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Abstract
Artificial Intelligence (AI) is transforming the future of industries by introducing new paradigms. To address data privacy and
other challenges of decentralization, research has focused on Federated Learning (FL), which combines distributed Machine
Learning (ML)models frommultiple partieswithout exchanging confidential information.However, conventional FLmethods
struggle to handle situations where data samples have diverse features and sizes. We propose a Hybrid Federated Learning
solution with label synchronization to overcome this challenge. Our FedLabSync algorithm trains a feed-forward Artificial
NeuralNetworkwhile alerts that it can aggregate knowledge of otherMLarchitectures compatiblewith the StochasticGradient
Descent algorithm by conducting a penalized collaborative optimization. We conducted two industrial case studies: product
inspection in Bosch factories and aircraft component Remaining Useful Life predictions. Our experiments on decentralized
data scenarios demonstrate that FedLabSync can produce a global AI model that achieves results on par with those of
centralized learning methods.

Keywords Federated Learning · Machine Learning · Hybrid Federated Learning · Artificial Neural Network · Stochastic
Gradient Descent

List of symbols
D Dataset distributed among parties
M Number of features of D
N Number of samples of D
J Number of parties
j The j th party
X{p1, . . . , pM } D’s input data of M features
p The pth feature
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Y Labels of D
Y j Labels of the j th party

Ŷ j Predictions of the j th party
Xi Input data of the i th sample
N j Dataset size of the j th party
M j Number of the dataset features of the j th

party
AN×J Predictionmatrix of N rows and J columns
Mlbs Labels Matrix
Msync Label Synchronization Matrix
B Mini-batch size
K Number of model aggregations
κ The κth global model computation
w Weights of global AI model
w∗ Optimal weights of global AI model
Fκ(w) HFL cost function of global AI model at

κth global model computation
ξ(w) VFL cost function of global AI model
T Number of training iterations in the local

training step
w

j
t Weights of the j th party at t th time
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F j
t (w j ) HFL cost function of the j th party at t th

time
σi (w) Loss function of VFL collaborative pre-

diction at the i th sample
φ(.) Activation function (e.g. relu)
f j
i (w j ) Loss function of the j th party at the i th

sample
η Step-size of Stochastic Gradient Descent

algorithm

Introduction

The future industry heavily relies on Artificial Intelligence
(AI) (Nguyen et al., 2021; Pharm et al., 2021). AI is a
broad field of computer science that focuses on creating
computer systems capable of performing tasks that require
human-like thinking (Kofi et al., 2022). In various industrial
applications, such as predictive maintenance, fault diagnos-
tics, failure prediction, and manufacturing process analysis,
AI and the Internet of Things (IoT) are integrated to analyze
large amounts of data and improve operations (Ahmad et al.,
2021; Peng et al., 2022).

Federated Learning (FL) has become a popular solution
to address privacy concerns in distributed Machine Learning
(ML) (Kairouz, 2019; Kallista et al., 2022; Li et al., 2019;
Zhang et al., 2020). In distributed scenarios, FL enables the
training of AI models locally, ensuring that sensitive data
remains with its owners and is not transmitted in raw form
(Abdulrahman et al., 2021). By doing so, FL provides a
decentralized and privacy-preserving approach to machine
learning.

Figure 1 presents the main components of federated envi-
ronments, including:

• Parties: devices or organizations that own data and AI
models and are the beneficiaries of FL applications.

• Manager: a computational server communicating with
parties and usually storing the global AI federatedmodel.

• Communication-computation framework: the FL algo-
rithm that trains the global AI model (Kallista et al.,
2022).

Once the federated participants (parties) are selected, the
FL process follows a series of key loop steps, executed K
times, until the convergence of the global model is achieved.
As depicted in Fig. 1, the standard steps include (1) local
training, (2) uploading the model, (3) computing the global
model, and (4) distributing it to the parties. Researchers are
constantly working to overcome challenges in federated net-
works, such as improving communication efficiency (Li et
al., 2019), addressing system heterogeneity (Abdulrahman

Fig. 1 Federated learning overview: components (parties,manager, and
communication-computation) and the key steps of the approach

et al., 2021), and ensuring data privacy (Abdulrahman et al.,
2021; Li et al., 2019). They are also exploring ways to dis-
tribute data in federated environments effectively (Li et al.,
2019; Liu et al., 2018).

Federated applications are built based on three data par-
titioning settings: Horizontal (HFL), Vertical (VFL), and
Hybrid Federated Learning (Hybrid-FL) (Abdulrahman et
al., 2021; Li et al., 2019). These settings differ in how N data
examples and M features are naturally distributed among J
parties. Samples and features that could be united to con-
struct a centralized dataset D of shape {Xi ∈ R

M ,Yi }Ni=1 in
case of data privacy not being a concern (Zhang et al., 2020).

Table 1 formally describes data partitioning settings refer-
ring to the number of samples and features of a single party
j . Those dimensions differ from the centralized dataset D
depending on if horizontal or/and vertical partitioning are
adopted. In HFL, parties differ in sample space but share the
same features space M (McMahan et al., 2016; Sahu et al.,
2018; Wang et al., 2020). While a single party j has a differ-
ent number of samples N j , the size of D is denoted by the
union of the beneficiaries’ samples∪J

j=1N
j . In VFL, the fea-

ture map of parties may overlap but share the sample indexes
(Chen et al., 2020; Dai et al., 2021; Novikova et al., 2022;
Yang et al., 2019). In other words, the feature map of D is
denoted by the union of the beneficiaries’ features ∪J

j=1M
j .

Finally, in Hybrid-FL, parties may differ in sample space
and feature space (Hiessl et al., 2020; Zhang et al., 2020).
In the hybrid data partitioning setting, D is composed of the
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Table 1 Distribution of samples and features according data partitioning settings: Horizontal, Vertical, and Hybrid Federated Learning

Data partitioning setting Number of samples Number of features Condition for FL

Per party j Dataset D Per party j Dataset D

Horizontal FL N j ∪J
j=1N

j M M Same ANN structure

Vertical FL N N M j ∪J
j=1M

j ∃ j ∈ J |Y j ∴ Y

Hybrid FL N j ∪J
j=1N

j M j ∪J
j=1M

j ∃Yi,i+1,...,L s.t �J
j=1 Y

j

union of the features and samples of the beneficiaries. There-
fore, horizontal and vertical partitioning settings are special
cases of Hybrid-FL (Zhang et al., 2020). However, most FL
algorithms were designed to overcome those special cases
separately due to the complexity of dealing with hybrid data
partitioning settings.

In the case of FL algorithms compatible with Artificial
Neural Networks (ANNs), one of the most used ML algo-
rithms in industrial applications (Kofi et al., 2022), HFL and
VFL solutions used to be conditioned beneficiaries to share
the same ANN structure or label space, respectively. Recent
studies aggregated knowledge of models differing in struc-
ture by distilling knowledge from a public dataset (Mora et
al., 2022). However, these studies require parties to share a
common label space for implementing a sample index syn-
chronization technique initially proposed in VFL (Yang et
al., 2019). A technique that does not fit with hybrid data par-
titioning settings.

The aggregation of knowledge from models exhibiting
diverse structures due to the hybrid data partition formed
by their training data needs attention within the FL context.
This is particularly crucial as hybrid data partitioning fre-
quently emerges in various real-world applications, including
domains like manufacturing. For instance: quality prediction
of thingsmanufactured in similar stations; product inspection
based on failure predictions in different stations (Ning et al.,
2022); Remaining Useful Life (RUL) estimation of aircraft
components in airlines (Rosero et al., 2022); monitoring of
surface structures of coal mines using Electromagnetic Radi-
ation Intensity (ERI) time series data of different producers
(Yao et al., 2019); and among others.

This paper proposes a Hybrid-FL algorithm capable of
aggregating knowledge of multiple sources whose data con-
figure a hybrid data partitioning (Hiessl et al., 2020; Zhang et
al., 2020). As far as our understanding extends, the presented
algorithm FedLabSync stands as the pioneering formulation
capable of aggregating insights from AI models (e.g. ANNs)
of varying structures if at least they are compatible with
the widely recognized Stochastic Gradient Descent (SGD)
optimization algorithm. This is possible thanks to imple-
menting a label synchronization strategy (Yang et al., 2019)
capable of handling non-i.i.d. (identically and independently
distributed) data distributing settings (Li et al., 2019).

Fig. 2 Example of FL environment

Experimental results demonstrated that FedLabSync algo-
rithm could achieve a global AI model with competitive
results compared to a model trained in a data-centralized
approach. Besides, the proposal presents performance
improvements compared to models instructed using data
from individual parties.

The main contributions of this paper can be summarized
as follows:

1. FedLabSync is an algorithm that trains feed-forward
ANNs and other AI models compatible with the SGD
algorithm using a collaborative and penalized opti-
mization approach. Besides FedLabSync being able to
aggregate models differing in structure, it reduces com-
munication costs because its shares predictions instead of
model parameters.

2. The competitiveness of FedLabSync is demonstrated by
conducting a set of evaluations in two industrial appli-
cation scenarios: product inspection based on failure
prediction in Bosch1 production lines; and the RUL of
aircraft components.2 Experiments on each industrial sce-

1 https://www.kaggle.com/c/Bosch-production-line-performance.
2 https://www.nasa.gov/content/prognostics-center-of-excellence-
data-set-repository.
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nario compare the performance obtained by AI models
trained in HFL, VFL, Hybrid-FL and a data-centralized
setting without data privacy.

This article is organized as follows. “Federated Learn-
ing” section presents a literature review regarding major
components of FL, settings and data partition approaches.
“Label synchronization for Hybrid Federated Learning” sec-
tion details the proposed Hybrid FL algorithm based on label
synchronization. “Experimental Setup” section describes a
manufacturing processes analysis and a predictive mainte-
nance case study. “Experimental results and analysis” section
describes the results obtained with the proposed algorithm,
comparing them with HFL, VFL and a data-centralized sce-
nario in which the predictive model is trained using data of
whole parties. Finally, conclusions and future works are pre-
sented in “Conclusions and future work” section.

Federated Learning

In contrast to a data-centralized learning approach where raw
data is shared to form a global dataset, FL is a privacy-
conscious alternative that utilizes models instead of data.
FL aggregates models trained locally on individual parties
and updates a global AI model through an iterative process
(Abdulrahman et al., 2021; Li et al., 2019). This method
ensures the privacy of raw data while still learning from it
(Abdulrahman et al., 2021).

The interaction diagram of Fig. 2 illustrates the collab-
oration of three parties through a manager intervention.
Depending on the number of selected parties, their computa-
tional resources and availability in aggregation iterations K ,
two FL settings have received particular attention, namely,
cross-device FL and cross-silo FL (Li et al., 2019):

• Cross-device considers the participation of numerous
beneficiaries in business-to-consumer (B2C) transactions
whose participants are sometimes unavailable for every
aggregation iteration, for example,mobile or IoTdevices.

• Cross-silo considers a small number of parties, usu-
ally organizations or companies, fitting a business-
to-business (B2B) transaction whose participants own
powerful machines providing high availability (Kairouz,
2019).

The transaction type and the chosen data partitioning
configuration significantly impact the initial stages of imple-
menting federated applications. In other words, these factors
heavily influence the FL key steps outlined in Fig. 1. Hor-
izontal, vertical and hybrid data partition settings can be
generalized considering that a dataset D of N data samples
(composed of inputs X and labels Y ), M features and shape

{Xi ∈ R
M ,Yi }Ni=1 is distributed along J parties. Here, the

feature dimension of the i th input sample corresponds to M ,
the number of its parameters {p1, p2, . . . , pM }, therefore,
Xi ∈ R

M .
Considering a federated application of three participants,

horizontal, vertical and hybrid data partitioning settings are
illustrated in Fig. 3 and defined in Table 1. In this fig-
ure, coloured boxes represent inputs X of different parties
while grey boxes represent their labels Y . In Table 1, N j

and M j represent the number of samples and features of
the j th party. Therefore, its dataset D j takes a shape of
{X j

i ∈ R
M j

,Yi }N j

i=1.
In Horizontal Federated Learning (HFL), each party j

owns different samples but shares the same feature space M
with the other beneficiaries. In this sense, the global dataset
D comprises the union ∪J

j N
j of J partial datasets of size

N j .
In Vertical Federated Learning (VFL), the j th party

dataset D j of shape {X j
i ∈ R

Mj ,Yi }Ni=1 is composed of N
samples. While the j th party has an input space X j ∈ R

Mj

of dimension M j , the dimension of the global dataset D cor-
responds to the union of the input space ∪J

j M
j of J parties.

Finally, in Hybrid Federated Learning (Hybrid-FL), the
j th party dataset D j of shape {X j

i ∈ R
Mj ,Yi }N j

i=1 is com-
posed of N j samples with an input space X j ∈ R

Mj of
dimension M j . Horizontal and vertical data partitions are
exceptional cases of the hybrid one because it differs not
only in sample space but may differ in input feature space.

Horizontal Federated Learning

The predominant focus within the literature concerning Fed-
erated Learning (FL) algorithms has gravitated towards
horizontal-based approaches, primarily propelled by the
remarkable outcomes demonstrated by the pioneering FL
algorithm, Federated Averaging (FedAvg) (McMahan et al.,
2016). In dealing with non-i.i.d data distribution scenarios,
HFL algorithms have aggregated knowledge of AI models
with the same and different architectures by sharing model
parameters and predictions (Mora et al., 2022; Reddi et al.,
2020).

Most of the FL algorithms based on parameter aggrega-
tion utilize the SGD algorithm to orchestrate collaborative
training of ANNs with the same architecture (Reddi et al.,
2020), for example, Federated Stochastic Variance Reduced
Gradient (FSVRG) (Konexny et al., 2016), FL via Momen-
tum techniques (Felbab et al., 2019;Konexny et al., 2016; Liu
et al., 2019), Federated Proximal Term (FedProx) (Sahu et
al., 2018), Federated Stochastic Block Coordinate Descent
(FedBCD) (Liu et al., 2019). On the other hand, FL algo-
rithms able to aggregate knowledge of models differing in
architecture utilize Knowledge Distillation (KD) techniques
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Fig. 3 Data partitioning settings considered in Federated Learning (Color figure online)

that require sharing model parameters, logits or intermediate
features, for example, FedDistill (Jiang et al., 2020), MHAT
(Hu et al., 2021) and FedDM (Gong et al., 2021).

Algorithms based on KD achieve their effectiveness by
fine-tuning localmodels through the exchange of information
derived from processing a publicly available dataset. When
there is not possible to define a public dataset, algorithms
SGD-based execute four key steps K times to minimize a
global cost function F(w) (e.g. binary-cross entropy) and
achieve the optimal weights w∗ for the global AI model.
Those steps, executed within a loop, are illustrated in Fig. 1.

In the κth local training step, each party j minimizes a
local cost function F j (w j ) to get the optimal local param-
eters w j for the local model. These optimal weights w j at
κ time are obtained by evaluating how accurately the model
predicts the label of the i th data sample. Considering that
N j samples are composing the j th party dataset D j , the
local problem at κ time can be defined as follows:

w j � argmin F j (w j ) = 1

N j

N j∑

i=1

fi (w
j ). (1)

Calculating the f j
i loss function (e.g. binary entropy) at each

i sample is impractical to update local weights w j . In this
sense, best practices suggest evaluatingmini-batches via cost
function adoption. Even if mini-batches are not adopted, the
core of FL algorithms SDG-based refers to solving the prob-
lem in Eq. (1) by updating w

j
t penalized by the step-size η

of SGD algorithm:

w
j
t+1 = w

j
t − η∇F j (w

j
t ). (2)

Algorithms, such as FSVRG, FL via Momentum, FedProx,
FedBCD, and others, propose alternatives for Equation (2)
used by FedAvg. At κ time, after parties update their models,
this latest algorithm computes the global AImodel by simply

averaging their weights:

wκ =
∑J

j=1 N
jw

j
κ

N
. (3)

After computing wκ , weights are distributed to all parties to
repeat the process. By performing K model aggregations, the
problem of finding the optimal weightsw∗ for the global cost
function F(w) can be solved:

w∗ � argmin F(w). (4)

FL algorithms SGD-based aim to improve the global model
performance in a short number of model aggregations
and guarantee learning convergence (Felbab et al., 2019;
Konexny et al., 2016; Liu et al., 2019; McMahan et al.,
2016; Sahu et al., 2018). In this way, FL algorithms based on
other optimization algorithms modify the ANN architecture
at each κ time, for example, Federated Matching Averaging
FedMA (FedMA) (Wang et al., 2020). Alternatively, some
frameworks use ML algorithms commonly used in VFL or
Hybrid-FL, for example, SecureBoost (Cheng et al., 2019),
SimFL (Li et al., 2019), and Support Vector Machines FL
(Smith, 2017).

Vertical Federated Learning

When parties do not share the same feature space but have
the same sample identifiers, VFL considers synchronizing
these identifiers (sample indexes) for training the global AI
model. In this sense, various algorithms emerged: Federated
Stochastic Block Coordinate Descent (FedBCD) (Novikova
et al., 2022), Feature DistributedMachine Learning (FDML)
(Hu et al., 2019), Heterogeneous Neural Networks (Het-
eroNN) (Yang et al., 2019), SecureBoost (Cheng et al.,
2019), Vertical Asynchronous FL (VAFL) (Chen et al.,
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2020),Asynchronous Federated StochasticGradientDescent
(AFSGD-VP) (Gu et al., 2022), and others.

For someMLalgorithms such asSupportVectorMachines
(SVM), linear and logistic regression, and ANNs, the prob-
lem of a single party j corresponds to finding the optimal
weights w j by minimizing the loss function f j (w j ) (see
Eq.1). The sample indexes synchronization strategy ensures
that the i th sample of each party dataset D j , whoseM param-
eters are distributed among parties, shares the same label Yi .
For that reason, it is needed at least one party sharing Y (see
the condition in Table 1).

In a collaborative prediction, a global loss function σ(.)

evaluates how well the aggregation of J local predictions
weighted by α predicts Yi (Chen et al., 2020; Dai et al.,

2021). In other words, σ(
∑J

j=1 αŶ j
i ,Yi ) evaluates the dis-

tance between collaborative prediction and ground truth in
the i th sample. Since evaluating N samples in separate is
impractical, the following global cost ξ(w) function is con-
sidered:

ξ(w) = 1

N

N∑

i=1

σ

⎛

⎝
J∑

j=1

αŶ j
i ,Yi

⎞

⎠ (5)

In this sense, finding the optimal weights w∗ for the global
AI model could be simplified to the following expression:

w∗ � argmin ξ(w) (6)

Among the VFL algorithms that have adopted Equation (5)
to train ANNs are VAFL (Chen et al., 2020), AFSGD-VP
(Gu et al., 2022) and Vertical Federated Deep Learning
(Dai et al., 2021; Gu et al., 2022). Remarkably, the last
one presents deeper details of how the cost function σ(w)

is minimized by considering block-wise coordination. The
learning procedure of this approach is based on privately
exchanging the party’s predictions through the intervention
of a computational server, which broadcasts current predic-
tions to beneficiaries by constantly updating a prediction
matrix AN×J of N rows and J columns.

The need for updating a prediction matrix A in a compu-
tational server is noticed in Algorithm 1. This synchronous
VFL algorithm inspired proposals such as VAFL, AFSGD-
VP and ours, presented in “Label synchronization for Hybrid
Federated Learning” section. Algorithm 1 considers the
availability of J parties during the learning process. Here,
the server communicates with parties through pull and push
requests, guaranteeing that parties receive only the neces-
sary information privately. Considering that parties execute
Algorithm 1 synchronously, the problem is solved within the
global training loop of Line 12.

At each time κ , every party downloads corresponding
weights w

j
κ from the global model w, performs and uploads

Algorithm 1 Synchronous VFL
Require: J ,D j ,η, w j , AN×J , K and B
Ensure: w

j
K and w

1: if Server Pull Request then
2: if Batch Indexes B then
3: Return batch sample indexes
4: end if
5: if Prediction Matrix AN×J then
6: Return AN×J

7: end if
8: end if
9: if Server Push Request then
10: Update AN×J

11: end if
12: for κ ← 2 to K do // Global training loop
13: Pull w j

14: Predict Ŷ j

15: Push Ŷ j

16: Pull AN×J

17: for batch ← 2 to Batches of size B do
18: Pull Batch Indexes B // Ŷ in AB×J //

19: ξ(wκ) = 1
B

∑B
i=1 σ(

∑J
j=1 αŶ j

i , Yi )

20: ∇F j (w
j
κ ) = φL−1φL ′ δσ

δφL

21: w
j
κ+1 = w

j
κ − η∇F j (w

j
κ )

22: end for
23: Push to server w

j
κ+1

24: end for

predictions to the server Ŷ j , updates local weights w
j
κ+1

usingmini-batches of size B and pushes them. The core steps
of this algorithm are located within the nested loop of Line
17. These steps refer to the local training main step of Fig. 1.

The local training step is described in Line 33, where the
loss function is derived w.r.t. the activation function of the
last layer L of the local model φL and multiplied by the
remained chain rule derivatives to back-propagate the error.
The resulting gradient of this operation is used to calculate
the weights w

j
κ+1 for the next κ global model computation

time until achieving the problem convergence.

Hybrid Federated Learning

In many engineering and industrial applications, parties not
only differ in sample space but may also differ in feature
space because industrial systems monitor different types of
assets (Ning et al., 2022; Su & Lau, 2021; Yao et al., 2019).
Independently from the application scenario, due to data
distribution along parties usually corresponding to a non-
independent and identical distribution (non-i.i.d.) scenario,
some applications adoptedKD techniques (e.g. Fine-Tuning)
to fit models developed with datasets of other organizations
under a hybrid data partition approach (Li et al., 2019). In
these applications, encryption techniques (Agrawal et al.,
2021; Cheng et al., 2019; Li et al., 2019) (e.g. Homomorphic
encryption) helped to perform a Multi-Party Computation
(Liu et al., 2018). In the context of Deep Learning (DL),
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an algorithm based on Block Coordinate Descent named
Hybrid Federated Matched Averaging (HyFEM) uses dis-
tance functions (e.g. Euclidean norm) and a Hungarian
matching algorithm to solve a closed-from problem using
ConvolutionalNeuralNetworks (CNNs) (Zhang et al., 2020).

Since Fine-Tuning and Deep Learning were primarily
conceived for classification problems, Yao et al. proposed a
model aggregation and fusion of features of multiple sensor
signals for regression problems Yao et al. (2019). Despite the
success of the model and feature aggregation, this approach
loses valuable information because knowledge integration
merges features of multiple signals before aggregating them
using the well-known FedAvg algorithm.

As an alternative, the training of a Multitier-partitioned
Neural Networks architecture was proposed. This architec-
ture adopts the well-done Primal-Dual transform (Tran-Dinh
& Zhu, 2019) and the Stochastic Gradient Descent Ascent
(SGDA) algorithm (Deng&Mahdavi, 2021; Lin et al., 2019;
Sebbouh et al., 2021) to decompose the problem in sample
and feature spaces. Unfortunately, the applications for this
alternative are limited to using AI models compatible with
the primal-dual transformation, for example, logistic regres-
sion (Tran-Dinh&Zhu, 2019). Therefore,wepropose a novel
algorithm for AI models compatible with the SGD algorithm
that can effectively tackle classification and regression prob-
lems under hybrid data partitioning settings.

Label synchronization for Hybrid Federated
Learning

Our proposal focuses on cross-silo Federated Learning
settings, as it is suitable for business-to-business (B2B) trans-
action scenarios. In these scenarios, a limited number of
isolated stations (silos) own high-performance machines,
ensuring high availability during collaboration processes.
The collaboration procedures, represented by the key steps
in Fig. 1, are managed by a computational server. The parties
communicate with the server through pull and push requests
to train global and local AI models.

The design of ourHybrid-FL algorithm ismotivated by the
prevalent use of ANNs in industrial applications. We employ
the widely used SGD algorithm to train feed-forward ANNs
that may differ in architecture. Our approach is further influ-
enced byAlgorithm 1,which trains anANNusing the sample
index synchronization technique. A technique that reduces
communication costs given model parameter exchanges and
allows the knowledge aggregation of multiple AI models dif-
fering in architecture and input feature space.

Sample indexes synchronization of VFL (Chen et al.,
2020; Dai et al., 2021) can not be adopted because parties
differ in sample space. Alternatively, collaboration processes
may be conducted by synchronizing samples at the label level

(label synchronization) because samples of J parties may
overlap in label space Y . The condition for parties collabo-
rating on this hybrid data partitioning approach establishes
that:

Condition: Given the labels Y j of J parties, there is
at least one instance of each one of the total sample’s
labels L after performing the concatenation of parties labels
∃Yi,i+1,...,Ls.t �J

j=1 Y
j .

Like in VFL, the problem of Hybrid-FL also refers to
finding the optimal weights for a global cost function ξ(w)

(expression 5). A procedure that avoids evaluating a loss
function σ(w) at each training sample for reducing com-
putational operations.

Arguing that parallel training procedures are executed by
configuring mini-batches and parties differ in sample space,
the block-wise coordination of VFL based on sample indexes
fails. Figure 4 illustrates how the arrangement of samples
and features in three-party dataset batches shows a similar
and distinct ordering of input labels among the parties in VL
and Hybrid-FL, respectively. In a parallel synchronous SGD
program, parties on a VFL approach only require communi-
cating their local predictions to update the server’s prediction
matrix AN×J because inputs share the same label map Y .
Our Hybrid-FL FedLabSync, described in Algorithm 3, uses
label synchronization strategy and extra matrices to find the
optimal weights of ξ(w) based on block-wise coordination.
These matrices are illustrated in Fig. 4.

Synchronization

The proposed Label Synchronization (LabSync) strategy
constructs parties synchronization label matrices Msyc by
executing Algorithm 2. In this sense, every party j should
firstly share its labels Y j and the number of samples N j

with the server to construct the global label matrix Mlbs . The
resulting values of matrix Msyc are then used to update and
request local predictions of matrix A. Those predictions are
used to conduct the synchronous SGD program described in
Algorithm 3 without requiring parties to train models with
whole data samples thanks to configuring mini-batches.

Considering that parties already shared their labels with
the server and the Mlbs matrix (labels of parties) is already
defined, gathering the label synchronization matrix Msyc

for a determined party j is detailed in Algorithm 2. This
algorithm, whose example results are illustrated in the label
synchronization strategy of Fig. 4, aims to construct a matrix
Msyc for a determined party j given the labels matrix Mlbl at

the central computational server. The resulting matrix M j
syc

for the interested party j has a shape of N j
max × J because it

is constructed using the maximum number of samples of J
parties.
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Fig. 4 FL key loop steps, ANN components and data involved in synchronization techniques of Vertical FL and Hybrid-FL

Algorithm 2 Label Synchronization LabSync
Require: Mlbs , interested party j
Ensure: Msyc
1: J ← columns(Mlbs ) // Number of parties
2: N j

max ← rows(Mlbs ) // Maximum samples
3: Msyc ← zeros(N j

max ,J ) // Fill with zeros
4: Msyc(:, j) ← (1 : N j

max )
T // Set indexes

5: [Grs, Lbs] ← groups(Mlbs ,j)
6: Mlc ← zeros(size(Lbs), j)
7: for k in J do
8: for lb in Lbs do
9: Mlc(lb, k) ← ∑

lb ∈ Mlbs(:, k)
10: end for
11: end for
12: for k in J do
13: if k 	= j then
14: Mlc = ones(si ze(Lbs), J )

15: for lb in Lbs do
16: I dxlb = f ind(lb ∈ Mlbs(:, k))
17: for i ← 2 to N j

max do
18: Msyc(i, j) ← I dxlb(Mlc(lb, J ))

19: Mlc(lb, J ) ← Mlc(lb, J ) + 1
20: if Mlc(lb, J ) > si ze(I dxlb) then
21: Mlc(lb, J ) = 1
22: end if
23: end for
24: end for
25: end if
26: end for

The core steps ofAlgorithm2 perform the following tasks.
Lines 5 and 6 group labels and initialize a counter for each
label. The number of instances of each label for every party
is calculated in the nested loop of Line 7. The nested for
loop of Line 12 matches the i th sample of the interested

party j with the sample with the same label lb of the other
party k. In response to non-i.i.d. data distributing settings,
the conditional clause for the Line 21 ensures that two parties
could have a different number of samples with the same label
lb. It is possible by restarting the label counter Mlc(lb, j) of
the j th party when the number of instances of a determined
label I dxlb is surpassed.

Labels and prediction matrices of Hybrid-FL in Fig. 4
illustrate how predictions of three parties can be accessed
through indexes of Msyc matrices. For example, the first
party accesses the predictions of matrix A related to the first
instance of Y = 0 by using the pointing indexes of the first
row of M1

syc. In this sense, the first party can privately access
the predictions related to the first Y = 0 occurrence of the
second and third party in the following positions A(3, 2) and
A(2, 3).

The label synchronization process has to be accomplished
before training any AI model to achieve the convergence
of ξ(w) using the proposed Algorithm 3 named FedLab-
Sync. Once parties communicate their labels and number of
samples and get a matrix Msyc, the key steps enumerated in
Fig. 4 are iteratively executed, namely: local training, model
uploading, computing of the global model and model down-
load.

Local training

After label synchronization, local training is the most crucial
step of FedLabSync algorithm because it comprises forward
andbackwardpropagationofANNs in aparallel synchronous
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SGD program. Considering that a single party j downloaded
weights w j , performed predictions via forward propagation

Ŷ j and uploaded them by using push and pull requests to the
server, parties can get predictions for a single batch Ŷ B×J by
using matrix Msyc.

The batch of predictions Ŷ B×J allows entities to calculate
error ξ jw j (Line 32 of Algorithm 3) based on block-wise
coordination. In Vertical Federated Deep Learning (Dai et
al., 2021), the Mean Squared Error (MSE) loss function was
adopted to evaluate the collaborative prediction of the i th
sample:

σ(w) = 1

2

⎡

⎣
J∑

j=1

Y j
i − Yi

⎤

⎦
2

, (7)

where
∑J

j=1 Y
j corresponds to the collaborative prediction

and Y represents the ground truth. Adopting the σ(w) func-
tion implies integrating outputs of J parties by adding extra
layers to create a deeper ANN in the manager, as illustrated
in Fig. 4.

In this approach, a single party can not achieve Yi by itself
because Equation (7) treats individual predictions equally. To
solve this limitation in regression problems, we propose to
adopt the following MSE loss function:

σ(w) = 1

2

⎡

⎢⎢⎣

[∑J
j=1 αŶ j

i

]
+ Ŷ j

i

2
− Yi

⎤

⎥⎥⎦

2

. (8)

For binary classification problems, we propose to the follow-
ing binary-cross entropy loss function:

σ(w) = −Y j
i log

⎛

⎜⎜⎝

[∑J
j=1 αŶ j

i

]
+ Ŷ j

i

2

⎞

⎟⎟⎠

+ · · · + (Y j
i − 1) log

⎛

⎜⎜⎝1 −

[∑J
j=1 αŶ j

i

]
+ Ŷ j

i

2

⎞

⎟⎟⎠

(9)

In Eqs. (8) and (9), Y j
i corresponds to the collaborative

prediction by considering global
∑J

j=1 αY j and local Y j
i

predictions for errors. In forward prorogation, we consid-
ered a collaborative prediction weighted by α in case the
predictions of a particular party are most valued. Clearly,

the collaborative prediction

[∑J
j=1 αŶ j

i

]
+Ŷ j

i

2 is obtained by an

Algorithm 3 FedLabSync: Hybrid-FL

Require: J , D j , η, β, w j , AN j
max×J , K , B

Ensure: w
j
K and w

1: if Server Pull Request then
2: if Batch predictions Ŷ B×J then
3: Return AB×J

4: end if
5: end if
6: if Server Push Request then
7: if Partial dataset size N j then
8: Calculate N j

max
9: end if
10: if Partial labels Y j then
11: Creates or update Mlbs
12: end if
13: if All predictions Ŷ j then

14: Update AN j
max×J

15: end if
16: if Batch predictions Ŷ B×J then
17: Update AB×J

18: end if
19: end if
20: Push N j

21: Push Y j

22: Msyc ← Algori thm 2 (Mlbls , j)
23: for κ ← 2 to K do
24: Pull w j

25: if κ = 0 then
26: Predict Ŷ j

27: Push Ŷ j

28: end if
29: for batch ← 2 to Batches of size B do
30: Calculate batch of size B from Msyc

31: Pull Batch Predictions Ŷ B×J

32: ξ(wκ) = 1
B

∑B
i=1 σ(

∑J
j=1 αŶ j

i , Yi )

33: ∇F j (w
j
κ ) = φL−1φL ′ δσ

δφL

34: w
j
κ+1 = w

j
κ − η∇F j (w

j
κ )

35: Push Ŷ j of size B × J
36: end for
37: Push to server w

j
κ+1

38: end for

activation function φ(.) that will be used for gradient compu-
tation and backward propagation. This process is described
in Line 33, where the loss function is derived w.r.t. the acti-
vation function of the last layer L of the local model φL and
multiplied by the remaining chain rule derivatives to back-
propagate the error. The resulting gradient of this process
is used to calculate the weights w

j
κ+1 for the next κ global

model computation time.

Model uploading, computing, and downloading

At κ time (see nested loop of Line 23), after parallel updating
the weights w

j
κ+1 of each party j , weights are pushed to

server together with the new predicted values Ŷ j (see Lines
35 and 37). The weights of all parties are then used to update
the global AI model stored by the manager.
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Insteadof blendingANNs like inHFL,VFLandHybridFL
join these neural networks to create a more robust network.
For example, in Fig. 4, three parties share their model param-
eters, allowing themanager to create a deeper neural network,
i.e. weights w j of a particular party j update a subspace of
the global model.

Distributing weights of the global AI model (e.g. by exe-
cuting Line 24) allows parties to restore the weights to the
kth time. However, for VFL and Hybrid-FL, global model
distribution has to be accomplished by predictions of the ben-
eficiaries. This allows local trainingprocedures to be repeated
until the problem convergence is achieved while reducing
communication costs.

Experimental setup

This section presents industrial case studies in a stan-
dard experimental setup. While case studies are introduced
in “Case study 1: manufacturing processes analysis—-
failure prediction” and “Case study 2: predictive mainte-
nance—RUL estimation” sections, details about the experi-
mental setup are presented in “Test scenarios” section. The
first case refers to manufacturing processes analysis, con-
cretely in failure prediction of objects manufactured along
multiple Bosch production Lines (Ning et al., 2022). On
the other hand, the second case refers to the predictive
maintenance area, specifically in the RUL prediction of air-
craft components distributed along aerial fleets (Rosero et
al., 2022, 2020). While failure detection corresponds to a
binary classification problem, RUL prognosis corresponds to
a regression problem. By adopting classification and regres-
sion, we make the FedLabSync analysis more robust.

The experimental setup aims to compare the following:

1. The performance of AI models in three data partitioning
scenarios (horizontal, vertical and hybrid) and a data-
centralized scenario.

2. The model’s performance of each party w j trained using
partial data D j or achieved using the FedLabSync FL
algorithm.

Case study 1: manufacturing processes
analysis—failure prediction

The demand for high-quality products forced manufactur-
ing industries to consider new methods and tools that use
data modelling, simulation, expert systems, reference mod-
els and decision-making support (Hernandez et al., 2006).
In this sense, integrating AI and digitalization into manufac-
turing processes has presented a transformative opportunity
for optimizing various production activities(Anghel et al.,
2018). Notably, this convergence has elevated the pursuit of

Fig. 5 Stations and production lines of Bosch dataset

quality enhancement to paramount importance (Ning et al.,
2022; Zhenyu et al., 2020; Kofi et al., 2022; Hernandez et al.,
2006).

Problem

Anticipating the products that necessitate inspection dimin-
ishes the prevalence of defective items and intricately fine-
tunes the quality control procedures (Ning et al., 2022). Con-
sequently, determining which products undergo inspection
routinely draws upon the bolstering capabilities of ML fail-
ure prediction (Kofi et al., 2022). However, prognosticating
outcomes for products assembled across numerous worksta-
tions has proven to be an intricate challenge (Moldovan et
al., 2019). As a result, most predictive methodologies rely
on a data-centralized learning approach.

From three of the most illustrative manufacturing pro-
cesses datasets (SECOM,3 SEFTI4 and Bosch5), we con-
sidered using the last one for constructing FL scenarios. We
chose the Bosch production lines dataset (14.3GB) because
it aims to prioritize product inspection based on failure pre-
dictions and because products are ensembled in multiple
workstations and productionLines (Ning et al., 2022). There-
fore, it simulates a real-world FL scenario.

Bosch, one of the leadingmanufacturing companies, mea-
sured and tested the assembling of 1,184,687 and 1,183,748
products (samples), respectively. Each sample has different
assembly processes. Figure5 shows that each sample can
present features at a maximum of 52 stations (S0−S51)
located at four production lines (L0−L3).

Each sample has three types of features: numerical, cate-
gorical, and date features (Zhenyu et al., 2020). Based on date
features, it is possible to get the time stamp of each side the
product passes. Studies have constructed Long Short-Term

3 http://archive.ics.uci.edu/ml/index.php.
4 http://www.causality.inf.ethz.ch/.
5 https://www.kaggle.com/c/Bosch-production-line-performance/
overview.
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Table 2 Samples and features of Bosch dataset

Samples Numerical features
Positive Negative L0 L1 L2 L3

1,177,808 6879 168 513 42 245

Memory (LSTM) networks to obtain the long-term depen-
dence on time series data (Carbery et al., 2019). Since our
study does not pretend to get time dependency, we used just
numerical features as in Ning et al. (2022). We considered
using 1,184,687 samples and 968 numerical features (con-
tinuous values) distributed along production lines. Table 2
describes the number of features per production line and the
positive and negative samples for this case study, namely,
samples that passed and did not pass the quality control pro-
cess, respectively.

Evaluation metrics

The prediction task of Bosch corresponds to a binary clas-
sification problem. Therefore, the output dimension of the
decoding model is set to 1 when a product passes the qual-
ity control process and set to 0 when a product inspection is
needed. Following previous studies in manufacturing mon-
itoring (Moldovan et al., 2019; Ning et al., 2022; Zhenyu
et al., 2020), we considered evaluating this case study using
accuracy and F-score binary classification metrics:

Precision(P) = T P

T P + FP
(10)

Recall(R) = T P

T P + FN
(11)

F-score = 2 ∗ P ∗ R

P + R
(12)

Accurary = T P + T N

T P + FP + T N + FN
(13)

where T P corresponds to the number of true positives, FP
to false positives, T N to true negatives and FN to false neg-
atives.

Model construction

Assuming that a series of features for each sample is named
according to the L production line and the stations S that pass
(e.g. L0_S1_D1 for the first feature), we can perform the
ML development stages. For the current binary classification
problem, two main stages are required to develop an ML
learning model: data cleaning and feature selection.

According to Ning et al. (2022) and Carbery et al.
(2019), only a few workstations collect data frommost prod-
ucts, requiring exhaustive data-cleaning procedures. After

Table 3 Composition of train and test splits of Bosch dataset

Samples Train 60% Eval 20% Test 20%

Positive 197,962 65,987 65,987

Negative 65,329 21,775 21,775

analysing the proportion of missing observations per feature
and sample (product ID), Carbery C.M. et al. suggest that
data-cleaning has to be produced at two levels: features and
samples (Carbery et al., 2019).

At the first level, the 1,183,748 products of the test split are
not considered because of the unavailability to identify them
as positive or negative samples. According to Zhenyu et al.
(2020) andCarbery et al. (2019), cleaning duplicated samples
and samples containing more than 142 features with missing
values is needed. Finally, features with duplicated names,
zero variance, and those with more than 70% of missing
values are discarded. These data-cleaning procedures should
give a resulting dataset of 1,094,995 observations and 163
features, which allows the conduction of the feature selection
stage.

Selecting the variables that influence the outcome
employed the Principal Component Analysis (PCA). The
application of PCA is performed in two groups of features.
While the first group comprises features of L0, L1 and L2
production lines, the second group refers to features of L3.
Applying PCA aims to reduce the feature space to 22 in each
group because, according to (Carbery et al., 2019; Zhang et
al., 2016), the first 22 dimensions of each group can represent
more than 95% of the variance.

Since the proportions of positive and negative samples of
Table 2 point to an unbalanced dataset, we considered adopt-
ing oversampling techniques before training the AI model.
We applied the synthetic minority oversampling technique
(SMOTE) such as in Carbery et al. (2019). We configured
SMOTE to randomly reduce the whole dataset at 10% with
a proportion of 1:3 related to negative and positive samples.
This oversampling obtained 44 features, 329,936positive and
108,879 negative samples.

Finally, as described in Table 3, we distributed the data to
train and evaluate the construction of the AI model with 60%
and 20% of the total samples. The remaining 20% is used
to test the model. Details about the ML algorithm and the
performance achieved in the experimental setup scenarios
are presented in “Experimental results and analysis” section.

Case study 2: predictive maintenance—RUL
estimation

In the Prognostics and Health Maintenance (PHM) dis-
cipline, predictive maintenance is a strategy based on
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Condition Monitoring (CM) data that aims to predict the
future states of machinery health condition by developing
data-driven models (Yu et al., 2021; Rosero et al., 2022).
Therefore, reducing maintenance costs and downtime (Luis
et al., 2021; San & Young, 2021). Mainly, predictive main-
tenance has been used to determine the advent of a failure
by applying RUL concepts (Khaled & David, 2022; San &
Young, 2021), i.e. methods that predict the remaining time
an asset is estimated to be able to function without failing
(Rosero et al., 2022; Saxena et al., 2008a).

Problem

In the aviation industry, the interest in predictivemaintenance
increases due to the need to accomplish strict safety and oper-
ational reliability policies (Rosero et al., 2022; Luis et al.,
2021). As a response, various methods have been utilized to
predict the health of aircraft structures, systems, and compo-
nents using available sensor data and ML algorithms (Scott
et al., 2022). Furthermore, since airlines monitor equivalent
aircraft elements, a private collaboration among fleets via
Federated Learning gained attention (Rosero et al., 2020).

Given the difficulty in obtaining a significant percentage
of failure instances for CM datasets in aerospace, digi-
tal twin systems have supported the advances in predictive
maintenance. For instance, the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) of The National
Aeronautics and Space Administration (NASA6) allowed
industrial and academics to extend the literature on RUL
prediction of turbofan engines. Public datasets of the C-
MAPSS simulator comprise data from multiple turbofan
engines: Turbofan Engine Degradation Simulation (Saxena
et al., 2008a), PHM08 challenge (Saxena et al., 2008b), and
Turbofan Engine Degradation Simulation-2 (Arias Chao et
al., 2021).

Each engine (aircraft component), identified by a unique
number ID in whatever dataset, is monitored along several
operating cycles (flight hours). At each cycle, the RUL of
the component is related to measurements of 21 sensors and
three operating settings: altitude, Mach Number (MN) and
Throttle Angle Resolver (TAR).

We considered using the FD004 dataset of Saxena et al.
(2008a) to evaluate FL algorithms because it is composed of
labeled training and testing data splits (Table 4). The dataset
for FD004 consists of run-to-failure trajectories for 249 com-
ponents in the training split, with a corresponding RUL value
provided for each operating cycle. On the other hand, the test-
ing split is comprised of data for 248 components that were
monitored up until a few operating cycles prior to their end-
of-life. Considering that components of FD004 experienced

6 https://www.nasa.gov/content/prognostics-center-of-excellence-
data-set-repository.

Table 4 Composition of train and test splits of C-MAPSS

Data Train 42% Eval 8% Test 50%

Trajectories 210 39 248

two types of failures after working in six operating regimes,
the problem of FD004 refers to how precisely the RUL val-
ues in the testing split are after training an AI model using
the training data split.

Evaluation metrics

Following a series of studies in predictive maintenance (Oli-
vares et al., 2019; San&Young, 2021), mainly in those based
on C-MAPSS datasets (Rosero et al., 2022, 2020; Saxena et
al., 2008a), we evaluate the performance of RUL prediction
models using the Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE) metrics:

MAE = 1

N

m∑

i=1

|RULi − ˆRULi |, (14)

RMSE =
√√√√ 1

N

m∑

i=1

(RULi − ˆRULi )2, (15)

where N corresponds to the number of samples, RUL is
the ground truth (label) for the i th sample and ˆRULi is the
estimated remaining life.

Model development

A typical PHM program experiences three primary stages
to construct the prediction model: data acquisition, pre-
processing, and prognostic model. We constructed the run-
to-failure instances in data acquisition by ordering the data
by component ID and operating cycle. Next, we adopted the
pre-processing data steps from Rosero et al. (2020). Pre-
processing data steps correspond to defining a degradation
function, normalization and feature space selection.

The degradation function, composed of two health degra-
dation stages, assumes that components experience an imper-
ceptible degradation until crossing an elbow point where the
engines degrade abnormally (Rosero et al., 2022). Formally,
considering that C-MAPSS datasets provide the RUL value
of the last operational cycle per engine tEoL , and considering
an initial constant RUL value Rc, the RUL of turbofan lin-
early decreases after reaching a start to failure tSoF or elbow
point. Following studies in FD004 (Rosero et al., 2020; Sax-
ena et al., 2008a), we set Rc in 120 flight hours and tSoF as
the positive difference between tEoL and Rc.
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f (t) =
{
Rc i f 0 ≤ t ≤ tSoF
tEoL − t i f tSoF ≤ tEoL

(16)

The data normalization procedure, adopted from Olivares et
al. (2019) andSaxena et al. (2008a) applies theK-means algo-
rithm before normalizing the samples per operational regime
(e.g. landing and taking off). Clustering involves relating
each sample with one of the six operating phase centres of
FD004 defined by the combination of altitude,MN and TRA.
After relating each sample Xi with a determined regime r ,
the data normalization function N (.) is applied:

N (X (r , f )
i ) = X (r , f )

i − μ(r , f )

σ (r , f )
, (17)

where each sensor f on regime r , X (r , f )
i represents the sensor

data per regime, μ(r , f ) and σ (r , f ) corresponds to the mean
and the standard deviation. Then, according to Olivares et al.
(2019) and Sahu et al. (2019), the sensors that better repre-
sent the degradation of aircraft components are 2, 3, 4, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21. These 16 sensor mea-
surements (features) and the RUL value (label) are inputs for
constructing the AI model.

We considered training and evaluating the construction
of the AI model using 210 and 39 run-to-failure trajectories
of the training dataset. The 248 run-to-failure trajectories of
the test split are used to compute the performance of the
resulting prognostic model for an FL or a data-centralized
scenario. Details about the ML algorithm and the perfor-
mance achieved in the experimental setup scenarios are
presented in “Experimental results and analysis” section.

Test scenarios

Three data partitioning scenarios (horizontal, vertical and
hybrid) and a data-centralized scenario compose the exper-
imental setup of each industrial case use. “Case study 2:
predictive maintenance—RUL estimation” and “Case study
1: manufacturing processes analysis—failure prediction”
sections briefly introduced the samples and features used in
each case study in a data-centralized scenario, but details
about data partitioning scenarios are missing. Depending on
the case study adopted, Table 5 describes how samples and

features of a data-centralized scenario can be distributed to
configure horizontal, vertical and hybrid data partitions.

In the case of the manufacturing processes case study, the
N samples of the training and testing splits of the Bosch
dataset are equally distributed to J parties. It also happens in
features but at a production line level. Since we considered
two parties, owing features from L0–L2 and L3 production
lines, each party will use 22 PCA features. More details of
hyperparameter tunning are presented in Table 6.

Since the predictive maintenance case study analyzes run-
to-failure data of aircraft components, we considered a party
storing data of an airfleet with multiple aircraft, in conse-
quence, multiple components. In other words, a single party
can visualize an entire run-to-failure trajectory of the training
dataset. In this sense, sample distribution is performed con-
sidering 249 run-to-failure trajectories of dimension dim().
In the case of feature distribution, each party j randomly
selects 80% of the available features. In other words, 13 sen-
sors are selected without repositioning from 16 sensors.

Number of parties

The distribution of samples and features of Table 5 is gener-
alized for J ∈ N. However, selecting the number of parties
J depends on the number of samples. In case of the Bosch
dataset, we fixed the number of parties at 4 to avoid losing
information. However, in the case of the predictive main-
tenance case study, we considered more than one value for
J .

Considering that a single party j train and evaluate amodel
with 2 run-to-failure trajectories, a maximum of 124 parties
can compose the FL using the FD004 dataset. However, our
experimental setup for this case study considered short values
for J to ensure the convergence of the problem.

The distribution of samples and features for both case
studies are detailed in Table 7. While sample distribution
considers training and evaluation splits, feature distribution
does no consider a split in particular. Sample distribution
is performed using the Jn selection criterion, which means
that samples are distributed using the modulo operation after
being shuffled. It is noticeable in the C-MAPSS dataset that
the mean of run-to-failure trajectories decreases when J

Table 5 Dimension of samples and features of the experimental setup scenarios at each case study

Number of samples (train and eval splits) Number of features

Bosch C-MAPSS Bosch C-MAPSS

Horizontal N j = N/J N j =dim (249 run-to-failure trajectories /J ) M j = 44 M j = 16

Vertical N N M j = 22 M j = 13

Hybrid N j = N/J N j =dim (249 run-to-failure trajectories /J ) M j = 22 M j = 13

Data-centralized N = 351,053 N =dim (249 run-to-failure trajectories ) M = 44 M = 16
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Table 6 Bosch hyperparameter tuning

Hyperparameter Search range

Hidden layers 2, 3, 4

Nodes per layer 5, 10, 15, 20, 25

Activation function relu, tanh, sigmoid

Step-size η 0.2, 0.1, 0.01, 0.001

Batch size B 32, 64, 96

increases, the reason for which we considered experimenting
with a maximum of eight parties.

Selection of features

Feature distribution is also different in both case studies.
While the manufacturing process case study aims to dis-
tribute features of two production line groups (L0–L2 and
L3), the feature selection of C-MAPSS corresponds to get-
ting a subgroup of 13 input sensors. The number of possible
combinations is calculated using the following formula:

(13J )C(16J ) = (16 ∗ J )!
(13 ∗ J )! ∗ ((3)J )! (18)

Since the number of possible combinations exponentially
increases w.r.t. J , evaluations of “Experimental results and
analysis” section considered a subset of 30 combinations.

Experimental results and analysis

This section uses processed input data from failure prediction
and RUL estimation case studies and adopts a feed-forward
ANN to construct AI models for the experimental setup sce-
narios. Then, the performance achieved byAImodels in these

classification and regression problems is separately analyzed
in “Case sudy 1: failure prediction” and “Case study 2: RUL
estimation” sections. All experiments described in this paper
were executed on a computer with AMD Ryzen 9 3900X
12-Core processor, 64 GB RAM, NVIDIA GeForce RTX
3080 GPU, Ubuntu 20.04 LTS 64-bit operating system and
MATLAB R2021a. Training a single AI model for these
experiments took from 5 to 56min on average, which mainly
depends on the quantity of data processed.

Case sudy 1: failure prediction

Independently from the experimental setup scenario, the
hyperparameters of the ANN constructed to solve this binary
classification problem are resumed in Table 8. This config-
uration was adopted after constructing the AI model of the
data-centralized scenario, a process in which hyperparame-
ters of Table 6 were used to conduct a grid search model.

After constructing 30models with different initial weights
w0, the mean classification performance was calculated for
the data-centralized scenario. The referred performance, in
terms of accuracy and F-score, is described in Table 9 and
illustrated by the ROC curve of Fig. 6. Since an accuracy
of 0.866 ± 0.003 and an F-score of 0.82 ± 0.004 seem to
be comparative with previous works (Moldovan et al., 2019;
Ning et al., 2022; Zhenyu et al., 2020), the hyperparameters
in bold of Table 6 were adopted for the remaining scenarios.

Data partitioning scenarios

In Federated Learning approaches, the accuracy and F-score
values described in Table 9 were also calculated after eval-
uating the 30 different AI global models with the testing
data split. For data partitioning purposes, whose details are
described in Tables 5 and 7, we distributed samples of the
training data split among four parties using the 4n selection

Table 7 Samples and features of failure prediction and RUL estimation problems when J varies

Dataset J Samples (train and eval splits) Features

Selection criterion μ Selection criterion Combinations

Bosch 4 4n ≈ 87,763 [L0–L2, L3, L0–L2, L3] 1

C-MAPSS 2 2n (trajectory) ≈ 124 trajectories 13 C16 3.65 ± 10e+32

4 4n (trajectory) ≈ 62 trajectories 13C16 2.64 ± 10e+80

8 8n (trajectory) ≈ 31 trajectories 13C16 128C104

Table 8 ANN hyperparameters for failure prediction and RUL estimation problems related to Bosch and C-MAPSS datasets

Dataset Nodes per layer Activation Loss function Metric η B

Bosch (10,10,1) (relu, relu, relu) Binary entropy Accuracy and F-score 0.01 32

C-MAPSS (10,1) (sigmoid, relu) RMSE RMSE and MAE 0.01 128
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Fig. 6 ROC curve of failure prediction in Bosch production lines using
testing data of Table 2

criterion. Regarding feature distribution, we simulated the
collaboration of 4 parties (α = 4) sharing features of 2 pro-
duction lines: L0–L2 and L3. Since a single party shares
approximately 87763 samples and features of one group of
production lines, there is no loss of information for the hybrid
data partitioning scenario. Thus, a direct comparison among
FL algorithms is guaranteed.

We considered comparing the classification performance
using FedAvg, Vertical Synchronous VFL and FedLabSync
algorithms for horizontal, vertical, and hybrid data partition-
ing scenarios. The performance on each scenario, detailed
in Table 9, was calculated after testing 30 global AI models
trained with different initial weights w0. All models of this
table were constructed by executing 400 model aggregations
K or epochs E in the case of the data-centralized scenario.
Using the evaluating data split, Fig. 7 illustrates the failure
detection accuracy calculated at the κth model aggregation.
This figure zooms in on the first 60 first Kmodel aggregations
in which the proposed FedLabSync algorithm learns faster
thanFedAvg. Since the prediction performance ofHybrid-FL
oscillates over the accuracy of the data-centralized scenario,
we argue that those oscillations are related to two factors.
While the first is related to weightily averaging partie’s logits
(softmax activation output), the second is related to calcu-
lating the collaboratively error using the cross-binary loss
function of Eq.9.

Performance at each party

Besides comparing the failure prediction performance of
global AI models, this paper also compares the performance
of isolatedmodels trained using partial data D j with themod-
els trained using FL algorithms. After training 30ANNswith
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Fig. 7 Failure detection accuracy at κth model aggregation in all data
partitioning scenarios (Color figure online)

different initial weights, the mean performance was calcu-
lated for every party j . Then, the results of these experiments
were summarized in Table 10. Noticeably, the failure predic-
tion at each production line has been improved by using FL
algorithms,with theVFLbeing themost favourable scenario.
For example, the fourth party obtained a classification accu-
racy of 0.891 ± 0.013, 0.865 ± 0.001, 0.842 ± 0.006 and
0.825± 0.011 in vertical, hybrid, horizontal and partial data
D4, respectively.

Case study 2: RUL estimation

Auniquemodel architecturewas defined to compare theRUL
estimation accuracyobtained in the different data partitioning
scenarios. This model architecture, adopted from Rosero et
al. (2020) and Olivares et al. (2019), is composed of an ANN
followed by a Kalman Filter (KF) used for prediction noise
reduction. While Table 8 details the ANN hyperparameters,
the KF is described by Algorithm 4.

Particularly, this KF is applied to the entire run-to-failure
state vector and consists of prediction and update stages (Oli-
vares et al., 2019). Those stages compose the inner loop of
Line 2. The prediction stage comprises the Lines 3–5, in
which:

• Ŷ−
k is the priori estimate of the state vector Ŷ at time k,

• P−
k is the priori error estimate matrix,

• P is the posteriori error estimate matrix, and
• Q = 1/209 is the degradation rate corresponding to 209

operating cycles in average Olivares et al. (2019). Ta
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Fig. 8 RUL estimation of the first aircraft component in the data-
centralized scenario (Color figure online)

At this stage, we assume initial conditions as Ŷ0 = 1
because it corresponds to the normalized RUL Y ∈ [0, 1]
with initial degradation error P0 = 0.

In the update stage, composed of Lines 6–7, the update
of the state vector x̂ and the posteori error estimate matrix
Pk depend on the gain K (see Line 5). We set the estimate
of measurement variance R = σ 2

z in 0.09 because a pre-
vious heuristic evaluation adopted σz = 0.3 Olivares et al.
(2019). Finally, the estimated ˆRUL results from multiply-
ing the prediction normalized Ŷ with the initial constant Rc.
The benefits of using the KF are visible in Fig. 8, in which
we filtered the first aircraft component’s predicted RUL (blue
curve). Consequently, a smoothRUL (gold curve) is obtained
closer to the ground truth (red curve).

Algorithm 4 Kalman Filter for n run-to-failure trajectories

Require: Ŷ of n run-to-failure state vectors
Ensure: ˆRUL estimated remaining life
1: for run2 f ailureTraj = 1, 2, . . . n do
2: for k = 1, 2, . . . dim(run2 f ailureTraj) do
3: Ŷ−

k = Ŷk−1 //Prediction//
4: P−

k = Pk−1 + Q //Prediction//

5: Kk = P−
k

P−
k +R

//Prediction//

6: Ŷk = Ŷ−
k + Kk(zk − Ŷ−

k ) //Update//
7: Pk = (1 − Kk) ∗ P−

k //Update//
8: end for
9: ˆRUL = Ŷ ∗ Rc
10: end for

The RUL estimation took anMAE of 20.59±2.23 and an
RMSEof24.39±2.11when30models (trainedwith different
initial weights) were evaluated using the testing data split
in a data-centralized scenario. This prediction performance,

documented in Table 9, is comparative with previous studies
(Olivares et al., 2019; Rosero et al., 2020). Therefore, we
reused the same settings to evaluate the RUL estimation in
data partitioning scenarios.

Data partitioning scenarios

In FL scenarios, we calculate the MAE and RMSE errors
described in Table 9 after evaluating 30 different AI global
models with the 248 trajectories of testing data split. For data
partitioning purposes, whose details are described in Tables
5 and 7, we distributed 249 run-to-failure trajectories of the
training and evaluating data splits among J parties using a
systematic sampling criterion Jn and setting α = J . This
sampling criterion implies that party j gets run-to-failure
trajectories of D with a step of J , starting from the j th and
ending in n. Clearly, n refers to the number of trajectories
of training splits. In the case of feature distribution, each
party j randomly selected 13 without replacement from the
16 available input sensors. Formally, it was defined in Table
7 as a combination 13C16.

Since this feature selection strategy does not consider the
presence of all the features in federated scenarios, perfor-
mance losses were initially expected. On evaluating data
partitioning scenarios of Table 9, in which the number of
parties varies, it was easy to notice that the RUL estimation
performance decreases when J increases. This phenomenon
is related to the number of run-to-failure trajectories of
parties. For example, when the federated applications’ ben-
eficiaries have fewer data to train local models, the problem
convergence tends to be more challenging.

In Table 9, it is easy to notice that experiments with
two beneficiaries demonstrated that the proposed Hybrid-FL
algorithm presents performance gains compared to the Verti-
cal and Horizontal FL algorithms. However, in the remaining
experiments, when parties have a reduced number of run-to-
failure trajectories, the performance losses of the Hybrid-FL
algorithm are proportional to the number of parties. Figure9
illustrates this phenomenon, where the RUL estimation per-
formance of the global AI model (in terms of RMSE) was
illustrated for all data partitioning scenarios at every κ model
aggregationwhen J = 4. In this figure, FedLabSync presents
performance losses. However, it learns faster than FedAvg
while only sacrificing the precision a little. For instance, by
considering the participation of eight parties, in which Fed-
LabSync predicted theRULwith anMAEof 26.72±0.64 and
FedAvg did it with 24.8 ± 2.61, the difference in estimating
the remaining time is around two operating hours.

Performance at each party

Because previous experiments showed that FedLabSync
presents performance gains with few parties, we are inter-
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Fig. 9 Experimental setup performance of predictive maintenance case
study at each model aggregation κ when J = 4 (Color figure online)

ested in knowing if the performance of party models
improves using our Hybrid-FL algorithm. Besides, we know
beforehand from Table 9 that the performance of global AI
models from the hybrid data partitioning scenario is less than
the data-centralized scenario when J 	= 2. In this sense, we
considered evaluating the performance gains of FedLabSync
at each party when J = 4, experiments in which we noticed
performance losses on the global AI model.

TheMAEandRMSEerrors, related to theRULestimation
of four different parties detailed in Table 10, were obtained
after testing 30 models for each party and data partitioning
scenario. The results of this table show that the performance
of some parties improves by using the proposed Hybrid-FL
algorithm (e.g., parties 1 and 2). Although theRMSEofmod-
els of some (e.g., parties 3 and 4) minimally decreased when
J ≥ 4, they do not sacrifice too much in the performance
of the global AI model of the Hybrid-FL scenario illustrated
in Fig. 9. Naturally, these performance losses may also be
related to feature selection sampling errors, mainly because
input sensors that better describe the degradation of aircraft
components could not be selected using the 13C16 feature
selection criterion.

Conclusions and future work

The proposed Hybrid-FL algorithm, FedLabSync, has been
shown to be competitive with a traditional centralized learn-
ing approach. FedLabSync executes label synchronization
before training a feed-forward ANN through a parallel syn-
chronous SGDprogram. In addition to label synchronization,
FedLabSync offers benefits from the penalized and collabo-

rative optimization problem even when AI models differ in
architecture.

FedLabSync, our proposed Hybrid-FL algorithm, oper-
ates similarly to the sample synchronization approach of
Vertical FL by exchanging information and updating matri-
ces to conduct label synchronization. Like asynchronous
VFL, FedLabSync reduces data transmission overhead by
minimizing a cost function through block-wise coordina-
tion that involves exchangingmini-batches of predictions. As
long as the exchange of labels and local predictions between
parties is end-to-end secure (e.g. through data encryption
and over-the-air computation), the collaborative problem is
solved, fulfilling the privacy-preserving principle of FL.

Although our experiments were carried out on a lim-
ited sample of the population selected randomly based on
a feature selection criterion, we believe that our Hybrid-FL
algorithm holds promise in solving collaborative problems
involving hybrid data partitioning. This is not only because
FedLabSync showed improved performance on party mod-
els, but also because it takes into account non-i.i.d. data
distribution scenarios through the LabSync algorithm and
the penalized optimization imposed by σ(.) and α.

Our empirical endeavours within authentic industrial sce-
narios encompassing classification and regression challenges
showed that FedLabSync improves collaborative prediction
performance after a few rounds of model aggregation. This
phenomenon was particularly pronounced in classification
tasks, wherein activation functions like softmax rounded the
collaborative predictions’ outputs. Besides, as our algorithm
enhances the performance of the local models for several
beneficiaries, we aim to design an asynchronous SGD opti-
mization for Hybrid-FL algorithms in the near future.
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Kumar, S., & McMahan, H. B. (2020). Adaptive federated opti-
mization. CoRR. arXiv:2003.00295

Rosero, R. L., Silva, C., & Ribeiro, B. (2020). Remaining useful life
estimation in aircraft components with federated learning. Inter-
national Journal of Prognostics and Health Management. https://
doi.org/10.36001/phme.2020.v5i1.1228

Rosero, R. L., Silva, C., & Ribeiro, B. (2022). Remaining useful
life estimation of cooling units via time–frequency health indi-
cators with machine learning. Aerospace. https://doi.org/10.3390/
aerospace9060309

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., & Smith,
V. (2018). Federated optimization in heterogeneous networks.
arXiv:1812.06127

Sahu, A. K., Li, T., Sanjabi, M., Zaherr, M., Talwalkar, A., & Smith, V.
(2019). On the convergence of federated optimization in hetero-
geneous networks. arXiv:1812.06127

San, K. T., & Young, S. S. (2021). Multitask learning for health
condition identification and remaining useful life prediction:
Deep convolutional neural network approach. Journal of Intel-
ligent Manufacturing, 32(8), 2169–2179. https://doi.org/10.1007/
s10845-020-01630-w

Saxena, A., & Goebel, K. (2008a). PHM08 Challenge Data Set. Tech-
nical Report, NASA Prognostics Data Repository, NASA Ames
Research Center, Moffett Field.

Saxena,A.,&Goebel, K. (2008b). Turbofan engine degradation simula-
tion. Technical report, NASA Ames Prognostics Data Repository,
NASA Ames Research Center, Moffett Field.

Scott, M. J., Verhagen,W. J. C., Bieber,M. T., &Marzocca, P. (2022). A
systematic literature review of predictive maintenance for defence
fixed-wing aircraft sustainment and operations. Sensors. https://
doi.org/10.3390/s22187070

Sebbouh, O., Cuturi, M., & Peyré, G. (2021). Randomized stochastic
gradient descent ascent. arXiv:2111.13162

Smith, V., Chiang, C.-K., Sanjabi, M., & Talwalkaret, A. (2017). Fed-
erated multi-task learning. arXiv:1705.10467

Su, L., & Lau, V. K. N. (2021). Hierarchical federated learning for
hybrid data partitioning across multitype sensors. IEEE Internet
of Things Journal, 8(13), 10922–10939. https://doi.org/10.1109/
JIOT.2021.3051382

Tran-Dinh, Q., & Zhu, Y. (2019) Non-stationary first-order primal-dual
algorithms with faster convergence rates. arXiv:1903.05282

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D. S., & Khaz-
aeni, Y. (2020) Federated learning with matched averaging.
arXiv:2002.06440

Yang, L., Yan,K.,Xinwei, Z., Liping, L., Yong,C., Tianjian, C.,Mingyi,
H., & Qiang, Y. (2019). A communication efficient vertical feder-
ated learning framework. arXiv:1912.11187

Yao, H., Xiaoyan, S., Yang, C., & Zishuai, L. (2019). Model and feature
aggregation based federated learning for multi-sensor time series
trend following. Advances in Computational Intelligence. https://
doi.org/10.1007/978-3-030-20521-8_20

Yu, M., Qianhui, W., Xiu, L., & Biqing, H. (2021). Remaining use-
ful life estimation via transformer encoder enhanced by a gated
convolutional unit. Journal of Intelligent Manufacturing, 32(7),
1997–2006. https://doi.org/10.1007/s10845-021-01750-x

Zhang, D., Xu, B., & Wood, J. (2016). Predict failures in production
lines: A two-stage approach with clustering and supervised learn-
ing. In 2016 IEEE International conference onBigData (BigData)
(pp. 2070–2074). https://doi.org/10.1109/BigData.2016.7840832

Zhang, X., Yin, W., Hong, M., & Chen, T. (2020). Hybrid federated
learning: Algorithms and implementation. arXiv:2012.12420

Zhenyu, L., Donghao, Z.,Weiqiang, J., Xianke, L., &Hui, L. (2020). An
adversarial bidirectional serial-parallel LSTM-based qtd frame-
work for product quality prediction. Journal of Intelligent Man-
ufacturing, 31(56), 1511–1529. https://doi.org/10.1007/s10845-
019-01530-8

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/SPED.2019.8906653
http://arxiv.org/abs/2211.04742
https://doi.org/10.1109/MWC.001.2100102
https://doi.org/10.1007/s10845-021-01775-2
https://doi.org/10.1007/s10845-021-01775-2
https://doi.org/10.3390/a15040104
https://doi.org/10.3390/a15040104
https://doi.org/10.1109/ICEEE.2019.8884495
https://doi.org/10.1007/s10845-022-02020-0
https://doi.org/10.1007/s10845-022-02020-0
http://arxiv.org/abs/2101.00798
http://arxiv.org/abs/2003.00295
https://doi.org/10.36001/phme.2020.v5i1.1228
https://doi.org/10.36001/phme.2020.v5i1.1228
https://doi.org/10.3390/aerospace9060309
https://doi.org/10.3390/aerospace9060309
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://doi.org/10.1007/s10845-020-01630-w
https://doi.org/10.1007/s10845-020-01630-w
https://doi.org/10.3390/s22187070
https://doi.org/10.3390/s22187070
http://arxiv.org/abs/2111.13162
http://arxiv.org/abs/1705.10467
https://doi.org/10.1109/JIOT.2021.3051382
https://doi.org/10.1109/JIOT.2021.3051382
http://arxiv.org/abs/1903.05282
http://arxiv.org/abs/2002.06440
http://arxiv.org/abs/1912.11187
https://doi.org/10.1007/978-3-030-20521-8_20
https://doi.org/10.1007/978-3-030-20521-8_20
https://doi.org/10.1007/s10845-021-01750-x
https://doi.org/10.1109/BigData.2016.7840832
http://arxiv.org/abs/2012.12420
https://doi.org/10.1007/s10845-019-01530-8
https://doi.org/10.1007/s10845-019-01530-8

	Label synchronization for Hybrid Federated Learning in manufacturing and predictive maintenance
	Abstract
	Introduction
	Federated Learning
	Horizontal Federated Learning
	Vertical Federated Learning
	Hybrid Federated Learning

	Label synchronization for Hybrid Federated Learning
	Synchronization
	Local training
	Model uploading, computing, and downloading

	Experimental setup
	Case study 1: manufacturing processes analysis—failure prediction
	Problem
	Evaluation metrics
	Model construction

	Case study 2: predictive maintenance—RUL estimation
	Problem
	Evaluation metrics
	Model development

	Test scenarios
	Number of parties
	Selection of features


	Experimental results and analysis
	Case sudy 1: failure prediction
	Data partitioning scenarios
	Performance at each party

	Case study 2: RUL estimation
	Data partitioning scenarios
	Performance at each party


	Conclusions and future work
	Acknowledgements
	References


