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A B S T R A C T

Extracting high-level structural information from 3D point clouds is challenging but essential for tasks like
urban planning or autonomous driving requiring an advanced understanding of the scene at hand. Existing
approaches are still not able to produce high-quality results consistently while being fast enough to be
deployed in scenarios requiring interactivity. We propose to utilize a novel set of features describing the
local neighborhood on a per-point basis via first and second order statistics as input for a simple and compact
classification network to distinguish between non-edge, sharp-edge, and boundary points in the given data.
Leveraging this feature embedding enables our algorithm to outperform the state-of-the-art technique PCEDNet
in terms of quality and processing time while additionally allowing for the detection of boundaries in the

processed point clouds.
1. Introduction

3D point cloud data obtained from terrestrial or airborne laser scan-
ning as well as depth sensors and image-based structure-from-motion
have become the prerequisite for numerous applications including
geographic information systems, urban planning, indoor modeling for
the built environment, autonomous driving, and navigation systems.
However, the sampling of scenes with arbitrary complexity in terms
of unstructured data complicates the further processing of the data as
e.g. required when extracting characteristic features for navigation or
scene interpretation according to object instances and materials. Edges
represent characteristic features that often occur at object borders as
well as on surfaces (in the form of ridges or engravings) and linear
scene structures like scaffolds and, hence, provide essential information
regarding the underlying geometric structures. However, automatic
edge detection in 3D point cloud data remains a challenging task.
Whereas physical edges may not appear as sharp due to damage or
cleaning (e.g. stone or plastered buildings, progressively smoothed
edges, polished mechanical parts, etc.), there are also limitations inher-
ent to the scanning approaches, especially due to the typically uneven,
noisy sampling of the scene, that may result in a slight rounding effect
of edges in the reconstruction. Furthermore, the sharpness, smoothness,
or roundness of edges also depends on the observation scale. Therefore,
there might be some ambiguity in defining edges, which may require
involving further context information. In addition, with point clouds
typically consisting of tens or hundreds of millions of points, efficient
operators are required.

∗ Corresponding author.
E-mail addresses: lbode@cs.uni-bonn.de (L. Bode), M.Weinmann@tudelft.nl (M. Weinmann), rk@cs.uni-bonn.de (R. Klein).

Advances in machine learning and the rapidly growing availability
of 3D data have led to several supervised learning approaches for
concept classification. Respective approaches include the classification
of structures according to semantic categories such as facades, roofs,
different forms of vegetation or pole/trunk structures using pointwise
hand-crafted geometric descriptors on a single optimal scale (Demantké
et al., 2011; Weinmann et al., 2015a,c; Hackel et al., 2016b) or mul-
tiple scales (Brodu and Lague, 2012; Blomley and Weinmann, 2017),
additionally leveraging contextual information (Niemeyer et al., 2014;
Weinmann et al., 2015b; Steinsiek et al., 2017; Landrieu et al., 2017),
as well as approaches based on neural networks (Guo et al., 2020; Xie
et al., 2020) including the initial projection of the point cloud onto
synthetic 2D-images followed by a 2D-CNN-based segmentation and
the final re-projection to the point cloud to obtain the segmentation
result (Boulch et al., 2017; Lawin et al., 2017), 3D convolutional
neural networks (Huang and You, 2016; Hackel et al., 2017) and
their combination with trilinear interpolation and context integration
based on conditional random fields (Tchapmi et al., 2017), flexible
and deformable convolution (Thomas et al., 2019) and dilated graph
convolution (Mao et al., 2022) for point clouds, PointNet variants (Qi
et al., 2017b) and their combination with point cloud partitioning
into superpoints (Landrieu and Simonovsky, 2018), and addressing the
class-imbalance in the training data based on special loss terms like
a self-amelioration loss (Li et al., 2022). Furthermore, a few works
also focused on the individual classification of points according to
being or not being on edges based on multi-scale features and a
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Fig. 1. Our BoundED approach extracts sharp edges and boundaries from 3D point cloud data purely based on positional data. Points classified as sharp-edge are highlighted in
red while boundary points are highlighted in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
random-forest-based classification (Hackel et al., 2016a), multi-scale
features and a dedicated neural network based edge detection clas-
sifier (Himeur et al., 2021), neural-network-based pointwise distance
estimation to the next sharp geometric feature (Matveev et al., 2022),
binary-pattern-based filtering on local topology graphs (Guo et al.,
2022), neural-network-based edge-aware point set consolidation lever-
aging an edge-aware loss (Yu et al., 2018), training two networks
based on PointNet++ (Qi et al., 2017b) to classify points into corners
and edges and subsequently applying non-maximal suppression and
inferring feature curves (Wang et al., 2020), the learning of multi-scale
local shape properties (e.g., normal and curvature) (Guerrero et al.,
2018), and the computation of a scalar sharpness field defined on the
underlying Moving Least-Squares surface of the point cloud whose local
maxima correspond to sharp edges (Raina et al., 2018, 2019). However,
extracting high-quality edge and boundary data from a large variety of
different 3D point clouds fast enough to eventually be suitable for usage
in embedded systems or real-time settings remains an open problem.

In this paper, inspired by the maximum mean discrepancy (MMD)
operator (Gretton et al., 2012) which allows to compare distributions
by embedding them in a feature space and comparing the mean of the
respective embeddings, we propose to tackle the point classification
task by training a network to distinguish between classes based on a
feature embedding related to the first and second order statistics of
the respective point’s neighborhood. This embedding contains enough
information for the classification network to learn the difference be-
tween non-edge, sharp-edge, and boundary points while at the same
time being well structured and compact, making our solution very
fast in terms of processing time. Various results of our Boundary and
Edge Detection (BoundED) approach are depicted in Fig. 1. Our main
contributions can be summarized as follows:

• We present a novel set of features for edge and boundary char-
acterization and detection capturing local neighborhood informa-
tion of point clouds better and being cheaper to compute than
state-of-the-art approaches (Himeur et al., 2021).

• We introduce a novel filtering technique to ensure that the ex-
tracted features are robust regarding outliers and surface patches
of complex geometry.

• We demonstrate the benefits of this novel feature embedding at
the example of a modified state-of-the-art neural edge detection
network architecture giving better results with an even smaller
network.

• Our evaluation demonstrates the ability of the proposed features
to capture information regarding boundary classification of points
in addition to edge classification.

2. Related work

The detection of 3D edges in terms of sharp features, feature con-
tours, or curves within unstructured point cloud data is a challenging
335
task. In the following, we will review respective developments grouped
according to conventional approaches and learning-based methods.

2.1. Conventional methods

Conventional methods include surface mesh reconstruction or
graph-based approaches and analyzing local neighborhoods of each in-
dividual point based on principal component analysis (PCA). Thereby,
the given connectivity information of a point with respect to its neigh-
bors allows for a faster nearest neighbor search in comparison to
unstructured point sets. However, preserving sharp edges and complex
features in a reconstructed model is challenging due to smoothing ef-
fects induced by several reconstruction techniques. Directly extracting
edges from unstructured point clouds has been addressed based on
computing geometric descriptors per point based on the local covari-
ance characteristics (Gumhold et al., 2001; Gelfand and Guibas, 2004).
Respective variants include taking the ratio between the Eigenvalues
of the local covariance matrices on a single scale (Mérigot et al.,
2011; Xia and Wang, 2017) or different scales (Pauly et al., 2003;
Bazazian et al., 2015), local slippage analysis to define edges between
segments of rotationally and translationally symmetrical shapes such
as planes, spheres, and cylinders (Gelfand and Guibas, 2004), or di-
rectly estimating curvature (Lin et al., 2015; Nguyen et al., 2018).
Considering multiple scales reduces the susceptibility to noise, but
such methods still rely on the suitable specification of a decision
threshold. Non-parametric edge extraction has been achieved via kernel
regression (Öztireli et al., 2009) or Eigenvalue analysis (Bazazian et al.,
2015). Others focused on detecting depth-discontinuities based on find-
ing triangles with oblique orientations or finding triangles with long
edges (Tang et al., 2007) or focusing on high-curvature points given
as the extremum of curvatures (Fan et al., 1987) or curvature-guided
region growing (Rusu et al., 2008). In addition, edge detection has been
approached based on normal variation analysis (Che and Olsen, 2018),
3D Canny edge detection (Monga et al., 1991), the combination of
normal estimation and graph theory (Yagüe-Fabra et al., 2013), alpha-
shapes (Edelsbrunner and Mücke, 1994), or boundary detection via
DBSCAN-based detection and segmentation of 3D planes (Chen et al.,
2022).

Further approaches followed a moving least-squares (MLS) surface
reconstruction with the subsequent detection of 3D edges based on a
Gaussian map clustering computed within a local neighborhood (De-
marsin et al., 2007; Weber et al., 2010, 2012; Ni et al., 2016). The
consideration of higher-order local approximations of non-oriented
input gradients in MLS-based reconstruction has been used for the com-
putation of continuous non-oriented gradient fields (Chen et al., 2013),
which allows a better preservation of surface or image structures.
Another possibility to achieve continuously differentiable surfaces con-
sists in exploring the scale-space for MLS (Mellado et al., 2012). Fur-
thermore, a scalar sharpness field defined on the underlying Moving
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Least-Squares surface of the point cloud has been proposed, where
local maxima correspond to sharp edges (Raina et al., 2018, 2019).
Other approaches include the combination of adaptive reconstruction
kernels (Fleishman et al., 2005) and spline fitting (Daniels et al., 2008),
the detection of boundary points and internal points as well as the
subsequent application of a Fast-Fourier-Transform-based edge recon-
struction to avoid the need to define a specific order for polynomial
curve fitting (Mineo et al., 2019), the use of subspace detection and
feature intersection (Fernandes and Oliveira, 2012), mean-shift-based
selection of the most distant points with respect to the centroid of their
neighborhood (Ahmed et al., 2018), the use of locally defined curve set
features (Li and Hashimoto, 2017), the intersection of automatically
detected planes (Mitropoulou and Georgopoulos, 2019), the filtering
of potential feature points according to their local topology graph
based on binary patterns (Guo et al., 2022), or RANSAC-based spatial
regularization of sharp feature detector responses (Lin et al., 2015). In
addition, gradient-based edge detection with a subsequent non-maxima
suppression and edge linking into linear and smooth structures (Xia and
Wang, 2017) has been investigated.

2.2. Learning-based methods

Along the rapid progress in machine learning, learning-based ap-
proaches have been proposed for classifying individual points as edge
r non-edge. Besides approaches based on least square regression or
upport vector machines (Wang et al., 2019) that, however, had not
een investigated in a general scenario, this can be achieved by the
se of multi-scale features with a random forest-based edge classi-
ication (Hackel et al., 2016a) or neural network-based edge classi-
ier relying on either MLS-based (Himeur et al., 2021) or neural (Yu
t al., 2022) pointwise features. Other approaches include the neu-
al network-based pointwise distance estimation to the next sharp
eometric feature (Matveev et al., 2022), or neural network-based edge-
ware point set consolidation (Yu et al., 2018) and 3D semantic edge
etection based on a two-stream fully-convolutional network to jointly
erform edge detection and semantic segmentation (Hu et al., 2020).

further method (Wang et al., 2020) trains two neural networks
o classify points into corners and edges based on a PointNet++-
ike architecture (Qi et al., 2017b). After a subsequent non-maxima
uppression of the classified points and their PointNet++-based clus-
ering, a two-headed PointNet (Qi et al., 2017a) generates the final
et of curves. This concatenation of deep networks induces a high
omputational burden and relies on high resource requirements. In
ddition, the learning of multi-scale local shape properties (e.g., normal
nd curvature) (Guerrero et al., 2018) and the use of CNNs for adaptive
eature extraction from observations in a camera and laser-scanner
etup (Xiao et al., 2019) have been investigated. Furthermore, the
rediction of part boundaries within a 3D point cloud based on a graph
onvolutional network has been proposed (Loizou et al., 2020). This
pproach, however, relies on all processed point clouds consisting of a
ixed number of points and, thus, is unsuitable for the general scenario
f processing point clouds of arbitrary size that we address with our ap-
roach. Further purely on boundary detection focused methods include
he initial extraction of the exterior boundary based on neighborhood
haracteristics and the subsequent analysis regarding whether a point
elongs to a hole boundary (Trinh et al., 2015), and approaches based
n a deep neural network (Tabib et al., 2020).

There are also a few image-based approaches that initially convert
he 3D point cloud data into images (Lin et al., 2015). Subsequently, a
ine segment detector (Von Gioi et al., 2008) is used to extract lines in
D, which are backprojected to the point cloud. Another approach (Lu
t al., 2019) relies on an initial segmentation of the point cloud into
lanar regions based on region growing and merging, which is followed
y a plane-wise point projection into a 2D image and a final 2D contour
xtraction and backprojection to get the respective line segment in 3D
336

pace.
With our approach, we follow the avenue of neural network-based
dge and boundary detection within 3D point clouds. We take inspi-
ation from the maximum mean discrepancy (MMD) operator (Gretton
t al., 2012) for the definition of a local feature embedding with respect
o first- and second-order statistics of a local point’s neighborhood,
nd we show that this embedding allows robust detection of non-edge,
harp-edge, and boundary points already with a compact network,
hereby enabling fast inference times.

. Methodology

With our approach, which we denote as BoundED, we aim at
he robust and fast detection of non-edge, sharp-edge, or boundary
oints within given point clouds. For this purpose, we leverage the
ombination of a novel filtering technique to detect outliers and close
nconnected surfaces in point neighborhoods, a local encoding of fea-
ure characteristics based on the maximum mean discrepancy (MMD)
perator with respect to the local first- and second-order statistics, and
heir efficient classification based on a compact multi-layer perceptron
MLP) (see Fig. 2). In the following sections, we provide detailed de-
criptions regarding these aspects as well as respective implementation
etails.

.1. Feature computation

To compute meaningful features as input for the consecutive neural
lassification step, we generalize the idea of dividing a set of 3D points
nto two disjoint subsets and analyzing their respective covariances
ntroduced by Bode et al. (2022) in the context of image denoising.

Let  = {𝒑𝑖} for 𝑖 = 1,… , 𝑛 be the given 3D point cloud consisting
f 𝑛 points. Using the 𝑘-nearest neighbors (𝑘-NN) operator NN𝑘(𝒑,),
e extract local neighborhoods 𝑖,𝑘 = NN𝑘(𝒑𝑖,) with 𝑘 points each.
hroughout the remainder of this section, the neighborhood size 𝑘 is
mitted for notational simplicity.

For sufficiently dense point clouds in the absence of noise, this
eighborhood represents a roughly disc-shaped set of points. In order
o be invariant to the scale and sampling of the given point cloud, the
oint sets are normalized individually before features can be extracted.
e propose to utilize the covariance matrix 𝑲 𝑖 = cov(𝑖) for this

urpose. By conducting an SVD of the covariance matrix

𝑖 = 𝑼 𝑖𝜮𝑖𝑽 𝑇
𝑖 (1)

ingular values 𝜎𝑖,𝑗 = 𝜮𝑖,𝑗𝑗 can be read from the diagonal entries of the
atrix 𝜮𝑖. Without loss of generality, these singular values are assumed

o be sorted in descending order, i.e. 𝜎𝑖,1 ≥ 𝜎𝑖,2 ≥ 𝜎𝑖,3. Intuitively, these
ingular values are directional variances with directions being given by
he corresponding Eigenvectors. Since 𝑖 is roughly disk-shaped, 𝜎𝑖,1
nd 𝜎𝑖,2 can be seen as variance in direction of the disk’s perpendicular
emiaxes. Note, that in general 𝜎𝑖,1 and 𝜎𝑖,2 are similar but not equal
s the points 𝑖 will never represent a perfect uniformly sampled
isk in practice. For the purpose of normalization, the neighborhood
s centered around the origin according to the neighborhood’s center
f mass
̄
𝑖 =

1
|𝑖|

∑

𝒑∈𝑖

𝒑 (2)

and scaled by the average standard deviation along the semiaxes:

̂𝑖 =

{

2
√

𝜎𝑖,1 +
√

𝜎𝑖,2
(𝒑 − ̄𝑖) ∣ 𝒑 ∈ 𝑖

}

. (3)

Besides normalization of the neighborhood, this SVD and in par-
ticular the Eigenvector 𝒏𝑖 corresponding to 𝜎𝑖,3 is utilized for further
processing as this vector together with the neighborhood’s center of
mass ̄𝑖 defines a least-squares fitted plane to 𝑖. Note that, in contrast
to other approaches like e.g. PCEDNet (Himeur et al., 2021), by using

this Eigenvector 𝒏𝑖 as normal, our BoundED does not rely on any
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Fig. 2. Overview of our BoundED approach: Based on an input point cloud, several features describing the local geometry are extracted on multiple scales. After pairwise fusion
of the features for different scales, we classify the input points by an MLP leveraging the fused features as either non-edge, sharp-edge, or boundary points.
Fig. 3. Features extracted from the local neighborhood of a point. Points can be classified as non-edge or sharp-edge by analyzing their neighborhood with respect to singular
values and means of points above and below a least-squares fitted tangent plane. Planar neighborhoods (left) tend to have similar values for 𝜎𝑖,upper and 𝜎𝑖,lower while having low
values for 𝑑𝑖,⟂. Sharp-edge neighborhoods (middle) exhibit a larger difference in 𝜎𝑖,upper and 𝜎𝑖,lower as well as large 𝑑𝑖,⟂. In contrast, neighborhoods of points close to sharp edges
(right) have higher 𝑑𝑖,∥ than neighborhoods of points directly on the edge.
precomputed normals but only on the 3D positions of the points. We
have observed, that the orientation of 𝒏𝑖 can be unstable near outliers.
Thus, we only consider the ⌊𝑘∕2⌋ points closest to ̄𝑖 for this step.
According to this plane, the neighborhood is partitioned into two
disjoint subsets

𝑖,upper =
{

𝒑 ∈ ̂𝑖 ∣ ⟨𝒑,𝒏𝑖⟩ ≥ 0
}

(4)

𝑖,lower =
{

𝒑 ∈ ̂𝑖 ∣ ⟨𝒑,𝒏𝑖⟩ < 0
}

. (5)

As depicted in Fig. 3, an analysis of these provides valuable infor-
mation regarding local geometry. We propose to analyze the subset’s
statistics to capture this information. In particular, singular values
𝜎𝑖,upper,𝑗 and 𝜎𝑖,lower,𝑗 for 𝑗 ∈ {1, 2, 3} are computed by means of individ-
ual SVDs of the covariance matrices of 𝑖,upper and 𝑖,lower respectively.
Additionally, the distance between the centers of mass of both subsets

̄𝑖,upper =
1

|𝑖,upper |

∑

𝒑∈𝑖,upper

𝒑 (6)

̄𝑖,lower =
1

|𝑖,lower |

∑

𝒑∈𝑖,lower

𝒑 (7)

decomposed into perpendicular and tangential components is calcu-
lated as

𝑑𝑖,⟂ = ⟨̄𝑖,upper − ̄𝑖,lower ,𝒏𝑖⟩ (8)

𝑑𝑖,∥ = ‖(̄𝑖,upper − ̄𝑖,lower ) − 𝑑⟂𝒏𝑖‖2. (9)

Intuitively, low values for 𝑑𝑖,⟂ indicate that the local neighborhood 𝑖
is near planar and thus the probability for 𝒑 being part of a sharp
337

𝑖

edge is small. In contrast, high values are found in areas with a high
amount of geometric detail or noise. A large tangential distance 𝑑𝑖,∥
can indicate, that an edge is close-by, but 𝒑𝑖 may not necessarily be
coincident (see Fig. 3).

Furthermore, inspired by Bendels et al. (2006), to improve detection
of outliers and boundaries, the perpendicular and tangential compo-
nents of the distance between 𝒑𝑖 and the center of mass of its 𝑘 nearest
neighbors are computed as:

𝑠𝑖,⟂ = ⟨𝒑𝑖 − ̄𝑖,𝒏𝑖⟩ (10)

𝑠𝑖,∥ = ‖(𝒑𝑖 − ̄𝑖) − 𝑠⟂𝒏𝑖‖2. (11)

While not necessarily always following this observation, points at
boundaries tend to have large 𝑠𝑖,∥ and at the same time small 𝑠𝑖,⟂.
Intuitively, the neighbors of points at boundaries are all on one side
which indicates that they are far away from the center of mass of
their neighborhood. If 𝒑𝑖 is an outlier near a well-defined surface, the
corresponding 𝑠𝑖,⟂ tends to be large.

In summary, the analysis yields the following features: the singular
values 𝝈𝑖,⋅ = (𝜎𝑖,⋅,1, 𝜎𝑖,⋅,2, 𝜎𝑖,⋅,3)𝑇 of the upper and lower subsets respec-
tively, the perpendicular and tangential distances between the centers
of mass of both subsets 𝒅𝑖 = (𝑑𝑖,⟂, 𝑑𝑖,∥)𝑇 , and the perpendicular and
tangential distances between the point 𝒑𝑖 and the center of mass of
its neighborhood 𝒔𝑖 = (𝑠𝑖,⟂, 𝑠𝑖,∥)𝑇 . Thus, we assemble a per-point 10D
feature vector according to

�̂�𝑖 = (𝝈𝑖,upper ,𝝈𝑖,lower ,𝒅𝑖, 𝒔𝑖)𝑇 . (12)
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Fig. 4. Architecture of the multi-scale fusion and classification network consisting of
fully connected (FC) layers, leaky rectified linear unit (leaky ReLU) activations, dropout,
and softmax function. Features computed on multiple scales are combined in a pairwise
manner and afterwards processed by an MLP to classify a point as non-edge, sharp-edge,
or boundary.

3.2. Neighborhood filtering

During the previously described feature extraction process, the tan-
gent plane fit at a point 𝒑𝑖 can be heavily influenced by outlier points or
close-by parallel surfaces contained in the neighborhood 𝑖,𝑘 of 𝑘 near-
est neighbors, which in consequence also influences the partitioning
and therefore increases problem complexity for the classification net-
work. To avoid this, we introduce an additional neighborhood filtering
step before extracting the features. For this, we first estimate the local
point density by calculating the median of the distances between each
point and its closest neighbor in the neighborhood 𝜌𝑖,𝑘. Afterwards, a
graph is built from the neighborhood connecting each point with every
other point. In this graph, we search for points that cannot be reached
from the point to be classified by a path, in which each edge is shorter
than 𝜆𝑑 𝜌𝑖,𝑘 with 𝜆𝑑 being a hyperparameter. The respective points are
removed from the neighborhood as they do not contain meaningful
information regarding the surface patch to be classified.

This technique can be efficiently implemented as follows: Let 𝑪 ∈
{0, 1}𝑘×𝑘 be an adjacency matrix with entries

𝑪𝑥𝑦 =

{

1 if |𝒑𝑥 − 𝒑𝑦| < 𝜆𝑑 𝜌𝑖,𝑘,
0 else,

(13)

describing a graph with edges that connect two points 𝒑𝑥,𝒑𝑦 ∈ 𝑖,𝑘 if
the distance between them is less then 𝜆𝑑 𝜌𝑖,𝑘. Furthermore, let 𝒗𝑝𝑖 ∈
{0, 1}𝑘 with

𝒗𝑝𝑖 ,𝑥 =

{

1 𝑝𝑥 = 𝑝𝑖,
0 else,

(14)

be a vector marking the point to be classified. Then, we can find points
of local neighborhood 𝑖,𝑘 reachable via paths of arbitrary length
according to our adjacency matrix 𝑪 through a series of matrix–vector-
multiplications

𝒗 = 𝑪𝑘 ⋅ 𝒗𝑝𝑖 , (15)

Intuitively, this can be seen as growing a minimum spanning tree start-
ing from point 𝒑𝑖. Usually, less than 20 matrix–vector-multiplications
are needed to calculate the final connectivity in practice, since a
minimum spanning tree of depth 20 is in most cases sufficient to reach
all connected points.
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Using this filtering technique on the neighborhood retrieved for an
outlier point will usually remove almost all other points from the neigh-
borhood not allowing for reasonable feature extraction afterwards.
Hence, we calculate the ratio of retained points and total points 𝑟𝑖,𝑘
in the neighborhood. As outliers are not part of an actual surface, all
points with 𝑟𝑖,𝑘 < 𝜆𝑡 are directly classified as non-edge.

Through a series of experiments, we have found 𝜆𝑑 = 4 and 𝜆𝑡 = 0.1
to work well for most cases. Thus, these settings are used for all our
experiments presented in this paper. Note, that 𝜆𝑑 and 𝜆𝑡 are relative
quantities related to the local neighborhood statistics, making them ap-
plicable for a large variety of point clouds. While we expect that better
values for 𝜆𝑑 and 𝜆𝑡 could be derived from a global statistical analysis
of the point cloud, we opted for the simple heuristic described above
since our focus is on speed and we, therefore, constrain our analysis to
the patch level. The motivation for 𝜆𝑑 = 4 is based on the assumption
that the surface structure does not vary too much on a local level and
sparse points that vary too much from the local median distance can be
considered as outliers. Regarding 𝜆𝑡, the number of retained points after
the filtering should still exceed a certain percentage (in our case 10%)
within a local neighborhood to allow the representation of a surface
patch/structure. We rely on our statistical feature-based classification
network to handle any potential failure cases.

3.3. Multi-scale feature embedding

In order to classify points 𝒑𝑖 of a point cloud  as non-edge, sharp-
edge, or boundary, the per-point data 𝑿𝑖 is individually processed by
a small MLP. 𝑿𝑖 relies on computing �̂�𝑖,𝑘 on 𝑚 different scales 𝑘0,
. . . , 𝑘(𝑚−1), i.e. choosing neighborhoods containing varying numbers
of points 𝑘, for each point 𝒑𝑖. Inspired by the GLS (Mellado et al.,
2012) features utilized by PCEDNet (Himeur et al., 2021), we add the
tangential and perpendicular distances

𝑐𝑖,𝑘,⟂ = ⟨̄𝑖,𝑘 − (𝑖,𝑘0 −𝑖,𝑘),𝒏𝑖,𝑘0 ⟩ (16)

𝑐𝑖,𝑘,∥ = ‖(̄𝑖,𝑘 − (𝑖,𝑘0 −𝑖,𝑘)) − 𝑐𝑖,𝑘,⟂𝒏𝑖,𝑘0‖2. (17)

between the center of mass ̄𝑖,𝑘 of each scale 𝑘 and the center of mass
of points of the largest scale’s neighborhood ̄𝑖,0 as well as the ratio of
retained neighborhood points previously calculated during the filtering
process to each �̂�𝑖,𝑘:

𝒙𝑖,𝑘 = (�̂�𝑖,𝑘, 𝒄𝑖,𝑘, 𝑟𝑖,𝑘)𝑇 , (18)

where 𝒄𝑖,𝑘 = (𝑐𝑖,𝑘,⟂, 𝑐𝑖,𝑘,∥)𝑇 . The complete multi-scale per-point features
can be written in matrix form as

𝑿𝑖 =

⎡

⎢

⎢

⎢

⎣

𝒙𝑖,𝑘0 ,1 … 𝒙𝑖,𝑘0 ,13
⋮ ⋱ ⋮

𝒙𝑖,𝑘(𝑚−1) ,1 … 𝒙𝑖,𝑘(𝑚−1) ,13

⎤

⎥

⎥

⎥

⎦

. (19)

These multi-scale features are fused in a pair-wise manner similarly
to PCEDNet (Himeur et al., 2021) as depicted in Fig. 4, before being
processed by the classification MLP itself.

3.4. Network architecture

For our experiments, we use features computed on four different
scales using 128, 64, 32, and 16 neighboring points respectively. In
contrast to PCEDNet, BoundED uses fewer scales, i.e. 4 instead of 16.
However, to accommodate for the lost network depth due to using
fewer scales, an additional hidden layer is added to the classification
MLP, giving the network a total of 1.7k learnable parameters. For
training the network, a focal loss (Lin et al., 2017) with 𝛾 = 2 is
used as training batches are usually very unbalanced due to the small
number of edge points compared to non-edge points in most point
clouds. Additionally, as only very few boundary points are included
in the Default++ dataset due to the fact that it originally has not been
designed for boundary detection, we duplicate those until the training
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Fig. 5. Adjustments made to the Default dataset to facilitate boundary detection. The labels of two point clouds (left) are modified to identify already included boundary points
correctly. Three simple point clouds (middle) are added to the training and validation set to improve the coverage of potential boundary point cases. For an additional evaluation,
we add a further point cloud (right) to ensure a sufficient representation of boundary points in the evaluation data.
data consists of an equal number of sharp-edge and boundary points.
Furthermore, we propose to add dropout (Srivastava et al., 2014) with
𝑝 = 0.5 to the classification layers to prevent overfitting and facilitate
a more stable training process.

3.5. Implementation details

Our algorithm is implemented using PyTorch (Paszke et al., 2019)
for feature extraction as well as the neural network and its training.
For finding the local neighborhood of points, the k-NN implementa-
tion of PyTorch3D (Ravi et al., 2020) is used. Due to the point sets
𝑖,𝑘,upper , 𝑖,𝑘,lower containing different numbers of points for different
𝒑𝑖, we employ masking to efficiently vectorize the task and fully utilize
the tremendous computation capabilities of modern GPUs during the
feature extraction phase. The network is trained using the Adam opti-
mizer (Kingma and Ba, 2014) with 𝛽1 = 0.9, 𝛽2 = 0.999, and learning
rate 0.001. The batch size is set to 16 384. The number of training
iterations varies between used datasets and is described in detail in
Section 4.1.

4. Results and discussion

In the following, the effectiveness of the proposed combination of
our novel multi-scale features and our compact classification network
is evaluated quantitatively as well as qualitatively on several different
datasets. We focus mostly on the comparison with the state-of-the-art
point cloud edge detection network PCEDNet by Himeur et al. (2021)
as it is the most relevant previous work due to also being designed to
be fast and compact. Similar to our BoundED approach, they rely on
feeding their classification network with multi-scale per-point features
allowing for a direct comparison of the used embeddings. Furthermore,
boundary detection capabilities of our network are assessed. Finally, an
experiment on corrupted data as well as an ablation study regarding the
chosen features and the employed number of scales further validate our
results.

4.1. Datasets

We train and evaluate our approach on several different datasets
and provide comparisons to other point cloud edge detection algo-
rithms. To allow for a direct comparison with PCEDNet (Himeur et al.,
2021), their Default dataset as well as the publicly available ABC (Koch
et al., 2019) dataset are used.
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Default. Introduced by Himeur et al. (2021), this dataset is designed
to be as small as possible in order to facilitate very short training
times with only a few simple hand-labeled point clouds to train on but
still generalize well to arbitrary other point clouds. It contains 9 point
clouds for training as well as 7 different point clouds for evaluation. To
form the validation set, 1000 points are randomly sampled from each
class. Despite containing three different classes of points, i.e. non-edge,
sharp-edge, and smooth-edge, originally, this work focuses on non-edge
and sharp-edge classification only and therefore treats smooth-edge
points as non-edge points in all results. We train BoundED for 3000
iterations on this dataset.

ABC. The ABC dataset published by Koch et al. (2019) is a very
large collection of CAD models accompanied with triangle meshes and
feature annotations among other data. Point clouds are generated from
triangle meshes by simply removing all edges and faces. A ground truth
classification label for each point is extracted by checking whether it
is part of any CAD curve flagged as sharp. To ensure a meaningful
comparison with the work by Himeur et al. (2021), we also only
use chunk 0000 and exactly the same 200 models for training and
50 models for validation while also using all 7168 point clouds for
evaluation. As ABC contains many more points than Default, we train
our network for 8000 iterations on its training data.

Default++. As the original Default dataset published by Himeur et al.
(2021) does not include annotated boundary vertices, which prevents
its use for training models for boundary detection tasks, we propose to
extend it as shown in Fig. 5 to create the Default++ dataset. The original
Default dataset contains two models containing boundary points not
annotated as such. Thus, the first modification is to add these boundary
annotations accordingly. Furthermore, it is extended by two additional
point clouds for training, which were specifically designed to contain
clean and noisy curved boundaries of varying radii as these cases
are not included in the original Default dataset. Finally, to prevent
boundary points from being heavily underrepresented in the evaluation
set, we additionally add an evaluation model containing a multitude
of boundary situations with varying levels of noise. Since the class
of boundary points in the training set is still much smaller than the
classes of non-edge or sharp-edge points, we only add 100 randomly
sampled boundary points to the validation set. The resulting training set
contains 279.5k non-edge, 15.7k sharp-edge, and only 0.9k boundary
points. As it is similar in size to the Default dataset, we use the same
3000 iterations to train on Default++.
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Table 1
Median scores of edge detection approaches evaluated on the Default dataset. The dataset used for parameter tuning or training is mentioned in parentheses.
Source: Data regarding PCEDNet-2c is taken from Himeur et al. (2021).

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

CA (Default) (Bazazian et al., 2015) 0.184 0.891 0.332 0.305 0.753 0.178
CA (ABC) (Bazazian et al., 2015) 0.183 0.357 0.188 0.242 0.863 0.138
FEE (Default) (Alliez et al., 2022; Mérigot et al., 2011) 0.241 0.866 0.400 0.376 0.828 0.232
FEE (ABC) (Alliez et al., 2022; Mérigot et al., 2011) 0.060 0.961 −0.021 0.113 0.082 0.060
PCEDNet-2c (Default) (Himeur et al., 2021) 0.364 0.611 0.402 0.430 0.908 0.274
BoundED-2c (Ours) (Default) 0.597 0.566 0.555 0.581 0.950 0.410
BoundED-2c (Ours) (ABC) 0.426 0.702 0.510 0.530 0.924 0.361
n

a
f
e
s
a
t
t
f

a
n

Additional evaluation data. To assess the capabilities of the proposed
algorithm more thoroughly, we also use publicly available point clouds
of 3D scanned buildings and plants. The christ_church1 point cloud
contains 1.9 million points of the Christ Church Cathedral and its
surrounding in Dublin. Furthermore, the pisa_cathedral2 point cloud
with 2.5 million points scanned by Mellado et al. (2015) is used as
well. The station3 point cloud is an even larger point cloud representing
a train station as 12.5 million points which we also use for evaluation.
Finally, we are using point clouds of three different plants scanned
by Conn et al. (2017): An Arabidopsis,4 a Tobacco,5 and a Tomato6

plant with 172k, 1474k, and 226k points respectively.

4.2. Metrics

Similarly to the work by Himeur et al. (2021), we use several met-
rics for comparison: Precision, Recall, Matthews Correlation Coefficient
(MCC), F1 score, Accuracy, and Intersection over Union (IoU, also
known as Jaccard index). Precision evaluates the ratio of true classifica-
tions as sharp-edge or boundary to the total number of classified points.
In contrast, Recall measures the ratio of correctly classified sharp-
edge or boundary points compared to the true number of such points
existing in the processed model. Precision and Recall are coupled,
i.e. Precision increases and Recall decreases if only points exhibiting
very high confidence are classified and vice versa. Thus, mainly the
other mentioned metrics, which combine Precision and Recall scores in
different ways, are used for directly comparing our BoundED technique
to related works.

4.3. Comparison to related work

Throughout this section, we compare the performance of our work
with the performance of several other recent related works for point
cloud edge detection: Covariance Analysis (CA) (Bazazian et al., 2015),
Feature Edges Estimation (FEE) (Alliez et al., 2022; Mérigot et al.,
2011), ECNet (Yu et al., 2018), PIE-NET (Wang et al., 2020), PCP-
Net (Guerrero et al., 2018), and PCEDNet (Himeur et al., 2021). The
postfix -2c denotes that the respective algorithm has been trained
for classification of two classes only, i.e. non-edge and sharp-edge,
despite being originally designed to potentially handle more than two
classes. For the quantitative evaluation (see Section 4.4), data reported
by Himeur et al. (2021) is used for PCEDNet and PCPNet, while we

1 Available at: https://sketchfab.com/3d-models/christ-church-and-dublin-
ity-council-b5f6bcce8ebc44a3b4bbb6b0fef067b3, accessed on 10/14/2022.

2 Available at: https://www.irit.fr/recherches/STORM/MelladoNicolas/
ategory/datasets/, accessed on 10/22/2022.

3 Available at: https://sketchfab.com/3d-models/station-rer-
c636ca4793345e8ae12beb97b7d6359, accessed on 10/14/2022.

4 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/
0, time point 33, accessed on 10/14/2022.

5 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/
0, time point 30, accessed on 10/14/2022.

6 Available at: http://plant3d.navlakhalab.net/shoots/public/view/plant/
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5, time point 30, accessed on 10/14/2022. c
use the numbers published by Wang et al. (2020) for ECNet and PIE-
Net. For the two non-learning methods CA and FEE, we use one set of
parameters each per dataset finetuned on the dataset’s characteristics,
i.e. more aggressive thresholding on clean data compared to noisy
data: CA finetuned on Default uses 0.025 as threshold, while using
0.08 on ABC. The parameters for FEE are set to 𝑅 = 0.1, 𝑟 = 0.03
to work well with the Default dataset and to 𝑅 = 0.02 and 𝑟 =
0.002 to yield good results on the ABC dataset. In both cases, we
use 0.16 as threshold. For FEE, we additionally normalize all point
clouds to fit inside an axis-aligned unit box as 𝑅 and 𝑟 are related to
the expected feature size, which varies heavily for the models in the
ABC dataset. The PCEDNet results shown for the purpose of qualitative
evaluation in Section 4.5 are generated using the publicly available
precompiled demo application.7 We assume only the point positions
to be given as input for the algorithm. Since PCEDNet relies on point
normals, these are generated according to the authors’ specification
using Meshlab (Cignoni et al., 2008). To be able to report meaningful
numbers for the quantitative evaluation in Section 4.4, we have done
every experiment five times, evaluated the MCC metric over the test
set, and chose the run corresponding to the median MCC score.

To ensure practicality of our algorithm, timings are reported for
two different hardware configurations: On the one hand, we use an
old consumer-grade Nvidia RTX 2080 Ti GPU with 11 GB memory
and an AMD Ryzen 3600X CPU with 32 GB memory. On the other
hand, we also used the recent enterprise Nvidia A40 GPU with 48 GB
memory and two AMD EPYC 7313 CPUs with 32 threads each and
512 GB memory. Note, however, that we only used 12 worker threads
in the data loader during training for both hardware configurations. We
exclude the IO and network initialization time from the timings listed
in this section and focus on reporting the time required by the actual
feature extraction as well as network inference instead.

4.4. Quantitative comparison

Tables 1 and 2 show median scores of various commonly used
metrics to allow a quantitative comparison of our approach with others.
For all experiments in this section, we are working on the Default
and ABC datasets and aim at distinguishing sharp-edge points from
on-edge points.

When training and evaluation are done on the Default dataset, our
lgorithm performs better than all related works in all metrics except
or Recall, i.e. BoundED is not able to identify quite as many sharp-
dge points as others, but more of those points classified as being a
harp-edge point are actually correctly identified as such. As we are
lso using a smaller network in comparison to PCEDNet, this suggests,
hat our multi-scale features are better at describing the geometry of
he local neighborhood in terms of sharp edges than their GLS-based
eatures.

Also observe, that BoundED trained on ABC performs better than CA
nd FEE finetuned on ABC when evaluating on the Default dataset. Both
on-learning approaches, i.e. CA and FFE, rely on setting a threshold

7 Available at: https://storm-irit.github.io/pcednet-supp/software.html, ac-
essed on 10/14/2022.

https://sketchfab.com/3d-models/christ-church-and-dublin-city-council-b5f6bcce8ebc44a3b4bbb6b0fef067b3
https://sketchfab.com/3d-models/christ-church-and-dublin-city-council-b5f6bcce8ebc44a3b4bbb6b0fef067b3
https://www.irit.fr/recherches/STORM/MelladoNicolas/category/datasets/
https://www.irit.fr/recherches/STORM/MelladoNicolas/category/datasets/
https://sketchfab.com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359
https://sketchfab.com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359
http://plant3d.navlakhalab.net/shoots/public/view/plant/40
http://plant3d.navlakhalab.net/shoots/public/view/plant/40
http://plant3d.navlakhalab.net/shoots/public/view/plant/20
http://plant3d.navlakhalab.net/shoots/public/view/plant/20
http://plant3d.navlakhalab.net/shoots/public/view/plant/15
http://plant3d.navlakhalab.net/shoots/public/view/plant/15
https://storm-irit.github.io/pcednet-supp/software.html
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Table 2
Median scores of edge detection approaches evaluated on the ABC dataset. The dataset used for parameter tuning or training is mentioned in parentheses. Data regarding PCEDNet-2c
and PCPNET-2c is taken from Himeur et al. (2021). Data regarding ECNet and PIE-NET is taken from Wang et al. (2020). Instead of estimating the normals from the noisy point
cloud the methods marked with † utilize perfect normals taken from the original CAD model.

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

CA (Default) (Bazazian et al., 2015) 0.312 0.991 0.482 0.471 0.845 0.308
CA (ABC) (Bazazian et al., 2015) 0.498 0.820 0.541 0.574 0.929 0.403
FEE (Default) (Alliez et al., 2022; Mérigot et al., 2011) 0.178 0.621 0.213 0.270 0.775 0.156
FEE (ABC) (Alliez et al., 2022; Mérigot et al., 2011) 0.857 0.898 0.821 0.832 0.980 0.712
PCEDNet-2c (Default)† (Himeur et al., 2021) 0.662 0.936 0.708 0.730 0.958 0.574
PCEDNet-2c (ABC)† (Himeur et al., 2021) 0.735 0.984 0.808 0.822 0.970 0.597
ECNet (ABC) (Yu et al., 2018) 0.487 0.573 – 0.526 – 0.356
PIE-NET (ABC) (Wang et al., 2020) 0.692 0.858 – 0.766 – 0.622
PCPNet-2c (ABC) (Guerrero et al., 2018) 0.954 0.756 0.797 0.807 0.979 0.668
BoundED-2c (Ours) (Default) 0.599 0.484 0.518 0.531 0.951 0.361
BoundED-2c (Ours) (ABC) 0.959 0.857 0.869 0.875 0.987 0.778
Table 3
Comparison of time required to calculate the multi-scale features used as network input and training or evaluation time on the training or evaluation data respectively of the
dataset in parentheses. Timings of our approach are determined on two different hardware configurations: An older consumer-grade Nvidia RTX 2080 Ti GPU with 11 GB memory
and a recent enterprise-grade Nvidia A40 GPU with 48 GB memory. PCEDNet and PCEDNet-2c as well as respective preprocessing were executed on two 10-cores Intel Xeon(R)
CPU E5-2640 v4.
Source: Data regarding PCEDNet and PCEDNet-2c is taken from Himeur et al. (2021).

Training Evaluation

Preprocessing Training Preprocessing Classification

PCEDNet (Default) (Himeur et al., 2021) 0:19 m 2:52 m – –
BoundED-2c (Ours) (Default, RTX 2080 Ti) 0:06 m 1:24 m 1.4 s 0.002 s
BoundED-2c (Ours) (Default, A40) 0:05 m 1:08 m 1.4 s 0.005 s

PCEDNet-2c (ABC) (Himeur et al., 2021) 2:11 m 20:00 m 2:35:00 h 0:25:30 h
BoundED-2c (Ours) (ABC, RTX 2080 Ti) 1:25 m 2:24 m 2:21:09 h 0:00:04 h
BoundED-2c (Ours) (ABC, A40) 1:10 m 3:12 m 1:45:35 h 0:00:04 h

BoundED (Ours) (Default++, RTX 2080 Ti) 0:07 m 1:25 m 2.0 s 0.002 s
BoundED (Ours) (Default++, A40) 0:05 m 1:10 m 1.8 s 0.004 s
Fig. 6. Precision-Recall-plots of those approaches listed in Table 2 which were trained
on the Default dataset. Every small semi-transparent black dot corresponds to a single
point cloud from the ABC dataset and its Precision and Recall scores when being
processed by the respective approach. The background depicts the color-coded local
density of points. Instead of estimating the normals from the noisy point cloud the
methods marked with † utilize perfect normals taken from the original CAD model.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
341
to distinguish between sharp-edge and non-edge points. On clean data
like the models from the ABC dataset, this threshold can be set much
more aggressively. In the presence of noise, this, however, leads to the
algorithms not detecting all edges in the case of CA and tremendous
overclassification of points as sharp-edge points in the case of FEE.

When being evaluated on ABC, BoundED trained on ABC once
again outperforms all other approaches in terms of Precision, MCC,
F1, Accuracy, and IoU scores, but PCEDNet loses less effectiveness if
being trained on Default in comparison to BoundED. While CA trained
on Default exhibits the highest Recall, it is worse in terms of overall
classification performance due to having a much worse Precision score.

The Precision-Recall-plots shown in Figs. 6 and 7 confirm these
observations. In these diagrams, every point cloud of the ABC dataset
is depicted as one small semi-transparent black point according to its
Precision and Recall scores. The background color depicts the color-
coded local density of points. The plot for BoundED trained on the ABC
dataset exhibits the highest density in the top right corner suggesting
that the classification results on most models are of high quality, while
the peak density for approaches trained or finetuned on Default is
much lower and the individual points are more evenly distributed over
a larger area. Since some point clouds of the ABC dataset exhibit
local neighborhood characteristics that are not represented well in the
Default dataset, some point clouds classified with BoundED-2c (Default)
exhibit low precision and low recall. Fig. 8 depicts an example, that
is badly classified by BoundED-2c (Default), but perfectly classified by
BoundED-2c (ABC), indicating that the proposed features are capable
of handling these cases given enough training data.

Besides yielding better classification scores across the board, the
computation of our features is also cheaper compared to PCEDNet
and our multi-scale fusion and classification network has roughly 20%
fewer parameters. Table 3 lists training and evaluation timings for
PCEDNet and our approach. Training in this context consists of the
multi-scale feature extraction for the training and validation data of
the dataset given in parentheses as well as using this data to train the
network. Similarly, evaluation consists of extracting the features on the
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Fig. 7. Precision-Recall-plots of most approaches listed in Table 2 which were trained on the ABC dataset. Every small semi-transparent black dot corresponds to a single point
cloud from the ABC dataset and its Precision and Recall scores when being processed by the respective approach. The background depicts the color-coded local density of points.
Instead of estimating the normals from the noisy point cloud the methods marked with † utilize perfect normals taken from the original CAD model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Model 0251 of the ABC dataset evaluated on BoundED-2c trained on Default
and ABC. While BoundED-2c (Default) fails to detect the sharp edges of the object,
BoundED-2c (ABC) achieves perfect results.

evaluation set given in parentheses and classifying all points using the
trained network.

While using a powerful GPU accelerates the feature extraction step,
the difference for the network training and inference is negligible due
to the network’s compactness and simplicity.

4.5. Qualitative comparison

If trained on Default++, our algorithm learns to identify the sharp
edges in the evaluation models well as can be seen in Fig. 9. The
edge detection results seem to be even a bit more consistent than the
ones of PCEDNet trained on Default. Note, that our filtering technique
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introduced in Section 3.2 is capable of detecting almost all outliers in
these objects as depicted in Fig. 10.

Results on some evaluation models of the ABC dataset are depicted
in Fig. 11. PCEDNet exhibits mixed performance on the models 0027
and 0059. Depending on the dataset used for training, the algorithm
either tends to have more severe problems with the thin wall of model
0059 or produces less consistent results on some parts of model 0027.
The most consistent results, however, are produced by our approach
trained on the Default++ dataset. It is the only configuration that
produces an inner circular edge on model 0027 without holes while
not massively overclassifying the walls of model 0059 as sharp edge.
The classification results of points which are part of the screw thread in
model 0117 are not as consistent for BoundED trained on Default as the
detected sharp edges contain many holes. The screw is classified best
by our algorithm trained on ABC with BoundED trained on Default++
being a close second place.

BoundED also works well on actual 3D scanned real-world data
as shown in Figs. 12 and 13. On the christ_church point cloud, it
outperforms PCEDNet in classifying the sharp-edges of roofs (see green
zoom-in) and also gives good results for the fine stone structures of the
church (see blue zoom-in). The results on the station point cloud are
similar. Especially for the third row, our algorithm gives much more
consistent results in the area of the escalator.

4.6. Boundary detection

As already mentioned in Section 1, the processing of point clouds
often requires the detection of boundaries in addition to sharp edges
due to potentially very fine structures as well as finite resolution. This
is especially important if the scanned object has many fine structures
like leaves on plants or fine fins on buildings. Due to the GLS (Mellado
et al., 2012) features used in PCEDNet (Himeur et al., 2021), which
rely on point normals estimated using a small neighborhood of points,
PCEDNet is by design not able to detect boundaries in point clouds. In
contrast, using our proposed set of features and the extended Default++
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Fig. 9. Comparison of the results on the Default++ evaluation set. The dataset used for training is reported in parentheses. As first and second row were trained on the Default
dataset, the respective approaches are by design not able to detect boundaries.
Table 4
Ablation study regarding the choice of features used as input for the network as well as the neighborhood filtering scheme. The table lists median scores for various classification
metrics. Default++ dataset is used for training as well as evaluation. The individual features are defined in Sections 3.1 and 3.3.

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

With Filtering

𝒙𝑖,𝑘 = (𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.383 0.834 0.525 0.523 0.908 0.355
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.263 0.458 0.291 0.334 0.888 0.200
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.240 0.166 0.157 0.196 0.917 0.109
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.225 0.400 0.243 0.291 0.874 0.170
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘)𝑇 0.521 0.618 0.548 0.576 0.942 0.404
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.442 0.826 0.574 0.578 0.926 0.406
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘 ,𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.393 0.934 0.567 0.549 0.907 0.378

Without Filtering 𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘)𝑇 0.332 0.886 0.499 0.483 0.884 0.318
𝒙𝑖,𝑘 = (𝝈𝑖,𝑘,upper ,𝝈𝑖,𝑘,lower ,𝒅𝑖,𝑘 , 𝒔𝑖,𝑘 , 𝒄𝑖,𝑘 , 𝒓𝑖,𝑘)𝑇 0.352 0.909 0.524 0.507 0.892 0.339
Table 5
Ablation study regarding the number of scales used by our network. The table lists median scores for various classification metrics. The Default++ dataset is used for training as
well as evaluation.

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

2 scales (128, 32) 0.403 0.875 0.559 0.552 0.913 0.381
4 scales (128, 64, 32, 16) 0.442 0.826 0.574 0.578 0.926 0.406
8 scales (128, 91, 64, 45, 32, 23, 16, 11) 0.356 0.934 0.538 0.516 0.893 0.348
16 scales (128, 108, 91, 76, 64, 54, 45, 38, 32, 27, 23, 19, 16, 13, 11, 10) 0.347 0.882 0.506 0.500 0.887 0.333
Table 6
Median scores of our edge detection approach BoundED trained and evaluated on the Default dataset with (second row) and without (first row) smooth-edge points of the original
dataset being treated as sharp-edge points.

Precision(↑) Recall(↑) MCC(↑) F1(↑) Accuracy(↑) IoU(↑)

BoundED-2c (Ours) (Default) 0.597 0.566 0.555 0.581 0.950 0.410
BoundED-2c (Ours) (Default-Soft) 0.521 0.675 0.566 0.591 0.943 0.419
Fig. 10. Impact of outlier detection. Detected outliers are colored purple in the middle
column. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
343
dataset makes our approach capable of detecting boundaries in addition
to sharp edges.

Fig. 9 shows successfully detected boundaries for the two rightmost
models, i.e. the only ones containing actual boundary points. For model
1222 of the ABC datasets evaluation data (see Fig. 11), the boundary
is found almost perfectly as well. Despite being actually 3D structures
and therefore not boundaries in the strict sense, the top of the walls
of model 0059 are detected as a boundary as well. Due to the low
thickness of the walls, this is a reasonable behavior depending on the
exact use-case for the extracted boundary data.

Very thin structures being identified correctly as boundary can
also be seen in the red zoom-in of Fig. 12. In the station point cloud
(see Fig. 13), mostly points of thin signs and humans are identi-
fied as boundary points. Note, that humans in this point cloud are
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Fig. 11. Comparison of PCEDNet and BoundED trained on three different datasets and evaluated on four different models from the ABC evaluation dataset. The dataset used for
training the respective approach is given in parentheses. Algorithms trained on Default or ABC are not able to detect boundaries by design.
mostly two-dimensional due to the scanning procedure and rather low
resolution.

Finally, results on plants are depicted in Fig. 14. All leaves are nicely
separated by boundaries. Some stems contain sharp-edge points due to
scanning artifacts.

4.7. Behavior on corrupted data

In addition to the results on clean point clouds in Fig. 11, Fig. 15
shows a direct comparison on clean as well as noisy data taken from
the ABC dataset of our algorithm BoundED and PCEDNet (Himeur
344
et al., 2021). The respective noisy models are taken from Himeur et al.
(2021).8 Note, that we assume only the point positions to be given.
Thus, the normals needed by PCEDNet were calculated according to
the author’s instructions via meshlab (Cignoni et al., 2008). BoundED
outperforms PCEDNet on noisy data if both are trained on Default as
it is significantly less prone to predict false positives in originally flat
regions. The difference is particularly noticeable in the eighth row on

8 Available at: https://storm-irit.github.io/pcednet-supp/abc_noise_0.04.
html, accessed on 10/19/2022.

https://storm-irit.github.io/pcednet-supp/abc_noise_0.04.html
https://storm-irit.github.io/pcednet-supp/abc_noise_0.04.html
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Fig. 12. Classification result of PCEDNet trained on Default (top) and BoundED trained on Default++ (bottom) for the mid-sized (1.9 million points) scanned christ_church point
cloud. Three different zoomed parts are depicted for direct comparison (middle). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
model 7487. Furthermore, in the sixth row on model 4986, PCEDNet
has difficulties in detecting the prominent sharp edges at the top and
bottom of the object. As the network architectures of both approaches
are very similar, we expect that the main reason for our approach to
perform better in the presence of noise is the additional robustness of
our features due to the underlying statistics.

Further experiments were conducted on a point cloud containing
typical laser scanning characteristics like points being distributed very
345
anisotropically and with varying density. The results depicted in Fig. 16
demonstrate, that BoundED is mostly robust against such artifacts and
still yields reasonable results. The robustness concerning varying point
density is further displayed in Fig. 17 showing classification results on
simple synthetic point clouds. Whereas we focus a simple approach to
achieve efficiency in terms of processing time for our current approach,
consistency in resolving ambiguities, e.g. points belonging to thin
structures or slight bumps in otherwise planar regions, could still be
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Fig. 13. Classification result of PCEDNet trained on Default (left) and BoundED trained on Default++ (right) for the large (12.5 million points) scanned train_station point cloud.

Fig. 14. 3D scanned plant point clouds classified using our approach BoundED trained on Default++.
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Fig. 15. Comparison of PCEDNet and BoundED regarding behavior on noisy data. The dataset used for training the respective approach is given in parentheses.
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Fig. 16. Classification result for a point cloud exhibiting typical laser scanning artifacts using our BoundED approach trained on the Default++ dataset.
Fig. 17. Comparison of classification results using BoundED trained on the Default++ dataset for point clouds of various densities.
improved. Furthermore, when the point density varies extremely across
a sharp edge, artifacts in the form of points being wrongly classified as
boundary can be observed as depicted in the middle image in Fig. 17.
A feature designed to capture local density variation could improve the
results as part of future work.

4.8. Ablation study

In the scope of an additional ablation study, we validate the chosen
features, the selected number of scales, as well as the sharp-edge
definition.

Table 4 shows median scores of various classification metrics for
results of our approach trained and evaluated on the Default++ dataset.
While all chosen features seem to contribute positively to the classifica-
tion result, experiments suggest, that 𝒔𝑖,𝑘 is the most important feature.
We suspect the reason for this to be the high importance of its tangen-
tial component for the detection of boundaries while additionally the
normal component can be utilized by the network to classify sharp-edge
points. Passing the singular values 𝝈𝑖,𝑘 of the unpartitioned neighbor-
hood’s covariance matrix to the network in addition to 𝝈𝑖,𝑘,upper and
𝝈𝑖,𝑘,lower yields worse results. We suspect that the additional information
gained for including this feature is not able to offset the additional
complexity in the network input data. Increasing network capacity and
training time could be used to mitigate this effect, if training speed
and compactness of the network are not of concern for a particular
application. Note, that, while the neighborhood filtering scheme de-
scribed in Section 3.2 drastically increases classification performance,
348
even just including 𝒓𝑖,𝑘 as an input feature for the network without
actually filtering out outliers is beneficial.

The impact of the number of scales is shown in Table 5. For the
experiments, we chose to use 2𝑖 neighbors per scale where 𝑖 is dis-
tributed evenly spaced over the interval (3, 7]. Similarly to adding 𝝈𝑖,𝑘
to the network input, our experiments show, that extracting the features
over more than four scales is not beneficial regarding the classification
performance of our method due to the increase in complexity. Hence,
we use four scales.

Since the original Default dataset (Himeur et al., 2021) includes
an additional smooth-edge class, which contains points being close
to sharp edges, we investigate the impact of treating these points
as sharp-edge or as non-edge points for our approach in Table 6. If
smooth-edge points are treated as sharp-edge points during training
and evaluation, the Precision decreases as smooth-edge points exhibit
similar characteristics to non-edge points and, hence, the algorithm
is more liberal in classifying points as sharp-edge. This more liberal
classification on the other hand leads to higher Recall scores at the
same time. Note, that all other metrics are very similar. Hence, if a
specific application relies on this less strict edge point definition, the
overall results presented in this work are expected to hold in this case
as well.

Finally, we investigate the benefits of our chosen filtering approach
with regard to alternatives. For this purpose, we compare our outlier
detection component with a network based outlier detection proposed
in the PointCleanNet approach (Rakotosaona et al., 2020). Note that
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Table 7
Comparison of processing time for outlier detection. Our approach allows a significant
speed-up in comparison to the neural network based outlier detection component used
in PointCleanNet (Rakotosaona et al., 2020).

Cube
(7.2k points)

Tomato
(226.4k points)

PointCleanNet (Rakotosaona et al., 2020) 4.88 s 125.3 s
BoundED-2c (Ours) (Default) 0.12 s 4.2 s

PointCleanNet’s outlier detection also relies on a user-defined thresh-
old, and we followed the authors’ selection of the threshold value of
0.5. In the timings reported in Table 7, we observe a significantly faster
outlier detection with our simple approach which shows the benefits
of following a light-weight approach that does not involve a complex
network architecture for outlier detection.

4.9. Limitations

Despite yielding great results in most cases, the feature extraction
step can fail in various scenarios. If e.g. the smallest singular value of
a neighborhood’s covariance matrix does not correspond to the true
surface normal, the points are partitioned in an unexpected way leading
to very unpredictable results. Note, that, by estimating the normal per-
scale and passing all respective singular values to the network, it is able
to extract additional information about the neighborhood. Using only
a single-scale normal e.g. estimated during the scanning process might
therefore lead to less accurate classifications. To some degree, this can
be compensated by the proposed filtering technique and by providing
enough training data to the classification network. Nonetheless, the
results would surely improve if the feature extraction step can already
tackle such edge cases on its own by e.g. using a per-scale global normal
smoothing step.

Furthermore, the Default dataset was designed to yield good results
if GLS features are used for classification, but it does not cover all
relevant edge cases for our features. Designing a new point cloud
dataset with our features in mind or even generating a dataset based on
the feature values directly instead of going the detour over generating
point clouds could solve this problem and improve results e.g. in the
case of varying point density as mentioned in Section 4.8.

Finally, depending on the point cloud size, a large part of the
time needed for the feature extraction step is spent on finding the 𝑘
eighbors of each point. A custom-tailored solution for this neighbor-
ood search could probably improve the performance of the feature
xtraction significantly. Due to the simplicity and compactness of the
etwork, the same holds for the implementation of the classifica-
ion network as general frameworks like PyTorch introduce significant
verhead in this situation.

. Conclusion and future work

In this work, we introduced a novel set of per-point features ex-
racted from filtered local point neighborhoods to facilitate the detec-
ion of sharp edges and boundaries via a simple and compact neural
lassification network. Due to the small network and an efficient GPU
mplementation for the feature extraction, the algorithm is faster than
revious state-of-the-art methods while at the same time achieving
ore consistent classification results. This could make the proposed
oundED algorithm a good choice for situations in which interactive
lassification is required.

The two-level covariance analysis conducted on the neighborhood
f a point has, even in the simple form deployed in this work, proven
o be a valuable tool to describe the local geometry. In the future, our
ovel features could be utilized to estimate the curvature of curved
urfaces as well. We expect the inclusion of higher-order moments to
urther improve the results and enable us to also learn the estimation
f distances to edges and boundaries.
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