8 mm × 8 mm × 8 mm volume. We simulated data using the experimentally measured forward fields (i.e., using y = Ax) and used 
a matched filter to reconstruct. (C) We drove the probe using a Hadamard-encoded synthetic aperture scheme, signals from different transmissions are separately recon-
structed using a model-based approach then coherently summed to form each 3D volume. The system response is calibrated with a one-time measurement and then 
correlated with each set of measurements to recover an image. (D) To generate Doppler images, we continuously transmit to acquire data that are used to reconstruct separate 
volumes at a rate of ∼400 Hz. The data are spatiotemporally filtered, and the power associated with blood flow in each voxel over time is evaluated to form the PDI.
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enhance image quality, because each additional transmit-receive 
acquisition will decrease the spatial correlations between neighbor-
ing voxels (fig.  S1). Last, we extract information on the 3D flow 
direction and power using standard Doppler processing techniques 
(Fig. 1D), e.g., spatial temporal filtering and auto-correlation.

cUSi falls into the category of computational imaging, which 
covers techniques across a range of modalities that broadly aim to 
realize cheaper and/or faster imaging devices in part by shifting the 
burden of image formation from complex hardware onto computa-
tion (24–29). Within the ultrasound domain, the exploitation of re-
verberant media to reduce the number of sensors required for 
imaging has been investigated since the 90s (30–33). However, the 
translation of these methods to in vivo imaging has, traditionally, 
been hindered by challenges in separating backscattered signals 
from the transducer cross-talk as well as the high-sensitivity of these 
media to small perturbations (e.g., temperature shifts). Recent work 
has demonstrated the application of reverberant media for 2D in vivo 
Doppler imaging; however, as with earlier works (32), this used 
separate elements for transmit and receive and required the use of 
contrast agents due to poor signal-to-noise ratio (SNR) (34). In pho-
toacoustics, where backscattered cross-talk is not present, reverber-
ant media have been successfully applied to ultrafast imaging of 
hemodynamics and functional activity via changes in optical ab-
sorption (35–37). This current work builds on proof-of-principle 
work on the use of a spatial encoding mask to mitigate sampling 
constraints (23, 38). Here, we show a practical implementation that 
translates to 3D in vivo recordings and ultrafast imaging.

RESULTS
We validated the potential of cUSi for in  vivo imaging of brain 
hemodynamics in both awake and anesthetized mice. In both 
experiments, imaging was performed through a cranial window, 
which was covered with a polymethylpentene (TPX) film (CS Hyde 
Company, IL, USA) in the awake case only. This craniotomy was 
applied to remove attenuating effects of the skull on the wavefield. In 
addition, in silica, we found that skull aberrations can have a greater 
impact when imaging with complex wavefields (note S1 and fig. S2). 
An 8 by 8–element matrix probe (1.25-mm pitch, 1 cm by 1 cm ap-
erture, 13.8 MHz, Imasonic France) was used for all experiments. 
This was undersampled by a factor of almost 500 compared to a 
fully populated array sampled at Nyquist rate of 32,000 sensors. 
Both the spatial encoding mask and waveguide were fabricated 
in-house using computer numerical control (CNC). The spatial 
encoding mask was fabricated from Rexolite 1422 (owing to its 
favorable acoustic properties), while the acoustic waveguide was 
fabricated from aluminum to provide a high impedance mismatch 
with water. The output aperture of the waveguide was 7 × 7 mm to 
fully confine the transmitted fields to the cranial window. The probe 
was driven using a synthetic-aperture transmission scheme while 
applying Hadamard encoding to boost SNR and attain full informa-
tion from the element array (39, 40). The transmission rate was 
32 kHz which, including a short dead time for data transfer and 
storage, resulted in a volume rate of 407 Hz. We acquired data 
continuously at this volume rate for 60 s generating a data ensemble 
from which the Doppler images were formed.

Before image reconstruction, we removed any frames that were 
subject to jitter or instability. After removal of these unstable frames, 
the effective volume rate for the awake and anesthetized datasets 

were 128 and 134 Hz, respectively. We applied a spatiotemporal fil-
ter to the stable data ensemble to obtain the signals arising from 
blood flow, eliminating the large component originating from static 
soft tissue (Fig. 1D) (41). For the anesthetized mouse brain, volumes 
of size 7.68 mm × 9.6 mm × 8 mm with an isotropic voxel size of 
40 μm were reconstructed by correlating the measurements with a 
calibrated model of the spatiotemporal impulse responses of our 
imaging system (Materials and Methods) providing a 4D volume 
ensemble dataset u(x,y,z,t). To form a power Doppler image (PDI), 
we computed the average power for each voxel. To evaluate the 
direction of flow, we computed a lag-1 autocorrelation of the tempo-
ral course of each voxel (42).

In Fig. 2, we highlight the capability of cUSi for capturing brain 
hemodynamics in a small rodent model. In Fig. 2A, a 3D rendering 
of a 6.8 mm by 9.2 mm by 8 mm region of the PDI is shown, where 
both small and large vessels are resolved throughout the entire 
cranial window. In Fig. 2B, we feature the information on flow direc-
tion that can be extracted from the Doppler ensemble showing 
draining cortical vessels. Figure 2C shows axial, coronal, and sagittal 
slices through the power Doppler volume indicating the richness of 
the small vessels that can be detected, particularly in the cortex, as 
well as the isotropic lateral resolution that we achieve. Last, Fig. 2D 
demonstrates the dependency of the imaging performance on in-
creasing Doppler ensemble size. In the current implementation, we 
require a 3-s acquisition time to form reliable volumes that could be 
used for other modalities such as fUSi. Lateral, sagittal, and coronal 
flythroughs of the converged PDI are shown in movies S1 and S2. In 
fig. S3, the power and color Doppler volumes of an awake mouse are 
shown. We obtain similar performance, however, there is a loss of 
fine detail in the cortex and of deeper vessels due to the loss in 
SNR. This loss of SNR is the result of attenuation generated in the 
TPX film that we used to cover the imaging window.

DISCUSSION
Traditionally, the clinical paradigm for ultrasound imaging has 
focused on robust hardware and simple, fast processing that pro-
vides real-time feedback. However, there are clear economical and 
technical challenges with scaling this approach to 3/4D imaging 
that limit its use to specific targets (e.g., cardiac imaging). Moreover, 
there are emerging clinical applications, such as low-cost wearable 
devices (43) and transcranial imaging (44), for which this tradition-
al paradigm is less appropriate. In this work, we have demonstrated 
the possibility for high-resolution 4D imaging of hemodynamics in 
the mouse brain using cUSi. This represents a proof of concept for 
such model-based approaches in biomedical ultrasound. While in 
this work we applied it with a custom-built matrix probe, the ap-
proach can be equivalently adapted to existing hardware, for exam-
ple, row-column arrays.

Despite this successful demonstration of high-resolution imag-
ing of vasculature in the mouse brain, the present cUSi implementa-
tion presents several limitations. The principal limitation for this 
work was the high sidelobes originating from the large factor by 
which the array was undersampled as well as the bulk attenuation 
and interfacial losses introduced by the coding mask. The result of 
both was that we were unable to resolve anatomical features of the 
brain on the B-mode images, and the dynamic range of the PDIs was 
low compared to conventional 2D power Doppler. The temporal 
resolution with which we could resolve the vasculature was similarly 
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Fig. 2. cUSis of hemodynamics in the anesthetized mouse brain. (A) 3D rendering of the reconstructed PDI of the anesthetized mouse brain. Image was formed by 
compounding a filtered dataset composed of 8041 volumes using stable data acquired over 60 s. (B) Axial, coronal, and sagittal maximum amplitude projections 
through the reconstructed power (top) and color (bottom) Doppler volumes. (C) Subprojections through the PDI rendered in (A). Each slice was formed from a maxi-
mum amplitude projection through a set of planes with a thickness of 480 μm (corresponding to 12 planes in the reconstructed volume). The approximate position of 
each projection in the brain is denoted on the image. For the coronal slices, the positions are indicated relative to the bregma. (D) 3D rendering of vessels (bottom) and 
flow direction (top) in a fixed 2.48 mm by 2.48 mm by 2.4 mm region of the cortex formed via summation of an increasing number of frames. The time indicated denotes 
the acquisition time for the number of frames in the stable data ensemble that were used to form the image.
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limited to approximately 3 s (Fig. 2D) because of these high side-
lobes along with the limited volume rates of 134 and 128 Hz in the 
anesthetized and awake data.

In the future, we could ameliorate these limitations via several 
modifications. First, the acoustic losses are the result of using a 
transmissive encoding mask by instead using a rigid (metal) re-
flector to modulate the matrix field these acoustic losses could be 
minimized. Alternatively, decoupling of the elements used for trans-
mission and reception [e.g., as in (34)] would allow for greater 
flexibility in material choice. Second, for this proof of concept, we 
adopted a 64-element probe for imaging; however, we can readily 
increase this to 256 elements to bring it in-line with contemporary 
2D imaging systems. This should allow for a corresponding im-
provement in imaging quality (movie S3) at the expense of increas-
ing the computational size of the inverse problem. This increased 
element number would similarly allow for higher temporal resolu-
tion by enabling the compounding of fewer transmissions while 
preserving image quality. The optimal choice for a given applica-
tion will depend on the imaging/sensing target [e.g., for the mea-
surement of a single physiological parameter very few elements 
could be used (43)]. More broadly, in computational optics, sub-
stantial improvements in imaging performance have been achieved 
via joint optimization of the encoding mask, illumination scheme, 
and image reconstruction (45–47). The adaptation of these meth-
ods to acoustics rather than the heuristic design approach used in 
this work provides a route toward low-cost, high-resolution, 3D, 
structural and fUS devices for different clinical applications.

MATERIALS AND METHODS
Animal preparation and surgery
In this study, we assessed cUSi through in vivo imaging experiments 
in both anesthetized (n = 1) and awake (n = 1) adult C57BL6/J mice 
(8 to 10 weeks old). At arrival, animals were group-housed under a 
12-hour light/12-hour dark cycle, with controlled temperature and 
humidity, and with access to water and food ad libitum. After sur-
gery, mice were individually housed. The national authority (Cen-
trale Commissie Dierproeven, The Hague, The Netherlands; license: 
AVD1010020197846) granted ethical approval before the experi-
ments, which were performed according to the institutional, national, 
and European Union guidelines.

For both experiments, we performed a craniotomy to facili-
tate imaging without distorting and attenuating effects of the skull. 
During surgery and the nonawake imaging experiments, mice were 
anesthetized using an isoflurane/oxygen mixture (5% induction and 
1.752% maintenance), while body temperature was kept constant 
at 37°C, and heart and respiration rates were monitored (Small Ani-
mal Physiological Monitoring System, Harvard Apparatus, MA, 
USA). The same device was used to fixate and level the head while 
drilling (Foredom) the cranial window. For the anesthetized imag-
ing experiments, a cranial window of 1 cm by 1 cm was made. For 
the awake experiments, a smaller cranial window (+2 mm by −4 mm 
from bregma and ±4 mm in width) was performed due to the place-
ment of a pedestal (1 cm by 0.8 cm), which ensured head fixation in 
the experimental setup during imaging. In the awake case only, the 
cranial window was covered with a TPX film (CS Hyde Company, 
IL, USA), and postoperative mice received 3 to 5 days of antibiotics 
(Baytril, 25 mg/ml; Bayer, Germany) to prevent inflammation of the 
brain. Before the start of the imaging experiments, both the exposed 

and covered brain tissues were sprinkled with saline solution, after 
which ultrasound transmission gel (Aquasonic 100, Parker Labora-
tories, NJ, USA) was applied for acoustic contact between the brain 
and the 8 by 8–element matrix probe positioned straight above the 
cranial window.

Matrix probe
Experiments used a custom built 64-element matrix probe (fig. S4) 
[8 × 8 square elements, 1.25-mm lateral width, 10 mm by 10 mm 
aperture, 13.8-MHz central frequency, 65% −6-dB bandwidth (BW); 
Imasonic, France]. The element size was approximately 132λ2, sub-
stantially larger than both the 16λ2 used for 1D linear arrays (which 
while sampled close to Nyquist rate in-plane have a large elevational 
size) and the 4λ2 used previously for 3D functional imaging of rats 
(15). The front surface of the probe had a 15 mm by 25 mm foot-
print and included tapped holes on each corner for fixation of cod-
ing masks to the front surface.

Spatial encoding mask
For cUSi, we aim to perturb the field for each matrix element by 
introducing a spatially varying phase shift analogous to an (opti-
cal) spatial light modulator or acoustic hologram (48). We achieve 
this using a plastic coding mask that introduces a local, thickness-
dependent delay to the transmitted field.

The coding mask material, ideally, would fit several criteria. 
Namely, impedance matching to water and low acoustic attenua-
tion to minimize insertion losses, high-sound speed contrast to soft 
tissue to maximize phase delays, and mechanically machineable/
castable/printable with high precision. Rexolite 1422 was selected 
to balance these competing requirements as it has low acoustic 
attenuation and good acoustic matching to water (soft tissue) while 
being sufficiently rigid to machine (49).

The mask had a thin, smoothly varying profile inspired by opti-
cal diffusers previously applied for 3D optical imaging (24). We 
generated a smoothly varying surface profile with an average lateral 
feature size of approximately 370 μm and a total height variation of 
1.2 mm. The lateral feature size was constrained by the manufactur-
ing method and the tool size, while the ideal height scaling was 
determined empirically. We found that for masks that were too 
thin, we insufficiently modulated the field of each element resulting 
in a broad point spread function (PSF) that was unable to resolve 
smaller vasculature. For masks that were too thick, the increased 
losses due to greater internal reflection and increased absorption 
resulted in an SNR that was too low for imaging.

The encoding mask design challenge is like that of sparse array 
design in ultrasound where considerable effort is often devoted to 
optimizing the element configuration before fabrication (20). With 
cUSi, however, we can retrospectively (and cheaply) modify our 
transmit/receive fields and therefore the side-lobe distribution, 
simply by redesigning the encoding mask. While in this work we 
empirically designed our encoding mask, in the future, inverse-
design principles (45) could be adopted to refine this approach by 
incorporating the system physics and reconstruction nonlinearities 
into the encoding mask optimization (46, 47).

The encoding mask was generated for a 12 mm by 12 mm area 
including a 1-mm lateral buffer around the active surface to elimi-
nate sharp discontinuities that would create diffraction effects. This 
profile was exported as a point cloud to SolidWorks (SolidWorks 
2018, Dassault Systemes, V’elizy-Villacoublay, France) where it was 
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converted to a solid part that was interpretable to the CNC software. 
A 0.4-mm axial buffer was added to the mask profile for mechanical 
stability, and its aperture was expanded to match the waveguide 
opening. To attach the mask to the probe, a 2-mm thick, 15 mm by 
35 mm buffer was added around the encoding mask including four 
clearance holes to fixate it to the probe. The mask was then fabri-
cated using a CNC machine (P60 HSC, Fehlmann) using a 200-μm 
drill bit. A photograph of the coding mask can be seen in fig. S4.

Waveguide
We added a tapered waveguide to the coding mask to further modify 
the transmitted wavefield. We introduced this for two reasons. First, 
the waveguide allows for a controlled offset between the probe sur-
face and the imaging medium. From analysis of the system matrix, 
the PSF was found to degrade substantially close to (<6 mm) the 
probe (fig.  S5A). This occurs as the field of each matrix element 
needs to propagate a certain distance after the encoding mask to 
diverge such that it overlaps with that of neighboring elements. 
Close to the probe, each voxel is seen by as few as four elements, 
which results in an extremely poorly conditioned reconstruction. To 
eliminate this, an offset between the probe and imaging target is re-
quired with a distance determined by the divergence to the field in-
troduced by the encoding mask and the element size. For this work, 
we found 12 mm to be sufficient. Second, the cranial window that 
can be safely introduced to the mouse’s skull is limited, sagitally and 
laterally, to ∼8 mm by 6 mm, which is smaller than the probe aper-
ture (10 mm by 10 mm). As such, a large fraction of the transmitted 
energy (≥40%) falls outside the imaging window. This is compound-
ed by the additional divergence introduced by the encoding mask. 
With the addition of a waveguide, this energy can be funneled onto 
the desired imaging window (fig. S5B).

The waveguide had input and output apertures of 14 mm by 
14 mm and 7 mm by 7 mm, respectively, and a length of 10 mm. The 
minimum length was set by the discussed need for an offset for 
the imaging target as well as the requirement to avoid a sharp taper 
angle that would trap waves within the waveguide and reflect them 
toward the probe surface. There is no physical constraint on maxi-
mum length; however, an overly long waveguide suffers greater 
losses from absorption, and practically, is more prone to trapped air 
pockets in the ultrasound gel, which modify the system response 
from the calibration. We fabricated the waveguide from aluminum 
using CNC micro-machining. Aluminum has a much higher acous-
tic impedance than both water and ultrasound gel (18 versus 1.5 
MRayls) so near fully confines the transmitted field (fig. S5B).

Transmission scheme
We adopted a synthetic aperture transmission scheme (39) [also 
referred to as full-matrix capture; (50)] for imaging. Each element 
sequentially transmits while recording the backscattered signals on 
all the array elements in parallel, allowing for each voxel in the im-
aging medium to be synthetically focused on during reconstruction. 
For the probe in this work, each volume is therefore formed with a 
set of 64 transmissions. The principal disadvantage of synthetic 
aperture is poor SNR as each transmission only uses a single ele-
ment. To improve this, we applied spatial coding on transmit (40). 
For each of the 64 transmissions, a different spatial code was applied 
to the matrix probe elements with each code forming a column of a 
64 × 64 invertible matrix. We chose a Hadamard matrix as it is com-
posed of ±1s so is easily implemented in hardware by flipping the 

polarity of the driving signal. By transmitting on all 64 elements 
each time, we gain a factor of 

√

64 or ×8 improvement in SNR. For 
conventional ultrasound, it is necessary to decode the signals before 
reconstruction by applying the inverse of the Hadamard matrix. 
However, our image reconstruction fully models the relevant wave 
physics, so this step is not required. Instead, we incorporate the spa-
tial codes into our model of the transmission.

It would be equally feasible to use cUSi with alternative transmis-
sion schemes. For example, sequential focusing on each point in the 
imaging medium via time reversal (33). While this would result in 
greater SNR, it would not be compatible with the volume rate neces-
sary for ultrafast imaging of blood flow. Alternatively, synthesis of 
nondiffracting planar or diverging waves behind the mask would 
similarly allow for a trade-off of frame rate versus contrast while 
simplifying the image reconstruction; however, the transmit side 
lobes are too high to realize these with our system. In future work, 
direct optimization of the transmit scheme given knowledge of the 
system matrix would similarly provide the best trade-off between 
frame rate and image quality for a given application.

Experimental setup
The probe, encoding mask and waveguide were each submerged and 
then assembled underwater using the four tapped holes on the front 
surface of the probe (Fig. 1A). Before assembly, if small air pockets 
were present on the mask, they were manually removed from the 
encoding mask surface under a microscope using a syringe. Ultra-
sound coupling gel was then syringed into the end of the wave-
guide while still submerged to allow it to retain water when 
vertically mounted. Before application, this syringe containing gel 
was centrifuged at 6000 rpm for 5 min to remove bubbles (51). The 
probe was then suspended vertically above the cranial window and 
lowered onto the exposed mouse brain using a manual translation 
stage. Before imaging, we assessed whether any air pockets were 
present in the waveguide by transmitting an impulse from each 
element and recording the backscattered signals. The backscattered 
signals were analyzed to confirm that no signals originated within 
10 mm of the probe surface.

Experimental measurements
The probe was driven using an ultrasound research system (Vantage 
64LE, Verasonics Redmond, WA, USA) with a 5-cycle toneburst 
centered on 15.625 MHz. A single transmit sequence was used for 
both the awake and anesthetized mouse imaging experiments. The 
pulse repetition frequency was 32 kHz, giving an underlying volume 
rate of 500 Hz. Transmissions were repeated in blocks of 6400 firings 
corresponding to 100 volumes. Between each block, a dead time of 
approximately 50 ms was used to transfer the raw data buffer and 
write to a hard disk. The scheme was repeated for 60 s for both 
experiments resulting in 24400 volumes and an effective volume 
rate of 407 Hz.

Data preprocessing
Signals were sampled in 50% BW mode to reduce data require-
ments. For each transmission, 512 samples at 50% BW (52) cor-
responding to an imaging depth of 24.6 mm were recorded on 
each element. The 50% BW data were then Fourier-transformed 
and downsampled by a factor of 2 to generate a set of 128 fre-
quencies Nω that were used for reconstruction. These were evenly 
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spaced between 11.7 and 19.4 MHz (i.e., a 50% BW centered on 
15.625 MHz).

Next, any frames subject to jitter from breathing or other motion 
were removed by evaluating a lag-1 difference over sequential 
frames and filtering the frames falling above an empirically deter-
mined threshold. At this stage, an instability resulting from hard-
ware was identified that necessitated the removal of the first 64 
frames from each block of 100 from both datasets. For the awake 
and anesthetized measurements, respectively, this left a total num-
ber of frames Nf of 8041 and 7679 frames.

We then used a clutter filter to separate the static or quasi-static 
signals corresponding to tissue from those originating from blood, 
which was accomplished using a singular value decomposition 
(SVD) (41). First, both acquisitions were reshaped into a 2D matrix 
with dimensions (Nω × Nt × Ne, Nf), where Nt is the number of 
transmissions and Ne is the number of elements. Next, the SVD was 
evaluated over this full set of frames and the data above a manually 
determined threshold cutoff. For both datasets, this threshold was 
set at 65% of the singular values (e.g., for the anaesthetized dataset, 
the first 5226 values were discarded). It should be noted that this 
spatiotemporal filtering is typically applied after image reconstruc-
tion; however, we found no major difference in applying it to our 
data as a preprocessing step. After this preprocessing, our data con-
sist of a 4D tensor v with dimensions (Nω, Nt, Ne, Nf).

Acoustic model
Conventional ultrasound images are reconstructed geometrically. 
Simple, nondiffracting, spherical or planar fields are transmitted 
allowing for images to be reconstructed using only knowledge of the 
sensor positions and the speed of sound in the propagation medi-
um. The use of a coding mask and waveguide prohibits this with 
cUSi as the wavefield evolves in a complex manner with propaga-
tion. Instead, we assume that our data v can be linearly related to a 
3D image u, via a matrix-vector multiplication

Here, we assume that the tensors u and v are vectorized, and the 
matrix A contains the pulse-echo impulse response to our transmis-
sion scheme for each voxel in the imaging medium. The matrix A 
has number of rows equal to NωNtNe and number of columns equal 
to the number of voxels in the reconstructed image. Reconstructing 
an image requires precise knowledge of this matrix A. In addition, 
as the dimensions for A in this work are 8 by 106 by 5  by 105, it 
occupies over 30 Tb in memory so cannot be stored. Hence, we con-
struct and apply it sequentially.

To construct A, first we perform a one-time experimental cali-
bration of the forward field of each element. The probe with the 
encoding mask and waveguide attached was mounted in a custom-
built scanning tank with a three-axis computer-controlled posi-
tioning system formed from three translation stages X-LSM200B, 
XLSM100B, and X-LDA075A (Zaber, Vancouver, Canada) and driv-
en using the ultrasound research system. The impulse response for 
each element was measured over a 12 mm by 12 mm plane parallel 
to the end of the waveguide with a 40-μm spacing using a broad-
band 0.2-mm needle hydrophone (Precision Acoustics, Dorches-
ter). Signals were sampled using a programmable analog-to-digital 
converter (M4i.4450-x8, Spectrum, Germany) with 14 bits per 
sample and a 250-MHz sampling rate. The forward field for each of 
the 64 elements was measured in a single scan. To improve SNR, 

signals were averaged eight times at each position, to reduce the 
amount of averaging required the probe was driven using the Had-
amard encoded synthetic aperture scheme used for imaging. To 
measure the probe’s full BW, it was driven using a 32-Vpp 32-ns 
impulse; however, to further reduce the required averaging, we used 
temporal Golay codes following Bae et al. (53). After measurement, 
both the temporal and spatial encoding were deconvolved. The cali-
bration took approximately 6 hours and generated a set of 64 spatial 
temporal measurements pNe(x, y, zs, t),  where zs is the plane over 
which the calibration was performed. These wavefields were then 
mapped onto the 128 frequencies Nω that comprised the experimen-
tal data. The same calibration was used to reconstruct both data-
sets, acquired on separate days, demonstrating that the calibration is 
robust to repetition. Maximum amplitude projections through each 
of the elements forward fields are included as movie S4.

The use of a 200-μm hydrophone for the calibration, which is 
larger than the acoustic wavelength, results in an underestima-
tion of the higher spatial frequencies of the forward field due to 
its directivity. This hydrophone was chosen after comparison 
with a calibration performed using a 40- μm needle hydrophone 
using the same number of averages. The reconstruction of the 
anesthetized dataset using the calibration performed using the 
40- μm hydrophone compared with the 200- μm needle hydro-
phone can be seen in fig. S6. The 40- μm reconstruction has lower 
contrast due to the increased noise in the calibration measure-
ment, which is the result of its lower sensitivity from its smaller 
area. This lower sensitivity could be compensated for by using 
more averaging; however, this results in a corresponding increase 
in scan time, risking changes in the scan conditions. As we found 
no substantial structural differences between the images gener-
ated with the two calibration measurements using our recon-
struction approach, the 200- μm calibration was used. In the 
future, the directivity and other errors associated with the ex-
perimental calibration of A used here could be eliminated with 
the use of blind calibration methods (54) or by deconvolution of 
the directivity response (55).

We assume that the propagation is linear, allowing us to predict 
the forward field at a location (x, y, zs) for a frequency nω for any 
arbitrary spatial apodization vector HNe and temporal delay vector 
TNe applied on transmission as a simple weighted summation

In our case, we apply no delays to any of the elements and simply 
use a 64 × 64 apodization matrix for our transmissions HNt

Ne

 . So, 
the forward field for any of the transmissions nt can be calculated 
simply as

In addition, reciprocity means that we can assume that each ele-
ment in the matrix probe behaves identically on transmit as on re-
ceive. Therefore, the pulse-echo impulse response for an element ne 
for a transmission nt for a position in the calibration plane can be 
calculated via temporal convolution reducing to a multiplication in 
the frequency domain.

v = Au (1)

p(x, y, zs, nω) =

Ne
∑

ne=1

Hne
pne (x, y, zs, nω)e

−i2πnωTne (2)

pnt (x, y, zs, nω) =

Ne
∑

ne=1

H
nt
ne
pne (x, y, zs, nω) (3)
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This allows us to evaluate u = AHv for any voxel in the calibration 
plane ns for a frame nf via

and, similarly, v = Au can be evaluated as

To reconstruct other depths, we use the angular spectrum meth-
od to project the individual forward fields. For an acoustic field over 
a 2D plane p(x, y, zs) at a frequency f, this calculates the field over a 
parallel plane at a depth zd = zs + d as

Here, xy and −1
kxky

 denote the 2D discrete Fourier and inverse 
Fourier transforms, respectively, and H(kx, ky, d)  is a propagator 
function given by

where k is the wave number. Following Zeng and McGough (56), we 
apply an angular cutoff to the propagator

to eliminate the undersampled and evanescent spatial frequencies, 
where D is the lateral dimension of the propagated field.

Practically, for reconstruction, it is necessary to discretize our 
imaging domain. For the images in this work, a 40 μm by 40 μm by 
40 μm spacing was used matching the calibration measurement (to 
avoid resampling) and corresponding to a spacing of  . The image 
domain for the images in Fig. 2 was 7.68 mm by 9.6 mm by 8 mm, 
while for the images in fig. S3, it was 7.04 mm by 6.24 mm by 7.2 mm. 
Last, calculation of u = AHv and v = Au proceeds by first calcu-
lating the field for each transmission over the current depth using 
Eq. 3. Next, AHv or Au is evaluated for the current depth using Eq. 4 
or 5. Last, for each of the individual elements, forward fields are 
stepped to the next depth using Eq. 6, and the process is repeated for 
this depth.

Image reconstruction
Our image reconstruction was formalized in a set of linear equa-
tions, v = Au, allowing a variety of different solvers to be used for 
reconstruction. We compared three different methods.

The first method was the least squares estimate, which finds an 
image û  minimizing the square error between the modeled Au 
and the measured data v as follows

This was implemented using the LSMR algorithm (57), similar 
to the LSQR algorithm (58), which is regularly used for large-scale 
sparse systems, however, safer to use in the case of early termination 
that was necessary here. Coronal maximum amplitude projections 
through the complete PDI and a fixed 800-μm slice of the volume 
for increasing LSMR iteration are shown in fig. S7. The underlying 
vasculature can be clearly resolved in each image; however, for early 
iterations, there are large variations in the vessel intensity and back-
ground caused by spatial variation in the sensitivity of the underly-
ing model (59). These are compensated for by later iterations, and 
beyond iteration 8, there is minimal change in the reconstructed 
volume aside from a gradual loss of contrast as the solver fits the 
noise in the data and errors in the underlying model. This has been 
reported previously (23), however, occurs more rapidly for the in vivo 
data reconstructed here. We attribute this more severe noise ampli-
fication to the lower SNR present in ultrafast imaging compared to 
the sparse, rigid, objects imaged in previous work.

To try to alleviate the loss of contrast, we also tested a sparsity 
promoting reconstruction method, choosing the iterative two-step 
shrinkage/thresholding algorithm (TwIST) (60), which minimizes 
the following cost function

Here, λ is a dimensionless scalar weighting the regularization, 
and ‖u′‖1 is the l1-norm. The regularization parameter was chosen 
empirically as λ = 0.2 max (AHv). After convergence of the initial 
algorithm, we applied a debiasing step to the nonzero elements of u 
using a conjugate gradient method following Figueiredo et al. (61). 
However, TwIST with debiasing was found to be effectively equiva-
lent with the early iterations of LSMR (fig. S7B), which we attribute 
to the lack of spatial sparsity in the individual frames used to form 
each PDI.

Both algorithms share two drawbacks. First, the calibration of the 
model A was performed using a 200-μm needle hydrophone, which, 
as stated earlier, underestimates the higher spatial frequencies in the 
forward fields due to being larger than the acoustic wavelength. This 
results in a model that is less divergent than the actual experimental 
field and biases against vessels in the periphery of the volume. 
Second, given the large size of the model matrix A, iterative ap-
proaches that require it to be repeatedly constructed and applied are 
time consuming to evaluate. These drawbacks motivated the use of 
a third approach, which we applied for the results presented in both 
Fig. 2 and fig. S3. Taking inspiration from observations on one-bit 
time reversal where the amplitude information was superfluous 
(31), we modified A to contain only the phase information [i.e., 
Anew = earg(A)] for each voxel and reconstructed images using a 
matched filter, i.e., u = A

H

new
v . A comparison of this method with 

TwIST and LSMR is shown in fig. S7B. Taking only the phase of 
the model reweights the sensitivity to unity for each voxel. This re-
weighting is able to partly compensate for the directivity errors in-
troduced by the measurement method at the expense of diminished 
contrast. In addition, this approach is substantially faster requiring 
only a single evaluation of AHv.

Once the full set of frames Nf were reconstructed for both 
datasets, we formed the PDIs from a simple summation of the power 

(4)

(5)

p(x, y, zd)=
−1
kxky

{xy{p(x, y, zs)} ∙ H(kx , ky , d)} (6)

H(kx , ky , d) =
e
−id

√

k2
x
+k2

y
−k2

i
�

k2
x
+ k2

y
− k2

(7)

kc = k

√

√

√

√

√

D2

2

D2

2
+ d2

(8)

û = argminu�‖v−Au
�
‖

2

2 (9)

û = argmin
u�
‖v−Au

�
‖

2

2
+ λ‖u�‖1 (10)
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in each individual voxel as PDI(x, y, z) =
∑N

nf =1
 |u(x, y, z, n f )|. 

The color Doppler images (CDIs) shown in Fig. 2B and fig. S3B were 

calculated as arg
[

∑N

nf =1
u(x, y, z, nf )u(x, y, z, nf + 1) ∗

]

 . However, 

we found that the CDI were noisy when we applied this to volumes 
reconstructed from separate groups of 64 transmissions. Instead, we 
reconstructed a separate subframe for each set of eight transmis-
sions. A running average was then evaluated over these subframes 
to create a stack of 8  Nf images each formed from 64 orthogonal 
transmissions with a lag of 8 transmissions between images. The 
CDI processing was then applied to this new, larger image stack.

Here, we have shown that with a simple, quick, reconstruction 
method, we are still able to form high-resolution 3D images of the 
vasculature. In the future, there is scope to apply more advanced 
reconstruction methods that exploit statistical independence of the 
signals in neighboring voxels (62, 63).

Computational complexity
The use of a model-based inversion scheme increases the computa-
tional complexity of the image reconstruction in comparison with 
conventional delay-and-sum–based beamforming. The stored data 
for both the anesthetized and awake datasets occupied 156 GB in 
memory. After filtering of unstable frames and transformation to 
the frequency domain, this was reduced to 33.7 and 32.2 GB, respec-
tively. The planar forward fields for each of the 64 elements from the 
calibration scan used for the slice-by-slice construction of the model 
matrix A  occupied 4.1 GB, while the overall size of the acoustic 
model A that was computed with this approach was 40 TB. The 
power and color Doppler volumes presented in Fig.  2 and fig.  S3 
were formed directly slice by slice, avoiding storage of the interme-
diate beamformed volumes to reduce memory requirements. Re-
constructions were performed on a computing cluster with 2 Intel 
Xeon Silver 4314 2.4 GHz 16 core processors, 1024 GB of 2666 MHz 
memory, and 3 Nvidia A100 80 GB graphics processing units (GPUs). 
A single GPU was used for all reconstructions. The reconstruction 
was implemented in MATLAB software, release 2021a (The Math-
Works). Reconstruction of 8,041,192 × 250 × 200 volumes took ap-
proximately 7.7 hours on this hardware.

Image resolution
We approximated our image resolution in three distinct ways. First, 
we calculated the decay rate of the lateral and axial correlations of 
our system matrix A at three different depths. Second, we approxi-
mated the length scale on which we can distinguish separate cortical 
vessels over a fixed depth. Last, we analyzed the lateral and axial 
correlations of the system matrix over planar cross sections covering 
the full field of view. These are illustrated in fig. S8.

The correlations were evaluated at depths corresponding to 1, 4, 
and 7 mm inside the mouse brain in the experimental data. In each 
case, we selected a single voxel, and the magnitude of the correlation 
coefficient of this voxel with each voxel of the system matrix A over 
a 2 mm–by–2 mm–by–1 mm region with a 40-μm spacing was 
calculated. The results demonstrate that both the lateral and axial 
resolution decrease with imaging depth; however, this occurs more 
slowly for the axial resolution. The axial resolution is higher than the 
lateral resolution, as is commonly the case for ultrasound imaging. 
Higher side lobes are seen in the axial direction; however, these are 
largely confined to a narrow line in the depth direction. By zooming 

in on a fixed axial slice of the reconstructed PDI, we can see that this 
correlation-based approximation of the lateral resolution corre-
sponds well with the scale of structures reconstructed from the ex-
perimental data. Vessels in the cortex are resolvable through the 
Rayleigh criterion (24) with a spacing of less than 200 μm. Last, cal-
culating the correlations over an axial and three lateral cross-
sectional fields of view on a 200-μm grid spacing in the mouse brain 
confirms the local volumetric estimates. In depth, the axial resolu-
tion varies slowly (fig. S8C), falling from 97 to 105 μm on average 
over 8 mm. The lateral resolution shows more variation in depth—
falling from an average of 115 to 174 μm from 1 to 7 mm (fig. S8, D 
to F). The lateral resolution also shows some variation over a fixed 
depth with a large increase occurring toward edge of the field of 
view on each depth. We also calculated the peak secondary side lobe 
for each position (fig.  S8, G to J). These follow similar trends in 
plane to the resolution, however, less variation laterally between 
depths (the peak side lobes for 1, 4, and 7 mm are −20.9, −19.5, 
and −21.1 dB), while the axial side lobes see an increase (from an 
average of −18.3 to −16 dB). This axial trend can also be seen in the 
volumetric cross sections (fig. S8A).
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Legends for movies S1 to S4
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