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Summary
Multi-modal imaging techniques have become essential for better understanding
fundamental questions in cell biology such as disease progression. While individ-
ual microscopy methods have rapidly advanced in recent years, the information
content of any one imaging technique is limited to the type of contrast that partic-
ular technique is sensitive to. By taggingparticular biomoleculeswith afluorescent
protein, fluorescence microscopy (FM), for example, can relay dynamic informa-
tion about the distribution of these biomolecules in their cellular environment. It
struggles, however, to convey information regarding the structure of the organelles
that might contain these biomolecules or the surroundings of their cellular en-
vironment. Electron microscopy (EM), on the other hand, can provide detailed
layouts of cellular structure by staining membranes with heavy metals. Thus, by
correlating these modalities (correlative light and electron microscopy, CLEM), a
more holistic understanding of the relationship between structure and function at
the (sub-)cellular level can be achieved.

Array tomography (AT) is a technique combining FM and EM for volumetric
imaging, first introduced in 2007 for studying brain tissue. The technique has since
expanded, but the approach has largely remained the same. Biological material is
cut into a series of ultrathin (∼100 nm) sections (an array) andprepared for sequen-
tial FM and EM imaging by applying a series of immunofluorescence and heavy
metal stains. Correlative images of the serial sections are then computationally
aligned to reconstruct the 3D structure (tomography). Compared to other volu-
metric imaging techniques in the life sciences, AT offers the ability to correlate
structure and function at high resolution across large fields of view. Moreover,
it enables high axial resolutionfor both EM and FM as determined by the section
thickness.

While AT is an incredibly useful technique forvolume CLEM imaging, it poses
several challenges. Finding back regions of interest (ROI) across imaging modali-
ties is nontrivial, particularly when the ROI might be several microns in size, scat-
tered about millimeters of tissue. Moreover, correlating the datasets is complex
and must be done manually. Finally, intermediate sample preparation between
FM and EM is both tedious and prone to cause specimen shrinkage, complicat-
ing the already difficult correlation. One means of combating these obstacles is
by merging the separate imaging systems into a single, integrated microscope. In
2013, afluorescencemicroscopewas thus retro-fitted into the vacuumchamberof a
scanning electronmicroscope (SEM) at TUDelft. This enabled quasi-simultaneous
FM and EM imaging of the same field of view as well as synchronized stage move-
ments when navigating about the sample. Several years later, an automated reg-
istration procedure was developed for automatically and precisely overlaying the
fluorescence signal onto the EM.

vii



viii SUMMARY

Integration, however, is not without its own limitations. Chief among them
are the constraints imposed on sample preparation. Typical EM sample process-
ing involves staining a biological specimen with heavy metals to provide a con-
trast mechanism and embedding it in a polymer resin such that it can be cut into
thin sections. However, the heavy metals and cross-linking of polymers necessary
for EM have the unfortunate consequence of quenching the fluorophores needed
for FM. In order to retain fluorescence, protocols must therefore be adapted to
alternateresins or to limit the concentration of heavy metals, which inherently re-
sults in decreased signal generation. While signal loss can be compensated for
by increasing the acquisition time, the acquisition times necessary to maintain an
adequate signal-to-noise ratio (SNR) for analysis would be untenable. Prior work
involving EM imaging of serial sections in which the fluorescence is preserved re-
quired frame times of several minutes. To image even something as small as a
single mammalian cell (say ∼20 × 20 × 20 µm3) would then require ∼2 days assum-
ing 5 nm lateral, 100 nmaxial resolution. As the biological systemswewould like to
study involve hundreds if (not thousands) of cells, the time scales begin to exceed
the duration of a typical PhD project in the Netherlands.

Prior to engineering a workflow for imaging volumes of tissue with an inte-
grated microscope, it was therefore necessary to first improve the data acquisi-
tion rate. The use of a negative bias potential applied to the specimen stage had
previously been shown to enhance signal collection, allowing for reduced acquisi-
tion times and thus faster imaging speeds. Previous applications of specimen bias,
however, were largely limited to tuning the electron penetration depth in block-
face imaging, or non-biological applications. We thus optimized the use of a neg-
ative potential bias for serial section EM. The bias potential works by accelerating
backscattered electrons (BSEs) to a dedicated detector, enhancing the generated
signal. We showed via charged particle optics modeling that this has the simul-
taneous effect of filtering out secondary electrons (SEs). This is advantageous as
SEs carry topographic information regarding the surface of the specimen, while
BSEs scatter on the heavy metals bound to the cell membranes, revealing detailed
structural information. By applying the optimized bias, we were able to achieve
the same SNR with a 20-fold decrease in dwell time. Acquisitions that might have
previously taken weeks, could then be completed in a matter of hours.

Thus, we can begin to engineer an array tomography workflow for acquiring
volume CLEM data using an integrated microscope. A proof of concept was car-
ried out on pancreas tissue from rat and zebrafish specimens. Serial sections were
cut and prepared for simultaneous FM and EM imaging, and the insulin granules
within the endocrine region of the pancreas (islets of Langerhans) were immuno-
labeled with a fluorescent dye. To facilitate navigation between serial sections in
the integratedmicroscope, an image processing pipeline for segmenting serial sec-
tions was established. Automated imaging routines incorporating the EM-FM reg-
istration procedure were then developed to acquire correlative datasets with high
overlay precision. The fluorescence of the insulin granules allowed for straight-
forward identification of our chosen ROI, the islet of Langerhans. By limiting the
acquisition of high-resolution EM images to regions expressed by fluorescence, we
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were able to further expedite total acquisition times. Correlative alignment rou-
tines were developed to reconstruct portions of the islet in 3D.

The workflow for integrated AT enabled the acquisition and reconstruction of
large-scale correlative datasets, assisting recognition of organelles and certain sub-
cellular features within select ROI. As this facilitated interpretation of EM data, we
questioned whether we could leverage recent advances in deep learning to supple-
ment (unlabelled) EM data with biological labels. We therefore used our correl-
ative datasets to train a convolutional neural network (CNN) to generate artificial
fluorescence predictions. It was found that the predictions generated by the CNN
were highly correlated with the measured fluorescence. And because the artificial
fluorescence signal generated by the network is localized to specific organelles,
we were able to devise strategies for segmenting organelles within these datasets
without the need for extensive manual intervention.



Samenvatting
Multimodale beeldvormingstechnieken zijn essentieel geworden voor een beter
begrip van fundamentele vragen in de celbiologie, zoals ziekteprogressie. Hoewel
individuele microscopiemethoden de afgelopen jaren snel zijn gevorderd, is de
informatie-inhoud van elke beeldvormingstechniek beperkt tot het type contrast
waarvoor die bepaalde techniek gevoelig is. Door bijvoorbeeld bepaalde bio-mole-
culen te labelen met een fluorescerend eiwit kan fluorescentiemicroscopie (FM)
dynamische informatie geven over de verdeling van deze biomoleculen in hun cel-
lulaire omgeving. Het heeft echter moeite om informatie over te brengen over de
structuur van de organellen die deze biomoleculen of de omgeving van hun cel-
lulaire omgeving kunnen bevatten. Elektronenmicroscopie (EM), aan de andere
kant, kan gedetailleerde indelingen van de celstructuur opleveren door membra-
nen te kleuren met zware metalen. Door deze modaliteiten te correleren (corre-
latieve licht- en elektronenmicroscopie, CLEM), kan een meer holistisch begrip
van de relatie tussen structuur en functie op (sub)cellulair niveau worden bereikt.

Array tomografie (AT) is een techniek die FM en EM combineert voor volume-
trische beeldvorming, voor het eerst geïntroduceerd in 2007 voor het bestuderen
van hersen-weefsel. De techniek is sindsdien uitgebreid, maar de aanpak is gro-
tendeels hetzelfde gebleven. Biologisch materiaal wordt in een reeks ultradunne
(∼100 nm) secties (een array) gesneden en voorbereid voor sequentiële FM- en EM-
opnames door een reeks immunofluorescentie en zware metaal kleuringen. Cor-
relatieve beelden van de seriële secties worden vervolgens computationeel uitgeli-
jnd om de 3D-structuur (tomografie) te reconstrueren. Vergelekenmet andere vol-
umetrische beeldvormingstechnieken in de biowetenschappen, biedt AT de mo-
gelijkheid om structuur en functie met hoge resolutie over grote gezichtsvelden te
correleren. Bovendien maakt het een hoge axiale resolutie mogelijk voor zowel
EM als FM, zoals bepaald door de sectiedikte.

HoewelATeenongelooflijknuttige techniek is voor volume-CLEM-beeld-vorming,
brengt het verschillende uitdagingen met zich mee. Het terugvinden van inter-
essegebieden (ROIs) in de verschillende beeldvormende modaliteiten is niet trivi-
aal, vooral wanneer de ROIs enkelemicrons groot kunnen zijn, verspreid overmil-
limeters weefsel. Bovendien is het correleren van de datasets complex enmoet het
handmatig gebeuren. Ten slotte is de tussentijdse preparaatvoorbereiding tussen
FMenEMzowel tijdrovend als vatbaar voor krimp vanhet preparaat, wat de toch al
lastige correlatie verder bemoeilijkt. Eenmanier omdeze obstakels te overwinnen
is door de afzonderlijke microscopie technieken samen te voegen tot één geïnte-
greerdemicroscoop. Zo is in 2013 aan de TUDelft een fluorescentiemicroscoop in-
gebouwd in de vacuümkamer van een scanning elektronenmicroscoop (SEM). Dit
maakte quasi-simultane FM- en EM-beeldvorming van hetzelfde gezichtsveld mo-
gelijk, evenals gesynchroniseerde microscoop-tafel bewegingen bij het navigeren

x
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in het preparaat. Enkele jaren later werd een geautomatiseerde registratieproce-
dure ontwikkeld om het fluorescentiesignaal automatisch en nauwkeurig over de
EM te leggen.

Integratie is echter niet zonder beperkingen. De belangrijkste daarvan zijn de
beperkingen die worden opgelegd aan de preparaatvoorbereiding. Typische ver-
werking van EM-preparaten omvat het kleuren van een biologisch preparaat met
zware metalen om voor een contrastmechanisme te zorgen en het in te bedden in
een polymeerhars zodat het in dunne secties kanworden gesneden. De zwaremet-
alen en verknoping van polymeren die nodig zijn voor EM hebben echter het on-
gelukkige gevolg dat de fluoroforen die nodig zijn voor FM hun werking verliezen.
Om fluorescentie te behouden, moeten daarom protocollen worden aangepast om
harsen af te wisselen of om de concentratie van zware metalen te beperken, wat
inherent resulteert in een verminderde contrast (in de EM?). Hoewel contrastver-
lies kan worden gecompenseerd door de opnametijd te vergroten, zouden de op-
nametijdendienodig zijn omeenadequate signaal-ruisverhouding (SNR) voor anal-
yse te behouden, onwerkbaar zijn. Eerder werk met EM-opnames van seriële sec-
ties waarin de fluorescentie behouden blijft, vereiste en opnametijd per beeld van
enkeleminuten. Voorhet inbeeldbrengenvan zoiets kleins als eenenkele zoogdier-
cel (bijvoorbeeld ∼20 × 20 × 20 µm3), zou dan ∼2 dagen nodig zijn, uitgaande van
een 5nm laterale en 100nm axiale resolutie. Omdat de biologische systemen die
we willen bestuderen honderden, zo niet duizenden cellen omvatten, beginnen
de tijdschalen de duur van een gemiddeld Nederlands promotieonderzoek te over-
schrijden.

Het was daarom noodzakelijk om eerst de opname-snelheid te verbeteren, vo-
ordat we een workflow ontwikkelen voor het afbeelden van volumes weefsel met
eengeïntegreerdemicroscoop. Het is aangetoonddathet gebruik vaneennegatieve
voorspanningopdemicroscoop-tafel het contrast indeEMbeeldenverbetert, waar-
door de opnametijden worden verlaagd en dus snellere opnamesnelheden mo-
gelijk zijn. Eerdere toepassingen van een voorspanning op de microscoop-tafel
waren echter grotendeels beperkt tot het afstemmen van de elektronenpenetratie-
diepte in de beeldvorming van niet-biologische samples, of bij seriële Block-Face
microscopie, waarbij afwisselend het oppervlak van het preparaat wordt afgebeeld
en een plakje van het preparaat wordt weggesneden. Daarom hebben wij dus het
gebruik van een negatieve voorspanning voor seriële sectie EM geoptimaliseerd.
De voorspanningwerkt door terugverstrooide elektronen (BSE s̓) te versnellen naar
een speciale detector, waardoor het gegenereerde signaal wordt versterkt. We
laten door middel van modellering van geladen deeltjesoptica zien dat dit het geli-
jkertijd ook de secundaire elektronen (SE s̓) eruit filtert. Dit is voordelig omdat SE s̓
topografische informatie over het oppervlak van het preparaat bevat, terwijl BSE s̓
verstrooid worden door de zware metalen die aan de celmembranen zijn gebon-
den, waardoor gedetailleerde structurele informatie wordt onthuld. Door de geop-
timaliseerde voorspanning toe te passen, konden we dezelfde SNR bereiken met
een 20-voudige afname van de opnametijd. Acquisities die voorheen weken in
beslag namen, konden vervolgens binnen enkele uren worden afgerond.

Vervolgenskunnenwedusbeginnenmethet ontwerpenvaneenarray-tomografie
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workflow voor het verkrijgen van volume-CLEM data met behulp van een geïn-
tegreerde microscoop. Een proof of concept werd uitgevoerd op preparaten van
pancreasweefsel uit ratten en zebravissen. Er werden seriële secties gesneden
en voorbereid voor gelijktijdige FM- en EM-microscopie, en de insulinekorrels in
het endocriene gebied van de pancreas (eilandjes van Langerhans) werden im-
munogelabeld met een fluorescerende kleurstof. Om de navigatie tussen seriële
secties in de geïntegreerde microscoop te vergemakkelijken, werd een beeldver-
werkingsprocedure opgezet voor het segmenteren van seriële secties. Geautoma-
tiseerde opname-routines waarin EM-FM-registratieprocedures zijn opgenomen,
werdenvervolgensontwikkeldomcorrelatievedatasetsmet eenhogeoverlay-precisie
te verkrijgen. De fluorescentie van de insulinekorrels zorgde voor een eenvoudige
identificatie van onze gekozen ROI, het eilandje van Langerhans. Door de acquisi-
tie van hoge-resolutie EM-beelden te beperken tot regio s̓ waarin zich fluorescentie
bevindt, waren we in staat om de totale opnametijd verder te verkleinen. Er wer-
den correlatieve uitlijningsroutines ontwikkeld om delen van het eilandje in 3D te
reconstrueren.

De workflow voor geïntegreerde AT maakte de acquisitie en reconstructie van
grootschalige correlatieve datasets mogelijk, wat helpt bij de herkenning van or-
ganellen en bepaalde subcellulaire functies binnen geselecteerde ROI. Omdat dit
de interpretatie vanEM-data vergemakkelijkte, vroegenweons af ofwe recente on-
twikkelingen inDeepLearningkondengebruikenom(niet-gelabelde) EM-gegevens
aan te vullenmetbiologische labels. Wehebbendaarvooronze correlatievedatasets
gebruikt om een convolutioneel neuraal netwerk (CNN) te trainen omkunstmatige
fluorescentievoorspellingen te genereren. Het bleekdat de voorspellingendie door
de CNNwerden gegenereerd sterk gecorreleerdwarenmet de gemeten fluorescen-
tie. En omdat het kunstmatige fluorescentiesignaal, dat door het netwerk wordt
gegenereerd, is gelokaliseerdop specifiekeorganellen,warenwe in staat omstrate-
gieën te bedenken voor het segmenteren van organellen binnen deze datasets zon-
der uitgebreide handmatige tussenkomst.



1
Introduction

Parts of this chapter have been published in: RI Koning et al. “Integrated Light and Electron Mi-
croscopy”. Correlative Imaging: Focusing on the Future (2019), pp. 119–135.
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2 1. Introduction

1.1. So you want to know how the brain works?
How a convoluted network of synapses can enable an animal to think and exhibit
complex behavior has been a motivating question of neuroscience since the dis-
covery of neurons in the late 19th century [2, 3]. Neuronal circuit diagrams, maps
delineating the connections between synapses, have shown to be useful tools for
better understanding cognitive function and neural architecture [4, 5]. Although
several full brain circuit diagrams have been completed (C. elegans [6], fruit fly
larva [7], tunicate tadpole larva [8], zebrafish larva [9], and adult fruit fly [10]), such
“connectomes” are a herculean task given that the resolution required to discern
synapses is on the nanometer scale, while the organ as a whole spans millime-
ters or larger, depending on the organism [11, 12, 13]. Electron microscopy (EM),
an imaging technique able to reach magnification scales several orders of mag-
nitude higher than light microscopy by illuminating a specimen with a beam of
accelerated electrons, is currently the only imaging method capable of resolving
such fine features across such vast spatial extents [4, 10]. The drawback for high-
magnification imaging over organ-scale dimensions is, however, the inherently
limited throughput, leading to hours or days of acquisition time for a single two-
dimensional cross section. Extending acquisitions of biological material to the
third dimension has long remained a challenge for EM.

While the brain is perhaps the most prominent, it is certainly not the only ex-
ample in biology where multi-scale microscopy can assist in mapping connectiv-
ity relations crucial to functional performance. Molecular-scale processes taking
place within cells or organelles are highly regulated in health, and defects or de-
viations at the smallest scales can lead to dysfunction or disease at the organ or
organism level. Simply put, the big things are made out of lots of little things, and
to figure out how the big thing works, you have to look at all the little things. EM
is the only technique that can see the littlest things and that might do this over the
full size of the big things.

1.2. Volume electron microscopy
There are a variety of techniques for three-dimensional imaging of biological spec-
imen via electron microscopy (EM) [14, 15, 16]. Modern volume EM techniques
can be divided into two broadermethods: array tomography approaches, in which
ultrathin serial sections are cut from a block of tissue prior to EM (e.g. serial sec-
tion scanning EM or transmission EM), and blockface approaches, in which the
tissue block is sectioned as it is imaged (e.g. serial blockface or focused ion beam
SEM). While both of these approaches have their respective advantages and dis-
advantages [17, 14], an important distinction is that array tomography allows for
re-evaluation of sections whereas the specimen is irrevocably lost in blockface ap-
proaches [18].

Despite the success these techniques have had in generating high-quality three-
dimensional reconstructions, significant challenges remain. At present, one of the
most stringent constraints facing high-resolution (< 10 nm) volume EM is through-
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put. To scan an entire mouse cortical column, for example, a 400 × 400 × 1000 µm3

volume, at 4 nm/px with 30 nm section thickness (the resolution necessary to re-
liably discern synapses [19, 20]), Briggman and Bock [17] estimated that it would
require ∼500 days of uninterrupted imaging with a single beam. For this reason,
it is advantageous to locate regions of interest prior to large-scale EM in order to
minimize the imaging volume.

One approach, taken byHildebrand et al. [9] for whole-brain serial section SEM
reconstruction of a larval zebrafish, was to utilize multiple rounds of targeted EM
at successively higher levels ofmagnification. Similar approaches have been taken
in other large-scale neural reconstruction endeavors such as partial brain imaging
of a mouse visual cortex [12] and full brain imaging of an adult fruit fly [10] where
certain synapses were re-imaged at higher resolution. Although these multiscale
approaches have been implemented with great success, the need for intermedi-
ate analysis of the EM dataset hinders throughput. The selection of sub-regions of
interest for subsequent imaging rounds is driven by localization of the biological
material of interest, which can only be done after manual or machine-learning-
assisted analysis of the preceding EM dataset. Whilemachine-learning techniques
have made tremendous progress in reducing human involvement, interpretation
and annotation of EM datasets remain a tedious and error-prone practice. These
methods are therefore not yet appropriate for selecting sub-regions at highermag-
nification scales, meaning selection cannot be done either automatically or in real
time.

1.3. Correlative light and electron microscopy
In addition to low throughput, EMhas the additional limitation that it does not con-
tain the protein- and molecular-specific information available from fluorescence
microscopy (FM)—unless the proteins are conjugated to an electron-dense tag as
can be donewith enzymeperoxidases (e.g. HRP [21] or APEX [22]), photo-sensitiser
proteins (e.g. miniSOG [23]), or short peptides (e.g. ReASH [24]). This information
is not only crucial for understanding biological function but can also be used to
guide to regions of interest (ROI) based on molecular expression. Thus, while EM
is successful at providing ultrastructural information, it is not always useful for lo-
calizing ROIs. Functional fluorescence microscopy has been employed to identify
the biological material of interest, particularly in blockface approaches [25]. How-
ever, workflows to retrieve selected regions from the specimen and trim the block
to the appropriate size can be both complicated and time-consuming or involve
further rounds of multimodal inspection, e.g. with X-ray tomography [26]. Link-
ing between the structural information conveyed by EM and the dynamic, func-
tional data obtained with live-cell FM can furthermore be challenging when EM is
performed following FM and the intermediate sample preparation [27].

As the advantages afforded bymerging targeted biological information with ul-
trastructural detail often outweigh the challenges, methods have been developed
for combiningFMandEM in correlative light and electronmicroscopy (CLEM) [28].
In the past decades, CLEM has evolved from being used by only a few pioneering,
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specialist labs to a collection of techniques and workflows practiced by a broad
group of researchers in structural biology [28, 29]. In most cases, CLEM involves a
distinct set of sequentially used specimenpreparation and labeling techniques, fol-
lowed by diverse types of light and electron microscopy techniques, with specific
workflows for sample transfer and relocation of regions of interest. A key advan-
tage of sequential CLEM is the wide diversity of available microscopes: in princi-
ple, any type of microscope can be added to the workflow, provided requirements
on sample preparation and handling can be met. Procedures to combine differ-
ent light and electron microscopes can, however, be tedious, involving extensive
manual labor, transfers, and cumbersome ROI retrieval.

1.4. Integrated microscopy
Microscopes that integrate a light and an electron microscope in one have been
developed as early as the 1980s and a wide variety of integrated microscopes with
different modalities has been reported in literature in recent years [30, 31]. Sev-
eral of these have now also become commercially available. For a specific CLEM
experiment, the choice between an experimental workflow with standalone mi-
croscopes or with an integrated microscope depends on a variety of factors: the
precise goal and requirements of the experiment, amenable sample preparation
protocols, and local availability of microscopes, probes, and expertise [28]. If only
a single or very few samples have to be carried through the CLEMworkflow, adopt-
ing sample preparation protocols towards integrated inspection may not be worth
the effort. On the other hand, integrated microscopes offer advantages in terms of
throughput, avoiding sample contamination, achievable precision of ROI retrieval,
and ease and accuracy of image correlation.

1.5. Integrated correlative array tomography
The advantages offered by integrated microscopy extend to volume imaging [15].
In conventional array tomography, a tissue specimen is chemically fixated, em-
bedded in resin, and cut into a series of ultrathin sections which are collected as
ribbons on a solid substrate or on flexible, sticky Kapton tape. The sections are
then immunostained for imaging in a widefield or confocal fluorescence micro-
scope, possibly in several rounds to target multiple molecules. Next, the sections
are washed and reprocessed for EM with e.g. osmium tetroxide or uranyl acetate
and transferred to a scanning or transmission electron microscope [32, 33]. In-
tegrated array tomography seeks to advance this workflow by combining FM and
EM acquisition with the high alignment accuracy and automation afforded by an
integrated light and electron microscope. While the need for intermediate sam-
ple preparation is removed, it does, however, impose stricter constraints on the
amount of heavy metal staining that can be used for EM to avoid quenching flu-
orophores [34, 35]. To circumvent the loss of signal without increasing the dwell
time, a negative bias potential can be used to enhance the collection of backscat-
tered electrons (Chapter 2).
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Figure 1.1. Conceptual overview of the integrated array tomography workflow. (A) Serial
sections are cut from a resin-embedded specimen; a larval zebrafish is illustrated here as an
example.(B) The sections are placed onto an ITO-coated glass slide which is mounted onto
the translation stage of the integratedmicroscope. A series of registered EM-FM image pairs
are acquired according to a semi-automated imaging pipeline. (C) The EM images are com-
putationally aligned in 3D, revealing the structure of the zebrafish. The fluorescence data,
comprising the targeted organelles, proteins, or biomolecules, is then overlaid onto the EM,
resulting in a volumeCLEM reconstruction of the zebrafish. Larval zebrafish illustration de-
rived from original artwork by Griffiths [36].

The workflow for integrated correlative array tomography (iCAT; Fig. 1.1) be-
gins by following a customized protocol for fixating, embedding, cutting, and im-
munolabeling a sample such that the fluorescence is maintained. Serial sections
are then loaded into the integrated microscope and imaged sequentially, while an
automated procedure for EM-FM registration [37] ensures consistent overlay accu-
racy. Custom-built alignment routines are then used to reconstruct the correlative
datasets in three-dimensions. The acquisition and reconstruction procedures for
integrated array tomography comprise the basis of Chapter 3.

Future applications of CLEM will demand greater precision, further automa-
tion, and higher throughput, for which iCAT offers a number of potential advan-
tages. Above all, iCAT enables large numbers of serial sections to be sequentially
and automatically imaged to generate reconstructed volumes of overlaid FM and
EM datasets with matching axial resolution. Moreover, specimen warping and
shrinkage, which might otherwise occur in conventional array tomography meth-
ods, is prevented due to the absence of intermediate sample preparation. This
ensures a precise overlay of biological molecules and structural context at high
resolution in all three dimensions. Additionally, precisely overlaid fluorescence
data has the potential to vastly improve classification of ultrastructural features
in EM data. While modern machine-learning-based segmentation methods (e.g.
ilastik [38], SuRVoS [39]) are quite sophisticated, they nevertheless require some
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degree of manual annotation. Because high-accuracy overlaid correlative datasets
contain, in a sense, the classification data that thesemethods seek to provide, such
datasets could reduce the need for supervised learning while opening up new pos-
sibilities for machine learning applications such as artificial fluorescence predic-
tions (Chapter 4).
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2
Optimization of negative stage

bias potential for faster
imaging in large-scale
electron microscopy

Large-scale electronmicroscopy (EM) allows analysis of both tissues andmacromolecules in
a semi-automatedmanner, but acquisition rate forms a bottleneck. We reasoned that a neg-
ative bias potential may be used to enhance signal collection, allowing shorter dwell times
and thus increasing imaging speed. Negative bias potential has previously been used to tune
penetration depth in block-face imaging. However, optimization of negative bias potential
for application in thin section imagingwill be needed prior to routine use and application in
large-scale EM. Here, we present negative bias potential optimized through a combination
of simulations and empirical measurements. We find that the use of a negative bias poten-
tial generally results in improvement of image quality and signal-to-noise ratio (SNR). The
extent of these improvements depends on the presence and strength of a magnetic immer-
sion field. Maintaining other imaging conditions and aiming for the same image quality and
SNR, the use of a negative stage bias can allow for a 20-fold decrease in dwell time, thus re-
ducing the time for a week long acquisition to less than 8hr. We further show that negative
bias potential can be applied in an integrated correlative light electron microscopy (CLEM)
application, allowing fast acquisition of a high precision overlaid LM-EM dataset. Applica-
tion of negative stage bias potential will thus help to solve the current bottleneck of image
acquisition of large fields of view at high resolution in large-scale microscopy.

This chapter has been published as: Ryan Lane et al. “Optimization of negative stage bias potential for
faster imaging in large-scale electron microscopy”. Journal of structural biology: X 5 (2021), p. 100046.
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2.1. Introduction
Mapping the full ultrastructural layout of complexbiological systemsatnanometer-
scale resolution is a major challenge in cell biology. Electron microscopy (EM) is
uniquely capable of stretching the vast spatial scales necessary to identify macro-
molecular complexes, subcellular structures, and intercellular architecture. As
a consequence, interest in large-scale EM, where many high-resolution tiles are
stitched into a gigapixel image frame, has exploded in recent years. Large-scale
EM, however, suffers from the long acquisition times necessary to acquire suffi-
cient signal at high resolution [2].

A variety of approaches have been undertaken to advance throughput. While
throughput is already a bottleneck for large-scale 2D imaging [3], most of these
approaches have been developed under the framework of 3D imaging. Through-
put is particularly relevant to the field of connectomics in which it typically takes
months to acquire the image data necessary for neuronal reconstruction [4]. To
image the brain of a larval zebrafish, for example, Hildebrand et al. [5] conducted
multiple imaging rounds at successively higher magnification. Regions of interest
(ROI) were selected between imaging rounds for successive, targeted acquisitions
down to 4 nm/px resolution, thereby reducing the time it would otherwise take to
fully image the full brain at high resolution. Similarly, Delpiano et al. [6] used de-
tectionof in-resinpreservedfluorescence in an integrated light andelectronmicro-
scope for automated guiding to ROIs for subsequent acquisition. Other approaches
involve parallelizing the imaging load across multiple instruments. This has been
employed in focused ion beam scanning electron microscopy (FIB-SEM) for the
reconstruction of thick slices of Drosophila brain tissue at isotropic (8 nm × 8 nm
× 8 nm) voxel resolution [7] as well as in serial section transmission electron mi-
croscopy (ssTEM) for the yearlong acquisition of a cubicmillimetre ofmouse brain
tissue [8]. Dedicated instrumentation for faster imaging of serial thin sections has
also been developed in recent years. In some instances conventional microscopes
have been equipped with specialized detection optics to allow for larger fields of
view [9, 10]. Multi-beam instruments in which a sample is simultaneously imaged
by multiple focused electron beams have also been developed [11, 12].

Faster imaging could also be achieved by increasing signal collection in estab-
lished thin sections approaches, which would allow for reduced acquisition time
while maintaining a sufficient signal-to-noise ratio (SNR). It has previously been
shown that the use of a retarding field increases SNR in SEM [13, 14], but for bio-
logical imaging the use of a retarding field has thus far been investigated in detail
only for serial blockface scanning EM (SBF-SEM) [15, 16, 17]. Additionally, a high
negative bias potential is employed in the Zeiss multibeam to allow for secondary
electron (SE) detection from individual beamlets [11]. Conversely, the use of a pos-
itive stage bias has been examined for the suppression of secondary electrons [18].
The full benefits of stage bias remain underutilized because optimization criteria
and signal detection in a magnetic immersion field, in particular, have yet to be
addressed.

In the cases in which a negative bias potential has been used, a voltage is ap-



12 2. Optimization of negative stage bias potential

plied to the stage while the pole piece of the electron microscope is kept at ground
such that an electric field is generated between the specimen and detector planes.
While the primary electron beam experiences a deceleration, the signal electrons
experience an acceleration from the specimen towards the dedicated detector. The
ensuing acceleration results in an increase to the collected signal [19] and—if the
detector geometry, landing energy, and potential bias are tuned properly—can be
used to filter out secondary electrons [17]. The same signal can then be obtained
with a shorter acquisition time.

Identification of biological structures and molecules in large-scale EM is typi-
cally complemented with approaches to label and visualize specific biomolecules
or organelles. Aside from immuno-EM and genetically-encoded enzymatic tags
that can deposit osmiophilic polymers, CLEM is perfectly suited to identify enti-
ties across spatial scales (reviewed in De Boer et al. [20]). However, if one wants
to avoid intermediate processing of the sample, the sample preparation protocol
must be adjusted to limit concentrations of heavymetal staining toprevent quench-
ing of fluorophores [3]. The reduced amount of staining material then needs to be
countered by increased dwell time, further necessitating optimization of EM sig-
nal collection. Here we present faster imaging of tissue sections that have been
prepared following conventional array tomography protocols through the use of a
negative bias potential. No post-staining was applied as the tissue was immunos-
tained for fluorescence post-sectioning.

2.2. Results
2.2.1. Negative bias potential enhances signal in routine EM samples
We first illustrate how the use of a potential bias can improve signal collection in
a typical SEM experiment. A potential bias of −1 kV is applied to the stage of an
SEMwith an integrated fluorescence microscope (Figure 2.1A & B). The bias is ap-
plied via an external power supply connected to a custom stage plate such that the
sample is electrically isolated from the rest of the fluorescence microscope and
electrical components of the stage [21]. By generating an electric field between
the sample and the BSE detector, the bias potential accelerates signal electrons
inwards away from their otherwise linear trajectories. Because of their lower en-
ergy, secondary electrons (< 50 eV) are redirected inside the inner annulus of the
BSE detector, while higher energy backscattered electrons (> 50 eV) are redirected
over a wider area depending on their initial emission angle and energy.

Pancreas tissue was prepared for integrated fluorescence-electron microscopy
as described in Section 2.4.2. No post-staining was applied resulting in lower con-
trast relative to other EM sample preparation protocols [3]. EM images of EPON-
embedded, 80 nm tissue were acquired in immersion mode with and without a
−1 kV bias potential (Figure 2.1A & B). When subject to a bias potential, EM im-
ages demonstrate noticeably higher contrast and less noise (Figure 2.1C & G). The
primary beam energy was increased by 1 kV such that the landing energy was held
constant at 1.5 keV in accordance with the section thickness. Data acquired with
increased primary energy but without the use of stage bias (Figure 2.1D) reveals
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Figure 2.1. Negative bias potential significantly enhances EM contrast in tissue. Schematic
of integrated microscope without (A) and with (B) an applied stage bias. Electric field in-
duced by the bias potential accelerates electrons emitted from the sample to the CBS detec-
tor. EM images of rat pancreas tissue without (C – F) and with (G & inset H) the use of stage
bias. Biased images (G & inset H) were acquired at 2.5 keV primary energy with a −1 kV bias
potential—hence, a 1.5 keV landing energy. For the sake of comparison, unbiased images (C
& inset D) were acquired with the same landing energy, while unbiased images (E & inset F)
were acquired with the same primary energy. The per-pixel dwell is held constant across all
images at 5 µs. Vast improvement in EM signal and contrast can be seen by comparing insets
(D & F) with (H). Scale bars: 2 µm (C, E, & G); 0.5 µm (D, F, & H). Raw data at full resolution
is available at Nanotomy.

that the increase in apparent signal does not arrive solely from an increased pri-
mary energy. Moreover, the importance of maintaining a sufficiently low landing
energy becomes clear by the visible artefacts from the ITO-coated glass substrate
that appear with higher energies. The 0.4 nA beam current and 5 µs/px dwell time
are held constant in each acquisition. The gain of the BSE detector had to be de-
creased while applying the negative bias to prevent the detector from saturating.

www.nanotomy.org
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2.2.2. Simulating signal electron trajectories with and without neg-
ative potential bias

Electron trajectories were simulated to better ascertain how a negative bias poten-
tial may give rise to better signal detection. Secondary electron and backscattered
electron (BSE) trajectories were simulated for a variety of EM imaging conditions
(Figure 2.2). A model of the optical layout within the integrated microscope was
developed in Electron Optical Design (EOD) [22] incorporating the geometry of the
Verios 460 SEM objective lens and concentric backscatter (CBS) detector. The neg-
ative potential bias is factored into the model by implementing the sample plane
as an additional lens element, which can then be biased to an arbitrary voltage.
To mirror the 5mmworking distance of our microscope, the end of the pole piece
(grey element in Figure 2.2) and start of the sample plane (red) are situated at 𝑧 =
0mm and 𝑧 = 5mm respectively. The roughly 0.5mm thick CBS detector (blue) is
then located immediately below the pole piece.

Simulationswere done for both non-immersion (high resolution orHR) and im-
mersion (ultra-high resolution or UHR) SEMoperationmodes. For the case of non-
immersionmode (Figure 2.2A&B), themagnetic focusing field is containedwithin
the objective lens and therefore does not play a role in the signal electron trajecto-
ries. In these instances, the trajectories of the SEs and BSEs are dictated entirely
by their initial velocity and the electric field due to the bias potential. In UHR-
mode (Figure 2.2C & D), however, the sample is immersed in a strong magnetic
field that both focuses the primary beam and—together with the electric field—
alters the paths taken by the signal electrons. For this reason, the magnetic field
strength is calculated by the field strength required to focus a parallel beam prop-
agating in the +𝑧 direction at the sample plane.

For each scenario shown, a bundle of secondary (𝐸0 = 5 eV) and backscattered
electrons (𝐸0 = 1 keV) is emitted from the origin at 𝑧 = 5mm. The angular distribu-
tion is given by Lambert s̓ cosine distribution [23]. A screen is placed at the detector
plane to record the radial position of the signal electrons, from which the scatter
plots are generated (Figure 2.2). The grey rings of varying diameter represent the
individual segments of the CBS detector. For the case of non-immersionmode and
no potential bias (Figure 2.2A), the region between the detector and sample planes
is field-free and the signal electrons travel freely in straight paths coinciding with
one another. Only when a bias potential is added (Figure 2.2B) do the higher en-
ergy BSEs diverge from the secondaries, which, due to their low initial energy, are
accelerated inside the BSE detector before they are able to spread out radially. The
trajectories change when under the influence of a magnetic immersion field (Fig-
ure 2.2C) in which case the Lorentz force causes the signal electrons to spiral about
the optical axis [24]. The low energy SEs remain tightly coiled as they propagate up
through the BSE detector while the higher energy BSEs stretch out over greater ra-
dial distances. Whether the BSEs collide into the detector depends largely on the
emission angle. The addition of a 1 kV bias potential (Figure 2.2D) enables BSEs
with a wider distribution of emission angles to reach the detector, resulting in the
collection of more signal. These results suggest no secondary electron is ever reg-
istered as a count by the BSE detector—either because it is accelerated inside the
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Figure 2.2. Signal electron trajectories demonstrate the efficacy of stage bias in redirect-
ing BSEs to the detector while simultaneously filtering out secondary electrons. Trajectory
plots for SE and BSE bundles launched from the sample plane (left) and scatter plots (right)
show the spatial distribution of signal electrons at the detector plane. In HR-mode, SEs and
BSEs travel in overlapping, linear paths without the presence of an electric field (A), but
BSEs get accelerated towards the detector when a negative bias potential is introduced (B).
Signal electrons take on spiral trajectories in the presence of an immersion magnetic field
(C), but are again steered to the detector when an electric field is added (D). In each set of
simulations, BSEs (blue) and SEs (orange) are launched from the sample plane at 𝑧 = 5mm.
Trajectory plots show geometry of the pole piece (grey), CBS detector (blue), and stage plate
(red). Scatter plots show 𝑥, 𝑦 coordinates of signal electrons at the detector plane (𝑧 = 5mm).
Spatial distributions of signal electrons are plotted on the margins of the scatter plots.
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detector or (in the field-free case) because it is of too little energy to generate an
electron-hole pair [19].

The collection efficiency of BSEs increases monotonically with increasing neg-
ative bias potential for both imagingmodes (Figure 2.A1). These results agree with
what is suggested by the trajectory plots of Figure 2.2—that the electric field gener-
ated by the stage bias tapers the radial spread of the BSEs leading to a greater per-
centage of BSEs collected. Note that the percentage of BSEs detected is greater for
HR-mode across the range of bias potentials simulated. It therefore seems advan-
tageous to prefer non-immersion mode, however, greater collection efficiency is
only one factor to consider. Themagnetic immersion field results in lower aberra-
tions,meaning that forhigh resolution imaging, UHRmode is still often favourable.
While the geometry modelled here is specific to our particular electron micro-
scope, simulationswere extendedover a rangeofworkingdistances andwere found
to follow the same general trends.

2.2.3. Experimental optimization of negative potential bias leads to
increased throughput

EM imaging was expanded to encompass a wider imaging parameter space across
a sequence of dwell times andnegative bias potentials for both immersion andnon-
immersionmode based on the simulations (Figure 2.3). The primary beam energy
was increased together with the bias potential to hold the landing energy constant
at 1.5 keV. Likewise, the gain of the CBS detector was adjusted with each bias po-
tential to keep the intensity levels from clipping. The detector gain and offset were
manually calibrated to acquire over the full 16-bit range of the detector. This was
not always possible, however, as many of the images acquired with low or no bias
potential took up only a fraction of the detector s̓ bandwidth, even at maximum
gain.

An increase in image signal with increasing negative bias potential for both
imaging modes up to roughly −1500V was recorded (Figure 2.3), after which it be-
comes difficult to perceive notable differences in image quality. The signal appears
to improvemore gradually in non-immersionmode, whereas the improvement for
immersion mode is more abrupt. Furthermore, in certain instances, increasing
the integration time by several factors results in a less substantial increase to the
apparent SNR than a 500V increase to the negative bias potential. This is signifi-
cant as the integration time is typically the primary imaging parameter to improve
image quality—and large increases come at the direct expense of throughput.

Quantitative SNRmeasurements, basedon the spectral signal-to-noise ratio (SSNR)
[25], were made on the collection of images and averaged for each combination of
bias potential, dwell, and imaging mode (Figure 2.4). These measurements were
corroborated using a separate cross-correlation-based SNR method [26] (Figure
2.A2). In particular, these measurements reveal that an image acquired in non-
immersion mode with a 1 µs dwell time and −1.5 kV bias potential yields roughly
the same SNR as an image acquired with a 5 µs dwell but with no applied bias. The
effect of the potential bias is even more pronounced in immersion mode where
the SNR of a 1 µs image with a 1.5 kV stage bias exceeds that of a 20 µs image ac-
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Figure 2.3. Negative bias potential delivers 5–20 times faster imaging while maintaining
image quality. Bias potential varies from 0 to −3 kV (left to right) while the integration time
varies from1 to 20 µs (top to bottom) for both the non-immersion (top) and immersionmode
(bottom) image matrices. All images acquired with 1.5 keV landing energy to match pene-
tration depth. Scale bars: 1 µm. Raw data is available at Nanotomy.

quired without a bias. Fourier analysis was done to analyse the effect of the bias
potential in different frequency domains (Figure 2.5). The center spot of the 2D
FFTs—containing most of the signal—becomes more prominent with increasing
bias potential. This growth is reflected in the SSNR spectra, which show order
of magnitude increases in amplitude in the low spatial frequency domain. Fur-
thermore, the high frequency streak artefacts present in the lower bias potential
images—visible in the 2D FFTs—become suppressed at higher bias potentials.

2.2.4. Potential bias allows for higher throughput EM and CLEM ac-
quisitions

Only small regions of interest are typically recorded at high resolution EM given
that full section imaging at sub-10 nm resolution often takes an excessive amount

www.nanotomy.org
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Figure 2.4. Optimization of bias potential delivers SNR increases of multiple orders of mag-
nitude. At bias potentials greater than 1.5 kV, the SNR is found to level off for both imag-
ing modes. Images are comprised of varying stage bias potentials, integration times, and
imagingmodes but with fixed 1.5 keV landing energy and 5mmworking distance. Different
color lines represent different dwell times as indicated by the legend. SNR measurements
are averaged over five EM images at different areas of the tissue for each combination of
bias potential, dwell time, and imaging mode. Error bars indicate the standard deviation in
the SNR over the five images. Missing data points indicate a negative SNR, whichmay occur
for images with extremely high noise.

of time. As a result of the enhanced signal-to-noise ratio afforded to us by the use
of a negative bias potential, we are able to significantly expedite the imaging of a
thin section of HeLa cells at 5 nm resolution (Figure 2.6). Based on our empirical
results (Figure 2.4), a negative potential bias of −1.5 kV was chosen for EM imaging
in immersionmode. A per-pixel dwell time of 2 µs was chosen to balance high SNR
and image clarity with overall imaging time. Control images of the same cell were
acquired without the use of a bias potential at the same landing energy (Figure
2.6A) and primary energy (Figure 2.6B). The total imaging time for this 550 µm ×
350 µm area was 5.6 hr.

To demonstrate the application of a negative bias potential on samples also
prepared for immunofluorescence, a large-scale acquisition was conducted on a
section of rat pancreas tissue (Figure 2.7). Full section (0.5mm2) acquisition in-
cluding fluorescence imaging, stage translations, and additional overhead factors
was completed in 8 hr. Table 2.1 provides an overview of the time spent on each
aspect of the workflow, and exemplifies the potential time savings afforded by
using a bias potential. We note that no post-staining was applied to this section
in order to allow integrated acquisition of fluorescence for high-precision over-
laid FM. Fluorescence images were acquired prior to EM to prevent quenching
of the fluorescence due to electron beam irradiation. The insulin-producing beta
cells—clustered within the islet of Langerhans—were immunolabelled and given a
Hoechst counterstain to target cell nuclei as well as the rough endoplasmic retic-
ulum in the exocrine region of the tissue (blue) (Figure 2.7A). The section edges
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Figure 2.5. Noise contributions suspected to originate from the scanning electronics are
suppressed with increasing bias potential. Top: sequence of 5 µs dwell tissue images ac-
quired in immersionmodewith varying amounts of stage bias. Center: 2D FFTs of tissue im-
ages showing the central spot, which represents most of the signal, becoming more promi-
nent with increasing bias potential up to −1.5 kV. The 2D FFTs exhibit noticeable streak
artefacts at higher frequencies, particularly in the lower bias potential images. We attribute
these streaks to electric interference from the scanning electronics. Furthermore, there is
a constant offset, which is likely a combination of shot noise from various sources, andmay
also include a component from the scanning electronics. Bottom: SSNR spectra show a di-
vision between the low frequency (primarily signal) and high frequency (primarily noise)
portions of the tissue images. As the suspected scanning electronics noise is drowned out,
the SNR improves dramatically. Scale bar: 500 nm.

can easily be discerned from the FM images, facilitating the area selection for sub-
sequent EM imaging (Figure 2.7B). Here the islet (light grey region) can be seen
surrounded by the exocrine tissue (dark grey). An automated registration proce-
dure [27] was done to overlay the fluorescence signal onto the EM images (Figure
2.7C) such that the fluorescence signal is correlated at high resolution across the
entire EM field of view (Figure 2.7D & E). Additional details of how the correlative
acquisition and reconstruction were done are provided in Sections 2.4.4 and 2.4.5
respectively.

2.3. Discussion
We have shown that the SNR of a 1 µs/px image subject to a bias potential outper-
forms that of a 5 µs/px unbiased image or 20 µs/px in the case of immersion mode.
This has important ramifications for large-scale and volume EM studies in which
throughput is a primary concern. Due to practical limitations on time, it is often
the case that large-scale EM studies are conducted on a single specimen. Negative
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Figure 2.6. Fast, high resolution EM gigapixel image of cultured cells. (A) EM acquisition of
a 100 nm section of HeLa cells as a nanotomy map. Section imaged at 1.5 keV LE and with a
−1.5 kV bias potential. For the sake of comparison, one HeLa cell was acquired at multiple
energy settings: (B) 1.5 keV LEwith no bias potential; (C) 3 keV LEwith no bias potential; (D)
1.5 keV LE with −1.5 kV bias potential—identical to that of the large-scale acquisition. Scale
bars: 50 µm (A); 5 µm (B, C, & D). Raw data is available for viewing via Nanotomy.

potential bias facilitates comparison studies by allowing formultiple specimens to
be acquired in the same timeframe that would otherwise be necessary for a single
specimen. Experiments on specimens prone to electron beam irradiation dam-
age are likewise facilitated as the same SNR can be achieved with a considerably
smaller electron dose. Furthermore, a negative bias potential has recently been
utilized to deliver enhanced EM contrast to tissue sections in which the fluores-
cence is preserved [21]. Due to the minimal amounts of heavy metal staining [29],
such samples have thus far been challenging to image—in certain instances requir-

www.nanotomy.org
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Figure 2.7. Fast, correlative imaging of a complete EM section at high resolution. 80 nm rat
pancreas tissue was imaged at 3 keV beam energy with a −1.5 kV stage bias (1.5 keV landing
energy) with 2 µs dwell as a nanotomy map. (A) Composite two-channel FM image of the
tissue section: cell nuclei (blue) stained by Hoechst; insulin-producing beta cells (orange)
immunolabeled with Alexa 594. (B) Composite EM image of the area outlined in (A) com-
prising the islet of Langerhans identified via FM imaging. (C) Correlative overlay of the islet
and surrounding exocrine tissue. (D) Zoomed-in area of islet outlined in (B & C) with in-
set (E) exhibiting the native resolution (5 nm pixel size) that exists across the entirety of the
nanotomy map. Total imaging time is 8 hr, the majority of which is taken up by the high-
resolution EM imaging. Note that a similar area at this pixel size (see e.g. Ravelli et al. [28])
typically takes upwards of 24 hr with TEM. Scale bars: 200 µm (A); 100 µm (B& C); 10 µm (D);
2 µm (E). Raw data is available via Nanotomy.

ing dwell times of up to 60 µs/px [30].
Our simulations show that BSE collection is enhanced by an effective increase

of the detector numerical aperture—by applying the bias potential we increase the
range of angular distributions of the BSEs able to be collected. However, this does
not fully explain the extent of the increase in SNR observed experimentally. In par-
ticular, the simulations predict roughly a factor two increase in signal collection as
the bias voltage is raised to our maximum of 3 kV, while our empirical measure-
ments show SNR improvements of one to two orders of magnitude. This disparity

www.nanotomy.org
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Table 2.1. Use of optimized potential bias leads to an 80% reduction in total imaging time for
a typical large-scale acquisition. The total imaging time is highly dependent on the ROI size,
which may vary widely depending on the biological application. Here the typical diameter
of an islet of Langerhans is given, while in Figure 2.7 a 700 µm × 700 µm area was chosen
as the ROI—resulting in the 8 hr total acquisition time. Total imaging times for arbitrary
ROI sizes can be determined by first calculating the number of image tiles needed: 𝑁 =
ceil ((𝐿 − 𝑜𝑤) − (𝑤 − 𝑜𝑤))2 where 𝐿 is the typical section or ROI width, 𝑜 is the percentage
overlap between image tiles, and 𝑤 is the field of view. Note that the negative overlap given
for the low-magnificationCLEM tiles reflects that these tiles donot overlapwith one another.

Low-mag CLEM Hi-mag EM

No bias Bias No bias Bias

Pixel size 36.6 nm 4.88 nm
Dwell 10 µs 2 µs 10 µs 2 µs
Field of View 150 µm 20 µm
Overlap (b/w images) −36 µm (−24%) 2.4 µm (12%)
N. pixels 16.8 Mpx 16.8 Mpx

EM

Acquisition time 168 s 33.6 s 168 s 33.6 s

Exposure time 5 s
N. channels 2FM
Acquisition time 10 s

Registration procedure 20 sOverhead Stage translation 4 s 2 s

Total Total acquisition time
(per CLEM/EM image)

202 s 68 s 170 s 36 s

Typical size 700 µm 250 µm
N. image tiles 16 225Large-scale

acquisition Total acquisition time 54 min 18 min 11 hr 133 min

can be explained in part by the electron gain factor of the detector. Šakić et al. [19]
shows that the signal generated in the detector by the incident electrons increases
linearly with energy between 200–10 000 eV. Thus, in addition to increasing the
amount of collected BSEs, the bias potential also leads to signal enhancement via
BSE acceleration. At low bias voltages the images appear to be dominated by one
particular source of noise—which we suspect derives from the scanning electron-
ics. Increasing the bias potential in this regime leads to an exponential rise in the
SNR as this noise source is drowned out (Figure 2.4; Figure 2.5). At sufficiently high
bias voltages, the image noise is instead dominated by shot noise, constraining the
exponential rise in SNRbeyond 1.5 kV. The practical limit to the amount of bias po-
tential we are able to apply is limited by the dielectric breakdown in vacuum. We
estimate for our particular setup that the breakdown voltage occurs above 3 kV—
well beyond the point at which the SNR plateaus.

Other volume EMmethods such as SBF-SEMor FIB-SEM also stand to gain from
the use of a negative potential bias. The gains in imaging speeds have the poten-
tial to shift the bottlenecks in these approaches to overhead factors such as time
spent slicing or milling [4]. If unaccounted for, the non-planar geometries in these
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techniques may induce more pronounced charging artefacts. Bouwer et al. [17]
show that charging artefacts can be mitigated by successfully filtering out SEs. We
have found that SE filtering is accomplished at moderate potential biases, though
in Bouwer et al. [17] the innermost rings of the BSE detector had to be selectively
turned off to achieve the same effect. Negative bias potential could similarly be
combined with the multi-scale approach taken by Hildebrand et al. [5]. The com-
bination with an integrated microscope as demonstrated here could then offer a
further benefit by in-situ selection of the regions of interest for highmagnification
acquisition. We envision a strategy in which regions of interest are first identi-
fied via fluorescencemicroscopy, then automatically navigated to and imagedwith
high resolution EM [31]. Higher throughput could then be realized through a com-
bination of faster acquisition via the negative bias potential, the removal of addi-
tional rounds of imaging, and the elimination of overhead from the entire imaging
pipeline.

Further throughput enhancement could be obtained in several ways. One op-
tion would be to increase the beam current, thus increasing the per-pixel elec-
tron dose. Higher currents, however, require larger aperture sizes which result
in greater chromatic and spherical aberration. This can be problematic for many
biological applications in which keeping aberrations at a minimum is critical for
reaching a desired resolution, e.g. resolving neuronal connections, nuclear pores,
or cell–cell junctions. Hence, it only makes to image with the maximum current
acceptable for one s̓ application. At the same time, the use of a negative bias po-
tential has previously been shown to result in improved resolution due to reduced
space charge andaberrations [13, 32]. Thus, theuse of anegative bias potentialmay
allow for a marginally higher beam current to further increase throughput. Alter-
natively, the signal may be strengthened by increasing the landing energy. This
may also be disadvantageous—as evidenced in Figure 2.1 and Figure 2.6—since too
great a landing energy will result in partial transmission of electrons through the
tissue section. In addition to reducing the number of generated BSEs in the tis-
sue, this will increase the noise level by detection of accelerated BSEs generated
in the underlying substrate. Finally, more signal could be generated by increas-
ing the amount of staining material in the sample. This is a common approach for
certain applications within large-scale EM such as neuronal connectomics, where
an almost binary level of contrast may still be acceptable [3]. Our stage bias ap-
proach holds promise to decrease acquisition times also in these applications, pro-
vided the lower limit imposed on dwell time by the detector response time is not
reached.

2.4. Material & methods
2.4.1. Modeling
All simulations were performed in Electron Optical Design (EOD) [22]. Descrip-
tions of how the simulations were carried out are provided in the main text. The
angular distribution of signal electrons generated by a beam of primary electrons
at a normal incident angle can be approximated by Lambert s̓ cosine law [23]. The
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probability of sampling a ray with angle 𝜃 to the normal of the surface is then pro-
portional to cos 𝜃 sin 𝜃 = sin 2𝜃. If 𝑈 is a random uniform distribution between 0
and 1, then

∫
𝜃

0
sin (2𝜃) 𝑑𝜃 = 𝑈 (2.1)

𝜃 = cos−1 (√𝑈) (2.2)

from which the initial angle of a signal electron can be chosen at random for use
in simulations.

2.4.2. Tissue and sample preparation
Fixed rat pancreas tissue were post fixed for 2 hr in 1% osmiumtetroxide and 1.5%
potassium ferrocyanide in 0.1M cacodylate for 2 hr at 4 ∘C. Followed by dehydra-
tion in a graded series of ethanol and finally embedded in EPON. Ultrathin section
of 80 nm were cut and placed on ITO glass. Sections were blocked for 30min with
1% bovine serum albumin (BSA; Sanquin, The Netherlands) in tris-buffered saline
(TBS), pH 7.4. Next, anti-insulin (guinea pig; 1:50 in 1% BSA/TBS) was incubated
for 2 hr, followed by three washes of 5min with TBS and subsequent incubation
for 1 hr with biotinylated secondary antibody (donkey-anti-guinea pig; 1:400 in 1%
BSA/TBS, Jackson Immunoresearch, UK) followed by three washes in TBS. Finally,
streptavidin conjugated Alexa594 (1:200, in 1% BSA/TBS, Life Technologies) was
added for 1 hr followed by three washes in TBS and twowithMilliQ water. Hoechst
staining was performed for 10min followed by a washing step with MilliQ water.

HeLa cells were cultured in a 37 ∘C, 5% CO2 incubator, in T75 culture bottles
(Corning). Cells were maintained in Dulbecco s̓ Modified Eagle s̓ Medium (DMEM;
Gibco) supplemented with 10% fetal bovine serum, 2mM L-glutamin, 100U/mL
penicillin, 100mg/mL streptomycin (referred to as complete DMEM). Cells were
passaged when confluency reached 85% to 90% were grown in 6 cm dishes. Cells
were incubated for 3 hrwith endocyticfiducialmarkers at a concentrationof 1mg/mL
dissolved in complete DMEM, rinsed, and then fixed with 2.5% glutaralhedyde +
2% formaldehyde in 0.1M Phosphate buffer. Fixed HeLa cells were scraped, em-
bedded in agarose and prepared for electronmicroscopy according to the protocol
described in [33] with minor modifications. Briefly, samples were postfixed us-
ing 1% osmium tetroxide (w/v) with 1.5% potassium ferrocyanide (w/v) for 1 hr on
ice, and stained with 2% uranyl acetate in dH2O for 30min. Dehydration was per-
formed using a graded ethanol series. Samples were embedded in EPON resin and
polymerized for 48–60 hr at 65 ∘C. Ultrathin sections of 100 nm were cut using a
microtome (Leica, U67) and placed on ITO glass. Hoechst staining was performed
for 120min followed by a washing step with MilliQ water, and air dried.

2.4.3. Signal-to-noise ratio measurements
The SNR is calculated by averaging the spectral signal-to-noise ratio (SSNR) [25]
over the full frequency space of the set of input images. Here, the input images are
composed of alternating scan lines from individual images acquired with a pixel
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size on par with the resolution of the electron beam. The SSNR is given by

𝑆𝑆𝑁𝑅(𝑅) =
∑𝑟∈𝑅∣∑𝑘 𝐹𝑘(𝑟)∣

2

𝐾
𝐾−1 ∑𝑟∈𝑅 ∑𝑘 ∣𝐹𝑘(𝑟) − ̄𝐹(𝑟)∣

2 − 1 (2.3)

where 𝐹𝑘(𝑟) is the Fourier transform of the 𝑘th image, there are 𝐾 images in total,
𝐹 = 1

𝑘 Σ𝑘𝐹𝑘(𝑟) is the mean of the Fourier transformed images, and 𝑅 is the region
of interest. A single SNR value for the entire image (Figure 2.4; Figure 2.A2) is
obtained when 𝑅 is the full image; when spectrally resolved (bottom row of Figure
2.5), 𝑅 is a ring in Fourier space.

Additional SNRmeasurements basedona cross-correlationapproachpresented
in Joy [26] were made to verify the SSNR-based calculations. In this approach, the
SNR is calculated from computing the cross-correlation coefficient, 𝑅𝑛, between
successive scan lines, 𝐼𝑖 and 𝐼𝑖+1, of individual EM images. The cross-correlation
coefficient is given by

𝑅𝑛 = cov (𝐼𝑖, 𝐼𝑖+1)
var (𝐼𝑖) var (𝐼𝑖+1) (2.4)

The signal-to-noise ratio is then calculated from

𝑆𝑁𝑅 = 𝑅𝑛
1 − 𝑅𝑛

(2.5)

2.4.4. Integrated microscopy workflow
Fluorescence microscopy was done in the integrated microscope via the SECOM
(Delmic B.V.), which has been retrofitted into the vacuum chamber of a Verios 460
SEM (Thermo Fisher Scientific) such that the two microscopes share a common
sample stage andoptical axis [34, 35]. With this configurationweare able to achieve
high overlay precision without a reliance on fiducial markers ormanual input [27].
The SECOM was equipped with a CFI S Plan Fluor ELWD 60XC microscope objec-
tive (Nikon), which was chosen for its high magnification in combination with an
extra-long working distance (2.60–1.80mm). This lens enabled greater bias poten-
tials to be reached without risking electrical breakdown in vacuum—at the cost of
a somewhat lower numerical aperture (0.70NA). Each FM image was comprised
of two 5 s exposures: (1) 555 nm excitation for Alexa 594 labelling of insulin and (2)
405 nm excitation for the Hoechst counterstain.

An overview of imaging conditions is provided in Table 2.2. Fluorescence mi-
croscopy image tiles were acquired in a 4 × 3 grid encompassing the tissue sec-
tion. Low-magnification EM images of the same (but slightly smaller) field of view
were acquired immediately following the acquisition of each FM image tile. An
automated alignment procedure was then executed to register each set of FM and
EM image pairs [27]. The information necessary for registration was stored in the
metadata of the image tiles for use in post-processing (Section 2.4.5). The stage
was then translated by 170 µm such that the FM images overlapped by a significant
margin, whereas the low-magnification EM tiles did not. This was done to prevent
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damage to the FM tiles due to e-beam irradiation. Following low-magnification
CLEM, a 40 × 30 grid of high-magnification EM image tiles was acquired over the
section. Each image was acquired in immersion mode at 3 keV primary beam en-
ergy with a −1.5 kV bias applied to the stage, resulting in a 1.5 keV landing energy.
Of the 1200 high-magnification EM images acquired, 113 were discarded as they
consisted of only either EPON or the substrate.

Table 2.2. Imaging parameters used for the full-section acquisition of 80 nm rat pancreas
tissue via the integrated light-electron microscope.

FM EM (Low-mag) EM (High-mag)

Resolution 107.8 nm/px 38.8 nm/px 4.86 nm/px
Dwell 5 µs 2 µs
Exposure 5 s
Field of View 220 µm 160 µm 20 µm

2.4.5. Reconstruction
Following imageacquisition, EM imageswerepost-processedwithhistogrammatch-
ing to correct for variations in intensity thought to have arisen fromelectron source
drift during acquisition (variation in the bias potential delivered by the external
power supply was negligible). No corrections were performed on the FM images.
FM and EM image dataset was then uploaded to a local server running an instance
of render-ws.1 EM images were stitched together using the method presented in
Khairy et al. [36]. The correlative overlay between the FM and low magnification
EM image tiles was done using the registrationmetadata collected at time of acqui-
sition as described in Section 2.4.4.

The process of correlating the FM and stitched, high-magnification EM image
tiles consisted of several steps. First, for each low-magnification EM tile, the set
of overlapping high mag EM tiles was found. A composite image of the overlap-
ping tiles was then rendered and processed with SIFT to find corresponding point
matches with the low mag EM tile [37]. An affine transformation was then com-
puted for this set of features and propagated to the FM tiles such that they overlaid
precisely with the stitched together, highmag EM image tiles. The entire sequence
of post-processing steps is compiled in a series of jupyter notebooks available in an
online repository.2

Small 1024 × 1024 px2 images of the reconstructed dataset are then rendered
and exported in a pyramidal format for visualization with CATMAID [38]. Within
CATMAID, the FM images are given a false color transformation and the EM images
are contrast-inverted for visualization purposes.

1https://github.com/saalfeldlab/render
2https://github.com/hoogenboom-group/iCAT-workflow

https://github.com/saalfeldlab/render
https://github.com/hoogenboom-group/iCAT-workflow
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2.A. Supplementary material

Figure 2.A1. BSE collection efficiency increases monotonically down to −3 kV potential bias
for both non-immersion (HR) and immersion (UHR) imaging modes.

Figure 2.A2. Comparison between SNRmeasurements from SSNR-basedmethod and cross-
correlation method presented in Joy [26]. The two methods tend to agree with one another
for bias voltages below −500V.
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3
Integrated array tomography
for 3D correlative light and

electron microscopy
Volume electron microscopy (EM) of biological systems has grown exponentially in recent
years due to innovative large-scale imaging approaches. As a standalone imaging method,
however, large-scale EM typically has two major limitations: slow rates of acquisition and
the difficulty to provide targeted biological information. We developed a 3D image acquisi-
tion and reconstruction pipeline that overcomes both of these limitations by using a wide-
field fluorescence microscope integrated inside of a scanning electron microscope. The
workflow consists of acquiring large field of view fluorescence microscopy (FM) images,
which guide to regions of interest for successive EM (integrated correlative light and elec-
tron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent
markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled
serial sections of tissues. Acquisitions are limited to regions containing biological targets,
expediting total acquisition times and reducing the burden of excess data by tens or hun-
dreds of GBs.

This chapter has been published as: Ryan Lane et al. “Integrated array tomography for 3D correlative
light and electron microscopy”. Frontiers in Molecular Biosciences 8 (2021).
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3.1. Introduction
Acentral objectivewithinneuroscience andcell biology is toproducehigh-resolution
(1–10 nm), three-dimensional reconstructions of biological specimen. Volumeelec-
tronmicroscopy (EM) is the preferred imaging method in this arena because of its
unique ability to resolve features across a wide spectrum of spatial scales [2, 3].
While EM provides highly relevant structural information and precise localization
of targets, immunogold labeling can only be visualized at high resolution, and in
Tokuyasu labeling section areas are typically limited to 0.01mm2 for analysis [4,
5]. Fluorescence microscopy (FM) provides biologically relevant information by
tagging specific biomolecules with fluorescent labels at large scale [6]. Regions of
interest (ROI) can in this way be quickly and reliably identified for subsequent high
magnification EM imaging. The information from these two imaging modalities
are combined in correlative light and electron microscopy (CLEM). ROI retrieval
across different microscopes is, however, nontrivial at large scales, particularly
when spread across multiple sections [7, 8, 9, 10, 11]. Other challenges associ-
ated with CLEM include the reliance on fiducial markers and intermediate sam-
ple preparation [12, 13]. One means of combating these challenges is by merging
these separate imaging systems into a single, integrated fluorescence and electron
microscope [14]. By detecting fluorescence expression in-situ, it can further be de-
cided in an automated fashionwhich areas to scan at highmagnification andwhich
areas to omit for the sake of higher throughput [15]. For array tomography appli-
cations, ROIs can be targeted with increasingmagnification through a sequence of
feedback loops [16]. Similarly, strategies for rapidly screening sections have been
developed for sequential CLEM to limit volume acquisitions to select ROI [17, 18].

Despite these potential benefits, an integrated microscope presents new chal-
lenges. In conventional array tomography samplepreparation, the sample is eluted
and restained between imaging methods [19]. Hence, there is no need to preserve
fluorescence labelling, which allows for post-staining to enhance EM contrast [20,
21]. The traditional way to compensate for diminished contrast is to boost the
EM signal by increasing the dwell time per pixel, but this comes at the expense
of throughput. An additional complication in integrated CLEM is electron-beam-
induced quenching of the fluorescence [22]. This imposes the constraint that the
fluorescence in a given area must be acquired prior to exposure from the elec-
tron beam, which prohibits uniformly pre-irradiating the sample with the electron
beam to enhance and stabilize contrast [23]. Conversely, in conventional serial-
sectionEM, there are scarce constraints regarding thenumber of times a particular
sample may be scanned, making possible approaches such as that by Hildebrand
et al. [24].

Our goal is to establish a workflow capable of quickly and efficiently rendering
three-dimensional CLEM volumes from serial sections in such a way as to over-
come these challenges. Three key initiatives steered the design of our integrated
correlative array tomography (iCAT)procedure. First, to prevent damagingor quench-
ing of the fluorescence signal via electron-beam irradiation, each FM field of view
must be acquired prior to EM exposure. Second, to compensate for the reduced
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application of contrast agents, backscattered electron (BSE) collection efficiency
is enhanced via a negative stage bias, allowing for higher throughput [25, 26]. Fi-
nally, a high precision EM-FM overlay is facilitated by the use of cathodolumines-
cent (CL) points, which eliminates the need for artificial fiducial markers [27]. An
alignment method was then developed to reconstruct the correlative image stack.
Islets of Langerhans from both rat and zebrafish pancreas tissue were chosen to
prototype the imaging and reconstruction workflows. By offering a more holistic
visualization of tissue, our integrated approach to 3D CLEM could lead to greater
insights in (patho)biology [28].

3.2. Material & methods
3.2.1. Tissue and sample preparation
Rat pancreas was prepared as follows: fresh pancreas was cut from an 83 day old
rat into small pieces and fixed in 4% paraformaldehyde (PFA; Merck) + 0.1% glu-
taraldehyde (GA; Polysciences) as described in Ravelli et al. [29]. A complete ze-
brafish larva (120 hpf)wasfixed in 2%PFA+2%GA.Both sampleswerepost-fixed in
1% osmium tetroxide and 1.5% potassium ferricyanide in 0.1M cacodylate buffer,
dehydrated through ethanol and embedded in EPON (Serva). 100 nm serial sec-
tions were cut and placed onto formvar-covered ITO-coated glass coverslips (Op-
tics Balzers). Immunolabeling was performed as described previously [23]. Sam-
ples were etched with 1% periodic acid for 10min, followed by a 30min blocking
step: 1%bovine serumalbumin (BSA; Sanquin, Netherlands) in tris-buffered saline
(TBS), pH 7.4. Next, anti-insulin was incubated for 2 hr (guinea pig; 1:50, Invitro-
gen, PA1-26938, RRID: AB_794668, for rat pancreas and anti-insulin; 1:100, Abcam,
ab210560, for zebrafish pancreas), followed by washing and subsequent incuba-
tion for 1 hr with biotinylated secondary antibody (donkey-anti-guinea pig; 1:400,
Jackson Immunoresearch, for rat pancreas and goat-anti-rabbit; 1:400, Dako, for
zebrafish pancreas) followed by washing steps. Finally, streptavidin conjugated
AF594 (1:100, Jackson Immunoresearch, for rat pancreas) and streptavidin conju-
gated TRITC (1:100, Jackson Immunoresearch, for zebrafish pancreas) were added
for 1 hr followed by washing.

3.2.2. Digital light microscopy
The sections, after being placed on the ITO-coated glass slide, are imaged at 30X
magnification (∼7 µm/px) using a VHX-6000 digital light microscope (Keyence) op-
erating in reflection mode. To capture every section on the 22mm × 22mm ITO-
coated glass slide, a 3 × 3 grid of RGB images is acquired and automatically stitched
together.

3.2.3. Integrated microscopy
The integratedmicroscope is a widefield SECOMfluorescencemicroscope (Delmic
B.V.) retrofitted into the vacuum chamber of a Verios 460 SEM (Thermo Fisher Sci-
entific) [14, 30]. The microscopes share a common optical axis, translation stage,
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and control software. FM images are obtained with 10 s exposures, recorded by a
Zyla 4.2 sCMOS camera (Andor - Oxford Instruments). Excitation wavelengths of
405 nm and 555nm are used to excite Hoechst and AF594. The SECOM is equipped
with a CFI S Plan Fluor ELWD 60XC (0.70NA) objective (Nikon), which allows for
long working distance imaging (1.8–2.6mm), to prevent electrical breakdown in
vacuum, which must be accounted for due to the presence of high electric fields
induced by the stage bias [31].

SEM imaging is conducted in two rounds: (1) low-magnification (38 nm/px) scans
accompanying each fluorescent acquisition; (2) high-magnification (5 nm/px) ac-
quisitions on ROI identified by fluorescence expression. Both low and highmagni-
fication imaging are performed at 2.5 keV primary beam energy with a −1 kV bias
potential applied to the sample stage such that the landing energy is 1.5 keV, which
proved optimal for ∼100 nm sections. The negative potential bias enhances the
backscattered electron (BSE) signal, which is collected by the insertable concen-
tric backscattered detector (Thermo Fisher Scientific) [26].

3.2.4. Alignment and reconstruction software
Image data from the integrated microscope is uploaded to a local storage server
running an instance of render-ws,1 a collection of open-source web services for
rendering transformed image tiles. The tiles and their respective metadata are or-
ganized into stacks, configured asMongoDBdatabases. The alignment routines are
arranged in a series of Jupyter notebooks,2 which parse the imagemetadata for the
EM-FM overlay as well as make calls to render-ws via a python wrapper (render-
python3). EM image stitching andvolumealignment arebasedon the scale-invariant
feature transform (SIFT)—an algorithm designed to detect and match local fea-
tures in corresponding images [32]. SIFT features are stored in render-wsdatabases
where they can be processed by BigFeta,4 a linear least squares solver for scalable
2D and 3D image alignment based on point correspondences. CLEM datasets are
ultimately exported to CATMAID [33] for google-maps-like visualization. 3D visu-
alizations are done in Fiji [34] using the Volume Viewer plugin.5

3.3. Results
3.3.1. Section detection and in-situ navigation
Simple navigation between serial sections within the integratedmicroscope is cru-
cial. Following joint EM-FM sample preparation (Figure 3.1A), the sections are
imaged by the digital light microscope (DLM) (Figure 3.1B). To facilitate naviga-
tion within the integrated microscope (Figure 3.1C), the resulting overview image
is used for detecting the boundaries of each section on the ITO-coated glass sub-

1https://github.com/saalfeldlab/render
2https://github.com/hoogenboom-group/iCAT-workflow
3https://github.com/AllenInstitute/render-python
4https://github.com/AllenInstitute/BigFeta
5https://imagej.net/plugins/volume-viewer

https://github.com/saalfeldlab/render
https://github.com/hoogenboom-group/iCAT-workflow
https://github.com/AllenInstitute/render-python
https://github.com/AllenInstitute/BigFeta
https://imagej.net/plugins/volume-viewer
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Figure 3.1. Integrated array tomography. (A) Ultrathin sections are prepared for simultane-
ous FMand EM imaging. (B) An overview image of the sections on the ITO-coated glass slide
is then acquired by a digital light microscope (DLM). (C) Next, the sample is transferred to
the integratedmicroscope for CLEM imaging. SEM imaging is performed using a −1 kV bias
potential applied to the sample stage to enhance BSE collection from the non-post-stained
sections. (D) The overview image obtained by the DLM is used for instance segmentation of
the serial sections. Descriptions of the image processing steps (i-vi) is provided in the main
text. (E) The section overview image and bounding box coordinates of each serial section
are fed to the microscope software to facilitate navigation.

strate via a segmentation routine6 (Figure 3.1D). The overview image (inset i) is first
contrast enhanced and converted to grayscale (inset ii). Intensity-based threshold-
ing is used to create a binary mask image (inset iii), which is then applied to the
grayscale image. To retrieve outlines of the section boundaries, the gradient is
computed (inset iv). Watershed segmentation is then implemented by flooding the
gradient image with a number of markers equal to the number of serial sections in
the image (inset v). The resulting labelled image (inset vi) then serves as input for
navigation using a plugin within Odemis,7 the open-source software that controls
the microscope (Figure 3.1E).

6https://github.com/hoogenboom-group/secdetect
7https://github.com/delmic/odemis

https://github.com/hoogenboom-group/secdetect
https://github.com/delmic/odemis
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3.3.2. Targeted correlative acquisition of an individual region of in-
terest

To identify ROI in the integrated microscope for subsequent EM acquisition, the
correlative imaging scheme is engineered to obtain fluorescence overviews of each
section, undamaged by the electron beam. The workflow starts by acquiring a FM
and low-magnification EM image tile (Figure 3.2A). The FM tile is acquired prior
to the EM tile to preserve the fluorescence signal. An automated registration rou-
tine guided by cathodoluminescent (CL) spots is then run to register the image pair
[27]. This sequence of correlative imaging is automatically repeated in a grid-like
pattern, encompassing the entire section. FM image tiles are acquired with a 20%
overlap such that they can be stitched together to allow for fluorescence-based ROI
detectionwithin each section (Figure 3.2B). Thefieldwidth of theEM tile (∼140 µm)
is chosen such that it spans the maximum extent possible without entering the
overlap region of the neighboring FM image tiles,

𝑤𝐸𝑀 = 𝑤𝐹𝑀 − 2𝑜𝐹𝑀𝑤𝐹𝑀 (3.1)

where 𝑤𝐸𝑀 and 𝑤𝐹𝑀 are the respective EM and FM fields of view, and 𝑜𝐹𝑀 is the
overlap between adjacent FM tiles. In this way EM-FM registration is performed
over as large an area as possible, while avoiding bleaching of the fluorescence. Flu-
orescence imaging of the entire section prior to EMwould fulfil the same objective
while circumventing the need for gaps between low-magnification EM image tiles.
This would require manually registering the tilesets, however, as the transforma-
tion obtained from the CL registration procedure is unique to each image pair.

Fluorescence expression is then used to target areas for additional EM imaging
at higher magnification (5 nm/px) (Figure 3.2C). The ROI is manually navigated to
via stage translation, whereby an automated tileset acquisition is initiated (Figure
3.2D). The tiles are spaced with a 10–15% overlap such that they can be stitched
during post-processing. The correlative imaging pipeline is then repeated on the
remaining serial sections.

3.3.3. 2D Stitching and correlation
Overlaying the fluorescence onto the high-magnification EM requires correlating
the datasets across differentmodalities and spatial scales. Each FM tile is first over-
laid onto the corresponding low-magnification EM tile using the metadata gener-
ated by the CL registration procedure. A grid of CL spots is recorded with the cam-
era of the fluorescencemicroscope in the absence of excitation light (Figure 3.3A).
The appropriate affine transformation is calculated by localizing each CL spot and
matching it with the known position of the electron beam (“cross-modal” registra-
tion) [27]. The stage coordinates are extracted to then correlate and position each
image pair in the tileset (Figure 3.3A).

The high-magnification EM tileset is stitched independently of both the FM and
low-magnification EM tiles (Figure 3.3B). Stage coordinates are used to first estab-
lish a set of potential neighboring tiles. For each tile, SIFT features are extracted
andmatched between the candidate neighbors. Affine transformation parameters
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Figure 3.2. Integrated array tomography provides efficient, high-precision EM-FM imaging
without bleaching of the fluorescence. (A) Acquisition of correlative FM (green outline) and
low-magnificationEM (black outline) images, followedby a registration procedure involving
CL spots (grey circles) to register the image pair. (B) The stage is translated in a grid-like
fashion such that there is sufficient overlap between neighboring FM image tiles—leaving
a gap between adjacent EM tiles. (C) The fluorescence signal is used to identify targets for
subsequent EM imaging (black outline). (D) The target ROI is captured by an automated
tileset of high magnification EM tiles. Scalebars: (B) 100 µm; (D) 50 µm (inset, 0.5 µm).
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Figure 3.3. Correlative alignment routine registers tilesets across modalities and scales. (A)
Automated registration procedure for registering FMand low-magnificationEM image pairs
using CL spots. FM tiles are then overlaid onto the low-magnification EM tiles of each sec-
tion. (B) SIFT features (yellow squares) are extracted andused to stitch together neighboring
high-magnification EM tiles within each section. (C) Low-magnification EM images are reg-
istered to the corresponding area of the stitched together high-magnificationEM tileset. The
low-magnification tiles thereby serve as a reference to ultimately overlay the fluorescence
onto the high-magnification EM.

for each tile are then estimated by minimizing the squared distance between cor-
responding features [35, 36].

Next, the low-magnification image tiles are registered to the correspondingarea
of the stitched high-magnification EM tileset (“cross-spatial” registration, Figure
3.3C). Stage coordinates are used to determine the set of high-magnification tiles
that overlap with each low-magnification tile. A composite image of the overlap-
ping tiles is rendered, processed with SIFT, and matched with the features in the
low-magnification tile. Theaffine transformation computed from the featurematch-
ing is then propagated to each of the FM tiles such that they are overlaid onto the
high-magnification EM tileset. In this way, the low-magnification EM serves as
a proxy to correlate the fluorescence to the high-magnification EM. The overlay
accuracy is reduced in the areas between low-magnification tiles where the trans-
formation is extrapolated (Supplementary Figure 3.A1A –F). This can be corrected
for via (manual) landmark registration by e.g. aligning the Hoechst signal to nu-
clei recognized in the EM using software such as ec-CLEM [37], which is routinely
used for image registration in sequential CLEM experiments [38, 39, 40]. In gen-
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Rough Alignment (3D)A B Fine Alignment (3D)

Figure 3.4. Volume reconstruction of the high-magnification EM stack. (A) SIFT features
(yellow squares) are used to roughly align the high-magnification EMstack in 𝑧. A downsam-
pled image of each section is rendered as the full resolution EM tileset is too large (several
GB) for feature extraction. (B) The EM stack alignment is refined by least squares optimiza-
tion of the displacement between matched features.

eral, the overlay accuracy cannot be expected to be below the pixel size of the low
magnification EM.

3.3.4. Correlative 3D reconstruction
A robust and scalable solution is required for volume alignment of the high-mag-
nification EM stack, the “backbone” of the multimodal dataset. The stitched sec-
tions are downsampled and roughly aligned in 𝑧 (Figure 3.4A) to facilitate feature
mapping between image tiles in adjacent sections. A system of linear equations
consisting of SIFT features is then solved to finely align the image stack in 3D (Fig-
ure 3.4B) [36]. The features extracted during stitching are reused, enabling a faster
and more efficient reconstruction of the EM volume.

The 2Dcorrelative alignmentprocedure (Figure 3.3) is then runoneach section,
mapping the fluorescence onto the high-magnification EMvolume. The nine serial
sections of rat pancreaswere thereby used to realize a proof-of-concept of the iCAT
workflow (Figure 3.5A). An islet of Langerhans was identified from anti-insulin im-
munofluorescence of AF594 and chosen for subsequent, high-magnification EM
imaging (Figure 3.5B). The fluorescence data clearly delineates the endocrine re-
gion from the surrounding exocrine tissue, which is characterized by dense endo-
plasmic reticulum (ER) and the absence of insulin labeling (Figure 3.5C). Although
it was chosen as a nuclearmarker, Hoechst also binds to the RNApresent in the ER.
The endocrine region, in contrast, is characterized by an abundance of insulin-
secreting beta cells with distinct nuclei. The high EM-FM registration accuracy
afforded by iCAT enables a clear distinction between different types of granules
present in the endocrine tissue (Figure 3.5D). Discerning insulin from other hor-
mone granules is nontrivial as all are roughly 100 nm in diameter. Making this
differentiation from EM data alone requires expert-level interpretation.
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Figure 3.5. Correlative reconstruction of nine sections of pancreas. (A) 2D and 3D align-
ment routines are combined to yield a CLEM stack of nine serial sections of rat pancreas tis-
sue. (B –D) CLEM imaging of the islet of Langerhans at varying spatial resolution. Hoechst
(blue) and AF594 (orange) fluorescence signals are superimposed onto the EM ultrastruc-
ture. The AF594 signal, in particular, facilitates recognition of insulin granules from e.g.
non-fluorescent glucagon granules (white arrows, D). Scale bars: (B) 50 µm; (C) 5 µm; (D)
1 µm. Raw data at full resolution is available via Nanotomy.

By limiting high-magnification EM to only the islet, the total imaging volume is
reduced by a factor ∼10 with respect to the full section volume (0.03mm2 per islet
vs 0.4mm2 per section). Similar reductions are realized in the total dataset size
(0.1 vs ∼1 TB) easing datamanagement requirements. This initial proof of concept
was designed around only a limited number of serial sections to more efficiently
optimize each procedure in the workflow.

3.3.5. Proof of concept on zebrafish pancreas tissue
To demonstrate the scalability of the workflow, we applied it to a larger volume
of larval zebrafish (Figure 3.6). The Hoechst signal was useful in identifying the
exocrine region of the pancreas (Figure 3.6B) as the insulin immunofluorescence
from TRITC was weak. TRITC was chosen for its stronger fluorescence in vacuum
compared to Alexa dyes (manuscript in preparation); potential causes for the weak
immunofluorescence in the zebrafish pancreas are still under investigation. The
exocrine region, encompassing an islet of Langerhans, together with the under-
lying muscle tissue was selected for high magnification EM. The reconstruction
of the CLEM volume was cropped to remove the background fluorescence in the
swimbladder (Figure 3.6C). Sub-stackswithin the correlative volumewere then ex-
tracted for further analysis (Figures 3.6D, G). Note that the ultrastructure is better

www.nanotomy.org
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preserved in most tissues than in the islet (Figure 3.6H, I), a phenomenon previ-
ously seen in other species (unpublished results).

Wegenerally observehighEM-FMoverlayprecisionas evidencedby theHoechst
signal confined to the nuclear envelope in the muscle tissue (Figure 3.6E, F). The
registration accuracy does, however, exhibit variability in several sections—more
so than is seen in the rat pancreas tissue where it appears limited to the gaps be-
tween low-magnification EM tiles. In these instances, the inaccuracy stems from a
malfunction in the CL registration procedure itself (Supplementary Figure 3.A1G–
N). Variations in the EM image intensity, particularly in the islet, can also be ob-
served for a number of sections (Figure 3.6H: 𝑋𝑍 and 𝑌𝑍 cross-sections). We at-
tribute these artifacts primarily to ultrastructure preservation as they do not ap-
pear to be as prevalent in the muscle tissue. While the SEM imaging parameters
and detection settings were held constant throughout the acquisition, day-to-day
changes in the environment (e.g. temperature, humidity levels) may have varied.

In total, 66 sectionswereprepared, ofwhich three (𝑧 = 9, 10, 34)were discarded
due to excess surface debris. The omission of consecutive sections was mitigated
by extending the SIFT feature depth search from 2 to 3 such that sections 𝑧 = 8 and
𝑧 = 11 could be registered. Total acquisition times for low-magnification CLEM
and high-magnification EMwere 7.2 hr and 71hr respectively, versus 335 hr for full
section imaging at high-magnification.

3.4. Discussion
A new workflow for integrated array tomography for the semi-automated acquisi-
tion and reconstruction of volume CLEM data is presented. High-resolution EM
is limited to select ROI by targeting areas based on fluorescence expression. This
not only expedites acquisition time, but eases the burden on data management
requirements. Interpretation of EM data is in turn facilitated by the addition of
fluorescent labels. The workflow demonstrated here extends the work of Liv et
al. [14], which introduced the integrated microscope, and Haring et al. [27], which
presented the fiducial-free CL registration procedure, to targeted correlative imag-
ing of serial sections. Gabarre et al. [16] presented an alternative method for inte-
grated array tomography in which light microscopy and EM are combined to local-
ize structures through a series of feedback loops. Our approach differs in several
ways. First, fluorescence imaging is done in-vacuo as opposed to transmitted light
microscopy done at ambient pressure. This allows formore automated EM-FM (or
EM-LM) overlay, as the CL registration procedure can only be done in high vacuum
[27]. Additionally, the multi-modal alignment methodology conceived here offers
a more scalable solution for generating volumetric CLEM data. Integrated array
tomography was inspired in part by the multi-scale approach of Hildebrand et al.
[24], in which full brain EM imaging of a larval zebrafish was conducted by select-
ing ROI for subsequent acquisition based on inspection between imaging rounds.
In this work, conversely, ROI are identified by in-situ fluorescence, bypassing the
need for post-processing and alignment between magnification scales.

On-section immunofluorescence and fluorescent staining constitute viable op-
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Figure3.6. Integrated correlative array tomography applied to 63 serial sections of zebrafish
pancreas. (A) Contrast-enhanced optical image of an individual serial section obtained by
the DLM. The section was re-acquired post-EM imaging, revealing the region of interest
irradiated by the electron beam. The biologicalmaterial can be seen in pale blue in contrast
with the bare EPON (brown background). (B) Hoechst signal of an individual serial section,
outlining (white) the portion of the tissue shown in (C). (C) CLEM volume of the zebrafish
tissue cropped to the ROI selected for high-magnification EM imaging—plus a portion of the
surrounding fluorescence signal. Sub-stacks for inspection are denoted by orange (D –F)
and red (G – I) boxes. (D) 3D sub-stack ofmuscle tissuewithin the zebrafish pancreas. Green
lines indicate orthoslices of the 𝑋𝑌, 𝑋𝑍, and 𝑌𝑍 planes shown in (E). (F) Zoomed-in region
of the 𝑋𝑌 plane showing high-precision FM overlay of Hoechst onto a cell nucleus. (G – I)
Same as in (D –F), but for an islet of Langerhans. Ill-defined cell and organelle membranes
in (H) and (I) indicate suboptimal preservation of the ultrastructure in this region of the
pancreas. Scale bars: (A, B) 100 µm; (E, H) 10 µm; (F, I) 1 µm. Raw data at full resolution is
available via Nanotomy.

www.nanotomy.org
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tions for FM imaging of resin-embedded sections in high vacuum. Pancreas tis-
sue in particular is well-suited for immunofluorescence due to the prevalence of
insulin epitopes. While in both nature and technique development, immunolabel-
ing approaches are always dependent on the capacity for antibodies and epitopes
to interact, this is typically inefficient for most antibodies, and particularly so for
EPON-embedded sections. We find that approximately 1 in 10 antibodies tested in
our lab are applicable for EPON labeling. While acrylic resins (e.g. Lowicryl, LR
White) have been shown to be more compatible with immunolabeling, a trade-off
must be made between the strength of the fluorescence signal and the quality of
the ultrastructure [41, 42]. Complications with serial sectioning and ultrastructure
preservation (beyond that shown in the zebrafish pancreas) arose when experi-
menting with Lowicryl; hence EPON was selected as the embedding medium for
this study.

Probes typically used for live FM, such as fluorescent proteins, are likewise in-
compatible with conventional EM sample preparation techniques [12]. Although
protocols have been developed for retaining fluorescence post-embedding [43, 41,
44, 45], the same compromises exist between fluorescence retention and ultra-
structure preservation. Fluorescent proteins have the additional limitation that
the specimen must be genetically modified, rendering them unsuitable for use in
native animals and humans. In-resin fluorescence preservation thus remains a
challenge—only made more difficult by imposing high vacuum conditions, which
may lowerfluorescence intensities for biological probes typically optimized for use
in aqueous environments [44]. We are nevertheless confident that future develop-
ments in fluorescent proteins and embedding media will present compelling op-
portunities to apply integrated array tomography to a variety of biological ques-
tions.

We foresee that the multimodal datasets obtained using this method will be in-
strumental in forthcoming machine learning applications [46, 47, 48]. Thus far,
applications of registered EM-FM datasets appear to be limited to facilitating reg-
istration of sequential CLEM data using artificial predictions for the fluorescence
signal [49, 50]. Volume EM datasets, particularly in connectomics, are now rou-
tinely segmented via deep convolutional neural networks [51, 48]. Acquisition rates
and manual annotation of datasets, however, both serve as bottlenecks for recon-
structing dense networks of cells and organelles [3]. Given its ability to provide la-
beled biological information as well as reduce imaging volumes to select regions,
integrated array tomography is poised to deliver significant gains in this arena.

Future work will be directed towards further refinement and automation. The
CL registration procedure could be made more robust by illuminating the sample
with a greater number of CL spots or by increasing the camera integration time.
Updates to the alignment software could furthermore allow for the distortion field
correction used in Haring et al. [27] to achieve sub-5 nm overlay precision. Cutting
sections manually remains a significant bottleneck for throughput, as it is prone
to error and requires expert training [52]. We expanded from a single section to
nine, to 63, and have now placed more than 100 serial sections onto ITO-coated
coverslips. Increasing beyond ∼10 µm of biological material, however, is cumber-
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some without more sophisticated sectioning techniques such as automated tape-
collecting ultramicrotome (ATUM) [53] or magnetic collection [54]. These may in-
troduce their respective complications; ATUM, for example, is designed to collect
sections on (opaque) Kapton tape. More extensive automation strategies can al-
ternatively be applied to the correlative imaging pipeline. Delpiano et al. [15] de-
vised a way to automatically detect fluorescent cells using an integrated light and
electronmicroscope. We envision a workflow for fully automated integrated array
tomography in which fluorescent ROIs are automatically recognized, navigated to,
and acquired, rendering three-dimensional CLEM datasets tailored to answer the
specific biological research question.
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Figure 3.A1. Reduced overlay accuracy due to extrapolation and errors in the CL regis-
tration procedure. Overlay (in)accuracy is a combination of the errors in the cross-modal
and cross-spatial registration procedures. (A) Partial low-magnification CLEM tileset of rat
pancreas from which features inside (B –D) and outside (E – F) a low-magnification EM tile
were selected to assess the overlay accuracy (denoted by white squares). (B) Cross-modal
registration error for a cell nucleus in low-magnification CLEM, measured by calculating
the centroid of the nucleus in both modalities and computing the relative displacement.
(C) Cross-spatial registration error as measured by the phase correlation between the low
and high-magnification EM. (D) Sub-100 nm overlay accuracy for the cell nucleus in high-
magnification CLEM. (E – F) Same as in (B) and (D) for a cell nucleus acquired outside of a
low-magnification EM tile. Overlay accuracy is reduced to several hundred nanometers due
to the imprecision incurred by extrapolating the cross-modal registration. (Continued on
next page…)
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Figure3.A1. (G) Partial low-magnificationCLEM tileset of zebrafish pancreas froma section
in which the CL registration procedure achieved the expected precision. (H – J) Same as
in (B –D) but for a nucleus in the zebrafish pancreas. (K –N) Same as in (G – J) but for the
section with the lowest apparent overlay accuracy (1.5 µm). The inaccuracy is dominated
by an error in the cross-modal registration as the phase correlation (M) shows a sub-50 nm
translation. Possible causes for the error include poor CL spot localization due to noise in
the CL signal. Scale bars: (A) 50 µm; (B, D, E, F) 0.5 µm; (G, K) 50 µm; (H, J, L, N) 1 µm.
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4
Label-free fluorescence

predictions from large-scale
correlative light and electron

microscopy data
Electron microscopy (EM) provides high-resolution images of (sub-)cellular ultrastructure.
Identifying particular organelles or proteins of interest from EM images alone, however, is
often a challenge. Deep learning-based approaches have rapidly been adopted within bio-
logical EM to perform structural recognition tasks, such as organelle segmentation, due to
their strength in pattern inference and analyzing visual imagery. Such approaches require
large training datasets, typically at the expense of hundreds of hours of human annotation.
As an alternative means of providing biological labels to EM datasets, we developed CLEM-
net, a deep convolutional neural network that has been trained on large-scale (∼16GB) cor-
relative light and electron microscopy (CLEM) data. These datasets have been compiled
via integrated array tomography such that manual annotation is not required for generat-
ing predictions. CLEMnet predictions generated on EM images unseen by the network are
highly correlated with the measured fluorescence signal. As the biological labels generated
by the network are localized to specific cellular features and organelles, we additionally as-
sess the feasibility of the correlative fluorescence data andnetwork-generated predictions as
training masks for organelle segmentation. Segmentation models trained on these masks
significantly underperform those trained on masks made by hand, overall segmentation
performance is greatly improved by minimal human annotation.

This chapter is in preparation for amanuscript to be submitted for publication: Ryan Lane et al. “Label-
free fluorescence predictions from large-scale correlative light and electronmicroscopy data”. In Prepa-
ration (2022).
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4.1. Introduction
Electronmicroscopy (EM) has transformed theway inwhich biologists understand
intra- and inter-cellular systems. Due to the lack of inherent biological specificity,
however, interpretation of EM datasets typically requires tedious expert analy-
sis and annotation. For this reason, fluorescence microscopy (FM) is often used
in conjunction with EM, complementing structural data with targeted biological
labels. Fluorescent labelling, however, comes with several drawbacks. Sample
preparation protocols are often laborious, involve genetic modifications, and are
potentially damaging to the sample [2, 3]. Protocols must also be adapted to limit
concentrations of heavy metal staining if intermediate processing of the sample
is to be avoided [4, 5]. Fluorescent labelling is also susceptible to bleedthrough
when multiple fluorophores are expressed in a single sample as well as varying
specificity—Hoechst dyes, for instance, bind to both DNA and RNA. Furthermore,
registering the separate imaging modalities across large spatial extents remains
a technically challenging and primarily manual task [6, 7, 8]. Correlative fluo-
rescence and electron microscopy experiments are therefore typically limited in
scope to the micron or tens of microns scale, and thus so are the regions for which
biological labels can be provided [9, 8].

As recognition of organelles and other subcellular structures remains a pivotal
obstacle in biological EM, we questioned whether large-scale EM datasets [10, 11]
could be supplemented with biological labels through alternatemeans. To address
this question, we sought to leverage recent advances in deep learning. Deep con-
volutional neural networks (CNN) in particular have been shown to be capable of
inferring complex, non-linear relationships from image data [12, 13]. Prior work
involving deep CNNs in the context of electronmicroscopy data has primarily been
limited to applications in segmentation, denoising, and compressed sensing [14].
Semantic segmentation, the classification of pixels into discrete categories, does
ultimately serve the purpose of adding biological labels to EMdata. However,mod-
ern deep learning approaches require hours of tedious expert segmentation [15,
16, 17, 18, 19, 20]. In order to perform whole-cell organelle segmentation, for in-
stance, 28 µm3 of training data was manually segmented; each cubic micron block
required one person two weeks of manual segmentation [21].

Although relatively little attention has been paid to alternative applications in
deep learning for EMdata, recent work has focused on generating biological labels
from other imaging modalities. Christiansen et al. [2] designed a deep neural net-
work to predict fluorescence labels from transmitted light images. Ounkomol et al.
[22] extended the technique to generate 3D fluorescence from stacks of transmit-
ted light microscopy data and further demonstrated the possibility of predicting
immunofluorescence from EM images in order to facilitate automatic registration
of fluorescence data with EM. Seifert et al. [23] similarly developed a CNN for reg-
istering correlative datasets, releasing it as a FIJI plugin. To address the challenge
of adding biological specificity to large-scale EM datasets, we thus explored the
potential for a CNN to make label-free fluorescence predictions from EM (image)
data.
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In this workwe present a deep CNN, CLEMnet, for generating fluorescence pre-
dictions on large-scale EM data of tissue and cellular samples. We demonstrate the
performance of ourmodel on thin sections of rat pancreas tissue, which have been
immunolabelled with Alexa Fluor 594 and given a Hoechst counterstain, as well as
Hoechst-stained sections of resin-embedded mouse breast tumor cells. Network
predictions are quantitatively evaluated against corresponding true fluorescence
images based on the Pearson correlation coefficient (PCC, or 𝜌) as well as by as-
sessing human recognition of fluorescence predictions on cell nuclei. We addi-
tionally assess the network s̓ robustness by measuring its predictive power on EM
datasets acquired with a diverse range of imaging parameters. Finally, we explore
the potential of correlative and predicted fluorescence signals for use as labels in
segmentation experiments.

4.2. Results
4.2.1. Network overview
To train a CNN to predict the fluorescence signal from EM images, we create train-
ing datasets comprised of high-magnification EM and FM image pairs. The FM
images are acquired by a fluorescence microscope integrated into the chamber of
a scanning electronmicroscope (SEM) [24, 25]. This experimental setup allows for
high accuracy overlay precision without a reliance on fiducial markers or man-
ual input [26]. This is advantageous as it prevents the network from learning on
extrinsic markers or bias in the image registration. It further allows for the semi-
automated accumulation of correlative datasets, scalable to several GBs [5].

To optimize performance for GPU clusters, the large-scale correlated datasets
are divided into small tiles which serve as input for the model (Figure 4.1A). Image
tiles are shuffled to diversify the training area, reducing the likelihood of overfit-
ting to a particular region of the specimen. A deep CNN was chosen for the model
architecture for its strength in recognizing structural detail in EM images as well
as for its superhuman pattern recognition capabilities [27]. To address the reso-
lution mismatch between EM-FM image pairs, the model is designed with more
contraction than expansion paths, which results in an elongated, backwards “J”-
shape as opposed to the more typical “U” (Figure 4.1B). Once trained, the model is
able to generate predictions of the fluorescence intensity on individual EM image
tiles. Separate correlative EM-FM datasets are set aside for validating and testing
the model. By stitching together the model s̓ output it is possible to render large-
scale predictions of the fluorescence intensity, which can then be overlaid onto the
EM test dataset (Figure 4.1C).

4.2.2. Network predictions on thin tissue sections
To characterize the performance of our network, we first apply it to routinely pre-
pared ultrathin sections of rat pancreas tissue [28]. The sections are stained with
Hoechst, targeting cell nuclei, and immunolabelled with AF594, targeting insulin
granules. The prediction (green) is found to correlate well with the measured flu-
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Figure4.1. Procedure for fluorescence intensity predictions. (A) Training data for themodel
consists of registered, large-scale CLEM datasets. For the rat pancreas tissue shown here,
the fluorescent channels consist of a Hoechst stain (blue), targeting cell nuclei, and AF594
(orange), immuno-targeted to insulin granules. (B) The correlative image data is input to an
asymmetric convolutional neural network which maps EM to FM. The model is illustrated
as a backwards “J” due to the resolution mismatch between EM and FM. (C) Once trained,
the network generates predictions on EM test data such that the predictions can be overlaid
to amass large-scale, artificial CLEM datasets.

orescence (red); PCCs of 0.67 for Hoechst (Figure 4.2A) and 0.76 for AF594 (Figure
4.2F) are computed when averaged across an entire islet of Langerhans. At high
magnification, the measured and predicted intensities for Hoechst are found to
exhibit a close qualitative resemblance (𝜌=0.73; Figure 4.2B–E). Notably, both sig-
nals aremore heavily concentrated along the nuclear envelope and areas of denser
chromatin within the nucleus. The predicted AF594 signal matches well with that
of the measured fluorescence (𝜌 = 0.73; Figure 4.2H–J) with the caveat that the
predicted intensity appears to spread out more uniformly over adjacent insulin
granules—possibly due to the granules being diffraction-limited.

There are other factors that may contribute to a diminished PCC that are ex-
traneous to the network. These include bleedthrough of one fluorescence channel
into another (Figure 4.A1B), errors in the EM-FM registration (Figure 4.A1C), and
aberrations in the fluorescencemicroscope (Figure 4.A1D). Not only do these cases
warrant a reduced correlation coefficient, but they demonstrate the network s̓ abil-
ity to effectively correct for imperfections in the measured fluorescence.

4.2.3. Human evaluation of fluorescence vs label-free prediction
To further characterize the performance of the model, we assess human recogni-
tion of cell nuclei in the network-generated predictions versus the measured fluo-
rescence (Figure 4.3). In order to quantify recognition proficiency, we establish a
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Figure 4.2. Network predictions of the fluorescence intensity correlate well with the mea-
sured fluorescence signal. (A) The measured (red) and predicted (green) fluorescence for
a nucleus marker overlaid onto a large-scale EM dataset of an islet of Langerhans. Regions
of high correlation appear as yellow. Zoomed insets show the EM (B); measured (C), pre-
dicted (D), and combined (E) fluorescence for an individual cell nucleus. (F) Same as in (A)
but for AF594 targeting insulin granules. (G – J) Same as in (B –E) but for a cluster of insulin
granules. Scale bars: (A, F) 20 µm; (B –E, G – J) 1 µm.
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ground truth (GT) set of cell nuclei based on EM (Figure 4.3A). Approximately 200
cell nuclei were manually annotated by a combination of experts and trained vol-
unteers. Spurious annotations were filtered out using unsupervised, brute-force
nearest neighbors. 𝑘-means clustering was then used to partition the remaining
annotations into point clouds fromwhich the centroids were computed and added
to the GT.

The experts and trained volunteers were then asked to recognize cell nuclei in
themeasured and predicted fluorescence datasets (Figure 4.3B–C). Nuclei are con-
sidered to be correctly identified (true positive, TP)when they are detectedwithin a
certain threshold distance—approximately the average radius of a nucleus—from a
nucleus in the GT. Incorrectly identified nuclei (points for which there is no nearby
nucleus) are considered to be false positives (FP), while those that are missed en-
tirely are considered to be false negatives (FN).

The precision, recall, and Sørensen–Dice index (F1 score) are calculated for
each of the expert and trained volunteer annotation sets (Figure 4.3C). Similar av-
erage precision scores for the measured and predicted fluorescence (72% vs 74%)
suggest that a comparable number of false positives were identified in both, while
the notably higher recall for the predicted dataset (80% vs 58%) indicates that a
substantially higher number of cell nuclei become recognizable from thepredicted
signal. This is visibly apparent throughout the dataset (Figure 4.3B–C insets), but
is particularly noticeable in the periphery where the fluorescence is marginally
weakerdue tonon-uniform illuminationandnuclei becomeobscureddue toHoechst
expression from RNA in the endoplasmic reticulum. The F1 scores (76% predicted
vs 64%measured) reveal the improved recognition ability afforded by the network-
generated predictions. The same assessment cannot be done for insulin granules
as the typical size is ∼100 nm—well below the diffraction limit.

4.2.4. Network robustness
We evaluated the network s̓ ability to make fluorescence predictions from EM data
acquired with different imaging settings. To address this question, we first ac-
quiredCLEMdata fromserial sections ofHoechst-stainedmousebreast tumor cells
embedded in lowicryl HM20. Ten regions from three different sections were ac-
quiredwith the same imaging settings to establish a baseline set of imaging param-
eters for the training data (Section 4.4.3). The training dataset was supplemented
with CLEM data from the rat pancreas endocrine tissue (Hoechst channel only),
which was also acquired with the same baseline settings. Individual imaging pa-
rameters were then adjusted for subsequent CLEM acquisitions of additional re-
gions of tumor cells (Table 4.1). Section S006B, for instance, was acquired with
a decreased landing energy (1000 eV versus 1500 eV baseline). Various types of
data augmentation including elastic deformation, affine transformations, bright-
ness/contrast adjustment, and noise augmentation were applied during training to
improve the model s̓ robustness (Section 4.4.4).

Fluorescence intensity predictionsweremadeon 1 µsEMdata in order to assess
the network s̓ ability to generate predictions on lower signal-to-noise ratio (SNR)
images (Figure 4.4AI – IV). The prediction shows high qualitative agreement with
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Figure 4.3. Network-generated predictions facilitate human recognition of cell nuclei. (A)
Annotations (yellow circles) of EM data are aggregated to establish a ground truth set of cell
nuclei. GT nuclei (white crosses) are those that were chosen by a supermajority of annota-
tors, while outliers (red diamonds) were discarded. Cell nuclei recognized by an individual
annotator in the measured fluorescence (B) and network-generated prediction (C) are mea-
sured against the GT nuclei. A yellow circle marks where the annotator has identified a nu-
cleus. Correctly identified nuclei (TP) are therefore denoted by an (approximately) overlap-
ping white cross and yellow circle, while FPs and FNs are denoted by solitary yellow circles
and white crosses, respectively. The white arrows indicate an instance of a cell nucleus that
went unrecognized in the measured fluorescence (FN), but was identified in the prediction
(TP). (D) Mean scores for the precision, recall, and F1 score are calculated by aggregating
the TPs, FPs, and FNs across 15 sets of annotations.

the measured fluorescence, suggesting the model is moderately robust to noise.
The prediction is furthermore localized only to the cell nucleus in spite of themod-
erate streak pattern through the EM, an artefact of sectioning. The relatively poor
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PCC (0.23) is due in large part to autofluorescence of the resin, which is strongly
anti-correlatedwith thepredictedfluorescence intensity (apparent inFigure 4.4AIV).
We find that autofluorescence is more pronounced in cell samples as there is more
bare resin between cells than in tissue.

The network is also capable of predicting cell nuclei on EM images acquired
with a larger pixel size (Figure 4.4BI – IV), demonstrating some degree of scale in-
variance. The relatively low PCC (0.49) is again negatively affected by autofluores-
cence in the measured fluorescence image. Predictions on EM images with a re-
duced landing energy (1 keVas opposed to 1.5 keVbaseline) demonstrate high qual-
itative andquantitative agreementwith themeasuredfluorescence (Figure 4.4CI – IV).
It is unknown why autofluorescence was less prevalent at this region of the sec-
tion. We note that we encountered one instance in which the network was de-
ceived by a ring-like structure for which no Hoechst fluorescence was measured
(Figure 4.4CII – III, insets), but which the network may have incorrectly recognized
as a chromatin-rich nuclear region.

4.2.5. Weakly supervised, semi-automated segmentation
We next assessed whether the correlative data, either measured fluorescence or
label-freeCLEMnetpredictions, could facilitate segmentationof targetedorganelles.
To this end, we deployed an instance of ResNet-34 [12] to perform organelle seg-
mentation. Typically, ResNet-34 is trained with labelled images obtained by man-
ually segmenting hundreds if not thousands of EM images by hand. While shown
to be highly effective, this method is also extremely time consuming [29, 13, 20, 30,
31]. To expedite the process for generating labelled image data, we evaluated three
different approaches (Figure 4.5): (i) simple thresholding of the correlative images
to generate segmentation masks for training, (ii) equivalent thresholding but then
on CLEMnet predictions, and (iii) a combination of partial points annotation with
𝑘-means clustering and Voronoi partitioning. These approaches classify pixels as
either nucleus, background, or, in the case of (iii), initially unclassified.

We anticipated that the first approach would result in a significant amount of
incorrect labels due to the issuesmentioned previously (nonspecific labelling, EM-
FM registration errors, autofluorescence, etc.). However, because the incorrect
labels would be uncorrelated (in the case of EM-FM registration errors) or on fea-
tureless areas of the EM (in the case of autofluorescence), we suspected that the
model could disregard them to the same extent as was found for the fluorescence
predictions (Figure 4.A1). The more fundamental problem with this simple ap-
proach is that the fluorescence signalmay not be uniformly distributed throughout
an organelle. In cell nuclei, for example, the fluorescence from the Hoechst stain-
ing is localized to the nuclear envelope and chromatin-dense subregions. The re-
sult from training ResNet-34 on these masks is hence a fragmented segmentation
that largely resembles the measured fluorescence itself (Figure 4.6A, “Measured
FM Masks”)—nuclei are segmented with high-precision (low FPs), but portions of
many nuclei are missed (high FNs). This is in contrast to the segmentation results
from the traditional approach of training the network onmanually segmented nu-
clei (Figure 4.6A, “GT Masks”).
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Figure 4.4. Fluorescence predictions are robust to lower SNR EM images as well as those
acquired with different imaging settings. Predictions were generated on resin-embedded
mouse breast tumor cells acquired with varying EM imaging parameters. (AI) EM of tumor
cell with reduced SNR by lowering the dwell time from 2µs to 1 µs. (AII – III) Measured flu-
orescence and prediction overlaid onto (AI). (AIV) Combined measured fluorescence (red)
and prediction (green) with white arrows indicating a high quantity of autofluorescence,
nullifying the PCC (0.23). (BI – IV) Same as in (AI – IV) but for EM acquired with a larger pixel
size (5 nm vs 4nm baseline). (BIII) The network generates several instances of spurious fluo-
rescence predictions, while autofluorescence of the resin is again found to impede the PCC
(0.49). (CI – IV) Same as in (AI – IV) but for EM acquired with reduced landing energy (1 keV vs
1.5 keV baseline). High correlation (𝜌=0.86) is found between the measured and predicted
fluorescence aside from an unknown structure (insets). Scale bars: (A –C) 5 µm; (CII – III,
insets) 0.5 µm.

As CLEMnet was found to predict fluorescence more uniformly throughout the
nucleus,weassessedwhether generating labelled imagesby thresholding theCLEM-
net predicted data would improve results. The segmentation results (Figure 4.6A,
“PredictionMasks”), however, were comparable to those that derived from thresh-
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Figure 4.5. Segmentation masks employed for CNN-based nuclei segmentation. (A) (Un-
labelled) EM image of cell nuclei. (B) Labelled image (segmentation mask) derived from
thresholding the correlative image of the measured fluorescence and (C) from thresholding
the CLEMnet prediction from (A). (D) Segmentation mask derived from a combination of 𝑘-
means clustering andVoronoi partitioning of the corresponding EM image. The points used
in the Voronoi partition are the centroids of detected nuclei based on partial points annota-
tion. Labelling scheme in (B –D): white – nucleus; black – background; beige – unlabelled.

olding the measured fluorescence data. While some nuclei are flood-filled, re-
flecting a successful segmentation, these occurrences are highly inconsistent. The
intersection over union (IoU) results underscore the vast difference in segmenta-
tion performance. IoU scores for ResNet-34 trained on manually segmented nu-
clei average 89%, while those for ResNet-34 trained on thresholding the measured
fluorescence and CLEMnet predicted signal are 44% and 43% respectively (Figure
4.6C).

A more sophisticated approach for generating labelled images was therefore
adapted from an approach by Qu et al. [32] who used partial points annotation to
segment cell nuclei from histology images in a weakly supervised fashion. Com-
pared to conventional hand-tracing of organelles, partial point annotation requires
only a single point to be selected from a sample of organelles within each image. It
thereby constitutes the annotation method requiring the least amount of manual
time and effort, while still providing human-assisted supervision. Partial points
annotation is particularly advantageous for correlative datasets as the fluorescence
overlay facilitates organelle selection by the human annotator. We then trained
ResNet-34 on segmentation masks derived from partial points annotations (Figure
4.5D) as described in Section 4.4.6. The resulting segmentation performance (Fig-
ure 4.6A, “Partial PointsMasks”) improved upon the thresholding approaches with
an average IoU score of 72%, despite the presence of some false positives negatives
(white arrows). While filtering segments by areawould remove the vastmajority of
these false positives, smaller nuclei—those that were sectioned at the periphery—
would also be removed.
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Figure 4.6. CNN-based segmentation results for various labelling strategies: semi-
automated labelling strategy outperforms thresholding approaches. (A) Three randomly
selected regions of interest are selected from a large-scale EM dataset of rat pancreas tissue
(B) to assess segmentation performance. Intersection-over-union (IoU) scores are provided
in the corner of each ROI. CNN architecture for all segmentation results is based on ResNet-
34. White arrows denote instances of falsely labelled nuclei. (C) Aggregate IoU scores of the
four segmentation strategies across the entire section. Training on semi-automatically gen-
erated segmentation masks derived from partial points annotation together with 𝑘-means
clustering and Voronoi partitioning results in improved segmentation performance. Scale
bars: (A) 2 µm; (B) 10 µm.

4.3. Discussion
We have demonstrated the ability of a CNN to artificially predict biological labels
in electron microscopy images based on registered CLEM training data. This has
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important ramifications for many areas within cell biology in which additional la-
belling techniques are implemented to facilitate recognition of structures in EM
[9]. In order to generate label predictions, registered EM-FM image pairs are re-
quired to train the CNN. Although in this work the accumulation of correlative
datasets was facilitated by integrated CLEM, this is not a pre-requisite. Sequential
CLEM methods in which light and electron microscopy are performed by differ-
ent instruments in succession may also be suitable. It is unknown, however, what
effects might come about from the use of fiducial markers and potentially less pre-
cise image registration across large fields of view.

While label predictions are not generalizable to arbitrary organelles outside of
the training dataset, we have shown that the network is capable of transfer learn-
ing across cell types. Predictions on mouse breast tumor cell nuclei were made
after supplementing a training dataset comprised primarily of rat pancreas tissue
with a limited amount of correlative data from tumor cells. Aided by data augmen-
tation, label predictions were furthermore found to be robust to changes in EM
imaging parameters, additional shot noise, and sectioning artefacts. By further
supplementing existing correlative datasets with data from different organisms,
cell types, and microscopes, robustness could be improved even further.

The measured fluorescence and CLEMnet predicted labels fall short of provid-
ing adequate templates for fully automated segmentation. Nevertheless, we have
shown that fluorescence labels are not only capable of facilitating annotation, but
that as part of an image processing pipeline, they enable a framework for semi-
automatic, weakly supervised segmentation. It is difficult to imagine that a deep
CNN trained on automatically generated segmentation masks (i.e. no manual an-
notation whatsoever) could outperform the same network when trained on manu-
ally generated segmentation masks in the near future [33, 13, 34]. Even so, semi-
automated and fully automated approaches may still fulfill a role in segmenting
biological image data. For smaller-scale applications in which training datasets
are still tractable, a segmentationmodel based onmanually segmented organelles
is likely the more sensible approach. But for large-scale or volume applications in
whichapixel-perfect segmentationmaynot be strictlynecessary, a semi-automated
labelling approach may offer valuable time-savings at the cost of precision.

The deep CNN developed here offers a means to automate fluorescence-like la-
belling of electron microscopy data at negligible cost with respect to time, effort,
and money. Once the network has been sufficiently trained, label predictions can
be automatically generated in seconds. This allows research facilities to process
only a handful of sections for correlative fluorescence and electron microscopy,
while preparing the rest of the sample for EM only. The entire EM volume could
then be overlaid with fluorescence-like labels after training on the portion of the
volume set aside for correlative imaging. In addition, EMdatasets could be labelled
with a larger number of distinct labels than would be allowed in a single fluores-
cence experiment by simply labelling different targets in different subsets of the
sample. Alternatively, it would enable comparative studies ofmultiple samples im-
aged by EM (e.g. [35, 10]) to be given biological labels virtually for free, providing
biological insight to a wealth of grayscale data.
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4.4. Methods
4.4.1. Tissue and sample preparation
Rat pancreas
Fresh pancreas from an 83 day old rat was cut into small pieces and fixed in 4%
paraformaldehyde (PFA, Merck) + 0.1% glutaraldehyde (GA; Polysciences) as de-
scribed in Ravelli et al. [28]. The sample was post-fixed in 1% osmium tetroxide
and 1.5% potassium ferrocyanide in 0.1M cacodylate buffer, dehydrated through
ethanol series andembedded inEPON (Serva). 100 nmsectionswere cut andplaced
onto ITO-coated glass coverslips (Optics Balzers). Immunolabeling was performed
as described previously [4]. Samples were etched with 0.1% periodic acid for 10
min, followed by a 30min blocking step: 1% bovine serum albumin (BSA; San-
quin, Netherlands) in tris-buffered saline (TBS), pH 7.4. Next, anti-insulin was in-
cubated for 2 hr (guinea pig; 1:50, Invitrogen, PA1-26938, RRID: AB_794668) fol-
lowed by washing and subsequent incubation for 1 hr with biotinylated secondary
antibody (donkey-anti-guinea pig; 1:400, Jackson Immunoresearch) followed by
washing steps. Finally, streptavidin conjugated AF594 (1:100, Jackson Immunore-
search)were incubated for 1 hr followedbywashing a 10min incubationwithHoechst
and washing.

Mouse breast tumor cells
Mice were fixed by vascular perfusion with 4% formaldehyde (FA) in 0.1M phos-
phate buffer (1.5mL/min) for ∼5min until organs and eyes are clearly discolored.
Tumors were dissected and cut immediately in blocks (∼1mm3) in 4% FA fixative
at room temperature. 4% FA immersion fixation for 3 hr at room temp was contin-
ued with 2% PFA + 2.5% GA immersion fixation for 2 hr at room temperature, and
the samples were stored in glass vials with 4% FA until further processed. Sam-
ples were postfixed with 1% osmium tetroxide and 1.5% potassium ferrocyanide
in 0.065M phosphate buffer for 2 hr at 4 ∘C and finally for 1 hr with 0.5% uranyl ac-
etate. Dehydration was performed using a graded ethanol series. Samples were
embedded in EPON resin (EMbed 812, EMS) and polymerized for 48–60 hr at 65 ∘C.
Ultrathin section of 100 nmwere cut using amicrotome (Leica, UC6) and placed on
ITO glass. Hoechst 33258 (Sigma) staining was performed for 120min followed by
a washing step with MilliQ water, and air dried.

4.4.2. CLEMnet architecture
Thedesign of CLEMnet (Figure 4.7) is basedonU-net [36], a deepCNNcomprised of
convolution, pooling, upsampling, and concatenation layers, designed for biomed-
ical image segmentation. The U-net architecture was modified in several ways to
make it more suitable for fluorescence predictions. The number of upsampling
layers was reduced to address the resolution mismatch between EM and FM im-
ages. Additionally, the padding of images within convolution layers was removed
to preserve image dimensions. Lastly, the number of convolution layers between
each downsampling layer was reduced from two to one—roughly halving the num-
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Figure 4.7. CLEMnet architecture. The blue boxes correspond to multi-channel feature
maps with the number of channels and image dimensions annotated above and to the side
of each box, respectively. Arrows represent different possible operations as described in
the legend. The asymmetric layout underlies the illustration from Figure 4.1B.

ber of parameters—to prevent overfitting [37]. The model architecture was devel-
oped in Tensorflow [38], an open source library for implementing machine learn-
ingmodels in Python, using the Keras API [39]. All training and testing procedures
were performed on NVIDIA Tesla P100 PCIe 12 GB GPU cards.

4.4.3. Data acquisition
The integratedmicroscopyworkflow for large-scale correlative imaging and recon-
struction is described in Lane et al. [40]. Briefly, fluorescence imaging is done via
theDelmic SECOM (Delmic B.V.), which has been retrofitted into the vacuumcham-
ber of a Verios 460 SEM (Thermo Fisher Scientific) [24, 25]. Correlative FM and
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low-magnification EM image tiles are acquired in a grid-like pattern encompassing
each tissue section. The fluorescence is captured prior to EM to avoid quenching of
the fluorescence. Following the acquisition of each correlative image pair, the FM
tile is registered to the low-magnification EM tile bymeans of cathodoluminescent
markers [26]. The fluorescence signal is then used to guide to regions of interest for
subsequent, high-magnification EM, such as the islet of Langerhans in the case of
the rat pancreas tissue. As thin sections of the mouse breast tumor cells are more
or less homogeneous, acquisition areas were chosen based on minimal damage to
the section.

Each FM tile consists of a 10 s exposure at 405 nm excitation for Hoechst and
555nm excitation for AF594. The corresponding low-magnification EM tiles are
acquired at 1.5 keV landing energy with a 1 kV bias potential, as described in Lane
et al. [5], with a 400 pA primary beam current, 5 µs dwell, and 150 µm field width.
The baseline imaging parameters for highmagnification EM are the same as those
for low-magnification EM with the exception of a 2 µs dwell and 12 µm field width
(∼3 nm pixel size). Imaging parameters for the datasets of mouse breast tumor
cells acquired to assess network robustness are provided in Table 4.1. All of the
image data used in this work is publicly available.1 Visualization and navigation of
the large-scale datasets is made possible by CATMAID [41].

Table 4.1. EM imaging settings used for the acquisition of resin-embedded mouse breast
tumor cells. For data navigation purposes, Z index corresponds to section indexwithin CAT-
MAID.

Z Section ID LE (eV) Dwell
(µs)

Pixelsize
(nm)

N. EM
images

Area
(µm × µm)

Time
(hr)

10–19 S007A–S009C 1500 2 3 484 234 × 234 4.5
0 S002A 1500 3 3 484 234 × 234 6.8
1 S003B 1500 1 3 484 234 × 234 2.3
2 S003C 1500 2 3 484 234 × 234 4.5
3 S003D 1500 2 4 289 241 × 241 2.7
4 S004A 1500 2 5 196 249 × 249 1.8
5 S004B 1500 2 6 121 235 × 235 1.1
6 S005A 1500 5 3 484 234 × 234 11.3
7 S005B 2000 2 3 484 234 × 234 4.5
8 S006A 1000 2 3 484 234 × 234 4.5
9 S006B 3000 2 3 484 234 × 234 4.5

4.4.4. Robustness & validation
EM and FM image pairs are augmented during training to increase the robustness
of the model. The objective is to improve the model s̓ flexibility and to account for
different types of imaging conditions rather than to extend it to different speci-
mens. While the model may generate reasonable predictions of the fluorescence

1https://sonic.tnw.tudelft.nl/catmaid/

https://sonic.tnw.tudelft.nl/catmaid/
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intensity on the same cell type or organelle across different specimens, it is not
generalizable to tissue or cell types it has not been trained on. Several different
types of data augmentation are applied to account for the variety of imaging set-
tings the network would reasonably encounter if tested on EM data from other in-
struments.

Affine transformation
Affine transformations are applied to training data such that the model learns to
adapt tomodest changes in structural topology. By introducingminor adjustments
to the rotation (𝜃), translation (𝑡𝑥, 𝑡𝑦), scale (𝑧𝑥, 𝑧𝑦), and shear (Γ) of the training
data, some degree of invariance to these transformations is embedded into the
model [42]. The applied affine transformations are randomized for each EM-FM
image pair such that each image pair receives the exact same transformation (Fig-
ure 4.8).
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Figure 4.8. Affine transformations are applied to the training data to render the model in-
variant to topological changes, resulting in greater robustness. The original, correlative im-
age pair (left) may be rotated, translated, scaled, and sheared to encompass a wide variety
of possible topological changes. Exact transformation parameters are provided in the text
box of each transformed image pair.

Elastic deformation
Elastic deformation was identified by Simard et al. [42] early in the development
of neural networks as an effective means of augmenting training data. It was later
shown by Dosovitskiy et al. [43] and reinforced by Ronneberger et al. [36] as a cru-
cial tool for enhancing CNN training, particularly in the case of limited training
samples. Elastic deformations are generated by applying a non-linear warp to the
imagewhere thewarp is defined by a displacement field convolvedwith a Gaussian
kernel of standard deviation, 𝜎, and multiplied by a scaling factor, 𝛼 (Figure 4.9,
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Figure 4.9. Top: Distortion maps used for applying elastic deformations to training data.
For small 𝜎 the deformation resembles the addition of white noise, while for large 𝜎 the
deformation is more severe. Bottom: Elastic deformation applied to an EM training image
and a checkerboard pattern.

top). The displacement field is initialized by a random uniform distribution where
each pixel ranges from (-1, +1) with equal probability. The value for α is also ran-
domized such that the EM images are warped with varying intensity. Distortions
are more apparent along the edges of features (Figure 4.9, bottom).
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Brightness & contrast variation
To account for the expected variations to brightness and contrast in EM image
data acquired across different samples, microscopes, imaging settings, (day of the
week), etc. the brightness and contrast levels are given a random adjustment. The
brightness is varied±20%by adding a gray-level bias, while the contrast is adjusted
in the range (0.75 < 𝛿 < 1.5) where the value of each pixel, 𝑥, is scaled by

(𝑥 − ̄𝑥) 𝛿 + ̄𝑥 (4.1)

where ̄𝑥 is the average intensity of the whole image.

Noise augmentation
There are multiple sources of noise in the SEM detection chain, each with their
own statistical distribution. The dominant source of noise on a properly operating
SEM is, however, typically Poisson (shot noise) as additional contributions from
the detector, scanning electronics, etc. tend to be much smaller than the statis-
tical noise inherent in the signal [44]. Training images are therefore augmented
with shot noise to improve the model s̓ robustness with respect to low SNR images
(Figure 4.10). The probability that a random variable 𝑋 is equal to 𝑘 is given by

𝑃(𝑋 = 𝑘; 𝜆) = 𝜆𝑘𝑒−𝜆

𝑘! (4.2)

where 𝜆 is the expectation value of 𝑋 as well as its variance.
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Figure4.10. Poissonnoise added to anEM training image. Features becomeunrecognizable
at high values of 𝜆.

4.4.5. Quantitative analysis
Cell nuclei counting
Experts and trained volunteers were asked to recognize cell nuclei in datasets com-
prised of fluorescence signals obtainedwith amicroscope and generated by CLEM-
net. The experts consisted of two researchers from the University Medical Cen-
ter Groningen who routinely examine islets of Langerhans, while the volunteers
consisted of thirteen researchers fromwithin the TU Delft Department of Imaging
Physics who were trained to recognize cell nuclei in both FM and EM image data
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from comparable tissue. The annotations made by the experts were weighted by a
factor 3.

An unsupervised, brute-force nearest neighbors search was used to filter out-
lier annotations from the EM dataset. For each annotated point, the Euclidean
distance to every other annotated point was calculated. If a point was found to
have at least 12 neighboring points (corresponding to ≥80% of annotators) within
a radius roughly equal to the average radius of a cell nucleus, the point was kept.
Points with an insufficient amount of neighboring points were discarded, result-
ing in clusters of point clouds corresponding to the ground truth nuclei. 𝑘-means
clustering was then used to agglomerate point clouds from which the centroid of
each cluster could be computed and added to the ground truth set.

Segmentation evaluation
Segmentationperformance is evaluated by the intersection over union (IoU), a sim-
ilarity coefficient used to measure the overlap of two sets 𝐴 and 𝐵.

𝐼𝑜𝑈(𝐴, 𝐵) = ∣ 𝐴 ∩ 𝐵 ∣
∣ 𝐴 ∪ 𝐵 ∣ (4.3)

4.4.6. Segmentation
Fully supervised segmentation
Segmentation masks for training were generated either by manually tracing cell
nuclei in EM images of rat pancreas islets (usingGIMP) or by thresholding themea-
sured fluorescence or CLEMnet prediction images. A value of 0.2 was empirically
chosen to be the threshold after rescaling the intensity range from (0, 255) to (0, 1).
To reduce the burden on manual tracing, a higher zoom level was chosen than for
generating fluorescence predictions. 96 images from across six different sections
were manually segmented. One section was set aside for testing, while the five
remaining sections were divided 80%/20% for training and validation. Implemen-
tation of the ResNet-34model architecture was facilitated by SegmentationModels
[45], which provides neural network frameworks for image segmentation compat-
ible with Keras and Tensorflow.

Partial points annotation
Labelled images are generated in a two-phase process adapted from Qu et al. [32].
In the first phase (Figure 4.11A), partial points annotation is used to generate a
probability map for the location of cell nuclei. Partial points annotation was per-
formed on the same dataset as used for the fully supervised segmentation. Though
all nuclei visible in the EM were annotated, only five were chosen at random for
generatingGaussianmasks (PPMask). The values for theGaussianmasks are given
by

𝑀𝑖 =

⎧{{
⎨{{⎩

exp(− 𝐷2
𝑖

2𝜎2 ) if 𝐷𝑖 < 𝑟1,
0 if 𝑟1 < 𝐷𝑖 < 𝑟2,
−1 otherwise

(4.4)
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where 𝐷𝑖 is the radial distance from each pixel 𝑖 to the nearest partial point, 𝜎 is
the standard deviation of the Gaussian distribution over each partial point, and 𝑟1
and 𝑟2 are the typical nuclear radius (estimated from the validation dataset) and
the outer radius of background labels, respectively. Here we have used 𝑟1 = 5 µm,
𝑟2 = 2𝑟1, and 𝜎 = 𝑟1/2. In this way each pixel is classified as either nucleus (> 0),
background (0), or remains unlabelled (−1).

When trained on pairs of EM images and PP masks, ResNet-34 yields probabil-
ity maps of predicted nuclei locations for given input EM test images. The initial
probability map, though rather crude, is used to refine the PP mask to generate a
better estimate of the background. The background estimate is updated according
to the conditions

𝑀𝑁
𝑖 =

⎧{{
⎨{{⎩

𝑀𝑖 if 𝐷𝑖 < 𝑟2,
0 if 𝐷𝑖 > 𝑟2 and 𝑝𝑖 < 0.1,
−1 otherwise

(4.5)

where 𝑝𝑖 is the probability of that pixel belonging to the nucleus class after iteration
𝑁. The pipeline is designed in such a way to as to iteratively yield better and better
probability maps. We find, however, that the maps tend to converge after 𝑁 = 2
for this particular dataset.

In phase two (Figure 4.11B), segmentation masks are generated by a combi-
nation of 𝑘-means clustering and a Voronoi partitioning of the nuclei detected in
phase one. These two labelling schemes are complementary to one another. 𝑘-
means clustering preserves the spatial information in the EM image, providing
the contour of the nuclei at the expense of having greater uncertainty, while the
Voronoi partition provides accurate nuclei localization at the expense of underes-
timating the background label. The EM image is multiplied by the distance trans-
formof the Voronoi diagramprior to 𝑘-means clustering to amplify nuclei. Cluster-
ing is then done with 𝑘 = 3. We choose to subtract a value of 1 from the resulting
image such that the background goes to −1 (unlabelled). In this way the model
does not train on regions of the image where a label cannot easily be inferred from
either the 𝑘-means clustering or Voronoi partitioning. These regions are typically
in the void between adjacent nuclei where it can be disadvantageous to make an
assumption on whether a pixel belongs to the nucleus or background class, as it is
possible that a nucleus was missed in phase one.

The fluorescence image is independently thresholded and intersected with the
𝑘-means clustered image. Small segments are removed via morphological open-
ing, closing, and erosion operations. Larger segments are filtered by convexity,
measured as the ratio of the area of each segment relative to the area of its con-
vex hull. Segments with convexity less than 0.85 become unlabelled. Lastly, the
merged labels from 𝑘-means clustering of the EM and thresholding of the FM are
intersected with the Voronoi diagram to result in a final segmentation mask. Pairs
of segmentationmasks andEM images are thenused to train an instance of ResNet-
34 for organelle segmentation in the samemanner aswas described for fully super-
vised segmentation. Note that the fluorescence image was originally included as
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Figure 4.11. Semi-automated image processing pipeline for generation of segmentation
masks from partial points annotation. (A) Partial points annotation is used to create Gaus-
sian mask images to train an instance of ResNet-34 to predict nuclei locations. The pre-
dictions are refined through self-training to yield more accurate probability masks. (B) A
Voronoi diagrambased off of the probabilitymap in (A) ismergedwith labelled images from
𝑘-means clustering to create segmentationmasks for training a separate instance of ResNet-
34 for organelle segmentation. Legend: white (or cyan) – nucleus; black – background; beige
– unlabelled. Scale bar: 10 µm.

a separate channel during 𝑘-means clustering, but the results from doing so were
marginally worse: final IoU score of 67% vs 72%.
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4.A. Supplementary material
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Figure 4.A1. CLEMnet performs nontrivial structural recognition tasks as well as mitigate
issues inherent to fluorescence imaging. (Continued on next page…)
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Figure 4.A1. For each selected ROI (A-D), the measured fluorescence (left, red) and predic-
tion (center, green) are overlaid onto the EM, and combined to show overlap and differ-
ences in signal intensity (right). (A) The network is able to distinguish between insulin and
similar-looking glucagon granules, a difficult task for non-experts. (B) An instance of AF594
emission from 405nm Hoechst excitation demonstrates that the network prediction is less
susceptible to bleedthrough. (C) As the network generates predictions directly on structures
within the EM, it is able to compensate for errors in the EM-FM registration near the edges
of the field of view where the registration may be extrapolated. (D) The network is for the
same reason also less susceptible to off-axis aberrations such as vignetting, which results
in diminished signal at the corners of the fluorescence field of view. Note that several pre-
dictions are stitched together to compose the predicted image shown, at times giving rise to
edge artefacts. Scale bars: (A–D) 5 µm.
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5
Valorisation, outlook, and

conclusion

5.1. Prospects for integrated array tomography
This thesis presents a novel workflow for three-dimensional correlative light and
electron microscopy (3D CLEM) in the form of integrated array tomography. The
method involves correlative imaging of and volume reconstruction from serial sec-
tions of biological tissueusing an integratedfluorescence andelectronmicroscope,
which offers several advantages over alternative approaches for 3D CLEM.

(I) Semi-automated imaging and fully-automated registration facilitate the cor-
relative acquisition of large numbers of serial sections. We have demon-
strated the scalability of our method to 64 sections of zebrafish pancreas in
which the only limitation was on the number of serial sections that were pre-
pared (Chapter 3). Additionally, the correlative reconstruction routine sup-
ports the alignment of an arbitrarily large number of sections.

(II) In-situ targeting of ROIs expedites throughput by limiting imaging volumes
to those regions expressed by fluorescence. In practice we have experienced
tenfold decreases in imaging volume with corresponding reductions to ac-
quisition times and dataset sizes (Chapter 3).

(III) Because the specimen is simultaneously prepared for both FM and EM, the
reconstructed volumes of correlative data have matching axial resolution.
This means that the fluorescence data does not have to be projected or inter-
polated in 𝑧 as is the case with certain sequential CLEM approaches. Further-
more, specimen warping and shrinkage between imaging modalities, which
might otherwise occur in conventional array tomography methods, is pre-
vented due to the absence of intermediate sample preparation.
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(IV) Precise overlay of biological molecules and structural context at high resolu-
tion is achievable in all three dimensions. Wehave demonstrated sub-100 nm
typical overlay accuracy andworst-case-scenariomisalignment of∼1 µm(Chap-
ter 3).

(V) Array tomography allows for re-evaluation of sections, if necessary, as op-
posed to serial blockface (SBF-SEM) or focused ion beam (FIB-SEM) tech-
niques in which the specimen is destroyed as it is imaged.

While themethod has its advantages, it is not, of course, without its limitations.
Chief among them is themanual interventionneeded for certain navigation and fo-
cusing tasks. Although the ability to detect regions of interest on-the-fly based on
fluorescence is one of the main benefits of integrated array tomography, these re-
gions must still be navigated to manually. To further automate the workflow, ROI
positions for each section could be extrapolated based on an initial selection, as in
Gabarre et al. [1]. Slight variations in section shape can be accounted for by a geo-
metrical transformation of each serial section to the reference section fromwhich
the ROI was initially selected. An alternative approach for fully automated ROI de-
tection and navigation involves recognition of the fluorescent markers of interest
based on artificial intelligence (AI). Delpiano et al. [2] investigated this approach
for the automated detection of fluorescent cells, finding that current state-of-the-
art machine learning techniques required significant quantities of ground truth
training data as well as postprocessing for separating merged cells. Thus, while
fully automated AI-based approaches for ROI detection may not yet be suitable,
opportunities for extending automated navigation do exist.

The other component of the workflow that stands to benefitmost from automa-
tion are the EM and FM focusing routines. Effort has been invested in developing
an autofocus procedure for the fluorescence microscope (Appendix A), which in-
volved analyzing the performance of several dozen focusmetrics. The results were
ultimately incorporated into the autofocus routine implemented in the integrated
microscope control software, Odemis. Developing an EM autofocus routine has
been amore complex task as it requires access to proprietary software for control-
ling the lens voltages. With the development of FAST-EM [3], access to these con-
trols has become available through an extension to Odemis. The potential for fully
automated focus routines is therefore in place, however, questions surrounding
the robustness of these routines remain. Therefore, the choice was made to forgo
autofocusing routines during large-scale acquisitions to prevent the possibility of
a failure compromising subsequent acquisitions.

Many of the sub-routines involved in integrated array tomography have been
fully automated (Figure 5.1). This is particularly true of the alignment and recon-
struction procedures, which are executed through a series of interactive jupyter
notebooks that have been made publicly available.1 The section detection phase
is similarly guided by a series of jupyter notebooks that perform the serial section
segmentationand tilemapping (partitioning theROI into low- andhigh-magnification

1https://github.com/hoogenboom-group/iCAT-workflow

https://github.com/hoogenboom-group/iCAT-workflow
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Figure 5.1. Workflow diagram for integrated array tomography. Icons represent the extent
to which each subroutine is automated: human – fully manual, hand – semi-automated or
human-assisted, gears – fully automated. Note that a sub-routine may still be considered
fully automated even if it might benefit from further automation (e.g. implementing auto-
focus within high-magnification EM imaging).

image tiles) sub-routines.2 Note that the segmentation step is denoted as semi-
automatic in Figure 5.1 since connected ribbons of serial sections often require
manual correction to obtain an optimal instance segmentation. Software for ac-
quiring grids of image tiles (including theCL-spot alignmentduring low-magnification
CLEM) are available as a plugin in Odemis,3 which is fully open-source. This level
of automation should in principle enable anyone with familiarity in fluorescence
and electron microscopy as well as programming experience in Python to follow
the integrated array tomography workflow with relative ease.

Challenges pertaining to sample preparation were described in Section 3.4. In
short, fluorescent probes, such as fluorescent proteins, are generally incompati-
ble with conventional fixation and staining procedures used for EM. Despite ef-
forts towards developing probes for retaining fluorescence post-embedding [4, 5,
6], compromises between the strength of the fluorescence and the quality of the
ultrastructure remain unavoidable. These compromises are made more difficult
by conducting fluorescence imaging in high vacuum conditions where intensities
are expected to be lower as fluorescent probes are typically optimized for (if not
dependent on) aqueous environments [6].

Finally, fluorescence preservation or post-embedding relabeling of genetic flu-

2https://github.com/hoogenboom-group/secdetect
3https://github.com/delmic/odemis

https://github.com/hoogenboom-group/secdetect
https://github.com/delmic/odemis
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orophores may facilitate linking ultrastructural observations to live, intravital flu-
orescence microscopy. Prior to array tomography, photoactivatable probes could
be used to mark where cells can be assessed for function. These markers could
then be activated as part of the integrated workflow, thus linking the ultrastruc-
tural data to not only fluorescence expression but also to function and develop-
ment [7]. If combined with advances in automation, this could lead towards the
development of dedicated integrated CLEM instruments with complete and fully
automated workflows for high-throughput and high-yield volume CLEM.

5.2. Applications for multibeam SEM
For certain applications such as connectomics, in which the goal is to comprehen-
sively reconstruct neuronal circuitry [8], fluorescence-based ROI targeting may be
insufficient for limiting imaging volumes. The brains of small organisms, for ex-
ample, can easily reach cubic millimeter volumes. Assuming 5nm isotropic pixel
size (synaptic resolution), such volumes would take decades to image with a single
electron beam due to limits on detector bandwidth and the amount of current that
can be concentrated into a focused probe [9, 10]. For this reason amultibeam SEM,
which parallelizes electron beam scanning by focusingmultiple electron beamlets
onto a specimen, has long been a research topic both inside [11, 12, 13] and outside
[9, 14, 15, 16] Delft. Recently, early adopter units of amultibeam system (FAST-EM,
[3]) have been installed at UMC Groningen and TU Delft.

Despite its dramatic increases in imaging speeds, multibeam SEM bears the
same limitation as conventional SEMwith respect to the inability to provide inher-
ent biological specificity. While for single beam SEM we addressed this problem
by integrating a fluorescencemicroscope into the vacuum chamber, the same can-
not be done for FAST-EM as sections are placed on a (nontransparent) scintillator
substrate, the light from which serves as the detection mechanism. Alternatively,
biological specificity could be added artificially (Fig 5.2). This could be done by
preparing the same specimen for both FAST-EM and integrated array tomography.
After initial processing of the specimen, the vast majority of serial sections would
be placed onto a scintillator substrate for FAST-EM, while a small fraction (≤ 20)
would be reserved for the integrated microscope. Following correlative imaging
and reconstruction, the datasets would be used for training CLEMnet to predict on
FAST-EM data. We have already seen that CLEMnet is capable of generating pre-
dictions on EM data acquired with different imaging settings than it was trained
on (Section 4.2.4). Early results have indicated that CLEMnet has the potential to
generate fluorescence predictions on optical STEMdata aswell, givenminor image
processing augmentations [17].

There are, however, caveats to this approach that must be taken into consider-
ation. First, there is no concrete means of verifying the fluorescence prediction
as there is no measured fluorescence to serve as ground truth. Less precise ver-
ification methods do exist such as validating the predictions on sections adjacent
to those for which the fluorescence was recorded. This may only be reliable, how-
ever, for structures significantly larger than the section thickness (e.g. cell nuclei,
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Figure 5.2. Prospective workflow for adding AI-generated fluorescence to multibeam SEM
data. (A) Ultrathin sections are prepared for EM with some fraction additionally prepared
for integrated CLEM and placed onto ITO-coated glass (B). A correlative dataset is then
recorded via integrated array tomography. (C) The vast majority of the serial sections are
placed onto a scintillator substrate and acquired bymultibeam SEM. The correlative dataset
(acquired in B) could then be used to train a neural network to generate predictions of the
fluorescence signal.

but not mitochondria, lysosomes, or granules). An alternative approach would
be to manually segment the labelled structures in a subset of the FAST-EM data
to establish a quasi-ground truth set for assessing the accuracy of the prediction.
Another caveat is that there will be sections missing from the FAST-EM imaging
volume due to the transfer of sections to ITO-coated glass. However, because the
transferred sections will still be imaged with (single beam) SEM, they can be in-
serted into the image stack for 3D reconstruction, provided they are imaged at the
same resolution.

5.3. Conclusion
We developed a method for 3D CLEM utilizing an integrated light and electron mi-
croscope. We beganwith the realization that conventional SEM imaging of weakly-
stained specimen prepared for fluorescence microscopy required highly imprac-
tical dwell times. Thus, we implemented a negative bias potential to enhance the
backscattered electron (BSE) yield. An empirical optimization of the stage bias,
informed by electron optics simulations, ultimately led to orders of magnitude im-
provement in the signal-to-noise (SNR) ratio. This solved the throughput problem
for large-scale, integrated CLEM, which allowed us to develop a scalable workflow
for integrated array tomography. The method we created further expedited ac-
quisitions by limiting high-resolution EM to select ROI targeted by fluorescence
expression, while high precision EM-FM overlay is achieved using cathodolumi-
nescent markers [18].
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After successfully demonstrating our workflow on pancreatic tissue from dif-
ferent organisms, we explored the potential for large-scale CLEM datasets to be
used as training data for machine learning applications. It was found that a mod-
ified U-net [19], trained on such correlative datasets, was capable of generating
high-fidelity predictions of the fluorescence signal from EM. As linking structure
to function is one of the primary goals in cell biology, we then tested whether this
data would be advantageous in organelle segmentation. While naive approaches
of thresholding the measured and predicted fluorescence signals for use as seg-
mentation masks proved unremarkable, more complicated mask generation tech-
niques seem promising. Finally, we discussed the ways in which integrated array
tomography could be expanded into a fully automated workflow as well as poten-
tial applications for multibeam SEM. Coupling these improvements together with
advances in fluorescent probes would bring integrated array tomography to the
forefront of volume CLEM, lending new insight to a host of questions within struc-
tural biology.
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A
Automatic focusing of the
fluorescence microscope

A.1. Original autofocus implementation
Acquisition of in-focus fluorescence microscopy (FM) images comprises an essen-
tial aspect of the workflow for integrated array tomography. Focusing the objective
lens of the fluorescencemicroscope can be donemanually or by an autofocus rou-
tine implemented in the microscope control software, Odemis,1 which performs
a dichotomic search for optimal focus (Algorithm 1). In this routine an image is
recorded at the initial position of the objective lens, after which the lens is trans-
lated upwards and downwards by a fixed amount. At each position the focus level
is measured by the variance of Laplacian (Algorithm 2).

The objective is vertically translated by a given step size in the direction that
increases the focus measure until a decrease is observed. The objective is then
iteratively raised and lowered by smaller and smaller increments until aminimum
change in the focus measure is reached or the algorithm exceeds the maximum
number of attempts. While conceptually sound, it was observed that the autofocus
routine is susceptible to errors (Figure A.1), even when executed with seemingly
favorable initial conditions (i.e. beginning the routinewhile in focus). The primary
issue is thought to originate fromanopen loop focus actuator, resulting in objective
movements with limited precision. This is evidenced by a significant drop in the
focusmeasure for an image acquired as the objective returns to its starting position
(Figure A.1, yellow circle). Photobleaching may also play a role in the decrease of
the focus measure.

1https://github.com/delmic/odemis
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Algorithm 1 Odemis autofocus routine.
while 𝑠 ≥ 𝑠𝑚𝑖𝑛 and 𝑛 < 𝑛𝑚𝑎𝑥 do

𝑀𝑚𝑖𝑑 ← acquire_and_assess()
𝑧 ← +𝑠 ▷ Objective is raised
𝑀𝑢𝑝 ← acquire_and_assess()
𝑧 ← −2𝑠 ▷ Objective is lowered
𝑀𝑑𝑤𝑛 ← acquire_and_assess()
if 𝑀𝑢𝑝 == 𝑀𝑑𝑤𝑛 then ▷ Minimized step size reached

break
else if 𝑀𝑢𝑝 > 𝑀𝑚𝑖𝑑 then

𝑧 ← 𝑧0 + 𝑠
else if 𝑀𝑑𝑤𝑛 > 𝑀𝑚𝑖𝑑 then

𝑧 ← 𝑧0 − 𝑠
else ▷ Best focus found at center

𝑧 ← 𝑧0
𝑠 ← 𝑠/2 ▷ Reduce step size by half

end if
𝑛 ← 𝑛 + 1

end while

Algorithm 2 Variance of Laplacian.

𝐿 ← ⎛⎜⎜⎜
⎝

1/6 2/3 1/6
2/3 −10/3 2/3
1/6 2/3 1/6

⎞⎟⎟⎟
⎠

▷ Laplacian kernel

𝐼∗ ← convolve(𝐼, 𝐿)
return var(𝐼∗)
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Figure A.1. Odemis autofocus routine converging on an out-of-focus image. (Left) image
from the initial focus position, (center) data from the iterative procedure, (right) image from
the final focus position. The two plots show the normalized focus measures (top) and the
position of themicroscope objective (below) resulting from the dichotomic search. The yel-
low circle marks the decrease in focus measure when the objective returns to its starting
position.

A.2. Analysis of FM focus sweeps
The results of Figure A.1 suggest that a dichotomic searchmay not be a suitable ap-
proach for the autofocus algorithm. Moreover, as will be shown later, Laplacian-
based focus measures tend to skewmore highly for over-focused images. In order
to develop a more robust autofocus algorithm, a series of focus sweeps were con-
ducted over several different 𝑧 ranges, regions of interest, and fluorescence chan-
nels (Figure A.2). The focus sweeps are analyzed by a selection of different focus
metrics (Table A.1) compiled from Pertuz et al. [1], which examines different focus
metrics across a variety of imaging settings and applications. Many of the metrics
belong to particular subgroups such as those that involve computing the image gra-
dient (GRAE, GRAT, and GRAS) or the Laplacian (LAPE, LAPM, LAPV, and LAPD). Metrics
within each subgroup tend to respond similarly to noise, contrast and window size
such that the relative performance depends highly on the particular set of imaging
settings [1]. The focus metrics were translated from their original Matlab imple-
mentation [2] to Python [3].

To assess the relative performance of each focus metric, we perform a consen-
sus analysis to determinehow far off eachmetric is fromselecting the correct focus
position (Figure A.3). For each focus sweep, the correct focus position is deter-
mined by taking the modal value among the 20 focus measures. To better visual-
ize which metrics more frequently return out-of-focus positions, the further away
from the modal value a particular curve peaks, the more red that curve appears
in the plot. From this analysis it is straightforward to eliminate metrics such as
ACMO, CURV, and HISE for which there are multiple red curves. The Laplacian-based
metrics can likewise be discarded for their bias towards over-focused images. As
expected, there is also a certain degree of redundancy within subgroups. For in-
stance, GRAS (the squared gradient) is virtually equal to GRAT (the thresholded gra-
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Figure A.2. Sample focus sweeps of the fluorescence microscope. (A) An 8 µm sweep over
an islet of Langerhans with 555 nm excitation. (B) A 12 µm sweep over fluorescent debris
on the ITO-coated glass substrate with 405 nm excitation. (C) A 20 µm sweep over an islet of
Langerhans with 405 nm excitation.

dient).
After consolidating the candidate focus metrics, we can examine more strin-

gent imaging conditions to explore where the different methods might diverge.
To this end, a second round of focus sweeps was recorded in which the images
were acquired with decreased exposure times and resolution to present the focus
metrics with more challenging settings. The sweeps were then analyzed with the
filtered set of candidate focus metrics (Figure A.4). The same consensus analysis
that was done for the initial set of focus sweeps could not be repeated as themodal
value was often erroneous as determined by visual inspection. The correct focus
position therefore had to be determined by eye.

One metric in particular, TENV, which computes the variance of the image af-
ter applying horizontal and vertical Sobel edge detection (Algorithm 3), consis-
tently returned the correct focus position independent of scene, exposure time,
and resolution (Figure A.4A & B). A new autofocus routine was therefore devel-
oped with TENV as the focus metric and a simple sweep through focus to set the
objective position (Algorithm 4). To improve precision, the objective position is re-
fined with quadratic interpolation. The new autofocus routine was implemented
as an Odemis plugin which could then be integrated into the automated tile acqui-
sitions. Validation was done by automated fluorescence acquisitions on sections
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Figure A.3. Analysis of 20 potential focus metrics. Each subplot shows the focus measures
across the six focus sweeps for a particular metric. A black color indicates that the peak of
the curve is in the consensus (i.e. that themetric returned the correct focus position for that
particular sweep). Red indicates that the peak of the curve falls outside the consensus, with
brighter red signifying that the peak is further away.

of fluorescent HeLa cells embedded in Lowicryl HM20 (Figure A.5), resulting in a
grid of sharp, well-focused fluorescence images.
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Algorithm 3 Tenengrad variance.

𝑆𝐻 ← ⎛⎜⎜⎜
⎝

1 2 1
0 0 0

−1 −2 −1

⎞⎟⎟⎟
⎠

▷ Horizontal Sobel filter

𝑆𝑉 ← ⎛⎜⎜⎜
⎝

1 0 −1
2 0 −2
1 0 −1

⎞⎟⎟⎟
⎠

▷ Vertical Sobel filter

𝐼∗
𝐻 ← convolve(𝐼, 𝑆𝐻)

𝐼∗
𝑉 ← convolve(𝐼, 𝑆𝑉)
return var ((𝐼∗

𝐻)2 + (𝐼∗
𝑉)2)

Algorithm 4 Autofocus algorithm based on sweep through focus.
𝑀𝑚𝑎𝑥 = 0
𝑧 ← −Δ𝑧/2
for 𝑖 in range 𝑁 do

𝑀 ← acquire_and_assess()
𝑀𝑚𝑎𝑥 = max(𝑀, 𝑀𝑚𝑎𝑥)
𝑧 ← +Δ𝑧/𝑁

end for
𝑧 ← QIFFT([𝑀𝑚𝑎𝑥−1, 𝑀𝑚𝑎𝑥, 𝑀𝑚𝑎𝑥+1]) ▷ Quadratic interpolation



A.2. Analysis of FM focus sweeps 91

A

B

Figure A.4. Select focus sweeps revealing the robustness of TENV as a focus metric for use
with the fluorescence microscope. As many of the metrics peaked far from the apparent
best focus level, the correct focus position was determined visually. (A) A relatively low
resolution (256 × 256 px) focus sweep conducted on the ITO-coated glass background for
which only TENV and VOLA yielded the correct focus position. (B) A focus sweep acquired on
exocrine pancreas tissue with a relatively low exposure time (100ms) for which only TENV
yielded the correct focus position.
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A B C

Figure A.5. Autofocus routine based on focus sweeps and TENV yields best results for auto-
mated fluorescence imaging. (A) no autofocus routine, (B) the autofocus routine described
here, and (C) the default autofocus routine implemented in Odemis. All automated fluo-
rescence acquisitions were conducted on the same section of fluorescent HeLa cells. Scale
bars: (A –C) 100 µm; (insets) 20 µm.
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Figure A.6. Execution times for the filtered set of candidate focus metrics. 512× 512, 1024×
1024, and 2048 × 2048 denote the image dimensions.
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Table A.1. Reference list for focus metrics.

Focus metric Reference

ACMO Absolute central moment [4]
BREN Brenner s̓ focus measure [5]
CURV Image curvature [6]
GDER Gaussian derivative [7]
GLVA Gray-level variance [8]
GLVV Gray-level local variance [9]
GRAE Energy of gradient [10]
GRAT Thresholded gradient [5]
GRAS Squared gradient [11]
HELM Helmli s̓ measure [6]
HISE Histogram entropy [8]
LAPE Energy of Laplacian [10]
LAPM Modified Laplacian [12]
LAPV Variance of Laplacian [9]
LAPD Diagonal Laplacian [13]
SFIL Steerable filters-based [14]
SFRQ Spatial frequency [11]
TENG Tenegrad [8]
TENV Tenengrad variance [9]
VOLA Vollat s̓ correlation-based [5]
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