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High-Confidence Data-Driven Ambiguity Sets for
Time-Varying Linear Systems

Dimitris Boskos , Member, IEEE, Jorge Cortés , Fellow, IEEE, and Sonia Martínez , Fellow, IEEE

Abstract—This article builds Wasserstein ambiguity sets
for the unknown probability distribution of dynamic random
variables leveraging noisy partial-state observations. The
constructed ambiguity sets contain the true distribution of
the data with quantifiable probability and can be exploited
to formulate robust stochastic optimization problems with
out-of-sample guarantees. We assume the random variable
evolves in discrete time under uncertain initial conditions
and dynamics, and that noisy partial measurements are
available. All random elements have unknown probability
distributions and we make inferences about the distribu-
tion of the state vector using several output samples from
multiple realizations of the process. To this end, we lever-
age an observer to estimate the state of each independent
realization and exploit the outcome to construct the ambi-
guity sets. We illustrate our results in an economic dispatch
problem involving distributed energy resources over which
the scheduler has no direct control.

Index Terms—Distributional uncertainty, estimation, lin-
ear system observers, stochastic systems.

I. INTRODUCTION

D ECISIONS under uncertainty are ubiquitous in a wide
range of engineering applications. Faced with complex

systems that include components with probabilistic models,
such decisions seek to provide rigorous solutions with quan-
tifiable guarantees in hedging against uncertainty. In prac-
tice, the designer makes inferences about uncertain elements
based on collected data and exploits them to formulate data-
driven stochastic optimization problems. This decision-making
paradigm has found applications in finance, communications,
control, medicine, and machine learning. Recent research fo-
cuses on how to retain high-confidence guarantees for the
optimization problems under plausible variations of the data.
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To this end, distributionally robust optimization (DRO) for-
mulations evaluate the optimal worst-case performance over
an ambiguity set of probability distributions that contains the
true one with high confidence. Such ambiguity sets are typi-
cally constructed under the assumption that data are generated
from a static distribution and can be measured in a direct
manner.

In this article, we significantly expand on the class of scenarios
for which reliable ambiguity sets can be constructed. We con-
sider scenarios where the random variable is dynamic and partial
measurements, corrupted by noise, are progressively collected
from its evolving distribution. In our analysis, we exploit the
underlying dynamics and study how the probabilistic properties
of the noise affect the ambiguity set size while maintaining the
same guarantees.

Literature review: Optimal decision problems in the face of
uncertainty, such as expected-cost minimization and chance-
constrained optimization, are the cornerstones of stochastic
programming [41]. Distributionally robust versions of stochastic
optimization problems [2], [5], [40] carry out a worst-case
optimization over all possibilities from an ambiguity set of
probability distributions. This is of particular importance in
data-driven scenarios where the unknown distributions of the
random variables are inferred in an approximate manner using
a finite amount of data [3]. To hedge this uncertainty, op-
timal transport ambiguity sets have emerged as a promising
tool. These sets typically group all distributions up to some
distance from the empirical approximation in the Wasserstein
metric [44]. There are several reasons that make this met-
ric a popular choice among the distances between probability
distributions, particularly, for data-driven problems. Most no-
tably, the Wasserstein metric penalizes horizontal dislocations
between distributions and provides ambiguity sets that have
finite-sample guarantees of containing the true distribution and
lead to tractable optimization problems. This has rendered the
convergence of empirical measures in the Wasserstein distance
an active current research area [16], [17], [18], [26], [45],
[46].

Toward the exploitation of Wasserstein ambiguity sets for
DRO problems, the work [34] introduces tractable reformula-
tions with finite-sample guarantees, further exploited in [12],
[25] to deal with distributionally robust chance-constrained
programs. The work [14] develops distributed optimization
algorithms using Wasserstein balls, while optimal transport
ambiguity sets have recently been connected to regulariza-
tion for machine learning [4], [20], [38]. This article [30]
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exploits Wasserstein balls to robustify data-driven online op-
timization algorithms, and [39] leverages them for the design of
distributionally robust Kalman filters. Further applications of
Wasserstein ambiguity sets include the synthesis of robust
control policies for Markov decision processes [48] and their
data-driven extensions [49], and regularization for stochastic
predictive control algorithms [15]. Several recent works have
also devoted attention to distributionally robust problems in
power systems control, including optimal power flow [23], [27]
and economic dispatch [33], [37], [47].

Time-varying aspects of Wasserstein ambiguity sets are con-
sidered in our previous work: in [28] for dynamic traffic models,
in [29] for online learning of unknown dynamical environments,
in [9], which constructs ambiguity balls using progressively
assimilated dynamic data for processes with random initial
conditions that evolve under deterministic dynamics, and in [11],
which studies the propagation of ambiguity bands under hy-
perbolic PDE dynamics. In contrast, in the present work, the
state distribution does not evolve deterministically due to the
presence of random disturbances, which together with output
measurements that are corrupted by noise, generate additional
stochastic elements that make challenging the quantification of
the ambiguity set guarantees.

Statement of contributions: Our contributions revolve around
building Wasserstein ambiguity sets with probabilistic guaran-
tees for dynamic random variables when we have no knowledge
of the probability distributions of their initial condition, the
disturbances in their dynamics, and the measurement noise. To
this end, our first contribution estimates the states of several
process realizations from output samples and exploits these
estimates to build a suitable empirical distribution as the center
of an ambiguity ball. Our second contribution is the exploitation
of concentration of measure results to quantify the radius of
this ambiguity ball so that it provably contains the true state
distribution with high probability. To achieve this, we break the
radius into nominal and noise components. The nominal com-
ponent captures the deviation between the true distribution and
the empirical distribution formed by the state realizations. The
noise component captures the deviation between the empirical
distribution and the center of our ambiguity ball. To quantify
the latter, we carefully evaluate the impact of the estimation
error, which due to the measurement noise, does not have a
compactly supported distribution, such as the internal uncer-
tainty and requires a separate analysis. Our third contribution is
the extension of these results to obtain simultaneous guarantees
about ambiguity sets that are built along finite time horizons,
instead of at isolated time instances. The fourth contribution
is to generalize a concentration inequality around the mean of
sufficiently light-tailed independent random variables, which
enables us to obtain tighter results when analyzing the effect
of the estimation error. Our last contribution is the validation of
the results in simulation for a distributionally robust economic
dispatch problem, for which we further provide a tractable
reformulation.

In the online version [10] of this manuscript, we provide
explicit constants for several of the presented concentration
of measure inequalities which, to the best of our knowledge,

have not been delineated in the literature. These results are not
essential to keep the presentation self-contained and are omitted
due to space constraints.1

II. PRELIMINARIES

Here we present concepts from probability theory that are used
throughout this article. LetB(Rd) denote the Borel σ-algebra on
R
d, and P(Rd) the probability measures on (Rd,B(Rd)). For

any p ≥ 1, Pp(Rd) := {μ ∈ P(Rd) | ∫
Rd ‖x‖pdμ <∞} is the

set of probability measures in P(Rd) with finite pth moment.
The Wasserstein distance between μ, ν ∈ Pp(Rd) is

Wp(μ, ν) :=

(
inf

π∈H(μ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

where, H(μ, ν) is the set of all couplings between μ and ν,
i.e., probability measures on R

d × R
d with marginals μ and

ν, respectively. Intuitively, W p
p (μ, ν) describes the minimum

overall cost required to transfer the mass of distribution μ from
its respective locations to form distribution ν (or vice versa),
when moving unit mass from x to y has cost ‖x− y‖p. For
any μ ∈ P(Rd), its support is the closed set supp(μ) := {x ∈
R
d |μ(U) > 0 for each neighborhood U of x}. For a random

variable X with distribution μ we also denote supp(X) ≡
supp(μ). Given a measurable space (Ω,F), an exponent p ≥ 1,
the convex function R � x �→ ψp(x) := ex

p − 1, and the linear
space of scalar random variables Lψp

:= {X |E[ψp(|X|/t)] <
∞ for some t > 0} on (Ω,F), the ψp-Orlicz norm (cf., [43,
Section 2.7.1]) of X ∈ Lψp

is

‖X‖ψp
:= inf{t > 0 |E[ψp(|X|/t)] ≤ 1}.

When p = 1 and p = 2, each random variable in Lψp
is subex-

ponential and sub-Gaussian, respectively. We also denote by
‖X‖p ≡ (E[|X|p]) 1

p the norm of a scalar random variable
with finite pth moment, i.e., the classical norm in Lp(Ω) ≡
Lp(Ω;PX), where PX is the distribution of X . The interpre-
tation of ‖ · ‖p as the pth norm of a vector in R

n or a random
variable in Lp should be clear from the context throughout this
article. Given a set {Xi}i∈I of random variables, we denote by
σ({Xi}i∈I) the σ-algebra generated by them. We conclude with
a useful technical result which follows from Fubini’s theorem
[1, Theorem 2.6.5].

Lemma 2.1 (Expectation inequality): Consider the indepen-
dent random vectors X and Y , taking values in R

n1 and R
n2 ,

respectively, and let (x, y) �→ g(x, y) be integrable. Assume that
E[g(x, Y )] ≥ k(x) for some integrable function k and allx ∈ K
with supp(X) ⊂ K ⊂ R

n1 . Then, E[g(X,Y )] ≥ E[k(X)].

1We adopt the following general notation. We denote by ‖ · ‖p the pth
norm in R

n, p ∈ [1,∞], using also the notation ‖ · ‖ ≡ ‖ · ‖2 for the Eu-
clidean norm. We denote by Bn

p (ρ) the ball of center zero and radius ρ in
R
n with the pth norm, p ∈ [1,∞]. We use the notation [n1 : n2] for the

set of integers {n1, n1 + 1, . . . , n2} ⊂ N ∪ {0} =: N0. The interpretation of
a vector in R

n as an n× 1 matrix should be clear form the context (this
avoids writing double transposes). The diameter of a set S ⊂ R

n with the pth
norm is defined as diamp(S) := sup{‖x− y‖p |x, y ∈ S} and for z ∈ R

n,
S + z := {x+ z |x ∈ S}. We denote the induced Euclidean norm of a matrix
A ∈ R

m×n by ‖A‖ := max‖x‖=1 ‖Ax‖. Given B ⊂ Ω, 1B is the indicator
function of B on Ω, with 1B(x) = 1 for x ∈ B and 1B(x) = 0 for x /∈ B.
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III. PROBLEM FORMULATION

Consider the stochastic optimization problem

inf
x∈X

EPξ
[f(x, ξ)]

where, the random variable ξ has an unknown distribution Pξ.
Given a finite amount of i.i.d. samples ξ1, . . . , ξN from Pξ, one
can form the empirical distribution

PNξ :=
1

N

N∑
i=1

δξi (1)

to approximate Pξ, where δξi denotes the Dirac measure at ξi,
and solve the sample average approximation (SAA) problem

inf
x∈X

EPN
ξ
[f(x, ξ)] = inf

x∈X
1

N

N∑
i=1

f(x, ξi).

Although the value of the SAA converges to the optimal value of
the original problem as N → ∞ for any prescribed probability
and under general assumptions (cf., [41, Chapter 5]), this is no
longer guaranteed for a finite number of samples. To hedge this
uncertainty, one can instead consider the DRO problem

inf
x∈X

sup
P∈PN

EP [f(x, ξ)] (2)

of evaluating the worst-case expectation over some ambiguity set
PN of probability measures. This helps the designer robustify
the decision against plausible variations of the data, which can
play a significant role when the number of samples is limited.
Different approaches exist to construct the ambiguity set PN so
that it contains the true distributionPξ with high confidence. We
are interested in approaches that employ data, and in particular
the empirical distribution PNξ , to construct them. In the present
setup, the data is generated by a dynamical system subject
to disturbances, and we only collect partial (instead of full)
measurements that are distorted by noise. Therefore, it is no
longer obvious how to build a candidate state distribution as
in (1) from the collected samples. Further, we seek to address
this in a distributionally robust way, i.e., finding a suitable
replacement P̂Nξ for (1) together with an associated ambiguity
set, by exploiting the dynamics of the underlying process.

To make things precise, consider data generated by a discrete-
time system

ξk+1 = Akξk +Gkwk, ξk ∈ R
d, wk ∈ R

q (3a)

with linear output

ζk = Hkξk + vk, ζk ∈ R
r. (3b)

The initial condition ξ0 and the noises wk and vk, k ∈ N0 in
the dynamics and the measurements, respectively, are random
variables with an unknown distribution. We seek to build an
ambiguity set for the state distribution at certain time 	 ∈ N,
by collecting data up to time 	 from multiple independent
realizations of the process, denoted by ξi, i ∈ [1 : N ]. Data from
independent realizations of identical systems are for instance
collected in multiagent scenarios where the agents are subject
to the same dynamics [50]. Populations of identical dynamical

Fig. 1. Illustration of the probabilistic models for the random variables
in the dynamics and observations according to Assumption 3.2.

systems are often also encountered in industrial plants, where
multiple copies of the same machine are used to speed up the
production process. Such machines are further often engaged
in repetitive tasks, where the system is reset and repeats its
control cycle from the beginning. The time-dependent matrices
in the dynamics (3) widen the applicability of the results, since
they can capture the linearization of nonlinear systems along
trajectories or the sampled-data analogues of continuous-time
systems under irregular sampling, even if the latter are linear
and time invariant. To formally describe the problem, we con-
sider a probability space (Ω,F ,P) containing all random ele-
ments from these realizations, and make the following sampling
assumption.

Assumption 3.1 (Sampling schedule): For each realization i
of system (3), output samples ζi0, . . . , ζ

i
� are collected over the

discrete time instants of the sampling horizon [0 : 	].
According to this assumption, the measurements of all real-

izations are collected over the same time window [0 : 	]. We also
make certain hypotheses on the classes of the distributionsPξ0 of
the initial condition, Pwk

of the dynamics noise, and Pvk of the
measurement errors (cf., Fig. 1). These assumptions are made
for individual realizations and allow us to consider nonidentical
observation error distributions.

Assumption 3.2 (Distribution classes): Consider a finite se-
quence of realizations ξi, i ∈ [1 : N ] of (3a) with associated
outputs given by (3b), and noise elements wik, vik, k ∈ N0. We
assume the following.

H1: The distributions Pξi0 , i ∈ [1 : N ], are identically dis-
tributed; further Pwi

k
, i ∈ [1 : N ], are identically distributed for

all k ∈ N0.
H2: The sigma fields σ({ξi0} ∪ {wik}k∈N0

), σ({vik}k∈N0
), i ∈

[1 : N ] are independent.
H3: The supports of the distributions Pξi0 and Pwi

k
, k ∈ N0

are compact, centered at the origin, and have diameters 2ρξ0 and
2ρw, respectively, for all i.

H4: The components of the random vectors vik have uniformly
bounded Lp and ψp-Orlicz norms, as follows:

0 < mv ≤ ‖vik,l‖p ≤Mv, ‖vik,l‖ψp
≤ Cv

for all k ∈ N0, i ∈ [1 : N ], and l ∈ [1 : r], where p ≥ 1.
Remark 3.3 (Bounded ψp-Orlicz/Lp-norm ratio): By defi-

nition, ψp-Orlicz norms can become significantly larger than
Lp norms for random variables with heavier tails. Thus, over
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an infinite sequence of random variables {Xk}, the ratio
‖Xk‖ψp

/‖Xk‖p may grow unbounded. We exclude this by
assuming that Cv and mv are either positive or zero simul-
taneously, in which case we set Cv/mv := 0. We assume the
specific values of the parameters mv , Mv , and Cv are known.
These may be determined based on hardware specifications or
further information about the measurement noise. �

Since the samples do not measure the full state, we aim
to leverage the dynamics and estimate it from the assimilated
output values. We make the next assumption to bound the state
estimation errors over arbitrary evolution horizons.

Assumption 3.4 (Detectability/uniform observability): Sys-
tem (3) satisfies one of the following properties.

i) It is time invariant and the pair (A,H) (with A ≡ Ak and
H ≡ Hk) is detectable.

ii) It is uniformly observable, i.e., for some t ∈ N, the observ-
ability Gramian

Ok+t,k :=

k+t∑
i=k

Φ
i,kH


i HiΦi,k

satisfies Ok+t,k � bI for certain b > 0 and all k ∈ N0, where
we denote Φk+s,k := Ak+s−1 · · ·Ak+1Ak. Further, all system
matrices are uniformly bounded and the singular values of Ak
and the norms of ‖Hk‖ are uniformly bounded below.

Problem statement: Under Assumptions 3.1 and 3.2 on the
measurements and distributions of N realizations of the sys-
tem (3), we seek to construct an estimator ξ̂i�(ζ

i
0, . . . , ζ

i
�) for

the state of each realization and build an ambiguity set for the
state distribution at time 	 with probabilistic guarantees. Using
this construction as a building block, we then seek to derive
ambiguity sets that contain the state distribution across a finite
time horizon [	1 : 	2] ⊂ [0 : 	]. Further, under Assumption 3.4
on the system’s detectability/uniform observability properties,
we aim to characterize the effect of the estimation precision on
the accuracy of the ambiguity sets.

We start with DRO formulations at a single time instance
because of their relative simplicity and the fact that they are still
relevant for problems with time-varying uncertainties. For in-
stance, in optimal power flow the operator may seek to optimally
curtail PV generation during the peak hour, over which demand
and generation can be conveniently modeled as constant and
estimated by combining historical data with a dynamic model
for their time evolution during the day.

We proceed to address the problem in Section IV by exploiting
a Luenberger observer to estimate the states of the collected data
and using them to replace the classical empirical distribution (1)
in the construction of the ambiguity set. To obtain the prob-
abilistic guarantees, we leverage concentration inequalities to
bound the distance between the updated empirical distribution
and the true state distribution with high confidence. To this
end, we further quantify the increase of the ambiguity radius
due to the noise. In the last part of Section IV we extend the
results to construct ambiguity sets over finite time horizons.
We also study the beneficial effect on the ambiguity radius of
detectability/uniform observability for arbitrarily long evolution
horizons in Section V.

IV. STATE ESTIMATOR-BASED AMBIGUITY SETS

We address here the question of how to construct an ambiguity
set at certain time instant 	, when samples are collected from (3)
according to Assumption 3.1. If we had access toN independent
full-state samples ξ1� , . . . , ξ

N
� from the distribution of ξ at 	, we

could construct an ambiguity ball in the Wasserstein metric Wp

centered at the empirical distribution (1) with ξi ≡ ξi� and con-
taining the true distribution with high confidence. In particular,
for any confidence 1− β > 0, it is possible, cf., [34, Theorem
3.5], to specify an ambiguity ball radius εN (β) so that the true
distribution of ξ� is in this ball with confidence 1− β, i.e.,

P(Wp(P
N
ξ�
, Pξ�) ≤ εN (β)) ≥ 1− β.

Instead, since we only can collect noisy partial measurements of
the state, we use a Luenberger observer to estimate ξ at time 	.
The dynamics of the observer, initialized at zero, is given by

ξ̂k+1 = Ak ξ̂k +Kk(Hk ξ̂k − ζk), ξ̂0 = 0 (4)

where, eachKk is a nonzero gain matrix. Using the correspond-
ing estimates from system (4) for the independent realizations
of (3a), we define the (dynamic) estimator-based empirical
distribution

P̂Nξk :=
1

N

N∑
i=1

δ
̂ξik
. (5)

Denoting by ek := ξk − ξ̂k the error between (3a) and the
observer (4), the error dynamics is ek+1 = Fkek +Gkwk +
Kkvk, e0 = ξ0, where Fk := Ak +KkHk and ξ0 is the initial
condition of (3a). In particular

ek = Ψkξ0 +
k∑
κ=1

(
Ψk,k−κ+1Gk−κwk−κ

+Ψk,k−κ+1Kk−κvk−κ
)

(6)

for all k ≥ 1, where Ψk+s,k := Fk+s−1 · · ·Fk+1Fk, Ψk,k := I
and Ψk := Ψk,0. To build the ambiguity set at time 	, we set its
center at the estimator-based empirical distribution P̂Nξ� given
by (5). In what follows, we leverage concentration of measure
results to identify an ambiguity radius ψN (β) so that the result-
ing Wasserstein ball contains the true distribution with a given
confidence 1− β.

Remark 4.1 (Generic lack of asymptotic consistency): Even
if a distributionally robust framework is not employed, replacing
the empirical distribution by the estimator-based empirical dis-
tribution in (5) does no longer guarantee consistency, in the sense
that the estimator-based empirical distribution does not neces-
sarily converge (weakly) to the true distribution. Hence, there is
no indication that the solution to the associated estimator-based
SAA problem, i.e.,

inf
x∈X

1

N

N∑
i=1

f(x, ξi�)

with ξi� replaced by ξ̂i�, will be a consistent estimator of the
solution to the nominal stochastic optimization problem. This
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is a fundamental limitation that is justified by the fact that, in
general, the estimation error is dependent on the state realization,
i.e., it has a variable distribution when conditioned on the state
and the internal noise, and so its effect cannot be easily reversed
(this may only be possible in rather degenerate cases, e.g., when
one has access to full-state samples and the measurement noise
is known). �

Note that the random variable ξik of a system realization at
time k is a function ξik(ξ

i
0,w

i
k) of the random initial condition

ξi0 and the dynamics noise wi
k ≡ (wi0, . . . , w

i
k−1). Analogously,

the estimated state ξ̂ik of each observer realization is a stochastic
variable ξ̂ik(ξ

i
0,w

i
k,v

i
k) with additional randomness induced

by the output noise vik ≡ (vi0, . . . , v
i
k−1). Using the compact

notation ξ0 ≡ (ξ10 , . . . , ξ
N
0 ), wk ≡ (w1

k, . . . ,w
N
k ), and vk ≡

(v1
k, . . . ,v

N
k ) for the corresponding initial conditions, dynamics

noise, and output noise of all realizations, respectively, we can
denote the empirical and the estimator-based empirical distri-
bution at time 	 as PNξ� (ξ0,w�) and P̂Nξ� (ξ0,w�,v�). We also
denote by Pξ� the true distribution of the data at discrete time 	,
where from (3a)

ξ� = Φ�ξ0 +

�∑
k=1

Φ�,�−k+1G�−kw�−k (7)

where, Φ� := Φ�,0 and Φ�,� := I (and with Φk+s,k defined in
Assumption 3.4). Then, it follows from H1 and H2 in Assump-
tion 3.2 that the random states ξi� of the system realizations
are independent and identically distributed. Leveraging this, our
goal is to associate to each confidence1− β, an ambiguity radius
ψN (β) so that

P(Wp(P̂
N
ξ�
, Pξ�) ≤ ψN (β)) ≥ 1− β. (8)

To achieve this, we decompose the confidence as the product of
two factors

1− β = (1− βnom)(1− βns). (9)

The first factor (the nominal component “nom”) is exploited to
control the Wasserstein distance between the empirical distribu-
tion and the true state distributionPξ� . The purpose of the second
factor (the noise component “ns”) is to bound the Wasserstein
distance between the empirical and the estimator-based empir-
ical distribution, which is affected by the measurement noise.
Using this decomposition, our strategy to get (8) builds on further
breaking the ambiguity radius as

ψN (β) := εN (βnom) + ε̂N (βns). (10)

We exploit what is known [9] for the no-noise case to bound the
nominal ambiguity radius εN (βnom) with confidence 1− βnom.
Moreover, we bound the noise ambiguity radius ε̂N (βns) with
confidence 1− βns. This latter radius corresponds to the impact
on distributional uncertainty of the internal and measurement
noise. In the next two sections, we present the precise individual
bounds for these terms and then combine them to obtain the
overall ambiguity radius in Section IV-C.

A. Nominal Ambiguity Radius

According to Assumption 3.2, the initial condition and inter-
nal noise distributions are compactly supported, and hence, the

same holds also for the state distribution along time. We will
therefore use the following result, that is focused on compactly
supported distributions and bounds the distance between the true
and empirical distribution for any fixed confidence level.

Proposition 4.2 (Nominal ambiguity radius [9, Corollary
3.3]): Consider a sequence {Xi}i∈N of i.i.d. Rd-valued random
variables with a compactly supported distribution μ. Then for
any p ≥ 1, N ≥ 1, and confidence 1− β with β ∈ (0, 1), we
have P(Wp(μ

N , μ) ≤ εN (β, ρ)) ≥ 1− β, where

εN (β, ρ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > d/2

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = d/2(
ln(Cβ−1)

c

) 1
d ρ

N
1
d
, if p < d/2

(11)

μN := 1
N

∑N
i=1 δXi

, ρ := 1
2diam∞(supp(μ)), h(x) :=

x2

(ln(2+1/x))2 , x > 0, and the constants C and c depend only on
p and d.

This result shows how the nominal ambiguity radius depends
on the size of the distribution’s support, the confidence level, and
the number of samples, and is based on recent concentration of
measure inequalities from [18].

Remark 4.3 (Determination of constants in nominal ambi-
guity radius): The determination of the constants C and c in
(11) for the whole spectrum of data dimensions d and Wasser-
stein exponents p is a particularly cumbersome task. Never-
theless, in the online version [10, Section 8.2], we provide
some alternative concentration of measure results and use them
to obtain explicit formulas for these constants when d > 2p.
In particular, the constants in the third expression in (11)

can be chosen as C := Cd
�

2
√
d
d and c := 1

2d
√
d
d , where C
 :=

√
d2(d−2)/(2p)

(
1

1−2p−d/2 + 1
1−2−p

)1/p

. Recent work [4], [6],

[19] informs the ambiguity radius by the optimization problem at
hand to ameliorate its slow decay with the number of samples.
However, the resulting ambiguity balls often contain the true
distribution with low probability, which may fail to provide
guarantees when solving multiple DRO problems using the same
data, as is done for instance in model predictive control [24],
[36]. �

B. Noise Ambiguity Radius

In this section, we quantify the noise ambiguity radius ε̂N (βns)
for any prescribed confidence 1− βns. For the results of this
section, the initial condition and the internal noise are inter-
preted as deterministic quantities. To clarify this distinction,
we use the alternative notation PNξ� (z,ω) and P̂Nξ� (z,ω,v�)
for the corresponding empirical and estimator-based empirical
distribution, where z = (z1, . . . , zN ), z1 ≡ ξ10 , . . . , z

N ≡ ξN0 ,
and ω = (ω1, . . . ,ωN ), ω1 ≡ w1

� , . . . ,ω
N ≡ wN

� . We next
uniformly bound the distance between the empirical and the
estimator-based empirical distribution with prescribed confi-
dence for all values of the initial condition and the internal noise
from a set that contains the support of their joint distribution.

Lemma 4.4 (Distance between empirical and estimator-based
empirical distribution): Let (z,ω) ∈ BNd∞ (ρξ0)×BN�q∞ (ρw)
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and consider the discrete distribution PNξ� ≡ PNξ� (z,ω) and the

empirical distribution P̂Nξ� ≡ P̂Nξ� (z,ω,v�), where v� is the
measurement noise of the realizations. Then

Wp(P̂
N
ξ�
, PNξ� ) ≤ 2

p−1
p Mw + 2

p−1
p

(
1

N

N∑
i=1

(Ei)p

) 1
p

(12a)

where

Mw :=
√
d‖Ψ�‖ρξ0 +

√
q

�∑
k=1

‖Ψ�,�−k+1G�−k‖ρw (12b)

Ei ≡ E(vi) :=

�∑
k=1

‖Ψ�,�−k+1K�−k‖‖vi�−k‖1. (12c)

The next result gives bounds for the norms of the random
variables Ei in Lemma 4.4.

Lemma 4.5 (Orlicz- and Lp-norm bounds for Ei): The ran-
dom variables Ei in (12c) satisfy

‖Ei‖p ≤ Mv :=Mvr

�∑
k=1

‖Ψ�,�−k+1K�−k‖ (13a)

‖Ei‖ψp
≤ Cv := Cvr

�∑
k=1

‖Ψ�,�−k+1K�−k‖ (13b)

‖Ei‖p ≥ mv := mvr
1
p

( �∑
k=1

‖Ψ�,�−k+1K�−k‖p
) 1

p

(13c)

with mv , Mv , and Cv as given in H4.
The proofs of both abovementioned results are given in Ap-

pendix A. By bounding the term ( 1
N

∑N
i=1(E

i)p)
1
p , in (12a) we

obtain the main result of this section that bounds the Wasser-
stein distance between the empirical and the estimator-based
empirical distribution.

Proposition 4.6 (Distance guarantee between empirical and
estimator-based empirical distribution): Consider a confidence
1− βns and let

ε̂N (βns) := 2
p−1
p

(
Mw +Mv +Mvα

−1
p

(
R2

c′N
ln

2

βns

))
(14)

with Mw, Mv given by (12b), (13a)

αp(s) :=

{
s2, if s ∈ [0, 1]

sp, if s ∈ (1,∞)
(15)

R := Cv/mv + 1/ ln 2 (16)

andCv ,mv as in (13b), (13c). Then, for all (z,ω) ∈ BNd∞ (ρξ0)×
BN�q∞ (ρw), we have

P

(
Wp(P̂

N
ξ�
(z,ω,v�), P

N
ξ�
(z,ω)) ≤ ε̂N (βns)

)
≥ 1− βns.

(17)

The proof is given in Appendix A.

C. Overall Ambiguity Set

Here we combine the results from Sections IV-A and IV-B to
obtain the ambiguity set of the state distribution in the following
result, which is the central result of this article.

Theorem 4.7 (Ambiguity set under noisy dynamics and ob-
servations): Consider data collected from N realizations of
system (3) in accordance to Assumptions 3.1 and 3.2, a con-
fidence 1− β, and let βnom, βns ∈ (0, 1) satisfying (9). Then,
the guarantee (8) holds, where ψN (β) is given in (10) and its
components εN (βnom) ≡ εN (βnom, ρξ�) and ε̂N (βns) are given
by (11) and (14), respectively, with

ρξ� :=
√
d‖Φ�‖ρξ0 +

√
q

�∑
k=1

‖Φ�,�−k+1G�−k‖ρw. (18)

Proof: Due to (10) and the triangle inequality for Wp

{Wp(P̂
N
ξ�
, Pξ�) ≤ ψN (β)} ⊃ {Wp(P̂

N
ξ�
, PNξ� ) ≤ ε̂N (βns)}

∩ {Wp(P
N
ξ�
, Pξ�) ≤ εN (βnom, ρξ�)}.

Thus, to show (8), it suffices to show that

E

[
1{Wp( ̂PN

ξ�
,PN

ξ�
)−ε̂N (βns)≤0}

× 1{Wp(PN
ξ�
,Pξ�

)−εN (βnom,ρξ� )≤0}
]
≥ 1− β. (19)

We therefore exploit Lemma 2.1 with the random vari-
able X ≡ (ξ0,w�), taking values in the compact set K ≡
BNd∞ (ρξ0)×BN�q∞ (ρw), the random variable Y ≡ v� ∈ R

N�r,
and g(X,Y ) ≡ g(ξ0,w�,v�), where

g(ξ0,w�,v�) := 1{Wp(PN
ξ�

(ξ0,w�),Pξ�
)−εN (βnom,ρξ� )≤0}

× 1{Wp( ̂PN
ξ�

(ξ0,w�,v�),PN
ξ�

(ξ0,w�))−ε̂N (βns)≤0}.

Due to (17), E[1{Wp( ̂PN
ξ�

(z,ω,v�),PN
ξ�

(z,ω))−ε̂N (βns)≤0}]≥
1−βns for any x = (z,ω) ∈ K and thus E[g(x, Y )]≥
1{Wp(PN

ξ�
(x),Pξ�

)−εN (βnom,ρξ� )≤0}×(1− βns)=:k(x), for all

x ∈ K. Hence, sinceX ≡ (ξ0,w�) andY ≡ v� are independent
by H2, we deduce from Lemma 2.1 that

E[g(X,Y )]

≥ E

[
1{Wp(PN

ξ�
(ξ0,w�),Pξ�

)−εN (βnom,ρξ� )≤0}(1− βns)
]

= (1− βns)P(Wp(P
N
ξ�
(ξ0,w�), Pξ�) ≤ εN (βnom, ρξ�)).

From (7) and H3 in Assumption 3.2, it follows that Pξ� is sup-
ported on the compact set Bd∞(ρξ�) with diam∞(Bd∞(ρξ�)) =
2ρξ� and ρξ� given in (18). In addition, due to H1 and H2 in
Assumption 3.2 the random states ξi� in the empirical distribution
PNξ� (ξ0,w�) =

1
N

∑N
i=1 δξi� are i.i.d.. Thus, we get from Propo-

sition 4.2 that P(Wp(P
N
ξ�
(ξ0,w�), Pξ�) ≤ εN (βnom, ρξ�)) ≥

1− βnom, which implies E[g(X,Y )] ≥ (1− βns)(1− βnom) =
1− β. Finally, (19) follows from this and the definition of g.

With this result at hand, we deduce from the expressions (11)
and (17) for the components of the ambiguity radius that it
decreases as we exploit a larger number N of independent tra-
jectories and relax our confidence choices, i.e., reduce 1− βnom
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and 1− βns. Notice further that no matter how many trajectories
we use, the noise ambiguity radius decreases to a strictly positive
value. It is also worth to observe thatψN generalizes the nominal
ambiguity radius εN in the DRO literature (even when dynamic
random variables are considered [9]) and reduces to εN in the
noise-free case where ε̂N = 0.

Drawing conclusions about how the ambiguity radius behaves
as we simultaneously allow the horizon [0 : 	] and the number
N of sampled trajectories to increase is a more delicate matter.
The value of the nominal component depends essentially on N
and the support of the distribution at 	, with the latter in turn
depending on the system’s stability properties and the support
of the initial condition and internal noise distributions. On the
other hand, the noise component depends on N and the quality
of the estimation error. We quantify in the next section how the
latter guarantees uniform boundedness of the noise radius under
detectability-type assumptions.

Remark 4.8 (Positive lower bound of the noise radius): The

positive lower bound 2
p−1
p (Mw +Mv) on the noise radius

in (14) represents in general a fundamental limitation for the
ambiguity set accuracy, which is independent of the number N
of estimated state samples. This is because the bound is related
to the size of the state estimation error, which persists under the
presence of noise and may further grow in time if there is no
system detectability. �

Remark 4.9 (Optimal radius selection): Once a desired con-
fidence level 1− β and the number of independent trajectories
N are fixed, we can optimally select the ambiguity radius by
minimizing the function

βnom �→ ψN (βnom) ≡ εN (βnom) + ε̂N ((β − βnom)/(1− βnom))

where, we have taken into account the constraint (9) between the
nominal and the noise confidence. This function is nonconvex,
but one-dimensional, and its minimizer is in the interior of the
interval (0, β), so its optimal value can be approximated with
high accuracy. �

Remark 4.10 (Potential conservativeness of the overall ra-
dius): It is worth noting that the ambiguity radius ψN can be
rather conservative. The main reasons for this are the following.

1) Conservativeness of the concentration of measure results
used for the derivation of the nominal radius.

2) Potential lack of homogeneity of the distribution’s sup-
port since some components of the state distribution may
have a much smaller support than others.

3) Potential independence between components of the state
distribution, which is not exploited.

4) Conservative upper bounds for the estimation error.
Although there is room to sharpen all these aspects, they

require additional contributions that are beyond the scope of
this article.

A practical approach to select the ambiguity radius in a
data-driven manner for a fixed (single) optimization problem
would consist of two steps. The first step will use a tech-
nique, such as cross-validation to tune the radius based on
the states of the estimator-based empirical distribution [34,
Section 7]. The second step will enlarge this radius using i.i.d.

data of the discrepancy ejk, j = 1, . . . ,M between the true and
the estimated state (provided that these are available), where
M = mN for some m ∈ N. This enlargement is analogous to
1
m ( 1

N

∑mN
j=(m−1)N+1 ‖ejk‖p)

1
p , which is an estimator for the

average Wasserstein distance between the true and the estimator-
based empirical distribution. �

Remark 4.11 (Chance-constrained problems): The ambigu-
ity sets of this article can also be used in chance-constrained
problems where the samples are no longer drawn from the true
distribution because of the type of nonidealities presented here.
Then, one can directly use the formulations of e.g., [25], by re-
placing the empirical distribution there with the estimator-based
empirical distribution and tuning the ambiguity radius according
to Theorem 4.7 or the practical approach in Remark 4.10. �

D. Uncertainty Quantification Over Bounded Time
Horizons

In this section, we discuss how the guarantees can be extended
to scenarios where an ambiguity set is built over a finite-time
horizon instead of a single instance 	. In this case we assume
again that samples are collected over the time window [0 : 	] but
we seek to build an ambiguity set about the state distribution
along [	1 : 	2], with 0 ≤ 	1 ≤ 	2 ≤ 	. We distinguish between
two ambiguity set descriptions depending on the way the associ-
ated probabilistic guarantees are obtained. In the first, we directly
build an ambiguity set for the probability distribution of the ran-
dom vector ξ� := (ξ�1 , . . . , ξ�2) ∈ R

˜�d with � := (	1, . . . , 	2)

and 	̃ = 	2 − 	1 + 1, comprising of all states over the interval
of interest and using the concentration of measure result of
Proposition 4.2 for 	̃d-dimensional random variables. This has
the drawback that the ambiguity radius decays slowly with the
number of trajectories due to the high dimension of ξ�. The other
description derives an ambiguity set about the state distribution
Pξ�1 at time 	1 with prescribed confidence, and propagates
it under the dynamics while taking into account the possible
values of the internal noise. We also present sharper results for
the case when the internal noise sequence is known. The first
ambiguity set description is provided by the following analogue
of Theorem 4.7.

Theorem 4.12 (Ambiguity set over a bounded time horizon):
Consider output data collected fromN realizations of system (3)
over the interval [0 : 	] and let Assumption 3.2 hold. Pick a con-
fidence 1− β, let βnom, βns ∈ (0, 1) satisfying (9), and consider
the bounded-horizon estimator empirical distribution

P̂Nξ�
:=

1

N

N∑
i=1

δ
̂ξ
i

�

over the horizon [	1 : 	2] ⊂ [0 : 	], where ξ̂
i

� := (ξ̂i�1 , . . . , ξ̂
i
�2
)∈

R
˜�d and each ξ̂i� is given by the observer (4). Then

P(Wp(P̂
N
ξ�
, Pξ�

) ≤ ψN (β)) ≥ 1− β (20)

holds, where ξ� := (ξ�1 , . . . , ξ�2) and ψN (β) is given in (10).
The nominal component εN (βnom) ≡ εN (βnom, ρξ�

) is given
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by (11) (with d in the expression substituted by 	̃d)

ρξ�
:= max

�∈[�1:�2]

{√
d‖Φ�‖ρξ0 +

√
q

�∑
k=1

‖Φ�,�−k+1G�−k‖ρw
}

(21)

whereas ε̂N (βns) is given as

ε̂N (βns) := 2
p−1
p

(
M̃w + M̃v + M̃vα

−1
p

(
R̃2

c′N
ln

2

βns

))
,with

M̃w :=

�2∑
�=�1

Mw(	), M̃v :=

�2∑
�=�1

Mv(	)

R̃ :=
C̃v
m̃v

+
1

ln 2
, C̃v :=

�2∑
�=�1

Cv(	), m̃v :=

�2∑
�=�1

mv(	)

and Mw(	) ≡ Mw, Mv(	) ≡ Mv , Cv(	) ≡ Cv , and mv(	) ≡
mv , as given by (12b), (13a), (13b), and (13c), respectively.

The proof of this result follows the argumentation employed
for the proof of Theorem 4.7 (a sketch can be found in the online
version [10]). For the second ambiguity set description we use
a pointwise-in-time approach. To this end, we build a family
of ambiguity balls so that under the same confidence level the
state distribution at each time instant of the horizon lies in the
associated ball, i.e.,

P

(
Pξ� ∈ BψN,�

(P̃Nξ� ) ∀	 ∈ [	1 : 	2]
)
≥ 1− β (22)

where, BψN,�
(P̃Nξ� ) := {P ∈ Pp(Rd) |Wp(P, P̃

N
ξ�
) ≤ ψN,�}

and P̃Nξ� is the center of the ball. This is well suited for
stochastic optimization problems that have a separable structure
with respect to the stochastic argument across different time
instances, i.e., problems of the form

inf
x∈X

E
[
f1(x, ξ�1) + · · ·+ f

˜�(x, ξ�2)
]
.

To obtain the result in this case and retain sufficiently sharp
bounds for the ambiguity radius, we partially strengthen our
assumptions H2 and H3 about the internal noise distribution. We
assume that the sequence wk is independent and that we either
know a (uniform) bound on its pth moment or that we know
its precise distribution. The technical approach is substantially
different from that of Theorem 4.12 and relies on the notion
of the convolution μ � ν of two distributions μ and ν on R

d,
which is the image of their product measure μ⊗ ν on R

d × R
d

under the mapping (x, y) �→ x+ y; equivalently, μ � ν(B) =∫
Rd×Rd 1B(x+ y)μ⊗ ν(dx, dy) for any B ∈ B(Rd) (cf., [7,

Pages 207, 208]).
Theorem 4.13 (Pointwise ambiguity sets over a bounded time

horizon): Let the assumptions of Theorem 4.12 hold, assume
that the internal noise sequence w� is independent (also of
the initial state), Pw�

∈ Pp(Rd) for 	 ∈ [	1 : 	2], i.e., it is not
necessarily compactly supported, and consider either of the
following two cases for its distribution when 	 ∈ [	1 : 	2].

i) Pw�
is not known and E[‖w�‖p]

1
p ≤ qw.

ii) Pw�
is known.

Then, for any confidence 1− β, and βnom, βns ∈ (0, 1) sat-
isfying (9), (22) holds, with P̃Nξ�1 := P̂Nξ�1

and ψN,�1 as given

by Theorem 4.7 (for 	 ≡ 	1), and P̃Nξ� , ψN,�, 	 ∈ [	1 + 1 : 	2]
defined as follows for the respective abovementioned two cases.

i) The ambiguity set center is P̃Nξ� := 1
N

∑N
i=1 δ˜ξi�

with

ξ̃i� := Φ�,�1 ξ̂�1 and the radius is given recursively by
ψN,� := ‖A�−1‖ψN,�−1 + qw.

ii) The ambiguity set center is P̃Nξ� := ((A�−1)#P̃
N
ξ�−1

) �
Pw�−1

and the radius is ψN,� := ‖A�−1‖ · · · ‖A�1‖ψN,�1 .
The proof is given in Appendix B. Note that when the internal

noise distribution is known, all individual ambiguity balls of
Theorem 4.13 shrink at the exact same decay rate with the
number of sampled trajectories, which overcomes the slow decay
rate of the ambiguity radius of Theorem 4.12 for larger time
horizons.

V. SUFFICIENT CONDITIONS FOR UNIFORMLY BOUNDED

NOISE AMBIGUITY RADII

In this section, we leverage Assumption 3.4 to establish
that the noise ambiguity radius remains uniformly bounded
as the sampling horizon increases. The focus here is on the
noise component because it can be controlled under appropriate
observability assumptions, whereas the nominal radius grows
unbounded with time for unstable dynamics. We first provide
uniform bounds for the matrices involved in the system and
observer error dynamics.

Proposition 5.1 (Bounds on system/observer matrices): Un-
der Assumption 3.4, the gain matricesKk can be selected so that
the following properties hold.

i) There existK
,K

, G
 > 0 and Ψ
s > 0, s ∈ N0, so that

‖Gk‖ ≤ G
, K
 ≤ ‖Kk‖ ≤ K
, and ‖Ψk+s,k‖ ≤ Ψ
s
for all and k ∈ N0.

ii) There exists s0 ∈ N so that ‖Ψk+s,k‖ ≤ 1
2 for all k ∈ N0

and s ≥ s0.
The proof is given in Appendix C. Based on this result

and Assumption 3.4 about the system’s detectability/uniform
observability properties, we proceed to provide a uniform bound
on the size of the noise radius for arbitrarily long evolution
horizons.

Proposition 5.2 (Uniform bounds for noise ambiguity radius):
Consider data collected from N realizations of system (3), a
confidence 1− β as in (9), and let Assumptions 3.1, 3.2, and 3.4
hold. Then, there exist observer gain matrices Kk so that the
noise ambiguity radius ε̂N in (14) is uniformly bounded with
respect to the sampling horizon size. In particular, there exists
	0 ∈ N so that, for each 	 ≥ 	0, Mw ≡ Mw(	), Mv ≡ Mv(	),
and R ≡ R(	) given by (12b), (13a), and (16), are uniformly
upper bounded as

Mw ≤ 1

2

√
dρξ0 + 3

√
q

�0−1∑
j=0

Ψ
jG

ρw

Mv ≤ 3Mvr

�0−1∑
j=0

Ψ
jK

, R ≤ 3

Cv
mv

r
p−1
p

∑�0−1
j=0 Ψ
jK




K

.

The proof is given in the online version [10].
Remark 5.3 (Noise ambiguity radius for time-invariant sys-

tems): For time-invariant systems, it is possible to improve the
bounds of Proposition 5.2 for Mw, Mv , and R by exploiting the
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fact that the system and observer gain matrices are constant. The
precise bounds in this case (see also [8, Proposition 5.5]) are

Mw ≤ 1

2

√
dρξ0 + 2

√
q

�0−1∑
k=0

‖ΨkG‖ρw

Mv≤2Mvr

�0−1∑
k=0

‖ΨkK‖, R≤2
Cv
mv

r
p−1
p

∑�0−1
k=0 ‖ΨkK‖(∑�0−1

k=0 ‖ΨkK‖p
) 1

p

with 	0 as in the time-invariant case of Proposition 5.2, and
where G and K denote the constant values of the internal
noise and observer gain matrices, respectively. The superior-
ity of these bounds can be checked using the matrix bounds
in Proposition 5.1(i) and their derivation is based on a sim-
plified version of the arguments employed for the proof of
Proposition 5.2. �

VI. APPLICATION TO ECONOMIC DISPATCH WITH

DISTRIBUTED ENERGY RESOURCES

In this section, we take advantage of the ambiguity sets
constructed with noisy partial measurements, cf., Theorem 4.7,
to hedge against the uncertainty in an optimal economic dis-
patch problem. This is a problem where uncertainty is naturally
involved due to (dynamic) energy resources, which the scheduler
has no direct access to control or measure, like storage or
renewable energy elements. The financial implications of the
associated decisions are of utmost importance for the electricity
market and justify the use of a reliable decision framework that
accounts for the variability of the uncertain factors.

A. Network Model and Optimization Objective

Consider a network with distributed energy resources [13]
comprising of n1 generator units and n2 storage (battery) units.
The network needs to operate as close as possible to a pre-
scribed power demand D at the end of the time horizon [0 : 	],
corresponding to a uniform discretization of step size δt of
the continuous-time domain. To this end, each generator and
storage unit supplies the network with positive power P j and
Sι, respectively, at time 	. We assume we can control the power
of the generators, which additionally needs to be within the
upper and lower thresholds P jmin and P jmax, respectively. Each
battery is modeled as an uncertain dynamic element with an
unknown initial state distribution and we can decide whether it
is connected (ηι = 1) or not (ηι = 0) to the network at time 	.
Our goal is to minimize the energy cost while remaining as close
as possible to the prescribed power demand. Thus, we minimize
the overall cost

C(P ,η) :=
n1∑
j=1

gj(P j) +

n2∑
ι=1

ηιhι(Sι)

+ c

( n1∑
j=1

P j +

n2∑
ι=1

ηιSι −D

)2

(23)

where,P := (P 1, . . . , Pn1), η := (η1, . . . , ηn2), and gj , hι are
cost functions for the power provided by generator j and storage

Fig. 2. (a) shows the equivalent circuit model of a lithium-ion battery
cell in discharging mode (cf., [32, Fig. 2], [31, Fig. 1]). (b) is taken from
[31, Fig. 3] and shows the nonlinear dependence of the open circuit
voltage on the SoC and its affine approximation.

unit ι, respectively. We treat the deviation of the injected power
from its prescribed demand as a soft constraint by assigning
it a quadratic cost with weight c and augmenting the overall
cost function (23). Due to the uncertainty about the batteries’
state and their injected powers Sι, the minimization of (23) is a
stochastic problem.

B. Battery Dynamics and Observation Model

Each battery is modeled as a single-cell dynamic element and
we consider its current Iι discharging over the operation interval
(if connected to the network) as a fixed and a priori known
function of time. Its dynamics is conveniently approximated
by the equivalent circuit in Fig. 2(a) (see, e.g., [31], [32]),
where zι is the state of charge (SoC) of the cell and Ocv(zι) is
its corresponding open-circuit voltage, which we approximate
by the affine function αιzι + βι in Fig. 2(b). The associated
discrete-time cell model is

χιk+1 ≡
(
Iι,2k+1

zιk+1

)
=

(
aι 0
0 1

)(
Iι,2k
zιk

)
+

(
1− aι

−δt/Qι
)
Iιk

θιk ≡ V ιk = αιzιk + βι − IιkR
ι,1 − Iι,2k Rι,2

where, aι := e−δt/(R
2,ιCι), δt is the time discretization step, and

Qι is the cell capacity. Here, we assume that for all k ∈ [0 : 	]
the cell is neither fully charged or discharged (by e.g., requiring
that 0 < z0 −

∑�−1
k=0 δtI

ι
k/Q

ι < 1 for all k and any candidate
initial conditions and input currents) and so, the evolution of
its voltage is accurately represented by the abovementioned
difference equation. The initial condition comprising of the SoC
zι0 and the current Iι,20 throughRι,2 is random with an unknown
probability distribution. We also consider additive measurement
noise with an unknown distribution, namely

θιk = αιzιk + βι − IιkR
ι,1 − Iι,2k Rι,2 + vk.

To track the evolution of each random element through a linear
system of the form (3), we consider for each battery a nominal
state trajectory χι,
k = (Iι,2,
k , zι,
k ) initiated from the center of
the support of its initial-state distribution. Setting ξιk = χιk −
χι,
k and ζιk = θk(χ

ι
k)− θk(χ

ι,

k )

ξιk+1 = Aιkξ
ι
k

ζιk = Hι
kξ
ι
k + vk
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where, Aιk := diag(a, 1) and Hι
k := (αι,−Rι,2). Denoting

ξ := (ξ1, . . . , ξn2) and ζ := (ζ1, . . . , ζn2), we obtain a system
of the form (3) for the dynamic random variable ξ. Despite
the fact that the state distribution ξk of the batteries across
time is unknown, we assume having access to output data
from N independent realizations of their dynamics over the
horizon [0 : 	]. Using these samples we exploit the results of
this article to build an ambiguity ball PN of radius εN in the
2-Wasserstein distance (i.e., with p = 2), that contains the bat-
teries’ state distributionPξ�

at time 	with prescribed probability
1− β. In particular, we take the samples from each realization
i ∈ [1 : N ] and use an observer to estimate its state ξ̂i� at time 	.
The ambiguity set is centered at the estimator-based empirical
distribution P̂Nξ�

= 1
N

∑N
i=1 δ̂ξi

�
and its radius can be determined

using Theorem 4.7 and Proposition 4.6.

C. Decision Problem as DRO Problem

To solve the decision problem regarding whether or not to
connect the batteries for economic dispatch, we formulate a DRO
problem for the cost (23) using the ambiguity set PN . To do
this, we derive an explicit expression of how the cost function
C depends on the stochastic argument ξ�. Notice first that the
power injected by each battery at time 	 is

Sι = Iι�V
ι
� = Iι�

(
αιzι� + βι − Iι�R

ι,1 − Iι,2� Rι,2
)

= 〈(−Iι�Rι,2, αιIι�), χι�〉+ βιIι� − (Iι�)
2Rι,1

= 〈α̂ι, ξι�〉+ β̂ι ≡ (α̂ι)ξι� + β̂ι

where 〈·, ·〉 denotes inner product, α̂ι := (−Iι�Rι,2, αιIι�) and

β̂ι := 〈α̂ι, χι,
� 〉+ Iι�β
ι − (Iι�)

2Rι,1

= Iι�I
ι,2,

� Rι,2 − αιIι�z

ι,

� + Iι�β

ι − (Iι�)
2Rι,1.

Considering further affine costs hι(S) := ᾱιS + β̄ι for the
power provided by the batteries, the overall cost C becomes

C(P ,η) = g(P ) + (η ∗ α̃)ξ� + ηβ̃

+ c
(
1P + (η ∗ α̂)ξ� + ηβ̂ −D

)2

(24)

where, ∗ denotes the Khatri–Rao product (i.e., for a ≡
(a1, . . . , ad) ∈ R

d and b ≡ (b1, . . . , bd) ∈ R
dn with bi ∈ R

n,
a ∗ b := (a1b1, . . . , adbd)) and

g(P ) :=

n1∑
j=1

gj(P j), α̂ := (α̂1, . . . , α̂n2)

β̂ := (β̂1, . . . , β̂n2), α̃ := (ᾱ1α̂1, . . . , ᾱn2 α̂n2)

β̃ := (ᾱ1β̂1 + β̄1, . . . , ᾱn2 β̂n2 + β̄n2).

Using the equivalent description (24) for C and recalling the
upper and lower bounds P jmin and P jmax for the generator’s
power, we formulate the DRO power dispatch problem

inf
η,P

{
fη(P ) + sup

Pξ�
∈PN

EPξ�
[hη(P , ξ�)]

}
(25a)

s.t. P jmin ≤ P j ≤ P jmax ∀j ∈ [1 : n1] (25b)

with the ambiguity set PN introduced previously and

fη(P ) := g(P ) + cP11P

+ 2c(ηβ̂ −D)1P + c(ηβ̂ −D)2 + ηβ̃

hη(P , ξ�) := cξ� (η ∗ α̂)(η ∗ α̂)ξ� +
(
2c
(
1P

+ ηβ̂ −D
)
(η ∗ α̂) + (η ∗ α̃)

)
ξ�.

This formulation aims to minimize the worst-case expected cost
with respect to the plausible distributions of ξ at time 	.

D. Tractable Reformulation of the DRO Problem

Our next goal is to obtain a tractable reformulation of the
optimization problem (25). To this end, we first provide an
equivalent description for the inner maximization in (25), which
is carried out over a space of probability measures. Exploiting
strong duality (see [21, Corollary 2(i)] or [5, Remark 1]) and
recalling that our ambiguity setPN is based on the 2-Wasserstein
distance, we equivalently write the inner maximization problem
supPξ�

∈PN EPξ�
[hη(P , ξ�)] as

inf
λ≥0

{
λψ2

N +
1

N

N∑
i=1

sup
ξ�∈Ξ

{hη(P , ξ�)− λ‖ξ� − ξ̂i�‖2}
}

(26)

where ψN ≡ ψN (β) is the radius of the ambiguity ball, Ξ ⊂
R

2n2 is the support of the batteries’ unknown state distribution,
and the ξ̂i� are the estimated states of their realizations. We
slightly relax the problem, by allowing the ambiguity ball to
contain all distributions with distance ψN from P̂Nξ�

that are
supported onR2n2 and not necessarily onΞ.2 Thus, we first look
to solve for each estimated state ξ̂i� the optimization problem

sup
ξ�∈R2n2

{hη(P , ξ�)− λ‖ξ� − ξ̂i�‖2}

which is written

sup
ξ�∈R2n2

{
ξ� Aξ� +

(
2c
(
1P + ηβ̂ −D

)
(η ∗ α̂)

+ (η ∗ α̃)
)
ξ� − λ(ξ� − ξ̂i�)

(ξ� − ξ̂i�)
}

= −λ(ξ̂i�)
ξ̂i� + sup

ξ�∈R2n2

{
ξ� (A− λI2n2

)ξ� + (ri)ξ�
}

where, ri ≡ riη(P , λ) := 2c(1P + ηβ̂ −D)(η ∗ α̂) + η ∗
α̃+ 2λξ̂i� and A ≡ Aη := c(η ∗ α̂)(η ∗ α̂) is a symmet-
ric positive semidefinite matrix with diagonalization A =
QDQ where the eigenvalues decrease along the diagonal.
Hence, we get supξ�∈R2n2

{
ξ� (A− λI2n2

)ξ� + (ri)ξ�
}
=

supξ∈R2n2

{
ξ(D− λI2n2

)ξ + (r̂i)ξ
}

with r̂i := Qri and

2The exact same reformulations can be obtained for any quadratic cost
function ξ� Qξ� + b(P )ξ� + c, withQ positive semidefinite and b(P ) affine
in P . Analogous reformulations for dynamic programming problems with
quadratic costs can be found in [49].
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denoting λmax(A) the maximum eigenvalue of A we have

sup
ξ∈R2n2

{
ξ(D− λI2n2

)ξ + (r̂i)ξ
}

=

{
∞ if 0 ≤ λ < λmax(A)
1
4 (r̂

i)(λI2n2
−D)−1r̂i if λ > λmax(A).

(27)

To obtain this we exploited that Q(ξ) := ξ(D−
λI2n2

)ξ + (r̂i)ξ is maximized when ∇Q(ξ
) = 0 ⇐⇒
ξ
 =

1
2 (λI2n2

−D)−1r̂i which gives the optimal value
Q(ξ
) =

1
4 (r̂

i)(λI2n2
−D)−1r̂i. Note that we do not need

to specify the value of the expression in (27) for λ = λmax. In
particular, since the function we minimize in (26) is convex in
λ, the inner part of the DRO problem is equivalently written

inf
λ>λmax(A)

{
λ

(
ψ2
N − 1

N

N∑
i=1

(ξ̂i�)
ξ̂i�

)

+
1

4N

N∑
i=1

r̂iη(P , λ)
(λI2n2

−D)−1r̂iη(P , λ)

}
.

Taking further into account that (λI2n2
−D)−1 =

diag
(

1
λ−λmax(A) , . . . ,

1
λ−λmin(A)

)
as well as the constraints

(25b) on the decision variable P , the overall DRO problem is
reformulated as

min
η

inf
P ,λ

{
fη(P ) + λ

(
ψ2
N − 1

N

N∑
i=1

(ξ̂i�)
ξ̂i�

)

+
1

4N

N∑
i=1

r̂iη(P , λ)


× diag

(
1

λ − λmax(A)
, . . . ,

1

λ − λmin(A)

)
r̂iη(P , λ)

}
(28a)

subject to P jmin ≤ P j ≤ P jmax ∀j ∈ [1 : n1]

λ > λmax(A). (28b)

E. Simulation Results

For the simulations we consider n1 = 4 generators and
n2 = 3 batteries with the same characteristics. We assume that
the distributions of each initial SoC zι0 and current Iι,20 are known
to be supported on the intervals [0.45, 0.9] and [1.5,1.7], respec-
tively. The true SoC distribution for batteries 2 and 3 at time zero
is Pz20 = Pz30 = U [0.45, 0.65] (U denotes uniform distribution).
On the other hand, the provider of battery 1 has access to the dis-
tinct batteries 1A and 1B and selects randomly one among them
with probabilities 0.9 and 0.1, respectively. The SoC distribution
of battery 1A at time zero is Pz1A

0
= U [0.45, 0.65], whereas that

of battery 1B isPz1B0 = U [0.84, 0.86]. Thus, we get the bimodal
distribution Pz10 = 0.9U [0.45, 0.65] + 0.1U [0.84, 0.86], which
is responsible for nonnegligible empirical distribution varia-
tions, since for small numbers of samples, it can fairly frequently

occur that the relative percentage of samples from 1B deviates
significantly from its expected one. On the other hand, we
assume that the true initial currents Iι,20 of all batteries are fixed to
1.6308, namely, PI1,20

= PI2,20
= PI3,20

= δ1.6308. For the mea-
surements, we consider the Gaussian mixture noise modelPvk =
0.5N (0.01, 0.012) + 0.5N (−0.01, 0.012) with N (μ, σ2) de-
noting the normal distribution with mean μ and variance σ2.
To compute the ambiguity radius for the reformulated DRO
problem (28), we specify its nominal and noise components
εN (βnom, ρξ�

) and ε̂N (βns), where due to Proposition 4.2, ρξ�

can be selected as half the diameter of any set containing the
support of Pξ�

in the infinity norm. It follows directly from
the specific dynamics of the batteries that ρξ�

does not exceed
half the diameter of the initial conditions’ distribution support,
which is isometric to [0.45, 0.9]3 × [1.5, 1.7]3 ⊂ R

6. Hence,
using Proposition 19 in the online version [10] with p = 2,
d = 6, and ρξ�

= 0.225, we obtain

εN (βnom, ρξ�
) = 4.02N− 1

6 + 1.31(ln β−1
nom)

1
4N− 1

4 .

To determine the noise radius, we first compute lower and
upper bounds mv and Mv for the L2 norm of the Gaus-
sian mixture noise vk and an upper bound Cv for its ψ2

norm. Denoting by EP the integral with respect to the distri-
bution P , we have for Pvk = 0.5N (μ1, σ

2
1) + 0.5N (μ2, σ

2
2)

that ‖vk‖22 = E 1
2 (P1+P2)

[v2k] =
1
2 (μ

2
1 + σ2

1 + μ2
2 + σ2

2), where

P1 = N (μ1, σ
2
1), P2 = N (μ2, σ

2
2) and we used the fact

thatEPi
[v2k] = μ2

i + EPi
[(vk − μi)

2] = μ2
i + σ2

i . Hence, in our
case, where μi = σi = 0.01, we can pickmv =Mv = 0.01

√
2.

Further, using Proposition 21 from the online version [10],
we can select Cv = 0.01(

√
8/3 +

√
ln 2). To perform the state

estimation from the output samples we used a Kalman filter. Its
initial condition covariance matrix corresponds to independent
Gaussian distributions for each SoC zι0 and current Iι,20 with a
standard deviation of the order of their assumed support. We also
select the same covariance as in the components of the Gaussian
mixture noise to model the measurement noise of the Kalman
filter. Using the dynamics of the filter and the values ofmv ,Mv,
and Cv previously, we obtain from (12b), (13a)–(13c), and (16)
the constants Mw = 0.325, Mv = 0.008, and R = 2.72 for the
expression of the noise radius. In particular, we have from Propo-
sition 4.6 that ε̂N (βns) = 0.47 + 0.0113

√
74.98/N ln(2/βns)

and the overall radius is

ψN (β) = 0.47 + 4.02N− 1
6 + 1.31(ln β−1

nom)
1
4N− 1

4

+ 0.0973(ln(2β−1
ns ))

1
2N− 1

2 . (29)

We assume that the energy cost of the generators is lower than
that of the batteries and select the quadratic power generation
cost g(P ) = 0.25

∑4
j=1(P

j − 0.1)2 and the same lower/upper

power thresholds P jmin = 0.2/P jmax = 0.5 for all generators.
For the batteries, we pick the same resistances Rι,1 = 0.34
and Rι,2 = 0.17, and we take aι = 0.945 and Iιk = 8 for all
times. We nevertheless use different linear costs hι(S) = ᾱιS
for their injected powers, with ᾱ1 = 1 and ᾱ2 = ᾱ3 = 1.3, since
battery 1 is less reliable due to the large SoC fluctuation among
its two modes.
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Fig. 3. Results from 100 realizations of the power dispatch problem
with N = 10 independent samples used for each realization. We com-
pute the optimizers of the SAA and DRO problems, plot their corre-
sponding optimal values (termed “SAA cost” and “DRO cost”), and also
evaluate their performance with respect to the true distribution (“true
cost with SAA optimizer” and “true cost with DRO optimizer”). With the
exception of two realizations (whose DRO cost and true cost with the
DRO optimizer are framed inside black boxes), the DRO cost is above
the true cost of the DRO optimizer, namely, this happens with high
probability. From the plot, it is also clear that the SAA solution tends
to overpromise since its value is most frequently below the true cost of
the SAA optimizer.

We solve 100 independent realizations of the overall eco-
nomic dispatch problem. For each of them, we generate indepen-
dent samples from the batteries’ initial condition distributions
and solve the associated SAA and DRO problems for N = 10,
N = 40, and N = 160 samples, respectively, using CVX [22].
Despite the potential conservativeness of the ambiguity radius
ψN (cf. Remark 4.10), formula (29) gives a qualitative intuition
about its decay rate. In particular, it indicates that under the same
confidence level and for small sample sizes, an ambiguity radius
proportional to N− 1

4 is a reasonable choice. Based on this, we
selected the ambiguity radii 0.05, 0.0354, and 0.025 forN = 10,
N = 40, and N = 160. The associated simulation results are
shown in Figs. 3, 4(a), and 4(b), respectively. We plot there the
optimal values of the SAA and DRO problems (termed “SAA
cost” and “DRO cost”) and provide the expected performance
of their respective decisions with respect to the true distribution
(“true cost with SAA optimizer” a.k.a. out-of-sample perfor-
mance and “true cost with DRO optimizer”). We observe that
in all three cases, the DRO value is above the true cost of the
DRO optimizer for nearly all realizations (and for all whenN is
40 or 160), which verifies the finite-sample guarantees of DRO
formulations [34, Theorem 3.5]. In addition, when solving the
problem for 40 or 160 samples, we witness a clear out-of-sample
superiority of the DRO optimizer compared to the one obtained
by the nonrobust SAA, because it considerably improves the
true cost for a significant number of realizations (cf., Fig. 4).

The SAA solution tends to consistently promise a better
outcome compared to what the true distribution reveals for the
same decision (e.g., magenta circle being usually under the green
circle in all figures). This rarely happens for the DRO solution,
and when it does, it is only by a small margin. This makes the
DRO approach preferable over the SAA one in the context of
power systems operations where honoring committments at a
much higher cost than anticipated might result in significant
losses, and not fulfilling committments may lead to penalties
from the system operator.

Fig. 4. Analogous results to those of Fig. 3, from 100 realizations with
(a) N = 40 and (b) N = 160 independent samples, and the ambiguity
radius tuned so that the same confidence level is preserved. In both
cases, the DRO cost is above the true cost of the DRO optimizer with
high probability (in fact, always). Furthermore, the cost of the DRO
optimizer (red star) is strictly better than the true cost of the SAA one
(green circle) for a considerable number of realizations (highlighted in
the illustrated boxes).

VII. CONCLUSION

We have constructed high-confidence ambiguity sets for dy-
namic random variables using partial-state measurements from
independent realizations of their evolution. In our model, both
the dynamics and measurements are subject to disturbances with
unknown probability distributions. The ambiguity sets are built
using an observer to estimate the full state of each realization
and leveraging concentration of measure inequalities. For sys-
tems that are either time-invariant and detectable, or uniformly
observable, we have established uniform boundedness of the
ambiguity radius. Future research will include the consideration
of robust state estimation criteria to mitigate the noise effect on
the ambiguity radius, the extension of the results to nonlinear dy-
namics, and the construction of ambiguity sets with information
about the moments.

APPENDIX

Here we give proofs of various results of this article. The
proofs are organized per section.

A. Proofs From Section IV-B

Proof of Lemma 4.4: Using [9, Lemma A.2] to
bound the Wasserstein distance of two discrete distribu-
tions, we get Wp(P̂

N
ξ�
, PNξ� ) ≤ ( 1

N

∑N
i=1 ‖ξ̂i� − ξi�‖p)

1
p =

( 1
N

∑N
i=1 ‖ei�‖p)

1
p . From (6), we have

‖ei�‖ =
∥∥∥Ψ�zi + �∑

k=1

(
Ψ�,�−k+1G�−kωi�−k

+Ψ�,�−k+1K�−kvi�−k
)∥∥∥
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≤ ‖Ψ�‖‖zi‖+
�∑

k=1

‖Ψ�,�−k+1G�−k‖‖ωi�−k‖

+

�∑
k=1

‖Ψ�,�−k+1K�−k‖‖vi�−k‖1 =: M(zi,ωi) + E(vi)

with E(vi) ≡ Ei given in the statement. Since (a+ b)p ≤
2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1

Wp(P̂
N
ξ�
, PNξ� ) ≤

(
1

N
2p−1

N∑
i=1

(M(zi,ωi)p + (Ei)p)

) 1
p

.

Next, using (a+ b)
1
p ≤ a

1
p + b

1
p for a, b ≥ 0 and p ≥ 1, we

have

Wp(P̂
N
ξ�
, PNξ� ) ≤

(
1

N
2p−1

N∑
i=1

M(zi,ωi)p

) 1
p

+

(
1

N
2p−1

N∑
i=1

(Ei)p

) 1
p

. (30)

Finally, since (z,ω) ∈ BNd∞ (ρξ0)×BN�q∞ (ρw), we get
M(zi,ωi)p ≤‖Ψ�‖

√
d‖zi‖∞+

∑�
k=1‖Ψ�,�−k+1G�−k‖√q

‖ωi�−k−1‖∞≤Mw. This combined with (30) yields (12a).
Proof of Lemma 4.5: From H4 in Assumption 3.2, we obtain

for each summand in (12c)∥∥‖Ψ�,�−k+1K�−k‖‖vi�−k‖1
∥∥
ψp

≤ ‖Ψ�,�−k+1K�−k‖
(∥∥vi�−k,1∥∥ψp

+ · · ·+ ∥∥vi�−k,r∥∥ψp

)
≤ Cvr‖Ψ�,�−k+1K�−k‖.

Hence, we deduce that

‖Ei‖ψp
≤

�∑
k=1

∥∥‖Ψ�,�−k+1K�−k‖‖vi�−k‖1
∥∥
ψp

≤ Cvr

�∑
k=1

‖Ψ�,�−k+1K�−k‖.

For the Lp bounds, note that ‖Ei‖p =
∥∥∑

k∈[1:�],l∈[1:r]
‖Ψ�,�−k+1K�−k‖|vi�−k,l|

∥∥
p
. Thus, from the inequality

‖∑i ciXi‖p ≤
∑
i ci‖Xi‖p, which holds for any nonnegative

ci and Xi in Lp

‖Ei‖p ≤
∑

k∈[1:�],l∈[1:r]
‖Ψ�,�−k+1K�−k‖‖vi�−k,l‖p

which, by the upper bound in H4 of Assumption 3.2, im-
plies (13a). For the other bound, we exploit linearity of the
expectation and the inequality (

∑
i ci)

p ≥ ∑
i c
p
i , which holds

for any nonnegative ci, to get(
E
[
(Ei)p

]) 1
p

≥
( ∑
k∈[1:�],l∈[1:r]

‖Ψ�,�−k+1K�−k‖pE
[|vi�−k,l|]p) 1

p

.

Thus, from the lower bound in H4 of Assumption 3.2 we also
obtain (13c).

To prove Proposition 4.6, we exploit the following con-
centration of measure result around the mean of nonnegative
independent random variables.

Proposition A.1 (Concentration around pth mean): Let
X1, . . . , XN be scalar, nonnegative, independent random vari-
ables with finite ψp norm and E[Xp

i ] = 1. Then

P

((
1

N

N∑
i=1

Xp
i

) 1
p

− 1 ≥ t

)
≤ 2 exp

(
−c

′N
R2

αp(t)

)
(31)

for every t ≥ 0, with c′ = 1/10, R := maxi∈[1:N ] ‖Xi‖ψp
+

1/ ln 2, and αp as given by (15).
We prove Proposition A.1 along the lines of the proof of

[43, Theorem 3.1.1], which considers the special case of sub-
Gaussian distributions. We rely on the following concentration
inequality [43, Corollary 2.8.3].

Proposition A.2 (Bernstein inequality): Let X1, . . . , XN be
scalar, mean-zero, subexponential, independent random vari-
ables. Then, for every t ≥ 0 we have

P

(∣∣∣ 1
N

N∑
i=1

Xi

∣∣∣ ≥ t

)
≤ 2 exp

(
−c′ min

{
t2

R2
,
t

R

}
N

)
where, c′ = 1/10 and R := maxi∈[1:N ] ‖Xi‖ψ1

.
The precise constant c′ in this result is not specified in [43]

but we provide an independent proof of this result in the online
version [10, Section 8.2].

Proof of Proposition A.1: Note that each random vari-
able Xp

i − 1 is mean zero by assumption. Additionally,
we have that ‖Xp

i − 1‖ψ1
≤ ‖Xp

i ‖ψ1
+ ‖1‖ψ1

= ‖Xi‖ψp
+

1/ ln 2 ≤ R, where we took into account that

E[ψ1(X
p
i /t

p)] = E[ψp(Xi/t)] ⇒ ‖Xp
i ‖ψ1

= ‖Xi‖ψp

and the following fact, shown after the proof.
� Fact I: For any constant random variable X = μ ∈ R, it

holds ‖X‖ψp
= |μ|/(ln 2) 1

p . �
Thus, we get from Proposition A.2 that

P

(∣∣∣∣ 1N
N∑
i=1

Xp
i − 1

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c

′N
R2

min{t2, t}
)
(32)

where we used the fact that R > 1. We will further leverage the
following facts shown after the proof of the proposition.
� Fact II: For all p ≥ 1 and z ≥ 0 it holds that |z − 1| ≥ δ ⇒

|zp − 1| ≥ max{δ, δp}. �
� Fact III: For any δ ≥ 0, if u = max{δ, δp}, then

min{u, u2} = αp(δ), with αp as given by (15). �
By exploiting Fact II, we get

P

(∣∣∣∣( 1

N

N∑
i=1

Xp
i

) 1
p

− 1

∣∣∣∣ ≥ t

)

≤ P

(∣∣∣∣ 1N
N∑
i=1

Xp
i − 1

∣∣∣∣ ≥ max{t, tp}
)
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≤ 2 exp

(
−c

′N
R2

min{max{t, tp}2,max{t, tp}}
)
.

Thus, since P(|Y | ≥ t) ≥ P(Y ≥ t) for any random variable Y ,
we obtain (31) from Fact III and conclude the proof.

Proof of Fact I: From the ψp norm definition, ‖X‖ψp
=

inf{t > 0 |E[e(|X|/t)p ] ≤ 2} = inf{t > 0 | t ≥ |μ|/(ln 2) 1
p } =

|μ|/(ln 2) 1
p , which establishes the result.

Proof of Fact II: Assume first that z < 1. Then, we have that
|zp − 1| = 1− zp > 1− z ≥ δ ≥ δp. Next, let z ≥ 1. Then, we
get |zp − 1| = zp − 1 ≥ z − 1 ≥ δ. In addition, when δp ≥ δ,
namely, when δ ≥ 1, we have that zp − (z − 1)p ≥ 1, and
hence, |zp − 1| = zp − 1 ≥ (z − 1)p ≥ δp.

Proof of Fact III: We consider two cases. Case (i): 0 ≤ δ ≤
1 ⇒ δ ≥ δp ⇒ u = max{δ, δp} = δ. Then min{u, u2}=
min{δ, δ2} = δ2. Case (ii): δ > 1 ⇒ δ ≤ δp ⇒
u=max{δ, δp} = δp. Then min{u, u2} = min{δp, δ2p} = δp.
Thus, we get that min{u, u2} = αp(δ) for all δ ≥ 0.

Proof of Proposition 4.6: For each i, the random variable
Xi := Ei/‖Ei‖p satisfies ‖Xi‖p = 1. Thus, we obtain from
Proposition A.1 that

P

((
1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

− 1 ≥ t

)
≤ 2 exp

(
−c

′N
R2

αp(t)

)
where, R = maxi∈[1:N ]

∥∥Ei/‖Ei‖p∥∥ψp
+ 1/ ln 2. From (13b),

(13c), and (16), we deduce R ≥ R, and thus

P

((
1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

− 1 ≥ t

)
≤ 2 exp

(
−c

′N
R2

αp(t)

)
.

Now, it follows from (13a) that:

Mv

(
1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

−Mv ≥
(

1

N

N∑
i=1

(Ei)p
) 1

p

−Mv.

Thus, we deduce that

P

((
1

N

N∑
i=1

(Ei)p
) 1

p

≥ Mv + s

)

≤2 exp

(
−c

′N
R2

αp

(
s

Mv

))
. (33)

To establish (17), it suffices by Lemma 4.4 to show that

P

(
2

p−1
p Mw+2

p−1
p

(
1

N

N∑
i=1

(Ei)p

) 1
p

≤ ε̂N (βns)

)
≥ 1− βns.

By the definition of ε̂N and exploiting that it is strictly decreasing
with βns, it suffices to prove

P

((
1

N

N∑
i=1

(Ei)p

) 1
p

<Mv+Mvα
−1
p

(
R2

c′N
ln

2

βns

))
≥ 1− βns.

Setting τ = α−1
p ( R2

c′N ln 2
βns

), we equivalently need to show

P

((
1

N

N∑
i=1

(Ei)p

) 1
p

≥ Mv+τMv

)
≤βns

which follows by (33) with s = τMv .

B. Proofs From Section IV-D

Here we give the proof of Theorem 4.13. We use the next
result, whose proof can be found in [10]. The result examines the
Wasserstein distance between the distributions of two random
variables when other random variables are added.

Lemma A.3 (Wasserstein distance under convolution):
Given p ≥ 1 and distributions P1, P2, Q ∈ Pp(Rd), it
holds that Wp(P1, P2) ≤Wp(P1 � Q, P2 � Q). Also, if it

holds that (
∫
Rd ‖x‖pQ(dx))

1
p ≤ q, then Wp(P1, P2 � Q) ≤

Wp(P1, P2) + q.
Proof of Theorem 4.13: The proof is carried out by induction

on 	 ∈ [	1 : 	2]. It suffices to establish that

Wp

(
Pξ�1 , P̃

N
ξ�1

)
≤ ψN,�1 =⇒

Wp

(
Pξ�′ , P̃

N
ξ�′

)
≤ ψN,�′ ∀	′ ∈ [	1 : 	]. (34)

Note that from Theorem 4.7, P(Pξ�1 ∈ BψN,�1
(P̃Nξ�1

)) ≥ 1− β.

From (34), this also implies that P(Pξ�′ ∈ BψN,�′ (P̃
N
ξ�′
) ∀	′ ∈

[	1 : 	]) ≥ 1− β, establishing validity of the result for 	 ≡ 	2.
For 	 ≡ 	1, the induction hypothesis (34) (IH) is a tautology.

Next, assuming that it is true for certain 	 ∈ [	1 : 	2 − 1], we
show that it also holds for 	+ 1. Hence it suffices to show
that if Wp(Pξ� , P̃

N
ξ�
) ≤ ψN,� then also Wp(Pξ�+1

, P̃Nξ�+1
) ≤

ψN,�+1 for both cases (i) and (ii). Consider first (i) and note
that then the ambiguity set center at 	+ 1 satisfies P̃Nξ�+1

=
1
N

∑N
i=1 δ˜ξi�+1

= 1
N

∑N
i=1 δA�

˜ξi�
= (A�)#P̃

N
ξ�

, where we have

exploited that ξ̃ik ≡ Φk,�1 ξ̂
i
�1

and the definition of Φk,�1 (for
k = 	− 1, 	) to derive the second equality. Using also the fact
that Pξ�+1

= ((A�)#Pξ�) � Pw�
, we get from the second result

of Lemma A.3 that

Wp(Pξ�+1
, P̃Nξ�+1

) =Wp

(
((A�)#Pξ�) � Pw�

, (A�)#P̃
N
ξ�

)
≤Wp

(
(A�)#Pξ� , (A�)#P̃

N
ξ�

)
+ qw

≤ ‖A�‖Wp

(
Pξ� , P̃

N
ξ�

)
+ qw ≤ ‖A�‖ψN,� + qw = ψN,�+1.

Here, we also used the fact that Wp(f#P, f#Q) ≤ LWp(P,Q)
for any globally Lipschitz function f : Rd → R

r with Lipschitz
constant L in the second to last inequality (see, e.g., [44, Propo-
sition A.16]).

Next, we prove IH for (ii). From Lemma A.3 and the definition
of the ambiguity set center and radius

Wp(Pξ�+1
, P̃Nξ�+1

)

=Wp

(
((A�)#Pξ�) � Pw�

,
(
(A�)#P̃

N
ξ�

)
� Pw�

)
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≤Wp

(
(A�)#Pξ� , (A�)#P̃

N
ξ�

)
≤ ‖A�‖Wp

(
Pξ� , P̃

N
ξ�

)
≤ ‖A�‖ψN,� = ‖A�‖‖A�−1‖ · · · ‖A�1‖ψN,�1 = ψN,�+1

completing the proof.

C. Proofs From Section V

Proof of Proposition 5.1: Note that we only need to verify
part (i) for the time-varying case. Since all Gk are uniformly
bounded, we directly obtain the bound G
. Let

Kk := −AkΦk,k−t−1O−1
k,k−t−1Φ


k,k−t−1H


k

(for k > t+ 1) as selected in [35, p. 574] (but with a minus
sign at the front to get the plus sign in Fk = Ak +KkHk) and
with the observability Gramian Ok,k−t−1 as defined in Assump-
tion 3.4(ii). Then, the upper bound K
 follows from the fact
that the system matrices are uniformly bounded combined with
the uniform observability property of Assumption 3.4, which
implies that all O−1

k,k−t−1 are also uniformly bounded. On the
other hand, the lower boundK
 follows from the assumption that
the system matrices are uniformly bounded, which imposes a
uniform lower bound on the smallest singular value ofO−1

k,k−t−1,
the uniform lower bound on the smallest singular value of Ak,
hence, also on that of Φk,k−t−1 and Φ

k,k−t−1, and the uniform
lower bound on ‖Hk‖ (all found in Assumption 3.4). Finally,
the bounds Ψ
s follow from the uniform bounds for all Ak and
Hk and the derived bound K
 for all Kk.

To show part (ii), assume first that Assumption 3.4(i) holds,
i.e., the system is time invariant and (A,H) is detectable. Then,
we can choose a nonzero gain matrixK so thatF = A+KH is
convergent (cf., [42, Theorem 31]), namely lims→∞ ‖F s‖ = 0.
Consequently, there is s0 ∈ N with ‖F s‖ ≤ 1

2 for all s ≥ s0
and the result follows by taking into account that Ψk+s,k = F s.
Under Assumption 3.4(ii), let

ẽk+1 = Fkẽk (35)

be the recursive noise-free version of the error equation (6).
Then, from [35, p. 577], there exists a quadratic time-varying
Lyapunov function V (k, ẽ) := ẽQkẽ with each Qk positive
definite, a1, a2 > 0, a3 ∈ (0, 1), and m ∈ N so that

a1 ≤ λmin(Qk) ≤ λmax(Qk) ≤ a2 (36a)

V (k +m, ẽk+m)− V (k, ẽk) ≤ −a3V (k, ẽk) (36b)

for any k and any solution of (35) with state ẽk at time k.
Thus, Ψ

k+m,mQk+mΨk+m,m � (1− a3)Qk, and hence, by
induction Ψ

k+νm,mQk+νmΨk+νm,m � (1− a3)
νQk, since

Ψ
k+(ν+1)m,mQk+(ν+1)mΨk+(ν+1)m,m

=Ψ
k+m,kΨ


k+(ν+1)m,k+mQk+(ν+1)mΨk+(ν+1)m,k+mΨk+m,k

� (1− a3)
νΨ

k+m,kQk+mΨk+m,k � (1− a3)
(ν+1)Qk.

Next, pick ẽ with ‖ẽ‖ = 1 and ‖Ψk+νm,mẽ‖ = ‖Ψk+νm,m‖.
Taking into account that ẽΨ

k+νm,kQk+νmΨk+νm,mẽ ≤
(1− a3)

ν ẽQkẽ, we get λmin(Qk+νm)‖Ψk+νm,kẽ‖2 ≤ (1−
a3)

νλmax(Qk). Using (36a)

‖Ψk+νm,k‖ ≤ (1− a3)
ν
2 (a2/a1)

1
2 . (37)

Now, select ν so that (1− a3)
ν′
2 (a2/a1)

1
2 ≤

1/(2maxs∈[1:m] Ψ


s) for all ν ′ ≥ ν. Let s0 := νm and pick

s ≥ s0. Then, s = s′0 +m′ for some s′0 = ν ′m, ν ′ ≥ ν, and
m′ ∈ [0 : m− 1] and we get from (37), part (i), and the selection
of ν that

‖Ψk+sm,k‖=‖Ψk+s′0+m′,k+s′0Ψk+s′0,k‖

≤‖Ψk+s′0+m′,k+s′0‖‖Ψk+ν ′m,k‖≤Ψ
m′
1

2maxs∈[1:m] Ψ
s
≤ 1

2

which establishes the result.
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