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Abstract
This study presents comprehensive numerical modeling methods for simulating
early-age stress (EAS) relaxation in cementitious materials, based on the autoge-
nous deformation (AD), elasticmodulus, creep, and stress continuously tested by
a mini temperature stress testing machine (Mini-TSTM) and a mini AD testing
machine from a very early age (i.e., from a few hours to a week). Four meth-
ods for converting creep compliance to relaxation modulus were discussed in
detail and used for the one-dimensional (1D) and three-dimensional (3D) sim-
ulation of stress evolution in the Mini-TSTM test. Furthermore, virtual creep
and relaxation tests were conducted using an exponential algorithm with either
the Kelvin or Maxwell chains to show their applicability in simulating the vis-
coelastic behavior of early-age cementitious materials. The results showed that
the exponential algorithm with the Maxwell chain using an exponential conver-
sion function from creep to relaxation obtains good prediction accuracy of EAS in
3D analysis. The numerical solutions of the Volterra integral of creep compliance
can lead to a negative relaxation modulus, thus introducing stress calculation
errors in both 1D and 3D analysis.

1 INTRODUCTION

Early-age cracking (EAC) is a common issue in con-
structing concrete structures. The volumetric deforma-
tion, mainly thermal, drying, and autogenous deformation
(AD), is the root cause of EAC (Maruyama & Lura, 2019).
During the hardening of the cementitious materials, once
such volumetric deformation is restrained, often by the
structural geometry or other adjacent structural elements,
early-age stress (EAS) happens and potentially causes
EAC. To quantify the EAC risk, the EAS evolution is a
straightforward indication and necessary input for vari-
ous EAC criteria (Xin et al., 2020). Therefore, developing
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original work is properly cited.
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reliable experimental or numerical tools for testing and
predicting EAS evolution is essential for EAC prevention.
There are many experimental methods aiming to quan-

tify the EAS evolution in restrained cementitiousmaterials
with different mixture designs and under different envi-
ronmental conditions, including the internal restraint test
(Lura et al., 2009; Semianiuk et al., 2017), rigid crack-
ing frame test (Spingenschmid, 1998), ring test (Briffaut
et al., 2016; Shen et al., 2020), and temperature stress test-
ing machine (TSTM; Bjøntegaard, 1999; Igarashi et al.,
2000; Klausen, 2016; Klausen et al., 2019; Lokhorst, 2001;
Nguyen et al., 2019; Ou et al., 2023; Springenschmid
et al., 1994). These tests apply various restraining and
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environmental scenarios to mimic the EAC induced by
early-age volumetric deformation. Among these tests,
TSTM is one of the most comprehensive and advanced
testing techniques to simulate various mechanical and
thermal boundary conditions with strict control sys-
tems of temperature, load, and displacement (Klausen,
2016). Specifically, TSTM enables tests of the EAS and
viscoelastic properties with displacement-controlled and
load-controlled modes, respectively. Meanwhile, the semi-
adiabatic condition that often happens inmassive concrete
structures can also be simulated with a pre-defined tem-
perature curve input to the TSTM (Xin et al., 2022). In the
last two decades, TSTM has been used for investigating
multiple influencing factors regarding EAC, including the
stress-strength ratio for EAC risk analysis (Igarashi et al.,
2000; Xin et al., 2021; Zhu et al., 2020), temperature (Lura
et al., 2001), supplementary cementitious materials like
granulated ground blast furnace slag (GGBFS;Darquennes
et al., 2011; Liang et al., 2023; Shen et al., 2020), fly ash
(Xin et al., 2022;), silica fume (Ji et al., 2018), and recycled
aggregates (Bendimerad et al., 2020). It was concluded by
Klausen et al. (2022) that temperature and restraint degree
are the two most influential factors for EAS results, even
though considerable variation existed between different
batches of the same cement. Similar variations were also
systematically investigated by Wyrzykowski et al. (2017).
By analyzing or modeling the EAS evolution based

on experimental data, many different studies found that
relaxation significantly influences the EAS evolution (Ben-
tur et al., 2001; Li et al., 2021). Creep and relaxation
are intrinsic properties of cementitious materials, which
mainly originated from the calcium-silicate-hydrate and
can be obtained by modeling the creep behavior of cement
microstructure using the lattice model (Gan et al., 2021).
One major concern about the creep nature of cementi-
tious materials is the long-term deflection, which was well
addressed by sophisticated numerical models for creep
and shrinkage (Beltempo et al., 2018). To model the EAS
evolution, the early-age viscoelastic properties also need
necessary inputs to be addressed under different condi-
tions (Azenha et al., 2021; Di Luzio & Cusatis, 2013).
Considering the measurements of creep and relaxation,
creep tests are much more straightforward than relax-
ation tests to conduct because creep tests only require
recording the deformation under a load-controlled con-
dition. In comparison, the relaxation tests require stress
recording under a strain-controlled condition. The strain-
controlled condition is achieved by continuous control
of the load based on the feedback of deformation mea-
surement, which makes relaxation tests significantly more
complex than creep tests. Thereby, to simulate the stress
relaxation in the EASmodeling, many studies need to con-
vert themeasured creep compliance to relaxationmodulus
(Bažant & Wu, 1974).

Wei et al. (2017) converted the creep compliance given by
the microprestress-solidification (MPS) theory. They suc-
cessfully predicted the EAS under varying temperatures
in restrained concrete with good precision. On the other
hand, Li et al. (2021, 2022) also converted the creep compli-
ance to relaxation modulus. In multiple testing cases, they
successfully predicted the EAS induced by restrained AD
of alkali-activatedmaterial. Note that the conversionmeth-
ods adopted by Wei et al. (2017) and Li et al. (2021, 2022)
are entirely different. Wei et al. (2017) used the numerical
solution of a linear viscoelastic constitutive equation as a
Volterra integral. At the same time, the conversionmethod
adopted by Li et al. (2021, 2022) seems significantly more
straightforward, based on a specific solution derived from
the definition of relaxation. In addition, it is also worth
noting that some methods do not require obtaining the
relaxation modulus. Instead, it is also possible to simu-
late the EAS from the perspective of creep. For example,
Klausen (Klausen, 2016) first calculated the incremental
creep strain, and then assuming both the AD and creep
deformation were restrained, they calculated the incre-
mental EAS with an elastic relation, which also matched
well with the experimental observation.
Note that the modeling studies mentioned above were

all based on a 1D case since the validation data are from
the TSTM test, which is precisely a 1D restraint test. To
generalize the obtained creep and shrinkage data to 3D
structures and get the corresponding EAS distribution, dif-
ferent numerical methods can be employed, such as finite
elementmethod (FEM;Destrebecq& Jurkiewiez, 2001; Xia
et al., 2011) or discrete element method (Alnaggar et al.,
2017; Cibelli et al., 2022). Simulating the viscoelastic behav-
ior still requires solvingVolterra integral (Bažant& Jirásek,
2018). However, solving the Volterra integral is difficult in
FEM because, at every time step, the strain/stress history
of every previous time step at every Gaussian point needs
to be restored, which brings a heavy burden on the com-
puter and the model may be significantly hindered if a
large structure with fine meshes is constructed (Di Luzio
et al., 2020; Yu et al., 2012). Instead, the exponential algo-
rithm, based either on a Kelvin chain (Bažant & Jirásek,
2018; Di Luzio et al., 2020; Yu et al., 2012) orMaxwell chain
(Bažant &Wu, 1974), can be used to solve the Volterra inte-
gral with a rate-type form,which then only requires storing
a few internal variables of the rheological chains across
the modeling process. It should be noted that the Kelvin
chain can be calibrated directly by the measured creep
data by a continuous retardation chain (Bažant & Xi, 1995;
Jirásek & Havlásek, 2014). In contrast, the Maxwell chain
needs the relaxation data, so the conversion from creep to
relaxation is still required. Due to the better availability of
creep data, Kelvin chain has often been used for EASmod-
eling. Liu & Schindler (Liu & Schindler, 2020) fitted the
creep data of the B3 model (Bažant & Baweja, 1994) with
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LIANG et al. 3

a Kelvin chain and successfully predicted the EAS evolu-
tion in a TSTM test by the exponential algorithm. Similarly,
Liang et al. (Liang, Chang, et al., 2022; Liang, Li, et al.,
2022) implemented the Kelvin chain-based exponential
algorithm in simulating the EAS in TSTM tests of GGBFS
concrete.
In summary, the studies mentioned above formed a

solid basis for testing and modeling the EAS evolution in
restrained concrete. However, despite the versatile use of
TSTM allowing for testing not only EAS but also creep and
elastic modulus, most studies only did the EAS test. They
used other (empirical) material models for the input of
creep and elastic modulus, compromising their validation
reliability. To some extent, the complexity and high cost of
TSTM tests hindered a comprehensive experimental cam-
paign to provide first-handdata for validating themodeling
results. Moreover, most studies directly implemented the
models for EAS prediction, while the difference between
these models and their applicability are rarely compared
and discussed. This paper presents systematic experi-
ments encompassing the EAS, elastic modulus, and aging
creep using a newly designed Mini-TSTM, which aims to
improve the testing efficiency significantly, compared to
conventional TSTM tests. Based on comprehensive experi-
mental results, four representative numerical models (two
for 1D simulation and another two for 3D simulation) will
be used to predict the EAS, and their applicability will be
discussed. Notably, the prediction results of EAS will be
analyzed and compared in detail.
In this paper, the testing and modeling works mainly

focus on the cementitious materials within the first week,
in which rapid hydration reaction happens and signifi-
cantly changes the material properties and behaviors. The
structure of this paper will be formulated as follows. The
second section will introduce the Mini-TSTM and mini
AD testing machine (Mini-ADTM), which offer continu-
ous measurement data of AD, elastic modulus, creep, and
EAS for the input and verification of the models. Then,
the third section will give an overview of the four numer-
ical models for EAS calculations, covering both 1D and
3D simulations. Finally, the experimental and modeling
results will be shown in the fourth section. The validity
of each numerical model will be analyzed not only from
the theoretical aspects but also from the prediction accu-
racy by comparing the predicted EAS with the tested EAS.
In the end, a numerical model is proposed to improve the
prediction accuracy of EAS.

2 MINI TSTM/ADTM TESTS

The experiments of this study are conducted on a Mini-
TSTM that was recently developed. The AD, elastic mod-

TABLE 1 Main composition of utilized cements (wt.%).

Composition CEM III/B CEM I
CaO 47.11 64.00
SiO2 29.11 20.00
Al2O3 10.02 5.00
MgO 5.89 –
SO3 2.82 2.93
Fe2O3 1.19 3.00
Na2O 0.28 0.58

ulus, aging creep, and EAS are tested and used to validate
and compare different numerical models.

2.1 Materials

The adoptedmaterials in this study are cement paste made
of two types of cement, CEM I 42.5N and CEM III/B
42.5N. Both cements were manufactured by the Eerste
Nederlandse Cement Industrie. The main chemical com-
positions of the two cements are listed in Table 1. The
adopted w/c ratio is 0.30. Both cement pastes were tested
three times, and the experimental results will be termed as
C1-30-1, C1-30-2, C1-30-3 and C3-30-1, C3-30-2, C3-30-3.

2.2 Mini TSTM tests

2.2.1 The Mini-TSTM setup

TheMini-TSTM system includesmolds for two specimens:
a dog-bone specimen in restrained condition and a free
specimen with similar geometry to the restrained one. A
schematic diagram of typical TSTM systems is given in
Figure 1. Each specimen contains two bars in its middle
section, which are connected to linear variable differ-
ential transducers (LVDTs) to measure the deformation
of that region (εr and εs, representing the strain mea-
sured by the two bars in the middle of the restrained and
unrestrained specimens, respectively). One end of the dog-
bone specimen is fixed, while the other is attached to an
actuator and a load cell to apply a force F. To regulate
the temperature within the specimens, a combination of
cryostats, water pipes, and molds with embedded water
channels is employed to circulate water. Two feedback
control loops, FL1 and FL2, are typically utilized, employ-
ing proportional-integral-derivative (PID) controllers. The
feedback loop FL1 determines the F force to maintain εr
at 0, ensuring the full-restraint conditions. To keep the
specimen’s temperature at a predefined value, the feedback
loop FL2 adjusts the temperature of the circulating water
Tw, based on the temperature measured by thermocouples
within the specimen, Tc.
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4 LIANG et al.

F IGURE 1 Schematic diagram of a temperature stress testing
machine (TSTM) system.

The design of the mini-TSTM focuses on simplicity and
efficiency as shown inFigure 2. The specimen’s total length
is 300 mm, with the area of interest being a smaller 50 ×
50× 100mm3middle section (Figure 2c). This compact size
allows direct installation into the Instron universal load-
ing machine with a maximum loading capacity of 10 kN.
The mini-TSTM can be vertically loaded, minimizing fric-
tion, compared to horizontally loaded TSTMs. Note that
the 50 × 50 mm2 section size limits the maximum aggre-
gate size, but it can be increased with a more capable
loading machine. The ADTM follows the same design as
the TSTM. TheMini-TSTM/ADTMdesign includes molds,
strain measurement, and temperature control.

Molds
As shown in the middle of the Figure 2a, the Mini-TSTM
mold is created using stereolithography 3D printing with
white powder-based polyamide (PA 2200). The mold con-
sists of covering plates (C1, C2, C3), side plates (S1, S2),
crosshead plates (CH1, CH2), and a back plate (B1). The
CH1 and CH2 plates are made of steel in the Mini-TSTM,
while they are 3D-printedwith PA2200 in theMini-ADTM.
The plates are assembled using bolts, and water channels
are incorporated into each plate except for CH1 and CH2.
The inner surface of the plates in contact with the speci-
men is sealed with a copper plate, ensuring effective heat
conduction for temperature regulation.

Strain measurements
As shown on the left of Figure 2a, the strain measure-
ment in both the Mini-TSTM and Mini-ADTM involves
embedded steel bars, plastic plugs, LVDTs, invar bars, and
magnetic blocks. The embedded steel bar, with dimen-
sions of 13.3 mm in length and 3 mm in diameter, is fixed
using plugs before casting the fresh mixture. Before the

F IGURE 2 The mini-TSTM: (a) overall design, (b) the efficient
TSTM installed in the loading machine, (c) geometry of the
dog-bone specimen (unit: mm), and (d) parallel connection of water
circulation system.

test, the plugs are removed, and LVDTs are attached to the
embedded bars. The LVDT is an inductive displacement
transducer that requires no contact during measurement.
The measurement range of the adopted LVDT is ± 1 mm,
and the precision is 0.01 μm. The LVDT consists of a
hollow bobbin (static transformer) and a magnetic core
(armature). The assembly of the strain measurement com-
ponents can be seen in Figure 2c: First, the LVDT core
should be glued to the lower side of the invar bar; then,
with magnetic blocks as the connection, the upper side of
the invar bar is attached to the upper embedded bars in
the specimen and the LVDT hollow bobbin is attached to
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LIANG et al. 5

the lower embedded bars. The LVDT core can move in the
LVDT hollow bobbin to measure the deformation between
the upper and lower embedded steel bars.

Temperature regulation
Figure 2d shows that temperature regulation is achieved
by circulating water through plates C1, C2, C3, S1, S2, and
B1. These plates havewater channels andwater inlet/outlet
points. A parallel connection is used to circulate the
water around the specimen, where heated/cooled water is
pumped from the cryostat to the inlet distributor, trans-
ported to each plate, and finally sent back to the cryostat
via the outlet distributor. The necessary components, such
as plastic water tubes, tube joints, water inlet/outlet, and
distributors, are manufactured by FESTO. Thermocouples
are inserted into the middle of the specimen through the
hole of plate C2 to measure the internal temperature. The
temperature measured at plate C2, located at the center
of the specimen, is used as the controlled objective for
the temperature PID controller. Continuous adjustments
to the cryostat water temperature ensure that the center
temperature of the specimen follows the specified value.

2.2.2 AD and EAS

The ADwas simultaneously measured by theMini-ADTM
and the EAS by the Mini-TSTM. The same batch of mate-
rial was used for casting the two specimens, and therefore
there was no batch difference between the measurement
of EAS and AD within each test. The temperature in
the specimens was maintained at 20˚C by the cryostat,
which actively adjusted the water temperature based on
the feedback of thermocouples embedded in specimens.
A strain-controlled mode was used in the Mini-TSTM test,
which ensured a fully restrained condition, and therefore,
the EAS induced by AD can be measured. In the Mini-
ADTM, the specimens were in free conditions to measure
the AD. In this study, the measurement of AD and EAS
started 4 h after the placement of fresh material. Note that
the choice of 4 h, before the setting time of the utilized
material, aims to record the development of AD and EAS
as early as possible. Each type of cement was tested three
times. In the numerical models, the measured AD will be
used as one of the inputs to predict the corresponding EAS.

2.2.3 Creep and elastic modulus

Anhourly repeated loadwas applied to the specimen to test
the elastic modulus and aging creep. Repeated load cycles
were used to assess aging creep at different ages, assuming
the negligible influence of aging within short time inter-
vals (Delsaute et al., 2016; Irfan-ul-Hassan et al., 2016).

F IGURE 3 Hourly repeated loads for elastic modulus/aging
creep test (tL: 30 s loading time for testing elastic modulus; tc: 3600 s
sustaining at a constant load for testing creep).

The magnitude of the hourly repeated load was deter-
mined based on EAS test results, with each cycle lasting
1 h. Figure 3 provides an example of such a repeated load
cycle. The hourly repeated loading cycles include a load-
ing phase, a sustained load phase, an unloading phase, and
a phase of nearly zero loads. The loading and unloading
phases are short (tL = 30 s in this study), allowingmeasure-
ment of the elastic modulus at a specific age. The loading
speed is adjusted to ensure that the duration of the load-
ing/unloading phase is two orders of magnitude smaller
than the creep test. The sustained load phase at a specific
load typically lasts longer (tc = 3600 s in this study), facili-
tating the measurement of creep compliance at a certain
age. The Mini-TSTM was used to implement such load-
ing cycles, and the Mini-ADTMwas used for the AD. Both
tests were conducted concurrently with the same batch of
cement paste. The creep deformation was obtained by sub-
tracting the AD measured by Mini-ADTM from the total
deformation measured by Mini-TSTM. In this study, the
hourly repeated loading tests for creep and elasticmodulus
started 6 h after placement of the fresh material.
After obtaining the aging creep data, a double power

function (Bazant & Osman, 1976; Gan et al., 2020) will be
fitted to the experimental data as below:

𝐽 (𝑡0, 𝑡) =
1

𝐸 (𝑡0)
+ 𝑎∗

(
1

𝑡0

)𝑏
∗ (𝑡 − 𝑡0)

𝑐 (1)

where a, b, and c are fitting parameters that can be derived
from tests; t0 is the time when the load is applied; (t− t0) is
the loading duration. Each type of cement was tested once,
and the results of elastic modulus and creep compliance
function will be used as input for the models to predict
EAS.

3 MODELS

Modeling the EAS requires three time-dependent inputs:
the AD, the elastic modulus, and the relaxation modulus.
In this study, the AD was measured by the Mini-ADTM
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6 LIANG et al.

by specifying a free mechanical boundary and constant
temperature. The elastic modulus and creep were mea-
sured by the Mini-TSTM using an hourly repeated loading
scheme. The Mini-TSTM also measured the EAS with a
fully restrained boundary condition and then was used
to validate four proposed models. Conversion from creep
to relaxation is a crucial step in the simulation of EAS
evolution and will be the key focus of this study.

3.1 Theory

EAS evolution in restrained concrete results from a non-
stop relaxation test: During the hardening of cementitious
materials, within every time interval, an imposed deforma-
tion is applied to the hardening concrete to compensate
for the AD and keep the specimen fully restrained, which
then induces EAS. If the concrete material is linearly elas-
tic, then the EAS in each time interval should be expressed
as

Δ𝜎 (𝑡0) = 𝐸 (𝑡0) Δ𝜀 (𝑡0) (2)

where t0 is the time when the imposed deformation ∆ε is
applied. Then, under the assumption of Boltzmann super-
position, the total EAS at time t should be the integration
of the elastic modulus E over the imposed deformation,
expressed as

𝜎 (𝑡) =

𝑡

∫
0

𝐸 (𝑡0) d𝜀 (𝑡0) (3)

However, it is clear that the cementitious materials are
viscoelastic, and the relaxation of stress should be taken
into consideration under any circumstances (Azenha et al.,
2021). Therefore, in Equation (3), instead of the elastic
modulus, the relaxation modulus R (t0, t) should be used,
expressed as

𝜎 (𝑡) =

𝑡

∫
0

𝑅 (𝑡0, 𝑡) d𝜀 (𝑡0) (4)

Equation (4) is the exact solution of EAS, a Volterra inte-
gral obtained by the Boltzmann superposition. Using the
mid-point rule, EAS results can be obtained, expressed as

𝜎 (𝑡) =

𝑡0=𝑡∑
𝑡0=0

𝑅

(
𝑡0 +

1

2
Δ𝑡0, 𝑡

)
× Δ𝜀 (𝑡0) (5)

Equation (5) gives the numerical solution of EAS. It is
clear that only two inputs are required: (1) relaxation mod-
ulus for viscoelasticityR (t0, t) and (2) rate of AD∆ε. The∆ε
can be directly obtained from the test. However, the R(t0,t)
requires a conversion from creep compliance to relaxation

modulus since most tests for viscoelasticity are creep tests.
Creep compliance function J(t0,t) and relaxation modulus
function R(t0, t) are fully coupled if linear viscoelasticity
is applied. Given a stress history σ(t) applied at t0 and
continuously last until tf, the strain at tf can be expressed as

𝜀
(
𝑡𝑓
)
= 𝐽

(
𝑡0, 𝑡𝑓

)
𝜎 (𝑡0) +

𝑡𝑓

∫
𝑡0+

𝐽
(
𝑡′, 𝑡𝑓

)
𝜎
(
�̇�′
)
d𝑡′ (6)

Then, considering a relaxation test and the definition of
relaxationmodulus, Equation (6) can be easily rewritten as

𝐽
(
𝑡0, 𝑡𝑓

)
𝑅 (𝑡0, 𝑡0) +

𝑡𝑓

∫
𝑡0+

𝐽
(
𝑡′, 𝑡𝑓

)
𝑅
(
�̇�0, 𝑡

′
)
d 𝑡′ = 1 (7)

Equation (7) gives the exact relationship between creep
and relaxation. Substituting the creep compliance J(t0, t)
in Equation (7) allows the derivation of relaxation mod-
ulus R(t0, t), which will form the basis of the first model
in this study and will be introduced in Section “Model
1 (M1): Numerical solution of the integral form”. More-
over, substituting the obtained creep compliance function
J(t0, t) and relaxation modulus function R(t0, t) in the left
of Equation (7), the results should be close to 1.0 as much
as possible. This checking process can be applied to check
the conversion process from creep to relaxation andwill be
termed “integral check” in the following part of the paper.
Given the creep compliance function J(t0, t) and relaxation
modulus function R(t0, t), Equation (7) can be solved as
follows:

𝐽
(
𝑡0, 𝑡𝑓

)
𝑅 (𝑡0, 𝑡0)

+

𝑡𝑓∑
𝑖=𝑡0+1

𝐽
(
𝑡𝑖+1∕2, 𝑡𝑓

)
[𝑅 (𝑡0, 𝑡𝑖) − 𝑅 (𝑡0, 𝑡𝑖−1)] = 1 (8)

3.2 EAS modeling

This study investigated two types of EAS models: models
for 1D analysis and 3D analysis.

3.2.1 Models for 1D analysis

The 1D analysis model only considers the case of a shrink-
ing bar that is fully restrained at the two ends. Because
the TSTM tests are also uniaxial loading tests, the 1D
analysis applies to EAS calculation in TSTM tests. In 1D
analysis, Equations (4) and (5) can directly calculate the
corresponding EAS. A significant problem with 1D anal-
ysis lies in converting from a creep compliance function
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LIANG et al. 7

F IGURE 4 Procedures of 1D analysis.

to a relaxation modulus function. For 1D analysis, two
representative methods will be used to conduct such con-
versions. The obtained relaxationmodulus functionwill be
analyzed by the integral check using Equations (7) and (8).
The final validation will be done by comparing the tested
and predicted EAS. The working procedures for the 1D
analysis are shown in Figure 4.

Model 1 (M1): Numerical solution of the integral form
The conversion from creep to relaxation in Model 1 (M1)
is done by substituting the creep compliance into Equa-
tion (7) and solving the corresponding relaxation modulus
numerically. Therefore, M1 is intrinsically based on the
numerical solution of the integral form. Wei et al. (2017)
applied M1 to transfer the creep compliance function
adjusted byMPS theory and successfully predicted theEAS
under varying temperatures. Given the creep compliance
function J(t0, t), the relaxation function R(t0, t) can be
obtained numerically as below (Bažant & Jirásek, 2018):

𝑅 (𝑡0, 1) = 0 (9.1)

𝑅 (𝑡0, 2) =
1

𝐽 (𝑡0, 𝑡0)
(9.2)

𝑅 (𝑡0, 𝑘 + 1) = 𝑅 (𝑡0, 𝑘) −
1

𝐽𝑘,𝑘+1

𝑘−1∑
𝑖=1

Δ𝐽𝑖,𝑘 (𝑅 (𝑡0, 𝑖 + 1)

−𝑅 (𝑡0, 𝑖)) (9.3)

𝐽𝑘,𝑘+1 =
𝐽 (𝑘 + 1, 𝑘 + 1) + 𝐽 (𝑘, 𝑘 + 1)

2
(9.4)

Δ 𝐽𝑖,𝑘 = 𝐽 (𝑘, 𝑖 + 1) − 𝐽 (𝑘, 𝑖) (9.5)

It should be noted that the first term as in Equa-
tion (9.1) is merely an auxiliary term that enables to start

the iteration in Equation (9.4). However, due to the high
non-linearity of the relaxation modulus at the beginning,
directly implementing the numerical solution, as in Equa-
tion (9), can lead to an underestimation of the relaxation
modulus. Therefore, instead of following the initial condi-
tions as in Equation (9.2), it was also suggested to keep the
second and third term of the relaxation modulus constant
(Bažant & Jirásek, 2018), expressed as below:

𝑅 (𝑡0, 2) = 𝑅 (𝑡0, 3) =
1

𝐽 (𝑡0, 𝑡2)
(10)

It should be noted that the initial conditions as in
Equation (10) are merely used for calculating the other
relaxation modulus after t = 3, while the real relaxation
modulus of the first two terms stays the same as in
Equations (9.1) and (9.2).

Model 2 (M2): An explicit exponential conversion from
creep to relaxation
Model 2 (M2) was initially proposed by Wittmann (1974)
and Van Breugel (1980) to calculate the EAS in young con-
crete and obtain good prediction accuracy with ordinary
concrete. Recently, M2 has also been applied to alkali-
activatedmaterials and showed good applicability (Li et al.,
2021, 2022). Assuming the total strain is composed of two
parts, the elastic and the creep part,which can be expressed
as below:

𝜀 = 𝜀𝑒𝑙 + 𝜀𝑐 (11)

where εel and εc are the elastic and creep strain, respec-
tively. Note that with the definition of relaxation tests, the
total strain is a constant independent of time. Then, by tak-
ing the derivative at the two sides and expressing the elastic
strain with Hooke’s law, one gets:

1

𝐸 (𝑡0)

𝑑𝜎

𝑑𝑡
= −

𝑑𝜀𝑐
𝑑𝑡

(12)

Assuming that the creep strain at a certain t0 can be
expressed by power functions (Bažant & Jirásek, 2018;
Bazant & Osman, 1976; that is, J (t0, t) = a(t − t0)n), the
Equation (12) can be rewritten as

1

𝐸 (𝑡0)

𝑑𝜎

𝑑𝑡
= −𝜎𝑎𝑛 (𝑡 − 𝑡0)

𝑛−1 (13)

Note that a and n are fitting parameters of the power
function of creep. Integrating Equation (13) leads to:

𝑙𝑛𝜎 = −𝐸 (𝑡0) 𝑎 (𝑡 − 𝑡0)
𝑛
+ 𝐶 (14)

where C is a constant depending on the initial condition.
Assuming the initial stress is σ0, the ratio of stress σ and σ0
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8 LIANG et al.

can be obtained as below:

𝜎

𝜎0
= 𝑒−𝐸(𝑡0)𝑎(𝑡−𝑡0)

𝑛

(15)

Therefore, the relaxation modulus can be written as

𝑅 (𝑡0, 𝑡) = 𝑒
1−𝐽(𝑡0,𝑡)𝐸(𝑡0) 𝐸(𝑡0

)
(16)

Note that the exponent in Equation (16) is the creep coef-
ficient. It should also be noted thatM2 is significantlymore
straightforward to handle than M1 because Equation (16)
can be directly solved. On the contrary, M1 needs a more
complex numerical scheme, as in Equations (9) and (10),
to obtain the relaxationmodulus. By substituting the tested
elastic modulus and creep compliance into Equation (16),
one gets the relaxation modulus explicitly, and then the
EAS can be calculated directly by Equation (5).

3.2.2 Models for 3D analysis

For the final aim to assess the EAS in real concrete struc-
tures, the FEM method should be used for 3D analysis.
Because solving the Volterra integral Equations (4) and
(5) in FEM will be computationally expensive, this study
employed the exponential algorithm (Bažant & Jirásek,
2018; Bažant & Wu, 1974; Di Luzio et al., 2020; Yu et al.,
2012) based on the Kelvin chain model and Maxwell chain
model, which turns the Volterra integral into a rate-type
form and allows to solve it with a quasi-elastic constitu-
tive relationship. The exponential algorithm is also based
on the integral formation of Equations (4) and (6). The
first step of the exponential algorithm is to reformulate
Equations (4) or (6) in the following incremental form:

Δ𝜎 = 𝐸∗ (Δ𝜀 − Δ𝜀𝑎𝑑) − 𝜎
∗ (17)

where E* is the incremental modulus; σ* is an internal
variable in the rheological chain that should be updated
in each computation cycle; Δεad is the incremental AD.
The adopted Kelvin chain orMaxwell chain gives the exact
solution of the E* and σ* that will be introduced in detail
in the following sections. First, using Equation (17) as the
constitutive equation and setting Δεad to 0, virtual uni-
axial creep/relaxation tests will be conducted on a 150 ×
150 × 750 prism (Figure 5a). The boundary condition of
creep/relaxation tests is formulated by fixing the bottom
of the prism and applying unit load/displacement on the
top. Creep/relaxation tests aim to check the applicability
of the exponential algorithm in simulating the viscoelas-
tic behavior in FEM. Then, a virtual Mini-TSTM test will
be conducted based on a dog-bone specimen restrained at
the two ends and with the same geometry as the Mini-

F IGURE 5 Virtual specimens in finite element method (FEM)
simulation of viscoelastic behavior: (a) prism for basic
creep/relaxation tests and (b) dog-bone specimen for Mini-TSTM
tests.

F IGURE 6 A Kelvin chain with n units.

TSTM specimen (Figure 5b). The measured AD in the
Mini-ADTM is then used as input of Δεad.
Because the integral check requires solving Equations

(7) and (8) at every t0 and t, which is very computa-
tionally expensive for FEM, this study only checks the
coupling between creep and relaxation in FEM with vir-
tual creep/relaxation tests at four different ages, including
7, 24, 48, and 72 h. The final validation of the FEMwill still
be using the testedAD, elasticmodulus, and creep to calcu-
late the EAS, and then the calculatedEAS can be compared
to the tested EAS.

Model 3 (M3): Exponential algorithm based on Kelvin
chain
A typical Kelvin chain with n units is shown in Figure 6.
Solving the system of the differential equations of rheolog-
ical units, the creep compliance function can be obtained
then by adding the strain in each rheological unit under a
constant unit load, which then can be expressed as

𝐽 (𝑡0, 𝑡) =
1

𝐸0 (𝑡0)
+

𝑛∑
𝑗=1

1

𝐸𝑗 (𝑡0)

(
1 − 𝑒

−
𝑡−𝑡0
𝜇𝑗

)
(18)

where Ej and ηj are the elastic modulus of the spring and
viscosity coefficient in the j-th rheological unit, respec-
tively, and μj is the retardation time of jth unit and
μj = ηj/Ej.
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LIANG et al. 9

Rewrite Equation (6) into the incremental form as
Equation (17) and substitute the creep compliance func-
tion in Equation (18) into the incremental form derived
from Equation (6), one obtains the numerical solution of
incremental modulus E* and internal variable σ* as below
(Bažant & Jirásek, 2018; Di Luzio et al., 2020; Yu et al.,
2012):

𝐸∗ (𝑡∗) =
1

1

𝐸0(𝑡∗)
+
∑𝑛
𝑗=1

1

𝐸𝑗(𝑡∗)

(
1 −

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜇𝑗

Δ𝑡

)
(19.1)

𝜎∗(𝑡𝑖) = 𝐸
∗ (𝑡∗)

𝑛∑
𝑗=1

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜀∗
𝑗
(𝑡𝑖) (19.2)

𝜀∗
𝑗 (𝑡𝑖+1) = 𝑒

−
Δ𝑡

𝜇𝑗 𝜀∗
𝑗
(𝑡𝑖) +

1

𝐸∗(𝑡𝑖)

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜇𝑗

Δ𝑡
Δ𝜎 (19.3)

where t* is the average of two consecutive time steps ti and
ti+1. Equations (17) and (19) encompass the incremental
viscoelastic constitutive relationship for simulating the
development of stress induced by AD. Note that the ε*
of each Kelvin chain unit is the internal state variable, a
second-order strain tensor that must be updated on each
integration point according to Equation (19.3) at every
time step.
It is important to note that the input of the Kelvin

chain is creep compliance as in Equation (18). Therefore,
implementation of Model 3 (M3) requires determining the
parameters of the adopted Kelvin chain (i.e., Ej and μj in
Equation 18) by fitting Equation (18) with the tested creep
compliance function (i.e., Equation 1 fitted by the tested
creep data). In this study, a 13-unit Kelvin chain is used.
Note that the number of Kelvin chain units can influence
the fitting accuracy of the creep compliance function using
Equation (18), and insufficient units can lead to underfit-
ting. In our study, the 13-unit Kelvin was carefully selected
by parameter studies beforehand and is sufficient to fit
the creep compliance function, which will be shown in
the result analysis in Section 4.3.1. Using the continuous
retardation spectrummethod (Bažant & Xi, 1995; Di Luzio
et al., 2020), the retardation time μj is chosen as a priori to
prevent an ill-conditioned equation system as below:

𝜇𝑗 = 10
−7+𝑗, j = 1 ∶ 13 (20)

Then the continuous fitting form for the non-aging term
in Equation (1) (i.e., C(t − t0) = (t − t0)c) is as follows:

𝐶 (𝑡 − 𝑡0) =

∞

∫
0

1

𝐸𝑗

(
1 − 𝑒

−
𝑡−𝑡0
𝜇𝑗

)
d
(
ln 𝜇𝑗

)
(21)

F IGURE 7 Procedures for exponential algorithm based on
Kelvin chain.

Using the Laplace transform and Widder’s formula, the
solutions of Ej can be derived (Bažant & Xi, 1995):

1

𝐸𝑗
= − ln 10∗ lim

𝑘→∞

(−𝑘𝜇)
𝑘

(𝑘 − 1)!
𝐶𝑘 (𝑘𝜇) (22)

In this study, the spectrum of third order (k = 3) is
used, which was proved to achieve high accuracy in fitting
Kelvin chain parameters (Bažant &Xi, 1995; Di Luzio et al.,
2020). The working procedures for the M3 are shown in
Figure 7. Three checkpoints are proposed to examine the
feasibility of the M3: (1) by doing a virtual creep test, the
obtained creep compliance function should be the same as
the input creep compliance function; (2) by doing a virtual
relaxation test, the obtained relaxation modulus should
show a similar coupling as obtained by M1; (3) by doing
a Mini-TSTM test, which uses the AD tested by the Mini-
ADTM as the input, the obtained EAS should match the
tested EAS.

Model 4: Exponential algorithm based on Maxwell chain
Model 4 (M4) is based on the Maxwell chain, as shown in
Figure 8. By solving the system of differential equation of
the Maxwell chain with n units, the relaxation modulus
can be explicitly expressed as

𝑅 (𝑡0, 𝑡) = 𝐸0 (𝑡0) +

𝑛∑
𝑗=1

𝐸𝑗 (𝑡0) 𝑒
−
𝑡−𝑡′

𝜇𝑗 (23)

Similarly, by substituting Equation (23) into the incre-
mental from as in Equation (17) derived by Equation (4),
one obtains the numerical solution of modulus E* and
internal variable σ* as below (Bažant & Wu, 1974):
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10 LIANG et al.

F IGURE 8 AMaxwell chain with n units.

𝐸∗ (𝑡∗) =

𝑁∑
𝑗=1

𝐸𝑗 (𝑡
∗)

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜇𝑗

Δ𝑡
+ 𝐸0 (𝑡

∗) (24.1)

𝜎∗ (𝑡𝑖+1) =

𝑛∑
𝑗=1

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜎∗
𝑗 (𝑡𝑖) + 𝐸

∗ (𝑡𝑖+1) Δ𝜀𝑎𝑑 (𝑡𝑖+1)

(24.2)

𝜎∗
𝑗 (𝑡𝑖) = 𝑒

−
Δ𝑡

𝜇𝑗 𝜎∗
𝑗
(𝑡𝑖−1) + 𝐸

∗ (𝑡∗)

(
1 − 𝑒

−
Δ𝑡

𝜇𝑗

)
𝜇𝑗

Δ𝑡
(Δ𝜀 (𝑡𝑖)

−Δ𝜀𝑎𝑑 (𝑡𝑖)) (24.3)

Equations (17) and (24) form the exponential algorithm
based on the Maxwell chain and can be implemented
in FEM to simulate the viscoelastic behaviors. However,
it should be noted that the Maxwell chain-based model
requires an input of relaxationmodulus as shown in Equa-
tion (23). Therefore, the tested creep compliance function,
as in the form of Equation (1), should be converted to a
relaxation modulus function before it can be used as input
for the Maxwell model. In this study, we used the conver-
sion method as given by M2 (i.e., Equation 16) to do such
a conversion. The reason for using M2 is its simplicity, and
the converted relaxationmodulus ofM2 ismore consistent.
A detailed explanation for this can be found in Section 4.2.
After the relaxation modulus is available, the nonlinear
optimization tool (Byrd et al., 1999, 2000; Coleman & Li,
1994, 1996; Gill et al., 1981; Han, 1977; Powell, 1978a, 1978b;
Waltz et al., 2006) developed by MATLAB is adopted to
complete the fitting process of the Maxwell chain spec-
trum. Note that the studied time range in this paper is from
0 to 168 h after the placement of fresh material, with 1 h as
the time step. Assuming that the adopted Maxwell chain
has 13 units and the retardation time is selected as Equa-
tion (20), then the objective of the optimization process is
to find the Ej (j = 1, 2, . . . , 13) that can make the relaxation
modulus derived by the Maxwell chain (i.e., Equation 23)
as similar as the relaxation modulus converted from the
tested creep compliance. The 13-unit Maxwell chain was

F IGURE 9 Procedures for exponential algorithm based on
Maxwell chain.

chosen to maintain consistency with the Kelvin chain and
to better fit the relaxation modulus. Therefore, this study’s
retardation spectrum of the Maxwell chain would be a
168 × 13 array, with the first axis corresponding to the load-
ing time and the second axis corresponding to the jth unit
in the Maxwell chain.
The working procedure for the exponential algorithm

based on the Maxwell chain is formulated in Figure 9.
Three checkpoints are proposed to examine the feasibility
of theM3: (1) by doing a virtual relaxation test, the obtained
relaxation modulus function should be the same as the
input relaxation modulus function; (2) by doing a virtual
creep test, the obtained creep compliance should show a
similar coupling as obtained by M2; (3) by doing a Mini-
TSTM test, which uses the AD tested by theMini-ADTMas
the input, the obtained EAS should match the tested EAS.

4 RESULTS AND DISCUSSIONS

4.1 Experimental results

4.1.1 AD and EAS

The experimental results of the AD and EAS of the two
types of cement pastes are shown in Figure 10. Note that
despite the same type of cement being used, different
batches of cement still cause different testing results, espe-
cially for the early AD. Such considerable variation was
also observed and highlighted by the studies that system-
atically investigated the variations in TSTM and AD tests
(Klausen et al., 2022; Wyrzykowski et al., 2017). How-
ever, it should be noted that such batch difference does
not exist in a single test because the specimens for EAS
measurement in Mini-TSTM and specimens for AD in
Mini-ADTM were cast from the same batch of fresh mate-
rial and tested simultaneously. Detailed analysis of the
experimental results is as follows.
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LIANG et al. 11

F IGURE 10 Experimental results of Mini-TSTM test in fully
restrained and free conditions: (a, c) early-age stress (EAS) and
autogenous deformation (AD) of CEM I 42.5N paste; (b, d) EAS and
AD of CEM III/B 42.5N paste.

The AD of both C1 and C3 paste can basically be divided
into three stages: a fast shrinkage in the first 10 h, followed
by an expansion until about the second day, and finally
shrinkage starting after approximately 2–3 days.
Within each test, the EAS evolution in Figure 10a,b

matches the corresponding AD in Figure 10c,d.
Precisely, the increasing/decreasing of stress (i.e.,

tension/compression) corresponds to the shrink-
ing/expanding process. Note that the EAS induced
by initial fast shrinkage in the first 10 h is minor because
of the very low elastic modulus and high relaxation. The
following numerical results will prove that each of the
ADs can be used to correctly predict the corresponding
EAS with the viscoelastic properties of the material
given as another input, which demonstrates that each
measurement of AD under free condition is an exclu-
sive description of the EAS evolution tested under fully
restrained condition.
Significant variation exists in measuring the first two

stages of C1 paste’s AD. However, such variation of AD
only induces limited variation in the measurement of EAS
because of the low elastic modulus and high relaxation in
corresponding ages, which will be proved in the following
numerical modeling works.
Despite some variation in the AD, C3-30-1 and C3-30-2

showed almost a perfect match in the EAS measurement.
Moreover, it should be noted that the C3-30-3 showed sig-
nificantly different behavior. C3-30-3 did not expand in the
first 2 days like the C3-30-1 and C3-30-2. The autogenous
expansion in high-volume slag cement like C3-30-1 and
C3-30-2 was observed by many other studies (Carette &
Staquet, 2018; Darquennes et al., 2011; Liang et al., 2023),
and such expansion was attributed to fast ettringite for-
mation. However, the AD of C3-30-3 is not the result of
measurement artifact because in the EAS result of C3-30-
3, the EAS from 10 to 20 h also stabilized, corresponding
to the platform in Figure 10d. After 30 h, the tensile EAS
gradually built up, corresponding to the onset of shrink-
age in Figure 10d. The EAS evolution of C3-30-3 perfectly
matched AD’s corresponding measurement; therefore, the
material behavior was correctly measured and recorded
by the Mini-TSTM and ADTM setups. The exact reason
why C3-30-3 displayed no expansion may lie in the com-
position variation between different batches of CEM III/B
42.5N and is not the focus of this study, which aims for
testing andmodeling of stress relaxation and only requires
a match between the specimens in Mini-ADTM test and
Mini-TSTM test.
In the numerical study, the results of AD in Figure 10c,d

were used as the input for the proposed four models M1–
M4 (see Equations 5 and 17) to calculate the EAS. The
predicted EAS was then compared to the results of EAS in
Figure 10a,b.

4.1.2 Creep and elastic modulus

Besides the AD, another essential input for the models
M1–M4 is the viscoelastic properties, which are relevant
to R (t0, t) in Equation (5) and E*, σ* in Equation (17).
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12 LIANG et al.

F IGURE 11 Hourly repeated loading cycles for the elastic
modulus and aging creep for (a) CEM I 42.5N paste and (b) CEM
III/B 42.5N paste.

The viscoelastic properties in this study are quantified by
measuring the elastic modulus and aging creep by hourly
repeated loading cycles as introduced in Section 2.2.3. The
hourly repeated loading schemewasmade according to the
EAS results C1-30-1 and C3-30-1 in Figure 10a,b, shown in
Figure 11.
Accordingly, the total deformation measured in the

Mini-TSTM and the AD measured in the Mini-ADTM
can be obtained as shown in Figure 12. It is clear that
the total deformation curve is the superimposition of
creep deformation and AD. The deformation in each load-
ing/unloading phase, as shown in Figure 12, is used to
calculate the elastic modulus at each time point, using
the load history as reported in Figure 11. Similarly, the
deformation within each load-sustaining phase is used to
calculate the creep compliance, employing the load his-
tory in Figure 11. Note that the creep strain is obtained by
subtracting the AD from the total deformation.
Based on the deformation in each loading/unloading

phase and the load-sustaining phase in Figure 12, and com-
bining the load history in Figure 11, the elastic modulus
and creep compliance at each time point can be calcu-
lated. The results of the time-dependent elastic modulus
and creep compliance function are given by Equations
(25) and (26). The elastic modulus was fitted according
to an empirical function similar to the expression of elas-
tic modulus in the American Concrete Institute (ACI)

F IGURE 1 2 Results of the hourly repeated loading tests: (a)
CEM I 42.5N paste and (b) CEM III/B 42.5N paste.

code (American Concrete Institute &ACI Committee 209–
Creep and Shrinkage, 2008), and the creep function was
modeled according to Equation (1). Note that this study
focuses on early-age creep, and therefore a power-law
function (Bazant & Osman, 1976) is used. A logarithmic
function (Baronet et al., 2022) should be more appropriate
for long-term creep.
For CEM I 42.5N paste, the results are as follows:

𝐽 (𝑡0, 𝑡) =
1

𝐸 (𝑡0)
+ 0, 100∗

(
1

𝑡0

)1,079
∗ (𝑡 − 𝑡0)

0,5 (25.1)

𝐸 (𝑡0) = 26, 46∗
𝑡0

0, 7337∗105 + 0, 9519∗𝑡0
(25.2)

where the elastic modulus E is in GPa; t and t0 are in sec-
onds; creep compliance J is in μstrain/MPa. For CEM III/B
42.5N paste, the results are as below:

𝐽 (𝑡0, 𝑡) =
1

𝐸 (𝑡0)
+ 0, 362∗

(
1

𝑡0

)1,197
∗ (𝑡 − 𝑡0)

0,5 (26.1)

𝐸 (𝑡0) = 31, 79∗
𝑡0

1, 535∗105 + 0, 5453∗𝑡0
(26.2)

The units of variables are the same as in Equation (25).
Equations (25) and (26) are the inputs of viscoelastic prop-
erties for the models M1–M4 to simulate stress relaxation
in a fully restrained Mini-TSTM test.
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LIANG et al. 13

4.2 The 1D analysis for conversion from
creep to relaxation

The 1D study was conducted by M1 and M2 as introduced
in Section 3.2.1. In this section, the conversion results of
M1 andM2 will be analyzed, and the integral check will be
performed.

4.2.1 Conversion results

After obtaining the viscoelastic properties as in Equations
(25) and (26), the conversion from creep to relaxation can
be done by M1 (i.e., Equations (9) and (10) or M2 (i.e.,
Equation 16). The conversion results of the two types of
cement paste are shown in Figure 13. Note that in this
study, the interested time range is 1–168 h, with a time
step of 1 h. Therefore, the relaxation modulus R (t0, t) is
a 168 × 168 array. To clearly display the relaxation mod-
ulus R (t0, t), only 16 sets of R (t0, t) are shown below,
with t0 equal to 10, 20, 30, . . . , and 160 h. As expected,
the relaxation modulus obtained by both M1 and M2 fol-
lows a clear decreasing trend. However, the results of M1
(Figure 13a,c) do not converge to 0 but to negative values.
In comparison, the results obtained by M2 (Figure 13b,d)
always converge to 0. It is evident that M1 cannot be used
for EAS simulation due to its negative values. These val-
ues indicate that during the relaxation process, the stress
not only decreases but also changes direction. For instance,
if there were a relaxation test with initial compression, a
negative relaxation modulus would mean that the com-
pressive stress would not only decrease but also become
tensile stress afterward. It should be noted that such a prob-
lem with M1 has already been indicated in Bažant and
Jirásek (2018), suggesting that the high nonlinearity of the
relaxation modulus results in underestimating the relax-
ation modulus by numerical solutions. Therefore, instead
of the initial conditions as in Equation (9), Bažant and
Jirásek (2018) proposed an empirical solution by using the
initial conditions as in Equation (10) to ease problems in
the conversion of relaxation modulus of later ages (sev-
eral days to weeks). However, despite the improvement
brought by Equation (10), it is shown here that the neg-
ative relaxation modulus still exists (Figure 13a,c), which
indicates that M1 needs further improvement probably in
numerical schemes before it can be used appropriately
to simulate stress relaxation in very early age cemen-
titious materials (from several hours to a week in this
study).
In fact, the negative relaxation modulus (caused by M1)

mainly results from the rapid decrease of the creep com-
pliance function due to the aging term (specifically, term
(1/t0)b in Equations 25 and 26). This becomes evidentwhen

F IGURE 13 Relaxation modulus R (t0, t): (a) C1 results by M1,
(b) C1 results by M2, (c) C3 results by M1, and (d) C3 results by M2.
(Note that the results displayed here are R (t0, t) with t0 equal to 10,
20, 30, . . . , and 160 h. See (a) for the example.)

assuming that concrete creep is not subject to aging (by
omitting the aging term) and then recalculating the relax-
ation modulus using M1 as depicted in Figure 14a. When
the load is applied at intervals of 10, 20, . . . , up to 160 h,
over a total timeframe of 1000 h, the issue of the negative
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14 LIANG et al.

F IGURE 14 Relaxation modulus R(t0, t) converted from creep
compliance function by M1 for: (a) C1 creep compliance function
with a constant aging term; (b) ACI-based creep compliance
function for normal concrete as used in Yu et al. (2012). (Note that
the results displayed here are R (t0, t) with t0 equals 10, 20, 30, . . . ,
and 160 h. See Figure 13a for the example.)

relaxation modulus completely disappears. Additionally,
employing a creep compliance function for regular con-
crete, which is typically recommended for long-term creep
analysis by many design codes, also solves the issue of
negative relaxation modulus. For instance, by applying
the creep compliance function from the ACI code, with
parameters equivalent to those described in Equation (27)
for concrete (Yu et al., 2012), the relaxation modulus fol-
lowing M1 can be calculated as shown in Figure 14b.
The negative relaxation modulus is only observed at the
very beginning. Consequently, the negative relaxation
modulus problem induced by M1 primarily occurs in
very early-age materials with high creep. For long-term
creep analyses, such concerns regarding M1 are likely
negligible.

𝐸 (𝑡0) = 38000∗

⎛⎜⎜⎝𝑒
0.2∗

(
1−

√
28

𝑡0

)⎞⎟⎟⎠
0.3

(27.1)

𝜑 (𝑡0, 𝑡) = 2∗(1.25∗𝑡0)
−0.118

∗(𝑡 − 𝑡0)
0.2 (27.2)

𝐽 (𝑡0, 𝑡) =
1 + 𝜑 (𝑡0, 𝑡)

𝐸 (𝑡0)
(27.3)

4.2.2 The integral check

The integral check is performed here by substituting the
converted relaxation modulus (obtained by M1 and M2)
and creep compliance function (i.e., Equations 25 and 26)
into Equation (8) and checking if the integral still equals
1.0. To evaluate the difference between the integral value
of Equation (8) and the theoretical value (i.e., 1), the root
mean square error (RMSE) index is here used. It can be
expressed as

𝑅𝑀𝑆𝐸 =

√∑
𝑁 (𝑦𝑐 − 𝑦𝑟)

2

𝑁
(28)

where yc is the calculated value of the integral expression
in Equation (8) at different t and t0; yr is the value that
the integral in Equation (8) must have, that is, 1; N is the
amount of the considered points, and in this case, it is
N= t0*t. The integral check results for the converted relax-
ation modulus of both pastes obtained by M1 and M2 are
shown in Figure 15. The results of the integral check for
t = 20:168 and t0 = 1:168 are shown. To present the over-
all shape of the relaxation function, the results in the very
beginning (i.e., t= 1:20) are not shown. However, it should
be noted that the RMSEs in each result were calculated
based on all the t0 and t. The integral check results clearly
show that the relaxation modulus converted by the M1
(Figure 15a,c) has a much lower RMSE (around 0.10) than
the relaxationmodulus converted by theM2 (Figure 15b,d),
which obtained a higher RMSE around 0.43.
Such results are understandable if one checks the detail

of the M1 and M2: M1 (Equations 9 and 10) is basically
another form of numerical solution of the integral check
(Equation 7), and therefore M1 naturally satisfies the cri-
terion that the integral value calculated by Equation (8)
should equal to 1.0. The RMSE of approximately 0.1 is just
the accuracy loss of the adopted numerical scheme (i.e.,
mid-point rule). However, on the other hand, it should be
noted that the derivation of M2 (Equations 11–16) does not
have any prior information regarding the integral. Thus, it
obtains a higher RMSE of about 0.43. Specifically, looking
at Figure 15b,d, it is found that the error of M2 in inte-
gral check tends to be higher, especially at a very early age
(i.e., at small t0). Note that the problem of negative values
of relaxation modulus obtained by M1 (Figure 13a,c) also
tends to bemore significant at a very early age (i.e., at small
t0). Considering all the negative values in Figure 13a,c as
mere errors of adopted numerical schemes, one can cor-
rect all negative values to zero and do the integral check
again with the adjusted relaxation modulus. The results of
the relaxation modulus obtained by such adjusted M2 are
shown in Figure 16. It is interesting to see that, after cor-
recting all the negative values to 0, the adjustedM1 obtains
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LIANG et al. 15

F IGURE 15 Integral values given by Equation (8) using
converted relaxation modulus and tested creep compliance function
as input: (a) C1 results converted by M1, (b) C1 results converted by
M2, (c) C3 results converted by M1, (d) C3 results converted by M2.
(Note that the results displayed here are integral values of
Equation 8 with t and t0 equal to 1, 2, 3, . . . , 168 h.)

a similar RMSE with M2. Moreover, the error distribution
of the adjusted M1 is also similar to that of M2: earlier ages
tend to have higher RMSE and, therefore, more deviation
from the criterion of integral check.
From the result analysis of this section, it is found that

despite M1 satisfying the integral check with better accu-

F IGURE 16 Integral values given by Equation (8) using
adjusted M1 by setting all negative values to 0: (a) C1 results and (b)
C3 results.

racy with a low RMSE of around 0.10, it obtains negative
values of relaxationmodulus, especially in early age,which
is due to the high nonlinearity of relaxationmodulus func-
tion at the beginning according to Bažant and Jirásek
(2018). In comparison, M2 does not lead to negative val-
ues but only a smooth convergence to 0. Negative values
of the relaxation modulus indicate an unacceptable stress
relaxation process that may not be suitable for simulating
stress relaxation in early-age cementitious materials. Con-
sidering the negative values in M1 as numerical loss and
correcting them to zero, the obtained RMSE in the integral
check is similar to M2, which is around 0.40.

4.3 The 3D analysis based on
exponential algorithms (checkpoints 1
and 2)

The 3D analysis implements M3 and M4 in FEM, exten-
sions of the 1D method M1 and M2. The exponential
algorithm solves the Volterra integral (Equations 4 and 6)
with a quasi-elastic constitutive relationship (Equation 17),
which is more efficient than directly solving the integral
with classical numerical schemes and, therefore, is more
suitable in simulating viscoelastic behavior in massive
structures, including the EAS prediction. In this section,
virtual creep and relaxation tests will be done using theM3
and M4, respectively, to illustrate the applicability of the
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16 LIANG et al.

exponential algorithm based on either Kelvin or Maxwell
chain in simulating the viscoelastic behavior of very early-
age cementitious materials. Specifically, checkpoints 1 and
2 in Figures 7 and 9 will be examined in this section for
both M3 and M4. All the virtual tests will be conducted at
four different ages, including 7, 24, 48, and 72 h.

4.3.1 Kelvin chain

The M3 is the exponential algorithm based on the Kelvin
chain model. The spectrum of the Kelvin chain was fitted
using the continuous retardation chain method (Equa-
tion 22) based on the experimental results of the creep
compliance function (Equations 25 and 26). Checkpoint 1
of M3 aims to conduct a virtual uniaxial creep test on the
prism (Figure 5a) and compare the obtained creep com-
pliance function from such tests with the experimental
results (i.e., the input for the Kelvin chain). The results
of checkpoint 1 of M3 are shown in Figure 17. The results
of checkpoint 1 indicate that the M3 can almost perfectly
simulate the creep test given a specific input, meaning
high precision is achieved by the exponential algorithm
based on the Kelvin chain to calculate the Volterra integral
(Equations 4 and 6). However, this suggests that similar
problems of negative relaxation modulus happening to M1
will also occur in M3 if it comes to the conversion from
creep to relaxation. As shown in Figure 18, the relaxation
modulus can be obtained by applying a constant displace-
ment on the prism. The relaxation modulus converted by
M1 and M2 are also compared. The results of the virtual
relaxation tests conducted by M3 show a similar non-
converging trend as observed in the results of M1. This
non-converging trend leads to a negative relaxationmodu-
lus, indicating a problematic stress direction change in the
relaxation process. Such a result is unacceptable for EAS
simulation.

4.3.2 Maxwell chain

Compared to the Kelvin chain, the Maxwell chain is often
less used because it is difficult to obtain the relaxation
modulus, which the Maxwell chain requires as the input.
In this study, we first used the M2 to convert the creep
compliance function obtained from the hourly repeated
loading test to the relaxation modulus. Then, a non-
linear optimizer was employed to fit a 13-unit Maxwell
chain using the relaxation modulus obtained by M2. The
obtained spectrum of the Maxwell chain for the two
cementitiousmaterials CEM I/42.5N and CEM III/B 42.5N
with a w/c ratio of 0.30 are shown in Figure 19. Note that
the Maxwell spectrum is a 168 × 13 array, with the first axis
being the investigated time ranging from 1 to 168 h and the

F IGURE 17 Creep compliance obtained from virtual creep
test of M3 (checkpoint 1), with loading time t0 = 7, 24, 48, and 72 h
for (a–d), respectively.

second axis being the 13 differentMaxwell units with relax-
ation time logarithmically distributed from 10−6 to 106 h.
The values in the array are the ratio between the elastic
modulus of the spring in the unit and the elastic modulus
of the cement paste material.
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LIANG et al. 17

F IGURE 18 Relaxation modulus obtained from the virtual
creep test of M3 (checkpoint 1), with loading time t0 = 7, 24, 48, and
72 h for (a–d), respectively.

The relaxation modulus can be obtained by applying
a constant unit displacement on the top of the prism,
which can then be compared to the input of the adopted
Maxwell chain model (i.e., checkpoint 1). The relaxation
modulus in the virtual relaxation test can be shown in

F IGURE 19 Spectrum of the Maxwell chain model of two
types of adopted cementitious materials: (a) CEM I/42.5N and (b)
CEM III/B 42.5N. (Note the y-axis is the retardation time μj of jth
unit and can be calculated by μj = ηj/Ej.)

Figure 20. The relaxation modulus obtained by M1 and
M2 are also compared. From the perfect match between
the relaxation modulus obtained by M4 and M2, it is clear
that the exponential algorithmbased on theMaxwell chain
can simulate the relaxation behavior with good precision,
indicating the applicability of M4 in EAS simulation. By
applying a constant unit load on top of the prism, virtual
creep tests can be done, and checkpoint 2 can be exam-
ined as shown in Figure 21. If M2 can perfectly reflect the
coupling between creep and relaxation, then the obtained
creep compliance in the virtual creep test shouldmatch the
experimental results. However, the results of checkpoint
2 in Figure 21 clearly show that at an early age, the creep
compliance function obtained by M4 (calibrated based on
the input of M2) does not match the experimental creep
results. However, at a later age, the difference becomes
smaller. At 72 h, the two creep compliance curves become
very similar. Such a pattern has been shown in the integral
check of M2, in which the integral values are far from 1.0 if
at an earlier age, and vice versa. Since M4 is calibrated by
the relaxation modulus of M2, a similarly weak coupling
between creep and relaxation like M2 at a very early age
can also be understandable.
Overall, this section found that given the input of

the creep compliance function or relaxation modulus
function, M3 and M4 can perfectly simulate the creep
and relaxation behavior with high precision, respectively.
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18 LIANG et al.

F IGURE 20 Relaxation modulus obtained from virtual
relaxation test of M4 (checkpoint 1), with time of loading t0 = 7, 24,
48, and 72 h for (a–d), respectively.

However, M3 and M4 cannot reflect the coupling between
creep and relaxation well. In M3, given the creep compli-
ance function as input, the relaxation modulus obtained
from a virtual relaxation test can be negative, especially
when the loading time t0 is small. Such a problem is

F IGURE 2 1 Creep compliance obtained from virtual
relaxation test of M4 (checkpoint 2), with a loading time t0 = 7, 24,
48, and 72 h for (a–d), respectively.

similar to M1 and is understandable since M1 and M3 are
based on the same original Volterra integral (Equation 6).
To simulate EAS, a negative relaxation modulus is not
physically acceptable because it conveys a problematic
relaxation process with a change of stress sign. On the
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LIANG et al. 19

other hand, using the relaxation modulus obtained by
M2 as input for the M4, a more reasonable relaxation
modulus can be obtained in the virtual relaxation test,
which always converges to 0. However, a weaker coupling
between creep and relaxation still exists at a very early age
(as observed in the integral check of M2).

4.4 Prediction of EAS (checkpoint 3)

In this section, the M1–M4 will be used to predict the EAS
using the AD in Figure 10b,d and measured viscoelastic
properties in Equations (25) and (26) as input. The pre-
dicted EAS can then be compared to the experimental
results in Figure 10a,c. Data are from six testing results
(three for CEM I 42.5/N and three for CEM III/B 42.5/N).
Precisely, for 1D analysis methods M1 and M2, the predic-
tion of EAS was calculated based on Equation (5), using
the relaxation modulus given by Equations (9) and (10)
and Equation (16), respectively. For 3D analysis methods
M3 and M4, the prediction of EAS was simulated based
on the dog-bone specimen with two ends fixed, similar to
theMini-TSTM test (Figure 5b). The exponential algorithm
based on Kelvin and Maxwell chains was implemented
based on Equations (17) and (19) and Equations (17) and
(24), respectively. The experimental and numerical results
of EAS are shown in Figure 22. To display the differ-
ence between the experimental and numerical results, the
RMSEwas calculated based on Equation (27). Note that for
M1, there are four different variants:

1. M1: Original M1, based only on Equation (9).
2. M1-zeroed: Adjusted M1, which sets all negative relax-

ation modulus obtained by M1 as 0.
3. M1-2: Improved M1, based on Equations (9) and (10).

The initial condition changes in Equation (10) mainly
aim to reduce the error of high nonlinearity of the
relaxation modulus function (Bažant & Jirásek, 2018).

4. M1-2-zeroed: Adjusted M1-2 sets negative relaxation
modulus obtained by M1-2 as 0.

Figure 22 shows only the original and adjusted M1 for
clarity. But RMSEs of all studiedmethods are shown in the
Table 2. Comparing the averaged RMSEs of all models, the
rank of prediction accuracy is as follows: M2 (0.265) <M4
(0.300)<M1-2-Zeroed (0.302)<M1-Zeroed (0.395)<M1-2
(0.520) < M1 (0.752) < M3 (0.783). The following analysis
can be drawn:

1. The models M2 andM4 both obtain high accuracy with
a low averaged RMSE below 0.300 MPa. Note that M4
is the FEM model that can be generalized to 3D analy-
sis of a more realistic structure. At the same time, M2

is a simple model for 1D analysis, such as the uniax-
ial restraint test in this study. A similar accuracy of
M2 and M4 is expected because M4 uses the relaxation
modulus derived from M2 to calibrate the spectrum of
the Maxwell chain. The high prediction accuracy given
by M2 and M4 also shows that, in the results of Mini-
TSTM and Mini-ADTM tests (Figure 10), each AD is an
exclusive description of the corresponding EAS results,
which verifies the variation of AD between different
batches of cement.

2. The models M1 and M3 obtain the highest RMSE
and, therefore, the lowest accuracy of EAS prediction.
This result is expected if considering the influence of
high nonlinearity of the relaxation function (Bažant
& Jirásek, 2018), which causes an underestimation
of relaxation modulus calculation if strictly following
Equation (9) for the conversion. The similar perfor-
mance of M1 and M3 is expected because both are
based on the same governing equation: M3 employs
the exponential algorithm using the Kelvin chain by
Equations (17) and (19), which is initially derived by the
incremental form of Equation (6), and Equation (6) is
also the basis of Equation (9) for M1.

3. The negative values of relaxation modulus and error
brought by the high nonlinearity of the relaxation func-
tion in the conversion process are mainly responsible
for why a worse prediction is obtained: By correcting
all the negative relaxation modulus to 0, the predic-
tion accuracy is significantly improved, which can be
seen by comparing the RMSE of M1 to M1-zeroed and
M1-2 to M1-2-zeroed. By reducing the error brought by
the high nonlinearity of the relaxation function using
Equation (10), the prediction accuracy is also improved,
which can be seen by comparing the RMSE ofM1 toM1-
2 and M1-zeroed to M1-2-zeroed. If correcting both, the
adjusted M1-2-zeroed can obtain comparable accuracy
to M2 and M4, which brings a low averaged RMSE of
around 0.302 MPa.

4. However, it should be noted that simply correcting all
negative values to zero or applying a different initial
condition (as in Equation 10)may not intrinsically solve
the numerical issue induced by the high nonlinearity of
the relaxation function. And therefore, such improve-
ment cannot be directly extended to 3D models (i.e.,
M3). Improvements are needed for better application of
M3 in EAS analysis, considering the high nonlinearity
of relaxation functions. Alternatively, this study proves
that the M4 model, which uses the relaxation modulus
fromM2 as input, is well applicable in EAS simulation.

Overall, the analysis above proves that the M4, based on
the aging Maxwell chain, exponential algorithm, and the
exponential conversion from creep to relaxation, can well
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20 LIANG et al.

F IGURE 22 Experimental and numerical results of EAS, Fig (a–f) correspond to results of C1-30-1, C1-30-2, C1-30-3, C3-30-1, C3-30-2,
C3-30-3, respectively.

address the problem of negative relaxation modulus and
high non-linearity as brought by M1 and M3, and there-
fore significantly improves the EAS prediction accuracy.
Although the EAS can be well quantified through M3,
the EAC criterion is equally important to fully assess EAC
risk. A straightforward assessment criterion is the stress-
nominal strength ratio. Many studies (Xin et al., 2020)

on TSTM tests showed that EAC always happens before
the stress-nominal strength ratio reaches 1.0 and mostly
between 0.60 and 0.80. Therefore, engineering practice
often uses a stress-nominal strength ratio of 0.5. A more
sophisticated damage criterionmay be needed to assess the
EAC risk precisely, such as a combination of the EAS and
strain (Zhu et al., 2021).
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LIANG et al. 21

TABLE 2 Root mean square error between predicted and tested early-age stress.

M1 M1-zeroed M1-2 M1-2-zeroed M2 M3 M4
C1-30-1 1.66 0.76 1.20 0.59 0.46 1.38 0.62
C1-30-2 0.52 0.62 0.49 0.49 0.38 0.30 0.51
C1-30-3 0.26 0.17 0.17 0.15 0.17 0.24 0.11
C3-30-1 0.78 0.31 0.50 0.18 0.16 1.03 0.19
C3-30-2 0.63 0.18 0.35 0.14 0.15 0.85 0.10
C3-30-3 0.66 0.33 0.41 0.26 0.27 0.90 0.26
Average 0.751 0.396 0.520 0.301 0.264 0.783 0.299

Moreover, it should be noted that the models M1–M4
are built based on the Boltzmann superposition (as Equa-
tion 3), which assumes that the EAS induced at every
time point is additive. However, this assumption may be
invalid and affect EAS prediction accuracy when stress is
close to its strength. Finally, it should be mentioned that
in this work, the EAS caused by AD is used as an example.
The calculation methods also hold for the EAS caused by
thermal and drying deformation since the imposed defor-
mation in Equation (4) does not refer to a specific type of
deformation.

5 CONCLUSION

This study investigated four different numerical
approaches (two for 1D analysis and another two for
3D analysis) for simulating the EAS evolution in cemen-
titious materials. Based on the experimental results of a
newly developed Mini-TSTM and Mini-ADTM, the AD
and viscoelastic properties (i.e., elastic modulus and aging
creep) were measured and served as input for the EAS
simulation. The EAS of two different cement pastes (i.e.,
CEM I 42.5N and CEM III/B 42.5N) were also tested by the
Mini-TSTM to evaluate the modeling accuracy. The paper
comprehensively introduces and analyzes numerical
models M1 to M4, including their theoretical foundations,
applications, and validation. M1 and M2 are 1D solutions
for converting the creep to relaxation, with M1 being the
numerical solution from the Volterra integral as Equation
(9) and M2 being an explicit exponential conversion
function as Equation (16). M3 and M4 are developed
for simulating both creep and relaxation behaviors of
concrete in 3D using FEM, using rate-type creep law with
Kelvin chain as Equations (18)–(22) and Maxwell chain as
Equations (23) and (24). Based on this study, the following
conclusions can be drawn:

1. As the numerical solution of the Volterra integral
(Equation 6), the 1D model M1 and 3D model M3 both
lead to negative relaxation modulus in a similar man-

ner, which indicates a problematic change of stress sign
in the relaxation process. This is not physically justi-
fied and suggests that the M1 and M3 can induce some
errors when simulating EAS. As expected, in the EAS
comparison, M1 and M3 were proved to show the high-
est error. However, it should be noted that the negative
issue of M1 is mainly induced by fast aging at a very
early age. Such negative issues can be neglected for
maturematerial or long-term creep/relaxation analysis.

2. Derived by the definition of a relaxation test, the
exponential conversion function of M2 can provide
reasonable relaxation modulus using the measured vis-
coelastic properties as input. The 1DmodelM2 obtained
the highest accuracy in EAS prediction among all
investigated models. To generalize into 3D, a FEM
model with the exponential algorithm based on the
Maxwell chain (i.e., M3) was developed, which takes
the relaxation modulus of M2 as input and obtains
good prediction accuracy of EAS in 3D analysis that is
comparable to M2.

3. The relaxation modulus function’s high nonlinearity
is one reason for the negative relaxation modulus. By
correcting the negative relaxation modulus to zero and
using a different initial condition (Equation 10), the
error brought by such non-linearity can be eased, and
good prediction accuracy of EAS can be obtained (see
the prediction performance of M1-2-Zeroed in Section
4.4).

4. The models developed (M1-2-Zeroed, M2, and M4) can
accurately predict the EAS despite the apparent vari-
ations in the AD of the same type of cement. These
models use the AD from the same testing batch of
EAS as input, indicating a consistency between the
AD and EAS within the same batch. However, using
the AD from one testing batch to predict the EAS of
another batch may lead to a decrease in accuracy due
to variations in AD between different testing batches.
Therefore, each AD is a unique description of the
corresponding EAS evolution.

5. The prediction of EAS plays a crucial role in determin-
ing EAC criteria, such as the maximum stress-strength
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ratio (typically limited to 0.50 in practical applications).
To establish more accurate damage criteria for EAC
risk assessment, both EAS and strain need to be con-
sidered. For a high stress-strength ratio, a numerical
model requires a comprehensive constitutive law to
account for the aging fracture properties of the mate-
rial. However, this is beyond the scope of the present
paper.
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