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Due to technological advances in the drone industry, security threats induced by unmanned aerial
vehicles (UAVs) are becoming more relevant. Fast and accurate localisation systems need to be
designed. One approach is localisation of UAVs by their sound using acoustic techniques. So
far, a systematic performance assessment of acoustic techniques for drone localisation, based on
real-world data, is lacking. This work presents a comparison of selected techniques using real-
world measurement data. The achieved performance serves as a baseline for future design of
novel localisation methods. Three techniques are chosen. The first technique estimates the time-
difference-of-arrival (TDOA) using generalised cross-correlation with phase transform weighting
(GCC-PHAT). The second technique is differential evolution, which approaches the localisation
task as a global optimisation problem. The third technique is conventional frequency domain
beamforming. Real-world data of 5 quadrotor UAVs were used acquired with an acoustic microphone-
array. The performance of the techniques is assessed using the absolute error between the estimated
source location and the true source location obtained from the onboard GPS tracker of the drones.
GCC-PHAT and differential evolution attempt to estimate the drone position in one or few steps.
They have a much shorter runtime than beamforming, which is an exhaustive grid search algorithm.
However, these techniques result in lower detection ranges and accuracy compared to beamforming.
Keywords: Sound source localisation; Drones; Beamforming; Time-difference-of-arrival; Differ-
ential evolution

1. Introduction

Drones, or unmanned aerial vehicles (UAVs), can intentionally or unintentionally pose a threat for
critical infrastructure, VIP security or during weaponised conflicts. This urges industry and researchers
to investigate fast and accurate UAV detection and mitigation systems. Traditionally, this is done by e.g.
radar or vision. Both are hampered by resolution issues. Drones can be small or can appear small at large
distances and they can come from any direction [1]. An emerging topic is therefore drone detection using
acoustics, as drone sound is very distinct from other sound sources like birds and it can be perceived omni-
directional. The use of acoustic imaging techniques for the purpose of drone localisation has caught the
attention of researchers over the past years. The suitability of these techniques has been validated many
times [2]. UAV localisation techniques that can be used for sound source localisation can roughly be
divided into three categories: time-difference-of-arrival (TDOA) techniques, beamforming techniques
and bio-inspired techniques.
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TDOA methods use correlation to identify the time difference between the arrival of one signal at
two different microphones within a microphone array. After estimation of this TDOA, an estimation
technique, such as least-squares, is used for estimating the location of the sound source. The second
approach, beamforming [3], is an exhaustive grid search approach. This technique applies a delay to
signals received at different microphones according to assumed sound source locations within a search
area. At the correct location, constructive interference results into a maximum output. However, the
microphone array configuration can result into misleading sidelobes. Lastly, bio-inspired techniques
contain a wide variety of methods, such as neural networks [4], support vector machines [5] or differential
evolution [6]. They can be used as a classification algorithm to detect or classify a drone, or as a regression
algorithm to directly estimate the location of the sound source.

Variations of the previously mentioned techniques have been tested for the purpose of UAV localisation
and reported in literature. Regarding the TDOA methods, the most commonly used technique is generalised
cross-correlation with phase transform weighting (GCC-PHAT) [5, 7]. Through the use of historical
estimations, localisation ranges of up to 100 m are achieved in these studies. The most commonly used
acoustic imaging technique is beamforming and many researchers have tested this method [8–13]. In
most of these studies, tests are performed on short distances of up to 10 m. The authors of [12] and [13]
have shown promising results by applying a tracking algorithm which leads to localisation ranges up to
200 m. When looking into different bio-inspired techniques, one that stands out are neural networks.
These have been trained and tested on raw or processed acoustic drone data several times and some
outperform classical acoustic imaging techniques [4, 14–16]. One study that stands out is [16], where
a deep neural network has been designed such that it works similar as beamforming. Detection ranges
of up to a few 100 m are achieved, although this is done with multiple microphone arrays spread over
an area. One downside of neural networks is that they are highly sensitive to the data they are trained
on and not all networks can generalise for sound signatures of drones not seen before. One possible
bio-inspired technique that does not have to be trained on data is called differential evolution. This is a
global optimisation approach which has been used successfully in the past for grid-less localisation of
sound sources [6, 17].

The aim of this research is to compare three techniques for acoustic localisation of UAVs. The goal is
to set a benchmark performance for localisation techniques to allow for the design of novel localisation
methods which can be compared to this benchmark. The techniques that are chosen are GCC-PHAT,
conventional beamforming and differential evolution, where the latter has not been used for the purpose
of drone localisation yet. Data to test these methods was obtained during a real-world experiment where
5 drones were flown.

The remainder of this contribution consists of the following. Details on the three considered methods
are presented in section 2. Details on the experimental set-up are provided in section 3. The results are
presented and discussed in section 4 and this paper is concluded in section 5.

2. Sound Source Localisation Methods

The three techniques that are selected for comparison are GCC-PHAT, beamforming and differential
evolution. They will be explained briefly. It should be noted that the location of the UAVs will be
estimated in Cartesian coordinates, i.e. [x, y, z]T .

2.1 Generalised Cross-Correlation with Phase Transform

The generalised cross-correlation with phase transform between two microphone signals xn and xm,
with Fourier transforms Xn(f) and Xm(f) for the nth and mth microphone respectively, is defined as [18]

ICSV29, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 9-13 July 2023
2



Rnm(τ) =

∫ ∞

−∞
Ψnm(f)Xn(f)X

∗
m(f)e

2πifτnmdf, (1)

where Ψnm(f) = 1
|Xn(f)X

∗
m(f)| is the phase transform weighing and ∗ denotes the complex conjugate

transpose. If it is assumed that there is one global optimum at the correct time lag, the TDOA can be
estimated as

τnm = argmax Rnm(τ). (2)

After estimating the time lag between each possible microphone pair, the location of the sound source
can be estimated using an iterative least-squares estimation. For this, a modelled time lag is used, which
is determined using the given microphone pair and the estimated location of the sound source.

2.2 Beamforming

A frequently applied technique for acoustic imaging is conventional frequency domain beamforming.
It is robust, fast and intuitive [19]. For the recorded signal of a microphone array with N microphones,
consider the Fourier-transformed pressure vector p(f):

p(f) =

p1(f)
...

pN(f)

 , (3)

with pn(f) the Fourier transform of the time domain recorded signal of the nth microphone. From this,
the cross-spectral matrix (CSM) can be obtained according to

C = ⟨pp∗⟩, (4)

where ∗ is the complex conjugate transpose and ⟨⟩ denotes the ensemble average. Furthermore, the
elements of steering vector gj(f) for grid point j and frequency f is defined as

gn,j(f) =
e−2πif

rn,j
c

rn,j
, (5)

where rn,j is the distance between the nth microphone and grid point j. c Is the speed of sound. The
beamform output can be computed according to

Bj(f) =
g∗
jCgj

||gj||4
. (6)

This is done for all points on a predefined grid parallel to the array plane. This grid is considered
at a predefined altitude z and can be calculated for a frequency range of interest. The grid in x- and
y-direction is now limited to go from -100 m to +100 m with steps of 0.4 m, as it is expected that the
localisation range will be lower than 100 m. For a selected time step and frequency range, the grid point
where Bj(f) is the highest is considered to be the estimated drone location.

2.3 Differential Evolution

The objective of differential evolution is to minimise an energy function. For this research, the
energy function is the Bartlett energy function [6], which is based upon the beamforming expression
in Equation 6. This optimisation problem can be formulated as
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gj(rj, f) = argmin -Bj(f), (7)

where the distance vector rj is calculated from all microphones to a candidate solution [xj yj zj]
T .

A population consisting of candidate solutions is created and are evolved over a predefined amount of
generations towards an optimal estimation. The reason for choosing the energy function to be similar to
beamforming is to investigate if this technique can achieve similar performance in a grid-free approach.

3. Experimental Setup

In October 2022, flight tests were conducted at the Dutch military base Luitenant-generaal Bestkazerne.
This former air base provides a large, flat and open grassy area next to a runway. A map of this location
is included in Figure 1, including the used reference frame. The y-axis is defined parallel to the runway,
whereas the x-axis is defined orthogonal to and pointing away from the runway. During the measurement
campaign, an acoustic array with 64 (PUI Audio 665-POM-2735P-R) microphones distributed in an
Underbrink spiral configuration [20] was used. This array has been designed and tested by the Delft
University of Technology [21]. The configuration has been chosen such that it performs well for a broad
range of frequencies considering both the maximum side lobe level and the array resolution [22]. The
dimensions of the array are 4 × 4 m and the microphone signals are sampled with a frequency of 50000
Hz. The microphones are plugged into a metal structure which is covered by foam to prevent ground
reflections. Furthermore, the microphones are covered by windshields to lower the noise due to winds.

Figure 1: Map of the Luitenant-generaal
Bestkazerne [23] with array and take-off
location

Figure 2: Acoustic array used during the
measurement campaign

Five different UAVs were flown, with a total of 26 flights. All drones flew at least 3 times, in a straight
line from take-off location as indicated in Figure 1, over the array and back, parallel to the runway. During
these flights, the altitude and flight speed were kept as constant as possible. Additionally, some UAVs
were flown more than 3 times, where during the remaining flights various flight paths were flown, in
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combination with a variety of speeds, altitudes and manoeuvres. An overview of the drones that were
flown, the number of flights per drone and their take-off weight is given in Table 1.

Table 1: Details on drone numbering, number of flights per drone and take-off weight

Nomenclature Drone Type Flights Weight
Drone 1 DJI Mavic 3 5 895 g
Drone 2 Autel EVO II 4 1191 g
Drone 3 DJI Mini 2 3 242 g
Drone 4 DJI Phantom 3 3 1216 g
Drone 5 DJI Phantom 4 4 1380 g

For each drone, the first flight was chosen for testing the different localisation techniques. During this
flight, the drone flew a straight line over the array and back, during which it flew over the array twice. For
analysis, a segment with one fly-over was chosen. The flight number and foam and windshield conditions
for the chosen flights are indicated in Table 2. It should be noted that due to the set-up of the experiment,
the location of the drone varied from a few hundreds of meters in y-direction, to only a few meters in
x-direction. For performance analysis, the estimation in y-direction will therefore be compared.

4. Results and Discussion

To perform a fair comparison between different techniques, but especially to compare among the
different drones, first drone characteristics will be discussed. Two characteristics that are relevant for the
performance of localisation techniques are the signal-to-noise ratio and the selected range of frequencies.
After this has been established for the different drones, the techniques can be assessed and compared.

4.1 Drone Characteristics

For each drone, the signal-to-noise ratio will be determined according to [5]

RSNR = 10 log10
|Xdrone(f)|2

|Xnoise(f)|2
, (8)

where Xdrone(f) is the Fourier transformed signal of one fly-over of the drone. To obtain the Fourier
transformed signal of the background noise, Xnoise(f), several measurements were taken without drones
flying. The obtained ratios are summarised in Table 2 in the second column. It is clear that both drone 4
and 5 are loudest and it is therefore expected that for these flights the localisation ranges will be highest.

Table 2: Details on the SNR and frequency band used for analysis

Nomenclature SNR [dB] Frequencies [Hz]
Drone 1 2.393 250-2000
Drone 2 1.593 300-2000
Drone 3 0.187 250-2000
Drone 4 3.195 300-2000
Drone 5 3.043 250-2000

Another aspect that will influence this range is the frequency range that is selected for analysis. For all
drones, the range with most pronounced harmonics of the rotors is between 100 and 2000 Hz. However,
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due to wind noise at lower frequencies, the lower bound of this region of interest has been raised to 250
of 300 Hz for all drones, based upon visual inspection of the spectrograms. The chosen ranges can be
found in Table 2 in the last column.

4.2 Localisation Performance

To assess the localisation performance and compare results of different drones and techniques, the
same evaluation method as described in [12] is chosen. The authors propose to calculate the absolute
error of the estimated location and true location taken from the onboard GPS tracker and present these
errors in box plots for set distance ranges. For the current study, the distance range from 0 to 100 m is
subdivided into five 20-meter-wide distance bins. The error is determined as ϵ = |ytrue − yest|.

For conciseness, a summary of the median values for all flights and methods within the 0 to 20 m
bin is provided in Figure 3. From this figure, a clear ranking among the three methods is observed.
Beamforming localises the drones best, followed by differential evolution and GCC-PHAT. These results
are reasonable, as beamforming is an exhaustive grid search technique and therefore the most accurate.
On the other hand, differential evolution is a grid-free approach which requires some iterations before
getting to a good estimation, therefore being faster. In this study, it is less accurate as it also estimates the
z-position of the drone. GCC-PHAT requires noisy correlation results of the time-difference-of-arrival
to estimate the location using an iterative least-squares estimation, making it the least accurate method.
Another observation is that the localisation performance is worst for drone 3 and best for drone 4. This is
a logical result when the signal-to-noise ratios in Table 2 are compared. Drone 3 shows the lowest SNR
and drone 4 the highest. A last observation is that within this bin of 0 to 20 meter, beamforming and
differential evolution show median absolute errors of maximum 1.65 m and 1.87 m respectively. This is
a low error of only 10%, which means that the estimation can be regarded as accurate.

Figure 3: Medians for the range 0 - 20 m Figure 4: Beamforming estimation for drone 4

In Figure 4, the GPS track of drone 4 is plotted together with the estimation of the drone location by
beamforming. This drone is chosen, as it is the most accurate estimation based upon previous analysis.
The results for beamforming are included for the ranges in which the estimation is stable. In the y-
direction, the localisation performance is good. Opposed to this, in the x-direction a constant offset can
be observed. For other techniques and drones, similar offsets are noticed. This raises concerns regarding
the accuracy of the calculated GPS tracks. It is likely that this discrepancy is a result of offsets between
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Figure 5: Results for drone 3 Figure 6: Results for drone 4

the onboard GPS track of the drone and the measured GPS location and orientation of the array. It is still
fair to compare the different drones and methods, as the bias is systematic for all methods and drones.

Figure 5 and Figure 6 show the box plots of drone 3 and 4 respectively. These figures once more
confirm the superiority of beamforming compared to the other two localisation techniques. Above this,
the impact of the signal-to-noise ratio on the drone localisation using beamforming can be seen in these
figures. When comparing the localisation ranges, it can be concluded that for drone 3, which can be
described as the most silent drone, the localisation fails beyond 40 m. For drone 4, this only happens
beyond 60 m, which indicates an increase in localisation range of approximately 150%.

Even though localisation is possible for all drones and localisation ranges of close to 80 m can be
achieved, more emphasis can be put on tones emerging from drone rotors through data enhancement to
improve the localisation range. Next to this, estimating the position of the drone in Cartesian coordinates
is less accurate when drones are flying in the far-field. It is therefore useful to employ a spherical
coordinate system and estimate the azimuth and elevation angle. By doing so, the different methods
only need to estimate two variables.

5. Conclusion

In this study, GCC-PHAT, beamforming and differential evolution are tested and compared on five
drone flights. The most accurate technique is beamforming, with localisation ranges varying between
40 to close to 80 m, depending on the signal-to-noise ratio of the drone. These results are achieved
without enhancing any signals, which leaves room for improvement. Another way to improve this range is
estimating the azimuth and elevation angle instead of the Cartesian coordinates. This reduces the number
of variables that must be estimated and can therefore lead to faster and more accurate estimations.
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