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SUMMARY

The genome encompasses an organism’s full DNA, organized into chromosomes within
the cell nucleus. Humans have 46 paired chromosomes, and within these pairs, genetic
information is grouped as haplotypes—genetic packages passed from one generation to
the next, ensuring genetic diversity. While DNA sequencing produces short fragments or
reads, assembling these back into a complete genome can be complex. The presence of
multiple, similar haplotypes in some organisms amplifies this complexity, emphasizing the
need for specialized techniques to accurately capture these subtle genetic variations.

In this thesis, we dive into the de novo and haplotype assembly challenges. We aim
to tackle haplotype assembly challenges and find better ways to accurately assemble the
genetic puzzle pieces. Along the way, we introduce a new tool for haplotype assembly
designed to make the process more interpretable.

First, in Chapter 2, we offer an in-depth exploration of essential data types, approaches,
and methods for accurate haplotype assembly, especially in the context of polyploid
genomes. It delves into the latest advancements in next-generation sequencing (NGS) and
third-generation sequencing (TGS), highlighting their increasing importance in haplotype
assembly.

Then, in Chapter 3, we examine long-read de novo assemblers designed for eukaryotic
genomes. By evaluating multiple popular long-read assemblers in various settings, we
provide an in-depth comparison between them.

Next, in Chapter 4, we investigate the effect of repetitive sequences in de novo assembly
and how they challenge the assembly problem. This chapter investigates strategies to tackle
repeat-induced overlaps and illustrates how their successful mitigation can significantly
enhance the assembly outcome.

Later, in Chapter 5, we introduce HAT as a cutting-edge tool in haplotype assembly.
This chapter presents the features and capabilities of HAT, emphasizing its ability to
seamlessly integrate short and long reads with reference genomes. Detailed evaluations
underscore its stellar performance metrics, establishing HAT as a reliable tool for the
haplotype assembly problem.

Finally, in Chapter 6, we focus on the genomes of four distinct Streptomyces strains.
The intriguing discovery of potential new species, particularly Streptomyces sp. JH14 and
Streptomyces sp. JH34, is elaborated upon. Through phylogenetic analysis, the chapter
brings unique genetic attributes of these strains, offering novel insights into the world of
Streptomyces and its potential implications in pathogenicity.

xi



xii SUMMARY

This thesis aims to assist other scientists with their assembly challenges, hoping that
the final chapter will offer insights for future research in the field by emphasizing utilizing
various technologies to address the haplotype assembly problem.



SAMENVATTING

Het genoom omvat het volledige DNA van een organisme, georganiseerd in chromoso-
men in de celkern. Mensen hebben 46 gepaarde chromosomen, en binnen deze paren
is genetische informatie gegroepeerd als haplotypes: genetische pakketten die van de
ene generatie op de andere worden doorgegeven, waardoor genetische diversiteit wordt
gegarandeerd. Hoewel DNA-sequencing korte fragmenten of reads produceert, kan het
weer samenstellen ervan tot een compleet genoom complex zijn. De aanwezigheid van
meerdere, vergelijkbare haplotypes in sommige organismen versterkt deze complexiteit,
wat de noodzaak benadrukt van gespecialiseerde technieken om deze subtiele genetische
variaties nauwkeurig vast te leggen.

In dit proefschrift duiken we in de uitdagingen op het gebied van de novo en
haplotype-assemblage. We streven ernaar uitdagingen op het gebied van de assemblage
van haplotypes aan te pakken en betere manieren te vinden om de genetische puzzelstukjes
nauwkeurig in elkaar te zetten. Gaandeweg introduceren we een nieuwe tool voor
haplotype-assemblage, ontworpen om het proces beter interpreteerbaar te maken.

Ten eerste bieden we in hoofdstuk 2 een diepgaande verkenning van essentiële data-
typen, benaderingen en methoden voor nauwkeurige haplotype-assemblage, vooral in de
context van polyploïde genomen. Het duikt in de nieuwste ontwikkelingen op het gebied
van sequencing van de volgende generatie (NGS) en sequencing van de derde generatie
(TGS), waarbij het toenemende belang ervan bij de assemblage van haplotype wordt bena-
drukt.

Vervolgens onderzoeken we in Hoofdstuk 3 lang gelezen de novo assemblers die zijn
ontworpen voor eukaryotische genomen. Door meerdere populaire langgelezen assemblers
in verschillende omgevingen te evalueren, bieden we een diepgaande vergelijking daartus-
sen.

Vervolgens onderzoeken we in Hoofdstuk 4 het effect van repetitieve reeksen bij de
novo-assemblage en hoe deze het assemblageprobleem uitdagen. Dit hoofdstuk onderzoekt
strategieën om door herhaling veroorzaakte overlappingen aan te pakken en illustreert hoe
de succesvolle mitigatie ervan de uitkomst van de assemblage aanzienlijk kan verbeteren.

Later, introduceren we in hoofdstuk 5 HAT als een geavanceerd hulpmiddel bij de
assemblage van haplotypes. Dit hoofdstuk presenteert de kenmerken en mogelijkheden van
HAT, waarbij de nadruk wordt gelegd op het vermogen ervan om korte en lange metingen
naadloos te integreren met referentiegenomen. Gedetailleerde evaluaties onderstrepen de
geweldige prestatiestatistieken, waardoor HAT een betrouwbaar hulpmiddel is voor het
haplotype-assemblageprobleem.

xiii



xiv SAMENVATTING

Ten slotte in Hoofdstuk 6, concentreren we ons op de genomen van vier verschillende
Streptomyces-stammen. De intrigerende ontdekking van potentiële nieuwe soorten,
met name Streptomyces sp. JH14 en Streptomyces sp. JH34, wordt uitgewerkt. Door
middel van fylogenetische analyse brengt het hoofdstuk unieke genetische kenmer-
ken van deze stammen naar voren, waardoor nieuwe inzichten worden geboden in de
wereld van Streptomyces en de mogelijke implicaties ervan op het gebied van pathogeniteit.

Dit proefschrift heeft tot doel andere wetenschappers te helpen met hun assemblage-
uitdagingen, in de hoop dat het laatste hoofdstuk inzichten zal bieden voor toekomstig on-
derzoek in het veld door de nadruk te leggen op het gebruik van verschillende technologieën
om het haplotype-assemblageprobleem aan te pakken.



1
INTRODUCTION

Haplotype assembly holds the key to unlocking complex biological mysteries such as evo-
lution, genetic diseases, and genomic diversity within species. Unfortunately, the major-
ity of organisms are currently represented using what’s known as a "consensus" reference
genome - a condensed representation of an organism’s complete genetic sequence that over-
looks variations between homologous chromosomes. This simplified approach often fails to
capture the full spectrum of genomic diversity because it misses which alleles are grouped
together on a chromosome and omits alleles on other copies of the chromosome. This
leads to gaps in our understanding of how physical traits are linked to their genetic origins.
Therefore, developing methods that reconstruct complete haplotypes from DNA sequencing
data is essential. However, these efforts often yield incomplete reconstructions, particularly
when homologous chromosomes are highly similar. This dissertation delves into the com-
plexities and challenges of haplotype assembly, and addresses some of these challenges.

This chapter aims to introduce the concept of haplotype assembly and related back-
ground, highlighting the difficulties of this problem. Additionally, we present an overview
of the contributions made by this thesis to the advancement of this field.

1.1. WHAT IS A GENOME?
The collection of all the DNA molecules in each cell of an organism, which are identical
throughout the cells, is known as the genome. DNA, or deoxyribonucleic acid, is a molecule
that is composed of two long, twisted chains made of nucleotides. Nucleotides consist of a
nitrogenous base, a sugar molecule, and a phosphate group. Nucleotides that compose DNA
contain one of four nitrogenous bases: Adenine (A), cytosine (C), guanine (G), thymine (T),
with each base corresponding to a different nucleotide [1]. The DNA molecules are mostly
characterized by the sequence of nucleotides composing them. All self-reproducing forms
of life that we know of have genetic information stored in the form of DNA molecules [2].

The genome of more complex organisms is composed of multiple copies of genetic
information, with each copy originating from an ancestor. The number of copies of the
genome in the somatic cells of an organism is referred to as ploidy, with haploid denoting a
single copy, diploid relating to two copies, and polyploid referring to more than two copies
[3] (See Figure 1.1).

1
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2 1. INTRODUCTION

Figure 1.1: Illustration of Haplotypes of a chromosomes in a haploid, a diploid, a triploid, and tetraploid cell.
Organisms that have more than two copies of homologous chromosomes are considered polyploids.

1.2. WHAT IS DNA SEQUENCING?
DNA sequencing is a process that determines the exact order of the nucleotides (A, C, G,
and T) in a DNA molecule. The sequencing of DNA is an essential tool for researchers and
scientists to study and understand the genetic code of organisms. Chapter 2, Table 2.3 gives
a full overview of these sequencing technologies, and Chapter 2 Figure 2.3 shows how these
technologies work. The earliest methods of DNA sequencing were a slow, labor-intensive,
and expensive process that can only sequence one DNA fragment at a time. Next-generation
sequencing (NGS) and third-generation sequencing (TGS) technologies have revolutionized
the field of DNA sequencing, making it faster, more affordable, and allowing the sequencing
of entire genomes or transcriptomes in a single run [4].

Next-generation sequencing (NGS) technologies use a variety of methods to sequence
DNA, but they all involve the breaking of DNA into smaller fragments, attaching adapters
to the ends of the fragments, and then amplifying and sequencing the fragments in parallel.
Some of the commonly used NGS platforms include [2]:

• Illumina Sequencing: Illumina sequencing is a highly accurate and widely used NGS
technology that uses reversible terminator chemistry to sequence millions of DNA
fragments in parallel. In Illumina sequencing, the DNA is fragmented, and adapters
are added to the ends of the fragments. The fragments are then attached to a flow cell,
and the complementary strand is synthesized using fluorescently labeled nucleotides.
The fluorescent signal is detected, and the base is identified, allowing the sequence
to be determined.

• Ion Torrent Sequencing: Ion Torrent sequencing is a relatively new NGS technology
that uses semiconductor sequencing to determine the sequence of DNA. In Ion Tor-
rent sequencing, the DNA is fragmented, and adapters are added to the ends of the
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fragments. The fragments are then attached to a semiconductor chip, and the com-
plementary strand is synthesized using unlabeled nucleotides. The addition of each
nucleotide releases a hydrogen ion, which is detected by a pH sensor, allowing the
sequence to be determined.

Third-generation sequencing (TGS) technologies use a variety of methods to sequence
DNA, but they all involve the direct reading of the nucleotides in a DNA molecule without
the need for PCR amplification or sequencing-by-synthesis. Some of the commonly used
TGS platforms include [2]:

• PacBio Sequencing: PacBio sequencing is a TGS technology that uses single-
molecule, real-time (SMRT) sequencing to determine the sequence of DNA. PacBio
SMRT sequencing employs a real-time, single-molecule approach to sequence DNA.
PacBio SMRT sequencing uses a polymerase molecule to synthesize the complemen-
tary strand in real-time while the DNA strand is passed through a pore. Fluorescently
labeled nucleotides are added to the DNA strand, emitting light signals that are de-
tected to determine the sequence.

• Oxford Nanopore Sequencing: Oxford Nanopore sequencing is a TGS technology
that uses nanopores to sequence DNA. In Oxford Nanopore sequencing, the DNA
is passed through a nanopore, and the changes in electrical current caused by the
passage of each nucleotide are detected, allowing the sequence to be determined.

Third-generation sequencing offers several advantages over next-generation sequenc-
ing, including longer read lengths, comparable accuracy, and the ability to sequence native
DNA without amplification. For instance, PacBio sequencing can generate read lengths of
up to 100 kb with an average accuracy of 99%, while Oxford Nanopore sequencing can
produce read lengths of up to 2 Mb with an average accuracy of 90-95%. However, third-
generation sequencing also has some limitations, such as lower throughput [5]. Even the
latest third-generation sequencing machine, i.e., PacBio REVIO, has significantly lower
throughput than the latest NGS machine, i.e., Illumina NovaSeq X.

In summary, DNA sequencing is a powerful tool that allows scientists to study the ge-
netic code of organisms. NGS and TGS technologies have revolutionized DNA sequencing,
making it faster, more affordable, and enabling the sequencing of entire genomes or tran-
scriptomes in a single run. The choice of the sequencing platform depends on the specific
needs of the experiment, including read length, accuracy, and cost.

1.3. WHAT IS GENOME ASSEMBLY?
Having the complete genome sequence of a species is important for a clear understanding
of its biology. When we just look for differences by comparing to a reference genome, we
might miss unique features that do not present in the reference. Big changes in the DNA,
like sections being duplicated or moving around, can also be overlooked. Sequences that
are very different from anything we’ve seen before might be ignored entirely. For species
with more than two copies of each gene or a lot of variation, just comparing to a reference
may not give us the whole picture. So, to truly understand the genetics of a species, it’s
important to have its complete genome sequence.
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Current sequencing technologies are incapable of sequencing a chromosome from start
to end, resulting in the production of smaller DNA fragments. Genome assembly is the
process of piecing together the DNA sequence of an organism’s genome from fragments of
DNA generated by sequencing technologies. The goal of genome assembly is to reconstruct
the original DNA sequence of an organism’s genome, which typically contains billions of
base pairs, in order to understand its genetic makeup and biological functions. There are two
common approaches for genome assembly (see Figure 1.2), each with its own advantages
and limitations [6]:

• De novo assembly: This approach involves reconstructing the genome from scratch,
without the use of a reference genome. De novo assembly is particularly useful for
organisms without a closely related reference genome or for those with significant
genomic differences from the reference genome. De novo assembly typically in-
volves sequencing the genome and using specialized algorithms to assemble overlap-
ping reads into contiguous stretches of DNA called contigs. This is accomplished
via two primary approaches: the Overlap-Layout-Consensus (OLC) method and the
De Bruijn Graphs (DBG) method [7]. The OLC method involves finding overlaps
between all read pairs, organizing them in a layout, and determining the consensus
sequence. On the other hand, the DBG method transforms reads into a k-mer based
graph called De Bruijn Graph, thereby simplifying the problem of assembly into
finding a path through this graph.

• Reference-based assembly: In this approach, a reference genome is used as a guide to
assemble the reads generated from sequencing the new genome. In reference-based
assembly, two common approaches exist [7]. The first approach involves mapping
reads to the reference genome to determine their genomic coordinates and create a
consensus sequence. The second approach entails conducting a de novo assembly
of the reads and subsequently aligning them to the reference genome to identify any
misassembled regions. Reference-based assembly is typically faster and more ac-
curate than de novo assembly, but it is limited by the availability and quality of the
reference genome. Reference-based assembly is particularly useful for organisms
with well-annotated reference genomes or for comparative genomics studies. How-
ever, reference-based assemblies are biased towards the reference genome and are
less likely to preserve significant differences between the newly sequenced individ-
ual and the reference genome.

Genome assembly can be challenging due to the sheer size and complexity of the
genome, as well as the presence of repetitive regions that can make it difficult to accu-
rately assemble the genome. The presence of repeat regions in a genome can make genome
assembly challenging because these regions contain sequences that are identical or very
similar to each other (see Figure 1.3). This can cause sequencing reads to be misaligned or
assigned to the wrong location, leading to errors in the assembly. Additionally, repetitive
regions can cause gaps or breaks in the assembly, as it can be difficult to determine which
sequences belong to which copy of the repeat. As a result, specialized algorithms and tech-
niques, such as long-read sequencing and optical mapping, are often required to accurately
assemble repetitive regions.
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Figure 1.2: Illustration of the two main approaches for genome assembly.

Figure 1.3: The genome has 3 instances of a repeat, and the reads originating from these regions largely have the
same sequence.

1.4. WHAT IS HAPLOTYPE ASSEMBLY?
A haplotype is defined as a set of genetic information that are located together on the same
chromosome. It can include as few as two genetic markers or as many as the entire chro-
mosome’s content. In this thesis, ’haplotype’ refers to the whole set of genes or alleles
on a single chromosome. For organisms that have more than one copy of genetic infor-
mation (diploids and polyploids), standard assembly merges multiple copies of the genetic
information as if they are identical, disregarding potential differences that hold biological
significance. Ignoring these differences limits our understanding of how variations in differ-
ent copies affect the organism’s traits. To overcome this limitation, a specialized approach
is required for polyploid genomes to distinguish and compare the distinct copies accurately.

Haplotype assembly is the process of reconstructing the DNA sequences of all haplo-
types that comprise a genome. Haplotype assembly is a challenging problem in genomics,
but it is essential for understanding the genetic basis of complex traits and diseases. There
are several approaches for haplotype assembly, which can be broadly classified into three
categories: (1) statistical methods, (2) sequencing-based methods, and (3) hybrid methods
[8].
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Statistical methods use population-level data to infer haplotypes. These methods as-
sume that the genetic variants in a population are in linkage disequilibrium, meaning that
they are inherited together more often than expected by chance. These methods rely on
genotype data, which provide information about the specific genetic variants present at each
genomic position in the individuals of the population. By analyzing patterns of genetic
variation within a dataset, statistical algorithms can infer and reconstruct the underlying
haplotypes or phased genetic sequences. However, a key limitation of these methods is the
assumption that the genotype data represents all individuals in the population, when in re-
ality, not every individual has been observed. This could hinder the accurate determination
of more complex haplotypes.

Sequencing-based haplotype assembly utilizes high-throughput sequencing technolo-
gies to directly sequence DNA fragments, enabling the reconstruction of individual haplo-
types. This approach is distinct from genome assembly as it specifically aims to reconstruct
the sequence of every haplotype in genome, rather than providing a consensus representa-
tion of the chromosomes. By leveraging sequencing data, haplotype assembly methods aim
to identify and link genetic variants that are present on the same chromosome. These meth-
ods benefit from advancements in long-read sequencing technologies, such as PacBio and
Oxford Nanopore, which generate longer reads capable of spanning several genetic variants
present on a haplotype. This is particularly advantageous in capturing complex haplotypes
that would be challenging to reconstruct using shorter reads.

Hybrid methods combine statistical and sequencing-based approaches to improve hap-
lotype assembly accuracy. These methods typically use DNA sequencing to generate an ini-
tial haplotype assembly, which is then refined using statistical methods based on population-
level data.

Overall, haplotype assembly is a critical step in understanding the genetic basis of com-
plex traits and diseases, and the development of new and improved methods for haplotype
assembly is an active area of research in genomics.

1.5. APPLICATION OF HAPLOTYPE ASSEMBLY
Computationally assembled haplotypes have been applied in numerous analyses and stud-
ies, including those focusing on human diseases. For instance, a unique diagnostic test
for a Miller syndrome patient used haplotype assembly, securing an accurate diagnosis.
This would have been missed by haplotype unaware assembly methods due to the inability
of such methods to demonstrate whether disease-associated SNPs are located in a single
homologous chromosome or different ones [9, 10].

Likewise, computationally assembled haplotypes have been utilized in phylogenetic
studies. Because haplotypes are inherited as a unit, analyzing the alleles located on the same
haplotype within a population can provide insight on the evolution of genetic variations and
help to track specific historical events. For example, by forming a phylogenetic tree from
phased sequences of hexaploid sweet potato Ipomoea batatas, it was possible to trace the
evolution of the six haplotypes and propose two whole-genome duplications in the sweet
potato’s history; the first occurring around 0.8 million years ago, the second around 0.5
million years ago [11].

In addition, computationally assembled haplotypes have been implemented in crop re-
search and breeding programs. Many commercially significant agricultural crops, such as
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wheat, potato, and banana, have polyploid genomes [7]. Haplotype reconstruction for var-
ious varieties and strains exhibiting a specific phenotype enables an understanding of the
genotype associated with a certain trait present in (wild) crop relatives. This can then be
introduced into the crop through breeding programs [12]. A notable example is the devel-
opment of enhanced cultivars where assembled haplotypes led researchers to identify geno-
types that could increase resistance to bacterial blight in rice and defend wheat against rust
(13). Furthermore, recent studies have shown that single nucleotide polymorphism (SNP)
markers fall short in determining genotypes related to crop yield in highly conserved ge-
nomic regions of wheat. However, haplotype resolution studies of the region have allowed
researchers to identify the genotype for use in crop improvement programs [13, 14].

1.6. OUTLINE AND CONTRIBUTIONS
Recent breakthroughs in sequencing technology, particularly with long-read technologies,
have significantly improved genome and haplotype assembly performance. However,
methods utilizing long-read data still face challenges with repetitive sections in the
genome, due to the complexity they introduce to the genome assembly problem. While
long-read technologies are cutting-edge, it’s crucial not to overlook the value of short-read
sequencing. Short-read technologies, known for their high precision and high throughput,
are particularly effective at detecting small genetic variations with great accuracy, which is
valuable for haplotype assembly. A method that can effectively combine both long-read
and short-read technologies could achieve superior performance in haplotype assembly.
Looking into these challenges and providing methods to resolve repetitive regions, as well
as utilizing short-read technologies alongside the cutting-edge long-read technologies for
haplotype assembly, are the main objectives of this dissertation.

In this dissertation, we begin with a detailed review of haplotype assembly, followed
by an in-depth examination of genome assembly, with a focus on long-read assembly tools
for eukaryotic genomes. We discuss the importance of selecting the appropriate assembly
algorithm and address the challenges posed by error-prone reads. Next, we explore the
challenges of repetitive sequences on the genome assembly process and propose a method
to overcome these challenges. We then proceed to assemble and analyze the genomes of
novel Streptomyces strains. Lastly, we introduce a new haplotype assembly tool, named
HAT, that leverages both long-read and short-read data to accurately assemble haplotypes
of polyploid genomes.

1.6.1. A REVIEW ON COMPUTATIONAL METHODS FOR SEQUENCING-
BASED HAPLOTYPE RECONSTRUCTION

In Chapter 2 we review the essential data types and computational methods for reconstruct-
ing haplotypes with a focus on polyploid genomes (More than 2 copies of the genetic infor-
mation) and commonly available data types. We discuss data types, algorithms, tools and
benchmarking requirements for haplotype assembly.

In contrast to similar reviews, we focus on frequently used methods that use the most
common and accessible sequencing data: next-generation sequencing (NGS) and third-
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generation sequencing (TGS), to reconstruct polyploid genomes.
Finally, we address the issue that benchmarking is often done ad hoc on particular

datasets and the results are not generalizable. Therefore, we suggest a roadmap for bench-
marking haplotype reconstruction methods and explore the requirements for the roadmap.

1.6.2. WHEN DO LONGER READS MATTER? A BENCHMARK OF LONG
READ DE NOVO ASSEMBLY TOOLS FOR EUKARYOTIC GENOMES

Selecting the right assembly algorithm is crucial when generating genome assemblies for
eukaryotic organisms from third-generation sequencing technologies. Although these tech-
nologies, such as ONT and PacBio, have improved over the limitations of NGS, their error-
prone reads pose new challenges for assembly algorithms. With the plethora of tools avail-
able, it is essential to choose the appropriate assembler for a project.

To aid researchers in making informed decisions, in Chapter 3, we present a bench-
mark study of five commonly used long-read assemblers (Canu, Flye, Miniasm, Raven, and
Redbean) using real and simulated datasets from various eukaryotic genomes with differ-
ent read length distributions. We evaluated the assemblers using reference-based metrics,
assembly statistics, misassembly count, BUSCO completeness, runtime, and RAM usage.
Our results show that Flye is the best-performing assembler overall, but there is no single
assembler that performs the best in all categories. Moreover, we found that longer read
lengths generally improve assembly quality, but the extent of the improvement depends on
the size and complexity of the reference genome.

1.6.3. GRAPHCLEAN: IMPROVING DE NOVO ASSEMBLY BY REMOVING
REPEAT-INDUCED OVERLAPS

Accurate genotyping, vital for connecting phenotypes with genotypes, often requires de
novo genome assembly. Despite advancements in sequencing, repetitive sequences still
complicate assembly by creating misleading overlaps in the assembly graph. Chapter 4
aims to enhance de novo assembly algorithms by removing repeat-induced overlaps and
analyzing their effect on assembly performance. We demonstrate the potential improve-
ments in assembly by removing repeat-induced overlaps and propose various methods for
detecting and eliminating them. We evaluate the performance of these methods using mul-
tiple simulated datasets.

1.6.4. HAT: HAPLOTYPE ASSEMBLY TOOL USING SHORT AND LONG
READS

Advancements in TGS technologies have led to the development of various methods for
reconstructing complete haplotypes from DNA sequencing data. However, even with these
advancements, the resulting reconstructions often remain incomplete, especially when ho-
mologous chromosomes have few differences. This is because current haplotype assembly
techniques face difficulties in accurately distinguishing between regions that are identical
across multiple haplotypes and regions that are distinct.

To overcome these challenges, in Chapter 5, we introduce HAT, a haplotype assembly
tool that combines short and long reads with a reference genome. HAT utilizes the accu-
racy of short reads and the longer span of long reads to reconstruct haplotypes. A critical
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aspect of HAT is the identification of multiplicity blocks, which represent regions where
haplotypes differ, enabling more precise and interpretable results. We evaluated HAT using
Saccharomyces pastorianus CBS1483, an aneuploid yeast strain, as well as multiple simu-
lated polyploid datasets of the same strain. Our findings demonstrate that HAT surpasses
existing tools for haplotype assembly in terms of performance and accuracy.

1.6.5. GENOMES OF FOUR STREPTOMYCES STRAINS REVEAL INSIGHTS
INTO PUTATIVE NEW SPECIES AND PATHOGENICITY OF SCAB-
CAUSING ORGANISMS

Chapter 6 focuses on the genomes of four Streptomyces isolates from potato crops in
Colombia. Two of the isolates, Streptomyces sp. JH14 and Streptomyces sp. JH34, are
potential new species, while the other two, Streptomyces sp. JH002 and Streptomyces sp.
JH10, are non thaxtomin-producing pathogens. Our collaborators in Colombia isolated
and sequenced the samples using PacBio SMRT, which we then used to assemble the four
strains and create a phylogenetic tree to classify them. The results of the phylogenetic anal-
ysis, based on single-copy core genes, confirmed that the two pathogenic isolates belong to
different lineages, Streptomyces pratensis and Streptomyces xiamenensis, respectively, and
do not share a common ancestor with known pathogenic species. We also discovered the
presence of unknown gene clusters and clusters associated with the synthesis of medicinal
compounds and potentially linked to pathogenicity in the pathogenic isolates. Interestingly,
we did not find genes similar to the protein-coding genes characteristic of scab-causing
streptomycetes shared by known pathogenic species. Most genes involved in biosynthesis
of known virulence factors were not present in the scab-causing isolates (S. sp. JH002 and
S. sp. JH010), but we identified Tat-system substrates likely to be involved in pathogenicity.
Finally, we confirmed the presence of a putative mono-ADP-ribosyl transferase homolog
to scabin in S. sp. JH002. Overall, these isolates may produce novel secondary metabolites
and virulence factors uncommon in Streptomyces spp.

1.6.6. DISCUSSION
In our discussion, we first connect the ideas from the earlier chapters, showing how they
fit together. Next, we talk about the benefits of using multiple DNA-reading tools at once.
This combination gives a clearer view of DNA details and strengthens our research. We
also explore the similarities of metagenomics assembly and haplotype assembly, and how
different strains in a microbial community can be looked as different haplotypes. Wrapping
up, we turn our focus to future trends in genome assembly. Two main developments are of
particular interest. Firstly, we’re witnessing a growing preference for custom computational
methods tailored for long-read sequencing data. Secondly, the emergence of high-accuracy
long-read technologies offers the promise of more in-depth and accurate sequencing results.
However, these innovative techniques come with their set of challenges. One notable hurdle
is the integration of data from the newer long-read technologies into systems that were ini-
tially developed for short-reads. This poses a challenge that requires careful consideration
for those aiming for a comprehensive understanding of genome assembly.
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2
A REVIEW OF COMPUTATIONAL

METHODS TO RECONSTRUCT
POLYPLOID HAPLOTYPES BASED ON

DNA SEQUENCING DATA

Haplotypes are the sets of alleles lying together on individual chromosomes. Accurate and
efficient haplotype reconstruction is critical to characterize chromosome-level genetic vari-
ation in diploid or polyploid organisms. Because of technical limitations and computational
restrictions, however, this remains a challenging problem.

In this review, we aim to elucidate the current problems in haplotype reconstruction and how
existing algorithms address these obstacles. First, we introduce haplotype assembly, then
dive into the challenges of haplotype assembly and how a high ploidy affects the polyploidy
haplotype assembly problem. Next, we discuss approaches for resolving haplotypes and the
limitations of the existing methods. We explain the impact of distinct molecular data types
on the haplotype reconstruction problem, as well as the information they provide for solving
this complex puzzle. In the third section we cover the available tools for reconstructing
haplotypes in diploid, polyploid organisms, and microbial communities. Finally, we address
the lack of systematic benchmarking and the resulting lack of generalizability of results by
proposing a synthetic benchmarking scheme for haplotype assembly tools.
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2.1. INTRODUCTION
Eukaryotic genomes commonly contain multiple homologous copies of each chromosome
[1]. Haploid organisms (e.g. most bacteria) have only one copy of each chromosome,
diploid organisms have two homologous pairs (e.g. humans), and polyploid organisms have
more than two (e.g. tetraploid potato). Polyploidy is common in plants [2] and although
there is no known upper limit to ploidy, values exceeding six are rare (Supplementary Figure
A.1). Some organisms, like the yeast strain Saccharomyces pastorianus, have a different
number of copies for different chromosomes, and are called aneuploids [3]. The set of
alleles co-located in a single chromosome copy is called a haplotype.

Haplotype resolution has been desirable since the beginning of the genome sequencing
era because it yields essential information about whole genomes, such as the haplotype
colocation, allelic identity, homologous allele copy number [4–6]. This information might
be crucial for understanding the crops, phylogeny, and alleles causing some diseases [7].
Without haplotype resolution, researchers have often approximated whole genomes into a
consensus sequence, which is a flattened genome model of all the haplotypes. However,
this model cannot approximate all the necessary information for a researcher to understand
the genomic model.

Determining the haplotype is performed by using the reads produced by DNA sequenc-
ing technologies. Regardless of the sequencing platform, computational methods are re-
quired to reconstruct haplotypes from sequencing reads, because the read lengths are in-
herently shorter than chromosomal lengths. While whole chromosome sequencing is the
theoretical maximum upper limit to fragment length, to date no sequencing platform can
offer chromosomal read length sequencing.

Computational haplotype reconstruction approaches are often classified into two
classes: (i) haplotype assembly and (ii) haplotype phasing. Haplotype assembly aims to
reconstruct every haplotype from sequencing data of the individual. In contrast, haplotype
phasing is typically understood to reconstruct haplotypes from genotype information of
samples in a population [8, 9]. In this manuscript, we focus on haplotype assembly and use
the terms haplotype assembly and haplotype reconstruction interchangeably. Figure 2.1.A
and Figure 2.1.B illustrate the process of haplotype reconstruction in diploid and polyploid
genomes respectively. Computational haplotype reconstruction is not straightforward and
has several challenges such as repeats, which are difficult to resolve in genome assembly,
or structural variants and variation deserts, which are specifically challenging for haplotype
reconstruction.

Furthermore, when reconstructing haplotypes, ploidy needs to be accurately estimated
to determine the correct number of haplotypes to reconstruct. Historically, karyotyping has
been required to determine chromosome number, however this is not possible for every kind
of organism and tissue type [10]. Therefore, researchers rely on computational methods to
estimate the ploidy number. However, computational methods for ploidy estimation have
limitations, such as assuming the entire chromosome has continuous ploidy [11] and only
distinguishing diploid, triploid, and tetraploid genomes, thus aneuploidy or higher ploidies
are not distinguished [12].

Computationally reconstructed haplotypes have been used in many downstream analy-
sis and studies such as human diseases. For example, in a first-of-its-kind diagnostic assay
for a patient with Miller syndrome [12, 13], haplotype assembly was employed, resulting
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Figure 2.1: A. Human’s genome is diploid (red and light green homologues chromosome copies). The chromo-
somes are sequenced, and the goal is to reconstruct each of the chromosome copies from the reads. The homolo-
gous chromosomes are similar, and it is not obvious to capture the differences between the chromosomes from the
reads. B. The potato genome is a tetraploid, and the goal is to reconstruct all of the haplotypes and capture their
differences. C. The haplotype assembly problem is similar to metagenomic assembly. A bacterial community has
multiple species and often, the whole community is sequenced together. Reconstructing each species’ genome is
essential to study the community. D. Extracting DNA from the cell and sequencing it with the DNA sequencing
machines to produce reads. E. Using a computational method to reconstruct the haplotypes from the reads.

in a correct diagnosis where haplotype unaware assembly methods would have otherwise
misdiagnosed the patient, due to the inability to show that disease-associated SNP’s are
co-locating in a single homologous chromosome or different ones.

Moreover, computationally reconstructed haplotypes have been used in phylogenetic
studies. Since haplotypes are inherited together, investigating the alleles co-locating in the
population’s haplotypes provides insights into how the genetic variations are shaped and
help us trace a specific event in history. For instance, creating a phylogenetic tree from
phased sequences of hexaploid sweet potato Ipomoea batatas helped trace the evolution
of the six haplotypes and suggest two whole-genome duplications in the history of sweet



2

16 2. A REVIEW OF COMPUTATIONAL METHODS

potato Ipomoea batatas which the first one happened around 0.8 million years ago and the
second one happened around 0.5 million years ago [14].

Furthermore, computationally reconstructed haplotypes have been used in crop stud-
ies and breeding programs. Many agricultural commercially important crops have poly-
ploid genomes, including cotton [15], wheat [16], potato [16], banana [16], oilseed rape
[17], sugar cane [18], and many others. Haplotype reconstruction of several varieties and
strains with a specific phenotype allows understanding of the genotype linked to specific
trait present in (wild) relatives of crops [19] which can be used to inject the trait into the
crop with breeding programs. One notable example is improved cultivars, which recon-
structed haplotypes allowed researchers to find the genotypes that could increase resistance
to bacterial blight in rice and protect wheat against rust [20]. In addition, recent studies
revealed that single nucleotide polymorphism (SNP) markers are insufficient to determine
genotypes associated with crop yield in the highly conserved genomic regions of wheat.
Meanwhile, the haplotype resolution study of the region allowed researchers to determine
the genotype and use it in crop improvement programs [20, 21].

While haplotype reconstruction is generally discussed in the context of eukaryote
genomes such as plants, metagenomic assembly can be considered a related computational
problem to haplotype assembly. In microbial communities, thousands of diverse species
live, and the metagenomic assembly aims to reconstruct their genome from sequencing
data. For instance, the human gut microbiome is estimated to have thousands of diverse
species of archaea, bacteria, fungi, protozoa, and viruses [22]. As shown in Figure 1.C,
each haplotype in metagenomics assembly represents the genome of an individual microor-
ganism in the sequenced community. The reconstruction of microbial haplotypes is par-
ticularly useful because 99% of the environmental microorganisms are not culturable [23,
24] and the genomes of these microorganisms are usually sequenced and studied altogether
[24–26].

Metagenomic assembly problem can be performed at two resolutions: (i) species or
(ii) strain level. At the species level, one examines different species in the community
by reconstructing a single representative genome for each of species. On the other hand,
the strain level metagenomics assembly focuses on characterizing and reconstructing the
genomes of individual strains of species [27]. Strain level metagenomics assembly is one
of the important methods in studying microbial infections to identify which strain infects a
patient for using a suitable medicine [28]. Some strains express antibiotic resistance genes
which need to be considered before prescribing a medicine. Moreover, sometimes there is a
“mixed infection”, and multiple strains simultaneously infect a patient. For example, it has
been shown that in Mycobacterium tuberculosis mixed infections the co-infecting strains
can have complementary antibiotic resistance mutations, and strain level metagenomics
assembly is essential to discover the best treatment for the patient [27, 28].

The virus quasispecies problem also falls under the category of haplotype reconstruc-
tion. Viral quasispecies aims to reconstruct the genomes of virus strains that infect hosts and
determine their genetic variations. Virus replications are error-prone and the substitutions
rate is estimated to be as high as one error every thousand nucleotides per replication cycle
[29]. Reconstructing the haplotypes of the closely related viruses is essential for studying
a viral borne disease, pandemics, or detection of drug resistance in a patient [30]. It is
essential to reconstruct the genome of all individual viruses and capture even the slightest
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differences between them to study and identify the drug resistance and virulence factors in
the virus’s genome [31, 32]. For example, because of the high mutation rate of HIV, patients
are usually infected with many strains with different drug-resistant mutations and haplotype
reconstruction of these strains can be a solution to detect the mutations and efficient drug
administration [33].

This manuscript reviews the essential data types and computation methods for recon-
structing haplotypes in diploid, polyploid genomes, and metagenomic communities. In con-
trast to the latest reviews on haplotype reconstruction [32] that spotlight the newer sequenc-
ing technologies like Hi-C reads that are expensive and less accessible, in this manuscript
we focus on newly developed methods that use common and reachable sequencing data:
next-generation sequencing (NGS) and third-generation sequencing (TGS), to reconstruct
polyploid haplotypes. Moreover, we investigate the requirements for benchmarking a hap-
lotype assembly tool.

2.2. HAPLOTYPE RECONSTRUCTION APPROACHES
Haplotype reconstructions methods can be categorized into four groups based on the data
required: 1) de novo approaches only use sequencing data of the individual to reconstruct
haplotypes, 2) reference-based approaches, use sequencing data of the individual in addition
to an existing reference genome, 3) trio binning approaches use sequencing data from both
the parents and the individual itself to more accurately infer haplotypes, 4) experimental
chromosome separation methods rely on lab work to separate or tag the haplotypes before
sequencing and reduce the computational challenge (Figure 2.2).

2.2.1. DE NOVO HAPLOTYPE RECONSTRUCTION
De novo haplotype assembly (see Figure 2.2.A) uses the least amount of data compared to
the other methods, and is applicable for all use cases. In de novo haplotype reconstruction,
only DNA sequencing data is used for the reconstruction. These methods distinguish them-
selves from referenced-based methods by not using a reference sequence, and only rely on
pair-wise alignment of the reads. Regardless, de novo haplotype is computationally chal-
lenging because both de novo assembly and haplotype reconstruction are tackled in a single
algorithmic step. Some algorithms in this class, like FALCON-UNZIP [34], try to split the
assembly and haplotyping problem by first creating a haploid assembly from the sequenc-
ing data and then using a reference-based haplotype reconstruction method. For example,
the diploid Vitis vinifera haplotypes have been reconstructed by taking a de novo assembly
approach and subsequently unzipping the haplotypes in the genome assembly process [34].

2.2.2. REFERENCE-BASED HAPLOTYPE RECONSTRUCTION
Reference-based haplotype reconstruction methods use sequencing data of the homolo-
gous chromosomes, just like de novo approaches, and a (previously) constructed reference
genome of the chromosome to reconstruct the haplotypes. First, homologous chromosomes
are sequenced in bulk, and the reads are mapped to the reference genome of the chromo-
some to find the variant loci and the approximate location in the chromosome they originate
from (see Figure 2.2.B). The reads covering the same regions are aligned together to cap-
ture the allelic differences between them. Later, these approaches try to connect and link
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Figure 2.2: A. The genome is sequenced, and the reads might originate from either of the haplotypes. The goal
is to reconstruct the haplotypes only based on the reads. B. Additionally to reads, a reference genome is used
to reconstruct the haplotypes. C. DNA sequencing data from the parents’ genomes are used with the target’s
sequencing data to reconstruct the haplotypes. D. Chromosomes are separated first and sequenced individually.
This approach sidesteps all computational challenges in haplotype reconstruction and turns it into an experimental
challenge to separate chromosomal DNA molecules.

the alleles together to reconstruct the haplotypes. Though reference-based haplotype re-
construction is usually less challenging than de novo haplotype reconstruction, the method
suffers from a reference bias because it depends on the reads’ alignment to the reference
genome and downstream analysis to detect variations between haplotypes. This reference
bias precludes capturing large variations between the haplotypes, such as structural variants.
To overcome reference bias, some of the reference-based haplotype reconstruction methods,
like HAT [35] and nPhase [36], assign reads to haplotypes based on the alleles determined
for the heterozygous loci and assemble the haplotype-separated reads afterwards.

2.2.3. TRIO BINNING HAPLOTYPE RECONSTRUCTION

In this approach, both the target genome as well as the genomes of its two parents are se-
quenced. Since haplotypes are inherited from the parents, they are also available in the
parents’ genome. Trio binning methods take advantage of this data to find unique k-mers
which are different between maternal and parental reads (see Figure 2.2.C). Then, these
unique k-mers are used to bin the reads of the F1 offspring into a maternal and a parental
group that can be assembled separately to construct the haplotypes. However, this tech-
nique is only available for species with sexual reproduction. Furthermore, it also increases
the required data threefold to include parental data, which makes trio-binning unpractical
for many applications. These approaches have been successfully applied to reconstruct
haplotypes of human [37] and the wood tiger moth [38] genomes.
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2.2.4. SINGLE CHROMOSOME SEQUENCING
There are various methods to separate the homologous chromosomes before sequencing
to get per-chromosome information. As the data from each of the haplotypes are already
separated, these methods avoid computational challenges in haplotype reconstruction. Re-
gardless, these methods are often expensive and have complicated library preparation, and
they also require intact cells, which makes them primarily suitable for niche applications
[39].

For instance, chromosome sorting is a method to isolate an individual chromosome
before sequencing, which allows separating the reads based on their origin before the as-
sembly process (see Figure 2.2.D). There are several chromosome sorting methods, like
microscopy-based chromosome isolation, fluorescence-activated sorting, and microfluidics-
based sorting individual chromosomes [39]. Regardless of the sorting procedure, single-
chromosome sequencing requires DNA amplification [39]. Therefore it suffers from am-
plification bias, and sequencing coverage across the chromosome is sparse, which leads to
a lack of coverage in heterozygous sites [39]. Alternatively, it is feasible to use the natural
way to separate homologous chromosomes from each other and sequence the DNA of the
gametes. However, access to the required tissue is not straightforward for many organisms
[39].

Single-cell DNA template strand sequencing (Strand-seq) is a single-cell sequencing
method that can be leveraged to reconstruct accurate chromosome-scale haplotypes. In
Strand-seq, the synthesized strand is ligated with bromodeoxyuridine (BrdU) molecules
during mitosis. The daughter cell is sequenced, and the strands with BrdU molecules are
destroyed, leaving only the original template strand of the parental chromatids. The direc-
tion of the template strands is identified by comparing them to the reference. If a cell has a
different direction for the homolog template strands, the reads generated from this cell can
get clustered based on their direction. The reads with the same direction are from the same
chromatid in the parent cell. Recently, the strand-seq technology was used to reconstruct
human haplotypes [40].

2.3. DNA SEQUENCING AND LONG-RANGE TECHNOLOGIES

FOR HAPLOTYPE ASSEMBLY
Researchers have utilized a variety of technologies in haplotype reconstruction research.
An overview of these technologies is provided in this section, along with an explanation of
how they can be used for haplotype assembly (see Table 2.1).

The introduction of NGS and TGS technologies, such as various products of Illumina,
PacBio and Oxford Nanopore Technologies, have revolutionized genome assembly due to
the high throughput data they are able to provide, while remarkably reducing the time and
cost of sequencing large genomes [45]. Regardless, the reads produced by most of the NGS
technologies range from tens of base pairs to 600 base pairs [46], so they do not span
most repetitive regions. That leads to ambiguous placement of reads when aligning to the
reference and difficulties for genome assembly. Even when paired end reads are employed,
the inner distance of the linked pairs is usually not longer than the read lengths of NGS
reads [47]. Therefore, NGS technologies can only be leveraged to link variants that fall
within the insertion size (see Figure 2.3.A).
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Table 2.1: A summary of commonly used DNA sequencing technologies. Sequencing technologies Read length
Read Accuracy paired linking range.

Sequencing technologies Read length Read Accuracy Paired Linking range
Illumina miseq 250-300bp [41] 99% [41] Yes Pairs insertion size.
Illumina Hiseq 90-151bp [41] 99% [41] Yes Pairs insertion size.
PacBio SMRT Average 10kbp [42] 87% [42] No Read length
PacBio HIFI Average 10kbp [42] 99% [42] No Read length
Oxford nanopore
technology Average 10kbp [42] 92% [42] No Read length

10x genomics [43] Depends on the sequencing platform ∼50kb
Hi-C [44] Depends on the sequencing platform Mega base pairs

Figure 2.3: A. Paired-end reads are helpful to connect variations that are close together. However, they cannot
pass most of the variation deserts due to the small read length and insertion size. B. Long reads might pass small
variation deserts and help connect variations closer than the read length. They still cannot pass large variation
deserts. C. In 10x Genomics data, molecules are separated and sliced into smaller pieces, and barcodes are
attached to the small sequences. The small sequences originated from the same molecule have the same barcode.
This barcode attached small sequences are read by Illumina sequencing technology (gray shapes attached to reads).
D. With the Bionano optical mapping technique, fluorescence molecules are attached to the chromosome at specific
motifs (yellow ovals). Then the Bionano device reads the chromosome through imaging and creates a mapping
profile to find the location of motifs. E. Hi-C data are Illumina reads, but each pair (green/purple) is from one
side of the folded region of the chromatin. This area is close in the 3D space but might be far away in the linear
genome sequence.

Third-generation sequencing methods, including PacBio SMRT and Oxford Nanopore
technology, produce longer reads compared to NGS technologies but are often considered
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more error-prone, although PacBio HiFi has reported error rate comparable to NGS [48].
In contrast, Oxford Nanopore Technology has introduced ultra-long reads, which produce
reads with much higher N50 than the other TGS platforms. Regardless, the longer read
length of TGS technologies allow the reads to span some of the repetitive sequences in the
genome, yielding more accurate alignments to a reference genome. Thus, third-generation
sequencing technologies have been widely used to create more reliable reference genomes,
essential for reference-based haplotype reconstruction methods. On top of that, their read
length enables connecting variations that NGS technologies could not (see Figure 2.3.B).
This allows them to connect genomic regions further apart and create longer haplotype
blocks.

The 10x Genomics technology was introduced to generate synthetic long reads by la-
beling the reads that are generated from a single DNA molecule. It first partitions high
molecular weight DNA molecules into droplets, then shears the DNA and attaches droplet-
specific 16 letter barcodes. The droplets are then pooled and sequenced using a classic
DNA sequencing platform. Interestingly, the same technology can also be used for haplo-
type reconstruction. Since the reads produced from a droplet, are originated from the same
DNA molecule and belong to same haplotype [49]. When reads with the same barcode are
covering variation loci, the alleles of these reads at the variation loci can be linked together
(see Figure 2.3.C) [50].

Hi-C technology captures the three-dimensional folding of chromosomes to provide
long-range information from the genome. The folded areas of chromosomes are close in
the 3D space but still can be far away in the chromosome sequence. First, the cell is fixed
with formaldehyde which cause the interacting loci bind to one another. Then, restriction
enzymes fragment the DNA molecule, but the interacting loci bound remains. Next, a
chimeric sequence is created from the two parts of the chromosome interacting. After
that, in a typical use case, this chimeric fragment is sequenced with Illumina sequencing
machines. The two pairs of the reads are now each from a side of the folded region which
might be megabases away in nucleotide-distance. If the two pairs of these reads cover
variation loci, they can link the alleles of these two far regions to each other (see Figure
2.3.D) [51, 52].

BioNano optical mapping provides long-range information to complement the DNA
sequencing data. It modifies the DNA sequence at specific six bases length motifs and at-
taches a fluorescence molecule to them. After that, the fluorescence attached DNA sequence
is scanned by the BioNano device, which takes image snapshots. Later, these images are
matched together, and the motifs’ locations in an individual chromosome are detected (see
Figure 2.3.E) [53]. These motifs’ locations can cover heterozygous loci and can link ge-
nomic regions that are far from each other [53]. This long-range linking can complement
the sequencing data to make longer haplotype blocks [54–56].

2.4. De novo AND REFERENCE-BASED HAPLOTYPE RECON-
STRUCTION CHALLENGES

Despite all the improvements in DNA sequencing technologies, haplotype reconstruction
remains challenging. In this section, we review five main challenges and how they affect
haplotype reconstruction.
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2.4.1. POLYPLOIDY

Reconstructing haplotypes of a polyploid genome is more complicated than a diploid
genome. In a diploid genome, knowing the sequence of a haplotype allows inference of the
other one because the alleles that are not in the already resolved haplotype must be present
in the other one. In polyploid genomes, however, knowing the sequence of one haplotype
provides little information about the others because they might still have different or iden-
tical alleles as the already resolved haplotype [57]. Thus, depending on the ploidy and the
level of heterozygosity between the haplotypes, determining alleles is harder.

Furthermore, in a diploid genome, when two reads have identical alleles in a variation
locus, they belong to the same haplotype and can be clustered together. However, this is not
true for polyploid genomes because they might belong to two different haplotypes that have
the same allele at that specific locus. Thus, to determine which haplotype the reads belong
to, they should cover sufficient variation loci that differentiate all haplotypes. Therefore,
in polyploid genomes fewer reads have sufficient information to get clustered compared to
diploid genomes.

2.4.2. VARIATION DESERTS

The variations between the homologous chromosomes are the primary source of informa-
tion used for reconstructing haplotypes. However, even in a highly heterozygous genome,
there are areas where the haplotypes are identical, which we call variation deserts [51].
Reconstructing chromosome-scale haplotypes requires connecting the alleles co-locating
at the sides of these variation deserts in a haplotype. This is challenging and requires
long-range data that spans the variation deserts. Moreover, even if a variation desert is
comparable in size to the read length, only a small subset of the reads would span them.
For instance, in the human genome, SNPs occur every 1000 bp on average, and as a result
just 1% of short reads will cover two variation sites, which is not enough for chromosome-
scale haplotype reconstruction [57]. Third-generation sequencing data might be sufficient
to connect the sides of small variation deserts, but chromosome spanning data such as Hi-C
is required for the large ones. If the data cannot span the variation desert, the two sides of
it remains unlinked, leading into separated and relatively short haplotype blocks.

2.4.3. STRUCTURAL VARIANTS

Structural variants are responsible for the most nucleotide-level diversity between human
genomes [58]. These variations are complex and make an immense difference between the
chromosomes. Most of the recent haplotype reconstruction tools take a reference-based
approach which makes them highly dependent on the alignment of the sequencing data
to the reference genome. A structural variant between the target chromosomes and the
reference can lead to misalignment of the reads and low-quality haplotype reconstruction
[59].

On top of that, most of the current methods only consider the SNVs between the haplo-
types for haplotype reconstruction. This restrains them in capturing the structural variations
between the haplotypes.
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2.4.4. REPETITIVE REGIONS
Repeats are highly similar sequences repeated several times in the genome. The degree of
repetitiveness differs in organisms but can go up to 50% in humans [60], and 83% in some
plants [61]. The repeats can be either next to or far away from each other, which is termed
tandem or interspersed, respectively. Tandem repeats can be as few as two nucleotides re-
peated many thousands of times [62]. Interspersed repeats can be as far as several million
bases away, and constitute up to 34% of the human genome [63]. Repeats create several
difficulties for haplotype reconstruction: (i) Some of the sequencing technologies have lim-
itations for handling the complex regions in the genomes, including repeats. For example,
ONT has difficulties sequencing homopolymers and determining the exact length [64]. (ii)
Alignment methods cannot accurately align the reads originating from the repeat regions to
the reference genome which is needed for reference-based haplotype reconstruction. (iii) In
order for a read to have useful information for resolving repetitive regions, it has to span the
region [65]. This means only a small portion of reads are informative about these regions.
(iv) Moreover, repeats between the homologous chromosomes can have slight variations.
In the case of the polyploid genome, it is impossible to understand which haplotype the
copy of the repeat with the small difference is located.

2.5. SOFTWARE FOR HAPLOTYPE ASSEMBLY
Various computer algorithms facilitate haplotype reconstruction with the data types de-
scribed in the previous sections (see Table 2.2). Because next-generation sequencing and
third-generation sequencing are the most accessible sequencing technologies and are widely
used in the literature, the state-of-the-art tools that use these technologies are explained in
the main text. Interestingly, all the recent methods for polyploid haplotype reconstruction
take a reference-based approach, starting with aligning the read set to the reference and
finding the variation loci based on the alignment to begin the algorithm.
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As explained in the previous sections, haplotype reconstruction in diploid genomes is
less challenging than in polyploid genomes, which has enabled diploid haplotype recon-
struction tools to have more success. HapCut2, Falcon-unzip, and HapCompass are exam-
ples of successful diploid reconstruction tools. HapCut2 aims to optimize the minimum
error correction (MEC) to reconstruct haplotypes of diploid genomes. HapCUT2 finds a
solution that requires the minimum number of alleles in the reads that need to be changed
to be perfectly consistent with one of the two haplotypes. In contrast, HAPCompass takes
an entirely different approach and creates a graph called a compass graph. In the compass
graph, nodes are SNPs, and two SNPs are connected if there is at least one read that covers
both. Each edge is assigned a weight, which is the absolute number of reads supporting
the two possible combinations for the two SNPs subtracted from each other. HAPCompass
then solves a Minimum weighted edge removal problem and removes the minimum weight
of edges in total until the resulting graph has a unique phasing.

In contrast, all polyploid haplotype reconstruction tools take a reference-based ap-
proach, which simplifies the polyploid haplotype reconstruction problem, but limit them
against structural variants and haplotypes significantly different from the reference. Most
recent reference-based polyploid haplotype reconstruction tools take either a read clustering
or a seed-and-extend approach. The read clustering approach tries to group the reads based
on similarities and dissimilarities at the variation loci. On the other hand, the seed-and-
extend approach starts by determining the alleles of variation loci that are close together
and then extends these regions based on the read alignments.

SdhaP [72], WhatsHap Polyphase [76], and nPhase [36] are the most recent tools that
take a read clustering approach. SDhaP and WhatsHap Polyphase are based on correlation
clustering on a graph where reads and if two reads cover the same SNP loci, then there
is an edge between them. They are trying to separate the reads into different sets where
each set belongs to a haplotype, but they have different approaches for weighting the edges
and different heuristics to solve the correlation clustering problem. However, WhatsHap
Polyphase has an additional step, "threading," to connect the clusters covering different
parts of the chromosome and belonging to the same true haplotype based on three objec-
tives: (i) genotype concordance, (ii) read coverage and (iii) haplotype contiguity. nPhase
also aims to separate reads into clusters for each haplotype but takes a different approach.
Instead, it assumes that each read is a separate cluster and tries to merge them as much as
possible based on the similarities at the SNP loci.

on the other hand, Haptree [71], Ranbow [67], and HAT [35] are taking a seed-and-
extend approach. They link the alleles together and try to reconstruct all haplotypes’ alleles
by linking them together. Haptree starts with phasing the first two SNP loci and finds the
most likely haplotypes for the two positions based on the reads. Then it tries to phase
the following SNP loci by finding the most probable haplotypes based on the maximum
likelihood of the reads and all possible haplotypes. Ranbow, on the other hand, starts by
creating seeds, the set of consecutive SNPs covered by reads. Later, it creates a graph
between the seeds and connects them based on the reads covering multiple seeds. In the end,
it reconstructs the haplotypes by finding paths based on the read coverage and consistency
of reads covering multiple seeds. HAT also takes the same approach but takes advantage
of both short reads to create the seeds to create a valid starting point for the phasing and
expands and merges them with the long reads. One of the main advantages of HAT is
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detecting the areas where haplotypes are identical and defining multiplicity blocks before
haplotype reconstruction.

2.6. BENCHMARKING SEQUENCING-BASED HAPLOTYPE RE-
CONSTRUCTION METHODS

Recently many tools have been developed to solve the haplotype reconstruction problem
[51]. Benchmarking new methods is often done ad hoc on particular datasets, making their
results incomparable with the other tools. Even when the methods are compared with each
other directly, it is on a particular dataset, which does not allow the generalization of the
conclusions on the performance of the methods. Previous a systematic approach was taken
to benchmark de novo assembly tools which use NGS and third-generation sequencing data
[77, 78]. The same idea should also be applied to haplotype assembly and finding a unified
way to benchmark the haplotype assembly methods is crucial.

Here, we propose an experimental design for benchmarking haplotype reconstruction
methods. Comparing the reconstructed haplotypes and the actual haplotypes would give
much insight into how well the methods perform, but the sequence of actual haplotypes is
not available in real datasets. Therefore, we believe benchmarking a haplotype reconstruc-
tion method against a simulated dataset with simulated haplotypes and reads is necessary.
Moreover, it is critical to test these methods on multiple genomes with different charac-
teristics because some of the methods might only perform well on specific ploidies and
heterozygosity levels. Ultimately, the right metrics should be used to evaluate a haplotype
reconstruction method and correctly compare it to the simulated haplotypes. Figure 2.4
illustrates the proposed approach to evaluate haplotype reconstruction methods.

2.6.1. SIMULATING SYNTHETIC DATA SETS
We propose four categories of simulated datasets to benchmark a newly developed haplo-
type assembly method: (i) a highly heterozygous simple genome, (ii) a highly heterozygous
complex genome, (iii) a largely homozygous simple genome, and (iv) a largely homozy-
gous complex genome, in ascending order of difficulty. Each of these data sets is needed at
multiple ploidies: triploid, tetraploid, and hexaploid which are the most common ploidies
(Supplementary Figure A.1). Following suggested protocol leads to 12 total datasets.

The first step of creating each of the mentioned datasets required is simulating the hap-
lotypes. However, to simulate high-quality haplotypes, it is required to analyze several
haplotypes resolved genomes and model. Some high-quality diploid genome assemblies
are available in the literature, but this is not the case for polyploid genomes, which makes
simulating polyploid haplotypes a challenge. Regardless, there are some tools for simulat-
ing set of haplotypes based on a reference genome (see Table 2.3), with different ploidies
and levels of heterozygosity, which can be used for benchmarking haplotype reconstruction
methods. Next, to increase the complexity of the simulated haplotypes structural variants
should be added to the haplotypes.

After haplotype simulation, the sequencing data needs to be simulated from the obtained
haplotypes. Various tools are available for simulating every kind of sequencing data (see
Table 2.3). SimLord [79] and PBSIM [80] are widely used for simulating PacBio reads,
whilst NanoSim [81], and DeepSimulator [82, 83] are used to simulate ONT reads, while
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Figure 2.4: Illustrates systematic benchmarking design for haplotype assembly algorithms. Any haplotype as-
sembly algorithm needs to be tested on at least 12 different test cases, based on ploidy, heterozygosity level and
complexity of the genome. Here, we define genomes with large repeats and structural variants as ‘complex’
genomes. First, the haplotypes need to be simulated based on the reference genome and the parameters. Then
reads should be simulated based on the simulated haplotypes. Next, the haplotype assembly tool should be used
on the sequencing data to reconstruct the haplotypes. The dashed line is indicating the need of reference-based
methods to use the reference next to the sequencing data for haplotype reconstruction. Finally, the output of the
tool is compared with the simulated haplotypes in the evaluation step to assess the quality of the haplotype recon-
struction. The result of this process is a valid assessment of the tool.

LongISLND [86], PBSIM2 [85] and Badread [84] can simulate both types of data. Re-
cently, Badread [84] was introduced, which aims to simulate long error-prone reads. The
advantage of Badread over the other tools is that it can produce other kinds of errors like
chimeras, adapters, glitches, and "junk DNA". Moreover, Badread does not simulate the
long reads based on real datasets; instead, it uses gamma distribution for sampling read
lengths, making it less realistic but highly tunable. There are many tools available for sim-
ulating NGS reads as well. Merly et al. [98] have compared most of these tools, and the
results of the comparison can be used to choose the suitable tool for the simulation. There
are fewer tools available for simulating Hi-C and 10x genomics reads, and the most recent
ones are listed in Table2.3.
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Table 2.3: A summary of simulation tools required for benchmarking a haplotype assembly tool.

Simulation Tool name Authors Release year

Pacbio reads
SimLord [79] Stöcker et al. 2016
PBSIM [80] Ono et al. 2013

Nanopore reads
NanoSim [81] Yang et al. 2017
DeepSimulator [82, 83] Li et al. 2018, 2020

Simulating both
Pacbio and ONT reads

Badread [84] Ryan R Wick 2019
PBSIM2 [85] Ono et al. 2021
LongISLND [86] Lau et al. 2016

NGS reads
Art [87] Huang et al. 2012
MetaSim [88] Richter et al. 2008
CuReSim [89] Caboche et al. 2014

Hi-C Reads
Sim3C [90] DeMaere et al. 2017
FreeHi-C [91] Zheng et al. 2019

10x genomics reads
LRSim [92] Luo et al. 2017
Tenxsim [93] Dong 2018

Haplotype simulation
Aneusim [94] Van Dijk et al. 2018
Haplogenerator [95] Motazadi et al. 2018
PolyHapSim [96] Moeinzadeh et al. 2019

Structural variant VISOR [97] Bolognini et al. 2019

2.6.2. EVALUATING HAPLOTYPE RECONSTRUCTION METHODS
A non-biased systematic evaluation needs to be performed on the output haplotypes, and
several aspects of metrics such as statistical, reference-based, and gene-based should be
tested. First, statistical metrics can be used to assess the reconstructed haplotypes indepen-
dently from the reference genome. In the field genome assembly, the following metrics are
often used: N50, NG50, and GC content. These metrics can be used to assess the continuity
of the reconstructed haplotypes. Existing software packages such as QUAST [99] can be
used to calculate these metrics, for genome assembly.

Second, as the ground truth of the haplotypes is available in the proposed benchmark,
reference-based metrics that calculate the difference between the produced haplotype and
the ground truth can be used. Common metrics include hamming rate and switch-error rate,
which both take advantage of the reference haplotypes and provide valuable information.
The hamming rate is the distance of the assembled and reference haplotype at every varia-
tion locus. The switch error rate is the rate of required switches between the reconstructed
haplotypes to produce the reference haplotypes, where a switch is swapping a set of con-
secutive alleles between the haplotypes. The hamming rate is a more sensitive metric as it
takes every single misscalling of the alleles into account, while a series of misscalled SNVs
might be possible to fix by only one switch. In the current state of haplotype reconstruction,
the switch error rate has more importance as it led to cutting the haplotypes into blocks and
a high hamming rate.

Third, it is important to ensure that all haplotypes contain the critical single-copy or-
thologs. The Busco [100] tool can check the presence of single-copy orthologs in assem-
blies. When using a de novo assembly approach, it is crucial to evaluate haplotypes with
Busco to make sure all essential genes are present, since de novo methods only use reads
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and they are more likely to miss some of the vital genes.

2.7. CONCLUSION
There has been much advancement in the technologies and tools for reconstructing hap-
lotypes. However, some challenges remain. The successful approaches and technologies
have their limitations and are not applicable to all use cases.

The chromosome separation approaches have been used to reconstruct human haplo-
types successfully, but they are challenging to employ as they require intact cells and are
often expensive. Therefore, the reconstruction of haplotypes with other approaches is valu-
able. The trio-binning approaches have also shown success in reconstructing human and
wood tiger moth haplotypes but are inapplicable for most use cases since they require
parental information.

As shown in the software for haplotype reconstruction section, most state-of-the-art
haplotype reconstruction methods take a reference-based approach. They align the reads to
a reference genome to find the alleles, which means a reliable alignment and variant calling
have extra importance for these types of methods. Regardless, aligning the reads to complex
regions in some genomes is challenging, and the methods which rely upon the alignment
will struggle for downstream analysis and haplotype reconstruction. This becomes even
more important when variant calling with the long reads is still challenging due to the error
rates, and the short reads cannot be appropriately aligned to the complex regions because
of their small size. Furthermore, as is indicated in the previous sections, most haplotype
reconstruction tools rely on single-nucleotide variations to resolve the haplotypes, as such,
they ignore the large indels and structural variants.

Next to limitations of the approaches, every sequencing technology also has limitations,
and for telomere-to-telomere haplotype reconstruction it is likely required to combine mul-
tiple data types. For example, using Hi-C data, around 20% of the variations that are not
close to the restriction enzyme cut site are not detected which limits the usefulness for
haplotype reconstruction. Meanwhile, TGS and NGS reads are able to detect most of the
variations, however, the small linking range makes them inapplicable for organisms with
low heterozygosity or long repeats resulting in haplotypes that divided into several unlinked
haplotype blocks. As shown in Table 2.2, many methods have been developed that only use
a single data type to reconstruct the haplotypes, yet we do not have any chromosome-scale
haplotypes in polyploids. One possible method to overcome these difficulties is using a
mixture of data, as they can provide complementary information. Every type of data can
fill a piece in this complex puzzle and provides insight to reconstruct the haplotypes.

In terms of existing software tools, all the available state-of-the-art tools for reconstruct-
ing haplotypes from sequencing data in polyploid genomes are reference-based. The major
risk is that this could lead to a reference bias, and structural variants between the haplotypes
will likely be missed.

We believe that future research for solving the haplotype reconstruction problem should
focus on de novo approaches, because they do not suffer from reference bias, although
they are the most computationally challenging. A future direction could be detecting and
linking the variation between the haplotypes without an alignment to the reference and in
the assembly graph level.

Finally, we suggest developing several gold standard polyploid datasets with different
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ploidy levels, heterozygosity, and structural variants rate, next to a standard set of simulated
reads. It is expected for the future that all the tools should use the gold standards and follow
the suggested benchmarking methodology shown in the previous sections for evaluation.
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3
EVALUATING LONG READ DE NOVO

ASSEMBLY TOOLS FOR EUKARYOTIC
GENOMES: INSIGHTS AND

CONSIDERATIONS

Assembly algorithm choice should be a deliberate, well-justified decision when researchers
create genome assemblies for eukaryotic organisms from third-generation sequencing tech-
nologies. While third-generation sequencing by Oxford Nanopore Technologies (ONT) and
Pacific Biosciences (PacBio) have overcome the disadvantages of short read lengths specific
to next-generation sequencing (NGS), third-generation sequencers are known to produce
more error-prone reads, thereby generating a new set of challenges for assembly algorithms
and pipelines. However, the introduction of HiFi reads, which offer substantially reduced
error rates, has provided a promising solution for more accurate assembly outcomes. Since
the introduction of third-generation sequencing technologies, many tools have been devel-
oped that aim to take advantage of the longer reads, and researchers need to choose the
correct assembler for their projects.

We benchmarked state-of-the-art long-read de novo assemblers, to help readers make a
balanced choice for the assembly of eukaryotes. To this end, we used 12 real and 64 sim-
ulated datasets from different eukaryotic genomes, with different read length distributions,
imitating PacBio CLR, PacBio HiFi, and ONT sequencing to evaluate the assemblers. We
include five commonly used long read assemblers in our benchmark: Canu, Flye, Mini-
asm, Raven, and wtdbg2 for ONT and PacBio CLR reads. For PacBio HiFi reads LJA,
we include five state-of-the-art HiFi assemblers: HiCanu, Flye, Hifiasm, LJA and MBG.
Evaluation categories address the following metrics: reference-based metrics, assembly
statistics, misassembly count, BUSCO completeness, runtime, and RAM usage. Addition-
ally, we investigated the effect of increased read length on the quality of the assemblies, and
report that read length can, but does not always, positively impact assembly quality

This chapter has been published in GigaSciences,
https://doi.org/10.1093/gigascience/giad100

37



3

38 3. EVALUATING LONG READ DE NOVO ASSEMBLY TOOLS FOR EUKARYOTES

Our benchmark concludes that there is no assembler that performs the best in all the eval-
uation categories. However, our results show that overall Flye is the best-performing as-
sembler for PacBio CLR and ONT reads, both on real and simulated data. Meanwhile, best
performing PacBio HiFi assemblers are Hifiasm, and LJA. Next, the benchmarking using
longer reads shows that the increased read length improves assembly quality, but the extent
to which that can be achieved depends on the size and complexity of the reference genome

.
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3.1. INTRODUCTION
De novo genome assembly is essential in several leading fields of research, including dis-
ease identification, gene identification, and evolutionary biology [1–4]. Unlike reference-
based assembly, which relies on the use of a reference genome, de novo assembly only
uses the genomic information contained within the sequenced reads. Since it is not con-
strained to the use of a reference, high quality de novo assembly is essential for studying
novel organisms, as well as for the discovery of overlooked genomic features, such as gene
duplication [5], in previously assembled genomes.

The introduction of Third Generation Sequencing (TGS) led to massive improvements
in de novo assembly. The advent of TGS has addressed the main drawback of Next Gen-
eration Sequencing (NGS) platforms, namely the short read length, but has introduced new
challenges in genome assembly, because of the higher error rates of long reads. The lead-
ing platforms in long-read sequencing are Pacific Biosciences Single Molecule, Real-Time
sequencing (often abbreviated as “PacBio”) and Oxford Nanopore (ONT) sequencing [6].

Since the introduction of TGS platforms, many methods have been developed that aim
to take the most benefits from the longer read length and overcome the new challenges
due to sequencing error. Recent studies have been conducted to compare long-read de
novo assemblers. One such study was conducted by Wick and Holt [7], who focused on
long-read de novo assembly of prokaryotic genomes. Eight assemblers were tested on real
and simulated reads from PacBio and ONT sequencing, and evaluation metrics included
sequence identities, circularisation of contigs, computational resources, as well as accuracy.
Murigneux et al. [8] performed similar experiments on the genome of M. jansenii, although
in this case, the focus was on comparatively benchmarking Illumina sequencing and three
long-read sequencing technologies, in addition to the comparison of long-read assembly
tools. Studies narrowed down to just one type of sequencing technology include those of
Jung et al. [9], who evaluated assemblers on real PacBio reads from five plant genomes,
and Chen et al. [10], who used Oxford Nanopore real and simulated reads from bacterial
pathogens in their comparison. Except for the Wick and Holt study, which provides a
compressive comparison on de novo assembly of prokaryotic genomes, other studies are
either comparing the assemblers on single genome or using data from a single sequencing
platform. Here, we provide a comprehensive comparison on de novo assembly tools on the
most used TGS technologies and 7 different eukaryotic genomes, to complement the study
of Wick and Holt.

In this study, we are benchmarking these methods using 12 real and 64 simulated
datasets (see Figure 3.1) from PacBio CLR, PacBio HiFi and ONT platforms to guide
researchers to choose the proper assembler for their studies. Benchmarking using simu-
lated reads allows us to accurately compare the final assembly with the ground truth, and
benchmarking using the real reads can validate the results based on simulated reads. The
assembler comparison presented in this manuscript complements the literature that has al-
ready been published, by introducing an analysis of not just assembler performance, but
also of the effect of read length on assembly quality. Although increased read length is
considered an advantage, we investigate if it is always a necessary advantage to have for
assembly performance. To that end, the scope of the study extends to six model eukaryotes
that provide a performance indication for genomes of variable complexity, covering a wide
range of taxa on the eukaryotic branch of the Tree of Life [11]. Complexity in genome
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assembly is determined by multiple variables, the most notable of which is the proportion
of repetitive sequences within the genome of a particular organism. Complexity in eukary-
otic genomes is further exacerbated by size and organization of chromosomal architecture,
including telomeres and centromeres, and the presence of circular elements such as mito-
chondrial and chloroplast DNA.

Figure 3.1: The benchmarking pipeline. For PacBio CLR and ONT (right panel), first we select 6 representative
eukaryotes from the Tree of Life [11] and use Badread’s [12] error and Qscore model generation feature to create 2
models of PacBio CLR and ONT long sequencing technologies. This is input to the read simulation stage, where
we simulate reads from all genomes, with four different read length distributions. We then perform assembly
of simulated and real reads, using five long-read assemblers. For PacBio HiFi (left panel), first we select 4
representative eukaryotes and use PBSIM3 to simulate HiFi reads. These reads are then assembled using five
state-of-the-art HiFi assemblers. Lastly, we evaluate all PacBio HiFi, PacBio CLR and ONT assemblies based on
several criteria.

De novo genome assembly evaluation remains challenging, as it represents a process
that must account for variables such as the goal of an assembly and the existence of a
ground-truth reference. A standard evaluation procedure was introduced in the literature
by the two Assemblathon competitions [13, 14], which outlined a selection of metrics that
encompasses the most relevant aspects of genome assembly, however, these metrics require
a reference sequence. Most of these metrics are adopted in our benchmark.

Consequently, this study addresses two main objectives. First, we provide a systematic
comparison of state-of-the-art long-read assembly tools, documenting their performance
in assembling real and simulated PacBio Continuous Long (CLRs), PacBio High fidelity
(HiFi), and Oxford Nanopore (ONT) reads on a diverse set of eukaryotic organisms. The



3.2. MATERIALS AND METHODS

3

41

PacBio CLR and ONT reads generated from the genomes of S. cerevisiae, P. falciparum,
C. elegans, A. thaliana, D. melanogaster, and T. rubripes and the PacBio HiFi reads are
generated from the genomes of S. cerevisiae, P. falciparum, A. thaliana and D. ananassae.
Our second objective is to investigate whether increased read length has a positive effect on
overall assembly quality, given that increasing the length of reads is an on-going effort in
the development of Third Generation Sequencing platforms [15].

It is important to note that our objective is to evaluate the performance of these tools in
generating a consensus assembly without taking haplotypes into account. Moreover, it is
crucial to highlight that the results and conclusions drawn from this comparison may not be
directly applicable to metagenome assembly. The unique characteristics and complexities
associated with metagenomic data warrant a separate and distinct analysis, which is beyond
the scope of this study.

3.2. MATERIALS AND METHODS
3.2.1. DATA
In this study, we are using real and simulated data from various organisms to benchmark
long read de novo assembly tools.

REFERENCE GENOMES

We selected six reference genomes from eukaryotic organisms represented in the Interac-
tive Tree Of Life (iTOL) v6 [11] for evaluating PacBio CLR and ONT assemblers: S. cere-
visiae (strain S288C), P. falciparum (isolate 3D7), C. elegans (strain VC2010), A. thaliana
(ecotype Col-0), D. melanogaster (strain ISO-1), and T. rubripes. Moreover, we selected
the four eukaryotic organisms to evaluate PacBio HiFi assemblers: S. cerevisiae (strain
S288C), P. falciparum (isolate 3D7), A. thaliana (ecotype Col-0), and D. ananassae (strain
14024-0371.13). Assembly accessions are included in Supplementary Table S1 in [16].

The reference assemblies for C. elegans, D. melanogaster, and T. rubripes included
uncalled bases. In these cases, before read simulation, each base N was replaced with base
A, as done by Wick and Holt [7]. This avoids ambiguity in the read simulation process and
consequently simplifies the evaluation of the simulated-read assemblies. As such, we used
this modified version as a reference when evaluating all assemblies of simulated reads from
these four genomes. In the evaluation of real-read assemblies, the original assemblies were
used as references.

SIMULATED READS

The PacBio CLR and ONT simulated read sets were generated using Badread v0.2.0 [12].
To create read error and Qscore (quality score) models in addition to the simulator’s own
default models, Badread requires the following three parameters: a set of real reads, a
high-quality reference genome, and an alignment file, obtained by aligning the reads to the
reference genome. We used real read sets from the human genome to create error and Qs-
core models that reflect the state-of-the-art for PacBio Continuous Long Reads (CLRs), and
Oxford Nanopore reads. The simulated PacBio HiFi reads were generated using PBSIM3.
To generate reads similar to HiFi, we used –num-pass 10 parameter, and then applied ccs
version 6.4.0 to generate the consensus reads.
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To create the models for PacBio CLR and Oxford Nanopore reads, we used the real
read sets sequenced from the human genome and aligned to the latest high-quality human
genome reference assembled by [17]: assembly T2T-CHM13v2.0, with RefSeq accession
GCF_009914755.1. The alignment was performed using Minimap2 v2.24 [18] with default
parameters. The sources for these sequencing data are outlined in Supplementary Table
S2 in [16], as well as the read identities for each technology, which are later passed as
parameters for the simulation stage.

To study the effect of read length on genome assembly, we simulated reads that im-
itate PacBio CLR, PacBio HiFi, and Oxford Nanopore sequencing, with four different
read length distributions, using Badread for PacBio CLR and Oxford Nanopore sequenc-
ing while using PBSIM3 for PacBio HiFi. The first read simulation represents the current
state of the three long-read technologies. The other three simulations reflect data points in-
between technology-specific values and ultra-long reads, data points of a similar length as
ultra-long-reads, and longer than ultra-long reads. We need to define the mean and standard
deviation of the read length distributions for these simulations. The values for the mean
and standard deviation of these distributions were selected as follows. First, we calculated
the read length distributions of the real read sets in Supplementary Table S2 in [16] and
simulated an initial iteration of reads using these technology-specific values. For choosing
these values for the other three iterations, we analysed a set of Oxford Nanopore Ultra-
Long reads used in the latest assembly of the human genome [17]. We selected GridION
run SRR12564452, available as sequence data in BioProject PRJNA559484, with a mean
read length of approximately 35.7 kbp, and a standard deviation of 42.5 kbp. A summary of
the Badread and PBSIM3 commands used in our simulation can be found in Supplementary
Table S3 and S4 in [16].

A full overview of the mean and standard deviation of all four read length distributions
is given in Table 3.1. Note that, for each of the technologies, the standard deviation for the
last three distributions was derived from the mean, using the ratio between the mean and
standard deviation reflected by the technology-specific values. Hence, for the last three iter-
ations, the mean read length is consistent across sequencing technologies, but the standard
deviation varies.

Table 3.1: The mean and standard deviation describing the read length distributions used in our simulations. Note
that read length increases with each iteration, and the distribution parameters are different for each technology.

Read length distribution parameters (kbp), per technology
PacBio CLR PacBio HiFi Oxford Nanopore

Mean Stdev Mean Stdev Mean Stdev
Iteration 1

(technology-specific values)
15.7 14.4 20.7 2.5 12.1 17.1

Iteration 2 25 22.5 25 3 25 35
Iteration 3

(imitate ultra-long reads)
35 31.5 35 4.2 35 49

Iteration 4 75 67.5 75 9 75 105

Consequently, we ran the simulations for each reference genome. As described above,
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we used our own models for each technology, and passed them to the simulator as the
–error_model and –qscore_model. The read identities per technology were set to the values
included in Supplementary Table S3 in [16]. Across all simulations, we chose a coverage
depth of 30x. Canu’s documentation [19] specifies a minimum coverage of 20 – 25x for
HiFi data, and 20x for other types of data, while Flye’s guidelines [20] indicate a minimum
coverage of 30x. As there is no minimum recommended coverage indicated for the other
assemblers we used in our benchmark, we simulated reads following the stricter guideline
among these two, that is, 30x coverage.

REAL READS

In support of our evaluation on simulated reads, we also performed a benchmark on real-
read assemblies from Oxford Nanopore and PacBio reads sequenced from the reference
genomes. These reads were sampled to approximately 30x coverage, to avoid introduc-
ing potentially confounding variables when comparing assemblies of real and simulated
datasets. The data sources for all real sets are included in Supplementary Table S5 in [16].
Please note that the PacBio CLR data from C. elegans was generated using the older RSII
technology. These reads inherent characteristics of the RSII system, such as shorter average
reads and a higher error rate, which might have influenced the assembly results.

3.2.2. ASSEMBLIES
For the PacBio CLR and ONT reads, we included the following five long-read de novo
assemblers: Canu v2.2 [19], Flye v2.9 [20], Wtdbg2 (also known as Redbean) v2.5 [21],
Raven v1.7.0 [22], and Miniasm v0.3_r179 [23]. For the PacBio HiFi reads, we included
HiCanu v2.2 [24], Flye v2.9, Hifiasm 0.19.5-r587 [25], LJA v 0.2 [26], and MBG v 1.0.14
[27]. We used the most recent releases of the assemblers at the time we started this study.

The assemblies were performed with default values for most parameters. Canu and Wt-
dbg2 require the estimated genome size as a parameter, and we set the following values: S.
cerevisiae = 12 Mbp, P. falciparum = 23 Mbp, A. thaliana = 135 Mbp, D. melanogaster =
139 Mbp, C. elegans = 103 Mbp, and T. rubripes = 384 Mbp, D. ananassae = 217 Mbp. All
commands used in the assembly pipelines are available in Supplementary Table S6 in [16].
We note that further polishing of assemblies using high-fidelity short reads, although com-
mon in practice [28–30], is omitted in this study, as the focus is exclusively on assembler
performance on long-read data and not polishing tools. We added a long-read polishing
step for Miniasm and Wtdbg2, as their assembly pipelines do not include long-read based
polishing. Following Raven’s default pipeline, which performs two rounds of Racon pol-
ishing [31], we used two rounds of Racon polishing on Wtdbg2 and Miniasm. We note that
for Miniasm, we used Minipolish [7], which simplifies Racon polishing by applying it in
two iterations on the GFA (Graphical Fragment Assembly) files produced by the assembler.
For both Miniasm and Wtdbg2, the alignments required for polishing were generated with
Minimap v2.24.

3.2.3. EVALUATION
We evaluated the assemblies in three different categories of metrics. The COMPASS anal-
ysis compares the assemblies with their corresponding reference genome and provides in-
sight into their similarities. The assembly statistics provide some basic knowledge about
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the contiguity and misassemblies. Finally, the BUSCO assessment investigates the presence
of essential genes in the assemblies. These three categories of metrics, next to each other,
can provide a complete overview of the assembly’s quality.

CORRECTNESS ANALYSIS
For each assembly, we ran the COMPASS script to measure the coverage, validity, multi-
plicity, and parsimony, to assess the quality of the assemblies, as defined in Assemblathon
2 [14]. These metrics describe several characteristics that were deemed important for com-
paring de novo assembly tools, and they were computed using three types of data: (1) the
reference sequence, (2) the assembled scaffolds, and (3) the alignments (sequences from the
assembled scaffolds that were aligned to the reference sequences). Definitions and formulas
for the metrics are reported in Supplementary Table S7 in [16].

Moreover, we use QUAST v5.2.0 [32] to calculate the number of misassemblies.
QUAST identifies misassemblies based on the definition outlined by [33]. The total number
of misassemblies is the sum of all relocations, inversions, and translocations. Considering
two adjacent flanking sequences, if they both align to the same chromosome, but 1 kbp
away from each other, or overlapping for more than 1 kbp, this is counted as a relocation.
If these flanking sequences, aligned to the same chromosome, are on opposite strands, the
misassembly is considered an inversion. Lastly, translocations describe events in which two
flanking sequences align to different chromosomes.

CONTIGUITY ASSESSMENT
We use QUAST v5.2.0 [32] to measure the auNGA of an assembly. The auNGA metric,
standing for the area under the NGAx curve [13], is a measure of assembly contiguity. By
calculating the area beneath this profile, which integrates the aligned sequence fragment or
contig lengths at various percentage thresholds, it provides a more thorough understanding
of the contiguity of the assembly compared to single-value metrics. A larger auNGA value
indicates better contiguity in the genome assembly.

COMPLETENESS ASSESSMENT
BUSCO v5.4.2 assessment [34, 35] is performed to evaluate the completeness of the es-
sential genes in the assemblies. This quantifies the number of single-copy, duplicated,
fragmented and missing orthologs in an assembled genome. From the number of orthologs
specific to each dataset, BUSCO identifies how many orthologs are present in the assembly
(either as single-copy or duplicated), how many are fragmented, and how many are miss-
ing. We ran these evaluations with a different OrthoDB lineage dataset for each genome:
S. cerevisiae – saccharomycetes, P. falciparum – plasmodium, A. thaliana – brassicales, D.
melanogaster – diptera, C. elegans – nematoda, T. rubripes – ctinopterygii, and . ananassae
– diptera.

3.3. RESULTS AND DISCUSSION
3.3.1. OVERVIEW OF THE BENCHMARKING PIPELINE
Figure 3.1 shows an overview of the benchmarking pipeline. For the PacBio CLR and Ox-
ford Nanopore reads we begin with the selection of six representative eukaryotes from
the interactive Tree of Life [11]: Saccharomyces cerevisiae, Plasmodium falciparum,
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Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and Takifugu
rubripes. We also use three read sets from the latest human assembly project [17] to gener-
ate Badread error and Qscore models [12] for PacBio Continuous Long Reads (CLRs), and
Oxford Nanopore reads (see Supplementary Table S2 in [16]). The reference sequences and
models become input to the Badread simulation stage. For each genome, we simulate reads
with four different read length distributions and two sequencing technologies (see Table
3.1), amounting to a total of 8 simulated read sets per reference genome. These reads, as
well as real read sets, are assembled with five assembly tools: Canu, Flye, Miniasm, Raven,
and Wtdbg2.

For the PacBio HiFi reads we begin with the reference genome of the 4 selected eu-
karyote species: Saccharomyces cerevisiae, Plasmodium falciparum, Arabidopsis thaliana,
and Drosophila ananassae. Then we use PBSIM3 and CCS to generate PacBio HiFi reads.
Similar to the previous setup, for each reference genome we simulate reads with four differ-
ent read length distributions. The simulated reads along with real reads for each of the four
reference genomes are assembled with five assembly tools: HiCanu, Flye, Hifiasm, LJA,
and MBG.

Next, the resulting assemblies are evaluated using COMPASS, QUAST, and BUSCO,
and based on the reported metrics we distinguish six main evaluation categories: sequence
identity, repeat collapse, rate of valid sequences, contiguity, misassembly count, and gene
identification. The selected COMPASS metrics are the coverage, multiplicity, and validity
of an assembly, which provide insight on sequence identity, repeat collapse, and the rate of
valid sequences, respectively. In this regard, an ideal assembly has coverage, multiplicity
and validity close to 1. This suggests that a large fraction of the reference genome is as-
sembled, repeats are generally collapsed Instead of replicated, and most sequences in the
assembly are validated by the reference. Among others, QUAST reports the number of
misassemblies and the auNG of an assembly. A high auNG value indicates high contiguity.
In order to assess contiguity across genomes of different sizes, we report the ratio between
the assembly’s auNG and the N50 of the references. Lastly, gene identification is quantified
in terms of the percentage of complete BUSCOs in an assembly.

The search for an optimal assembler for PacBio CLR and ONT reads is influenced by
read sequencing technology, genome complexity, and research goal To select an assembler
that is most versatile across eukaryotic taxa, we simulate PacBio Continuous Long Reads
(CLRs), and Oxford Nanopore reads from the genomes of six eukaryotes, assemble these
reads, and evaluate the assemblers in the six main categories mentioned in the previous
section. The results for each evaluation category are normalized in the range given by the
worst and best values encountered in the evaluation of all assemblies of reads with default
length. This highlights differences between assemblers, as well as between genomes and
sequencing technologies.

The results of the benchmark on the PacBio CLR and ONT read sets with default
lengths, namely those belonging to the first iteration (see Table 3.1), are illustrated in Figure
3.2. A full report of the evaluation metrics in this figure is included in the Supplementary
Tables S8 – S24 in [16], under “Iteration 1”. We note that no assembler unanimously ranks
first in all categories, across different sequencing technologies and eukaryotic genomes, al-
though our findings highlight some of their strengths and thus their potential for various
research aims. The runtime and memory usage of the assembly tools on all of the simulated
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datasets are reported in Supplementary Tables S25 – S30 in [16], since this can also be a
deciding factor next to the quality of the assembly for the researchers to choose the suitable
assembler for their purpose. We note that all assemblies were run on our local High Perfor-
mance Computing Cluster, and the runtime and RAM usage may have been affected by the
heterogeneity of the shared computing environment in which the assembly jobs executed.

While working with PacBio CLR and ONT reads, Miniasm, Raven, and Wtdbg2 are all
well-rounded choices for the simpler S. cerevisiae, P. falciparum and C. elegans genomes,
with a balanced trade-off between assembly quality and computational resources. For
PacBio HiFi reads, Raven is generally qualitatively outperformed by other assemblers like
Canu, Flye, and Miniasm, likely as a consequence of the fact that its pipeline is not cus-
tomized for all long-read sequencing technology. Nonetheless, if computational resources
are a concern, Raven is a more suitable choice, since Miniasm and Wtdbg2 do not scale
well for larger genomes.

We can single out Flye as the most robust assembler for PacBio CLR and ONT reads
across all six organisms, although for larger genomes such as T. rubripes, Canu is a better
tool. Both produce assemblies with high sequence identity and validity, as well as good
gene prediction, but Flye assemblies generally rank first when we compute the average
score across all six metrics. For Canu, we notice more variation in assembly quality across
different genomes, particularly for P. falciparum and A. thaliana, while Flye maintains more
consistent results. Nonetheless, on the T. rubripes genome, Canu assemblies have higher
sequence identity and contiguity, as well as more accurate gene identification.

To determine assembler performance on real PacBio CLR and ONT reads and validate
the rankings of the simulated-read assemblies, we assemble several real read sets from the
six reference eukaryotes (Supplementary Table S5 in [16]). Supplementary Figures S1-
S12 in [16] provide a visual representation of the read length distribution for all of the real
read sets. The evaluation results on the real-read assemblies, summarized in Figure 3.3,
indicate that assemblers which perform well on simulated reads perform similarly well in
assembling the sets of real reads. The full report of metrics on the real read assemblies
is included in Supplementary Table S31 in [16]. We conclude that, overall, the assembler
rankings remain consistent. This illustrates that benchmarking using simulated data is sim-
ilar to real read sets. For reference-based metrics, we used the reference genomes given in
Supplementary Table S1 in [16].

Notably, reference-based metrics in the evaluation of real-read assemblies rely on com-
parisons with an assembly, and not the genome from which the reads were initially se-
quenced. In contrast to the evaluation of simulated-read assemblies, the existence of a
ground truth reference is not available in this case, but reference-based metrics are included
for the sake of consistency with the simulated-read evaluation.

In the evaluation of real-read assemblies of PacBio CLR and ONT reads, Flye ranks first
for nearly all datasets, with the exception of the T. rubripes and C. elegans PacBio reads,
for which Raven performs better overall. However, even in C. elegans, Flye performance is
close to the best values in all metrics other than contiguity. As expected, overall assembler
performance decreases for reference-based metrics like sequence identity, repeat collapse
and validity, but surprisingly the misassembly count is considerably lower.

Similarly, in order to identify the best performing HiFi assembler for diverse eukary-
otic taxa, we first generate simulated PacBio HiFi reads from the genomes of four different
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Figure 3.2: The performance of the five assemblers on the read sets with default read lengths, from iteration 1 (see
Table 3.1), generated from six eukaryotic genomes. Six evaluation categories are reported for each assembler, and
the results are normalized among all assemblies included in the figure. Ranges for each metric are reported as
the best and worst values computed for these assemblies. The best performing assembler is highlighted and has a
black outline. Evaluation of PacBio CLR and ONT real-read assemblies supports our rankings on simulated-read
assemblies.

eukaryotes. These simulated reads are then assembled, and the performance of each as-
sembler is evaluated based on the six primary categories outlined in the previous section.
For comparative clarity, the results for each evaluation category are normalized within the
range established by the lowest and highest values observed across all assembly evaluations
of reads of default length. This method emphasizes both the variations among different as-
semblers, as well as the discrepancies across genomes and sequencing technologies.
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Figure 3.3: The performance of the five assemblers on the real PacBio CLR and ONT reads (see Supplementary
Table S5 in [16]), sequenced from six eukaryotic genomes. As in Figure 3.2, six evaluation categories are reported
for each assembler, and the results are normalized among all assemblies included in the figure. Ranges for each
metric are reported as the best and worst values computed for these assemblies. The best performing assembler is
highlighted and has a black outline. Searching for the best HiFi assembler based on simulated and real datasets

The results from simulated PacBio HiFi read sets with default lengths, namely those
belonging to the first iteration (see Table 3.1), are illustrated in Figure 3.4. Next to that,
the results of real HiFi reads of the same species are presented in Figure 3.4. We note
that Hifiasm, and LJA are outperforming other assemblers and perform well in all datasets.
The assembly results generated by the MBG assembler demonstrated notably low sequence
identity when compared to the reference genome.
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Figure 3.4: Theperformance of the five assemblers on the real PacBio HiFi read sets and simulated PacBio HiFi
read sets with default read lengths, from iteration 1 (see Table 3.1), generated from four eukaryotic genomes. Six
evaluation categories are reported for each assembler, and the results are normalized among all assemblies included
in the figure. Ranges for each metric are reported as the best and worst values computed for these assemblies. The
best performing assembler is highlighted and has a black outline.

3.3.2. LONGER READS LEAD TO MORE CONTIGUOUS ASSEMBLIES OF
LARGE GENOMES, BUT DO NOT ALWAYS IMPROVE ASSEMBLY
QUALITY

To investigate the effect of increased read length on assembly quality, we simulate Oxford
Nanopore, as well as PacBio CLR and HiFi reads with different read length distributions
(see Table 3.1). These reads are simulated from the genomes of S. cerevisiae, P. falciparum,
C. elegans, A. thaliana, D. melanogaster, and T. rubripes for PacBio CLR and ONT reads,
as well S. cerevisiae, P. falciparum, A. thaliana, and D. ananassae for PacBio HiFi reads.
We assemble PacBio CLR and ONT reads with Canu, Flye, wtdbg2, Raven, and miniasm
and assemble PacBio HiFi reads with HiCanu, Flye, Hifiasm, LJA, and MBG. We evaluate
assembly quality based on six evaluation categories (see section 3.3.1). It is worth men-
tioning that Canu’s PacBio CLR and ONT reads iteration 4 (the longest reads) assemblies
of A. thaliana and T. rubripes did not finish within reasonable time and are excluded from
the evaluation.
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Figure 3.5 shows a summary of the assemblers’ performance on all simulated read sets,
highlighting changes in performance for each read length distribution. All six evaluation
metrics are normalized given the maximum and minimum metric values per genome, per
sequencing technology, and combined to obtain an average score. For PacBio CLR and
ONT read sets, we then average the two resulted scores. Finally we report a rate between
1 and 10 for each assembler, per read length distribution for PacBio CLR and ONT read
sets, and a separate score for PacBio HiFi read sets. The results on all computed metrics
are fully described in Supplementary Tables S8 – S24 in [16].

The results imply that there is a correlation between the size and complexity of the ref-
erence genome and the extent of the improvement in assembly quality that can be achieved
by increasing the length of the reads. While we observe no trend in assembly quality im-
provement on the assemblies of smaller genomes, the results on the T. rubripes assemblies
are more conclusively in favour of the longer reads. For instance, on the shorter and simpler
S. cerevisiae and P. falciparum genomes, identification of repetitive and complex regions
is not aided by increased read length, likely as these regions are already spanned by the
reads with default lengths. However, the benchmark results suggest that more complex and
repetitive regions within the A. thaliana, D. melanogaster and, most notably, T. rubripes
genomes are better captured by longer reads.

As recorded in Supplementary Tables S22 and S23 in [16], for larger genomes, longer
reads generally lead to significantly higher assembly contiguity and a lower misassembly
count. The latter implies that the resulting assemblies are more faithful to the references, al-
though this is not necessarily supported by other metrics. We cannot report any compelling
improvements in sequence identity, multiplicity, validity, and gene identification.

3.4. CONCLUSION
In fulfilment of the first objective of this study, we conclude that Flye is the highest perform-
ing assembler when considering the overview of all evaluation categories in this benchmark,
which include the sequence identity, repeat collapse, rate of valid sequences, contiguity,
misassembly count, and gene identification. Rankings are mostly consistent for all three se-
quencing platforms included in the study: PacBio CLR, PacBio HiFi, and ONT. However,
no assembler ranks first in all evaluation categories, suggesting that the choice of assem-
bler is often a trade-off between certain advantages and disadvantages. Therefore, we have
corroborated the conclusion of Wick and Holt [7], who benchmarked long-read assemblers
on prokaryotes, for eukaryotic organisms, and recommend that these benchmarking param-
eters are considered in relation to the desired outcome of an assembly experiment.

Additionally, the tests performed on real reads validate our rankings of simulated-read
assemblies. Flye, the assembler that scored consistently well in most evaluation categories
for assemblies of simulated reads in PacBio CLR and ONT datasets, also ranks first when
evaluated on several sets of real reads sequenced on long-read platforms.

In our analysis, we found that when processing HiFi reads, both LJA and Hifiasm as-
semblers showed better performance than other options. While LJA and Hifiasm may not
always have been the absolute best, their high performance was a constant, irrespective of
the dataset. This was not dataset-specific but was consistently observed in both simulated
and real datasets. This underscores their efficiency and accuracy in assembling genomic
sequences using HiFi reads. Regarding our second objective, which is addressing the effect
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Figure 3.5: The left panel shows the performance of the five assemblers on all simulated PacBio CLR and ONT
read sets, with four different read length distributions (as previously described in Table 3.1). A score of 1 - 10
is reported for each assembler. We did not divide auNGA with the n50 of the reference genomes for this figure.
The results are normalized for each genome, per sequencing technology. For PacBio CLR and ONT, an average
score for each read length distribution is first computed and then these two scores are averaged to obtain an overall
score per read length distribution. For the A. thaliana and T. rubripes ONT iteration 4, the Canu assembly was not
completed. Therefore, the iteration 4 bar in the plot represents only the PacBio CLR assemblies. Similarly, the
right panel shows the performance of the five HiFi assemblers on all simulated PacBio HiFi read sets with four
different read length distributions.

of increased read length on assembly quality, the benchmarking of assemblers on read sets
with different read length distributions suggests that longer reads have the potential to im-
prove assembly quality. However, this depends on the size and complexity of the genome
that is being reconstructed. We found that improvements in contiguity were most significant
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among all metrics, as also supported by the conclusion of [8], who showed that using third
generation sequencing considerably improves contiguity in assembling a plant genome (M.
jansenii). However, we did not find significant improvements in other aspects of assembly
quality, such as sequence identity or gene identification.

This study focused on comparison of different sequencing technologies and assemblers
on a specific coverage level of 30x, which provided insights into the performance of dif-
ferent assemblers. However, it’s important to recognize that assemblers may behave dif-
ferently at lower or higher coverage levels, and project planners need guidance in selecting
the right coverage for their goals and budget. Unfortunately, studying the effect of different
coverages on assembly performance is not part of this study.

The field of genomics is continuously evolving, and advancements in sequencing tech-
nologies can significantly influence assembly outcomes. While our study focuses on bench-
marking long read de novo assembly tools for eukaryotic genomes, the rapid progress in se-
quencing technologies introduces complexities and challenges in comparing different data
types, chemistries, and versions of the tools. In an ideal situation, it would be important
to consider all the various factors, including different chemistries, sequencing devices, and
base callers when evaluating assemblies. However, due to the limitations of available data
and resources, we focused primarily on analyzing the impact of specific chemistry and re-
lated factors in this study. We recognize that this represents one of the limitations of our
research.

The generations of HiFi reads have witnessed substantial advancements in both read
length and accuracy. In earlier versions, HiFi reads typically had read lengths ranging from
around 10 to 15 kilobases (kb) with high accuracy rates of 99.9% or greater. However, with
subsequent generations, there has been a significant increase in read lengths. The latest
versions of HiFi reads now offer read lengths exceeding 20 kilobases, with some reach-
ing up to 30 kilobases or more, while still maintaining high accuracy rates above 99.9%.
These longer and highly accurate HiFi reads provide researchers with more contiguous
and reliable genomic sequences, enabling improved de novo assembly and enhancing var-
ious genomic analyses. An interesting innovation worth mentioning, while not included
in this study, is the introduction of Oxford Nanopore’s Duplex reads. This cutting-edge
technology holds the potential to enhance sequencing accuracy even further, making it a
worthwhile subject for future investigations.
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4
THE EFFECT OF REMOVING

REPEAT-INDUCED OVERLAPS IN de novo
ASSEMBLY

Determining accurate genotypes is important for associating phenotypes to genotypes. de
novo genome assembly is a critical step to determine the complete genotype for species for
which no reference exists yet. The main challenge of de novo eukaryote genome assembly,
particularly plant genomes, are repetitive DNA sequences within their genomes. The in-
troduction of third generation sequencing and corresponding long reads has promised to
resolve repeat-related problems. While there have been notable improvements, reads orig-
inating from these repeats are still creating errors because they introduce false overlaps
in the assembly graph. This study focuses on analyzing the effect of repeats on de novo
assembly and improving performance of existing de novo assembly algorithms by removing
repeat-induced overlaps. First, we show the possible improvements in de novo assembly
with removing repeat-induced overlaps. Then we propose several methods for detecting
and removing repeat-induced overlaps and evaluate their performance on several simu-
lated datasets.

This chapter has been submitted to PLOS One
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4.1. INTRODUCTION
The goal of de novo genome assembly is to reconstruct a species’ genome sequence as com-
pletely as possible using a large number of relatively short sequences referred to as "reads"
that are read from the species’ genome. While high-quality assemblies are already avail-
able for many species, many branches of the tree of life still need representative genome
sequences. Recently, due to the popularity of long-read sequencing technologies, de novo
assembly has once more become of interest. In this paper, we focus on improving the
standard long read de novo assembly pipeline.

Most de novo assembly pipelines suitable for long reads follow the OLC paradigm:
overlap-layout-consensus. First, in the overlap step, pairwise alignments between the reads
are identified. The output of the overlap step is a set of pairwise read overlaps that can be
represented as a graph, where nodes are the reads, and edges indicate overlaps between the
reads. This graph will be referred to as the assembly graph. Second, the layout step tries to
identify bundles of overlaps that belong together. This is done by pruning unwanted edges
from the graph such that it becomes more linear through several graph cleaning procedures.
Once all procedures are done, the graph is split up into contigs. Finally, the consensus step
of the assembly pipeline identifies the most likely base for each position. The layout step is
arguably the most differentiating step between the various de novo assembly methods that
exist. This can go from extremely simple, e.g. miniasm [1] to very intricate with many
manually optimized rules and corresponding specific data types, e.g. DISCOvar [2].

A problem that has plagued de novo assembly since the beginning is interspersed repeats
in the species’ genome sequence. The interspersed repeats are sufficiently similar sequences
that occur in two or more distinct genomic locations. The reads originated from any of the
repeat instances introduce pair-wise overlaps with all instances of the repetition across the
genome, which leads to cross-connections in the assembly graph. This will confuse the
‘layout’ step in the OLC assembly paradigm. Reads spanning the repetitive region can
resolve the confusion by connecting the two sides of the repetitive regions together. While
read lengths have been increasing dramatically for Third Generation Technologies (TGS),
for the vast majority of eukaryotic species, the read length is still orders of magnitude
smaller than the genome size. Moreover, it is unlikely that we will experience the luxury
of chromosome-spanning reads like the ones observed for some microbial genomes soon
[3–5]. Finally, TGS reads are often still not (yet) long enough to span most of the repetitive
regions in eukaryotic genomes.

In this paper, we analyze the effect of interspersed repeats on de novo assembly. Next,
we show that removing repeat-induced overlaps can improve the performance of de novo as-
sembly in different eukaryotic genomes, e.g. yeast, human, and potato. We demonstrate that
a perfect classifier can increase the coverage of genome assembly by 0.1, 4 and 7 in yeast,
potato, and human chromosome 9, respectively. Finally, we also investigate some methods
to detect and remove repeat-induced overlaps and compare their performance to the stan-
dard de novo assembly pipeline. Initially, we tried a baseline method and removed overlaps
based on their degree in the assembly graph. Second, we trained a machine-learning model
to detect and remove repeat-induced overlaps based on GraphSage node embeddings [6].
While this method makes the overlaps set much smaller, it does not improve the assembly
performance and the results are close to the standard de novo assembly pipeline.
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4.2. MATERIAL AND METHODS
4.2.1. DATA
REFERENCE SEQUENCES

In this study, we use the reference sequences of three species with differing degrees of
repetitive sequences: S. cerevisiae (yeast) and S. tuberosum (potato), and H. sapiens (hu-
man) chromosome 9, which is the most repetitive chromosome in the human genome. We
use high-quality available reference sequences as the source to simulate reads. We re-
trieve sequences from Genbank: yeast S288C genome assembly R63 (GCA_000146045.2),
potato DM_1-3_516_R44 genome assembly version 6.1 (GCA_000226075.1), and human
genome assembly T2T-CHM13v2.0 (GCA_009914755.3).

The potato reference sequence contains Ns to fill the gaps and unplaced sequences,
complicating analysis. The Ns make problems for the evaluation step because we need a
complete genome to compare the assemblies with it. We remove the unplaced sequences
and the Ns to make the experiments straightforward. After removing Ns and unplaced
contigs, we have one complete sequence for each chromosome.

DETECTING INTERSPERSED REPEATS

We use Generic Repeat Finder [7] version 1.0 with the default parameters to detect inter-
spersed repeats in these three reference sequences.

4.2.2. SIMULATING READS AND GENOMES
We use aneusim [8] version 0.4.1 with default parameters to simulate diploid sequences
(ploidy=2) close to the reference sequences but with mutations and translocations. We use
the simulated haplotype 1 and 2 sequences as genomes of two other individuals of these
organisms for further analysis.

We use SimLoRD [9] version 1.0.2 to simulate reads similar to PacBio with 40x of
coverage (-c 40) from the reference, and the simulated sequences. Using simulated reads
allows us to label the alignments between the reads since we know where the reads origi-
nated from.

4.2.3. ALIGNMENTS AND LABELING
We use minimap2 [10] version 2.13-r858-dirty with the default parameters to find the pair-
wise alignments between the reads. We label each alignment according to the origination
coordinates of the reads participating in it. If the origination coordinates of the reads partici-
pating in an alignment overlap, then we label the alignment as a normal overlap. Otherwise,
we label the overlap as a repeat-induced overlap.

4.2.4. GENOME ASSEMBLY AND EVALUATION
We use the miniasm [1] version 0.3-r179 with default parameters to assemble the sets of
overlaps before and after intervening and removing the candidate alignments.

We use compass [11, 12] to evaluate the de novo assemblies. While compass reports
many metrics, we only report coverage, validity, multiplicity, the number of contigs, and
the longest contig. Supplementary Table C.1 list the metrics and explain them. Coverage is
the most important metric for this study because it shows what percentage of the genome is
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missing in the assemblies and can show us how much extra sequence, we achieve by remov-
ing repeat-induced overlaps. Another important metric is the number of contigs represent-
ing the assembly’s contiguity. It is essential to achieve higher coverage while maintaining
the contiguity of the assembly.

4.2.5. FEATURE EXTRACTION AND TRAINING CLASSIFIER

We use the reference sequences and the first simulated haplotypes as the training set and
the second simulated haplotypes for the test. To train the model, first, we need to extract
features for each overlap based on the assembly graph.

First, we create the graph using networkx [13] version 2.8.4. Then, we train a Graph-
Sage (6) model on the assembly graph using the StellarGraph [14] library version 1.2.1
while the only attribute we add to the nodes is their degree. To learn the embeddings, we
make a model which gets two nodes as input and predicts if there is a normal edge, repeat-
induced edge, or no edge between them. Our model consists of three GraphSage layers
with followed by a softmax layer for the prediction. We use categorical cross entropy as
the loss function and Adam optimizer to train the network (learning rate = 0.001). This
model contains 3 GraphSage blocks, which each contains 50, 50, and 20 GraphSage layers,
respectively. Moreover, the network iterates each GraphSage block 20 times before deliv-
ering the output to the next block. We train the network for 20 epochs and the batch size is
50. Since GraphSage models are inductive, after training the model, we can use the output
of GraphSage layers to get the node embeddings in other graphs.

However, because the assembly graphs are huge, we need to subsample the graph for
training and testing the model. We use the edgesampler module in the StellarGraph library
to get the subgraphs. For yeast sequences, we take 20% of the nodes for training and 20%
of the nodes for testing, while for human sequences, we use 2% of the nodes for training
and 2% for testing.

Then, we use GraphSage embeddings to train a logistic regression classifier for sepa-
rating repeat-induced and normal overlaps. We use the first simulated dataset to train this
classifier. First, we create the assembly graph of the simulated dataset, and then extract the
node embeddings using the previously trained GraphSage.

We use the GraphSage model to extract node embedding for every node in the assembly
graph, and we concatenate embeddings of the two nodes participating in an edge, to get
embedding of that edge, which represents an overlap. After creating the embedding of
each overlap, we use sklearn [15] version 1.0.2 to train a logistic regression classifier with
parameter C=0.001 to detect repeat-induced overlaps. We use 10-fold cross-validation to
evaluate the classifier and select the model with the highest F1 score.

Finally, we use the GraphSage model to extract the embeddings of the second simulated
dataset. Then we use the selected model from the previous step to remove overlaps classi-
fied as repeat-induced. Next, use miniasm [1] version 0.3-r179 to assemble the remaining
overlap set and compare the results with the standard genome assembly pipeline.
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4.3. RESULTS AND DISCUSSIONS
4.3.1. CHARACTERISTICS OF INTERSPERSED REPEATS IN YEAST,

POTATO, AND HUMAN GENOMES.
In the first step, we used Generic Repeat Finder to detect interspersed repeats in the genome
of yeast, potato, and human chromosome 9. Table 4.1 shows the statistics of the interspersed
repeats available in these genomes. There are gaps in the potato reference sequence, which
are indicated by Ns in the sequence. To simplify the analysis, we removed Ns from the
reference sequence. Unresolved repeats are usually responsible for most Ns in the sequence.
Consequently, in Table 4.1, we report fewer interspersed repeats for the potato genome than
are present. The analysis is also simplified for human chromosome 9 since it is separated
from the rest of the chromosomes, thereby excluding the occurrence if interspersed repeats
in the other chromosomes from the analysis.

Table 4.1: The amount of interspersed repeats in yeast, potato and human chromosome 9 genomes.

Organism Genome size Number of repeats Repeat content (%)
Yeast 12Mbp 4022 28Kbp (0.2%)
Potato 731Mbp 8582087 76Mbp (10.3%)
Human chromosome 9 150Mbp 625288 9Mbp (6%)

As shown in Table 4.1, the repeat content is much higher in human chromosome 9 and
potato than in yeast. Around 10% of a potato genome is interspersed repeats, which shows
the high repetitive content in that is a hallmark of plant genomes. Human chromosome 9
contains 6% interspersed repeats, but this number may be higher if the entire genome is con-
sidered. There are only 0.2% interspersed repeats in yeast’s reference genome, indicating a
simpler genome architecture.

The distribution of interspersed repeats follows a similar pattern in the three test organ-
isms. However, human chromosome 9 has many longer repeats than the other two organ-
isms (see Figure 4.1). As mentioned before, the count of repeats in the human genome
can be even more than what is shown in Figure 4.1 because they might also be present in
other chromosomes, which we did not consider in this study. Interestingly, although yeast
has lower repeat content (see Table 4.1) than the other two organisms, it has some very
long repeats. The longest repeats in the yeast genome are even longer than the potato’s
longest repeats. However, this is likely due to the fact that the potato reference sequence is
incomplete and the Ns are representing unresolved repeats.

The number of times each repeat occurs varies from 2 to more than 1000 times in the
three model organisms (see Figure 4.2). There are interspersed repeats in Human chro-
mosome 9 that occur more than 40000 times, without considering other chromosomes that
these repeats might be present. It is worth noting that the smaller repeats occur more often
through the genome (see Supplementary Figure C.1).

4.3.2. THE EFFECT OF INTERSPERSED REPEATS IN GENOME ASSEMBLY
Next, we inspected the effect of interspersed repeats in genome assembly based on simu-
lated reads from the reference genomes. Since the simulator reports the coordinates where
a simulated read originated from, it is possible to label the pairwise alignment of reads. If
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Figure 4.1: Histogram of the length distributions of interspersed repeats on chromosomes 9, potato, and yeast. In
these three organisms, most interspersed repeats are smaller than 1000 bp. Despite this, all three organisms have
repeats longer than 1000 bp, which complicates the de novo assembly process, as not all long reads will span the
repeats completely.

there is an alignment between two reads but the coordinates these reads are sampled from
do not overlap, we considered the alignment as repeat-induced. Otherwise, we labeled the
alignment as normal. Table 4.2 shows the number of repeat-induced edges in yeast, human
chromosome 9, and potato.

Table 4.2: This table shows the number of repeat-induced and normal edges in the assembly graphs. Although
humans and potatoes have only 6% and 10% repetitive sequences in their genomes, they have 71% and 96%
repeat-induced edges in their assembly graphs.

Organism Repeat-induced edges (%) Normal edges (%)
Yeast 189842 (8%) 2093297 (92%)
Potato 308658703 (96%) 12084513 (4%)
Human chromosome 9 63004592 (71%) 25221954 (29%)

Reads that originate from one of the interspersed repeats align with reads from all other
instances, which creates repeat-induced edges in the assembly graph. The human and potato
reference sequences have considerably high repetitive sequences. Therefore, in the human
and potato assembly graphs, the majority of the edges are repeat-induced in their assembly
graphs (see Table 4.2). Subsequently, the reads originating from interspersed repeat regions
also have a high degree in the assembly graph. Figure 4.3 shows the degree of the normal
and repeat-induced edges in the assembly graphs. We define the degree of an edge as the
sum of the degree of the two nodes connected by the edge. Figure 4.3 shows that most
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Figure 4.2: Histogram of the number of times each repeat occurs in the genome. The majority of interspersed
repeats occur less than 100 times, but there are repeats in potato and human genomes that occur more than 1000
and 10,000 times, respectively.

edges with a degree greater than 1000 are repeat-induced.
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To analyze the effect of repeat-induced overlaps in the assembly, we evaluated assem-
blies in the three model organisms before and after removing repeat-induced overlaps. In
the normal scenario, we aligned the reads with minimap2 and assembled the genome with
miniasm, reads, and the overlaps from the last step. In the removing repeat-induced over-
laps scenario, we intervened in the assembly process, removed all the alignments labeled as
repeat-induced, and used miniasm to assemble the remaining overlaps set.

Table 4.4 shows the results of these two scenarios in the three model organisms. In
all three datasets, removing repeat-induced overlaps improves genome assembly. In the
yeast genome, removing repeat-induced overlaps lead to 6% more coverage. In the potato
genome removing repeat-induced overlaps lead to 8% more coverage. This is expected
since the potato genome is much more repetitive than yeast and suffers from more repeat-
induced edges. In the human chromosome 9 dataset removing repeat-induced edges lead to
3% more coverage.

We tested whether removing a percentage of repeat-induced overlaps would still im-
prove assembly performance in another experiment, where we removed 25%, 50%, and
75% of repeat-induced overlaps in the human chr9 genome and compared the final as-
semblies. It is clear from Table 4.3 that removing more repeat-induced overlaps improves
coverage and validity and increases the length of the longest contig. However, the multi-
plicity, number of contigs and the assembly size is increasing after removing 25%, 50%,
75% repeat-induced overlaps and finally drops and get closer to one after removing all of
the repeat-induced overlaps. This means by removing a portion of repeat-induced overlaps
the assembler is replicating some of the repetitive regions which are valid sequences, but
increases multiplicity and assembly size. Finally, with removing all of the repeat-induced
overlaps, the assembler can fully resolve these repetitive regions and merge the correspond-
ing contigs together which results in multiplicity closer to one, assembly size closer to the
reference size, and reduced number of contigs. In conclusion, comparatively to the stan-
dard de novo assembly pipeline, removing 25%, 50%, and 75% of repeat-induced overlaps
produces more contigs. This means even removing a subset of repeat-induced overlaps
accurately, without false positives, can improve de novo assembly performance.

Table 4.3: The performance of standard de novo assembly pipeline compared to de novo assembly after removing
25%, 50%, 75% and all of the repeat-induced. These metrics are described in Supplementary Table C.1. With
removing more repeat-induced overlaps, the coverage of assemblies is increasing. However, with removing 25%,
50%, and 75% of the repeat-induced overlaps, the number of contigs, the assembly size and the multiplicity is
increasing. Meanwhile, with removing all of the repeat-induced overlaps, the number of contigs drops significantly
which shows the importance of removing all of the repeat-induced overlaps.

Genome Method Coverage Validity Multiplicity Assembly size # contigs Longest contig

Human chr 9

(size =
150464616 bp)

Baseline 0.850 9.17 1.075 150023015 1961 7250746
Repeat-induced removal 25% 0.858 0.913 1.092 154715454 2405 7254952
Repeat-induced removal 50% 0.868 9.16 1.117 159261685 2673 8686274
Repeat-induced removal 75% 0.881 9.19 1.134 163756583 2806 8686376
Perfect repeat removal 0.907 9.23 1.031 152588360 924 27151259

Finally, we examined the sequence differences we got from removing the repeat-
induced edges compared to following the normal genome assembly pipeline. The assembly
with all repeat induced edges removed is covering additional 9476429 bp of the reference
genome that is not covered in the baseline assembly. Of this additional sequence, 92% turns
out to be interspersed repeat sequences. Conversely, the assembly with all repeat induced
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edges removed is also missing 3293397 bp with respect to the baseline assembly. Again,
93% of these are from the interspersed repeat regions. In conclusion, the majority of the
newly discovered regions as well as those lost when repeat-induced overlaps were removed
come from repetitive regions of human chromosome 9. It appears that repeat-induced over-
laps are occasionally helpful in assembling repetitive regions, but that removing repeat-
induced overlaps will result in the assembly of more repetitive regions overall.

4.3.3. TRAINING A CLASSIFIER TO REMOVE REPEAT-INDUCED OVER-
LAPS

Since the sequence of the interspersed repeats is almost identical, we relied only on graph-
based features to find and remove them. One of graph based features that can be informative
to detect repeat-induced overlaps is degree. We expect the edges in the assembly graph
representing repeat-induced overlaps to have a high degree since they connect two reads
from the repetitive regions and those reads also align to reads originating from all other
instances of the repeat. Figure 4.3 compares the degree of repeat-induced and normal edges
in the assembly graphs. Based on Figure 4.3, the number of repeat-induced edges with a
degree greater than 1000 is more than normal edges. However, considering edges with a
degree greater than 10000, the difference is much higher, and the number of repeat-induced
edges is significantly more.

Therefore, we intervened in the de novo assembly process and removed the nodes rep-
resenting overlaps with a degree greater than 10000 to see if removing them can improve
the final assembly result. Table 4.4 shows the result of removing repeat-induced overlaps
based on degree. No improvements are observed using this method over standard assembly
pipelines. Since the yeast assembly graph does not have any edge with degree greater than
10000, we did not apply this method on it.

Table 4.4: The standard de novo assembly pipeline performance compared to perfect repeat-induced overlap
removal and various repeat-induced overlap detection methods. The metrics are described in Supplementary Table
C.1. In all of the three test organisms, removing all of the repeat-induced overlaps improve the performance
significantly, compared to the baseline scenario. In the degree method, edges with degree greater than 10000 are
removed from the assembly graphs. Since the yeast assembly graph has no edge with a degree greater than 10000,
we cannot apply the degree method to the yeast dataset. On the other hand, training and testing the machine-
learning models require huge memory and is not achievable on the potato dataset. Our results show that, unlike the
perfect repeat-induced removal scenario, these methods cannot improve the standard de novo assembly pipeline.
The machine learning method results in fewer contigs compared to the standard de novo assembly pipeline, while
it is losing some coverage.

Organism Model Coverage Validity Multiplicity Assembly size # contigs Longest contig
Yeast

(size = 12144833 bp)

Baseline 0.973 0.943 1.014 12726687 33 958030
Machine-learning 0.933 0.934 1.004 12174134 29 1297877
Perfect repeat removal 0.961 0.934 1.003 12531324 25 1162078

Human chr 9

(size = 150617247 bp)

Baseline 0.811 0.878 1.082 150646955 2143 6179208
Degree-based removal 0.811 0.879 1.084 150834800 2173 5430347
Machine-learning removal 0.691 0.939 1.006 111503649 722 2659552
Perfect repeat removal 0.907 9.23 1.031 152588360 924 27151259

Potato

(size = 731207187 bp)

Baseline 0.631 0.945 1.068 522035794 12794 315461
Degree-based removal 0.629 0.945 1.069 520480215 12796 315461
Perfect repeat removal 0.701 0.941 1.008 549511126 11805 315508

Another way to detect repeat-induced overlaps is to train a machine learning-based clas-
sifier based on graph-based embedding. First, we generated separate train and test datasets
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to evaluate this method fairly. We simulated two reference sequences based on the refer-
ence genome of the three organisms we analyze. After that, we simulated reads from these
simulated reference sequences and performed a pairwise alignment between the reads. We
used the reference genome and the first simulated read set to train and test the GraphSage
embedding model. To train the GraphSage embedding, we select subgraphs using Stellar-
Graph’s edgesplitter method. Then we labeled each pair of nodes in the subgraph as 0, 1, 2
where 0 represents normal edge, 1 repeat-induced edge, and 2 no edge. Table 4.5 shows the
performance of the GraphSage embedding model on train and validation data. Interestingly,
the model is not efficient in separating the three classes of edges in the yeast dataset, while
it is performing well on human chromosome 9 dataset.

Table 4.5: This table shows the performance of the GraphSage embedding model and the logistic regression
classifier. We use the edgesplitter module in the StellarGraph library to sample subgraphs for the train and test
datasets. The size of subgraphs is 20% and 2% of the actual yeast’s and human’s assembly graphs, respectively.
To test the performance of the logistic regression classifier, we use a 10-fold cross-validation. Interestingly, the
human GraphSage and logistic regression models perform better than the yeast ones, showing more significant
differences between the repeat-induced and normal edges in the human assembly graph.

GraphSage model
Metric Train accuracy Validation accuracy
Yeast 0.5356 0.5387
Human chromosome 9 0.7653 0.7646

Logistic regression classifier
Metric F1 score (SD) Accuracy (SD) Precision (SD) Recall (SD)
Yeast 0.761 (0.007) 0.936 (0.002) 0.788 (0.008) 0.740 (0.007)
Human chromosome 9 0.887 (0.001) 0.911 (0.001) 0.915 (0.001) 0.868 (0.001)

Next, we used the extracted embeddings of overlaps in the second simulated dataset
to train a classifier for separating normal and repeat-induced overlaps. Since the dataset
is imbalanced, and the graphs have more normal edges in yeast genome and more repeat-
induced edges in human, we up-sampled and down-sampled repeat-induced edges in yeast
and human datasets, respectively. Following that, we trained a logistic regression classifier
and evaluated it with 10-fold cross-validation (see Table 4.5). While the GraphSage em-
bedding model failed to separate the three classes of edges in the yeast dataset, the logistic
regression classifier achieved impressive results in separating repeat-induced and normal
edges using the same embedding model on the second simulated dataset. Interestingly, the
GraphSage model performed much better on the human chromosome 9 assembly graph and
achieved 76% validation accuracy.

Last, we extracted the embeddings of overlaps in the last dataset and used the classifier
trained in the previous step that achieved the highest F1 score to predict the repeat-induced
overlaps. After removing the overlaps predicted as repeat-induced, we assembled the re-
maining overlaps and evaluated the results (see Table 4.4). The performance of yeast as-
sembly drops after removing the overlaps predicted as repeat-induced. That means that the
disadvantage of losing some of the normal edges in the yeast assembly graph because of
prediction errors is more than the advantage of removing repeat-induced overlaps. Since
the yeast genome does not have many interspersed repeats and repeat-induced edges (see
Tables 3.1 and 4.2), this is not surprising. On top of that, the only feature we assigned to the
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nodes before training the GraphSage model is the degree of nodes, while in the yeast as-
sembly graph, the degree of repeat-induced and normal edges is not significantly different
(see Figure 4.3a). However, the length of the longest contig is increased, and the num-
ber of contigs is reduced, which shows that the method solved the previously challenging
repetitive regions.

Similar to yeast, human chromosome 9 assembly performance is lower than baseline
after removing overlaps predicted to be repeat-induced (see Table 4.4). The coverage is
12% lower and the assembly size is 40Mbp smaller than the actual chromosome 9 size.
The number of contigs is smaller than all the other cases, and the multiplicity and va-
lidity are close to one, which means the assembly and reference map are nearly one-to-
one. As a result, the machine learning method is successful in removing some essential
repeat-induced overlaps, which enables the assembler to merge the contigs that were split
apart before. However, the model also incorrectly predicts some critical normal overlaps as
repeat-induced, resulting in decreased coverage and assembly size when they are removed.
Despite our best efforts, we were unable to apply the machine-learning method to the potato
dataset due to its large size and memory requirement.

4.4. CONCLUSION
In this study, we study the effect of interspersed repeats on de novo genome assemblies of
three organisms, i.e., yeast, human chromosome 9, and potato. The reads originating from
interspersed repeat regions align with those from all instances. Therefore, it is possible to
label the alignments with not overlapping originating coordinates as repeat-induced over-
laps. Here, we analyze the effect of repeat-induced overlaps in the assembly graph and de
novo assembly. At last, we investigate some strategies to detect and remove repeat-induced
overlaps.

Interspersed repeats make up approximately 1, 6, and 10% of the yeast, human chromo-
some 9, and potato genomes, respectively. Although the repeats are causing only 1% of the
overlaps in the yeast dataset, they correspond to 76% and 96% of overlaps in human and
potato datasets. Since most of the overlaps in the assembly graph of these two genomes are
repeat-induced, this is the most challenging problem to solve in genome assembly.

To investigate the effect of repeat-induced edges in the assembly graph on the final as-
sembly result, we removed all of the repeat-induced overlaps and compared the results to
the normal de novo assembly pipeline. We observed that removing repeat-induced overlaps
improved coverage and continuity of the assembly, even in yeast with much lower repeti-
tive content. In potato, which has the most repetitive contents among the test organisms,
removing repeat-induced edges leads to a 9% improvement in coverage.

We investigate if it is possible to detect repeat-induced overlaps based on the degree of
their corresponding edges in the assembly graph. We define the degree of an edge as the
sum of the degree of two nodes connecting the edge. As shown in Figure 4.3, most of the
repeat-induced overlaps in human chromosome 9 and potato assembly graphs have more
than degree 10000. Therefore, we remove edges with more than degree 10000 and see the
effect of it on the final assemblies. As shown in Table 4.4, there is no improvement in the
assemblies after removing edges with degrees greater than 10000, and the final assemblies
are very close to the standard assembly pipeline.

We also attempt to train a classifier to detect repeat-induced edges based on graph-
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based features. Although we achieved some improvement after removing repeat-induced
edges with the classifier, the results are far from the results when all of the repeat-induced
edges are removed. This shows great potential for a follow-up project to detect and remove
repeat-induced overlaps accurately.

We suggest that detecting and removing repeat-induced overlaps can be one a smart
edge filtering method during assembly. Our attempt to train a classifier that accurately
detects and removes repeat-induced overlaps did not achieve significant results. However,
our results show that a perfect classifier that removes all the repeat-induced overlaps can
make impressive improvements in the genome assembly process.
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5
HAT: HAPLOTYPE ASSEMBLY TOOL

USING SHORT AND ERROR-PRONE
LONG READS

Haplotypes are the set of alleles co-occurring on a single chromosome and inherited to-
gether to the next generation. Because a monoploid reference genome loses this co-
occurrence information, it has limited use in associating phenotypes with allelic combi-
nations of genotypes. Therefore, methods to reconstruct the complete haplotypes from DNA
sequencing data are crucial.
Recently, several attempts have been made at haplotype reconstructions, but significant
limitations remain. High-quality continuous haplotypes cannot be created reliably, partic-
ularly when there are few differences between the homologous chromosomes.

Here, we introduce HAT, a haplotype assembly tool that exploits short and long reads
along with a reference genome to reconstruct haplotypes. HAT tries to take advantage of
the accuracy of short reads and the length of the long reads to reconstruct haplotypes.
We tested HAT on the aneuploid yeast strain Saccharomyces pastorianus CBS1483 and
multiple simulated polyploid data sets of the same strain, showing that it outperforms
existing tools.

This chapter has been published in Bioinformatics,
https://doi.org/10.1093/bioinformatics/btac702
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5.1. INTRODUCTION
Most eukaryotes have more than one copy of each chromosome, and some species have
more than two homologous copies of each chromosome (i.e., polyploids), which is com-
mon in plants [1]. In genetics, a haplotype is the combination of individual alleles (one
allele of each gene) located on the same chromosome. Because these alleles are located on
the same chromosome, they are passed on together to the next generation [2]. Haplotype as-
sembly, or reconstruction refers to the task of reassembling each individual haplotype. The
need to reconstruct haplotypes arises from the inability of current DNA sequencing tech-
nologies, such as next-generation (NGS) and third-generation (TGS) sequencing, to read
a chromosome’s sequence from beginning to end. These technologies instead sequence
shorter fragments called reads. In addition, chromosome separation before sequencing re-
quires complicated and expensive lab work that is not feasible for most studies. Therefore,
it is more common to sequence chromosomes together, and then use computational meth-
ods to separate the reads and reconstruct the haplotypes. A monoploid reference genome
consists of a mosaic structure of haplotypes with allelic combinations that do not co-occur
within any haplotype. Additionally, some of the alleles found in the haplotypes are absent
in the monoploid reference. In contrast, with a haplotype-resolved reference, we can under-
stand genetic variation and link phenotypic traits with the associated alleles in the haplotype
better.

It is significantly more challenging to reconstruct haplotypes for polyploid genomes
than for diploid genomes. If one of the haplotypes of a diploid genome has been phased
(i.e., the said haplotype has been inferred), it is trivial to determine the alleles of the other
haplotype based on this. On the other hand, in polyploid genomes, other haplotypes may
have the same or different alleles [3]. Hence, the phasing of one haplotype does not clearly
indicate what alleles are present in other haplotypes.

Recognizing the wide-spread use of NGS and TGS, it is imperative to develop algo-
rithms for polyploid haplotype reconstruction from sequencing reads to facilitate various
research applications such as finding compound mutations that cause a disease [4], or study-
ing yield related markers that are located in a haplotype that can be used in plant breeding
programs [5]. In the past years, few tools have tackled this problem. nPhase [6] and What-
shap [7] are among some examples of recently developed tools.

This study presents HAT, a haplotype assembly tool that combines short reads and error-
prone long reads along with a reference genome to reconstruct haplotypes. Similar to Ran-
bow [8], HAT first creates seeds from short reads, but then it expands the seeds with long
reads. We benchmark HAT against Whatshap and nPhase because both use long reads to
phase haplotypes. Using simulated and real yeast genome data, we demonstrate that HAT
outperforms both Whatshap polyphase and nPhase in terms of contiguity and the accuracy
of phased alleles.

5.2. METHODS
5.2.1. DATA
Using both simulated and real data is essential to test HAT properly. Simulated data pro-
vides the ground truth of haplotypes to evaluate phasing accuracy and the real data validates
HAT’s performance.
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SIMULATED DATA

We use Haplogenerator [9] to simulate haplotypes from the base genome – chromosome
ScII of Saccharomyces pastorianus CBS1483 with accession number ASM1102231v1
(ChrSc2) [10]. The ground truth is the simulated haplotypes, and ChrSc2 base sequence
is the reference. Next, we simulate reads with 20x coverage per haplotype, similar to the
simulation design used in previous studies including nPhase. We use Badread [11] version
0.2.0 and and ART [12] version 2.5.8 to simulate reads similar to Oxford Nanopore Tech-
nology (ONT) and to Illumina’s HiSeq 2500, respectively. Badread is used with default
parameters, ART parameters are available in Supplementary Table D.2. Supplementary Ta-
ble D.4 shows the simulated ONT reads’ error rates and compares them to the real data.
In total, 6 datasets are generated for ploidy levels 3,4, and 5, with low and high heterozy-
gosity. For the low heterozygosity datasets, we set the parameters of Haplogenerator to
produce the same number of SNPs/Insertions/Deletions as the chromosomes ScII, SeIII-
ScIII, and ScVIII of CBS1483 which are triploid, tetraploid, and pentaploid respectively.
Because chromosomes SeIII-ScIII and ScVIII are smaller than ScII, the chromosome we
use for the simulations, we multiply the number of SNPs/Insertions/Deletions by the ra-
tio of genome sizes. For the high heterozygosity datasets, we fit a lognormal distribution
on the distances [9] between consecutive SNPs/Insertions/Deletions of chromosome ScII,
SeIII-ScIII, and ScVIII and use the parameters on Haplogenerator. The parameter settings
for Haplogenerator are in Supplementary Table D.1.

Then, the short reads are mapped to the monoploid reference genome using BWA-MEM
(Li, 2013) with default parameters. We obtain variations using FreeBayes [13] version
0.9.21 from the short read alignments. We use vcffilter from vcflib [14] package version
1.0.2 to extract the SNPs. We map the long reads using minimap2 [15] version 2.13-r858-
dirty. Parameters for all tools are in Supplementary Table D.2. The short read and long read
mapping, ploidy of the chromosome, and the SNPs are the inputs for HAT.

REAL DATA

We reconstruct the haplotypes of CBS1483, which is aneuploid and has ploidy ranging
from one to five. It consists of ONT and paired-end Illumina reads that are available under
the BioProject PRJNA522669. There are 4 ONT runs in this BioProject, and we used all
of them in this study. Short reads have coverage of 159x and are 151bp, Nanopore reads
have coverage of 72x with an average read length of 7kbp and N50 of 10kbp. We use the
ASM1102231v1 assembly as the reference genome of CBS1483.

Moreover, we reconstruct the haplotypes of Brettanomyces bruxellensis strain GB54, a
triploid genome which has higher heterozygosity, and longer chromosomes than CBS1483.
The longest chromosome of GB54 is 4Mbp which is 3 times larger than CBS1483 largest
chromosome. The ONT and paired-end Illumina reads are available under the BioProject
PRJEB40511. The Illumina short reads are 75bp and 30x coverage. The nanopore long
reads have the average read length of 12kbp, 82x coverage, and 23kbp N50. We use the
DEBR_UMY321v1 assembly as the reference genome of GB54.
In both real datasets, the SNPs and the alignments are obtained with the same method as in
the simulated datasets.
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B. Iteration (run for each 
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Figure 5.1: HAT overview. (A.) HAT creates seeds based on short read alignments and the location of SNPs. Then,
it removes the combinations of alleles with low support as well as overlapping seeds. Next, HAT finds multiplicity
blocks and creates the first phased blocks within them. (B.) HAT assigns reads to the blocks and haplotypes; based
on these read assignments it fills the unphased SNPs within blocks. (C.) Finally, HAT can also use miniasm to
assemble haplotype sequences for each block and polishes the assemblies using Pilon, but this step is optional

5.2.2. HAT METHOD
HAT reconstructs haplotypes by linking alleles at SNP loci together using short and long
reads. HAT comprises three components - initialization, iteration and assembly. Initial-
ization creates the first phased blocks. The iteration expands the phased blocks and finds
alleles of all haplotypes. Then, HAT clusters the reads, and assembles haplotypes using
these clustered reads. An overview of the HAT algorithm can be seen in Figure 5.1.

INITIALIZATION

In initialization (see Figure 5.1A), the multiplicity blocks are found, and then the first
phased blocks are created. Phased blocks are a set of consecutive SNP loci in the phase
matrix where the alleles are connected. First HAT creates seeds, which are a combination
of consecutive SNP loci covered by the same short read; a single seed can be as small as
two SNP loci. To create the seeds, we determine the SNP loci each short read is covering.
If a read covers more than two SNP loci, we create all combinations of consecutive SNPs
with different lengths and starting points. When we create a seed, based on the alleles
present in the short reads that cover it, we obtain a set of combinations of alleles. While
processing a short read, if the seed it would create already exists, no new seed is created
and only the combination of alleles in the new read is added to the existing seed. In
addition, we store the number of reads supporting each combination of alleles. Next, we
filter the combination of alleles and the seeds. The combinations of alleles with fewer than
five reads supporting are removed to remove erroneous combinations of alleles. If a seed
ends up with fewer than two combinations of alleles, it is removed.
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Next, HAT finds overlapping seeds and keeps only one of them because each SNP locus
should be at most in one of the seeds to avoid conflicts. When HAT finds overlapping
seeds, we check the number of combinations of alleles in each seed, the support of the
seeds, and the first SNP locus of the seeds, then HAT picks the seed with the maximum
number of combinations of alleles. If there are two overlapping seeds with the same
number of combinations, we pick the longest one.
Then, HAT detects the regions that contain at least two different haplotypes, which we call
multiplicity blocks. We use the sorted set of seeds as the input for Algorithm 1 to find
multiplicity blocks and their corresponding multiplicity. The seeds are sorted with respect
to the number of combinations of alleles, and when two seeds have the same number,
the one with an earlier position of the first SNP locus will come first. Once Algorithm 1
has identified the multiplicity blocks, if the estimated multiplicity of the block exceeds
the ploidy of the chromosome, it is decreased to the ploidy of the chromosome. In such
cases, HAT eliminates combinations of alleles with low support until each seed has the
same number of combinations as the chromosome’s ploidy. HAT creates a separate phase
matrix for each multiplicity block. Each row of the phase matrix corresponds to one of the
haplotypes, and each column is representative of an SNP locus within the multiplicity block.

Finally, HAT generates the first phased blocks. First, HAT removes the seeds with
fewer combinations of alleles than the estimated multiplicity of the block. Next, we use
the combinations of alleles of the seeds to fill the phase matrix in the columns the seed is
covering. Each seed creates a separate phased block because the relation of combinations
of alleles of different seeds is unclear to one another. The SNP loci that do not belong to
any block are added to the closest block to them.

ITERATION

The iterative part of HAT (Figure 5.1B and Supplementary Figure D.1B) continues until
there is only one block and the phase matrix is full, or if the blocks and the phase matrix
stop updating. We run the first iteration with short reads and the rest with long reads.
An essential step of the iterative HAT algorithm is assigning short and long reads to haplo-
types in blocks. Each stage of the iterative part uses these assigned reads. Therefore, after
both Fill blocks and Connect and merge steps, reads are reassigned to the haplotype blocks
based on the latest changes.
First, for every read we check the phased SNP loci that it covers within a block. If the
combinations of alleles at those loci are unique for each haplotype, the read is assigned to
the block. Then, the alleles of the read located at the phased SNP loci the read is cover-
ing within the block are compared with the alleles of each row of the phase matrix. The
read is assigned to the haplotype if the Hamming distance to the row is less than ham-
ming_parameter, which changes with each run of the algorithm. When assigning long reads
to the haplotypes, the hamming_parameter is small (1) to accommodate sequencing errors.
As the phasing algorithm proceeds, we increase hamming_parameter to 3 to be less strict
with the assignments, because there are more shared phased SNP locus within the block
and the read.
The next stage of the iterative component is connecting and merging consecutive phased
blocks. To connect two blocks, we use reads assigned to both blocks. We iterate over the
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Parameters: : d ; /* distance_parameter */
Inputs: : S ; /* sorted set of seeds */
Returns: : MB ; /* Multiplicity blocks */
FindMultiplicityBlocks (S,d)

cores← [ ];
foreach seed ∈ S do

if length(cores) = 0 then
new_cores← [seed];
cores.append(new_cores);
continue;

end
closest_core← T he closest core to the seed;
if Distance(seed,closest_core)≤ d then

if Alleles(seed) = Multiplicity(closest_core) then
cores[closest_core].add(seed);

end
else

new_cores← [seed];
cores.add(new_cores);

end
end
Multiplicity_blocks← [[ ]∗ length(cores)];
foreach seed ∈ S do

closest_core← T he closest core to the seed;
Multiplicity_blocks[closest_core]← seed;

end
MB←{};
foreach m_b ∈Multiplicity_blocks do

l←Most le f t position o f m_b;
r←Most right position o f m_b;
m←Maximum multiplicityo f m_b;
MB[(l,r)]← m;

end
return MB;

Algorithm 1: Find multiplicity blocks algorithm. The find multiplicity blocks algo-
rithm takes the sorted set of seeds and a distance_parameter as input, and it returns
multiplicity blocks as output. The multiplicity blocks is a dictionary that with multi-
plicity blocks as keys and multiplicity of the region as values. Each multiplicity block
has a start and end position as well as an estimated multiplicity for that region. The
Alleles function in the algorithm gets a seed as input and returns the number of combi-
nations of alleles the seed has. The Multiplicity function in the algorithm gets a list of
seeds as input and returns the highest number of combinations of alleles within them.
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blocks based on their location. If there is a one-to-one connection between all the haplo-
types of two blocks with enough support, the blocks are merged, and the rows of the second
block are switched so that the connected haplotypes of the first and second haplotypes are
in the same row. Two haplotypes are connected if the number of reads supporting the con-
nection is more than 1 in the first and second iteration, and 3 in the rest.
In the blocks’ filling step, we use all reads assigned to haplotypes of a block as input and
process them to find the allele of unphased SNPs within the block by a majority voting
between the reads of the haplotype. If the number of the reads supporting the majority vote
allele is greater than 2, the allele is assigned to the haplotype’s SNP locus, and that cell of
the phase matrix is filled. This phase might lead to some SNP loci being phased in some
haplotypes but not in others. When iteration converges, HAT assigns long and short reads
to haplotypes of each phased block using the read assignment module.

ASSEMBLY
Optionally, HAT can assemble the reads to reconstruct sequence of the haplotypes using
miniasm [16] version 0.3-r179 and the clustered long reads, then polish the assemblies
using Pilon [17] version 1.24 and the clustered short reads. This part of HAT is optional.
HAT uses miniasm and Pilon with default parameters. Users can use HAT to only cluster
the reads and create the phase matrix and then use a tool of their choice to reconstruct
sequence of the haplotypes.

5.2.3. OUTPUT
HAT outputs the following files:

• A multiplicity block figure which illustrates the multiplicity blocks and their level
over the chromosome.

• The clustered reads files which contain the IDs of clustered reads for the haplotypes
of each phased block.

• The phase matrix file which lists the alleles of haplotypes within each phased block.

• The haplotype sequences within each phased block. This output is optional, and it is
produced only if the user also requests assembly.

5.2.4. EVALUATING HAT
We run HAT version 0.1.7, nPhase version 1.1.10, and Whatshap polyphase version
0.19.dev161+g7660dcf from the polyploid-haplotag branch on the simulated datasets and
compare the phasing and read clustering accuracy. Unlike HAT and nPhase, Whatshap
polyphase does not cluster the reads by default and after phasing with Whatshap polyphase,
we use Whatshap haplotag to cluster the reads for evaluation purposes. The parameters of
Whatshap haplotag is mentioned in Supplementary Table D.2. To calculate phasing accu-
racy of HAT, first we find a one-to-one mapping between the haplotypes HAT identifies
within each block and the real haplotypes. Then we compare the allele of each haplotype
at the SNP loci from the phase matrix to the ground truth. We count the number of correct
SNPs for all the blocks and haplotypes and calculate accuracy as the count of correct SNPs
divided by the total number of SNPs within the multiplicity blocks. To calculate the phasing
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Table 5.1: The percentage of SNPs that are inside multiplicity blocks

Dataset Percentage of SNPs
inside multiplicity blocks

Triploid low heterozygosity 92%
Triploid high heterozygosity 99%
Tetraploid low heterozygosity 87%
Tetraploid high heterozygosity 99%
Pentaploid low heterozygosity 78%
Pentaploid high heterozygosity 98%

accuracy of nPhase and Whatshap, we first find the haplotype which is the most similar to
each cluster based on the cluster’s and haplotype’s alleles at the SNP loci the cluster covers.
Then we divide the count of correctly phased SNPs by the total number of SNPs within the
clusters.

Then, we assess the accuracy of read clustering. Since the simulated reads are already
labeled with their native haplotype, we calculate the clustering accuracy by counting the
number of reads clustered correctly. We also count the number of phased blocks to evaluate
the reconstructed haplotypes’ completeness.

In addition to simulated data, we investigate the haplotypes HAT creates for the real
CBS1483 and GB54 data.

5.3. RESULTS

5.3.1. CONCEPTUAL OVERVIEW OF HAT USING THE EXAMPLE OF A
TRIPLOID CHROMOSOME

To provide an overview of the HAT algorithm, we consider the triploid chromosome ScII
of Saccharomyces pastorianus CBS1483 (ChrSc2), for a step-by-step discussion of HAT.
The HAT algorithm consists of three main steps: (i) initialization, (ii) iteration and (iii)
assembly. The input is a combination of both short and long reads, along with a reference
genome. HAT will produce read clusters per haplotype when run in default settings. If the
optional assembly parameter is supplied by the user HAT will also generate the haplotype
sequences.

In the initialization step, HAT builds prototype phased blocks from seeds within mul-
tiplicity blocks. Phased blocks are fully resolved haplotype segments, while multiplicity
blocks are genomic regions presenting sufficient variants for phasing and have an estimated
ploidy associated. The initialization consists of three steps. First, HAT uses the align-
ment of short reads to the reference to find well-supported combinations of variant alleles,
called seeds. In our example of ChrSc2, 528 SNPs were used to create 25335 combina-
tions, which are filtered down to 119 by removing the combinations with low support (see
Methods). Next, HAT constructs multiplicity blocks from the seeds with Algorithm 1. Fi-
nally, HAT uses seeds with matching number of combinations of alleles to create the first
phased blocks within each multiplicity block. In the example of ChrSc2, HAT found 16
multiplicity blocks (see Supplementary Figure D.3).

During the iterative phase HAT processes each multiplicity block to phase the remaining



5.3. RESULTS

5

81

SNPs and create bigger phased blocks within a multiplicity block. It consists of two sec-
tions: (i) filling blocks, and (ii) merging blocks. Before running each section, HAT assigns
reads to blocks and haplotypes based on the SNPs each read covers and their similarity to
the phased SNPs. Supplementary Table D.3 shows how each step of the iterative algorithm
improves the phasing of ChrSc2. The iteration stops when there is no improvement over
the previous step. The first iteration uses the short reads, while the remaining iterations use
long reads. In our experiments with real and simulated data, HAT converges in less than
four iterations. Increasing the number of iterations for the short reads does not change the
overall phasing performance, because the blocks are bigger than the linking range of the
short reads.

Upon convergence, there are 23 phased blocks and only 23 unphased alleles from the
SNP loci within the multiplicity blocks. We use miniasm on the long reads assigned to
haplotypes of each phased block to assemble them. Then, we polish the assemblies with
the short reads assigned to haplotypes using Pilon.

5.3.2. HAT OUTPERFORMS STATE-OF-THE-ART ON SIMULATED DATA
To evaluate HAT we use simulated datasets, consisting of short and long reads, and align-
ments to the haplotypes. Details of simulation are described in the Methods section. Sum-
mary statistics of the simulated data sets are reviewed in Table 5.2.

UIP3 gene

Chromosome ScI

Figure 5.2: Multiplicity blocks HAT finds for chromosome ScI of CBS1483. The output of finding multiplicity
blocks algorithm on real data, chromosome ScI of CBS1483. The long, black vertical lines at the bottom show
the SNPs and their positions on the chromosome found by FreeBayes. From these SNPS, HAT finds the seeds
shown in short, black vertical lines in panel above the SNPs. The seeds are placed vertically based on the number
of combination of alleles they have, ranging from 1 to 6 (y axis). HAT uses these seeds to find multiplicity blocks,
which are shaded regions encapsulating the seeds and the color of the region indicates the estimated multiplicity
level. See the legend for the colors corresponding to different multiplicity levels. The green box covers the
multiplicity block that contains the UIP3 gene.
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Table 5.2: Descriptive statistics of the simulated datasets and ChrSc2, the base chromosome used for simulations.

Dataset Ploidy Simulated # SNPs # short # long
SNPs found by reads reads

Freebayes
Triploid low 3 1230 687 194910 3295
heterozygosity

Triploid high 3 6398 4143 194910 3441
heterozygosity

Tetraploid low 4 1144 506 259880 4423
heterozygosity

Tetraploid high 4 12072 7512 259880 4358
heterozygosity

Pentaploid low 5 1606 504 324850 5433
heterozygosity

Pentaploid high 5 17802 7232 324850 5394
heterozygosity

CBS1483 3 – 528 428802 8051
chromosome ScII

We compare HAT to nPhase and Whatshap polyphase using the various metrics (see
Methods); Table 5.3 summarizes the performance of the tools on the simulated data sets.
First, we compare long read clustering accuracy. The number of long reads clustered incor-
rectly by HAT is lower than that of both nPhase and Whatsap for all ploidy levels: HAT’s
error rate ranges from less than 1% (triploid high heterozygosity) to 24% (pentaploid low
heterozygosity), whereas for nPhase the range is 5% (tetraploid high heterozygosity) to 38%
(pentaploid low heterozygosity) and for Whatshap it is 7% (tetraploid high heterozygosity)
to 22% (triploid high heterozygosity).

For all datasets, HAT successfully phases at least 90% of the SNPs, and the accuracy
is the highest at 98% for the triploid high heterozygous genome (last column in Table 5.3).
In all datasets, Whatshap has the lowest accuracy and HAT has the highest. Note that the
phasing accuracy of HAT is calculated only for the SNPs inside the multiplicity blocks, but
the multiplicity blocks cover almost all of the SNPs on the chromosome, with the lowest
coverage being 78% for the pentaploid low heterozygous genome (Table 5.1). Similarly,
for nPhase and Whatshap, we calculated the phasing accuracy based on the clusters each
tool generates.

As shown in Table 5.3, HAT phases fewer total SNPs than nPhase and Whatshap. That
is because HAT does not attempt to phase the areas far from the seeds. A few reads cover
both the core of the multiplicity block and these regions that are far, making phasing of
these regions less reliable. That means the result of HAT can be incomplete, but it has
higher accuracy because it only works in reliable regions.
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To assess the phasing contiguity we checked the number of phased blocks in the HAT
output, and report that for highly heterozygous cases HAT can phase almost all of the hap-
lotypes. HAT creates 2 phased blocks for the triploid case and 3 phased blocks for the
tetraploid one. For cases with low heterozygosity, HAT creates 15, 30 and 23 phased blocks
for the triploid, tetraploid and pentaploid genomes. This is expected because these genomes
are largely identical and it is not possible to connect the phased blocks. In contrast, we also
note that for the highly heterozygous pentaploid dataset, HAT creates 33 phased blocks
although it has 96% phasing accuracy, an outcome likely caused by the high ploidy level.
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Table 5.4: HAT results on CBS1483 real data. These chromosomes are a representative subset of all chromosomes
of CBS1483.

% phased Alleles within blocksChromosome
name Ploidy # SNPs regions Phased unphased
ScI 3 619 54% 1384 60
ScII 3 528 14% 922 23
ScIV 3 1643 20% 3424 168
ScIX 2 195 10% 335 43
ScVIII 5 417 14% 687 4
SeI 2 21 <1% 8 0
SeVII-ScVII 3 341 4% 444 5

5.3.3. HAT SHOWS ROBUST PERFORMANCE ON REAL DATA
Since there are not many chromosome-level polyploid assemblies available, the disparity
between simulated and real genomes can be significant. Hence, we are evaluating HAT on
the real Saccharomyces pastorianus CBS1483 dataset to corroborate the results from the
simulated datasets as well. CBS1483 is a valid test model because it is aneuploid and has
various ploidies ranging from one to five. Additionally, the chromosomes are small and
easy to investigate. We report read clustering and phasing results for seven chromosomes
of CBS1483 representing various levels of ploidy, heterozygosity and length in Table 5.4.
For the highly heterozygous chromosome ScI (see Figure 5.2), multiplicity blocks that HAT
finds cover 54% of the whole sequence and within these blocks HAT phased 96% of the
alleles. Although ScIV contains a large number of SNPs, it is the largest chromosome and
all the SNPS are concentrated around the centromere and thus, the % of phased regions
is lower. SeI, on the other hand, is one of the shortest chromosomes (185kb long) and
there are very few SNPs, meaning that the haplotypes are identical in most positions on the
chromosome. For that reason, HAT phases less than 1% of the chromosome.

We observe the haplotype sequences created by miniasm and polished by Pilon for the
multiplicity block 153738,163604 in chromosome ScII (Figure 5.3). This multiplicity block
is only 8kb long, and the estimated ploidy for that region is 2. To visually investigate the
accuracy of haplotype reconstruction, we map the clustered reads to haplotype 1 and haplo-
type 2 reconstructed by HAT and view the alignment in Integrative Genome Viewer (iGV).
Figure 5.3 depicts the alignment of clustered reads of CBS1483 Chromosome ScII to the
sequence of the first haplotype. The reads that belong to each haplotype have matching al-
leles that can differentiate them from reads of other haplotypes. We, therefore, demonstrate
that the HAT algorithm for read clustering and finding multiplicity blocks works on real
data.

Previous studies shows that the UIP3 gene is removed in some of the haplotypes of
CBS1483 chromosome ScI [10]. We investigate the same gene in HAT output by aligning
the reads HAT clustered in the multiplicity block covering the positions from 169765 to
178549 where UIP3 is located (see Figure 5.2), to UIP3 sequence. As expected, only
haplotype 2 reads align to the gene.

Finally, we test the performance of HAT on GB54, a triploid Brettanomyces bruxel-
lensis yeast strain, which Abou Saada et al. also uses to evaluate nPhase [6]. GB54 is an
interesting test set because it has longer chromosomes and the chromosomes are more het-
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Figure 5.3: HAT can accurately cluster reads to reconstructed haplotypes. We aligned short and long reads to
haplotype 1 (top two rows) and haplotype 2 (bottom two rows) phased by HAT for the multiplicity block covering
the positions from 153738 to 163604 of ChrSc2 and visualized the alignment using iGV. Haplotype 2 reads differ
significantly from haplotype 1 reads at five positions (outlined with red rectangles).

Table 5.5: HAT results on GB54 real data.

Chromosome # SNP % of Alleles within blocks
loci phased regions Phased Unphased

Chr 1 36628 84% 96764 2001
Chr 2 23756 82% 60066 2586
Chr 3 18902 86% 35728 1807
Chr 4 19377 89% 50616 884
Chr 5 10609 63% 17867 1673
Chr 6 15762 72% 32877 1295
Chr 7 3581 92% 10482 216
Chr 8 1327 72% 2949 305

erozygous compared to CBS1483. Table 5.5 shows HAT’s performance in phasing GB54,
and Supplementary Figure D.4 illustrates the multiplicity blocks HAT finds. As expected,
the percentage of phased regions is much larger than that of CBS1483 (Table 5.4), since
GB54 is more heterozygous. Additionally, when we visualize the multiplicity blocks in
GB54 we observe multiple long regions in chromosome 2, 3, and 5 where two of the hap-
lotypes are identical. For instance, on Chr 3 the genomic region from 909325 to 1172321,
all of the seeds have only two combination of alleles, and the average ratio of the read
support for combination of alleles of seeds at these regions is 1.7. This is in line with our
expectation that two of the haplotypes are identical in this region, and we get on average
near twice as much read coverage for one of the haplotypes as there would be if there were
three different haplotypes. Morever, when Abou Saada et al. phased Chr 4 using nPhase
they reported that two of the haplotypes were identical at the end region of Chr 4 since
they could phase only two haplotypes. However, when we look at the same location on Chr
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4, we observe two small genomic regions (from 1407542 to 1430976 and from 1533678
to 1546306) where HAT can successfully phase all three haplotypes (see Supplementary
Figure D.4).

The running time of HAT depends on the size of the multiplicity blocks. The bigger
the multiplicity blocks are, the more reads are assigned to them. The computational com-
plexity of running HAT is currently O(SKn2) where S is the number of SNP loci, K is the
ploidy of the chromosome, and n is the number of long reads within a multiplicity block.
The process of phasing each multiplicity block can be run in parallel, but in the current
implementation it is not parallelized. It took HAT less than an hour to run for each chromo-
some of Saccharomyces pastorianus, because it has small multiplicity blocks. However, the
Brettanomyces bruxellensis took longer to run because it has longer multiplicity blocks (in
some cases, chromosome-scale). It took HAT 24 hours to phase the longest chromosome
of Brettanomyces bruxellensis, which is 3.5 Mbp. HAT memory usage is minimal; HAT
uses less than 8GB of memory for all datasets. We executed HAT on a system with 16
cores of CPU and 32GB of memory. It is worth mentioning that HAT is a proof of concept
implementation and not optimized for speed.

5.4. CONCLUSION
HAT is a haplotype assembly tool that reconstructs haplotypes and phases genomes using
NGS and TGS data. It is impossible to phase entire homologous chromosomes when there
are large variation deserts. To address this, HAT identifies regions where some of the hap-
lotypes are identical so they are taken into account when phasing. We show that NGS and
TGS provide enough information to phase high heterozygosity genomes on a chromosome-
scale and more than 90% of the alleles in a low heterozygosity genomes.

We evaluate the performance of HAT on six simulated datasets based on an aneuploid
yeast strain Saccharomyces pastorianus CBS1483, and compare it to nPhase and Whatshap,
the state-of-the-art algorithms. We observe that HAT presents higher phasing accuracy,
which results from starting with seeds created by accurate short reads. While all tools have
decent performance in highly heterozygous genomes, HAT performs remarkably well in
phasing and read clustering of low heterozygote genomes. However, in the latter case, hap-
lotypes created by HAT are fragmented since it does not attempt to connect the multiplicity
blocks, because there is not enough information to link them. While we did not evaluate
HAT on any diploid dataset directly, we observed that HAT successfully phases blocks with
multiplicity level of 2 which shows that it can also be applied to diploid genomes.

The value of the distance_parameter affects HAT’s result. A smaller distance_parameter
affects HAT’s result, for example a smaller distance_parameter will lead to smaller multi-
plicity blocks. That means the final phasing is more accurate because only the seeds and
the areas close to them are phased and connected. However, simultaneously, the final result
is separated into more disjoint blocks because HAT considers multiplicity blocks discon-
nected from each other and never attempts to merge them. A larger distance_parameter will
lead to larger multiplicity blocks, which means HAT connects areas that are further apart
together. However, there will be less read support for some of these areas because they are
far, meaning some areas remain unphased. On top of that, errors might affect the phasing
if the distance_parameter is too large because there will be less read support, and the se-
quencing error might affect the majority voting. Based on our experience, the average read
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length of the long reads is a good trade-off between accuracy and the block length.
The main limitation of HAT is that it uses of alignments of short and long reads to the

reference. Similar to other haplotype assembly tools, HAT’s performance greatly depends
on the quality of this alignment and the subsequent variant calling. Moreover, HAT uses
only the SNPs for phasing, thus it may not be able to reconstruct haplotypes in genomes
with high levels of insertions, deletions, and structural variations. Meanwhile, we do not
expect different long reads error rates to affect HAT’s accuracy, since HAT starts with seeds
created using NGS accurate reads, and requires high support at all steps.

Like all other reference-based haplotype reconstruction methods, HAT suffers from ref-
erence genome errors. Errors in the reference genome can lead to inaccurate variant calling,
which immediately affects the haplotype reconstruction, as it is the primary source of in-
formation that HAT uses for the phasing. As an example, collapsed repeats can affect the
ploidy estimation. The region with the collapsed repeat can have seeds with more combi-
nations of alleles than the actual multiplicity of the region. That will create a small multi-
plicity block with a higher multiplicity than the region and lead to extra, wrong haplotypes
for that region. However, it is worth mentioning that this region will be small because the
seed with more combinations of alleles will not be joined with any other seed to create a
more extended multiplicity block, and the multiplicity block will be around two times the
distance_parameter.

Another potential limitation is that in rare cases, HAT may incorrectly assign a lower
than actual multiplicity number. This occurs when there is a group of seeds in close prox-
imity where the number of combinations of alleles in any of the seeds is smaller than the
actual multiplicity level. When each seed is viewed separately, some of the haplotypes ap-
pear to be identical in that region. However, it is possible that these are different groups of
identical haplotypes, and the ploidy level of the region may be higher if all of these seeds
are viewed as a whole. This can be solved by creating seeds and identifying multiplicity
blocks using long reads. However, considering all consecutive SNP loci in the reads as
seeds requires significant computing power since each long read might cover hundreds of
SNPs. Additionally, allelic combinations in the seeds may be affected by the high error
rate of long reads. Another way to mitigate erroneous multiplicity assignment is to adjust
multiplicity levels during the iterative part of HAT when long reads are used to phase the
SNPs. In principle, by solving the mentioned problem it should be possible to create the
seeds with HiFi reads, which will lead to longer multiplicity blocks and higher contiguity.

There are not many polyploid haplotype resolved genomes at the chromosome scale,
which hinders the development of novel haplotype assembly algorithms. Hence, haplo-
type simulators are limited and the simulated haplotypes differ significantly from the real
ones. We observed this when we compared the multiplicity blocks of real and simulated
data (compare Supplementary Figure D.2 and Supplementary Figure D.3). There are many
regions in the real data where the multiplicity level is smaller than the chromosome’s ac-
tual ploidy level, contrary to simulated data. This might change with HiC reads since they
provide long range information and link regions of the chromosome that are far apart. In ad-
dition to inconsistencies in the ploidy levels, the large variation deserts in CBS1483 genome
cannot be simulated due to limitations of current haplotype simulators.

Although we demonstrate the performance of HAT on only two yeast strains Saccha-
romyces pastorianus CBS1483 and Brettanomyces bruxellensis GB54, HAT can also phase
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different polyploid genomes. Since HAT performed consistently well on various levels of
ploidy and heterozygosity, we expect our results to generalize to other genomes of varying
ploidy and that HAT can readily be adopted to different use-cases. Moreover, we presume
that HAT can find applications in metagenomics assembly since the haplotype and metage-
nomics assembly problems are comparable at the strain level. In metagenomics assembly,
the goal is to reconstruct the genome of every single strain of the metagenomics commu-
nity, which can be up to thousands of genomes. These strains, like haplotypes, are quite
similar to each other. Furthermore, as a result of horizontal gene transfers, some of the
species within the community share genomic content, complicating their read separation.
Moreover, the sequencing coverage of strains varies significantly, which might lead to the
underrepresented strains not being reconstructed in the assembly process.

Ultimately, HAT enables us to reconstruct haplotypes of polyploid genomes reliably,
investigate the relationship of phenotypic features to the underlying haplotype alleles, and
gain a better understanding of genetic diversity.
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6
GENOMES OF FOUR Streptomyces

STRAINS REVEAL INSIGHTS INTO
PUTATIVE NEW SPECIES AND

PATHOGENICITY OF SCAB-CAUSING
ORGANISMS

Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14
and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces
sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were se-
lected to investigate their taxonomic classification, their pathogenicity, and the production
of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region.
The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and
its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces
sp. JH14 could not be classified as a new species due to the lack of genomic data of closely
related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that
the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces
pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known
pathogenic species, and belong to two different lineages. We did not find orthogroups of
protein-coding genes characteristic of scab-causing Streptomycetes shared by all known
pathogenic species. Most genes involved in biosynthesis of known virulence factors are
not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp.
JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces
sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative
mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed
in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence
factors uncommon in Streptomyces species, including a histidine phosphatase and a met-

This chapter has been published in BMC Genomics,
https://doi.org/10.1186/s12864-023-09190-y
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alloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, poten-
tially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the
presence of clusters associated with the synthesis of medicinal compounds and BGCs po-
tentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs
that have not been previously reported were also found. Our findings suggest that the four
isolates produce novel secondary metabolites and metabolites with medicinal properties.
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6.1. INTRODUCTION
In general, Streptomyces species are characterized by the production of interesting sec-
ondary metabolites; many of them are used for the treatment of a wide range of diseases.
Therefore Streptomyces spp. are often considered a primary source of drug compounds
[1–3]. In the environment, these metabolites may increase the fitness of Streptomyces spp.
[4]. These natural compounds are involved in nutrient or niche competition, mutualism,
and symbiotic relationships between the microorganisms and plants or insects [4–6].

Under laboratory culture conditions, however, Streptomycetes often only produce a
small part of the secondary metabolites they can synthesize [7]. The discovery of metabo-
lites by traditional methods requires the detection of these compounds in culturable con-
ditions, reducing the chances of finding novel metabolites [2, 7]. Biosynthetic gene clus-
ter (BGC) evaluation by genome mining and bioinformatics enables the identification and
characterization of metabolites that cannot be found otherwise through traditional methods
[7]. BGCs encoding secondary metabolites diverge between species and even strains [5,
7], likely due to acquisition through horizontal gene transfer or deletion [5]. These differ-
ences in BGCs often lead to adaptation of these microorganisms to the ecosystem, inducing
lineage divergence by subsequent niche differentiation or antagonism [5]. Since BGCs are
highly diverse at the strain level, even genome mining of strains belonging to the same
species are key for the discovery of novel secondary metabolites [8].

Most Streptomyces species are saprophyte organisms and few have been described as
plant pathogens [1, 9]. Pathogenic Streptomyces spp. are not host-specific and can infect
potato tubers and taproot crops producing scab disease [10]. In these crops, pathogenic
Streptomyces deteriorate tuber and root vegetable appearance decreasing their commer-
cial value and causing high economic losses worldwide [11, 12]. Pathogenic Streptomyces
species use different strategies to infect plants and to cause scab disease, including phyto-
toxic secondary metabolites, phytohormones, and secreted proteins [9].

Most studies aimed at understanding virulence mechanisms in scab-causing species
have focused on strains that produce thaxtomin phytotoxins, including Streptomyces sca-
biei 87-22, Streptomyces scabiei EF-35, Streptomyces europaeiscabiei 89-04, Strepto-
myces acidiscabies 84-104, Streptomyces stelliscabiei NRRL B-24447, and Streptomyces
turgidiscabies Car8. Among the virulence factors also identified in these pathogens are
cytokinins, scabin, indole-3-acetic acid, concanamycins, coronafacoyl phytotoxins, Nec1
protein, TomA, ethylene, and suberinases [9, 13–21]. In contrast, little is known about
the infection mechanisms employed by non-thaxtomin producing Streptomyces species.
Virulence factors of Streptomyces luridiscabiei, Streptomyces puniciscabiei, Streptomyces
niveiscabiei, and Streptomyces reticuliscabiei have not been stablished so far. Few viru-
lence factors have been described for some non-thaxtomin producing pathogens, including
Fridamycin E, FD-891, Borrelidin and non-diketopiperazine; however, their role in disease
development remains unclear [22–25].

Recently, several Streptomyces isolates from potato crops in Colombia were character-
ized [26]. The authors identified several scab-causing isolates that did not produce thax-
tomin A. Virulence factors responsible for the pathogenic phenotype in these organisms
were not identified. Within these isolates, Streptomyces sp. JH002 and Streptomyces sp.
JH010, were identified as Streptomyces xiamenensis and Streptomyces pratensis, respec-
tively, based on a multilocus sequence analysis (MLSA). In addition, two isolates (Strepto-
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myces sp. JH14 and Streptomyces sp. JH34) could not be classified into specific taxa and
were considered potentially new species [26]. From inoculation of sporulated isolates on
potato tuber slices and radish seedling bioassays, Streptomyces sp. JH002 and Streptomyces
sp. JH010 were classified as pathogens [26]. However, the pathogenicity of Streptomyces
sp. JH14 and Streptomyces sp. JH34 could not be established, as these microorganisms did
not sporulate on ISP2 or oatmeal agar [26] or GYM (glucose, yeast and malt extract) agar.

In this study we wanted to establish the taxonomic classification of Streptomyces sp.
JH14, Streptomyces sp. JH34, Streptomyces sp. JH010 and Streptomyces sp. JH002 and
investigate if JH14 and JH34 could be new species based on genomic data. In addition, we
wanted to evaluate the pathogenic isolates to find potential virulence factors produced by
these strains. Finally, we wanted to search for putative BGCs in the genomes of the four
isolates, looking for potentially interesting metabolites. Our results highlight the impor-
tance of focusing scab disease research on non-thaxtomin-producing scab-causing species
to provide new insights into the emergence of novel pathogenic Streptomyces species. In
addition, our results contribute to the study of the diversity of Streptomycetes and may lead
to the discovery of new medicinal compounds.

6.2. RESULTS
6.2.1. GENOME CHARACTERIZATION OF FOUR Streptomyces SPP
The genome assemblies of the isolates were nearly complete, with more than 98% of the sin-
gle copy orthologs from the actinobacteria_odb9 BUSCO database represented and between
1 and 2 contigs representing each genome (Table 6.1). The genome sizes of Streptomyces
sp. JH002, Streptomyces sp. JH34, Streptomyces sp. JH010, and Streptomyces sp. JH14
isolates ranged between 6.24 Mbp and 7.72 Mbp. Streptomyces sp. JH010 had the largest
genome (7.72 Mbp). The genomic GC content of Streptomyces sp. JH002, Streptomyces
sp. JH010, Streptomyces sp. JH34, and Streptomyces sp. JH14 isolates, ranged from 70.2%
to 72%. All genome assemblies and annotations are available at Genbank under Genebank
identifiers CP087989, JAJSOO000000000, JAJNMN000000000, and JAJNEL000000000,
for JH002, JH34, JH010, and JH14, respectively. Raw sequencing data has been submitted
to NCBI with BioProject PRJNA657491.
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The number of coding sequences (CDSs) predicted by the RAST server in the four iso-
lates ranged from 5,676 to 6,883. About 34%-35% of CDSs found in the Streptomyces
genomes were classified into a subsystem by the RAST server. Isolates showed to be very
different among each other in terms of their metabolism (Table 6.2). There were important
differences between the number of CDSs associated with each subsystem in the different
isolates. Within the four isolates, Streptomyces sp. JH14 has the highest number of CDSs
in the "Phages, Prophages, Transposable elements, Plasmids" subsystem (14 CDSs), "Co-
factors, Vitamins, Prosthetic Groups, Pigments" (335 CDSs) and "Metabolism of Aromatic
Compounds" (86 CDSs). Streptomyces sp. JH010 has the highest number of CDSs in
the "iron acquisition and metabolism" subsystem (64 CDSs) and "stress response" (180
CDSs). In the latter subsystem, Streptomyces sp. JH34 also has a high number of CDSs
(171 CDSs). In contrast, Streptomyces sp. JH14 has the lowest number of CDSs associated
with "Dormancy and Sporulation" (2 CDSs), and no CDSs were classified into "Secondary
metabolism". Streptomyces sp. JH002 contains the highest number of CDSs linked to
"Secondary metabolism" (27 CDSs) and "Virulence, disease and defense" (68 CDSs) sub-
systems.

6.2.2. TAXONOMIC ANALYSIS SUGGESTS THAT JH34 AND JH14 ARE
PUTATIVE NEW SPECIES

Pairwise comparison results between 16S rRNA sequences from Streptomyces sp. JH34
and EZBioCloud database showed 30 species with similarity values≥98.7% (see Table S2
in [27]), including two species with 100% of similarity (Streptomyces clavifer CGMCC
4.1604 and Streptomyces mutomycini NRRL B-65393). The 16S rRNA gene from Strepto-
myces sp. JH14 had a similarity≥98.7% to 36 species (see Table S3 in [27]). Within these
species, Streptomyces yanii NBRC 14,669 had the highest 16S rRNA gene similarity value
(99.9%).

Although the genomic sequences of all the species with 16S rRNA gene similarity
values≥98.7% are supposed to be included for the calculation of ANI calculations [28],
the genomes of several of these species are not available. Therefore, an MLSA was con-
ducted to evaluate which species within the available genome sequences were closest to
Streptomyces sp. JH34 and Streptomyces sp. JH14. The closest species to the isolates were
selected for ANI calculation.

MLSA placed the isolate Streptomyces sp. JH34 in a well-supported clade (Bootstrap
value=99%) along with Streptomyces pratensis ch24, ’Kitasatospora papulosa’ NRRL B-
16504 (considered as a member of S. pratensis [28]), Streptomyces atroolivaceus CGMCC
4.1405, and Streptomyces mutomycini NRRL B-65393 species, being more closely related
to S. pratensis and ’K. papulosa’ (Figure 6.1). MLSA results differed from the 16S rRNA
similarity analysis, which indicated that Streptomyces sp. JH34 was most closely related
to S. clavifer and S. mutomycini. Nevertheless, the ANI values confirmed MLSA results,
being higher between Streptomyces sp. JH34 and S. pratensis ATCC 33,331 (92.23 and ’K.
papulosa’ (92.30%), than between Streptomyces sp. JH34 and S. mutomycini (89.24%), S.
atroolivaceus (89.15%), and S. clavifer (86.18%). The ANI values between Streptomyces
sp. JH34 and its closest relatives are lower than 95%, indicating that this isolate is a new
species.

MLSA grouped the isolate Streptomyces sp. JH14 with Streptomyces yanii CGMCC



6.2. RESULTS

6

99

Table 6.2: Number of genes of Streptomyces sp. JH002, Streptomyces sp. JH34, Streptomyces sp. JH010, and
Streptomyces sp. JH14 isolates distributed by subsystem based on RAST annotation server.

Number of genes
Subsystem Streptomyces

sp. JH002
Streptomyces
sp. JH34

Streptomyces
sp. JH010

Streptomyces
sp. JH14

Motility and Chemotaxis 5 7 5 6
Phages, Prophages,
Transposable elements,
Plasmids

6 6 6 14

Dormancy and
Sporulation

6 12 12 2

Potassium metabolism 16 18 18 23
Sulfur Metabolism 25 63 56 72
Secondary Metabolism 27 9 4 0
Miscellaneous 31 42 39 45
Nitrogen Metabolism 33 27 30 29
Metabolism of
Aromatic Compounds

34 60 54 86

Cell Division and
Cell Cycle

35 34 37 34

Phosphorus Metabolism 42 38 43 50
Iron acquisition and
metabolism

52 50 64 30

Regulation and Cell
signaling

59 63 65 57

Virulence, Disease and
Defense

68 46 43 55

Membrane Transport 101 113 109 96
RNA Metabolism 103 119 117 105
Cell Wall and Capsule 107 138 123 158
DNA Metabolism 110 124 130 115
Nucleosides and
Nucleotides

113 122 133 124

Respiration 117 129 126 151
Stress Response 127 171 180 138
Fatty Acids, Lipids,
and Isoprenoids

240 258 248 248

Cofactors, Vitamins,
Prosthetic Groups,
Pigments

258 287 269 335

Protein Metabolism 290 306 309 283
Carbohydrates 476 564 563 488
Amino Acids and
Derivatives

500 591 644 553

Total number of genes 2981 3397 3427 3297
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4.1146, Streptomyces sanglieri CGMCC 4.1146, Streptomyces gelaticus CGMCC 4.1444
and Streptomyces atratus CGMCC 4.1632 in a well-supported clade (Bootstrap=92%), with
the three latter species distantly related from S. yanni and Streptomyces sp. JH14 (Figure
6.1). Streptomyces yanni was selected for ANI calculation as it is the closes relative to
JH14 based on MLSA. However, it could not be calculated as the genome of S. yanii has
not been sequenced. Consequently, even though some results suggest that Streptomyces sp.
JH14 could be a new species, S. yanni’s full genomic information is needed to confirm this
hypothesis based on genomic data.

6.2.3. SCAB CAUSING Streptomyces SP. JH010 AND Streptomyces SP.
JH002 ARE PHYLOGENETICALLY DISTANT FROM OTHER PHY-
TOPATHOGENIC Streptomyces SPECIES

Our data show that Streptomyces sp. JH002 and Streptomyces sp. JH010 are distantly re-
lated to most of the scab-causing species (Figure 6.2). A phylogenetic analysis based on
concatenated sequences of 231 single-copy core genes from pathogenic isolates Strepto-
myces sp. JH010 and Streptomyces sp. JH002 and well-known pathogenic Streptomyces
species showed that these isolates belong to two further different lineages. The isolates
Streptomyces sp. JH002 and Streptomyces sp. JH010 were grouped with the non-pathogenic
species, S. xiamenensis, and S. pratensis (Bootstrap value=100%). Pathogenic Strepto-
myces spp. were mainly clustered in three well-supported clades (Bootstrap values=100%),
two of them constituted by previously described pathogenic species (Clade 1 and Clade 2)
(Figure 6.2). Most of the well-known Streptomyces pathogenic species are placed in clade
2, including S. scabiei, S. acidiscabies, S. europaeiscabiei, and S. turgidiscabieis. This
clade groups all thaxtomin-producing species; however, it also contains species that do not
produce this type of toxins (i.e., Streptomyces reticuliscabiei, Streptomyces sp. ST1015,
and Streptomyces sp. ST1020). This clade is distantly related to clades 1 and 3. Clade
1 was constituted by two pathogens, Streptomyces sp. JH010 and S. luridiscabiei NRRL
B-24455, and clade 3 contained only one pathogen, Streptomyces sp. JH002. This clade is
the most distant clade from the well-known pathogenic Streptomyces species.

6.2.4. BIOSYNTHETIC GENE CLUSTERS
Using antiSMASH, we found several putative biosynthetic gene clusters in the genomes
of Streptomyces sp. JH002, Streptomyces sp. JH34, Streptomyces sp. JH010, and Strep-
tomyces sp. JH14. The four isolates contain BGCs associated with the production of sec-
ondary metabolites with antimicrobial and antitumoral activities and iron chelators used
for the treatment of different diseases (see Table 6.3). In addition, we found BGCs proba-
bly linked to the synthesis of novel natural compounds; in the genomes of the pathogenic
isolates, we also found several BGCs that might be related to the pathogenesis of these
organisms, including the BGC for ectoine, melanin, and several siderophores (i.e., Desfer-
rioxamin B/E and coelichelin).
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Figure 6.1: Phylogenetic analysis based on concatenated sequences of atpD, gyrB, recA, rpoB and trpB genes
of the Streptomyces sp. JH34, Streptomyces sp. JH14, Streptomyces sp. JH002, and Streptomyces sp. JH010
and 37 Streptomyces reference strains. Phylogenetic tree was constructed using the ML method. Nocardiopsis
dassonvillei NCTC 10,488 was chosen as the outgroup. The data were resampled 1000 times for Bootstrap test.
Only bootstrap values higher than 60% are shown. As previously described [26] Streptomyces sp. JH10 and
Streptomyces sp. JH002 belong to S. pratensis and S. xiamenensis species. ANI values between Streptomyces sp.
JH34 and S. pratensis and ’K. papulosa’ (closest relatives) are shown in parentheses. ANI value between JH14
and S. yanii (closest relative) could not be calculated as its genome has not been sequenced.
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Figure 6.2: Phylogenetic analysis of Streptomyces species based on concatenated sequences of 231 single-copy
core genes of isolates Streptomyces sp. JH002, Streptomyces sp. JH010, Streptomyces sp. JH14, Streptomyces sp.
JH34, and 13 known pathogenic Streptomyces species. Pathogenic organisms are highlighted in the colors blue,
purple, and green. Also, the type strains S. pratensis ATCC 33,331 and S. xiamenensis 318 were included in this
analysis. The phylogenetic tree was constructed using the ML method. Nocardiopsis dassonvillei NCTC 10,488
was chosen as the outgroup. Data were resampled 1000 times for bootstrapping.
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The genomes of Streptomyces sp. JH002, Streptomyces sp. JH34, Streptomyces sp.
JH010, and Streptomyces sp. JH14 contained 23, 27, 27, and 11 BGCs for secondary
metabolites, respectively, based on antiSMASH annotation (see Tables S6-S9 in [27]). The
BGCs predicted by antiSMASH comprised genes classified in several subsystems by RAST
annotation server, including "secondary metabolism", "stress response", "iron acquisition
and metabolism", "dormancy and sporulation", and "virulence, disease and defense" sub-
systems. Only between 22 and 36% of these clusters had similarity values≥60% to known
biosynthetic clusters.

Streptomyces sp. JH14 contains putative BGCs to produce the antibiotic amycomicin,
flavanone naringenin and desferrioxamin B. Streptomyces sp. JH34 contains BGCs like
those involved in the production of Chromomycin A3, desferrioxamin B, and sceliphrolac-
tam. In Streptomyces sp. JH010 we also found a BGC associated with the production of
sceliphrolactam. No differences were found between the clusters identified by antiSMASH
in the genomes of Streptomyces sp. JH010 and Streptomyces pratensis ATCCC 33,331.
The genome of Streptomyces sp. JH010 contains putative BGCs for ectoine and melanin,
metabolites that may be associated with the pathogenicity of this isolate.

Streptomyces sp. JH002 has a gene cluster similar to the one for the production of the
antibiotic ikarugamycin. The genome of Streptomyces sp. JH002 also contains four clusters
that are not present in Streptomyces xiamenensis 318. Most of the clusters annotated in this
genome had low percentages of similarity to known biosynthesis gene arrays (10%-75%).
In JH002 we also found ectoine and desferrioxamin B BGCs that may be involved in the
pathogenicity/virulence of this isolate.

6.2.5. FACTORS IN Streptomyces SP. JH010 AND Streptomyces SP. JH002
Orthologous gene analysis results revealed that Streptomyces species do not share unique
orthologous gene clusters characteristic of pathogenic organisms (Figure 6.3). Furthermore,
BlastP search showed that most virulence factors identified in the pathogenic Streptomyces
species are not present in the genomes of Streptomyces sp. JH002 or Streptomyces sp.
JH010.

Orthofinder assigned 192,325 genes, 94.2% of the identified genes, into 15,607 or-
thogroups. In total, 43 and 115 of the orthogroups identified in Streptomyces sp. JH010 and
Streptomyces sp. JH002, respectively, were specific for pathogenic Streptomyces species.
Streptomyces sp. JH010 shared most orthogroups with S. scabiei 87.22 (11) and S. turgidis-
cabies Car8 (7), and Streptomyces sp. JH002 shared most orthogroups with S. acidiscabies
(35) and Streptomyces sp. ST1020 (31) (Figure 6.3).

In Streptomyces sp. JH010, the orthogroups shared with other pathogens did not contain
homologous genes implied in the pathogenicity/virulence of phytopathogenic organisms.
In contrast, in JH002, we found two orthogroups for genes encoding proteins associated
with the virulence of plant pathogenic bacteria, including a histidine phosphatase, and a
metalloprotease [29–31].

Key proteins for the production of thaxtomins (thaxtomin synthases A and B) are not
encoded in the isolates’ genomes (Tables 6.4 and 6.5). Homologs to proteins required for
the synthesis of other phytotoxins associated with the pathogenesis of scab-causing Strep-
tomyces species were also not found. Within the proteins recognized as potential virulence
factors in the Streptomyces genus, only a homolog of scabin was found in Streptomyces sp.
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Figure 6.3: Venn diagram for orthogroups of protein-coding genes unique in pathogenic Streptomyces species.

JH002. In addition, homologs of the IAM hydrolase (iaaH gene) required for IAA produc-
tion in the indole-3-acetamide pathway were found in both pathogenic isolates Streptomyces
sp. JH010 and Streptomyces sp. JH002; however, a Trp monooxygenase-like protein, nec-
essary for IAA production in this pathway, was not found. The twin-arginine translocation
(Tat) system was also found encoded in the genomes of both isolates; we found TatA, TatB,
and TatC homologs.
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TAT-SYSTEM AND ITS EFFECT ON VIRULENCE

Homologs to TatA, TatB, and TatC, involved in the twin-arginine translocation (Tat) sys-
tem, were found in the genomes of Streptomyces sp. JH002 and Streptomyces sp. JH010.
To evaluate if any Tat-transported substrates might be associated with the pathogenic-
ity/virulence in Streptomyces sp. JH002 and Streptomyces sp. JH010, we found several
bona fide Tat-substrates using TATFIND 1.4 and TatP 1.0 servers.

Forty-two and sixty putative proteins secreted by the Tat-system were found in Strep-
tomyces sp. JH002 and Streptomyces sp. JH010, respectively, including several plant cell
wall degrading enzymes (see Table S12 in [27]). In Streptomyces sp. JH002 and Strepto-
myces sp. JH010 we found a putative endo-1,4-beta-xylanase A precursor and a putative
endo-1,4-beta-xylanase, respectively. A putative aldose 1-epimerase was also found in both
isolates. In Streptomyces sp. JH010 we also found three putative enzymes involved in the
breakdown of plant cell wall, including several glycosyl hydrolases, and a pectinesterase
[32, 33]. In Streptomyces sp. JH002 we found a putative rhamnogalacturonan lyase. In this
strain we also found a lon-like protease, and a peptidase containing the S8/S53 domain.

SCABIN HOMOLOG IN Streptomyces SP. JH002

In the genome of Streptomyces sp. JH002, we found a scabin homolog (mART-JH002),
which can be involved in pathogenicity. The prediction of the 3D structure of the mART-
JH002, through LOMETS and RaptorX servers, revealed that this protein can be folded into
a shape like other mART toxins. Results generated by LOMETS showed that 10 out of 10
servers predicted the crystal structure of scabin as the best 3D model for mART-JH002 with
a coverage of 77-83%. Furthermore, the structure predicted by RaptorX showed that the
putative 3D structure of mART-JH002 is similar to scabin (Figure 4). The quality scores of
the predicted structure indicated that it has a correct fold (p-value=1.21E-10, Global Dis-
tance Test normalized (uGDT)=148, and the number of identical residues in the alignment
normalized (SeqID)=50%). Moreover, SignalP 5.0 and SecretomeP 2.0 scores (SignalP
5.0 Likelihood=0.8342; SecP score=0.591) higher than 0.45, indicated that mART-JH002
is not associated with the bacterial membrane or cell wall and that mART-JH002 might be
secreted following the signal peptide pathway [34].

Two out of three key active sites characteristic of mARTs are conserved in mART-
JH002, including the Arg required for NAD+ binding and the Gln-X-Glu motif necessary
for transferase activity (see Figure S1 in [27]). The third active site, commonly consti-
tuted by the Ser-Thr-[Ser-Gln-Thr] motif and involved in the scaffold of the NAD+ binding
pocket formation [17], is replaced by Ser-Ala-Thr- motif in mART-JH002. Despite of the
substitution of threonine by an alanine in this active site, this protein can still have DNA
ADP-ribosyltransferase activity according to the molecular function predicted by COFAC-
TOR server (Cscore=0.83).

The phylogenetic analysis showed that mART-JH002 is closely related to the Pierisin-
like protein family with a high Bayesian support value (Posterior probability=1.0). Within
this group of mARTs, mART-JH002 was relatively more closely related to mARTs from
other Streptomyces species (scabin and ScARP) than to those described in other organisms
(Figure 6.5). However, mART-JH002 was distantly related to scabin and ScARP.
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Figure 6.4: A 3D structure predicted in RaptorX from putative mART sequence. The image was obtained by
using Chimera 1.15rc. B Alignment of putative mART-JH002 and Scabin sequences. Secondary structures of
each protein are also shown. The image was obtained through ESPript 3.0 server under default parameters [35].
Identical residues are highlighted in red and similar residues are in blue frames. β strands are shown as arrows, α

helices as squiggles, strict β -turns as TT and strict α-turns as TTT.

6.3. DISCUSSION
The genome sizes of Streptomyces sp. JH002, Streptomyces sp. JH34, Streptomyces sp.
JH010 are consistent with the sizes of the genomes of other Streptomyces strains previously
reported (ranging from 5.93 Mbp to 10.13 Mbp) [36, 37]. The genome of Streptomyces sp.
JH010, which was identified as Streptomyces pratensis, is consistent with those described in
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Figure 6.5: Phylogenetic tree of mARTs and putative mARTs. Tree was constructed by using Bayesian inference.

other Streptomyces pratensis strains (7.52-7.62 Mbp) [38]. Intraspecies genome size varia-
tions might be associated with the number of duplicate genes present in each organism. In
fact, a positive correlation between the number of paralogues and genome size in several
Streptomyces species has been previously reported [37]. The genomic GC content of Strep-
tomyces sp. JH002, Streptomyces sp. JH010, Streptomyces sp. JH34, and Streptomyces
sp. JH14 is consistent with the GC content reported for other Streptomyces species, usually
over 70% [36, 37]. The number of coding sequences (CDSs) predicted by the RAST is
consistent with CDS reported in other Streptomyces species (5,491-8,396) and is positively
correlated with genome size, a hallmark of bacterial genomes [36, 37].

The phylogenetic relationships observed in this study were consistent with a previous
MLSA constructed from sequences of more than 600 Streptomyces strains [28]. The fact
that Streptomyces sp. JH002 and Streptomyces sp. JH010 were grouped with the non-
pathogenic species, S. xiamenensis, and S. pratensis with a Bootstrap value of 100%, con-
firms the previous taxonomic classification [26].

Based on our genome-based taxonomic analysis, we have good evidence that Strepto-
myces sp. JH34 is a putative new species and Streptomyces sp. JH14 is likely a candidate
to be a putative new species. However, some species with high similarity values based on
the 16S rRNA sequence to Streptomyces sp. JH34 and Streptomyces sp. JH14 were not



6.3. DISCUSSION

6

111

included in the MLSA, as their genome sequences are not available. These species are
Streptomyces sundarbansensis MS1/7 closely related to Streptomyces sp. JH34 and Strep-
tomyces sp. JH14 with 16S rRNA pairwise similarity of 98.96% and 98.89%, respectively,
and Pilimelia columellifera subsp. pallida, closely related to Streptomyces sp. JH14 with
98.89% of 16S rRNA pairwise similarity. Also, the genomic sequence of Streptomyces
yanni is needed for ANI calculation to evaluate if Streptomyces sp. JH14 is in fact a new
species.

Although the hypothesis that JH14 and JH34 are new species cannot be confirmed
based on the available genomic information alone, the phenotypic differences between these
strains and their closest relatives make this hypothesis stronger. A previous characterization
of Streptomyces sp. JH34 and Streptomyces sp. JH14 showed that these microorganisms
do not sporulate in oatmeal agar or ISP2 medium [26]. However, the Streptomyces species
most closely related to Streptomyces sp. JH34 and Streptomyces sp. JH14 can sporulate on
these culture media. Streptomyces pratensis, and S. atroolivaceus produce spores on both
oatmeal agar and ISP2, and S. mutomycini on oatmeal agar [39, 40]. Likewise, Strepto-
myces yanni can sporulate on oatmeal agar, Streptomyces gelaticus sporulates on ISP2 agar
and Streptomyces gelaticus in both media [40, 41]. In addition, we compared the phyloge-
netic relationships obtained from the single-copy core genes and MLSA. Both phylogenetic
analyses were consistent showing that Streptomyces sp. JH34 and S. pratensis are closely
related and share a common ancestor. These results encourage the hypothesis that Strepto-
myces sp. JH34 is a new species.

It is interesting to find that Scab causing Streptomyces sp. JH010 and Streptomyces sp.
JH002 are not closely phylogenetically related to other scab causing Streptomyces spp. In
fact, most of the potential virulence factors found in Streptomyces sp. JH010 and Strep-
tomyces sp. JH002 are different from those reported for other scab-causing Streptomyces
spp. Based on PCR analysis, it was previously reported that genes involved in the synthe-
sis of thaxtomins and the Nec1 protein, common in pathogenic Streptomyces species [9],
were not found in Streptomyces sp. JH010 and Streptomyces sp. JH002 [26]. The ab-
sence of genes related to the production of virulence factors described in most pathogenic
Streptomyces species in Streptomyces sp. JH002 and Streptomyces sp. JH010, as well as
evidence that there are no shared orthogroups specific for scab between all well-known
pathogenic organisms and Streptomyces sp. JH002 and Streptomyces sp. JH010, suggest
that the later Streptomyces species have gone through different evolutionary paths leading
to the pathogenic phenotype. These species may have evolved mainly through horizon-
tal transfer events. Indeed, horizontal transfer has been described as a key process in the
evolution of plant pathogenic bacteria, leading to the adaptation of the bacteria to the host
[42, 43]. The acquisition of mobile elements (i.e., phages, and integrative and conjugative
elements) has enabled the adaptation of phytopathogens to a specific host and has been
associated with the development of different symptoms in plants [44].

Streptomyces sp. JH010 and Streptomyces sp. JH002 contain interesting gene clusters
associated with potential virulence factors. In particular, the genome of Streptomyces sp.
JH010 contains putative BGCs for ectoine and melanin, metabolites that may be associ-
ated with the pathogenicity of this isolate. Ectoine and melanin protect pathogens from
environmental changes generated during plant infection. Ectoine helps bacteria resist in
environments with high osmolarity [44]. Melanin also plays an important role in the sur-
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vival of microorganisms under adverse environmental conditions and has been implicated
broadly in bacterial pathogenesis [45]. Streptomyces sp. JH010 also possesses gene arrays
similar to siderophore BGCs (i.e., Desferrioxamin B/E and coelichelin). Siderophores in
Streptomyces species trigger diverse biological processes, including growth, cellular differ-
entiation, and the production of antibiotics [46]. These metabolites have also been asso-
ciated with the pathogenic phenotype of several plant pathogenic bacteria [47]. Histidine
phosphatases, which are potentially produced by JH 002, have been described as virulence
regulators of Xanthomonas campestris pv. campestris [31]. Metalloproteases, also po-
tentially produced by this strain, have been characterized in several pathogenic bacteria,
including Pectobacterium carotovorum, Dickeya dadantii, and Xanthomonas campestris
[30]. Although the role of these proteins in pathogenicity has not been fully elucidated,
it has been proposed that histidine phosphatases might be involved in the breakdown of the
plant cell wall or/and helping to counter the plant’s immune response [30].

The Tat-system secretes different proteins associated with virulence in Streptomyces
scabiei [48] and it was previously established that ∆tatc Streptomyces scabiei (clone in
which the gene tatc was mutated) was less virulent than the wild type. The Tat-system is
known to be involved in virulence in Streptomyces scabiei [48] through the secretion of
various proteins. We found that the twin-arginine translocation system is encoded in the
genomes of both isolates, Streptomyces sp. JH010 and Streptomyces sp. JH002; we also
found several interesting putative Tat substrates in the pathogenic isolates. Together, these
two findings suggest that the Tat-system may be involved in the pathogenicity/virulence
of these organisms, yet further experimental analyses are required to better evaluate this
hypothesis. Of the over hundred putative proteins secreted by the Tat-system in JH002
and JH010, there were several plant cell wall degrading enzymes, which are frequently
used in phytopathogenic organisms to make the host susceptible to infection and release
nutrients during plant colonization [33, 49]. Endo-1,4-beta-xylanases A and endo-1,4-beta-
xylanases, similar to those found in JH002 and JH010, respectively, are involved in xylan
degradation, which is a structural polymer found in plant cells [50]. An aldose 1-epimerase
from Phytophthora species, similar to those potentially produced by JH002 and JH010, has
been showed to trigger cell death in Nicotiana benthamiama [51]. Other enzymes found
in JH010, annotated as glycosyl hydrolases, and a pectinesterase, could be involved in the
breakdown of plant cell wall [32, 33]. Rhamnogalacturonan lyases, similar to the one poten-
tially produced by JH002, degrade rhamnogalacturonan I, a structural component of pectin
in the cell wall of plants [52, 53]. Lon-like proteases, also potentially produced by this
strain, are generally required in pathogenic bacteria for full virulence (i.e., Pseudomonas
syringae and Rhizobium radiobacter) [30]. It was previously reported that the disruption of
a gene encoding a protein belonging to the S8 peptidase protein family produced a decrease
in the virulence of the fungal pathogen Penicillium expansum on apple fruit [54].

In the genome of Streptomyces sp. JH002, we found a scabin homolog (mART-JH002).
Scabin is a mono-ADP-ribosyltranferase (mART) belonging to the Pierisin family [55].
These enzymes transfer an ADP ribose to DNA [56]. Pierisin-like toxins can induce cell
apoptosis by labeling a guanine base with an ADP-ribose moiety [56, 57]. Although the
role of scabin in the pathogenicity of S. scabiei has not been fully elucidated, it has been ob-
served that scabin modifies DNA and shows a high affinity for the DNA of Solanum tubero-
sum [58], suggesting this scabin homolog may also play an important role in pathogenicity
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in JH002. Considering that mARTs conserve the reaction mechanism and that mARTs are
classified according to substrate target type [34], the divergence of mART-JH002 from other
Streptomyces pierisin-like enzymes indicate that the targets of this protein might vary from
those described for scabin (double or single stranded DNA) and ScARP (mononucleotides
and nucleosides) [55, 59].

As expected, we found that all isolates contain gene clusters associated with production
of interesting compounds, yet only few of the BCGs we found, had high similarity values
to known clusters, suggesting the potential for identification of several novel metabolites
in these isolates. Flavanone naringenin, one of the substances potentially produced by
Streptomyces sp. JH14, has diverse therapeutic properties, including antimicrobial, anti-
inflammatory, and antitumor activities [60, 61]; desferrioxamin B, slso potentially produced
by this strain, is a siderophore used to treat iron overdose in humans [62]. Chromomycin
A3, a metabolite potentially produced by Streptomyces sp. JH34 is an antitumoral substance
[63] and sceliphrolactam, also potentially produced by this strain is an antifungal [64].
JH002 does not have the region that contains the genes associated with the production of
xiamenmycin, an anti-fibrotic drug candidate known to be produced by S. xiamenensis 318
[37].

All isolates contain other interesting putative BGCs involved in the production of
medicinal substances, including known antimicrobial, anti-inflammatory, and anti-tumoral
metabolites; further analysis of these isolates, for example using metabolomic tools, could
lead to the identification and isolation of novel compounds or compounds with medicinal
and industrial uses.

6.4. CONCLUSIONS
Streptomyces spp. are very diverse, and there are still many unknowns regarding their
pathogenicity and their capacity to produce medicinal substances. Especially in some coun-
tries in Latin America, known for their biodiversity, little is known about Streptomyces spp.
Four strains of Streptomyces spp. previously isolated from potato fields in Colombia, were
investigated in this study. Based on genomic data, and considering phenotypic differences
with closest relatives, we were able to establish that Streptomyces sp. JH34 is likely new
species. Streptomyces sp. JH14 could not be classified as a new species from ANI calcula-
tion, because its closest relative has not been sequenced; however, MSLA and phenotypic
characteristics suggest it could be a new species as well. We confirmed previous findings
that Streptomyces sp. JH002 and Streptomyces sp. JH010 belong to Streptomyces praten-
sis and Streptomyces xiamenensis, respectively, and that they are phylogenetically distant
from the most well-known pathogenic species. In fact, no orthogroups of protein-coding
genes characteristic of scab-causing Streptomycetes were found in the pathogenic isolates
and most of the genes involved in the biosynthesis of known virulence factors were also not
found in these scab-causing isolates. However, we did find several Tat-system substrates
that are probably involved in the pathogenicity of Streptomyces sp. JH002 and Streptomyces
sp. JH010 as well as the presence of a putative mono-ADP-ribosyl transferase, a homolog
to scabin, in Streptomyces sp. JH002.

We found BGCs for secondary metabolites associated with pathogenicity in the
pathogenic isolates (Streptomyces sp. JH010 and Streptomyces sp. JH002) and BGCs
associated with the synthesis of interesting medicinal compounds, including antibiotics,
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antifungal, and antitumoral substances, in all isolates. Our results provide new insights
about pathogenicity in Streptomyces species, highlighting the importance of focusing scab
disease research on non-thaxtomin-producing scab-causing species and highlights the key
role of horizontal transfer in the emergence of new scab-causing organisms. Our results
may also contribute to the discovery of new therapeutic agents.

6.5. METHODS
6.5.1. MICROBIAL ISOLATES
The Streptomyces species analyzed (Streptomyces sp. JH34, Streptomyces sp. 14, Strepto-
myces sp. JH010 and Streptomyces sp. JH002) were isolated in the department of Cundi-
namarca, Colombia, from potato tubers. The isolates were phenotypically characterized in
a previous study and are deposited at the Museo de Historia Natural ANDES [26].

6.5.2. DNA ISOLATION
Cultures of isolates Streptomyces sp. JH34, Streptomyces sp. 14, Streptomyces sp. JH010
and Streptomyces sp. JH002 were grown in 100 mL ISP2 broth ((Dextrose (4 g/L); Yeast
Extract (4 g/L); Malt Extract (10 g/L); pH 7.0-7.2) [65]) for 5 days at 30 °C in constant
shaking (250 rpm). After growth, cultures were centrifuged at 11,000×g for 15 min. The
supernatant was carefully removed, and Streptomyces mycelia were recovered and used for
DNA isolation using the DNeasy PowerSoil Kit following the manufacturer’s protocol with
the following modifications: i) approximately 0.20 g of mycelium sample was added to the
PowerBead Tube instead of a soil sample; ii) three mycelia samples for each isolate were
processed separately up until the addition of solution C4, a highly concentrated salt solution
used in the DNA isolation in the PowerSoil Kit. Then, the three samples were loaded into
the same MB spin column. Washing and elution steps were carried out according to the
manufacturer’s protocol.

6.5.3. GENOME SEQUENCING, ASSEMBLY, AND ANNOTATION
We sequenced, assembled, and annotated the genomes of four Streptomyces isolates (two
pathogens and two putative new species) isolated from potato fields in Colombia. Whole-
genome sequencing of the four isolates (Streptomyces sp. JH002, Streptomyces sp. JH34,
Streptomyces sp. JH010, and Streptomyces sp. JH14) was carried out at the University
of Minnesota Genomics Center using Single-Molecule Real-Time (SMRT) Pacific Bio-
Sciences (PacBio) technology. Samples were sequenced in one Sequel SMRT Cell 1 M v3.
Demultiplexed data was provided and used for de novo assembly of the genomes of Strep-
tomyces sp. JH002, Streptomyces sp. JH34, Streptomyces sp. JH010, and Streptomyces sp.
JH14; for this, we used the Flye assembler 2.6 [66] using plasmid flag and three polishing
iterations; the remaining parameters were set to default. Genome assembly completeness
was analyzed by assessing the presence of single-copy ortholog genes using BUSCO 3.01
[67]. The genome sequences obtained were compared to Actinobacteria genes from the
OrthoDB database (actinobacteria_odb9). After assembly and BUSCO analyses, we anno-
tated the four genomes on the RAST 2.0 annotation server by the ClassicRAST scheme [68]
using default parameters. Finally, Barrnap v.0.9 (https://github.com/tseemann/barrnap) was
used to determine the number of rRNAs in each genome.

https://github.com/tseemann/barrnap
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6.5.4. TAXONOMIC CLASSIFICATION OF Streptomyces sp. JH34 AND
Streptomyces sp. JH14 ISOLATES FROM GENOME DATA

Taxonomic classification of Streptomyces sp. JH34 and Streptomyces sp. JH14 was con-
ducted from the calculation of the Average Nucleotide Identity (ANI) between the iso-
lates and their closest relatives, because ANI differentiates closely related species based
on a comparison of genome sequences [69]. To identify the species close to Strepto-
myces sp. JH34 and Streptomyces sp. JH14, similarity values between 16S rRNA se-
quences of the isolates and 16S rRNA sequences available on the EZBioCloud 16S database
(https://help.ezbiocloud.net/ezbiocloud-16s-database/) were obtained by pairwise compari-
son [69]. Species with similarity values≥98.7% are chosen for ANI calculation [69]. Here,
we identified the closest species to Streptomyces sp. JH34 and Streptomyces sp. JH14,
based on Multilocus Sequence Analysis (MLSA) of the concatenated sequences of five
housekeeping genes (atpD, gyrB, recA, rpoB, trpB). MLSA has shown a high resolution
in the differentiation of close Streptomyces species [28]. All the species with 16S rRNA
similarity values≥98.7% [69] were selected for the MLSA. The gene sequences for the
isolates were obtained from genome assemblies, and the sequences for the reference Strep-
tomyces species were retrieved from the NCBI database. The homologous sequences for
each housekeeping gene were aligned by using Multiple Sequence Alignment (MUSCLE)
[70] and trimmed manually to the same position by using MEGA7 [71]. The resulting
alignments were joined head-to-tail in a frame, obtaining 2532 bp sequences, including
gaps. Subsequently, the phylogenetic tree was constructed using the Maximum Likeli-
hood (ML) method and the GRT⊕G⊕I substitution model in MEGA7 [71]. Pairwise dis-
tances were calculated under default parameters. The confidence of the phylogenetic tree
and the pairwise distance calculation was estimated by bootstrapping method, resampling
the sequences 1000 times. In total, 36 species were included in MLSA, and Norcadopsis
dassonvillei NCTC 10,488 was chosen as the outgroup. Genbank accession numbers of
housekeeping genes for all strains included in MLSA are shown in Table S1 in [27]. After
conducting the MLSA, the closest species to Streptomyces sp. JH34 and Streptomyces sp.
JH14 were chosen based on the phylogenetic analysis results. ANI values between the cho-
sen species and Streptomyces sp. JH34 and Streptomyces sp. JH14 were obtained by using
the ANI Calculator on the EZBioCloud platform [72]. Accession numbers of Streptomyces
species assemblies used for ANI calculation are shown in Table S3 in [27].

6.5.5. PHYLOGENETIC ANALYSIS
Phylogenetic analysis was conducted based on concatenated sequences of 231 single-copy
core genes of the pathogenic isolates Streptomyces sp. JH002 and Streptomyces sp. JH010,
their closest relatives (S. pratensis and S. xiamenensis), and previously reported pathogenic
Streptomyces species. The set of single-copy core genes was selected by comparison of the
gene identifiers obtained after RAST annotation. Sequences of the homologous genes were
aligned using MUSCLE, and the alignments were cleaned by G-block implementation to
improve the phylogenetic reconstruction [73]. Subsequently, phylogenetic tree topology
was constructed based on aligned sequences using the Maximum Likelihood method with
the RAxML program on CIPRES Science Gateway [74, 75]. The data was resampled 1000
times for bootstrap analyses, and the GRTGAMMA model was used as the substitution
model. The Streptomyces species included in the analysis and the accession numbers of

https://help.ezbiocloud.net/ezbiocloud-16s-database/
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genome assemblies are shown in Table S5 in [27].

6.5.6. SEARCH FOR PUTATIVE BIOSYNTHETIC GENE CLUSTERS (BGCS)

Biosynthetic gene clusters for secondary metabolites encoded in the genomes of the four
isolates (Streptomyces sp. JH14, Streptomyces sp. JH34, Streptomyces sp. JH010, and
Streptomyces sp. JH002), S. pratensis ATCC 3333, and S. xiamenensis 318 were identified
using the antiSMASH 5.0 online tool [76]. The two latter strains are considered saprophytic
bacteria; however, they are the closest phylogenetically related strains to the pathogenic
isolates (JH002 and JH010). Hence, the BGCs found in the pathogenic isolates and their
closest relatives were compared to determine differences in secondary metabolism of these
microorganisms.

6.5.7. INVESTIGATION OF POTENTIAL VIRULENCE FACTORS IN Strepto-
myces sp. JH002 AND Streptomyces sp. JH010 GENOMES

Here we aimed to find genes that might be involved in the pathogenesis of these isolates by
using two different approaches: (i) search for orthogroups of protein-coding genes unique
in pathogenic Streptomyces species through Orthofinder, and (ii) identification of homologs
of putative proteins involved in the synthesis of virulence factors commonly described in
Streptomyces species through BlastP.

Orthofinder v2.4.0 with default parameters was used to obtain orthogroups for protein-
coding genes from the genomes of pathogenic and non-pathogenic species [77]; specif-
ically, it was used to find orthogroups from pathogenic species that are absent in non-
pathogenic organisms. Subsequently, one protein sequence from each group was cho-
sen randomly, and homologs were determined through BlastP (Version 2.11.0) search on
NCBI under default parameters [78]. The Streptomyces species and accession numbers of
genomes included in the Orthofinder analysis are shown in Table S5 in [27].

Sequences of proteins involved in the biosynthesis of virulence factors that have been
described in pathogenic Streptomyces species were retrieved from the NCBI database and
searched in the genome annotation of the pathogenic isolates using BlastP 2.5.0 with de-
fault parameters and E-value cut-off of 1e-4. Query cover, identity, and positive substitu-
tions were obtained by BlastP on NCBI. Sequences from isolates with query cover≥80%
and identity≥40% to protein sequences involved in virulence in pathogenic species were
chosen for further analysis. Protein sequences chosen were analyzed with the HMMER
3.3.2 webserver to confirm their putative function [79]. Table S5 in [27] shows accession
numbers for the protein sequences retrieved from the NCBI database.

Finally, Tat substrates homologous to proteins involved in the pathogenesis of phy-
topathogenic organisms were found. Putative proteins secreted through the Tat-system were
predicted through TATFIND 1.4 [80] and TatP 1.0 servers [81] under default parameters.
Only the proteins predicted by both servers were considered as bona fide Tat substrates.
The function of bona fide Tat substrates was obtained from RAST annotation.
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6.5.8. ANALYSIS OF PUTATIVE MART TOXIN ENCODED IN THE Strepto-
myces sp. JH002 GENOME

Analyses were conducted to confirm that a putative mono-ADP-ribosyltransferase (mART)
toxin is encoded in the genome of the pathogenic isolate Streptomyces sp. JH002 by fol-
lowing the mART toxin discovery pipeline described by Tremblay et al., [34], with some
modifications as follows: (i) we evaluated whether this protein has a similar folding to other
mART toxins by analyzing the sequence in Local Meta-Threading Server (LOMETS). In
addition, the putative protein 3D structure was predicted by using RaptorX template-based
protein structure modeling under default parameters [82, 83]; (ii) the presence of secre-
tion signal peptides or indicators of non-classical secretion and the lack of transmembrane
domains in the sequences was determined by SignalP 5.0 and SecretomeP 2.0 with de-
fault parameters [84, 85]; (iii) conserved catalytic mART motifs from the sequence were
identified through mART toxin sequence alignments conducted by MUSCLE; and (iv) the
molecular function of the putative mART was predicted by using COFACTOR server under
default parameters [86].

In addition, phylogenetic analysis based on protein sequences of mART and putative
mART toxins was conducted. Accession numbers of protein sequences are shown in Ta-
ble S6 in [27]. The sequence alignment was conducted using MUSCLE in MEGA 7.0
and trimmed manually to the same position. The phylogenetic tree was carried out on
Phylotree.fr by Mr. Bayes 3.2.6 with default parameters, except the substitution model im-
plemented was Poisson and the number of generations was set to 100,000 parameters that
yielded the highest Bayesian support values.

6.6. AVAILABILITY OF DATA AND MATERIALS
All genome assemblies and annotations are available at Genbank (see Table 6.1). Raw
sequencing data has been submitted to NCBI with BioProject PRJNA657491.
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7
DISCUSSION

This thesis investigated critical issues in genome and haplotype assembly based on Third
Generation Sequencing (TGS) technologies. First, it aimed to identify optimal approaches
for achieving comprehensive genome and haplotype assembly. This was done through
literature review of haplotype assembly and benchmarking of available third generation
sequencing-based genome assembly tools. Then, it tackled one of the most difficult chal-
lenges of genome assembly; handling of repetitive sequences. It demonstrated how re-
moving repeat-induced overlaps could significantly enhance the assembly process. Finally,
it introduced an innovative approach for haplotype assembly that emphasized the inter-
pretability of the results.

Chapter 2 provided provided a fundamental understanding of the problems, data, and
methods associated with haplotype assembly. It detailed the difficulties that prevented ac-
curate haplotype assembly, such as variation deserts, and set the stage for the following
chapters to investigate specific methods to overcome these issues. This chapter acted as a
stepping stone, guiding the research towards more effective strategies for haplotype assem-
bly.

In Chapter 3, the focus shifted towards de novo genome assembly and showed the po-
tential of long-read sequencing technologies to address the shortcomings of short-read se-
quencing. In this chapter, we compared different third generation sequencing technologies
and de novo assembly tools using 76 datasets. Our results showed that although there was
no assembler that always performed the best in all quality metrics, Flye and Hifiasm were
the most consistent assemblers for error prone and HiFi reads, respectively. Furthermore,
we investigated the effect of using even longer reads in de novo assembly and showed how
the longer reads could benefit the more complicated genomes with higher repetitive content
while they didn’t add much for simpler organisms. Together, Chapters 2 and 3 created a
better understanding of the challenges in genome reconstruction.

Chapter 4 extended the discussion on genome assembly, specifically focusing on the
issues caused by interspersed repeats. It examined how these repeats affected the standard
long read de novo assembly pipeline. We showed that by removing repeat-induced overlaps,
significant improvements were achieved in the assembly process, enhancing the correctness
and contiguity of the reconstructed genomes. Then we introduced multiple approaches,
such as training a machine learning model, to detect and remove repeat-induced overlaps.
This chapter brought valuable insights into the refinement of de novo assembly pipelines,
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which could lead to improved genome sequences.
Chapter 5 synthesized the knowledge gained from previous chapters and revisited the

complexities involved in reconstructing individual haplotypes discussed in Chapter 2. We
introduced HAT, a haplotype assembly tool that used NGS and TGS data to reconstruct
haplotypes on a chromosome scale. Unlike other haplotype assembly tools, HAT uniquely
addressed variation deserts by identifying multiplicity blocks at the start of phasing. These
multiplicity blocks represented regions that were not identical across the haplotypes in the
genome to be phased by HAT. Subsequently, we demonstrated that HAT outperformed ex-
isting methods for haplotype reconstruction based on TGS data, while significantly improv-
ing interpretability by providing multiplicity blocks.

At last, Chapter 6 narrowed down to the taxonomic classification of Streptomyces
species and their pathogenicity. Based on the knowledge acquired from the previous chap-
ters, we assembled two new Streptomyces species. Next, by analyzing the genomic aspects
of these pathogens and identifying their virulence factors, this research deepened our knowl-
edge of microbial genomics. Finally, this chapter offered potential therapeutic applications
of Streptomyces species.

7.1. USING MULTIPLE SEQUENCING TECHNOLOGIES FOR

HAPLOTYPE ASSEMBLY
The use of multiple sequencing technologies significantly boosts our ability to deal with
complex genomic tasks such as haplotype assembly. Illumina’s NGS and other short-read
technologies provide accurate detection of single nucleotide variations and small insertions
or deletions, forming a solid foundation for identifying haplotypes. However, their ability
to explore large structural changes and complex genomic regions is limited. Here, long-read
technologies such as Oxford Nanopore or PacBio fill in the gaps, helping to unravel these
larger elements that are key to building complex haplotypes. PacBio’s HiFi sequencing
blends the strengths of both, offering long reads with high accuracy. Furthermore, ’linked-
reads’ from 10x Genomics extend our vision, providing a wider genomic context that helps
in separating out haplotypes.

Chapter 3 presented a performance comparison of various long-read assemblers using
both simulated and real data from Third Generation Sequencing technologies. However,
hybrid assemblies, which combine different types of data, are becoming increasingly pop-
ular. A more holistic approach might have been to compare combinations of TGS assem-
blers with other technologies that enhanced the assembly’s quality and provided a struc-
tural overview, like Illumina HiSeq for fine-tuning the assembly and HiC for linking larger
pieces. This integrated approach could be valuable for complex genomes. For simpler
genomes like the streptomyces DNA we assembled in Chapter 6 using only PacBio TGS
data, the gains are not significant.

Chapter 4 further explored how repetitive regions impacted TGS genome assembly. We
found that when a genome has many repetitive regions, many of the pairwise alignments
between the TGS reads are due to these repeats. In this chapter, we only used computa-
tional methods to identify these repeat-induced overlaps, but using long-range sequencing
technologies such as HiC could be another way to deal with repetitive regions, as they can
link together sections up to several million bases apart.
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In Chapter 5, we demonstrated the advantages of using multiple sequencing technolo-
gies with the Haplotype Assembly Tool (HAT). HAT starts by using short-reads to produce
accurate starting points for the assembly, then uses long-read data to extend these and han-
dle complex regions. But there is still room for improvement. We only used TGS to connect
the phased blocks in HAT, but adding other types of long-range data might give even bet-
ter results. Likewise, while we used Illumina short reads to call variants and create initial
seeds, using HiFi reads could have allowed us to create longer and more accurate seeds,
making the task easier.

7.2. EXPLORING MICROBIAL COMMUNITIES THROUGH

HAPLOTYPE ASSEMBLY
Investigating microbial communities often involves challenging complexities. These com-
munities are made up of multiple species and strains that coexist harmoniously. The sub-
stantial similarity among genomes of different strains, along with the complexities of indi-
vidual sequencing due to cost and the presence of multiple species, can make it challenging
to accurately separate and sequence individual genomes. In this context, haplotype assem-
bly can be a beneficial tool.

Considering different strains as unique haplotypes allows us to tackle this challenge
using the techniques of polyploid haplotype assembly. The objective shifts from attempting
to separate entirely distinct species or strains to assembling distinct haplotypes within a
mixed sample. This change allows the reconstruction of individual strain genomes from
mixed samples, a task that would be difficult without adopting a haplotype perspective. This
perspective would allow us to adapt and use all haplotype assembly techniques for strain
level metagenomics assembly. For instance, the HAT multiplicity block finder module can
be used in a metagenomics setting to identify the number of different strains of specific
species in metagenomic communities.

Once the genomes of individual strains are identified, we can further explore the roles
and relationships within the microbial community. These genomes can reveal the functional
abilities of individual strains, highlighting their role in the microbial ecosystem. They also
provide insights into the genomic diversity within a community, which is essential for evo-
lutionary studies.

Consequently, this view will enhance our ability to decode the complex genetic interac-
tions within microbial communities.

7.3. HAPLOTYPE ASSEMBLY: DIRECTIONS FOR FUTURE

RESEARCH
Two major changes are currently transforming the field of genomics and setting new direc-
tions for future research.

The first big shift involves developing computer methods specially tailored for long-read
sequencing data. As our grasp of genomics expands and technology improves, we’re seeing
a massive rise in new tools, each based on a unique concept, which results in a wide range of
methods. In Chapter 2, we briefly presented this. This diversity, however, complicates tool
comparison and performance measurement, making comprehensive, gold-standard simu-
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lated datasets necessary. Simulated data provide us with a known ground truth, facilitating
more accurate evaluation of the outputs, a common challenge in bioinformatics. As an ex-
ample, in the area of haplotype assembly, this dataset should include genomes with different
ploidies, haplotype variations, areas lacking variation, and repetitive content. This resource
would enable researchers to compare tools under uniform conditions, assisting in choosing
the most appropriate tool. As these tools become more advanced, our testing methods need
to keep pace, further emphasizing the need for a standardized, rigorous benchmarking sys-
tem. An intriguing idea is to present reads from simulated references with varied attributes
in a Kaggle-style competition. Contestants would receive reads from select references and
then develop methods to assemble them. Later, these methods would be assessed using
reads from other simulated references to select the winner. As previously mentioned, be-
cause the references are simulated, the ground truth is known, ensuring a fair evaluation of
the outputs.

The second shift comes with the development of highly accurate long-read sequencing
technologies like HiFi [1, 2]. This change is reshaping many areas, including haplotype
assembly. Tools that used to depend on short reads, e.g., HAT, can now switch to accu-
rate long-read technologies. These long reads cover larger parts of the genome, providing
extensive and accurate starting points for assembly algorithms. This change can simplify
the haplotype assembly process and lead to a more accurate reconstruction of the hap-
lotypes. This change comes with its own set of difficulties. Replacing short reads with
accurate long reads presents challenges due to the increased length. Methods tailored for
short reads don’t necessarily handle the accurate long reads seamlessly. While switching
from long reads to accurate long reads is somewhat more straightforward, it’s not without
complications; accurate long reads lack the ultra-length, potentially resulting in missing in-
formation and new challenges. Thus, adopting accurate long reads compels us to reassess
and adjust our current methodologies. For instance, long accurate reads can enhance HAT
in developing longer and more exact haplotype blocks, as they cover more SNPs and can
create longer initial seeds for phasing. But with short reads, we could just take all consec-
utive SNPs covered by short reads as the starting seeds. This approach, however, doesn’t
work when using long accurate reads since it would create too many initial seeds which
would increase the runtime of the tool significantly. Therefore, a more thoughtful strategy
is needed to create initial seeds. In conclusion, it is not possible to effortlessly swap short
reads with accurate long reads; we also need to modify the base algorithm to work with
these long accurate reads. On top of that, HiFi reads cannot entirely replace other long-read
technologies due to their lower throughput and the absence of extra-long reads, which are
vital for resolving complex genomic regions. The combination of HiFi sequencing and HiC
technologies has demonstrated significant performance in haplotype assembly, as shown
by the pstools algorithm [3]. This novel approach uses the precision of HiFi sequencing
to construct sequence graphs that retain haplotype information, while HiC data contributes
to global phasing, ordering, and genome orientation. However, pstools faced challenges
in resolving certain complex centromic regions. The authors suggested that incorporating
ultra-long reads could address this issue, showing that HiFi reads still cannot fully replace
other long-read technologies. Furthermore, while the synergy between HiFi and HiC is
promising, challenges persist, particularly in resolving highly complex regions with a high
multiplicity and long repetitive regions. This highlights that achieving the complete and
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accurate assembly of highly complex polyploid genomes remains a formidable challenge
that requires further technological and computational progress.

These two developments - the advancement of computer methods for long-read data and
the emergence of long accurate read technologies - are leading us into a new era in haplo-
type assembly and genomics. By acknowledging these changes, we can actively contribute
to the refinement of more precise, adaptable, and widely applicable haplotype assembly
methods. The utilization of HiFi, HiC, and ultra-long read technologies holds the promise
of delivering fully haplotype-resolved genomes, particularly in simpler cases like diploid
genomes such as humans, potentially revolutionizing healthcare by enabling the assign-
ment of compound genetic disorders to specific haplotypes when they underlie a disease.
It is important to note that, as discussed in pstools [3], ultra-long reads from TGS tech-
nologies will still be necessary to address complex genomic regions, suggesting that the
methods introduced in this dissertation could find future applications in achieving fully re-
solved haplotypes. Nonetheless, achieving fully resolved haplotypes will require new tools
for downstream analysis. For instance, in polyploid genomes, traditional read mapping
methods would require the mapping of reads to each haplotype separately, a process that is
not efficient. As a result, innovative approaches will be essential for downstream analysis
of haplotype-resolved genomes, such as the adoption of pangenome read mapping tech-
niques. In summary, these transformative developments, including both methodology and
technology, mark a new chapter in haplotype assembly and genomics.
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Figure A.1: Histogram of plants’ ploidy level based on Plant DNA C-values database [113]. The red bar indicates
the number of plants with ploidy equal or greater than seven. The red bar amounts to 287 out of 7890 plant species,
i.e. 3.6%.
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Due to the extensive nature of supplementary materials associated with this chapter, they are
not included in this thesis. Interested readers are encouraged to refer to the published paper
for supplementary materials (see https://doi.org/10.1093/gigascience/giad100).
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Figure C.1: This plot shows the two dimensional histogram of repeat-lengths and number of times repeats occurs
in human, potato, and yeast genomes. This plot shows that the smaller repeats occur more in the genome.
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Table C.1: The metrics that we used in chapter 4 for assembly evaluation.

Metrics Definition

Coverage

Coverage is a measure of the fraction of the reference genome that is present in an assembly.
It is determined as the ratio between the summed length of the coverage islands and
the summed length of the reference sequences. Coverage values are between 0 and 1,
and a higher coverage is preferred.

Validity
Validity is the ratio between the summed length of the alignments and the assembled scaffolds,
measuring how much of the assembly is aligned to the reference.
The validity values closer to 1 are considered better.

Multiplicity
Multiplicity is the ratio of the summed length of the alignments and the summed length of
the coverage islands. This metric describes whether the assembler collapsed or replicated
repeats within the genome. The multiplicity values closer to 1 are considered better.

Number of contigs
The total number of contigs in the assembly. The number of contigs is a metric that describes
the contiguity of the assembly. The ideal value for the number of contigs is the number of
chromosomes of the organism.

Longest contig
The size of the longest contig in the assembly. This metric also describes the contiguity of the
assembly. The ideal value for the longest contig is the size of the largest chromosome of the
organism.
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Figure D.1: A. Based on the alignment of the reads that are covering SNPs 4,5 and 6, HAT creates three seeds.
In this scenario, because the support of the combinations of alleles of these three seeds are equal, HAT keep the
longer one in the filtering seeds step. After that, HAT use the remaining seeds and the combinations of alleles
to create first phased blocks. B. Based on the read assignment, the reads that belong to haplotype 1 of block 1,
also belong to haplotype 2 of block 2. This means, these two haplotypes are the same, and in the connecting and
merging blocks, a bigger block is created, and the mentioned haplotypes are linked together. After that, based on
the assignment of reads to each haplotype, and a majority voting between those reads, HAT finds the allele of the
unphased SNPs.

139



D

140 D. HAPLOTYPE ASSEMBLY TOOL USING SHORT AND ERROR-PRONE LONG READS

0 100000 200000 300000 400000 500000 600000 700000 800000
Position in the chromosome

0

1

2

3

4

5

6

Co
m

bi
na

tio
n 

of
 v

ar
ia

tio
ns

Seeds position on the chromosome CP048984.1
2
3
4
5

Figure D.2: Multiplicity blocks of Triploid low heterozygosity dataset.

UIP3 gene

Chromosome ScI

Figure D.3: Multiplicity blocks of triploid ChrSc2 of CBS1483.



D

141

Figure D.4: Multiplicity blocks of all chromosomes of triploid GB54.
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Figure D.5: Multiplicity blocks of all simulated datasets.

Table D.1: Haplogenerator parameters for simulating datasets.

Dataset
SNP Insertion Deletion

Mean STD Mean STD Mean STD
Triploid low

3 2.2 7 2.8 9 3
heterozygosity
Triploid high

3 2 7 2 9 3
heterozygosity
Tetraploid low

3 2.4 7 2 9 12
heterozygosity
Tetraploid high

3 1.6 6 2 9 12
heterozygosity
Pentaploid low

3 2.4 7 2 9 3
heterozygosity
Pentaploid high

3 2 7 2 9 12
heterozygosity
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Table D.2: Parameters of the tools we use in this study.

Tool name Parameter name Parameter value

ART

Read length 125
Mean insertion size 400
Standard deviation
of insertion size 20

coverage 20
Badread quantity 20

Minimap2 Secondary No
BWA mem Default -

Vcffilter -f TYPE = SNP

FreeBayes Ploidy
Ploidy of
the dataset

Mean alternate count 5
Miniasm Default -

Pilon Default -

Whatshap haplotag –ploidy
Ploidy of
the chromosome
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Table D.4: Real and simulated long reads error rate. The error rates are calculated based on the alignment of reads
to the dataset reference genome and samtools stats.

Dataset Error rate percentage
CBS1483 real dataset 15.15%

GB54 real dataset 14.71%
Triploid low heterozygosity 12.82%
Triploid high heterozygosity 12.84%

Tetraploid low heterozygosity 12.61%
Tetraploid high heterozygosity 13.07%
Pentaploid low heterozygosity 12.73%
Pentaploid high heterozygosity 12.94%
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Due to the extensive nature of supplementary materials associated with this chapter, they are
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