

Delft University of Technology

PEM
Perception Error Model for Virtual Testing of Autonomous Vehicles
Piazzoni, Andrea; Cherian, Jim; Dauwels, Justin; Chau, Lap Pui

DOI
10.1109/TITS.2023.3311633
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Intelligent Transportation Systems

Citation (APA)
Piazzoni, A., Cherian, J., Dauwels, J., & Chau, L. P. (2023). PEM: Perception Error Model for Virtual Testing
of Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(1), 670-681.
https://doi.org/10.1109/TITS.2023.3311633

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TITS.2023.3311633
https://doi.org/10.1109/TITS.2023.3311633

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

670 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

PEM: Perception Error Model for Virtual Testing of
Autonomous Vehicles

Andrea Piazzoni , Jim Cherian , Justin Dauwels , Senior Member, IEEE, and Lap-Pui Chau , Fellow, IEEE

Abstract— Even though virtual testing of Autonomous Vehicles
(AVs) has been well recognized as essential for safety assessment,
AV simulators are still undergoing active development. One
particular challenge is the problem of including the Sensing
and Perception (S&P) subsystem into the virtual simulation loop
in an efficient and effective manner. In this article, we define
Perception Error Models (PEM), a virtual simulation component
that can enable the analysis of the impact of perception errors
on AV safety, without the need to model the sensors themselves.
We propose a generalized data-driven procedure towards para-
metric modeling and evaluate it using Apollo, an open-source
driving software, and nuScenes, a public AV dataset. Additionally,
we implement PEMs in SVL, an open-source vehicle simulator.
Furthermore, we demonstrate the usefulness of PEM-based
virtual tests, by evaluating camera, LiDAR, and camera-LiDAR
setups. Our virtual tests highlight limitations in the current
evaluation metrics, and the proposed approach can help study
the impact of perception errors on AV safety.

Index Terms— Autonomous vehicles, computer vision, vehicle
safety, simulation.

I. INTRODUCTION

ONE of the major limitations preventing a public deploy-
ment of Autonomous Vehicles (AVs) is that their safety

is not yet guaranteed or well-established in general. Fur-
thermore, Shen et al. [1] emphasize how the explainability
of Artificial Intelligence (AI) in AVs is necessary for trust
and acceptance. Hence, the automotive industry, the academic
community, and regulators are developing safety assessment
procedures. By analyzing the AV Operational Design Domain
(ODD) [2], we can identify the challenges that the AV will
encounter. In particular, sensors are known to be very suscep-
tible to weather conditions and the amount of sunlight [3].

Manuscript received 24 February 2023; revised 26 July 2023;
accepted 7 August 2023. Date of publication 14 September 2023; date
of current version 17 January 2024. This work was supported by the National
Research Foundation, Singapore, and Land Transport Authority through
Urban Mobility Grand Challenge under Grant UMGC-L010. The Associate
Editor for this article was Z. Gu. (Corresponding author: Andrea Piazzoni.)

Andrea Piazzoni is with the Interdisciplinary Graduate Programme, Nanyang
Technological University, Singapore 639798, and also with the Centre of
Excellence for Testing and Research of Autonomous Vehicles, ERI@N,
Nanyang Technological University, Singapore 637141 (e-mail: apiazzoni@
ntu.edu.sg).

Jim Cherian is with the Advanced Remanufacturing and Technology Centre
(ARTC), Agency for Science, Technology and Research (A*STAR), Singapore
637143 (e-mail: jimcherian.wk@gmail.com).

Justin Dauwels is with the Department of Microelectronics, Fac-
ulty of EEMCS, TU Delft, 2628 CD Delft, The Netherlands (e-mail:
j.h.g.dauwels@tudelft.nl).

Lap-Pui Chau is with the Department of Electrical and Electronic Engi-
neering, The Hong Kong Polytechnic University, Hong Kong (e-mail: lap-pui.
chau@polyu.edu.hk).

Digital Object Identifier 10.1109/TITS.2023.3311633

The AV should handle such issues and still exhibit safe
driving behavior. For example, if the perception uncertainty
increases, the AV could reduce its speed and adopt a more
defensive driving, thus maintaining an adequate level of safety.
Nevertheless, failures in obstacle detection may still lead to
undesirable behavior such as collisions, emergency maneuvers,
or traffic rules violations. For instance, the leading cause of
a 2018 AV fatal accident was determined to be a perception
error that was not adequately handled [4]. Thus, a deeper
understanding of how perception errors affect the AV response
is necessary for safety assurance.

This connection between perception errors and AV response
can be explored via a holistic testing approach, both on a test
track and in virtual environments. In this paper, we concentrate
on virtual tests. Virtual testing of AVs by simulations offers a
safe and convenient way to validate safety [5]. However, how
to effectively include perception modules in the simulation
pipeline is an open question. A common approach in the
industry is to employ high-fidelity models that represent the
real world. In particular, physics-based sensor simulations
may generate synthetic sensor signals, which the perception
module can process. Besides being highly compute-intensive,
this approach is not yet sufficiently developed since simulating
sensors at high physical fidelity is challenging. Therefore,
we aim to develop a less complex alternative by modeling the
functionality of the S&P in terms of perception errors, which
we can conveniently integrate into a simulation pipeline. In
this article, we provide the following contributions:

• We summarize the state-of-the-art evaluation metrics for
AI-based perception algorithms and discuss how they are
inadequate for assessing the safety of AVs.

• We present a simulation pipeline that integrates PEMs in
a virtual environment as a computationally efficient way
of testing Automated Driving System (ADS) capabilities
w.r.t. perception errors.

• We present a generalized data-driven approach towards
building Perception Error Models (PEMs), using public
datasets and Open-Source software.

• We demonstrate the application of PEMs by comparing
three different sensor setups, i.e., camera, LiDAR, and
fusion of camera and LiDAR. Moreover, we assess the
safety provided by these setups in three representative
urban scenarios.

Our previous work relied on hand-crafted PEMs, which
helped demonstrate a few limitations of evaluation metrics [6].
This article extends that work by introducing a data-driven
modeling step and generalizing the procedure. This way,

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1734-2296
https://orcid.org/0000-0003-3759-2559
https://orcid.org/0000-0002-4390-1568
https://orcid.org/0000-0003-4932-0593

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 671

Fig. 1. Comparison of three different testing setups that integrate perception: physical testing (top), synthetic signals in a virtual environment (middle), and
our proposed approach involving PEMs (bottom), models that approximate the error of a Sensing and Perception module.

TABLE I
ACRONYMS

PEMs deployed in simulation experiments provide meaningful
results. Thus, we present a complete procedure to investigate
the impact of perception errors on safety.

This article is organized as follows. In Sections II and III,
respectively, we provide an overview of the literature on
Virtual Testing and Perception Evaluation and Modeling.
In Section IV, we introduce our proposed definition of PEM,
while in Section V, we illustrate this definition with an exam-
ple of a PEM. In Section VI, we demonstrate how a PEM can
be integrated into a simulation pipeline. At last, in Section VII,
we discuss our study, and in Section 8, we summarize the
contributions and future directions. In Table I we report all
the acronyms we adopt throughout the article.

II. BASIC CONCEPTS OF VIRTUAL TESTING

In this Section, we describe our abstraction of an AV. Then,
we provide an overview of AV virtual simulations and testing.

A. AV Modules

As illustrated in Figure 1, we describe AVs through three
components: Sensing (S), Perception (P), and Driving Policy
(DP). The Sensing component S, or sensor setups, comprises
all the AV’s sensors to sense the surroundings. Standard sen-
sors in the AV field are cameras, LiDAR, and RADAR [7]. The

Perception component P algorithm processes sensor signals
to provide the perceived world W̃ (or object list), which is
usually a noisy version of the ground truth world W . With
the term Driving Policy DP [8], we refer to the process that
determines the response R of the AV given the perceived state
of the physical world, i.e., the AV behavior.

B. Virtual Environments and Simulations

Virtual simulations are useful for various reasons (see
Figure 1). First, they provide a risk-free environment, which
serves to avoid fatalities and damage to properties. Moreover,
numerous simulations can be run, and thousands of scenarios
can be tested, very often with high repeatability. Therefore,
virtual testing is a practical and economical approach for
developers and third-party evaluators alike.

Key ingredients for virtual testing are a set of test scenarios
that replicate real-life situations that AVs may be exposed
to [9], [10], and [11], and measurable safety metrics [12].
To assess AVs by virtual testing, evaluators compute safety
metrics from the simulated AV behaviors, such as safety
clearance distances (between AV and other traffic participants),
speed limits, or specific traffic rules violations. Thresholds
on those safety metrics demark safe from unsafe behavior.
The major drawback of virtual testing is its potential lack of
fidelity. Key constraints here include the modeling effort and
computational costs in achieving a real-time integrated virtual
environment simulation with an extremely high level of detail.
These challenges mainly concern physical characteristics and
physical phenomena, the behavior of other road users, and
noise characteristics for sensors and vehicle motion. Hence,
one of the significant challenges is replicating a realistic
sensor input to the vehicle under test. Synthetic signals are
commonly utilized in commercial [13], [14], [15], [16] and
Open-Source simulators [17], [18]. Their fidelity is affected
by both the quality of the sensor model and the quality of
the virtual environment model. Additionally, sensor models
are computationally expensive, as synthetic signals potentially
increase in size and details. For example, a synthetic camera
must generate images at the exact resolution and rate of the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

672 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

modeled physical camera. Therefore, this approach does not
scale well due to hardware requirements.

However, synthetic signals are also a promising approach
to solve other problems, such as data generation for machine
learning tasks. For example, Cortes et al. [19] have exploited
synthetic signals to develop perception algorithms that perform
better on real data. However, Talwar et al. [20] trained and
tested perception algorithms on synthetic and real datasets.
They have demonstrated that the trained models do not transfer
well between real and synthetic datasets.

III. PERCEPTION EVALUATION AND MODELING

Since we aim to test S&P systems, we present state-of-
the-art perception evaluation metrics in this Section. Next,
we investigate related works on sensor modeling.

In the Computer Vision (CV) field, perception software is
often evaluated as an independent component. We can divide
perception errors into four categories:

• Detections: Detecting the surroundings can be affected
by false positives and false negatives;

• Misclassification: Even if detected, any object can be
associated with the wrong class.

• Object parameters: Any parameter can be potentially
affected by measurement errors. Physical parameters with
a continuous domain (e.g., size, position) inherently
involve a degree of precision and accuracy.

• Dynamics: Each error can evolve. Detected objects can
be lost (tracking error), a class label could be changed.
Furthermore, object parameters can physically change
(e.g., moving objects), making the error dynamic.

A. Evaluation Metrics

By comparing the ground truth and the CV algorithm
output, we can measure the magnitude of all error types
and summarize them into a single metric. CV algorithms
developed for generic object detection tasks are often evaluated
by Intersection over Union (IoU) and Mean Average Precision
(mAP) metrics [21], [22]. Similarly, tracking algorithms are
evaluated with Multiple Object Tracking Accuracy (MOTA)
and Multiple Object Tracking Precision (MOTP) [23]. These
metrics are developed without considering the deployment
context of the algorithms so that they apply to any domain.
Thus, these metrics are unaware of the scene’s composition
and hence are context-independent. However, for AV appli-
cations, the composition of the urban scene affects whether
specific errors (e.g., misdetections) are critical.

We observe that the most desirable property of S&P is to
provide sufficient information to DP to afford a safe reaction to
the surroundings. A perception error is critical only if it leads
to unsafe behavior and is negligible otherwise. For example,
while undesirable, misclassifying an obstacle on the road is
not critical if the AV stops or avoids it properly. On the other
hand, the same error in a different context may lead to an
unacceptable response or even a collision. Addressing this
limitation, studies such as [24], [25], [26], and [27] propose
metrics that integrate context-specific criteria in the evaluation.

Fig. 2. Illustration of critical issues I1, I2, I3. We indicate the ego vehicles in
blue, other objects in green, and detections in red. (I1) Temporal Relevance:
The detection timeline of the vehicle in lane 1 is more sporadic and unstable,
but non-detection intervals are shorter than the vehicle in lane 2. (I2): Overlap
Sensitivity: A detection bounding box can be closer, farther, or on the side
relative to the actual vehicle. (I3) Relevance of the objects: Many objects are
present. In each of these examples, the context of the error affects its severity.

We highlight four aspects regarding the connection between
perception metrics and overall AV safety (see Figure 2), which
are out of the scope of metrics derived from IoU and mAP:

• I1: Temporal Relevance: AVs operate in a dynamic
environment, where the state changes continuously and
decisions are time-sensitive. The same error, e.g., misde-
tection, can have a different impact on safety based on
the time interval it manifests on and how it evolves. Long
intervals of misdetection may generate slightly higher
safety concerns than sporadic episodes.

• I2: Overlap Sensitivity: When detected, the coordinates
of an obstacle are analyzed to determine the course
of action (e.g., avoid, follow at a distance). A smaller
magnitude of spatial errors is desirable, but limiting the
evaluation to the bounding box overlap (IoU) alone may
not be informative in terms of safety.

• I3: Relevance of the objects: While driving on the road,
AVs are surrounded by many objects, road users, traffic
signals, and traffic lights. At any specific time, only a
subset of these objects is relevant to DP. Furthermore,
the relevance varies over time, as relative distances, direc-
tions, and the potential of a collision change continuously.

• I4: Impact on Driving Policy: Perception Modules
deployed in AVs directly provide their output to the
Driving Policy. Hence, the strengths and weaknesses
of the two components are closely tied together, and
evaluating the first without accounting for the second
is shortsighted. For example, a DP may react poorly
to misclassifications and robustly against false positives,
while another may behave oppositely.

While novel, safety-aware perception metrics could address the
first three considerations, no metric can be easily generalized
to any arbitrary Driving Policy, as different driving styles
may have different demands in perception quality. Thus,
we approach this problem by employing virtual testing where
we directly integrate the DP in the pipeline.

B. Modeling Errors

Sensor error (or noise) modeling is a valuable technique in
signal processing. In fact, by applying integration algorithms,
it is possible to drastically increase the sensors’ viability. For
example, Kalman filters assume Gaussian noise and linear

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 673

TABLE II
RELATED WORK ON SENSOR MODELING

dynamical models. In our context, we are interested in model-
ing the error after the perception layer, i.e., at the object level.
Hoss et al. [38] provide an extensive review of the state-of-
the-art of this specific task. The authors highlight the lack of
shared procedures and datasets.

In Table II, we summarize recent works on sensor error
modeling. Mitra et al. model 2D bounding boxes errors in
a camera-based system by learning Recurrent Neural Net-
works [32]. Conversely, Hirsenkorn et al. model distance
measuring error of a RADAR-based system employing a
non-parametric approach [30]. We note that the different
nature of the models makes quantitative comparisons not only
unfeasible but also meaningless. Even if targeting the same
sensor, Krajewski et al. [31], and Zhao et al. [37] follow two
very different approaches to LiDAR modeling. Krajewski et
al. [31] model the sensor error as the difference between the
object states [31]. Notably, they employ drones to collect
the Ground Truth, which is then compared to the object
states perceived by a LiDAR-based system. Zhao et al. [37],
instead, model the LiDAR physics to compute the position
of each point in the point cloud. Nevertheless, the authors
also approach the object level by providing a target mode.
Instead of the whole point cloud, they generate a single point
for each object in the scene. This solution provides a slightly
faster implementation, as the size of the synthetic data each
step generates is drastically reduced. However, this approach
cannot easily include other sensors, as the model is based on
LiDAR physics. Moreover, the model does not imply a percep-
tion layer with fusion and tracking in the pipeline. To address
this aspect, Zec et al. [36] and Arnelid et al. [28], propose
sensor-agnostic models. Both of their model, Autoregressive
Input-Output Hidden Markov Model (AIO-HMM) [36] and
Recurrent Conditional Generative Adversarial Networks (RC-
GAN) [28], model object parameters such as location and size
with time dependencies. These solutions are more suitable for
AV virtual testing since AVs rely on multiple sensors of diverse
natures. The authors can also compare their results, as they
analyze the same private dataset and have access to both mod-
els. More recently, Sadeghi et al. [35] adopt PEMs proposed
in our previous work [6]. Their implementation relies on a
Neural Network trained on synthetic data and a LiDAR-based
object detector. Moreover, they demonstrate the efficiency and
effectiveness of using PEMs as surrogates for S&P systems
using a collection of scenarios from the CARLA Autonomous
Driving Challenge [39]. Innes and Ramamoorthy [34] also
employ PEMs in a simulation study to estimate rare failure

probabilities in automated emergency braking scenarios. The
authors argue that a photorealistic simulation is not necessary
to study the AV behavior as long as the input to the DP
is affected by the same error distribution as the real one.
Berkhahn et al. [29] conducted a simulation study injecting
errors, modeled with random ordinary differential equations
(RODEs), in the simulation pipeline to study their impact
on intersection conflicts. Interestingly, the perception errors
modeled are intended for human drivers and not for an S&P
of an AV.

In summary, various approaches for modeling perception
errors have been proposed in the literature, such as prob-
abilistic models, neural networks, non-parametric models,
or physics-based models. However, we note that most of them
rely on private datasets, preventing a direct model comparison.
Furthermore, most of these studies are still closely tied to
specific sensors (e.g., camera, LiDAR) and model them indi-
vidually. However, Hanke et al. present a modular architecture
where individual sensor models are combined and integrated
into a simulation pipeline [40].

In contrast to all those existing approaches from the liter-
ature, we model the S&P as a whole, including the sensors
and the AI processing of the sensor data. Our approach is not
limited to specific sensors or AI algorithms, since we model
errors in a generic way that applies to any particular perception
system. Thus, our approach shifts the perspective from sensor
models to perception error models (PEMs).

Moreover, existing studies have not yet introduced a com-
prehensive and flexible pipeline for simulation experiments.

IV. PERCEPTION ERROR MODELS

In this Section, we propose a generalized definition of Percep-
tion Error Models. We propose a sensor-agnostic definition,
which abstracts from the modeled sensors and, thus, has a
standard interface. This assumption is helpful for flexible
integration in a simulation pipeline, which would greatly
benefit the field if adopted. Additionally, we summarize some
general considerations for error modeling.

A. Generalized Notation and Definition of PEM

We denote the collection of n surrounding Ground Truth (GT)
objects (obstacles or road users) W = {o1, . . . , on}. The S&P
observes the “world” W and generates the perceived world
W̃ = {õ1, . . . , õm}, i.e., the collection of the m perceived
objects. Next, the Driving Policy DP generates a response
R by analyzing W̃ . Real objects o and perceived objects
õ are represented with an array of parameters. Depending
on the S&P system, this array may include the class (e.g.,
vehicle, pedestrian) and the 3D bounding box of the objects,
described by its location (x,y,z), orientation (yaw, pitch, roll),
and dimensions (length, width, height). Moreover, an object
may also include parameters such as velocity, brake and
turning indicator status, or even an activity label (e.g., parking,
running, crossing). Depending on the system, we can extend
this notation to include other road elements or a more refined
classification that discriminates between cars, bikes, trucks,
or other classes. Generally, some S&P systems may assume a

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

flat surface, especially if the system cannot measure the depth
or simplify vehicle dynamics. Such assumptions reduce the
number of relevant parameters, e.g., assuming pitch and roll
equal to 0.

In Figure 1, we note RawData = S(W) and W̃ =

P(RawData). We can observe that:

W̃ = P(S(W)) = S&P(W) = W + E, (1)

where E is the error between W̃ and W . The response R
determines the AV behavior and, therefore, the overall safety
and performance of the autonomous system:

R = DP(W̃) = DP(W + E). (2)

In this article, we define Perception Error Model (PEM)
as an approximation of the combined function of sensing
subsystem S and a perception subsystem P:

PEM(W) ≈ S&P(W) = W̃ = W + E . (3)

This definition outlines the interface and role of the model.
A PEM receives the ground truth world W and returns the
perceived world W̃ .

B. Error Modeling Considerations

We outline four key factors that alter the manifestation of
perception errors E in AV, which should be considered while
designing a PEM.

1) Positional Aspects: The relative position of any o j ∈ W
w.r.t. the ego-vehicle slightly affects the quality of the S&P
response [7]. Sensors have limited Field of View (FoV), e.g.,
limited range, and blind spots. The relative distance also
affects the signal strength and resolution. Furthermore, S&P
systems usually perform better in areas where the FoV of
multiple sensors overlap, as the signals from the sensors might
be fused to generate the perceived world W̃ .

2) Parameter Inter-Dependencies: Object parameters X, C
are clear players in E manifestation [41]. For example, larger
objects are more likely to be detected, slow-moving vehicles
are easier to track, or classification errors affect size estima-
tion. Additionally, even parameters not relevant to DP may be
crucial, such as the color or material of the object [7]. For
example, LiDAR and radar have degraded performances on
dark/non-reflective surfaces or metallic objects.

3) Occlusion: Objects on the road may influence the
detection of other objects. For instance, large objects (e.g.,
trucks) may occlude smaller objects (e.g., cars or cyclists).
Occlusion has much impact on the reliability of perception
systems. Cumulative statistics computed over both occluded
and non-occluded objects may yield a biased assessment of the
actual performances of an S&P module. It is recommended to
report performance statistics for different levels of occlusion.

4) Temporal Aspects: Objects often move in the scene.
For example, a previously occluded object may become not
occluded, and vice versa. Additionally, algorithm uncertainties
and filtering techniques are affected by their previous state.
Hence, the error E affecting an S&P also evolves.

C. Validation

The objective of PEMs is to inject perception errors into the
simulation pipeline. Thus, their validity is achieved if and only
if the AV behavior generated embedding a PEM is comparable
to the behavior the same AV would generate employing an
actual S&P. Sadeghi et al. [35] use synthetic data to tune
their model. Thus, they can directly compare the resulting
behaviors, as the sensing module (synthetic) and the vehicle
dynamics (simulator) are exactly the same in both approaches.
However, if the PEM is tuned on real data, a proper validation
would require physical testing to validate the PEM and the
vehicle dynamics embedded in the simulator. Thus, a more
straightforward but arguably less effective validation ensures
that the errors have the same magnitude and distribution as
the S&P that the PEM is replacing.

V. DATA DRIVEN PEM

As mentioned in subsection III-B, most studies rely on private
datasets. Our approach, instead, relies on a public dataset and
open-source algorithms. We define a perception dataset as a
collection S of scenes s. Each scene is a stream of pairs
(Ws

t , W̃s
t), where t = 1, 2, . . . T is discrete time.

To generate this dataset, we have considered several
CV datasets, including KITTI [33], ApolloScape [44],
nuScenes [43], Lyft Level 5 dataset [45], and Waymo open
dataset [46]. Such datasets are mainly used to design per-
ception systems (P), which are assessed by comparing the
generated W̃ with the ground truth W . By contrast, we con-
sider an existing P, i.e., the open-source P system from Baidu
Apollo [42], and design the PEM by modeling the error E as
the difference between W and W̃ . We opted for nuScenes as
the chosen example to illustrate our methodology due to the
inclusion of RADAR data, rich annotations (used as ground
truth W), and data collected in Singapore and Boston. Only a
few implications derive from our selection of a public dataset
and a perception algorithm. To avoid any bias, we highlight
such implications. The nuScenes choice guided us in the
approach regarding the model of occlusion. This approach
can be easily replicated on any dataset by computing the
occlusion levels similarly. Nevertheless, a different model of
occlusion can be explored. The choice of Apollo, instead,
has a substantial implication on the implementation. While
modeling S&P as a whole, the PEM’s output must follow
the original perception module P output format. With the
described setup, the developed PEM models a hypothetical
vehicle that employs the Apollo perception module P and the
nuScenes sensors setup S, including a frontal camera, LiDAR,
and RADAR.

A. Perception Dataset

Figure 3 illustrates the procedure to generate the perception
dataset. The 1000 scenes composing nuScenes, 20 seconds
streams on recorded sensor data, are annotated with ground
truth W at 2Hz. We convert W in the same format and
frame of reference of W̃ . Then, we adapt the raw sensor data
and prepare the message streams for the Apollo perception
module. To exchange data between modules, Apollo employs

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 675

Fig. 3. Software pipeline to generate W̃ by means of Apollo [42] and
nuScenes [43].

Cyber-RT [47], a ROS-like middleware. Hence, we can utilize
Cyber-RT APIs to define writer and reader nodes. In particular,
we prepared as many writers as per sensor type, each to
synchronously replay raw data to replicate a nuScenes scene.
While replaying each scene, the Apollo perception module
is activated and processes the raw data, providing the output
W̃ . A Cyber-RT reader logs to file the generated W̃ . Next,
it is possible to compose the perception dataset using W from
nuScenes annotations and the recorded W̃ for each scene,
obtaining a stream of pairs (Ws

t , W̃s
t) for each scene.

Lastly, any multi-object detection task requires solving a
matching problem. In each frame, both W and W̃ are com-
posed of multiple objects. Establishing a connection between
items from one set to the other is necessary to measure any
error. Bernardin et al. provide a well-established solution [23]
common in the CV field. Alternatively, Arnelid et al. [28]
and Zec et al. [36] relied on the solution proposed by
Florback et al. [48]. All these matching algorithms are based
on similarity functions. Thus, it is essential to highlight that
any parameter and procedure defined in this task will alter
our error models. In particular, we imposed a threshold of
10m as the maximum distance between oi and õ j to allow
a match.

B. Learning PEMs

In this section, we explain how to learn a PEM from
data, using the dataset presented in subsection V-A. Given
the generalized PEM definition (Equation 3), a PEM can
be implemented in various ways, and the goal is to gener-
ate W̃ given W . For the scope of this article, we design
our model to be easily relatable to basic evaluation metrics
such as detection rates and IoU, as well as to provide a
clear example of ways to address the considerations provided
in subsection IV-B.

In particular, we model the detection of each object oi ∈ W
with a binary state variable v, with v = 1 when the object is
detected (hence, a corresponding perceived object õi exists),
and v = 0 otherwise. In addition, we model the error ε

on the parameters of the detected objects. We parameterize
the objects by their location, expressed in polar coordinates
(radial r , angular θ), and their perceived values as (r̃ , θ̃).
The proposed PEM operates in two steps when integrated into
the simulation (see Figure 4). First, it processes each object
oi ∈ W and determines whether it is detected, generating the
corresponding perceived object õi . Second, it calculates the

Fig. 4. Example of a frame and corresponding variables in the PEM. Above
we depict the labeled ground truth. Objects are positioned on a polar grid.
The different sensors may cover the different zones of the polar grid with
a different degree of reliability. Below the detection state and the noise on
object parameters are determined via M and p, respectively.

magnitude of error ε on the parameters of õi . The PEM then
composes W̃ as the set of all õi , and returns it to the simulator.

We model the evolution of the state v by a Hidden Markov
Model (HMM) with Gaussian emissions. In particular, a tran-
sition matrix A models the state variable v, and the emission
probabilities model the error ε on the object’s parameters
(r̃ , θ̃). We highlight that the state variable v is observed
in the dataset, which greatly simplifies the learning task.
Moreover, we do not introduce emissions for non-detected
objects, since we do not need to generate errors on their
parameters. To account for the various factors that can affect
the performance of the S&P performance (see subsection IV-
B), we propose dividing the model into several partitions based
on external conditions c ∈ C . Each partition is parameterized
according to the relative data in the dataset. For example,
a zone-based partitioning (as shown in Figure 4) generates
partitions trained specifically on objects located in the corre-
sponding zone.

We represent an input object oi in the scene with three vari-
ables oi = (r, θ, c), i.e., the polar coordinates (radial r , angu-
lar θ), and the corresponding values of c ∈ C . We describe
perceived object õi with three state variables õi = (r̃ , θ̃). With
ρ̃ and φ̃, we indicate the perceived polar coordinates, i.e., with
error. We use the notation oi t to indicate the state of the object
oi at time t .

We implement a PEM as a set of |C | pairs:

PEM = {(Mc, pc), c ∈ C}, (4)

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

676 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

where:
• C is the set of external conditions c that alter the percep-

tion quality. Following the considerations in positional
aspects and occlusion, we define C as the cross-product
of a grid cell partition of the ego-vehicle surroundings and
the set of occlusion levels. We can easily follow nuScenes
occlusion modeling. The nuScenes dataset defines the
four levels of visibility, i.e., the fraction of the annotation
(i.e., the ground truth) visible from the ego-vehicle. It is
binned into 4 bins: 0 − 40%, 40 − 60%, 60 − 80%, and
80 − 100%. Hence, our set C is generated as follows:

C = {vis0, vis1, vis2, vis3} × {grid cells}, (5)

where the polar grid is obtained with 30 deg sectors and
radius increments of 10m.

• for each c ∈ C , Mc is the Markov Chain that models v,
i.e., whether an object is detected. Given the considera-
tions about temporal aspects, each Mc is implemented by
the transition matrix Ac to determine v:

Ac
=

[
ac

00 ac
01

ac
10 ac

11

]
, (6)

where the transition matrix parameters vary with C , as c
refers to oi t values.
The probability of an object õi at time t is obtained via
Maximum Likelihood Estimation (MLE):

P(vi t = l|vi,t−1 = k, oi t) = Ac
kl =

wc
kl∑

m∈D wc
km

, (7)

where wc
kl are the transitions from state v = k to v = l

that occur in c ∈ C in the dataset (Ws
t , W̃s

t) (see from
subsection V-A).

• pc describes the parameter error ε distribution, i.e.,
the difference between perceived and ground truth
parameters:

ε = (εr̃ , εθ̃), (8)

εr̃ =
r̃
r
, (9)

εθ̃ = θ̃ − θ. (10)

If object oi t is detected, the object õi t parameters
(

r̃ , θ̃
)

are generated with error distributed as a multivariate
Gaussian distribution N c over the parameters r, θ of oi :

(εr̃ , εθ̃) ∼ N (µc, 6c), (11)

where µc
= (µc

r , µ
c
θ) and 6c represent means and

covariances on the error for objects oi with c ∈ C .
This model is entirely sensor agnostic, as no parameter is

tied to any specific sensor or sensor output (e.g., point cloud,
2D bounding boxes).

Thus, we need to estimate seven parameters for each c ∈ C .
First, each model Mc has 2 degrees of freedom. We can
estimate ac

11 and ac
01, and since each row sums to 1, we can

derive a10 and a00 accordingly. Second, each distribution pc

Fig. 5. Illustration of 2 steps (frames) of PEM we deploy in our experiments.

has 5 parameters: the means (µc
r , µ

c
θ), and the parameters

(σ c
r ,σ c

θ , σ c
r,θ) in 6c:

6c
=

[
σ c

r 0
0 σ c

θ

] [
1 σ c

r,θ
σ c

r,θ 1

] [
σ c

r 0
0 σ c

θ

]
, (12)

where σ c
r,θ is the correlation value.

Similarly to evaluation metrics, these parameters can be
obtained analytically via MLE for each c ∈ C indepen-
dently. However, a partitioned model approach introduces two
main drawbacks. First, independently estimating parameters
in each partition reduces the amount of data considered.
Second, zone-based partitioning discounts prior knowledge
of zone adjacency, which is important because objects are
rarely located in only one zone. This problem is typical in
spatial data analysis, which aims to identify regional pat-
terns (e.g., pollution levels). To this end, hierarchical models
such as Conditional Autoregressive (CAR) models are often
employed [49]. CARs embed such zone adjacency knowledge
in the parameter estimation. In particular, they assume that the
parameter yc we want to estimate (e.g., Ac

kl , µc) is conditioned
to neighboring values of yn,n ̸=c. The hierarchical nature of the
model allows us to define the conditioning in a probabilistic
manner:

yc|yn, n ̸= c ∼ N

α

|C |∑
n=1

bcn yn, τ−1
n

 , (13)

where τ−1
n is the precision at each partition, with prior τn ∼

0(1, 1). We describe the adjacency structure in the matrix b.
In particular, we consider a partition adjacent to the other
partitions that share an edge in the zone-based partitioning
and have the same occlusion level.

A priori, we assume that each partition’s most probable
value is the average of the neighbors’ values. However, this
approach also admits slightly different values, but only if the
data is sufficient to support such a hypothesis. Intuitively,
the CAR model acts as a smoothing technique that considers
the amount of data to determine the smoothing factor. For
example, partitions with no samples will converge to the
average of the neighbors’ values. In contrast, partitions with
a high number of samples will converge the value supported
by the samples.

The adoption of CAR models makes the parameters no
longer obtainable directly via MLE, since the partitions are
no longer independent. Therefore, we employ the probabilistic
programming framework PyMC3 [50], and define a CAR
model for each of the seven parameters of the PEM. Next,

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 677

Fig. 6. Probability P of detection for nuScenes ground truth object processed by Apollo perception module. Objects are located around the ego vehicle
positioned in the center of the polar grid (radius increments of 10m and angle increments of 30 degrees). The ego vehicle faces upward, as indicated by the
arrows. We can observe how P values outline the effective FoV of each sensor setup CAM, LID, and FUL. Moreover, nuScenes occlusion levels have a clear
impact on P. As expected, less occluded object (vis3) lead to generally higher detection rates across all grid cells. Figures 6f, 6l, and 6r depict the decay of
P in the frontal cone for each visibility level based on the sensor setup.

TABLE III
LIST OF PEMS OBTAINED USING THREE DIFFERENT SENSOR SETUPS

we apply the PyMC3 inference framework to fit the parameters
employing the dataset (Ws

t , W̃s
t). In particular, we apply the

Maximum a Posteriori method to obtain point estimates of the
PEM parameters.

C. Examples

During the generation of a perception dataset illustrated
in subsection V-A, we can easily decide which data, e.g.,
images or point clouds, we feed to the Apollo perception
module (see Figure 3). For the experimental scope of this
paper, we selected three different sensor setups, summarized
in Table III. We select these three configurations as they
often occur in practice. Moreover, in this way, we can test
several PEMs. In Figure 6, we show the most direct metric,
i.e., detection rate, in the context of PEM under each of the
chosen sensor setups. We present a diagram for each element
in C . Thus, we depict a polar grid for each occlusion value.
Within each of the delimited zones, we can show how a
single parameter or a metric varies. Detection rates are the
most informative and intuitive to visualize as they depict

the effective Field of View of the S&P. In Figures 6f, 6l,
6r, we observe how the CAM detection rate has a slower
decay in the frontal cone, followed by FUL and LID. The
fusion algorithm present in FUL improves on LID beyond the
30m range but only partially exploits camera data at more
considerable distances.

VI. SIMULATION EXPERIMENTS

In this section, we present the simulation testing setup aimed
at investigating different PEMs, not in raw perception met-
rics but in terms of their impact on safety. To this end,
we adopted SVL simulator [18] and Apollo 5.0 [42] as ADS
under test. Our choice is driven by the open-source nature
of the tools, which facilitates our customization, and the
reliable co-simulation offered by the SVL bridge towards the
CyberRT middleware employed by Apollo. We employed the
ViSTA framework for testing automation [10]. The frame-
work comprises Python scripts that implement the defined
scenarios, control SVL actors in a deterministic manner, and
log the results. We extended ViSTA and SVL simulator by
integrating PEMs in the pipeline, as illustrated in Figure 7 and
Figure 8. We prepared a custom sensor in the SVL simulator
that connects via socket to a local Python server to send
W . The server implements the PEM and processes W to
generate W̃ (see Equation 3) with the determined frequency.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

678 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

Fig. 7. Software architecture for virtual testing with PEM integration. The
ViSTA framework automates testing by configuring the other components.

This solution provides access to many Python statistical and
machine-learning tools.

A. List of Scenario-Based Experiments

We have defined a set of experiments, as illustrated in
Figure 7. Each experiment combines a specific Test Case (a
Scenario with instantiated parameters) and a PEM. In this
article, we compare the 3 PEMs previously introduced (see
Table III) against three representative urban driving scenarios
(see Figure 9).

We executed each of the nine resulting experiments
500 times to account for the randomness introduced by
the PEMs. Moreover, we ran each scenario 250 times with
error-free perception (baseline), resulting in the ground-truth
object list.

1) Test case TC1: The ego vehicle drives on a straight road.
After 400m, a pedestrian jaywalks in front of the vehicle. The
ego vehicle has to slow down, stop, or perform an evasive
maneuver to avoid the collision. We configured the pedestrian
in the simulations so that it causes a collision if the ego vehicle
does not react.

2) Test case TC2: The ego vehicle drives on a straight
road and approaches a leading traffic vehicle driving at 7m/s.
The ego and traffic vehicles proceed for 500m until reaching
the traffic light. The ego vehicle has the option to overtake the
leading vehicle.

3) Test case TC3: A combination of both previous scenar-
ios. This scenario may also involve occlusion, as the leading
vehicle could hide the potential pedestrian detection. While the
leading vehicle follows the same script as TC2, the pedestrian
starts walking only when this leads to a collision with the ego
vehicle.

These scenarios have been selected as they represent some
of the most basic interactions between the ego vehicle and a
pedestrian (TC1) or another vehicle (TC2) while involving a
potential risk of a collision. Moreover, these scenarios require
a similar response to avoid collision.

B. Experimental Results

In this section, we report the outcome of our experiments,
demonstrating the scope of analysis afforded by introducing

Fig. 8. Screenshot of the SVL-Apollo co-simulation, including PEM.
Bounding boxes in W̃ are consistent between Apollo (left) and SVL (right),
even undetected objects.

Fig. 9. Illustration of the three scenarios in our experiments. TC1: jaywalking
pedestrian, TC2: following a vehicle, TC3: the combination of both.

TABLE IV
SUCCESS RATE BY COMBINATION OF TEST CASE AND SENSOR SETUP

PEMs in the simulation pipeline. We compare the effect of
deploying the three PEMs shown in subsection V-C, learned
by varying the sensor setup. Hence, we can observe the safety
achieved by each different S&P. For ease of understanding,
we limit the analysis to one of the most straightforward safety
metrics: the minimum distance between the ego vehicle and
the obstacle (vehicle or pedestrian) during a complete test case
run. Intuitively, we can consider a distance < 1m as severe
as a collision. Table IV summarize the success rate of each
experiment in three different levels of safety based on the
minimum spatial distance achieved in each run.

Additionally, Figure 10 depicts the whole set of simulated
runs. The vertical axes represent the chosen safety metric
(minimum spatial distance) in all plots, while the horizontal
refers to a perception metric. We highlight two perception
metrics, Relative Detection Frequency, i.e., the rate of detec-
tion of the obstacle, and Max non-Detection Interval, i.e., the
length of the most extended time interval without a detection.
We computed the relative detection frequency of the obstacles
only when they were within 100m of the ego vehicle. This
consideration prevents skewed results caused by the amount
of time the ego-vehicle spends in the obstacle’s proximity
compared to the simulation’s overall duration.

1) TC1: This scenario is the most challenging, and
CAM setup cannot perform safely. Upon further inspection,
we noticed a high positional error in the CAM model that
prevents the detection of the potential collision, despite the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 679

Fig. 10. Density scatter plots outlining results for each experiment, i.e., a combination of Test Case and PEM. Columns 1-2: TC1, columns 3-4: TC2,
columns 5-6: TC3. Moreover, each row is associated with a particular sensor setup: CAM, LID, FUL, and GT. Each couple of plots (e.g., columns 1-2, in the
first row) depicts the 500 simulation runs executed under that combination of Test Case and PEM. The density of samples is represented on a color scale
from blue (low density) to yellow (high density).

pedestrian being detected at a similar rate compared to LID
and FUL.

2) TC2: In this scenario, the AV employing CAM setup
presents two distinct behaviors. It can perform safely in 38.4%
of the runs.

3) TC3: Interestingly, the scenario combination of the pre-
vious allows for a safer outcome for all setups. In particular,
the presence of 2 potential obstacles promotes a slower driving
style, reducing the amount of collisions.

C. Discussion

We bypass all the considerations presented in section III
by employing virtual testing instead of perception metrics
to evaluate perception. We can evaluate the overall S&P by
associating it with its safety rather than cumulative metrics
with no contextual awareness. Moreover, we are testing a
specific Decision Policy implemented by the Decision Module
employed in Apollo, which directly addresses I4. This result
is not readily achievable without PEMs, as simulations based
on synthetic data are in most cases too computationally
expensive and do not provide any direct insight into perception
performance (e.g., Figure 6).

In subsection III-B, we presented some state-of-the-art
modeling techniques for perception errors. However, given the

relatively under-explored nature of the field, those studies do
not follow a standard and structured procedure. Designing
a PEM remains a complex task as it requires formulating
various assumptions, such as determining which parameters to
consider and which kind of error to model. This makes each
study unique and rarely compatible with the others. However,
most of these studies could be easily adapted and integrated
into our proposed simulation framework by replacing the PEM
in the PEM server illustrated in Figure 7.

In our previous work [6], PEMs were hand-crafted to
explore specific variations, e.g., varying the detection prob-
ability. In this study, PEMs are learned from the nuScenes
dataset [43] processed by Apollo perception module [42].
In particular, we selected three sensor setups (CAM, LID,
and FUL), subsets of the sensors in the nuScenes dataset.
A first step in this direction is explored in [32], where we
introduced the idea of injecting perception errors in a virtual
environment. However, that study was limited to 2D bounding
boxes generated by a camera sensor, and the error modeling
only considered temporal dependency. In the current work we
abstract the sensor type, and our example PEMs address all
four considerations presented in subsection IV-B. We imple-
ment temporal aspects in M and parameter inter-dependencies
in p. We address positional aspects with the grid partitioning

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 1, JANUARY 2024

and occlusion with C , which is not considered in any other
related study in the literature.

The main limitation of the proposed approach is the need to
define and model each type of error explicitly. For example,
our model does not generate false positives, since errors are
only computed on existing objects in the scene. Simulations
based on synthetic data do not suffer from this problem, since
the actual perception module introduces the errors. Never-
theless, determining if the false positives generated by the
synthetic data are realistic requires modeling error properties
such as its distributions and causes. Thus, modeling the errors
is also needed for validation purposes.

Another limitation is that to effectively replicate environ-
mental conditions such as rain, fog, or day/night time, these
conditions need to be present in the dataset. However, this
limitation affects sensor models and synthetic data in the
same measure, as the sensor model requires the same kind
of data to be tuned, as demonstrated by Zhao et al. [37].
Lastly, we observe that deploying PEMs instead of sensor
models provides configurable properties on a different level.
Sensor models allow us to tune sensor properties such as
resolution or frequency. With PEMs, we can instead configure
perception properties such as detection probability or tracking
loss probability, as demonstrated in [6].

VII. CONCLUSION

In this article, we have proposed a generalized data-driven
approach to test and study perception errors in a virtual
environment. Our approach involves the introduction of PEM
as a computationally efficient way of injecting perception
errors into a simulation pipeline. We have provided guidelines
for a data-driven modeling for PEM and its integration in a
simulation pipeline using open-source software Apollo [42],
SVL [18], and public datasets nuScenes [43]. This approach
leads to benefits in many areas. First, it affords a deeper under-
standing of the perception module, identifying shortcomings
and weaknesses. Secondly, simulation fidelity increases by
not relying on perfect perception, but is not as computation-
ally expensive as relying on synthetic signals. Additionally,
we conducted simulation experiments involving three PEMs,
each based on different sensor setups (camera, LiDAR, and a
combination of both). Our experiments highlight the connec-
tion between S&P performance and AV safety. We identify
two directions for future developments: PEM fidelity and PEM
application. The former involves developing more sophisti-
cated PEMs, considering more object parameters (e.g., size,
class) and external conditions (e.g., weather). For the latter,
we proposed a standardized interface notation for PEM that
facilitates comparisons and reusability. These directions can
promote the effectiveness of simulation platforms toward a
safer deployment of AVs on public roads.

REFERENCES

[1] Y. Shen et al., “To explain or not to explain: A study on the necessity
of explanations for autonomous vehicles,” 2020, arXiv:2006.11684.

[2] Taxonomy and Definitions for Terms Related to Driving Automation
Systems for on-Road Motor Vehicles, SAE Standard J3016_201806,
2018.

[3] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A review of sensor
technologies for perception in automated driving,” IEEE Intell. Transp.
Syst. Mag., vol. 11, no. 4, pp. 94–108, Winter 2019.

[4] Collison Between Vehicle Controlled by Developmental Automated Driv-
ing System and Pedestrian, NTSB, Washington, DC, USA, 2019.

[5] W. Young, A. Sobhani, M. G. Lenné, and M. Sarvi, “Simulation of
safety: A review of the state of the art in road safety simulation
modelling,” Accident Anal. Prevention, vol. 66, pp. 89–103, May 2014.

[6] A. Piazzoni, J. Cherian, M. Slavik, and J. Dauwels, “Modeling percep-
tion errors towards robust decision making in autonomous vehicles,” in
Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020, pp. 3494–3500.

[7] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, Feb. 2019.

[8] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” 2017, arXiv:1708.06374.

[9] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario
library generation for connected and automated vehicles, Part I: Method-
ology,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1573–1582,
Mar. 2021.

[10] A. Piazzoni, J. Cherian, M. Azhar, J. Y. Yap, J. L. W. Shung, and
R. Vijay, “ViSTA: A framework for virtual scenario-based testing of
autonomous vehicles,” in Proc. IEEE Int. Conf. Artif. Intell. Test.
(AITest), Aug. 2021, pp. 143–150.

[11] C. Gómez-Huélamo et al., “Train here, drive there: ROS based end-
to-end autonomous-driving pipeline validation in CARLA simulator
using the NHTSA typology,” Multimedia Tools Appl., vol. 81, no. 3,
pp. 4213–4240, Jan. 2022.

[12] J. Guo, U. Kurup, and M. Shah, “Is it safe to drive? An overview of
factors, metrics, and datasets for driveability assessment in autonomous
driving,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 8, pp. 3135–3151,
Aug. 2020.

[13] IPG. (2022). IPG CarMaker. [Online]. Available: http://www.ipg-
automotive.com/en/products-solutions/software/carmaker/

[14] MSC. (2022). Vires VTD. [Online]. Available: http://www.vires.mscsoft
ware.com

[15] Siemens. (2022). Siemens Simcenter Prescan. [Online]. Available:
http://www.plm.automation.siemens.com/global/en/products/simcenter/
prescan.html

[16] NVIDIA. (2022). NVIDIA Drive Sim and Omniverse. [Online]. Avail-
able: http://www.nvidia.com/en-sg/self-driving-cars/simulation/

[17] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn., 2017, pp. 1–16.

[18] G. Rong et al., “LGSVL simulator: A high fidelity simulator for
autonomous driving,” 2020, arXiv:2005.03778.

[19] A. Cortés, C. Rodríguez, G. Vélez, J. Barandiarán, and M. Nieto,
“Analysis of classifier training on synthetic data for cross-domain
datasets,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 190–199,
Jan. 2022.

[20] D. Talwar, S. Guruswamy, N. Ravipati, and M. Eirinaki, “Evaluating
validity of synthetic data in perception tasks for autonomous vehicles,” in
Proc. IEEE Int. Conf. Artif. Intell. Test. (AITest), Aug. 2020, pp. 73–80.

[21] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[22] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3213–3223.

[23] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The CLEAR MOT metrics,” EURASIP J. Image Video
Process., vol. 2008, pp. 1–10, Jan. 2008.

[24] C.-H. Cheng, G. Nãhrenberg, C.-H. Huang, H. Ruess, and H. Yasuoka,
“Towards dependability metrics for neural networks,” in Proc. 16th
ACM/IEEE Int. Conf. Formal Methods Models Syst. Design, Oct. 2018,
pp. 1–4.

[25] M. Lyssenko, C. Gladisch, C. Heinzemann, M. Woehrle, and R. Triebel,
“From evaluation to verification: Towards task-oriented relevance met-
rics for pedestrian detection in safety-critical domains,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2021, pp. 38–45.

[26] G. Volk, J. Gamerdinger, A. v. Bernuth, and O. Bringmann, “A com-
prehensive safety metric to evaluate perception in autonomous systems,”
in Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC), Sep. 2020,
pp. 1–8.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

PIAZZONI et al.: PEM: PERCEPTION ERROR MODEL FOR VIRTUAL TESTING OF AUTONOMOUS VEHICLES 681

[27] C.-H. Cheng, A. Knoll, and H.-C. Liao, “Safety metrics for semantic
segmentation in autonomous driving,” in Proc. IEEE Int. Conf. Artif.
Intell. Test. (AITest), Aug. 2021, pp. 57–64.

[28] H. Arnelid, E. L. Zec, and N. Mohammadiha, “Recurrent conditional
generative adversarial networks for autonomous driving sensor mod-
elling,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019,
pp. 1613–1618.

[29] V. Berkhahn, M. Kleiber, J. Langner, C. Timmermann, and S. Weber,
“Traffic dynamics at intersections subject to random misperception,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 5, pp. 4501–4511,
May 2022.

[30] N. Hirsenkorn, T. Hanke, A. Rauch, B. Dehlink, R. Rasshofer, and
E. Biebl, “Virtual sensor models for real-time applications,” Adv. Radio
Sci., vol. 14, pp. 31–37, Sep. 2016.

[31] R. Krajewski, M. Hoss, A. Meister, F. Thomsen, J. Bock, and
L. Eckstein, “Using drones as reference sensors for neural-networks-
based modeling of automotive perception errors,” in Proc. IEEE Intell.
Vehicles Symp. (IV), Oct. 2020, pp. 708–715.

[32] P. Mitra, A. Choudhury, V. R. Aparow, G. Kulandaivelu, and J. Dauwels,
“Towards modeling of perception errors in autonomous vehicles,”
in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 3024–3029.

[33] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354–3361.

[34] C. Innes and S. Ramamoorthy, “Testing rare downstream safety viola-
tions via upstream adaptive sampling of perception error models,” 2022,
arXiv:2209.09674.

[35] J. Sadeghi et al., “A step towards efficient evaluation of complex
perception tasks in simulation,” 2021, arXiv:2110.02739.

[36] E. L. Zec, N. Mohammadiha, and A. Schliep, “Statistical sensor
modelling for autonomous driving using autoregressive input–output
HMMs,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 1331–1336.

[37] J. Zhao, Y. Li, B. Zhu, W. Deng, and B. Sun, “Method and applica-
tions of LiDAR modeling for virtual testing of intelligent vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2990–3000,
May 2021.

[38] M. Hoss, M. Scholtes, and L. Eckstein, “A review of testing object-
based environment perception for safe automated driving,” 2021,
arXiv:2102.08460.

[39] G. Ros, V. Koltun, F. Codevilla, and A. Lopez. (2019). The
Carla Autonomous Driving Challenge. [Online]. Available: https://carla
challenge.org/

[40] T. Hanke, N. Hirsenkorn, B. Dehlink, A. Rauch, R. Rasshofer, and
E. Biebl, “Classification of sensor errors for the statistical simulation of
environmental perception in automated driving systems,” in Proc. IEEE
19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016, pp. 643–648.

[41] D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in
object detectors,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2012, pp. 340–353.

[42] H. Fan et al., “Baidu Apollo EM motion planner,” 2018,
arXiv:1807.08048.

[43] H. Caesar et al., “NuScenes: A multimodal dataset for autonomous
driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11618–11628.

[44] X. Huang et al., “The ApolloScape dataset for autonomous driving,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2018, pp. 954–960.

[45] R. Kesten et al. (2019). Level 5 Perception Dataset 2020. [Online].
Available: https://level-5.global/level5/data/

[46] (2019). Waymo Open Dataset: An Autonomous Driving Dataset.
[Online]. Available: https://www.waymo.com/open

[47] (2019). CyberRT. [Online]. Available: https://cyber-rt.readthedocs.io/
[48] J. Florbäck, L. Tornberg, and N. Mohammadiha, “Offline object match-

ing and evaluation process for verification of autonomous driving,” in
Proc. IEEE 19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016,
pp. 107–112.

[49] N. Cressie, Statistics for Spatial Data. Hoboken, NJ, USA: Wiley, 2015.
[50] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic program-

ming in Python using PyMC3,” PeerJ Comput. Sci., vol. 2, p. e55,
Apr. 2016.

Andrea Piazzoni received the M.Sc. degree
in computer science from the University of
Milano-Bicocca, Italy, in 2016. He is currently pur-
suing the Ph.D. degree with IGP-ERIAN, Nanyang
Technological University, Singapore. He has worked
as an academic researcher on robotics and
autonomous vehicles. His research interests include
virtual simulation, robotic perception, decision-
making, and probabilistic graphical models.

Jim Cherian received the B.Tech. degree in elec-
tronics engineering from the Cochin University of
Science and Technology, India, in 2002, and the
Ph.D. degree from the School of Computer Science
and Engineering, Nanyang Technological University
(NTU), Singapore, in 2019, in collaboration with the
BMW Group, Germany. He has worked extensively
as a software architect in the automotive embedded
systems software industry and a Senior Research
Fellow in future mobility and autonomous vehicle
enablers with CETRAN, NTU. He is currently a

Principal Scientist in advanced robotic systems and applications with ARTC,
A*STAR, Singapore. His research interests include optimality, interoperability,
and the behavioral safety of autonomous systems for manufacturing, logistics
and mobility applications, intelligent sensing and perception quality, virtual
simulations, mobile computing, crowdsensing systems, and mobility data
mining.

Justin Dauwels (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
Swiss Polytechnical Institute of Technology (ETH),
Zürich, in December 2005. He is currently an Asso-
ciate Professor in circuits and systems with the
Department of Microelectronics, TU Delft. He was
an Associate Professor with the School of Elec-
trical and Electronic Engineering, Nanyang Tech-
nological University (NTU), Singapore, until 2020.
His research interests include data analytics with
applications to intelligent transportation systems,

autonomous systems, and the analysis of human behavior and physiology.
He served as the Chairperson of the IEEE CIS Chapter in Singapore
from 2018 to 2020. He has been serving as an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING since 2018, an Associate Editor
for the journal Signal Processing (Elsevier) since 2021, and an organizer of
IEEE conferences and special sessions. He has also been an elected member
of the IEEE Signal Processing Theory and Methods Technical Committee and
IEEE Biomedical Signal Processing Technical Committee since 2018.

Lap-Pui Chau (Fellow, IEEE) received the Ph.D.
degree from The Hong Kong Polytechnic University
in 1997. He was with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, from 1997 to 2022. He is currently a
Professor with the Department of Electrical and
Electronic Engineering, The Hong Kong Polytechnic
University. His current research interests include
computer vision, video analytics for intelligent trans-
portation systems, human motion analysis, and meta-
verse. He was the Chair of the Technical Committee

on Circuits & Systems for Communications of IEEE Circuits and Systems
Society from 2010 to 2012. He was the general chair and the program chair
for some international conferences. Besides, he served as an associate editor
for several IEEE journals and a Distinguished Lecturer for IEEE BTS.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2024 at 07:54:08 UTC from IEEE Xplore. Restrictions apply.

