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Buckling of a monolayer of platelike particles trapped at a fluid-fluid interface

Suriya Prakash , Hugo Perrin, and Lorenzo Botto*
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(Received 4 July 2023; accepted 14 December 2023; published 23 January 2024)

Particles trapped at a fluid-fluid interface by capillary forces can form a monolayer that jams and buckles when
subject to uniaxial compression. Here we investigate experimentally the buckling mechanics of monolayers
of millimeter-sized rigid plates trapped at a planar fluid-fluid interface subject to uniaxial compression in a
Langmuir trough. We quantified the buckling wavelength and the associated force on the trough barriers as a
function of the degree of compression. To explain the observed buckling wavelength and forces in the two-
dimensional (2D) monolayer, we consider a simplified system composed of a linear chain of platelike particles.
The chain system enables us to build a theoretical model which is then compared to the 2D monolayer data. Both
the experiments and analytical model show that the wavelength of buckling of a monolayer of platelike particles
is of the order of the particle size, a different scaling from the one usually reported for monolayers of spheres. A
simple model of buckling surface pressure is also proposed, and an analysis of the effect of the bending rigidity
resulting from a small overlap between nanosheet particles is presented. These results can be applied to the
modeling of the interfacial rheology and buckling dynamics of interfacial layers of 2D nanomaterials.

DOI: 10.1103/PhysRevE.109.014801

I. INTRODUCTION

The buckling wavelength of monolayers of nearly spherical
particles trapped at a fluid interface under compression has
been studied with both realistic particles (Lycopodium spores,
Chemigum (Eliokem)) [1] as well as model particles (glass
beads, zirconium oxide beads) [2]. In these experiments the
particles were spread at an air-water interface and the particle
layer subject to uniaxial compression in a Langmuir trough.
Both the buckling wavelength and the force on the barrier,
proportional to the surface pressure [3], were measured. A
mathematical model that treats the monolayer as a continuous
elastic sheet captured the buckling wavelength measured in
these experiments. The relation between the effective mechan-
ical properties of the monolayer and the particle size was
obtained by assuming an effective Young modulus E ∼ γ /d ,
where γ is the surface tension of the bare fluid-fluid interface
and d is the nominal sphere diameter [1]. According to this
model, and in agreement with experimental results [1,2,4],
the buckling wavelength of the monolayer scales as ∼√

�cd ,
where �c = √

γ /(ρ̃g) is the capillary length, ρ̃ is the density
difference between the two fluids across the interface, and g is
the acceleration of gravity.

Compression experiments on buckling of interfacial mono-
layers of graphene oxide show a buckling wavelength in
the range of 4–20 particle diameters, with an average wave-
length of 7.6 particle diameters [5]. The continuum theory
for spheres would give approximately 250 particle diame-
ters, largely overestimating the observed wavelength. Given
the large aspect ratio of graphene oxide sheets, applying
models for spheres is questionable, and developing mathe-
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matical models specifically tailored to platelike particles is
thus necessary. Deriving such models starting from experi-
ments with nanoparticles, which are affected by uncontrolled
variables such as polydispersity in size [6] and possibility
of particle-particle overlap [7], is challenging. With a model
experimental system, in which macroscopic particles of con-
trolled shapes are used, one can investigate the associated
interfacial mechanics without the complications of an actual
nanoparticle system.

In this paper we study experimentally the uniaxial com-
pression of a monolayer of millimeter-sized platelike particles
trapped at a fluid-fluid interface by capillary forces. We
start with observations of a two-dimensional (2D) mono-
layer of hexagonal particles at an air-water interface. We
then consider a linear chain of square plates [one-dimensional
(1D) system]. We develop a theory to explain the lin-
ear chain system which is then applied to the 2D particle
monolayer. In our experiments the particles are not over-
lapping for most of the monolayer deformation. However,
we use the 1D mathematical model to discuss possible im-
plications of small overlaps between the particles in terms
of an increased effective bending rigidity of the particle
layer.

In our experiments the Bond number based on the weight
of the particles is small [8], so the effect of downward dis-
tortion of the fluid interface owing to the weight of the
particle (minus buoyancy) is relatively unimportant. However,
as we will see, when in contact the particles can displace
fluid by rotating around an axis parallel to the fluid interface.
This results in a gravitational contribution to the interfacial
mechanics. In the linear chain case, we are able to investi-
gate the regime in which capillary forces are dominant over
gravitational forces by density matching of the upper and
lower fluids.

2470-0045/2024/109(1)/014801(12) 014801-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3656-7212
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.014801&domain=pdf&date_stamp=2024-01-23
https://doi.org/10.1103/PhysRevE.109.014801


PRAKASH, PERRIN, AND BOTTO PHYSICAL REVIEW E 109, 014801 (2024)

FIG. 1. Schematic of the experimental setup to measure surface
pressure and topology of the interfacial monolayer of plates.

The motivation for the current work is to better understand
the compression of 2D nanomaterials at fluid-fluid interfaces.
Two-dimensional nanomaterials, of which the most discussed
are graphene and graphene oxide, can take the form of a col-
loidal dispersion of nanometrically thin platelike particles of
large aspect ratios [9,10]. Recently, the use of fluid interfaces
has emerged as a way to control the assembly of these systems
[11,12]. In the Langmuir-Blodgett technique, for example, a
monolayer of 2D nanomaterials is adsorbed at a flat fluid-
fluid interface, and the monolayer compressed by barriers
[13]. The monolayer is then transferred to a solid substrate
[14,15]. Critical to the performance of the resulting particle
coating is predicting the particle coverage in the fluid inter-
face upon uniaxial compression in the trough, and whether
the particle monolayer displays a solidlike behavior. If the
particles jam at the fluid interface, the particle monolayer can
buckle, and the signature of this buckling is visible in the
profile of surface pressure vs barrier displacement [2,7,16,17].
The analysis of the relation between buckling wavelength
and associated force on the barrier discussed in the current
paper is therefore relevant for interpreting interfacial rheol-
ogy measurements with 2D nanomaterials. More broadly, the
current investigation could help understanding of the mechan-
ics of particle rafts, armored bubbles, or droplets, a research
field that has received increasing attention recently from the
soft matter physics, colloidal science, and fluid mechanics
communities [18].

II. EXPERIMENTAL METHODS

Uniaxial compression experiments are carried out in an
in-house-made rectangular trough of length 200 mm and
width Wt = 50 mm; see Fig. 1. A stationary barrier mounted
on a force sensor allows us to measure the force F on
the barrier and the surface pressure � = F/Wt . A mov-
ing barrier mounted on a linear stage allows us to control
the distance � between the barriers in steps of 10 μm. To

measure forces of the order of mN we use a load cell
with a resolution of ± 0.1 mN. For small forces of the
order of μN, produced by the smallest particles, we use
a cantilever-based force sensor, which is described later
in detail.

For the 2D monolayer experiments, we use transparent
hexagonal plates made of Mylar (density ρp � 1400 kg/m3)
purchased from Geotech International. The plates have thick-
ness t = 50 μm and two different lateral sizes, L = 1.5 mm
and 3 mm. Here L refers to the inscribed circle diameter
of the hexagonal plates. To remove possible contaminants,
we aspirate the fluid interface using a suction pipette after
moving the barriers to minimum opening [19]. The process
is repeated until the fluid interface is clean. The interface is
assumed to be clean if the surface pressure at maximum com-
pression is below 4 mN/m. The 2D monolayer is prepared
by gently sprinkling the particles on the air-water interface
at maximum � � 3Wt . Overlapping particles are separated
by a stirring rod. The 2D monolayer is then compressed at a
velocity of 200 μm/s. The monolayer undergoes out-of-plane
deformations, whose amplitude A is measured by the inclined
laser line method [20,21]. The technique involves projecting
a laser sheet at an angle θ with respect to the particle-laden
fluid interface (Fig. 1). The intersection of the laser sheet
with the monolayer results in a line that is imaged from
the top by a camera. The intersecting line is straight for a
flat monolayer and distorted for a deformed monolayer. The
out-of-plane deformation amplitude can be calculated from
the lateral distortion of the laser line, accounting for a pro-
portionality constant tan(θ ). In our experiments θ ≈ 28◦ (see
Fig. 1). This angle is measured precisely by measuring tan(θ ),
the factor of conversion between in-plane displacement of
the laser line and out-of-plane deformation, for a rectangular
block of known height (15 mm) placed on the fluid interface
using a microstage [20]. The resolution of the out-of-plane
deformation is 60 μm. The novelty of our method is that we
use a laser line that sweeps the monolayer. This approach
provides a continuous topographic map, instead of the height
profile along a single line. To perform the sweep, the laser
source is mounted on a linear stage controlled by a stepper
motor.

For the single chain experiments, we use square-shaped
Mylar plates of lateral sizes L = 1, 3, 5, 7, 10, 15, and 20 mm
and thickness t = 125 μm, except for the 1 mm Mylar plates
for which the thickness is t = 23 μm. For all the particles
the aspect ratio L/t is larger than 23. The smallest plates
are manufactured by laser cutting (Optec Laser Systems).
Using the length and thickness of the plates and Young’s
modulus � 3 GPa of Mylar, we estimate an Euler buckling
threshold for the plates of � 240 mN. Therefore, the plates
do not buckle under compression forces of the order of a
few mN and are considered to be rigid in our experiments.
Experiments are carried out with both a glycerol-air interface
and a water-sunflower oil interface; corresponding density
differences between the two fluids are ρ̃ = 1200 ± 1 kg/m3

and 80 ± 1 kg/m3, respectively, as measured by an Anton
Paar density meter (DMA 5000). The surface tensions of the
glycerol-air and water-sunflower interfaces are 65 ± 1 mN/m
and 26 ± 1 mN/m, respectively, as measured by the pendant
drop method in a Dataphysics Goniometer (OCA 25).
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FIG. 2. (a) Surface pressure � vs normalized separation distance �/Wt between the barriers for uniaxial compression of N � 1590
hexagonal plates of lateral size 1.5 mm trapped at a water-air interface. We identified four characteristic points A, B, C, and D in correspondence
to which the topology of the particle-laden interface is measured. The insets show zoomed-in micro-structures highlighting key features of
topology in points B and D. The same data normalized by �0 are shown in Appendix D, where �0 is the compression distance at which the
surface pressure becomes finite. (b) Surface topology map of the entire trough area corresponding to the characteristic points in subfigure (a).
The blue regions at the left and right ends of the topology maps corresponds to the curved menisci near the barriers. The scale bar shown as a
black line is 3 mm, i.e., two particle diameters.

For the water-oil interface, the particles are first arranged
at an air-water interface and the oil is gently added. Care is
taken to arrange the particles in a straight chain between the
barriers. Upon compression, the chain undergoes out of
the plane deformation. A camera captures the side view of the
chain and from the images we extracted the average amplitude
〈A〉 of individual plates in the chain. As mentioned earlier, for
forces of the order of mN the load cell is used. For forces
of the order of few μN we used a cantilever force sensor
similar to the micropipette force sensor described in Ref. [22].
The deflection ξ of the cantilever is measured from the side
view by a calibrated camera with a zoom lens. The force is
computed from F = k ξ . The stiffness k of the cantilever was
obtained by calibration; see Appendix A for the calibration
procedure and calibration curves. We used cantilevers of stiff-
nesses k = 29 and 58 μN/mm. The resolution of the force F
is ∼1 μN. This value is set by the resolution of the camera
(� 11 μm/pixel) and the stiffness of the cantilever.

III. RESULTS

A. Observations on the 2D monolayers

Figure 2(a) shows a typical evolution of the surface pres-
sure � = F/Wt for decreasing values of the normalized
distance �/Wt between the barriers. Figure 2(b) shows ampli-
tude maps corresponding to four characteristic points of the �

vs � curve, denoted A, B, C, and D. For �/Wt > 2 the plates
are not touching each other and � � 0 as expected. As �/Wt

decreases, contacts between the particles are established and
a finite value of � is measured. In correspondence to point
A, � > 0 because of the formation of force chains, but the
interface remains flat [see panel A in Fig. 2(b)]. Buckling
of the monolayer becomes measurable in correspondence to
point B. Buckling is evident from the change in amplitude of
the particle-laden interface [inset X of Fig. 2(a) and inset X in
panel B of Fig. 2(b)]. Further compression leads to an increase
in the number of buckled regions as the surface pressure rises.
The characteristic point C belongs to this region of behavior.
Buckling is predominantly present near the moving barrier

[on the right in panel C of Fig. 2(b)]. The point D which we
define as the “collapse point” is the value of � for which
the experimental images start showing the local formation
of multilayers. From A to D, the surface pressure increases
relatively steeply, while for values �/Wt smaller than the one
corresponding to D the surface pressure increases compara-
tively mildly. A video corresponding to the data of Fig. 2 is
given in the Supplemental Material [23].

Figure 3(a) shows the tracked laser lines overlaid on a top
view of the 2D monolayer. The compression displacement for
this figure corresponds to the “collapse point.” To measure the
local periodicity of the buckled zones (see inset Z of panel
D in Fig. 2), we calculated the height-height correlation func-
tion 〈h(x)h(x + x̃)〉 of the out-of-plane deformations along the
compression axis x [blue curves in Fig. 3(b)]. The height-
height correlation averaged over all the laser lines [black
curve in Fig. 3(b)] shows a maximum at x̃ ≈ 3.1L, which
provides evidence that λ ∼ L for the 1.5 mm plates. For the
larger (L = 3 mm) plates we measured λ = 2.25L for small
compression displacement, again suggesting λ ∼ L. The key
observation from the height-height correlation function is that
the local wavelength in the regions where buckling occurs is
of the order of the particle diameter.

For small compression [panel B in Fig. 2(b)] the deforma-
tions are localized in a few buckled regions of approximate
extent ≈2.4 L in the compression direction. For large com-
pression [panel D in Fig. 2(b)] the height-height correlation
indicates a characteristic correlation length of about 3.1 L.
Thus the periodicity of the buckled zones is approximately
independent of �. Also, the monolayer does not show long-
range ordered wavelike patterns, as reported for spheres [2].
The fact that no wavelengths much larger than the particle
size occur is compatible with a simple model of chain com-
pression, which we now describe.

B. 1D chain model and comparison with experiment

We now analyze the compression of a linear chain of
N = 16 square plates of size L = 10 mm trapped at an air-
glycerol interface. The measured force F and the normalized
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(a) (b)

FIG. 3. (a) Tracked laser lines overlaid on the image of plate particle monolayer corresponding to point D of Fig. 2(a). The vertical spacing
between the lines is approximately one particle diameter. (b) Height-height correlation functions based on the amplitudes from the tracked
laser lines (in blue). The black line is the average over all tracked lines. Here the coordinates x and x̃ are along the compression direction.

average amplitude 〈A〉/L of the out-of-plane deformation are
shown in Fig. 4 as a function of �/(NL). From this plot,
two regimes can be identified. For �/(NL) > 1, the distance
between the barriers is larger than the total length of the chain.
Therefore, F = 0 and 〈A〉 � 0 (“flat state”). For �/(NL) = 1,
the plates touch each other and F starts to increase. The
measured average amplitude increases when �/(NL) is ap-
proximately equal to 0.9995. The fact that F can be nonzero
while 〈A〉 � 0, a feature that was also observed in the 2D sys-
tem, is due to small particle rearrangements before jamming.
The “buckled state” for �/(NL) < 0.9995 is characterized by
a sharp increase in F followed by a plateau. In the rest of
this paper, we will call the plateau value of F the buckling
force, as it represents the magnitude of the force that would be
required to buckle the monolayer in an experiment conducted
at applied force.

FIG. 4. Single chain compression experiment. Force F (black
markers) on the barrier and normalized average amplitude of out-of-
plane deformation 〈A〉/L (red markers) plotted against normalized
distance �/(NL) between the barriers for N = 16 square plates
of size L = 10 mm at a glycerol-air interface. The vertical dashed
line at �/(NL) = 0.9995 marks the transition from the flat to the
buckled state. The two insets illustrate a configuration in the flat state
�/(NL) > 0.9995 and in the buckled state �/(NL) < 0.9995.

The dependence of amplitude on the compression dis-
placement in the buckled state is compared against a simple
analytical prediction based on the assumption that the trian-
gular wave is perfectly periodic (see Appendix B). The model
predicts the trend correctly, but overestimates the experimen-
tal data. Possible explanations for this discrepancy are that the
experimental wave is not perfectly periodic and the observed
amplitude at the barriers is slightly smaller than the amplitude
away from the barrier. The wavelength λ of the monolayer
corrugation was obtained by visual inspection. Experiments
with different numbers of plates, from 5 to 16, consistently
gave λ � 2L, as shown in the inset of Fig. 4 for N = 16.

To analyze the observed behavior, we developed a math-
ematical model based on a balance between capillary forces,
gravity, and contact forces. The total free energy of the sys-
tem is given by the gravitation potential energy of the fluid
(located both below the fluid interface and below the plates)
and the interfacial energy of the fluid-fluid interface. Calling
h(x, z) the height of the fluid-fluid interface (see Fig. 5), and
assuming that the plates pin the contact line at their edges [24],
the gravitational potential energy contribution to the total free
energy is

Eg =
∫ �

0
dx

[
1

2
ρ̃gLh2(x, 0) + 2

∫ ∞

0

1

2
ρ̃gh2 dz

]
, (1)

FIG. 5. Sketch of a chain of N plates of length L displaced by
NL − �. The air-liquid or the liquid-liquid side menisci pinned to the
edges of the particles is indicated by h(x, z). The color code indicates
the vertical (along the y axis) deformation of the interface.
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where ρ̃ = ρl − ρa is the difference in density between the
heavier fluid and the lighter fluid, x is the coordinate along
the chain and z is the coordinate perpendicular to the chain
in the plane of the unperturbed fluid interface, with z = 0
corresponding to the contact line on one side of each plate (see
Fig. 5). The first term in Eq. (1) is the gravitational energy
of the liquid below the plates, and the second term is the
gravitational energy of the liquid in the two side menisci. The
capillary energy associated with the menisci on both sides of
the chain is

Eγ = 2γ

∫ �

0
dx

∫ ∞

0

√
1 +

(
∂h

∂x

)2

+
(

∂h

∂z

)2

dz. (2)

We neglect the contribution to the capillary energy due to the
average displacement of the contact line in the vertical direc-
tion caused by the particle weight minus buoyancy, giving
rise to the capillary monopole term important in the “Chee-
rios effect” [25]. The perimeter-averaged vertical interface
displacement caused by the plate weight is of the order of
Bop�c where Bop = ρpgLt/γ is the particle Bond number
and �c = √

γ /(ρ̃g) is the capillary length [26,27]. Based on
this estimate, the average vertical contact line displacement
is about 0.1�c. This deformation is not negligible. However,
the interfacial energy associated with this displacement is
approximately independent of � (the particle centers do not
translate vertically). Thus the capillary energy contribution
due to particle weight towards buckling force or the selection
of the dominant buckling mode is negligible. Note that we also
neglected the capillary contribution due to the fluid interface
in the gap between the particles (i.e., in −L < z < 0). To
enforce the constraint that the total length of the chain is
constant, we add to the total free energy a constraint term

Ec = F

⎡
⎣NL −

∫ �

0
dx

√√√√1 +
(

∂h

∂x

)2
∣∣∣∣∣
z=0

⎤
⎦, (3)

where F is a scalar Lagrange multiplier. Physically, F repre-
sents the contact force between the plates.

The Lagrangian to be minimized is obtained by adding
the capillary and gravitational energy contributions, Eqs. (1)
and (2), to the Lagrange multiplier term Eq. (3). Imposing
δ(Eg + Eγ + Ec) = 0, where δ denotes the functional deriva-
tive, yields two equations (the full expressions for δEg, δEγ

and δEc are given in Appendix C). The first equation is the
small-amplitude Young-Laplace equation governing the shape
of the fluid-fluid interface for −L > z > 0 :

ρ̃gh = γ

(
∂2h

∂x2
+ ∂2h

∂z2

)
. (4)

The second equation is the boundary condition at z = 0 :

ρ̃gLh − 2γ
∂h

∂z
+ F

∂2h

∂x2
= 0. (5)

The small amplitude assumption holds for the 1D chain be-
cause the maximum amplitude is only A/L � 2.5 × 10−2 (see
Fig. 4). Upon multiplication by L, Eq. (5) is a balance of
moments. The first term represents the moment of the hy-
drostatic pressure force due to the weight of the fluid below
the plates. The second term represents the moment of the

FIG. 6. Upon compression of an initially flat monolayer (a), both
configuration (b) and configuration (c) are solutions to Eq. (5). We
observe only configuration (b).

vertical projection of the surface tension force at the contact
line, located at z = 0 and z = −L. The third term represents
the moment of the contact forces F between the particles.

The leading-order Fourier mode solution of Eq. (4) that
matches the triangle-wave profile of the contact line is [28]

h(x, z) = Ae
−z

√(
2π
λ

)2
+ 1

�2
c sin

(
2πx

λ

)
, (6)

where �c = √
γ /ρ̃g is the capillary length. Equation (6) sat-

isfies h(x, z = 0) = A sin(2πx/λ) and h(x, z → ∞) = 0. For
λ � �c and λ � �c, the decay lengths of the meniscus in the z
direction are �c and λ/2π , respectively. Thus, in the surface
tension-dominated regime the buckling wavelength and the
decay length of the fluid interface distortion are roughly of
the same order of magnitude.

Substituting Eq. (6) into Eq. (5) yields the contact force as
a function of the wavelength:

F = 1

4π2
ρ̃gLλ2 + 1

2π2
γ λ

√
(2π )2 +

(
λ

�c

)2

. (7)

Because of the small-amplitude assumption the buckling force
is independent of A. The capillary energy, the gravitational
energies and the constraint term are proportional to NL in
the limit of small compression displacement (since � ≈ NL).
Therefore, the buckling force is also independent of N . In
Fig. 6 we show two configurations of buckled chains, with
λ = 2L in configuration (b) and λ = 10L in configuration (c).
While both wavelengths are solutions to Eq. (5), the absolute
minimum of F (λ) is the total energy minimum, as in the
buckling of an Euler beam [29]. Since F (λ) is a monotonically
increasing function of λ and wavelengths smaller than 2L are
not possible, the equilibrium wavelength is

λ = 2L. (8)
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FIG. 7. Normalized buckling force Fb/(γ �c ) vs normalized par-
ticle length L/�c for the 1D chain experiments. The markers
correspond to experimental data, blue squares for chains at a water-
oil interface, and black circles for chains at a glycerol-air interface.
The red line is Eq. (9).

The contact force corresponding to λ = 2L is the buckling
force:

Fb

γ �c
= 1

π2

(
L

�c

)3

+ 2

π

L

�c

√
1 +

(
L

π�c

)2

. (9)

Figure 7 shows Fb/(γ �c) vs
√

Bo = L/�c, comparing Eq. (9)
with the experimental data. Here Bo = ρ̃gL2/γ . Despite
Eq. (9) having no free parameters, the agreement between
the experimental data and the theory is excellent, except for
the smallest values of Bo for which a perfect alignment of
the plates cannot be ensured. For Bo � 1 the gravitational
force dominates and Fb ∼ ρ̃gL3. In this regime, the buckling
force is of the order of the weight of the liquid displaced by
each plate as the chain deforms. For Bo � 1, Fb ∼ γ L. In this
regime, the buckling force is of the order of the capillary force
exerted by the side meniscus on each plate. Equating the first
and second terms in Eq. (9) provides a threshold L/�c � π for
the transition between the capillarity- and gravity-dominated
regimes.

Reference [30] reports compression experiments per-
formed on an air bubble covered with a monolayer of spherical
particles. The data show both smooth buckling indentations
of the order of the bubble size and small-scale undulations of
the order of the particle size. The authors explain the appear-
ance of the small-scale undulations with a discrete model that
includes a capillary energy contribution due to displacement
of each particle from the plane of the fluid interface. Similar
to ours, this model does not treat the particle monolayer as
an elastic membrane (the model, however, does not include
capillary-induced bending energy contributions, which could
be important for spheres [1,31]). The scaling predicted by this
model is similar to ours, but the physics is different: in our
case the particle centers of mass do not translate with respect
to the average plane of the interface when the dominant, small
wavelength mode is selected [see Fig. 6(b)]. However, the
experiments are interesting because they show that small-
scale undulations could be superimposed on smoother ones
in the case of spherical particles embedded in curved fluid
interfaces.

C. Comparison of 1D model with 2D experiment

It is instructive to compare the prediction of the chain
model to the experimental data for the 2D monolayer. The
model predicts λ = 2L, close to the peak-to-peak value in
the height-height correlation function measured from the 2D
monolayer data (see Sec. III A). A peak-to-peak distance
slightly larger than λ = 2L is expected because the buckled
regions are not exactly perpendicular to the laser line (for
a nonzero angle between the laser line and the buckling
direction, the measured peak-to-peak distance in the correla-
tion function is larger than the actual separation between the
“crests” of the monolayer).

A comparison between an estimate of the surface pressure
obtained from 1D model and the measured surface pressure
for 2D system [see Fig. 2(a)] is also possible. The buckling
surface pressure from Eq. (9) is

�b = Fb

L
= 1

π2
ρ̃gL2 + 1

π2
γ

√
(2π )2 +

(
2L

�c

)2

. (10)

Such a comparison should account for two differences. First,
in the 1D chain the internal stress in the monolayer due to
particle-particle contact forces is essentially homogeneous
along the compression direction (on a scale � L). In the 2D
assembly, the contact forces are instead a random function of
position and orientation. Second, in the 2D monolayer the
balance of forces on the entire monolayer should account
for friction with the lateral walls [32,33]. Evidence of the
importance of the lateral walls in our experiments is the fact
that the amplitude of the monolayer deformation is larger near
the moving barrier [see panels C and D in Fig. 2(b)]. A larger
deformation occurs in this region because the gradient of the
surface pressure along the compression direction must balance
the frictional stresses on the lateral walls, leading to a larger
surface pressure and deformations near the moving barrier.
However, the 1D chain model could still provide an estimate
of the average value of � in regions where buckling occurs
and sufficiently away from the lateral walls.

We performed buckling experiments at different trough
aspect ratios. Trough aspect ratios are changed by varying the
number of particles between the barriers for a fixed trough
width. The particle size is fixed to L = 1.5 mm in all experi-
ments. Figure 8 shows the surface pressure profiles for the 2D
monolayer as a function of �/Wt for N � 330–2040. We see
from this curve that the surface pressure profile depends on
the initial trough area, another manifestation of the effect of
lateral wall friction [32–34].

Figure 9 shows the experimental data for the surface
pressure in the 2D monolayer, averaged over three different
measurements, for different values of �/Wt . This figure is
obtained from Fig. 8 by reporting the value of � and �/Wt

corresponding to the collapse point D. In order to compare
the collapse surface pressure in the 2D monolayer with the
1D model we used a Coulomb model for the lateral wall
friction as done in [32] for a monolayer of spherical parti-
cles. This model assumes that the frictional force per unit
length is proportional to the local values of � according to
a proportionality constant μwall. This approximation yields an
exponential decay law also referred to as the Janssen model,
� = �0 exp (−2μwallν�/Wt ) [32]. Here �0 is the pressure
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FIG. 8. Surface pressure � measured at the stationary barrier for
2D monolayers of L = 1.5 mm hexagonal particles at a water-air
interface against the distance between the barriers normalized by the
trough width �/Wt for different number of plates. The points D (in
purple markers) are the collapse points.

at the moving barrier and ν is the ratio of surface pressures
perpendicular and parallel to the compression direction. As-
suming ν = 1/3 [32], the best fit to the data (dashed curve in
Fig. 9) gives �0 = 53.8 mN/m and μwall = 0.24. The trough
walls are made of PLA plastic. While we could not find the
data for the friction coefficient of Mylar on PLA in water,
the reported friction coefficients for Mylar against different
engineering materials such as copper and wood are in the
range 0.13–0.41 [35]. The black square dot in Fig. 9 is the
extrapolation of the experimental data for the 2D monolayer
to �/Wt = 0, which yields �0 = 53.8 mN/m. The red square
dot in Fig. 9 is obtained by using the parameters of our
problem in Eq. (10). The value of �0 from the friction model

FIG. 9. Surface pressure at collapse point D for 2D monolayers
of L = 1.5 mm hexagonal particles at a water-air interface, averaged
over three realizations and plotted against the distance between the
barriers (normalized by the trough width). The error bars represent
the standard deviations. The dashed curve is the Janssen model’s fit
to the experimental data. The black marker is the extrapolation of
the Janssen model’s fit for �/Wt → 0. The red marker is the surface
pressure predicted by the 1D chain model (10).

is larger than the value from the 1D chain model, but the
difference is small (about 13%). Considering the simplicity
of the chain model, the agreement with the 2D data is sur-
prisingly good. We would like to emphasize that, given the
limited range of �, we cannot establish the full validity of
Janssen model for our system. The fitting via this model is
used here only to illustrate the effect of lateral wall friction on
the expected trend of � and the limited effect of friction in the
limit �/Wt → 0.

As stated before, the 2D monolayer differs from the 1D
chain in the distribution of contact forces between the par-
ticles. Statistics of contact forces between jammed particles
have been studied extensively in the context of granular ma-
terials [34,36–38]. These studies reveal that the probability of
contact forces attaining a value f larger than the mean value
〈 f 〉 decays fast, approximately as p( f /〈 f 〉) ∼ exp (−β f /〈 f 〉)
with β an O(1) numerical coefficient [34,36–38]. Therefore it
is expected that the monolayer contains few contact forces that
are large compared to the average contact force [34]. Upon
monolayer compression, the first buckling events will occur
for groups of particles for which the contact force exceeds the
estimate in Eq. (9). Because such large forces are small in
number, the buckling regions are initially localized, as seen
in panel B in Fig. 2(b). If the mechanical response of the
monolayer is dominated by these spatially scattered regions,
Eq. (10) could provide an upper bound for the surface pressure
measured at the barrier in the 2D experiment.

In our experiments the buckled zones do not show long-
range periodicity. Even for large compression displacements
the average height-height correlation function becomes neg-
ligible for x̃ ≈ 7L [see Fig. 3(b)]. A possible explanation
is spatial localization of forces chains. Studies on jammed
granular packing reveal that the force chains do not extend
over more than a few particle diameters [39,40].

In the 1D chain, the decay length of the side meniscus is
L/π ∼ 0.3L in the capillary regime. In a randomly packed 2D
system, the average distance between the edges of the particle
is L(1/

√
φ − 1), where φ is the surface fraction of the plate

particles. For φ � 0.84, the value appropriate for a random
close packing of disks [33], we obtain an average distance of
� 0.1L between the particle edges. Therefore, in the capillary
regime the meniscus decay length and the distance between
the particle edges are of the same order of magnitude. Because
of this, the solution for the 1D chain could be used as a
local approximation to the contact force in the 2D system. In
the gravity-dominated regime the side meniscus deformation
gives a negligible contribution to the contact force, so also in
this regime the application of the 1D model to the 2D system
is justified as a first approximation.

D. 1D model with bending rigidity

Key in our derivations is the absence of bending energy in
the energy functional. Experiments with graphene oxide [5]
seem to be compatible with the our model, but the observed
wavelength is slightly larger than 2L. A possible explanation
for observing wavelengths larger than 2L could be the pres-
ence of a small but finite bending rigidity of the monolayer.
An extension of Eq. (5) accounting for an effective monolayer
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FIG. 10. Normalized force F/(γ L) as a function of normalized
wavelength λ/(2L) for small values of normalized bending rigidity
and Bo = 0 [see Eq. (14)].

bending rigidity (per unit width) D is

DL
∂4h

∂x4
+ ρ̃ghL − 2γ

∂h

∂z
+ F

∂2h

∂x2
= 0, (11)

and substituting Eq. (6) into Eq. (11) gives

F

γ L
= D

γ L2

(
2πL

λ

)2

+ 2

(
λ

2πL

)√
1 + Bo

(
λ

2πL

)2

+ Bo

(
λ

2πL

)2

. (12)

For γ = 0 Eqs. (11) and (12) predicts λb = (D/ρ̃g)1/4, which
is the result of Ref. [4]. For D/(γ L2) � 1 bending rigidity
effects are negligible, and we recover the results of Sec. III b.
For intermediate values of D/(γ L2), the wavelength that min-
imizes the force is larger than 2L. Its precise value can be
found by solving dF/dλ = 0. For Bo � 1, gravity becomes
negligible and the buckling mechanics is dominated by bend-
ing rigidity and capillary forces. The buckling wavelength in
this limit is

λb

2L
= max

{
1, π

(
D

γ L2

)1/3
}

, (13)

and the corresponding buckling force is

Fb

γ L
= max

{
2

π
, 3

(
D

γ L2

)1/3
}

. (14)

Figure 10 shows F/(γ L) vs λ/(2L) for Bo = 0 and selected
small values of D/(γ L2). The wavelength that minimizes F
is indicated by the red dots. From Eqs. (13) and (14) we
see that both the buckling wavelength and buckling force are
proportional to [D/(γ L2)]1/3, thus Fb ∝ λb (red dashed line
in Fig. 10). For increasing values of D/(γ L2) the wavelength
that minimizes the force becomes larger than 2L.

In an interfacial monolayer of 2D nanosheets, the
nanosheets can overlap slightly [13,41,42]. This overlap can
result in a small but finite effective bending rigidity because
of the attractive force between the sheets in the overlapping

region. In Ref. [43] a Lennard-Jones potential was used to
model the attractive interaction potential between parallel
sheets of graphene. Using the Lennard-Jones potential, and
assuming that the angle between pairs of overlapping sheets is
small, it is easy to estimate the effective bending rigidity cor-
responding to an average overlap length � (see Appendix E):

D � 40�L�3

3r2
0

. (15)

Here � is the adhesion energy per unit area and r0 is the nano-
metric equilibrium separation between the nearly-parallel
sheets. The model suggests a strong �3 scaling with the
overlap length. For graphene oxide sheets in high-humidity
conditions, molecular dynamics simulations suggest r0 �
7.7–12 Å [44,45] and � � 0.1–0.2 J/m2 [42,46]. Taking real-
istic values � = 0.2 J/m2, and r0 = 12 Å and an average sheet
length L = 1 μm, D/(γ L2) is estimated to be 0.02 and 26
for � = 1 nm and 10 nm, respectively (assuming the surface
tension of water, γ = 0.07 J/m2). The corresponding wave-
lengths are 2 μm and 20 μm, respectively. An overlap length
of 1 nm does not change the wavelength appreciably from 2L,
whereas an overlap length of 10 nm increases the buckling
wavelength to 20L. For a randomly distributed overlap lengths
between 1 and 10 nm, the predicted wavelength range is
2–20L, which is is similar to wavelength range observed in
the experiments with graphene oxide [5]. The inclusion of the
effect of overlaps therefore enables the analytical prediction
developed for small amplitudes to be closer to the experimen-
tal data for graphene oxide nanoparticles.

IV. CONCLUSIONS

We measured the amplitude of deformation, wavelength,
and force on the barrier for a 2D and 1D monolayer of plates
trapped at a fluid-fluid interface and subject to uniaxial com-
pression. The amplitude and wavelength of the corrugations
of the 2D monolayer were measured by a laser scanning
technique.

The model we developed to predict the experimental data
for the linear chain (1D monolayer) predicts the buckling
force well over a wide range of values of L/�c, where �c is
the capillary length and L is the particle length, and without
adjustable parameters (Fig. 7). The 1D chain model provides
a reasonable order of magnitude estimate of the buckling
surface pressure � for the 2D monolayer, provided that this
pressure is identified as the collapse pressure corresponding
to the point D in Figs. 2 and 8. The chain model does not
contain a dependence on the trough aspect ratio �/Wt , but
the inclusion of frictional forces with the lateral wall via a
Coulomb friction model enables us to model the observed
dependence of � on �/Wt . A more complete model should
include statistics of force chains, for which theories developed
for 2D granular systems [47,48] could be applicable.

The chain model predicts a buckling wavelength λ = 2L,
independent of L/�c. The 2D monolayer does not display a
regular wave pattern, but the characteristic local wavelength
in the regions where buckling occurs is of the order of the
particle size, as in the 1D chain model. Uniaxial compression
of monolayers of spherical particles gives smooth undulations
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with a wavelength λ ∼ √
�cL [1], different from the one we

observe. In our case the effective bending rigidity of the
monolayer is negligible, as the plates can “hinge” at their
contact points without a bending energy penalty. In the case
of spheres, even in the absence of colloidal force contribution
bending energy can originate from the motion of the contact
line on the surface of each particle as the mean interface
curvature changes [31]. An indication of this is that the order
of magnitude of the effective bending rigidity correspond-
ing to λ ∼ √

�cL is γ d2; this can be seen as the change
in interfacial energy as a sphere of diameter d protrudes
in the fluid interface over a distance comparable to d . In
our case the undulations of the contact line relative to the
particles, if present, are at most limited to a scale t � L,
where t is the particle thickness. The corresponding changes
in interfacial energy upon a change in interfacial curvature is
O(γ Lt ) [24,49]. For L/�c � 1 and t/L � 1, this contribution
is negligible in comparison to the dominant contribution, of
order γ Aλ ∼ γ L2, due to the rotation of each particle as the
monolayer is compressed. In Ref. [2] a scaling λ ∝ L was
reported for experiments with spheres, but only for very small
compressive displacements, whereas λ ∝ √

L was observed
for larger displacements. Perhaps this transition could be the
result of depinning of the contact line at large compression.
These comparisons suggest that both the particle aspect ratio
and contact line motion could determine the characteristic
buckling wavelength.

In our experiments we prepare the particle-laden interface
ensuring no initial overlaps. If a monolayer of 2D nanosheets
is prepared with care, overlaps can be largely prevented
(nanosheet stacking requires overcoming an energy barrier
[41]), but probably not completely eliminated at large degrees
of compression. Tuning the pH of the liquid [7] or adding
surfactants [16] has been shown to suppress the stacking
of 2D materials at fluid interfaces, so one may realize the
experimental systems described in the current paper using
real 2D materials. If particle overlaps did occur even before
the compression of the particle-laden interface, the analysis
would need to account for particle-particle interactions as
well as statistics of the geometry of the overlapping regions.
Overlaps contribute to a nonzero bending rigidity as a result of
the adhesion forces between the nanosheets. We have shown
mathematically that this effect increases the buckling wave-
length compared to 2L (see Fig. 10).

Compression of platelike particles trapped at fluid inter-
faces occurs in a variety of applied settings, for instance, in
the manufacturing of thin films [13,16,50], in the deformation
of Pickering emulsions [10,51], or in the production of crum-
pled graphene by aerosolization [52]. This work contributes
to our understanding of the link between particle shape, con-
tact mechanics, and response of the fluid interface during the
compression of monolayers of platelike particles of controlled
geometry.
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APPENDIX A: MICRO FORCE SENSOR

The cantilever force sensors are Mylar sheets with lengths
of 80 and 100 mm, width of 10 mm, and thickness of 125 μm.
One end of the sheet is clamped, and the free end is uncon-
strained. The free end is passed through another Mylar sheet,
with a rectangular hole, which acts as the barrier (see Fig. 11).
The deflection of the Mylar sheet (ξ ) from its undeformed
position is calculated by imaging from the side view.

To calibrate the force sensors, the fixed end of the can-
tilever is mounted on a manual precision stage and the free
end sits on a knife edge placed on a Mettler Toledo preci-
sion microbalance (see inset of Fig. 12). Imposing successive
displacements of 0.5 mm via the manual precision stage, the
corresponding forces are read from the balance. Figure 12
shows force vs displacement of the manual stage. The force
is linear with respect to the displacement for displacements as

FIG. 12. Calibration curve of the force sensor. The inset shows
the schematic of force sensor calibration with precision balance.
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FIG. 13. Amplitude data in Fig. 4 plotted against the analytical
prediction A/L = (1/2)

√
1 − [�/(NL)]2.

large as 5 mm. The slope of the line fitted to the experimental
data gives the stiffness k of the beam.

APPENDIX B: DEPENDENCE OF AMPLITUDE
ON � IN 1D EXPERIMENTS

A simple geometric argument assuming that the buck-
led 1D system is a perfectly periodic triangular wave gives
A/L = (1/2)

√
1 − [�/(NL)]2 (without considering bound-

ary effects). In Fig. 13 we compare this analytical prediction
to the experimental data for the mean amplitude from the 1D
experiments (see Fig. 4). To enable the comparison, we shift
the experimental data so that 〈A〉 = 0 exactly when � = NL.
It can be seen that the simple model gives the correct trend.
However, it overpredicts the mean amplitude by about 40%.

APPENDIX C: EULER-LAGRANGE MINIMIZATION

The variation of the gravitational energy in the 1D
model is

δEg =
∫ �

0
dxρ̃gLh0δh0 + 2

∫ �

0
dx

∫ ∞

0
ρ̃ghδh dz.

Here h0 = h(x, z = 0). The variation of the capillary
energy is

δEγ � 2γ

∫ ∞

0
[hxδh]�0 dz + 2γ

∫ �

0
[hzδh]∞0 dx

− 2γ

∫ ∞

0

∫ �

0
(hxx + hzz )δh dx dz,

and the variation in length constraint evaluated at z = 0 is

δEc = −F [h0x δh0]�0 + F
∫ �

0
h0xx δh0 dx.

At equilibrium, the sum δ(Eg + Eγ + Ec) must be zero for an
arbitrary δh and δh0, from which we get Eqs. (4) and (5),
respectively.

FIG. 14. Surface pressure � vs normalized separation distance
�/�0, where �0 is the compression distance at which � becomes
finite.

APPENDIX D: SURFACE PRESSURE VS �/�0

Figure 14 shows the data presented in Fig. 2(a) with a
different normalization for compression displacement �.

APPENDIX E: BENDING RIGIDITY DUE TO OVERLAP
BETWEEN TWO ADHESIVE PLATES

The equilibrium distance between two nanosheets is de-
termined by the competition between the attractive van der
Waals and the repulsive electrostatic forces between the solid
surfaces. A Lennard-Jones potential has been used to model
the interaction between two nanosheets in [53,54]. We use the
standard 4–10 Lennard-Jones potential energy of interaction
(per unit area) between two thin parallel plates [43]:

φ(r) = �

3
[5(r0/r)4 − 2(r0/r)10],

where r is the separation distance between the plates, r0

is the equilibrium separation, and � = φ(∞) − φ(r0) is the
adhesion energy. If the separation distance r > r0 the plates
attract each other due to van der Waals forces, and if r < r0

the plates repel each other due to electrostatic forces. For
small displacement around r0, a quadratic approximation to
the energy per unit area is [54]

φ(r) � 20�

r2
0

(r − r0)2.

We consider a 1D chain of platelike particles at a fluid inter-
face where each particle pair has a small overlap of length
� (see Fig. 15). We model the interface as a continuous curve
parameterized by θ (s), the local rotation angle along the curvi-
linear coordinate s. The configuration of a single overlap is
illustrated in the inset of Fig. 15. In this figure we take r in
the direction normal to the top plate and ζ in the direction
tangential to the top plate. Under compression the plates rotate
with respect to each other by an angle dθ . The displacement of
the second plate is r(ζ ) = r0 + ζ tan(dθ ) (see Fig. 15). The

014801-10



BUCKLING OF A MONOLAYER OF PLATELIKE … PHYSICAL REVIEW E 109, 014801 (2024)

FIG. 15. Schematic of a fluid interface populated by slightly
overlapping sheets. The inset shows the zoom of the overlap region.
The blue dashed line is the average position of the particle-laden fluid
interface.

energy required to impose this rotation for a particle pair is

dE � w

∫ �

0

20�

r2
0

(r(ζ ) − r0)2 dζ .

Carrying out the integration for |dθ | � 1 we obtain

dE � w

2

(
40��3

3r2
0

)
dθ2

When we multiply and divide by (ds)2, where ds is an in-
finitesimal element of curvilinear coordinate, we obtain

dE � w

2

(
40��3

3r2
0

ds

)(
dθ

ds

)2

ds. (E1)

For a continuous surface, the bending rigidity D (per unit
width) is defined so that dE = 1

2wDκ2 ds, where κ = dθ/ds
is the curvature. Comparing this expression to Eq. (E1) we
obtain D = (40��3)/(3r2

0 ) ds. In our case, because dE repre-
sents the energy per particle pair, ds is the distance between
two particle centers, i.e., ds = L − �. For � � L the estimate
of the bending rigidity is D = (40��3)/(3r2

0 )L, as in Eq. (15).
The assumption of a continuous surface is reasonable if N �
1, where N is the total number of plates [55]. The bending
rigidity thus scales proportionally to the adhesion energy �

and depends strongly on the overlap length �.
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