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A novel Flux Limited Splitting (FLS) non-linear Finite Volume (FV) method for families of linear 
Control Volume Distributed Multi Point Flux Approximation (CVD-MPFA) schemes is presented. 
The new formulation imposes a local discrete maximum principal (LDMP) which ensures that the 
discrete solution is free of spurious oscillations. The FLS scheme can be seen as a natural extension 
of the M-Matrix Flux Splitting method that splits the MPFA flux components in terms of the Two-

Point Flux Approximation (TPFA) flux and Cross Diffusion Terms (CDT), with the addition of a 
dynamically computed relaxation parameter to the CDT that identifies and locally corrects the 
regions where the LDMP is violated. Moreover, the whole non-linear procedure was devised as a 
series of simple straightforward matrix operations. The methodology is presented considering the 
Multi-Point Flux Approximation with a Diamond (MPFA-D) in what we call the FLS + MPFA-D 
formulation which is tested using a series of challenging benchmark problems. For all test cases, 
the FLS repair technique imposes the LDMP and eliminates the spurious oscillations induced by 
the original MPFA-D method.

1. Introduction

In many branches of engineering and science a diffusion operator arises, common examples include the heat flow, mass transport, 
electrostatics and flow through porous media [4,26,15]. For instance, in the context of fluid flow in porous media modeling, the 
pressure equation involves an analogous diffusion like operator. The analogous diffusion coefficient is proportional to the permeabil-

ity of the media, which is, in general, represented by an anisotropic and heterogeneous, possibly discontinuous, tensor. Among the 
many important properties of numerical methods, accuracy, cost-efficiency and allowing arbitrary diffusion tensors are key features. 
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In the context of management of subsurface oil reservoirs, a diffusion operator often appears at the center of standard petroleum 
reservoir simulators, commonly used by tools such as history matching and optimization which make broad use of simulations. Core 
to the most common standard simulators, lies the Two-Point Flux Approximation (TPFA) scheme. The TPFA method with harmonic 
mean of the local interface permeabilities can lead to a consistent locally conservative flux-continuous finite-volume method pro-

vided the resulting tensor is strictly diagonal. The main advantages of TPFA over other flux approximation schemes are due to the 
pressure equation having a symmetric M-matrix of minimal bandwidth making the method highly efficient. The M-matrix ensures the 
scheme satisfies the Local Discrete Maximum Principle (LDMP) [21] so yielding solutions free from spurious oscillations. However, 
this scheme fails to produce consistent solution for non k-orthogonal grids and for media with full permeability tensors. The Multi-

Point Flux Approximation (MPFA) family of consistent methods for full-tensor problems on non k-orthogonal grids were presented 
in [12,1,19]. These schemes were further developed [13,20,8,23,9,10] and employed in several different applications [34,16,7]. As 
an example, in the petroleum reservoir simulation context, the spurious oscillations in pressure caused by the inability to ensure a 
LDMP may lead to the appearance of false gas pockets when the pressure drops below the bubble point and oil moving from low to 
high pressure zones [37]. As with all linear finite-volume and finite element methods, both CVD-MPFA schemes with full pressure 
support (FPS) e.g. [21,23] and earlier Triangle Pressure Support (TPS) methods each have conditional M-Matrices and therefore a 
conditional LDMP. Consequently, media with strong anisotropic full-tensors can cause these methods to violate the LDMP, however 
only the earlier TPS methods induce severe spurious oscillations. In [20,21] it is shown that the TPS methods suffer from decoupling 
for such problems, while the FPS formulations prevent decoupling and yield results free from severe non-physical oscillations at the 
mesh level, even though these methods can lack a formal local LDMP for such cases. We also note that all linear methods have a 
conditional LDMP and consequently lack a formal LDMP for such cases.

CVD-MPFA methods remain the popular choice for reservoir simulation, providing optimal consistent flux-continuous approxi-

mations on structured and unstructured grids and depend on a single degree of freedom per control-volume per flow variable. The 
methods apply to problems involving media with abrupt variation in permeability fields, convoluted geometries such as inclined 
laminated layers, channels and fractures [10,14].

Interest in formulations that are guaranteed to yield results that are free of non-physical oscillations has led to development 
of Non-Linear Finite Volume methods (NL-FV) which satisfy the DMP or, at least, produce monotone solutions, for arbitrary full-

tensor permeability fields and general non k-orthogonal unstructured meshes [28,29,43,5,24,37,11,6,35,30]. Related non-linear 
schemes involve repair techniques. The main idea in these methods is to add a non-linear iterative procedure in order to improve or 
mitigate problems related to the loss of the LDMP property that can occur whenever using linear methods such as MPFA methods to 
model strongly anisotropic problems. We highlight the work of [17] who presented the M-Matrix Flux Splitting method, an iterative 
technique which is applied to the CVD-MPFA formulation, but also applies to other FV and FEM methods. The CVD-MPFA flux is 
split into a TPFA flux and a cross-diffusion flux, the resulting matrices are used to define a semi-implicit iterative technique, where 
iteration is performed by using the M-Matrix of the TPFA scheme as an iterative driver operating acting on the new iterate while the 
cross terms are calculated at the previous iterate level, with splitting at the flux level ensuring conservation is maintained at each 
iteration level. This method was later modified by introducing pressure limiters capable of improving the loss of monotonicity while 
maintaining mass conservation. [31,33]. In the finite elements context, the work of [27] inspired by the Flux Corrected Transport 
(FCT) approach devised a repair technique that splits the flux approximation in the diffusive and anti-diffusive fluxes and performs a 
flux limitation to reinforce a DMP. The work of Cavalcante et al. [6] takes advantages of these ideas and performs a limitation based 
on a Gauss–Seidel decomposition to limit the cross diffusion.

In the present paper, we introduce a general repair technique based on a flux limiting strategy for linear CVD-MPFA methods 
capable of restoring the LDMP whilst maintaining mass conservation. The method involves splitting the flux into a TPFA flux and 
a cross diffusion flux as presented in [17], however a relaxation parameter is included to bound the cross diffusion flux influence. 
An algorithm similar to [6] is proposed to calculate the limiter parameters to ensure, at each step of the iterative procedure the 
solution, that is closer to a bounded solution that satisfies the DMP. In our novel approach, the limiter algorithm is based on the 
M-Matrix Splitting [17], ensuring convergence for the most challenging problems. In addition, an algorithm to find the most suitable 
initial solution for the iterative procedure is also proposed. Our proposed method is tested using the Flux Limited Splitting applied 
to the Multi-Point Flux Approximation with a Diamond Stencil (MPFA-D) [23,9], which is a full pressure support method, known 
for producing accurate results even for challenging diffusion problems with strongly anisotropic heterogeneous media and distorted 
meshes.

The article is organized as follows: in the first three sections, we introduce the mathematical model and the numerical scheme 
we have developed to solve it. In Sections 2 and 3, we describe the steady-state diffusion equations that describe the single-phase 
flow in porous media, as well as the numerical formulation of the classical linear TPFA and the MPFA-D methods, and the theory 
of the flux splitting technique. In section 3, we present some numerical examples used to show the accuracy and robustness of our 
formulation and, in section 4, we present conclusions.

2. Mathematical model and numerical formulation

In the present article, we consider the steady-state single-phase of an incompressible and isothermal fluid-flow through an incom-

pressible media Ω which is given, by:

𝐾

2

∇⃗ ⋅ 𝑣 = 𝑄 with 𝑣 = −
𝜇
∇𝑝 (1)
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Fig. 1. Representation of a physical domain and its discretization.

where 𝑣 denotes a diffusive flux, in this case, Darcy’s flux, with 𝐾 representing the symmetric rock permeability tensor, 𝜇 is the fluid 
viscosity, 𝑝 is the fluid pressure; and 𝑄 is the source or sink term. Here, the capillarity and gravity effects were neglected.

The associated boundary conditions are defined as:{
𝑝 = 𝑔𝐷 on 𝜕Ω𝐷

𝑣 ⋅ �⃗� = 𝑔𝑁 in 𝜕Ω𝑁

(2)

where �⃗� represents the normal area vector, 𝑔𝐷 and 𝑔𝑁 denote, respectively, prescribed pressure and flux, defined on 𝜕Ω𝐷, on 𝜕Ω𝑁

i.e. Dirichlet and Neumann boundaries with, 𝜕Ω𝑁 ∩ 𝜕Ω𝐷 =∅.

Two important features distinguish the cell-centred family of Finite Volume methods. The first is the partitioning of the physical 
domain into smaller volumes with scalar unknowns (e.g. pressures) associated with CVs of that grid, while the second is the con-

servative form of the equations [38,42]. Before moving on to the definitions of the flux approximation, it is important to formally 
establish some terms that will be used extensively in this work.

Mesh or Grid (Ω𝑓 or Ω): The mesh is a spatial discretization of the physical domain Ω. See Fig. 1. For the sake of simplicity Ω and 
𝜕Ω are also used to denote the computational domain, and its boundaries.

Volume (Ω𝑘): The computational domain is subdivided in a set of {Ω𝑘}
𝑛𝑣
𝑘=1 of 𝑛𝑣 volumes or control volumes.

Face or Surface (Γ𝑗 ): The set of non overlapping faces is defined such that {Γ𝑗}
𝑛𝑓

𝑗=1 = 𝜕Ω𝑖 ∩𝜕Ω𝑗 ∀(Ω𝑖, Ω𝑗 ) ∈Ω with 𝑖 ≠ 𝑗 and Γ𝑗 ≠ ∅.

Volume Boundaries (𝜕Ω𝑘): The boundaries of a control volume Ω𝑘 is a set defined as 𝜕Ω𝑘 = {Γ𝑗 ∈Ω𝑘}.

Integration of equation (1) over the domain Ω yields:

∫
Ω

∇⃗ ⋅ 𝑣𝑑𝑉 = ∫
Ω

𝑄𝑑𝑉 (3)

Discretizing the domain Ω into 𝑛𝑣 control volumes allows us to express equation (3) for a general control volume Ω𝑘 as follows:

∫
Ω𝑘

∇⃗ ⋅ 𝑣𝑑𝑉 = ∫
Ω𝑘

𝑄𝑑𝑉 (4)

A semi-discrete version of Equation (3) is found by the summing Equation (4) for all the control volumes of the domain Ω:∑
∀Ω𝑘∈Ω

∫
Ω𝑘

∇⃗ ⋅ 𝑣𝑑𝑉 =
∑

∀Ω𝑘∈Ω
∫
Ω𝑘

𝑄𝑑𝑉 (5)

Applying the Divergence Theorem to the LHS of equation (4), we obtain:

∫
𝜕Ω𝑘

𝑣 ⋅ 𝑛𝑑𝐴 = ∫
Ω𝑘

𝑄𝑑𝑉 (6)

Using the Mean Value Theorem applied to the LHS and RHS of Equation (6), we obtain:

𝑣 ⋅ 𝑛𝑑𝐴 =
∑

𝑣 ⋅ �⃗�)Γ𝑘
and 𝑄𝑑𝑉 = �̄�𝑘Ω𝑘 (7)
3

∫
𝜕Ω𝑘

Γ𝑗∈𝜕Ω𝑘
∫
Ω𝑘



Journal of Computational Physics 501 (2024) 112759A.C.R. de Souza, D.K.E. de Carvalho, T. de Moura Cavalcante et al.

Fig. 2. Section of a k-orthogonal two-dimensional mesh used to derive the TPFA fluxes across the control surfaces 𝜕Ω𝑗 (blue) of an arbitrary control volume Ω𝑘 (light 
blue) in a 2-D domain. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

We use the results in Equation (7) to find a discrete version of Equation (6).∑
Γ𝑗∈𝜕Ω𝑘

(𝑣 ⋅ �⃗�)Γ𝑘
= �̄�𝑘Ω𝑘 (8)

where 𝑣Γ𝑘
stands for the mean velocity approximated on an arbitrary face Γ𝑘 and the respective �⃗�Γ𝑘

the normal area vector in 𝜕Ω𝑘, 
and where �̄�𝑘 represents the mean value of the source/sink term, defining the concept of mass conservation at the discrete (mesh) 
level.

Definition 2.1. A numerical scheme is locally conservative if:∑
Γ𝑗∈𝜕Ω𝑘

(𝑣 ⋅ �⃗�)Γ𝑗
= �̄�𝑘Ω𝑘 ∀Ω𝑘 ∈Ω (9)

where the respective discrete Darcy-fluxes calculated for the control volumes to the left 𝐿 and to the right 𝑅 of Γ𝑗 must satisfy:

(𝑣 ⋅ �⃗�)𝐿Γ𝑗
+ (𝑣 ⋅ �⃗�)𝑅Γ𝑗

= 0 ∀Γ𝑗 ∈ Γ (10)

2.1. Linear two-point flux approximation

Let us consider a section of a k-orthogonal two-dimensional mesh as shown in Fig. 2. For a fluid of unitary viscosity 𝜇 = 1, and 
assuming that a control volume Ω𝑘 is subjected to a pressure gradient along the x and y-axes, we can calculate the fluxes at the 
control surfaces 𝜕Ω𝑘. The standard TPFA flux expression across a face Γ𝑗 shared by two adjacent control volumes on the left 𝐿 and 
on the right 𝑅, with corresponding centroids represented by �̂�, and �̂� is defined as:

(𝑣 ⋅ �⃗�)Γ𝑗
= −

2𝐾𝐿𝑠𝑠
𝐾𝑅𝑠𝑠

𝐾𝐿𝑠𝑠
Δ𝑠�̂� +𝐾𝑅𝑠𝑠

Δ𝑠�̂�

|Γ𝑗 |(𝑝�̂� − 𝑝�̂�) (11)

Note that this approximation is only consistent for k-orthogonal grids because the tangential components of the permeability 
tensor are always omitted by this approximation. Thus, if 𝐾 is not aligned with the main axis, crucial information is lost in the 
approximation. Consequently when applied to non k-orthogonal grids the two-point flux approximation is inconsistent and suffers 
from an 𝑂(1) (zeroth order) error that does not reduce when the mesh is refined [20].

2.2. Multi-point flux approximation with a diamond stencil (MPFA-D)

The Multi-Point Flux Approximation with a Diamond stencil is a non-orthodox member of the family of CVD-MPFA schemes. It 
was first developed by Gao and Wu [23] and brought to the multiphase flow context by Contreras et al. [9]. Like other methods in 
the MPFA family, the MPFA-D was devised to tackle limitations of the standard Two-Point Flux Approximation (TPFA). Similar to 
the MPFA-FPS [22], the diamond method employs a full pressure support for each control volume of the discrete domain. Hence, 
this scheme does not suffer from decoupled solution modes and can produce well-behaved and consistent solutions with significantly 
less visible spurious oscillations when compared to the earlier CVD-MPFA methods. The MPFA-D will be adopted to introduce the 
4

proposed nonlinear repair technique, which can be extended for the whole MPFA family, in two or three dimensions.
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Fig. 3. Diamond stencil (light blue region) of the MPFA-D is created by connecting the centroids of two adjacent control volumes �̂� and �̂� with the nodes 𝐼 and 𝐽
that comprise a shared face Γ𝑗 (dark blue).

The MPFA-D flux expression is also derived based on the hypotheses that fluxes are unique and continuous across different 
control volumes. Let us consider a fragment of a non k-orthogonal two-dimensional mesh as illustrated in Fig. 3. The diamond region 
is formed by connecting the centroids of two adjacent control volumes to the nodes 𝐼 and 𝐽 that comprise a shared face Γ𝑗 creating 
two triangles. The unique MPFA-D flux over any surface Γ𝑗 is defined as:

(𝑣 ⋅ �⃗�)Γ𝑗
≃ 𝜏Γ𝑗

[𝑝�̂� − 𝑝�̂� − 𝜈Γ𝑗
(𝑝𝐽 − 𝑝𝐼 )] (12)

The scalar transmissibility coefficient 𝜏Γ𝑗
and the non-dimensional tangential 𝜈Γ𝑗

in Equation (12) are defined as:

𝜏Γ𝑗
= −|Γ𝑗 | 𝐾𝑛

Γ𝑗 (𝐿)
𝐾𝑛

Γ𝑗 (𝑅)

𝐾𝑛
Γ𝑗 (𝐿)

ℎ�̂�
Γ𝑗

+𝐾𝑛
Γ𝑗 (𝑅)

ℎ�̂�
Γ𝑗

(13)

𝜈Γ𝑗
=

Γ⃗𝑗 ⋅
⃖⃖⃖⃖⃖⃗�̂��̂�|Γ𝑗 |2 − 1|Γ𝑗 |

⎛⎜⎜⎝
𝐾𝑡

Γ𝑗 (𝐿)

𝐾𝑛
Γ𝑗 (𝐿)

ℎ�̂�
Γ𝑗

+
𝐾𝑡

Γ𝑗 (𝑅)

𝐾𝑛
Γ𝑗 (𝑅)

ℎ�̂�
Γ𝑗

⎞⎟⎟⎠ (14)

where ℎ�̂�
Γ𝑗

and ℎ�̂�
Γ𝑗

represent the height of the left �̂�Γ𝑗
and right �̂�Γ𝑗

element as depicted on pictures 3.

The normal 𝐾𝑛
Γ𝑗 (𝑒𝑙)

and tangential 𝐾𝑡
Γ𝑗 (𝑒𝑙)

components of the permeability tensor are defined, as:

𝐾𝑛
Γ𝑗 (𝑒𝑙)

=
�⃗�𝑇

Γ𝑗
𝐾Γ𝑗 (𝑒𝑙)

�⃗�Γ𝑗|Γ𝑗 |2 (15)

𝐾𝑡
Γ𝑗 (𝑒𝑙)

=
�⃗�𝑇

Γ𝑗
𝐾Γ𝑗 (𝑒𝑙)

Γ⃗𝑗|Γ𝑗 |2 (16)

where the superscript 𝑇 represent the transpose operation and Γ⃗𝑗 represents the vector connecting the two nodes that comprise Γ𝑗 . 
The MPFA-D flux for a control volume subjected to Dirichlet boundary conditions is given by the following expression:

(𝑣 ⋅ �⃗�)Γ𝑗
≃ −

𝐾𝑛
Γ𝑗

ℎ�̂�
Γ𝑗
|Γ𝑗 |

[
(−⃖⃖⃖⃖⃖⃗𝐽 �̂� ⋅ Γ⃗𝑗 )𝑔𝐷(𝐼) +

⃖⃖⃖⃖⃗𝐼�̂� ⋅ Γ⃗𝑗𝑔𝐷(𝐽 ) − 𝑝�̂�|𝐼𝐿|2]
−𝐾𝑡

Γ𝑗

(
𝑔𝐷(𝐽 ) − 𝑔𝐷(𝐼)

) (17)

where 𝑔𝐷(𝐼) and 𝑔𝐷(𝐽 ) are prescribed pressures on node 𝐼 and 𝐽 , respectively.

The flux expression for control volumes subjected to Neumann boundary conditions is defined as:

(𝑣 ⋅ �⃗�)Γ𝑗
= 𝑔𝐷|Γ𝑗 | (18)
5

where 𝑔𝐷 represents the prescribed flux over Γ𝑗 .
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Fig. 4. Diamond stencil (light blue region) of the MPFA-D on k-orthogonal grid, Γ⃗𝑗 and
⃖⃖⃖⃖⃖⃗�̂��̂� are perpendicular.

The MPFA-D discretisation of the Darcy flux in equation (12) relies on pressure values calculated at the auxiliary nodes 𝐼 and 𝐽
that comprise the analysed face Γ𝑗 . To overcome this problem, we define the pressure at these nodes as a linear combination of the 
pressure at the control volumes around these nodes. It follows:

𝑝𝐼 =
𝑛𝐼∑

𝑘=1
𝑤𝑘𝑝𝑘 (19)

where 𝑛𝐼 is the number of volumes around I and 𝑤𝑘 is the weight attributed to pressure 𝑝𝑘. In this work we employ the Linearity-

Preserving Explicit Weighted 2 (LPEW-2) interpolation, which has been shown to be robust for simulations in anisotropic and 
heterogeneous media [9]. See [23,9,16] for the derivation, definition and further details of the LPEW-2 method as well as the 
MPFA-D formulation.

2.3. The cross diffusion terms (CDT)

By expanding the flux expression on Equation (12), we can rewrite the MPFA flux expression as it follows:

(𝑣 ⋅ �⃗�)Γ𝑗
≃ 𝜏Γ𝑗

(𝑝�̂� − 𝑝�̂�)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

TPFA

− 𝜏Γ𝑗
𝜈Γ𝑗

(𝑝𝐽 − 𝑝𝐼 )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Cross Diffusion Terms

(20)

In other words, the MPFA-D flux is a combination of the TPFA as defined on Equation (11) plus the terms responsible to capture 
the cross diffusion.

In flux notation this can be expressed as it follows:

(𝑣 ⋅ �⃗�)MPFA = (𝑣 ⋅ �⃗�)TPFA + (𝑣 ⋅ �⃗�)CDT (21)

Note that on a k-orthogonal grid, such as the one in Fig. 4, the permeability tensor principle axes are aligned, Γ𝑗 ⟂
⃖⃖⃖⃖⃖⃗�̂��̂� leading to 

Γ⃗𝑗 ⋅
⃖⃖⃖⃖⃖⃗�̂��̂� = 0, 𝐾𝑡

Γ𝑗 (𝐿)
and 𝐾𝑡

Γ𝑗 (𝑅)
to be 0 in Equations (15) and (16). As a consequence the non-dimensional tangential 𝜈Γ𝑗

coefficient in 
equation (14) is also zero in this case, reducing the MPFA-D to the standard TPFA as defined by equation (11).

It is important to note that while we employed the MPFA-D method in this work, any other linear MPFA scheme can also 
be formulated similarly. In situations where the flux splitting is not straightforward, you can simply subtract the standard flux 
expression of TPFA from a specific MPFA expression to identify the cross-diffusion terms. The definition on the cross-diffusion terms 
of the boundary conditions is analogous.

2.4. Matrix representation of the pressure equation

After assembling the system of equations using a consistent discrete flux approximation with the corresponding boundary condi-

tions, we obtain a discrete version of the pressure equation (9), as it follows:

𝑀𝑝 = 𝑄 (22)

where 𝑀 denotes the transmissiblity matrix, 𝑝 is the pressure vector and 𝑄 represents the source and sink term vector of a given 
scheme.

It is possible to write this system as the following block matrix system of equations where the Dirichlet boundary 𝜕Ω𝐷 and 
internal volumes Ω are combined together as:[

𝑀ΩΩ 𝑀Ω𝜕Ω
][

𝑝Ω
] [

𝑄Ω
]

6

𝐷

𝑀𝜕Ω𝐷Ω 𝑀𝜕Ω𝐷𝜕Ω𝐷
𝑝𝜕Ω𝐷

=
𝑄𝜕Ω𝐷

(23)
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With no loss of generality we can represent the system, 𝑀𝑝 = 𝑄 as:[
𝑀ΩΩ 𝑀Ω𝜕Ω𝐷

0 𝐼

][
𝑝Ω

𝑝𝜕Ω𝐷

]
=
[

𝑄Ω
𝑔𝐷

]
(24)

where 𝐼 represents the identity matrix.

This way, the inverse of M, give in Equation (24), becomes:

𝑀−1 =
[

𝑀−1
ΩΩ −𝑀−1

ΩΩ𝑀Ω𝜕Ω𝐷

0 𝐼

]
(25)

Thus, the solution for internal control volumes 𝑝Ω of the resulting block matrix system of equations (23) can be written as:

𝑝Ω = 𝑀−1
ΩΩ(𝑄Ω −𝑀Ω𝜕Ω𝐷

𝑝𝜕Ω𝐷
) (26)

2.5. Discrete maximum principle

Prior to introduce the Discrete Maximum Principle (DMP), we will first present theorems and definitions used to define it. 
Henceforth, a matrix inequality refers to an element-wise operation where all matrix entries hold the inequality unless explicitly 
stated otherwise.

Definition 2.2. A non-singular square matrix 𝑀 is said to be monotone if for any vector 𝑥, 𝑀𝑥 ≥ 0 implies 𝑥 ≥ 0. In other words, a 
matrix is monotone if 𝑀−1 ≥ 0 [36].

From equation (25), we can infer that if 𝑀−1 is monotone, 𝑀−1
ΩΩ > 0, and 𝑀Ω𝜕Ω𝐷

< 0.

Definition 2.3. [3] A matrix 𝑀 is considered an M-matrix if the matrix is monotone (or positive-definite) with

𝑚𝑖,𝑗 ≤ 0 ∀𝑖, 𝑗 𝑖 ≠ 𝑗 (27)

Definition 2.4. A matrix 𝑀 is irreducible, if there is no permutation matrix P such that [41]:

𝑃 𝑇 𝑀𝑃 =
[

𝑀1,1 𝑀1,2
0 𝑀2,2

]
(28)

where 𝑀1,1, 𝑀1,2 and 𝑀2,2 are square matrices.

Theorem 2.1. A given matrix 𝑀 is an M-matrix [41,20] if

𝑚𝑖,𝑖 > 0 ∀𝑖

𝑚𝑖,𝑗 ≤ 0 ∀𝑖, 𝑗 𝑖 ≠ 𝑗

Σ𝑗𝑚𝑖,𝑗 ≥ 0 ∀𝑖

(29)

and 𝑀 is irreducible and must be either strictly diagonally dominant (strict inequality in the latter of Eq. (29)) or weakly diagonally dominant 
with strict inequality for at least one row.

A consequence of the definition (2.3) is that if M is an M-Matrix, then by definition, M is also monotone. M-matrix is a desirable 
property because it ensures a local DMP (LDMP) [20] (discussed below) and faster convergence of iterative solvers [17,27,41].

The Discrete Maximum Principle refers to any analogous definition of the continuous maximum principle for a discrete system.

Definition 2.5. The linear system of equations (24) holds the DMP if [27]:

𝑄 ≥ 0⟶ 𝑝 ≥ 0 (30)

while positive maxima are attained on the boundaries for 𝑄Ω ≤ 0:

max
𝑘

𝑝𝑘 ≤max
𝑗

{0, 𝑔𝐷𝑗} (31)

or positive minima are attained on the boundaries for 𝑄Ω ≥ 0:

min
𝑘

𝑝𝑘 ≥min
𝑗
{0, 𝑔𝐷𝑗} (32)

and if there are not source and sink terms 𝑄Ω = 0, i.e.,
7

min
𝑗
{0, 𝑔𝐷𝑗} ≤min

𝑘
𝑝𝑘 ≤max

𝑗
{0, 𝑔𝐷𝑗} (33)
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More details on the definition and the proofs of the theorems above can be found in [41,27]. It should be noted that DMP 
conditions are defined globally, i.e. where the maximum/minimum values are on the boundary. However, in [20,21] it is shown that 
any method with an M-matrix has a discrete solution where each discrete solution value is a convex average of its neighbours, which 
is consistent with the solution having no local spurious extrema. This property is referred to as a local DMP (LDMP). We note that 
while a LDMP ensures a global DMP the converse does not follow.

2.6. Non-linear flux limited splitting

The Flux Limited Splitting (FLS) method arises from two premises, the linear TPFA method always produces M-Matrix, and the 
flux expression of any CVD-MPFA scheme can be written as the sum of the TPFA term and the Cross-Diffusion terms. The idea 
is to limit the amount of cross-diffusion of the original CVD technique to improve or restore the DMP whilst maintaining mass 
conservation. We find the (LS) flux, by adding a parameter to Equation (21) that limits the cross diffusion terms for each face, as 
follows:

(𝑣 ⋅ �⃗�)FLS
Γ𝑗

= (𝑣 ⋅ �⃗�)TPFA
Γ𝑗

+ 𝛽Γ𝑗
(𝑣 ⋅ �⃗�)CDT

Γ𝑗
(34)

where 𝛽Γ𝑗
is a relaxation parameter or a face based “flux limiter” associated with a face Γ𝑗 in Ω that ensures the limited flux is a 

convex combination of the TPFA and MPFA solutions, i.e. for 𝛽Γ𝑗
= 0 flux becomes purely TPFA, while 𝛽Γ𝑗

= 1 recovers the standard 
method:

0 ≤ 𝛽Γ𝑗
≤ 1 (35)

The idea is to use the Definition 2.5 to establish an algorithm that detects control volumes violating the DMP and adjusts the 
non-linear parameter 𝛽Γ𝑗

to avoid this issue. However, the DMP is a property evaluated for each control volume Ω𝑘 meanwhile 𝛽Γ𝑗

is a parameter associated with the faces Γ𝑗 . To tackle this problem, we look back at the M-Matrix Flux Splitting method [18,31,33].

2.6.1. M-matrix flux limited splitting

The M-Matrix Flux Splitting is a technique proposed by [17] for CVD-MPFA formulations that splits the CVD-MPFA matrix in 
terms of TPFA and cross-diffusion terms matrices producing an iterative semi-implicit scheme driven by the TPFA matrix and ensuring 
mass conservation at each iteration level. In the Finite Volume context, diagonally dominant M-matrices are obtained with the most 
common TPFA method. Nevertheless, most problems related to petroleum reservoirs require a flux approximation that is consistent 
when applied to problems involving anisotropic media on general meshes [21]. The main idea of the M-Matrix Flux Splitting method 
is to create a semi-implicit scheme that exploits the fast convergence feature of the M-Matrix property of TPFA, where the only matrix 
to be inverted is a symmetric positive definite M-matrix, for both structured and unstructured grids. In addition, a key motivation is 
to enable standard simulators to include full-tensor problems while using the standard TPFA method solver, which also has reduced 
bandwidth on structured grids. The resulting framework produced results comparable to those of full matrix inversion, and eliminated 
𝑂(1) errors in the flow caused by the standard diagonal tensor approximation commonly employed in many existing simulators In 
addition, the algebraic nature of the method can be extended directly to 3-D or any different formulation [32].

To summarise this technique, let us define a linear system of equations obtained with an arbitrary CVD-MPFA method.

𝑀MPFA𝑝 = 𝑄MPFA (36)

We can split 𝑀MPFA in equation (36) in terms of 𝑀TPFA and 𝑀CDT, as:

𝑀TPFA𝑝+𝑀CDT𝑝 = 𝑄TPFA +𝑄CDT where 𝑀CDT = 𝑀MPFA −𝑀TPFA, 𝑄CDT = 𝑄MPFA −𝑄TPFA (37)

To derive the semi-implicit scheme, we write the discrete pressure equation approximation in terms of 𝑀MPFA and 𝑀CDT which 
are approximated at different iteration levels, resulting in the following iterative method:

𝑀TPFA𝑝𝑛+1 = 𝑄CDT +𝑄TPFA −𝑀CDT𝑝𝑛 (38)

The convergence of the method is discussed [17], and the method is stable if:

||𝐼 −𝑀−1
TPFA

𝑀MPFA||∞ ≤ 1 (39)

where the subscript ∞ represents the infinity norm.

2.6.2. Relaxation of the cross diffusion terms based on the M-matrix flux splitting

To obtain a relaxation of the Cross Diffusion Terms, we can premultiply Equation (38) by 𝑀−1
TPFA

and isolate 𝑝𝑛+1:

𝑝𝑛+1 = 𝑝TPFA +𝑀−1
TPFA

(𝑄𝑛
CDT

−𝑀𝑛
CDT

𝑝𝑛) where 𝑝TPFA = 𝑀−1
TPFA

𝑄TPFA (40)

Let us suppose that instead of limiting the flux, the limitation was imposed at the volume level. Therefore, we could add a 
relaxation parameter to the control volumes 𝛼𝑛

Ω𝑘
similarly to the way it was added on Equation (34). This way equation (40)
8

becomes:
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𝑝𝑛+1 = 𝑝TPFA +𝐴𝑛𝑀−1
TPFA

(𝑄𝑛
LCDT

−𝑀𝑛
LCDT

𝑝𝑛) with 𝐴𝑛 = diag
([

𝛼𝑛
Ω1

… 𝛼𝑛
Ω𝑛𝑣

])
where 0 ≤ 𝛼𝑛

Ω𝑛
≤ 1 (41)

in which 𝑀𝑛
LCDT

represents the Limited Cross Diffusion Matrix for an iteration level 𝑛, i.e., the Cross Diffusion Terms obtained by 
assembling the matrix using Equation (34), and 𝑄𝑛

LCDT
the limited source and sink terms for the same iteration level. 𝑀𝑛

LCDT
and 

𝑄𝑛
LCDT

are defined similarly to 𝑀𝑛
CDT

and 𝑄𝑛
CDT

with the exception the matrix is assembled using the flux in Equation (34).

To ensure that the Local Discrete Maximum Principle [20,21] is valid between two distinct iteration levels 𝑘 and 𝑘 + 1, the 
following inequality must also hold for each control volume Ω𝑘 :

min(𝑝𝑛
Ω𝑘

) ≤ 𝑝𝑘+1
Ω𝑘

≤ max(𝑝𝑛
Ω𝑘

) (42)

where min(𝑝𝑛
Ω𝑘

) and max(𝑝𝑛
Ω𝑘

) represent, respectively, the minimum and the maximum pressure values of any volume that shares at 
least a node with the Ω𝑘. Here, 𝑘 stands for the inner loop counter and 𝑛 the outerloop. The idea that follows while the outer loop 
𝑛 consists on the standard M-Matrix loop while the inner loop computes for each iteration 𝑘 the relaxation parameter of the FLS 𝛽𝑘

Γ𝑗

that brings 𝑝𝑘
Ω𝑘

closer to the boundaries of the DMP, as stated on Equation (41). Pressure 𝑝𝑛
Ω𝑘

is only updated when we find 𝑝𝑘
Ω𝑘

that

obeys Equation (41).

If we set 𝑝𝑛 = 𝑝𝑘, and expand 𝑝𝑛+1 using the definition given in equation (40):

min(𝑝𝑛
Ω𝑘

) ≤ 𝑝TPFA,Ω𝑘
+ 𝛼Ω𝑘

𝑊Ω𝑘
≤ max(𝑝𝑛

Ω𝑘
) with 𝑊Ω𝑘

= [𝑀−1
TPFA

(𝑄𝑛
LCDT

−𝑀𝑛
LCDT

𝑝𝑛)]Ω𝑘
(43)

where 𝑝TPFA,Ω𝑘
represents the TPFA pressure solution for the CV Ω𝑘.

After some algebraic manipulation, we obtain the following interval in which 𝛼Ω𝑘
ensures that 𝑝𝑛

Ω𝑘
satisfies the DMP:

𝐿Ω𝑘
∶

⎧⎪⎪⎨⎪⎪⎩

min(𝑝𝑛
Ω𝑘

) − 𝑝TPFA,Ω𝑘

𝑊Ω𝑘

≤ 𝛼Ω𝑘
≤ max(𝑝𝑛

Ω𝑘
) − 𝑝TPFA,Ω𝑘

𝑊Ω𝑘

𝑊Ω𝑘
≥ 0

max(𝑝𝑛
Ω𝑘

) − 𝑝TPFA,Ω𝑘

𝑊Ω𝑘

≤ 𝛼Ω𝑘
≤ min(𝑝𝑛

Ω𝑘
) − 𝑝TPFA,Ω𝑘

𝑊Ω𝑘

𝑊Ω𝑘
< 0

(44)

Note that by definition:

𝑊 = 𝑝𝑘+1 − 𝑝TPFA (45)

This way, 𝑊Ω𝑘
= 0, only if 𝑝𝑘+1

Ω𝑘
= (𝑝TPFA)Ω𝑘

. In cases that the interval calculated on 𝐿Ω𝑘
is not physical, we limit each interval 

with:

𝐾Ω𝑘
∶ 𝐿Ω𝑘

∩ [0,1] (46)

We define the control volume relaxation parameter as:

𝛼Ω𝑘
=

{
max(𝐾Ω𝑘

) 𝐾Ω𝑘
≠∅

1 𝐾Ω𝑘
=∅

(47)

To obtain a relaxation parameter for the face Γ𝑗 , as required by Equation (34), we use the following relation:

𝛽𝑘
Γ𝑗

= min(𝛼𝑛
𝐿, 𝛼𝑛

𝑅) (48)

where 𝐿 and 𝑅 represent respectively, the control volumes that are at the left and at the right sides of face Γ𝑗 .

The inner loop is calculated as it follows:

𝑝𝑘+1 = 𝑝TPFA +𝑀−1
TPFA

(𝑄𝑘
LCDT

−𝑀𝑘
LCDT

𝑝𝑘) (49)

For each 𝑘 limitation procedure is performed and 𝑀𝑘
LCDT

with a given 𝛽𝑘
Γ𝑗

. Once a 𝑝𝑘+1 that obeys Equation (43) is found, the 
inner loop ends and we set 𝛽𝑛

Γ𝑗
= 𝛽𝑘

Γ𝑗
and 𝑝𝑛 = 𝑝𝑘+1. The outer loops checks for convergence of 𝑝𝑛 and if its met the procedure ends, 

otherwise the innter loop starts again. More details on the algorithm are found on Section 2.6.4.

2.6.3. Stability

Unlike the work of [17] that computes the solution of the MPFA system of equations using the semi-implicit relation in equation 
(38), the FLS system of equation is modified at every iteration. Therefore, it is natural to study the stability between two consecutive 
iteration levels inside the inner loop.

Let 𝑝𝐻 be the exact solution of the implicit FLS system of equations, such that:
9

𝑀𝑘
FLS

𝑝𝐻 = 𝑀TPFA𝑝𝐻 +𝑀𝑘
LCDT

𝑝𝐻 = 𝑄TPFA +𝑄LCDT (50)
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If we subtract Equation (50) from the semi-implicit iteration of the FLS in Equation (49), we have:

𝑀TPFA𝑒𝑘+1 +𝑀LCDT𝑒𝑘 = 0 (51)

with the relative discrete solution error 𝑒𝑘+1 = 𝑝𝑘+1 − 𝑝𝐻 and 𝑒𝑘 = 𝑝𝑛 − 𝑝𝐻 .

If we solve equation (51) row-wise after some algebraic manipulation, we have:

𝑒𝑘+1 = 𝑀−1
TPFA

𝑀𝑛
LCDT

𝑒𝑘 (52)

A method is known to be stable if its spectral radius is bounded by unity [26,17], which follows:

||𝑀−1
TPFA

𝑀𝑘
LCDT

||𝛾 = ||𝐼 −𝑀−1
TPFA

𝑀𝑘
FLS

||𝛾 ≤ 1 with 𝑀𝑘
LCDT

= 𝑀𝑘
FLS

−𝑀TPFA (53)

calculated using a 𝛾 norm.

The constraints imposed on 𝛽 ensure that 𝑀𝑘
FLS

is always bounded by 𝑀𝑘
MPFA

and 𝑀𝑘
TPFA

. Therefore, as we update 𝛽, the 
restrictions on the cross diffusion terms increase the overall stability of FLS as 𝑀𝑘

FLS
becomes closer to 𝑀𝑘

TPFA
. This increases the 

stability of the M-Matrix Flux Splitting, allowing our formulation to converge even in cases where the original M-Matrix Flux Splitting 
method would not. Note that while this relaxation controls the strength of the cross-diffusion terms subject to the conditions of a 
LDMP, consistency of the full-tensor pressure equation approximation is affected locally according to the amount of limitation 
employed.

2.6.4. Flux Limited Splitting algorithm

The Flux Limited Splitting methodology is defined by three straightforward Algorithms 1, 2, and 3. The first is the main algorithm 
that includes a pre-processing stage that previously computed the transmissibility matrices, source and sink terms and calls the 
algorithm that initializes the pressure, the flux limitation algorithm and the solver. The second is an algorithm that computes the 
initial guess used by the FLS algorithm in 2. It works by ensuring that the initial solution is a convex combination of both solutions, 
𝑝MPFA and 𝑝TPFA, but maximizing the influence of the former. This is used to accelerate the convergence of the FLS iterations in cases 
where the MPFA-D solution contains too much spurious oscillations. The last step is the heart of the FLS method, the Flux Limitation 
algorithm, a set of routines described by Algorithm 3 that limits the cross-diffusion terms to mitigate the nonphysical oscillations. It 
is worth noting that in this step the pressure solution is calculated within a tolerance large enough to capture the violations of the 
DMP, but not too small to allow 𝑝 to converge. After that, we use any arbitrary solver to find a solution within a given tolerance.

Algorithm 1: Flux Limitation Main Algorithm.

1 Compute: 𝑀TPFA, 𝑄TPFA, 𝑝TPFA, 𝑀MPFA, 𝑄MPFA, 𝑝MPFA;

2 Intialize: 𝑝0 ←pressure initialization(𝑄TPFA, 𝑝TPFA, 𝑀MPFA, 𝑄MPFA, 𝑝MPFA), ⊳ see Algorithm 1;

3 Flux Limitation: 𝑝𝑘, 𝛽, 𝑀LCDT , 𝑄LCDT ←FLS(𝑄TPFA, 𝑝TPFA, 𝑀MPFA, 𝑄MPFA, 𝑝MPFA, 𝑝0), ⊳ see Algorithm 2;

4 Solve: 𝑝limited , (𝑣 ⋅ �⃗�limited) ←solve(𝑀TPFA, 𝑀LCDT , 𝑄TPFA, 𝑄LCDT , 𝛽, 𝑝𝑘);

3. Results

Results produced by the Flux Limited Splitting formulations coupled with MPFA-D for simulating single-phase flows in highly 
heterogeneous and anisotropic media are presented below. For all tests we have used 𝑡𝑜𝑙 = 5 × 10−4, and for the parameter that 
captures the rate of residue decrease over the previous iteration, 𝑙𝑖𝑚 = 5 × 10−2. All simulation comparisons are made with the 
monotone non-linear TPFA (NL-TPFA) method [11].

3.1. Fluid flow in a domain with a square hole in a heterogeneous and extremely anisotropic medium

The first example was originally devised by Queiroz et al. [37] to study the loss of monotonicity in linear CVD-MPFA schemes 
when employing highly anisotropic diffusion coefficient fields. In this problem, the analyzed domain is in the form of a square 
Ω = [0, 1]2 with a concentric opening that is also in the form of a square Ω = [4∕9, 5∕9]2. Dirichlet conditions are applied to the 
boundaries of the domain, with the outer boundaries set as 𝑝1 = 0 at 𝜕Ω1 and the inner boundaries set as 𝑝2 = 2 at 𝜕Ω2. The diffusion 
tensor is strongly anisotropic and discontinuous, and given by:

𝐾(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

[
cos(𝜋∕2) −sin(𝜋∕2)
𝑠𝑖𝑛(𝜋∕2) 𝑐𝑜𝑠(𝜋∕2)

][
100 0
0 0.01

][
cos(𝜋∕2) sin(𝜋∕2)
−𝑠𝑖𝑛(𝜋∕2) 𝑐𝑜𝑠(𝜋∕2)

]
𝐾1 ∶ 𝑥 ≤ 0.5[

(𝑦+ 𝜖)2 + 𝛿(𝑥+ 𝜖)2 −(1 − 𝛿)(𝑦+ 𝜖)(𝑥+ 𝜖)
−(1 − 𝛿)(𝑦+ 𝜖)(𝑥+ 𝜖) (𝑥+ 𝜖)2 + 𝛿(𝑦+ 𝜖)2

]
𝐾2 ∶ 𝑥 > 0.5

(54)

with 𝜖 = 10−3.

The physical domain is discretised with three different unstructured grids. The first is a coarser grid with 1,280 quadrilateral 
10

slightly distorted elements, the second is an intermediate grid with 2,678 uniform isotropic triangular elements and the last is an 
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Algorithm 2: Pressure Initialization Algorithm: It checks the number of Dirichlet Boundary Conditions 𝑛(𝑔𝐷) and the 𝑄𝑠

source and sink terms to find an initial guess 𝑝𝑖𝑛𝑖𝑡 as close as possible to 𝑝MPFA while avoiding the loss of DMP.

Input : 𝑝TPFA, 𝑝MPFA

Output : 𝑝𝑖𝑛𝑖𝑡

1 𝑝𝑎𝑚𝑖𝑛 ← min(𝑝TPFA);
2 𝑝𝑎𝑚𝑎𝑥 ← max(𝑝TPFA);
3 if max(𝑝MPFA) > 𝑝𝑎𝑚𝑎𝑥 then

4 𝛾𝑚𝑎𝑥 ← volume where max (𝑝MPFA) ;

5 end

6 if min(𝑝MPFA) < 𝑝𝑎𝑚𝑖𝑥 then

7 𝛾𝑚𝑖𝑛 ← volume where min (𝑝MPFA) ;

8 end

9 if 𝑄𝑠 = 0 and n(𝑔𝐷) > 1 then

10 𝜂1 ←
𝑝𝑎𝑚𝑎𝑥−𝑝

𝛾𝑚𝑎𝑥
MPFA

𝑝
𝛾𝑚𝑎𝑥
TPFA

−𝑝
𝛾𝑚𝑎𝑥
MPFA

𝜂2 ←
𝑝𝑎𝑚𝑖𝑛−𝑝

𝛾𝑚𝑖𝑛
MPFA

𝑝
𝛾𝑚𝑖𝑛
TPFA

−𝑝
𝛾𝑚𝑖𝑛
MPFA

;

11 𝜂 ← 2
3

min(𝜂1, 𝜂2);

12 else

13 if 𝑄𝑠 > 0 then

14 𝜂 ←
𝑝𝑎𝑚𝑖𝑛−𝑝

𝛾𝑚𝑖𝑛
MPFA

𝑝
𝛾𝑚𝑖𝑛
TPFA

−𝑝
𝛾𝑚𝑖𝑛
MPFA

;

15 else

16 𝜂 ←
𝑝𝑎𝑚𝑎𝑥−𝑝

𝛾𝑚𝑎𝑥
MPFA

𝑝
𝛾𝑚𝑎𝑥
TPFA

−𝑝
𝛾𝑚𝑎𝑥
MPFA

;

17 end

18 𝜂 ← 3
4
𝜂;

19 end

20 𝑝𝑖𝑛𝑖𝑡 ← (1 − 𝜂)𝑝TPFA + 𝜂𝑝MPFA ;

21 𝜃 ← volumes of 𝑝𝑖𝑛𝑖𝑡 that violate DMP;

22 𝑝𝜃
𝑖𝑛𝑖𝑡 ← 𝑝𝜃

TPFA

Algorithm 3: Flux Limited Splitting (FLS) Algorithm: Υ is defined number larger enough to ensure that inner and outer 
whiles are run at least once.

Input : 𝑀TPFA, 𝑄TPFA, 𝑝TPFA, 𝑀MPFA, 𝑄MPFA, 𝑝MPFA, 𝑝0
Output : 𝑝𝑛, 𝛽, 𝑀LCDT , 𝑄LCDT

1 Set: 𝜀 ←Υ ;

2 Set: 𝑅old ←Υ ;

3 Initialize outer iterative counter: 𝑛 ← 1 ;

4 Initialize outer pressure: 𝑝𝑛
𝑖𝑡 ← 𝑝0 ;

5 Initialize inner pressure: 𝑝𝑘
𝑖𝑡 ← 𝑝0 ;

6 while 𝜀 ≥ 𝑙𝑖𝑚 do

7 Initialize inner iterative counter: 𝑘 ← 1 ;

8 Initialize 𝐾Ω𝑘
using Equation (44) and 𝑝𝑛

𝑖𝑡 ;

9 while 𝑝𝑛
𝑖𝑡 does not obeys DMP or 𝑘 ≤ 30 do

10 Initialize inner pressure: 𝑝𝑘
𝑖𝑡 ← 𝑝𝑛 ;

11 Compute for each Ω𝑘 : 𝛼Ω𝑘
⊳ see section 2.6.2 ;

12 Compute for each Γ𝑗 : 𝛽Γ𝑗
⊳ see section 2.6.2 ;

13 Using 𝛽Γ𝑗
compute: 𝑀LCDT , 𝑄LCDT;

14 Solve Equation (49): 𝑀TPFA𝑝𝑛+1
𝑖𝑡 = 𝑄TPFA +𝑄𝑛

LCDT
−𝑀𝑛

LCDT
𝑝𝑛 ;

15 end

16 Reset k: 𝑘 ← 1;

17 Calculate the residue: 𝑅new ← ||(𝑀TPFA +𝑀LCDT)𝑝𝑘 − (𝑄TPFA +𝑄LCDT)||2 ;

18 Set: 𝑝𝑛
𝑖𝑡 ← 𝑝𝑘

𝑖𝑡 ;

19 Update: 𝜀 ← 𝑅new−𝑅old

𝑅old

;

20 Update: 𝑅old ← 𝑅new;

21 end

extremely fine grid with 10,712 triangular elements. These meshes were generated to evaluate the FLS under different refinements 
with meshes elements misaligned with the fluxes. For the sake of comparison, we ran a simulation for each of these grids with 
four different schemes, the FLS coupled with the MPFA-D, the linear MPFA-D, a positive-preserving monotone nonlinear TPFA (NL-

TPFA) [11] and the standard linear TPFA (L-TPFA). The first grid used is the coarser grid, one can already see the advantages of 
the Flux Limited Splitting in comparison to the other methods. See Fig. 5. While the MPFA-D had qualitatively a good solution, 
the method produced a strong undershoot and a small overshoot as shown in Table 1. The L-TPFA solution produced a result that 
is consistent with the Discrete Maximum Principle, but is quite diffusive and does not represent the physics of the problem. The 
pressure field of the NL-TPFA complied with the DMP as expected, without the large amounts of diffusion that occur in the L-

TPFA solution. This pattern of L-TPFA is observed throughout all the examples in this work. The Flux Limited Splitting coupled 
11

with the MPFA-D solution, in turn, fixes the overshoot and undershoot problems of the linear MPFA-D solution. It is possible to 
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Fig. 5. Fluid flow in a domain with a square hole in a heterogeneous and extremely anisotropic medium using a coarse grid with 1,280 quadrilateral elements.

Table 1

Maximum pressure, 𝑝maxand minimum pressure, 𝑝minfor the fluid flow in a heterogenous domain with a square hole in an

extremely anisotropic media example.

L-TPFA MPFA-D FLS + MPFA-D NL-TPFA

𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max

Coarse grid with

quadrilateral CVs
0.005 1.837 -1.711E-01 2.039 0.001849 1.891 7.286E-07 1.927

Intermediate grid

with triangular CVs
8.432E-05 1.985 -1.139 2.099 2.422E-06 1.977 2.871-12 2.151

Refined grid with

triangular CVs
4.192E-05 1.986 0.324 2.214 6.928E-06 1.999 0.000 3.137

see the similarity between the NL-TPFA and the FLS + MFPA-D solution, despite two main differences. The first main difference 
is the discontinuity on the left side of the inner boundary. While the linear MPFA-D, the NL-TPFA and the linear TPFA produce 
solutions with a smooth pressure distribution, the FLS + MFPA-D solution produces an area of near zero pressure in this part of 
the region. The second difference is seen in the pressure distribution next to the upper right corner, where the NL-TPFA produces a 
region resembling a channel with high permeability. This pattern could not be observed with the linear MPFA-D and Flux-Splitting 
+ MPFA-D solutions.

On the intermediate and finer grids, the FLS + MPFA-D behaved similarly, using the triangular grids and despite the huge 
undershoot of the linear MPFA-D solutions as shown in Figs. 6 and 7. For both grids, the NL-TPFA approximation has either not 
converged or lost consistency creating a solution that violates the DMP even after several iterations. The zero pressure region next 
to the left inner boundary appeared to be smoothed on the FLS + MPFA-D solution for both of these grids.

It is also interesting to see how the Flux Limitation Algorithm influences the maximum and minimum pressure values for each 
iteration throughout the simulation. At the beginning of the simulation the Algorithm 1 calculates a pressure solution that maximizes 
the influence of 𝑝MPFA but ensuring that no overshoot or undershoot is observed. This way, save for a very limited number of 
iterations, no violation of the LDMP can be observed. In terms of computational cost, this was the most demanding example. Even for 
a more refined grid that containing 10,712 triangular control volumes the linear MFPA-D simulation containing the pre-processing 
stage took 3.73 seconds while the FLS + MPFA-D counterpart took 13.25 seconds. In other words, simulating using the FLS + MPFA-

D takes the time of performing 3.55 linear MPFA-D simulations. It is worth highlighting that the pre-processing stage took only 0.60 
12

seconds. Moreover, throughout the limitation procedure shown in Fig. 8 the DMP also satisfied during all iterations.
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Fig. 6. Fluid flow in a domain with a square hole in a heterogeneous and extremely anisotropic medium using an intermediate grid with 2,678 triangular elements.
13

Fig. 7. Fluid flow in a domain with a square hole in a heterogeneous and extremely anisotropic medium using a more refined grid with 10,712 triangular elements.
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Fig. 8. Flux Limitation: Maximum and minimum pressure - 𝑝maxand 𝑝minon the example fluid flow in a domain with a square hole in a heterogeneous and extremely 
anisotropic medium.
14
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Table 2

Maximum 𝑝maxand minimum 𝑝minpressure for the fluid flow in a highly anisotropic and heterogeneous reservoir exam-

ple.

L-TPFA Linear MPFA-D FLS + MPFA-D NL-TPFA

𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max

Structured

grid
0.001 1.147 -1.033E-04 1.638 2.138E-05 1.586 8.919E-12 1.863

Distorted

grid
4.908E-04 1.189 -9.389E-05 1.665 9.723E-0.6 1.626 1.437E-19 1.854

Unstructured

grid
4.473E-05 1.270 -2.776E-07 1.677 6.680E-06 1.661 4.714E-16 1.945

3.2. Fluid flow in a highly anisotropic and heterogeneous reservoir

The next example was originally proposed by Lipnikov et al. [29] to evaluate the robustness of the positive preserving finite 
volume methods. The problem consists of a unitary quadratic domain Ω = [0, 1]2 whose boundaries are subject to a prescribed 
pressure (𝑝 = 0), and into which a unitary source term is injected in a concentric square as defined by:

𝑓 (𝑥, 𝑦) =
⎧⎪⎨⎪⎩
1 (𝑥, 𝑦) ∈

[
3
8

5
8

]2
;

0, (𝑥, 𝑦) ∉
[
3
8

5
8

]2 (55)

The permeability field of the media is highly heterogeneous and anisotropic, and defined as follows:

𝐾 =
[

𝑦2 + 𝜖𝑥2 −(1 − 𝜖)𝑥𝑦
−(1 − 𝜖)𝑥𝑦 𝜖𝑦2 + 𝑥2

]
, 𝜖 = 5 × 10−2 (56)

In this example, for comparison purposes the computational domain is also discretised by using three different configurations of 
quadrilateral grids. The first grid is a structured quadrilateral grid comprised of 1,024 control volumes, the second grid is obtained 
by randomly distorting the control volumes of the first grid, and the last is an unstructured mesh with 4,791 control volumes. Again, 
the results are compared using our Flux Limited Splitting technique (FLS-MPFA-D), the linear MPFA-D, the NL-TPFA [11] and the 
L-TPFA.

First we note that, in contrast to the previous example, all methods are qualitatively quite close to each other, except the L-TPFA, 
which once again, produced a DMP-satisfying but completely wrong solution, with a large amount of diffusion. For the three grids 
used in this example, the linear MPFA-D proved to be very robust, as all solutions were quite close to the NL-TPFA and FLS + MPFA-D 
solutions, despite a minor undershooting (see Table 2). For the structured grid on Fig. 9, the MPFA-D and FLS + MPFA-D solution are 
very similar. In turn, the NL-TPFA appears to have produced a slightly more accurate pressure distribution with less diffusion. While 
the maximum and minimum pressure values obtained with the MPFA-D and the FLS+MPFA-D remained very close to each other, the 
solution produced by the NL-TPFA seemed to be much more diffusive, even though only the NL-TPFA and our FLS+MPFA-D produced 
strictly monotone solutions for this problem. On the distorted mesh in Fig. 10, contrary to expectation, the distortions actually helped 
the linear MPFA-D solution perform better and reducing the undershoot. On the other hand, as expected, the FLS+MPFA-D and the 
NL-TPFA produced very similar solutions with no over or undershoots. Finally, on the third and finer grid, shown in Fig. 11, the 
pattern seen on the other two grids seems to be reinforced. The NL-TPFA solution appears more stretched and with a larger difference 
between the maximum and minimum pressures. Although the problem does not have a discrete maximum, the NL-TPFA seems to 
produce pressure solutions significantly higher than any other tested method. In summary, in this case, the FLS+MPFA-D and the 
NL-TPFA yielded solutions that satisfied the DMP while the linear MPFA-D did not yield monotonic solutions for all meshes used, 
although it clearly produced less diffusive pressure profiles. It is also clear that our FLS+MPFA-D strategy produced less diffusive 
and more accurate solutions than the NL-TPFA method. It is possible to notice that the FLS limitation procedure only took a few 
iterations to ensure that the solution was within the DMP limits. (See Fig. 12.)

3.3. Two wells with an anisotropic and rotated permeability tensor

The third example consists of a homogeneous and anisotropic medium in a uniform square domain Ω = [0, 1]2 subjected to zero 
flux along its boundaries. The permeability tensor with an anisotropy ratio of 1.000 is rotated 3𝜋∕8 counterclockwise as described 
in equation (57). This problem was used by [2,40] to study the loss of monotonicity in cell-centred finite volume methods using an 
11 x 11 structured quadrilateral grid. Originally, the two wells were placed in specific control volumes with prescribed pressures, 
𝑝𝐴 = 0, 𝑝𝐵 = 1. To adapt it to the context of the unstructured grid, we use the two wells whose control volume centroids are closest 
to the centroids of the original control volumes, as shown in Fig. 13.

𝐾 =
[
cos(3𝜋∕8) −sin(3𝜋∕8)

][
1 0

3

][
cos(3𝜋∕8) sin(3𝜋∕8)

]
(57)
15

𝑠𝑖𝑛(3𝜋∕8) 𝑐𝑜𝑠(3𝜋∕8) 0 10 −𝑠𝑖𝑛(3𝜋∕8) 𝑐𝑜𝑠(3𝜋∕8)
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Fig. 9. Fluid flow in a highly anisotropic and heterogeneous reservoir using a structured grid with 1,024 quadrilateral elements.

For comparison, we use four different grids in this problem. The first is the original grid, an 11x11 structured grid used [2,40]. 
The second is a randomly distorted version of the first grid, we also use an intermediate unstructured grid with 5,156 triangular 
control volumes and the last grid used is a refined unstructured grid with 20,582 triangular control volumes. Again, for each of these 
grids we compare the solutions using the FLS + MPFA-D, the linear MPFA-D, the NL-TPFA [11] and the standard L-TPFA.

The first noticeable difference between this problem and the previous test cases is that each method employed produces a 
particularly different solution with some very distinguishable features. As expected, for all meshes used the L-TPFA solution satisfies 
the Discrete Maximum Principle, but with excess of artificial diffusion, as previously mentioned, L-TPFA does not converge for general 
non k-orthogonal meshes. In turn, the NL-TPFA solution performed qualitatively well on the structured and randomly distorted 
quadrilateral mesh in Figs. 14 and 15, however, the method did not converge on the intermediate and refined triangular meshes 
presented in Figs. 16 and 17, see Table 3. It is interesting to note that the NL-TPFA produced a solution complying with the 
DMP for the distorted mesh, but not for the structured grid mesh. The MPFA-D also struggles with the structured mesh producing 
solutions with spurious oscillations (under and overshoots). Nonetheless, when the mesh was distorted and refined, these oscillations 
decreased. On the other hand, the FLS + MPFA-D formulation produced the more physical coherent solutions, similar to the linear 
MPFA-D method but with no violations of the DMP. The FLS+MPFA-D formulation produced a low and a high plateau, each with a 
peak and a valley bounded by the Dirichlet pressures. Once again, the FLS + MPFA-D was capable of repairing the linear MPFA-D 
solution by reinforcing the DMP. It is interesting to note that throughout the limitation procedure shown in Fig. 18, the DMP was 
also satisfied during all iterations, except for a couple of inner-iterations. Moreover we note that the simulation on the structured 
grid had considerably more outer iterations than even the most refined grid. We also note that the initial pressure solution proposed 
by Algorithm 1 violates the DMP. However, with only a few iterations the DMP was reestablished. Although there is no analytical 
solution for this problem, the FLS + MPFA-D formulation has consistently produced well resolved solutions representing the physics 
of the problem with no spurious oscillations.

3.4. Convergence test of the FLS on a distorted mesh on a reservoir with rotating anisotropy

The following problem consists on a convergence test used to assess the accuracy of non linear schemes. The problem was first 
introduced by [39] and later adapted by [11]. The problem itself consists in a heterogeneous reservoir with rotating anisotropy ratio. 
The domain is square and unitary, i.e. [0, 1]2 and the permeability tensor is defined by the following expression:
16

𝐾(𝑥, 𝑦) = 𝑅𝜃diag(𝑘1, 𝑘2)𝑅−1
𝜃 with 𝜃 = 5𝜋∕12 (58)
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Fig. 10. Fluid flow in a highly anisotropic and heterogeneous reservoir using a distorted quadrilateral mesh with 1,024 elements.

Table 3

Maximum 𝑝max and minimum 𝑝min pressures for the two wells with an anisotropic and rotated permeability tensor example.

L-TPFA Linear MPFA-D FLS + MPFA-D NL-TPFA

𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max 𝑝min 𝑝max

Structured Grid 0.000 1.000 -1.133E+00 2.133 0.000E+00 1.000 0.000E+00 1.642

Distorted Grid 0.000E+00 1.000 -9.137E-01 1.282 0.000E+00 1.000 0.000E+00 1.000

Unstructured Grid 0.000E+00 1.000 -2.508E-01 1.237 0.000E+00 1.000 Not converged

Refined Unstructured

Grid
0 1.000 -1.347E-01 1.030 0.000E+00 1.000 Not Converged

where 𝑅𝜃 is the rotation matrix for an angle 𝜃 and diag(𝑘1,𝑘2) is a diagonal matrix defined using Equation (59).

𝑘1(𝑥, 𝑦) = 1 + 2𝑥2 + 𝑦2 and 𝑘2(𝑥, 𝑦) = 1 + 𝑥2 + 2𝑦2 (59)

The analytical solution of the problem is given by:

𝑝(𝑥, 𝑦) = sin(𝜋𝑥) cos𝜋𝑦 (60)

The boundary conditions are obtained by using the analytical solution on the boundaries of the domain 𝛿Ω. The flux expression 
and source terms are obtained by substituting Equation (60) in Equation (1).

The obtained solution is evaluated using the 𝐿2-norm of the errors as it follows:

𝜖𝑝 =

(∑
∀Ω𝑘∈Ω(𝑝(𝑥, 𝑦) − 𝑝𝑘)2𝑉Ω𝑘∑

∀Ω𝑘∈Ω 𝑉Ω𝑘

)1∕2

(61)

𝜖𝑣 =
⎛⎜∑∀Γ𝑗∈Γ[(𝑣(𝑥, 𝑦) − 𝑣𝑘) ⋅ �⃗�]2𝐴Γ𝑗∑ ⎞⎟1∕2 (62)
17

⎜⎝ ∀Γ𝑗∈Γ 𝐴Γ𝑗
⎟⎠
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Fig. 11. Fluid Flow in a Highly Anisotropic and Heterogeneous Reservoir using a refined quadrilateral mesh with 4,791 elements.

where 𝜖𝑝 and 𝜖𝑣 are respectively the 𝐿2-norm of the errors of the pressure and flux, 𝑝(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) the analytical pressure and 
velocity calculated at the center of the control volume Ω𝑘 and the center of the face Γ𝑗 , respectively, and 𝑉Ω𝑘

and 𝐴Γ𝑗
represent the 

volume and the area of these entities.

The numerical convergence rate 𝑅𝛾 is obtained using the following expression:

𝑅𝛾 =
log(𝜖ℎ2

𝛾 ∕𝜖
ℎ1
𝛾 )

log(ℎ2∕ℎ1)
with 𝛾 = 𝑝, (𝑣 ⋅ �⃗�) (63)

where ℎ1 and ℎ2 denote the mesh spacing in which the latter is a more refined mesh than the former, and 𝜖ℎ
𝛾 is the error of the 

property 𝛾 calculated on a mesh ℎ.

To evaluate the robustness of the FLS algorithm we have performed the convergence test using two sets of triangular and quadri-

lateral Kershaw meshes. It is possible to see that the linear MPFA-D and the FLS solutions remain very close for both triangular and 
quadrilateral meshes as shown in Fig. 19. In all cases, the FLS slightly shrinks the difference between the maximum and minimum 
values, while representing the physics of the problem. It is also possible to observe from Tables 4 and 5 that the errors and conver-

gence rates remain almost unaffected, with the FLS actually improving the convergence of the MPFA on the triangular mesh case 
for both pressure and flux. The convergence rates of the pressure remained for all meshes approximately 2 and close to 1 for the 
velocity for the linear MPFA-D and for our new FLS methods. This indicates that our repair technique has minimal influence on the 
convergence rate. It is also noting that errors calculated for the Kershaw quadrilateral meshes with 36,864 and 147,456 cells, respec-

tively, are identical for the FLS and the MPFA-D solutions. This means that for this refinements level the FLS limitation procedure 
was neglectful.

3.5. Linear-preserving verification

The original MPFA-D method using the LPEW-2 interpolation can reproduce piecewise linear exactly [9]. This last example was 
introduced to evaluate the effect of the proposed methodology on this property. The test was also introduced by [25] and adapted 
by [10] to test their formulations. In this test the domain is given by:

Ω=
⎧⎪⎨ Ω1 ∀(𝑥, 𝑦) ∶ 𝜙1(𝑥, 𝑦) ≤ 0
Ω2 ∀(𝑥, 𝑦) ∶ 𝜙1(𝑥, 𝑦) > 0, 𝜙2(𝑥, 𝑦) < 0 (64)
18

⎪⎩ Ω3 ∀(𝑥, 𝑦) ∶ 𝜙2(𝑥, 𝑦) ≤ 0
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Fig. 12. Flux Limitation: Maximum and minimum pressure values - 𝑝maxand 𝑝minon the example fluid flow in a highly anisotropic and heterogeneous reservoir.
19
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Fig. 13. Domain of the example: two wells with an anisotropic and rotated permeability tensor.

Fig. 14. Two wells with an anisotropic and rotated permeability tensor using a structured quadrilateral mesh with 11x11 elements.

Table 4

Convergence rates using the Kershaw triangular meshes.

Cells 1,152 4,608 18,432 73,728 294,912

FLS

𝜖𝑝 0.008568 0.00316 0.001092 0.000276 0.000054

𝑅𝑝 - 1.439010005 1.532961893 1.984206302 2.35366199

𝜖𝑣 0.46978 0.257045 0.138621 0.074039 0.03445

𝑅𝑣 - 0.869949887 0.890881041 0.904776486 1.103793168

Original Linear MPFA-D

𝜖𝑝 0.006937 0.002477 0.000722 0.000191 0.000049

𝑅𝑝 - 1.485693324 1.77853495 1.918400692 1.962739861

𝜖𝑣 0.470348 0.257201 0.138667 0.074045 0.03445

𝑅𝑣 - 0.435408922 0.891277681 0.905138237 1.103910078

where 𝜙1 and 𝜙2 are defined as:
20

𝜙1(𝑥, 𝑦) = 𝑦− 0.2(𝑥− 0.5) − 0.475 𝜙2(𝑥, 𝑦) = 𝜙1 − 0.05. (65)
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Fig. 15. Two wells with an anisotropic and rotated permeability tensor using a randomly distorted quadrilateral mesh with 11x11 elements.
21

Fig. 16. Two wells with an anisotropic and rotated permeability tensor using an intermediate unstructured mesh with 5,156 triangular elements.
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Fig. 17. Two wells with an anisotropic and rotated permeability tensor using a refined unstructured mesh with 20,582 triangular elements.

Table 5

Convergence rates using the Kershaw quadrilateral meshes.

Cells 576 2,304 9,216 36,864 147,456

FLS

𝜖𝑝 0.01553 0.005438 0.001552 0.000405 0.000103

𝑅𝑝 - 1.537223242 1.808977658 1.938108976 1.975267065

𝜖𝑣 0.370462 0.206202 0.102922 0.052003 0.027296

𝑅𝑣 - 0.858283942 1.00252359 0.984871544 0.929900356

Original Linear MPFA-D

𝜖𝑝 0.015491 0.005436 0.001551 0.000405 0.000103

𝑅𝑝 - 1.534078696 1.809376841 1.937179117 1.975267065

𝜖𝑣 0.370469 0.206202 0.102922 0.052003 0.027296

𝑅𝑣 - 0.858311622 1.00252359 0.984871544 0.929900356

The permeability tensor field is given by:

𝐾 =

⎧⎪⎪⎨⎪⎪⎩
𝐾1 = 𝑅𝜃

[
100 0
0 10

]
𝑅−1

𝜃
∀Ω𝑘 ∈Ω1 ∪Ω3

𝐾2 = 𝑅𝜃

[
1 0
0 0.1

]
𝑅−1

𝜃
∀Ω𝑘 ∈Ω2

(66)

where 𝑅𝜃 is the rotation matrix for 𝜃 = arctan(−0.2).
The simulation was performed on a quadrilateral mesh with 210 cells and the result can be seeing in Fig. 20. In order for the 

solution to be consistent with the simulation performed by [10], the error in this example was calculated in terms of the pressure 
and the velocity, instead of the flow. Therefore, we calculate the velocity error as it follows:

𝜖𝑣 =

(∑
∀Γ𝑗∈Γ[(𝑣(𝑥, 𝑦) − 𝑣𝑘)⋅]2𝐴Γ𝑗∑

∀Γ𝑗∈Γ 𝐴Γ𝑗

)1∕2

(67)

The errors for the pressure field for the MPFA-D and the FLS are the same and given by, 𝜖𝑝 = 5.1083𝑒 − 16 while for the velocity 
field, we have obtained 𝜖MPFA-D

𝑣 = 4.4524𝑒 −14 and 𝜖FLS
𝑣 = 3.7887𝑒 −14, for the MPFA-D and the FLS, respectively. We could observe 

that the 𝐿2 norm of the error in the pressure field remains identical for both MPFA-D and the FLS solution. This behaviour was also 
22

observed in the velocity with the difference in the error being also negligible. This means that the pressure solution was identical for 
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Fig. 18. Flux Limitation: Maximum and minimum pressure 𝑝maxand 𝑝minon the example two wells with an anisotropic and rotated permeability tensors.
23
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Fig. 19. Convergence test of the FLS on a distorted mesh on a reservoir with rotating anisotropy: FLS and MPFA-D solutions on a Kershaw triangular mesh with 1,152 
cells and on Kershaw quadrilateral mesh with 576 cells.

Fig. 20. Linear-Preserving verification: FLS solution on quadrilateral mesh with 210 cells.

both FLS and MPFA-D but also for the method tested in [10]. Therefore, it is possible to state that the FLS repair technique does not 
influence on the ability of the original MPFA-D method to reproduce piece-wise solutions exactly.

4. Conclusions

In this work we have presented a novel non-linear Flux Limited Scheme (FLS) that works as a repair technique for general linear 
CVD-MPFA finite volume methods. We have chosen the robust linear MPFA-D finite volume as the base scheme to build our FLS 
+ MPFA-D formulation. The repair technique is developed based on the decomposition of the approximated flux in two parts, the 
TPFA and the Cross Diffusion Terms (CDT). Our algorithm is based on the M-Matrix Flux Splitting method and limits the CDT locally 
in regions that might otherwise introduce spurious oscillations. We have also proposed a new initialization algorithm that helped 
improving convergence of the iterative method even for the most challenging problems. The resulting repair technique ensures mass 
conservative flux solutions and is formulated using the MFPA-D method, but it can be adapted for any linear MPFA scheme. To test our 
new methodology we used the MPFA-D for unstructured 2-D grids using the locally conservative LPEW2 interpolation. The resulting 
framework was tested on benchmark problems for single-phase flows. For comparison purposes, we have presented the solutions 
24

obtained with the classical linear TPFA method, that is commonly used in petroleum reservoir simulators, the robust linear and 
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full pressure support MPFA-D method and the monotone NL-TPFA scheme [11]. For all cases tested, our FLS+MPFA-D formulation 
was able to produce solutions qualitatively very similar to the linear MPFA-D method while respecting the Local Discrete Maximum 
Principle (LDMP) and with much less diffusion than the monotone NL-TPFA finite volume method. The results of our formulation 
are at least comparable to state-of-the-art nonlinear TPFA methods, with some cases showing improved resolution and reduced 
computational cost. In addition, the FLS technique shows no impact on the convergence rates of the original MPFA-D scheme neither 
in its capability of reproducing exactly piecewise linear solutions. In conclusion, for single-phase flow problems involving severe 
anisotropy and heterogeneity where linear MPFA-D yields solutions with spurious oscillations, our new FLS+MPFA-D formulation 
maintains a LDMP and efficiently computes well resolved solutions free of spurious oscillations.
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