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A B S T R A C T

Lax-integrable partial differential equations (PDEs) can by definition be described through
a compatibility condition between two linear operators. These operators are said to form a
Lax pair for the PDE, which itself is usually nonlinear. Lax pairs are a very useful tool, but
unfortunately finding them is a difficult problem in practice. In this paper, we propose a method
that determines the spectral operator of an AKNS-type Lax pair such that the corresponding PDE
fits given measurement data as well as possible. The spectral operator then enables practitioners
to solve or analyze the underlying PDE using the induced nonlinear Fourier transform. The
underlying PDE only has to be approximately Lax-integrable; the method will find the spectral
operator that explains the data best. Together with the dispersion relation, the spectral operator
of AKNS type completely determines an integrable PDE that approximates the true underlying
PDE. We identify the most suitable spectral operator by matching PDE-dependent quantities that
should be conserved during evolution. The method is automatic and only requires recordings
of solutions at two different values of the evolution variable, which do not have to be close.

. Introduction

Many nonlinear partial differential equations (PDEs) can be solved with the help of Lax pairs, which consist of a linear spectral
perator 𝐿 and a linear propagation operator 𝐴, and the inverse scattering method (ISM) [1,2]. Well-known examples include
he Korteweg–de Vries equation (KdV) [3], the modified Korteweg–de Vries equation (MKdV) [4] and the nonlinear Schrödinger
quation (NLSE) [5]. The ISM for the solution of such so-called Lax-integrable systems proceeds as follows. First, the initial condition
s used as a potential function for the linear spectral operator 𝐿. The spectrum of this operator together with the corresponding
generalized) eigenfunctions leads to an equivalent spectral representation of the initial condition. The evolution of this spectral
epresentation can then be performed in closed form with the help of the linear propagation operator 𝐴. Finally, a suitable spectral
heorem is used to recover the solution in the original domain from the evolved spectral representation. The spectral representation
an be interpreted as a nonlinear Fourier transform (NFT; a.k.a. forward scattering transform) that moves a signal from its original
omain to a PDE-specific spectral domain in which the propagation becomes trivial [2]. The spectral representation furthermore has
hysical interpretations. Most importantly, it is able to reveal hidden solitons, which are localized particle-like waveforms [6]. NFTs
ave therefore found practical applications in areas such as ocean wave data analysis (e.g. [7–12]) and fiber-optical communication
e.g. [13–22]). In these areas, many dynamics are known to be well-approximated by the most common Lax-integrable PDEs.

However, the situation is different in areas where the notion of Lax-integrability is not yet well-known. When a system is
uspected to be Lax-integrable, e.g. because it admits soliton solutions, the question arises if the system can be described by a
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Lax-integrable PDE, and if so, which PDE. In practice, it is often very difficult to determine which Lax-integrable PDE approximates
a given system best. From a practical point of view, it is often preferable to approach this question in a data-driven way as the
analytical derivation of Lax-integrable approximations requires very specific human expertise, time and sometimes also some luck.
Data-driven approaches instead try to identify the system directly from measurements of the system. Of course, they come with their
own challenges. For the identification of PDEs, one of the biggest practical problems is that the data can typically only be measured
for a few sparse values of the evolution variable, and thus the derivative in the direction of propagation cannot be determined. The
sparseness of measurement points occurs naturally e.g. in wave flume experiments [12,23], where wave gauges record time series
at a limited number of locations, or in optical fiber experiments [24,25], where time series can only be recorded at the ends of
the fiber link. In contrast, many popular generic PDE identification methods such as [26] assume that the data contains derivatives
w.r.t. the evolution variable, which is not possible with sparse measurement points. To the best of our knowledge, so far only a
single method for the data-driven identification of Lax pairs has been proposed in the literature [27]. However, also this methods
requires derivatives w.r.t. the evolution variable. The lack of a practical system identification method for Lax-integrable systems
hinders the application of the strong mathematical theory behind Lax-integrable systems in practice.

In this paper, we therefore propose a novel approach to identify a Lax pair from given measurement data that does not require
erivatives in the direction of propagation. Instead, we exploit that the spectral operator of any Lax pair produces infinitely many
onserved quantities that should not change during propagation. The parameters of the spectral operator are chosen such that the
ariation in the (ideally) conserved quantities in minimal. Our method is data-driven and identifies the PDE using only measurements
pace series (snapshots) of solutions, taken at different time points (assuming from here on, without loss of generality, that the time
is the evolution variable of the PDE, and the location 𝑥 the other variable).

In earlier work, we have already demonstrated for the NLSE [25,28] and the KdV equation [23] that parameters of specific
ntegrable PDEs can be identified based on conserved quantities. Furthermore, conserved quantities have also successfully been
pplied for other applications such as training neural networks for solving Lax-integrable PDEs [29]. However, so far conserved
uantities have not been exploited for the data-driven identification of Lax pairs.

In the literature, there already is a large variety of non-data-driven techniques that determine Lax pairs for a given Lax-integrable
DE (e.g., [26,30–38]). One might thus be tempted to first identify a PDE using conventional data-driven methods (e.g. [39,40]),
nd then find a Lax pair for it. However, this approach has several major problems. First of all, existing methods for finding Lax
airs assume that the given PDE is exactly Lax-integrable. However, in practice this will only be the case approximately. Even if
he true underlying PDE is exactly Lax-integrable, the model identified by a conventional method still will not have this property
ue to measurement noise. Second, existing techniques to find Lax pairs from a given Lax-integrable PDE are not guaranteed to
ucceed, to the best of our knowledge. Third, as mentioned above, conventional PDE identification methods require measurements
f the solution at closely spaced time points, which, as already pointed out earlier, is often unpractical.

In our approach, we will assume that the Lax-pair is of the AKNS-type, which is named after Ablowitz, Kaup, Newell and
egur [2]. The AKNS class captures a large class of ubiquitous Lax-integrable PDEs, such as, e.g., the (modified) Korteweg–de Vries
quation (MKdV/KdV), the (de)focussing nonlinear Schrödinger equation (dNLSE/fNLSE), and the sine/sinh-Gordon equation [2],
s well as transformations and higher-order variants of these equations. While the restriction to the AKNS class of course means a
oss of generality,1 we point out that on the other hand it allows us to design a more efficient method. Most importantly, we can
xploit that the conservation laws of AKNS Lax pairs all have the same structure. We envision that in the future, more specialized
lgorithms for other classes of Lax pairs will be developed. The user can then choose the right class either using physical insight, or
y simply checking which class provides the best fit. This would be similar to conventional nonlinear system identification, where
pecialized algorithms exist for various system classes such as Wiener–Hammerstein systems, finite Volterra series, or nonlinear
RMA models [42].

In our method, we focus on identifying the spectral 𝐿 operator of the AKNS-type Lax-pair, as the Lax propagation operator 𝐴
an be found by combining the spectral operator and the linearized dispersion relation [2, p. 253]. Given suitable measurement
ata, the dispersion relation can be found easily by comparing phase shifts in the linear Fourier domain. To identify the 𝐿 operator
hat fits the given data best, we will exploit the explicitly known conserved global quantities associated with AKNS-type Lax pairs.
ur strategy is to identify the 𝐿 operator, parameterized by two potential functions, for which the global quantities vary as little as
ossible over time.

Our method has the advantage that it is fully automatic and data driven. Its main advantage is thus that it only requires
easurements at two different points in time, which do not have to be close. (The use of more time points is possible.) We finally

emark that the proposed method may of course also be used for data in the form of time series that are measured at different
ocations if the roles of space and time are switched in the PDE so that the location is the evolution variable. This is a common
cenario in applications. See, e.g., [12,20,23].

This paper is organized as follows. Section 2 recapitulates the AKNS-type Lax pair and the associated conserved quantities.
ection 3 describes the method to identify the most suitable AKNS-type PDE from measurement data by comparing global quantities.
ection 4 demonstrates the method on various data sets. Finally, Section 5 concludes the paper.

1 The ‘‘integrability ex machina’’ (IeM) method in [27] employs neural networks to represent the Lax pair and therefore, at first sight, appears to cover a
uch larger class of systems than our approach. However, this is not the case. The neural network in the IeM method implements a conventional polynomial

pproach [27, p. 4]. The advantage of the neural network formulation is that advanced algorithms to find the optimal weights can be employed. In [41, p. 65],
t is clarified that the IeM method cannot use arbitrary neural networks (specifically, multi-layer perceptrons). The IeM method also requires physical intuition
2

o select dictionaries [27, p. 6].
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2. Theory: AKNS Lax pairs and conserved quantities

Let a nonlinear partial differential equations (PDE) be given by

𝑢𝑡(𝑥, 𝑡) = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥,…), (1)

where 𝑢 denotes the (possibly complex) signal amplitude, 𝑥 the position, 𝑡 the time (or more generally, the evolution variable), 𝐹
the nonlinear evolution function, and subscripts denote partial derivatives. A nonlinear PDE has a Lax pair (𝐿(𝑡), 𝐴(𝑡)), where 𝐿(𝑡)
nd 𝐴(𝑡) are linear operators that depend on 𝑢(𝑥, 𝑡), such that the following Lax equation is equivalent to the PDE [1, Eq. 1.4]:

𝐿𝑡 = 𝐴𝐿 − 𝐿𝐴. (2)

e will refer to 𝐿 as the spectral operator, and to 𝐴 as the propagation operator. If the Lax pair (𝐿,𝐴) fits the PDE of interest,
hen the spectrum of 𝐿(𝑡) is constant over time [1]. We say that the PDE is Lax-integrable if the Lax pair enables the solution of the
DE using the inverse scattering method [43]. A simple example of a PDE and a corresponding Lax pair is the advection equation
𝑡 = 𝑢𝑥, where the Lax pair consists of the multiplication operator 𝐿 = 𝑢 and the derivative operator 𝐴 = 𝜕𝑥. For any suitable 𝜙(𝑥, 𝑡),

we have

𝐿𝑡𝜙 = (𝐿𝜙)𝑡 − 𝐿𝜙𝑡 = (𝑢𝜙)𝑡 − 𝑢𝜙𝑡 = 𝑢𝑡𝜙 and 𝐴𝐿𝜙 − 𝐿𝐴𝜙 = 𝜕𝑥(𝑢𝜙) − 𝑢𝜕𝑥𝜙 = 𝑢𝑥𝜙

⇒ 𝐿𝑡 = 𝐴𝐿 − 𝐿𝐴 ⟺ 𝑢𝑡 = 𝑢𝑥.

Many Lax-integrable PDEs exist, and the form of the associated Lax pairs can widely vary. However, the AKNS-type Lax pairs
all possess the same structure, but still capture many ubiquitous PDEs. The AKNS-type Lax pairs are of the form [2]

𝐿 =
[

𝑖𝜕𝑥 −𝑖𝑞(𝑢)
𝑖𝑟(𝑞) −𝑖𝜕𝑥

]

, 𝐴 =
[

𝐴11(𝑢) 𝐴12(𝑢)
𝐴21(𝑢) −𝐴11(𝑢)

]

(3)

in which 𝑞(𝑢) and 𝑟(𝑞) = 𝑟 (𝑞(𝑢)) are potential functions depending on the 𝑥.
Not every choice of 𝑞(𝑢) and 𝑟(𝑞) is allowed, as the Lax equation in Eq. (2) imposes a compatibility condition (see [2, Eq. 2.2-2.7]).

Many of the known Lax-integrable system can be obtained using only a small number of 𝑟(𝑞) relations [2]:

𝑟 = −1 (KdV), 𝑟 = −𝑞∗ (focussing NLSE), 𝑟 = 𝑞∗ (defocussing NLSE),

𝑟 = −𝑞 (sine-Gordon, focusing MKdV), 𝑟 = 𝑞 (sinh-Gordon, defocusing MKdV). (4)

We will therefore consider only these relations for 𝑟(𝑞). Of course, more choices can be integrated into the method, although it
should be checked beforehand if those relations 𝑟(𝑞) can lead to a compatible Lax pair. For most equations, such as KdV, MKdV and
NLSE, 𝑞(𝑢) simply takes the form of 𝑞 = 𝑐𝑢 (i.e., a scaling of the signal amplitude, with 𝑐 the scaling coefficient). The sine-Gordon and
sinh-Gordon equations on the other hand require 𝑞 = 𝑐𝑢𝑥. Furthermore, we may also be dealing with the case that the measurement
process does not directly provide 𝑢, but a transformed version of it. For example, 𝑞(𝑢) = 𝑢3, 𝑟(𝑞) = −1 would still result in a feasible
spectral operator of the KdV-type, but the associated PDE would correspond to a transformed version of the KdV (the exact PDE
would depend on the linearized dispersion relation).

2.1. Conserved quantities of AKNS-type PDEs

AKNS-type PDEs possess an infinite number of conserved quantities, that are fully determined by 𝑞(𝑢) and 𝑟(𝑞). The conserved
quantities can be iteratively derived using a relation from AKNS [2, Eq. 7.33]. The first five conserved quantities are

𝐶1 = ∫𝐷
𝑞𝑟 d𝑥, 𝐶2 = ∫𝐷

𝑟𝑞𝑥 − 𝑟𝑥𝑞 d𝑥, (5a)

𝐶3 = ∫𝐷
𝑞2𝑟2 + 𝑞𝑥𝑟𝑥 d𝑥, 𝐶4 = ∫𝐷

−𝑟𝑥𝑥𝑞𝑥 + 𝑞𝑥𝑥𝑟𝑥 +
3
2

(

𝑟2(𝑞2)𝑥 − 𝑞2(𝑟2)𝑥
)

d𝑥, (5b)

𝐶5 = ∫𝐷
2𝑞3𝑟3 + 𝑞𝑥𝑥𝑟𝑥𝑥 +

(

𝑞2𝑥𝑟
2 + 𝑟2𝑥𝑞

2) + 8𝑞𝑞𝑥𝑟𝑟𝑥 d𝑥, (5c)

here 𝐷 denotes the spatial domain. Both periodic and vanishing boundary conditions are allowed.
The choices 𝑟 = −1 and 𝑟 = ±𝑞 lead to trivial conserved quantities 𝐶2 = 0 and 𝐶4 = 0, but the odd quantities are non-trivial for

all considered choices of 𝑟(𝑞). Therefore, we only consider the odd global quantities 𝐶1, 𝐶3 and 𝐶5 throughout the rest of this paper.
These three conserved quantities turn out to be sufficient in our numerical experiments. Higher ones could of course be integrated,
and with large libraries for the expansion of 𝑞 (see Section 3), this may even become necessary for a successful identification.
Unfortunately, determining the higher conserved quantities analytically is a difficult task, even with the help of symbolic computer
algebra systems. Higher order conserved quantities furthermore contain derivatives of high orders, which are very sensitive to
measurement noise. We therefore believe that the exploitation of higher order conserved quantities for large libraries will require
a numerical method for their computation from noisy data.

We finally note that it is necessary to consider 𝐶5, as only 𝐶1 and 𝐶3 are not sufficient to distinguish most PDEs. Many PDEs
onserve both ∫𝐷 𝑢 d𝑥 and ∫𝐷 𝑢2 d𝑥, thus if 𝑞 = 𝑢 then 𝑟 ∈ {1,±𝑢} all lead to a conserved 𝐶1. Furthermore, if only 𝐶1 is used, and we
ound some relation 𝑞 = 𝑓 (𝑢) such that 𝐶1(𝑡) is constant, then any scaling 𝑞 = 𝑐𝑓 (𝑢) will also lead to a constant 𝐶1(𝑡). To extract the

scaling constant, at least 𝐶3 is required for 𝑟 ∈ {±𝑞,±𝑞∗}, as 𝐶3 then has two terms with different scaling in 𝑞. For 𝑟 = −1, 𝐶3 still
∫ 2
3

nly has a single term ( 𝐷 𝑞 d𝑥), and therefore 𝐶5 is required.
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3. Method: Identifying the spectral operator using conserved quantities

In this section, we present our novel method to identify the spectral operator 𝐿 of the AKNS Lax pair that fits a given data set
best. The methods checks which 𝑞(𝑢) results in the least variation in the conserved quantities, for each of the choices of 𝑟(𝑢) in Eq. (4).

he combination (𝑟(𝑞), 𝑞(𝑢)) that results in the least variation of the conserved quantities is then considered the best candidate for
he spectral operator explaining the data.

.1. Expanding q(u) in functions from a library

Our approach starts with choosing a library of 𝐷 operators of 𝑢, i.e., 𝑔1(𝑢), 𝑔2(𝑢),… , 𝑔𝐷(𝑢). We will allow 𝑞(𝑢) to be any linear
combination of the operators in a library 𝐺, which we chose for this paper as the lowest-order polynomials and derivatives of 𝑢:

𝑞(𝑢) =
𝐷
∑

𝑑=1
𝑐𝑑𝑔𝑑 (𝑢), with 𝐷 = 5,

𝐺 =
{

𝑔1 = 𝑢, 𝑔2 = 𝑢𝑥, 𝑔3 = 𝑢𝑥𝑥, 𝑔4 = 𝑢2, 𝑔5 = 𝑢𝑢𝑥
}

. (6)

Here, 𝑐𝑑 are the coefficients which are optimized during the identification. We chose the shown library to include at least 𝑢 and
𝑢𝑥, such that standard versions of the KdV, MKdV and NLSE (𝑞 = 𝑢) and sine-Gordon and sinh-Gordon (𝑞 = 𝑢𝑥) are in the current
library space. If more information of the PDE is available, the library can be expanded or shrunk accordingly. For example, if the
underlying system is known to be either KdV or MKdV, the library can be shrunk to 𝐺 = {𝑔1 = 𝑢}, and the problem then simplifies
to a simple identification of the scaling constant 𝑐1, and a choice between 𝑟 = −1, 𝑟 = −𝑞 and 𝑟 = +𝑞.

3.2. Error function based on conserved quantities

To identify the most suitable potential function 𝑟(𝑞) as in (4) and 𝑞 as in (6) for the 𝐿 operator in (3), we will minimize an error
based on the conserved quantities (5). We assume that our available data set consists of 𝑁 independent trajectories

𝑢(𝑛) =
(

𝑢(𝑛)(⋅, 𝑡1), 𝑢(𝑛)(⋅, 𝑡2),… , 𝑢(𝑛)(⋅, 𝑡𝑀 )
)

, 𝑛 = 1,… , 𝑁,

where the first ‘‘snapshot’’ 𝑢(𝑛)(𝑥, 𝑡1) of the 𝑛th trajectory is assumed to be a measurement of the initial condition of the PDE, and the
later snapshots at one or multiple later times 𝑡2,… , 𝑡𝑀 are measurements of the correspondingly evolved initial conditions. Given a
single trajectory 𝑢(𝑛), each choice of (𝑞(𝑢), 𝑟(𝑞)) results in three time-dependent values 𝐶1(𝑡), 𝐶3(𝑡) and 𝐶5(𝑡) for the conserved quantities
in (5). If the relations (𝑞(𝑢), 𝑟(𝑞)) are chosen correctly and the data set was noiseless and obtained from an exactly Lax-integrable
system, the conserved quantities will indeed be conserved, i.e., constant. We thus create an error that penalizes fluctuations in the
conserved quantities over time.

We formally define the error as the standard deviation in time in the conserved quantities 𝐶1, 𝐶3 and 𝐶5, relative to the average
absolute conserved quantities:

𝐸(𝑐, 𝑟; 𝑢) ∶=
∑

𝑘∈{1,3,5}

( 𝑁
∑

𝑛=1

𝜎[𝐶𝑘(𝑡; 𝑐, 𝑟, 𝑢(𝑛))]
𝜇
[

|

|

𝐶𝑘(𝑡; 𝑐, 𝑟, 𝑢(𝑛))||
]

)

, with

𝜇[𝐶𝑘(𝑡)] =
1
𝑀

𝑀
∑

𝑚=1
𝐶𝑘(𝑡𝑚), and 𝜎[𝐶𝑘(𝑡)] =

√

√

√

√
1
𝑀

𝑀
∑

𝑚=1

(

𝐶𝑘(𝑡𝑚) − 𝜇[𝐶𝑘(𝑡)]
)2, (7)

where 𝐶𝑘(𝑡; 𝑐, 𝑟, 𝑢(𝑛)) denotes the corresponding conserved quantity in Eq. (5) computed at time 𝑡, which furthermore depends on the
choices for the coefficient vector 𝑐, 𝑟, and the currently considered trajectory through Eqs. (4)–(6). The algorithm thus identifies 𝑟
and 𝑞 =

∑

𝑑 𝑐𝑑𝑔𝑑 by minimizing over the error in Eq. (7):

(𝑟(ID), 𝑐(ID)) = argmin
𝑟∈{−1,±𝑞,±𝑞∗}

argmin
𝑐∈

𝑤(𝑐)𝐸(𝑐, 𝑟; 𝑢),  ⊆ R𝑑 , (8)

with 𝑤(𝑐) denoting the weight of coefficient 𝑐. For each choice of 𝑟, the error is minimized over 𝑐 using a local minimization method.
We used the fminsearch method from Matlab (a simplex search method), starting at multiple initial starting positions. The search
space  for the coefficient vectors can in principle be chosen as the whole R𝑑 , but in our numerical examples we made a different
choice. Similarly to conventional identification methods for PDEs (e.g. [40]), we prefer Lax pairs that are ‘‘simple’’ and therefore
prioritize sparse coefficient vectors 𝑐. This will also prevent over-fitting, and can help to reduce the computation time. To find
a sparse solution 𝑐 we do not search the full space spanned by the library 𝐺 at once, but rather search only its low-dimensional
4

sub-spaces one-by-one as explained in the next section.
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3.3. Sparse solutions and choice of the starting points

For large libraries 𝐺, it can be very hard to find a globally optimal 𝑞(𝑢) in the corresponding function space. However, for
many of the well-known AKNS-type PDEs, the corresponding 𝑞(𝑢) =

∑

𝑑 𝑐𝑑𝑓𝑑 (𝑢) has only a few nonzero 𝑐𝑑 . We exploit this by
only searching the low-dimensional sub-spaces of functions in 𝐺 that have at most 𝐷(sub) non-zero coefficients. In our numerical
xamples, we investigate all 1D, 2D and 3D sub-spaces. While the 1D and 2D sub-spaces are also contained within the 3D sub-space,
t often occurs that a one- or two-dimensional solution performs nearly as good as a three dimensional solution, and should thus be
referred. Furthermore, the optimization process in lower-dimensional sub-spaces is more likely to find the global optimum in that
ub-space. We thus also take the lower sub-spaces into account.

Given 𝐷 basis functions, there are
(𝐷(sub)

𝐷

)

sub-spaces of dimension 𝐷(sub). In each of these sub-spaces, we minimize the error
n Eq. (7), and keep the optimal 1D-, 2D- and 3D-solutions. Finally, we penalize higher-dimensional solutions by multiplying each
rror with a heuristically chosen factor. The search space and weight for (8) are thus

 = {𝑐 ∈ R𝐷 ∶ #𝑐 ≤ 𝐷(sub), 𝐷(sub) ≤ 3}, 𝑤(𝑐) = 𝑝#𝑐 , (9)

ith #𝑐 the number of non-zero coefficients in 𝑐. We found that 𝑝 = 1.2 resulted in a good balance for finding a suitable but sparse
oefficient vector.

We assume that the data set evokes both the linear and the nonlinear terms of the PDE, at comparable levels, so that all terms
an be identified. If this is not the case, a richer data set must be considered, as many PDEs can otherwise not be distinguished.
o define initial starting points, we determine a central estimate vector 𝑐0, for which the terms 𝑐0𝑑𝑔𝑑 (𝑢) are all of the same order of
agnitude, such that each 𝑔𝑑 is relevant. We start with the first coefficient 𝑐01 , as 𝑐01𝑢 is often part of the solution for 𝑞. We cannot
se the conserved quantity 𝐶1 for this purpose, as it contains only a single term; 𝐶3 has two different terms, so we can find a 𝑐01
uch that ∫𝐷 𝑞2𝑟2 d𝑥 and ∫𝐷 𝑞𝑥𝑟𝑥 d𝑥 are of similar order. Only for 𝑟 = −1 we have that 𝑟𝑥 = 0, so in this case we consider 𝐶5 instead.
his leads to the following initial 𝑟-dependent guesses for 𝑐01 :

𝑟 = −1, 𝑞 = 𝑐1𝑢, 𝐶5 = ∫𝐷
2𝑐31𝑢

3 + 𝑐21𝑢
2
𝑥 d𝑥 ⇒ 𝑐01 ≈ | ∫𝐷 𝑢2𝑥(𝑥,𝑡) d𝑥|

| ∫𝐷 𝑢3(𝑥,𝑡) d𝑥|
(10a)

𝑟 = ∓𝑞, 𝑞 = 𝑐1𝑢, 𝐶3 = ∫𝐷
𝑐41𝑢

4 + 𝑐21𝑢
2
𝑥 d𝑥 ⇒ 𝑐01 ≈

√

| ∫𝐷 𝑢2𝑥(𝑥,𝑡) d𝑥|

| ∫𝐷 𝑢4(𝑥,𝑡) d𝑥|
(10b)

𝑟 = ∓𝑞∗, 𝑞 = 𝑐1𝑢, 𝐶3 = ∫𝐷
𝑐41 |𝑢|

4 + 𝑐21 |𝑢𝑥|
2 d𝑥 ⇒ 𝑐01 ≈

√

| ∫𝐷 |𝑢𝑥|2(𝑥,𝑡) d𝑥|

| ∫𝐷 |𝑢|4(𝑥,𝑡) d𝑥|
, (10c)

where (⋅) denotes the mean over all 𝑡 and trajectories.
Next, we wish to ensure that all functions 𝑐0𝑑𝑔𝑑 are of similar size for our initial guess 𝑐0, as this will allow a change in every

erm to be significant. We thus choose

𝑐0𝑑 =
𝑐1|𝑔1|

|𝑔𝑑 |
. (11)

This defines our central initial guess.
Next, for each of the sub-spaces, we choose the first initial starting point as the projection of 𝑐0 onto the corresponding subspace

(i.e., we set 𝑐0𝑑 = 0 if 𝑔𝑑 is not in the sub-space). Next, we create a hypercube around the projected 𝑐0𝑑 by multiplying or dividing
each term by a scale factor 𝑠 > 1. For example, for the subspace containing the first two basis functions, the five resulting initial
tarting points are the projected estimate (𝑐01 , 𝑐

0
2 , 0, 0, 0) and the four vertices (𝑠±1𝑐01 , 𝑠

±1𝑐02 , 0, 0, 0). Throughout this paper, we chose
= 10. This distribution of initial starting points sufficed for the examples considered in this paper. More initial starting points can
f course be added to increase the chance of finding the global optimum when necessary, at the expense of longer computation
imes. We also note that all coefficients of our initial starting points were positive, as this sufficed for the considered examples.
owever, starting points with negative coefficients can of also be taken into account.

. Results

In this section, we evaluate the proposed method in numerical examples for several PDEs. We first demonstrate it for noisy data
btained from the MKdV. Then, a lossy NLSE, which is only approximately integrable, is considered with noise. Next, we consider
he sine-Gordon equation with noise, which requires a non-standard choice for the first potential function, namely 𝑞 = 𝑢𝑥. Finally,
e consider a transformed KdV, where 𝑞(𝑢) = 𝑢+𝑢2 is a linear combination of two of the library functions. In all examples, the library
f functions for 𝑞(𝑢) from Eq. (6) is used, in combination with the described low-dimensional sub-space search and the described
5

nitial starting points for 𝑐 from Section 3.3.
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4.1. Case 1: Noisy data obtained from the exactly integrable MKdV

In this subsection, we consider noisy data obtained from the focusing MKdV 𝑢𝑡 = −𝑢𝑥𝑥𝑥 − 6𝑢2𝑢𝑥, consisting of multiple periodic
signals measured at two different times. This example illustrates that the algorithm can distinguish between the 𝑟(𝑞) relations for
the focusing MKdV (𝑟 = −𝑞), the defocusing MKdV (𝑟 = +𝑞) and the (standard) KdV (𝑟 = −1), and also find the correct relation
𝑞(𝑢) = 𝑢 from the full library function space.

The considered data set consist of 𝑁 = 21 trajectories, where each trajectory consists of space series at only two time points,
which are too far apart to determine 𝑢𝑡. The measurement locations and times were respectively 𝑥 = −4,−3.98,−3.96,… , 4 (periodic
boundary conditions), and 𝑡 ∈ {0, 0.5} . The input signals (𝑡 = 0) were generated as zero-mean Gaussian distributed random numbers
with variance one, ideally low-pass filtered to maximum wavenumber 1 cycle/spatial unit. Every input signal was scaled such that
the mean squared amplitude of each trajectory varied between 0 and 2.5, to ensure that the dataset was rich enough. Next, all
input signals were propagated for 0.1 temporal units. Finally, low-pass filtered white Gaussian noise (maximum wavenumber 1
cycle/spatial unit) with 1% of each considered signal’s root-mean-squared (RMS) amplitude was added, i.e, the signal to noise ratio
was SNR =

∫𝐷 |𝑢(signal)|2 d𝑥

∫𝐷 |𝑢(noise)|2 d𝑥
= 104. We note here that the amount of noise was chosen such that the correct PDE could still be identified.

his is often around 1% due to the use of higher derivatives and polynomials, which is typical for PDE identification methods (see
.g., [40]).

The results of the algorithm are shown in Fig. 1. One of the 21 input–output pairs is shown in the top left. For each choice of
(𝑞), we optimized 𝑐. The corresponding global quantities are shown at the bottom. The choice 𝑟(𝑞) = −𝑞 (indeed corresponding to
ocusing MKdV) shows the least variation between input and output, and thus the system is identified as 𝑟(𝑞) = −𝑞. Note that even
or the correct choice of 𝑟(𝑞) = −𝑞, the global quantities are not entirely conserved due to the noise.

From Fig. 1(b) we find that the identified 𝑐 corresponded to the correct 𝑐 (up to a small error due to noise), which was identified
from the 1D sub-space spanned by {𝑢}. A near-correct 𝑐 was also identified as (1.06, 0, 0, 6 ⋅ 10−3, 0) in the 2𝐷 sub-spaces spanned
by {𝑢, 𝑢𝑥𝑥}, but the corresponding error was only marginally smaller. Therefore, the 1D solution was accepted. The correct solution
was not found at all in any of the 3D sub-spaces from the specified starting points, and the resulting error was therefore around 20
times larger. While it would in principle be possible to address this by just using more starting points, this example also shows that
searching all lower-dimensional sub-spaces can be more effective if the reference solution can be assumed to be low-dimensional.

4.2. Case 2: Noisy data from a lossy, and thus only approximately integrable, NLSE

In this section, we consider complex-valued noisy data set obtained from the lossy focusing NLSE (fNLSE) 𝑞𝑡 = 𝑖𝑞𝑥𝑥+2𝑖𝑞|𝑞|
2−0.5𝛼𝑞

with 𝛼 = 4. The data is instantaneously amplified just before each measurement point to compensate the loss, and is therefore energy
conserving (up to noise) between measuring points. This type of system is widely used – with reversed roles for time and space –
in fiber-optical communication systems with lumped amplification [44,45]. The path-average approximation of the lossy fNLSE
with amplification is obtained by averaging the decaying energy during over 𝑡, and then considering a lossless NLSE with rescaled
amplitude 𝑞 [45, Ch. 9]:

avg = ∫𝐷
[𝑞(𝑥, 𝑡 = 0)]2 d𝑥∫

𝑇

0
𝑒−𝛼𝑡 d𝑡 = ∫𝐷

[𝑞(𝑥, 𝑡 = 0)]2 d𝑥1 − 𝑒−𝛼𝑇

𝛼𝑇

⇒ 𝑞(𝑥, 𝑡) =
√

1−𝑒−𝛼𝑇
𝛼𝑇 𝑞(𝑥, 𝑡 = 0), (12)

with avg the signal energy averaged over 𝑡, 𝑞(𝑥, 𝑡) the path-average amplitude, and 𝑇 the duration between two amplifications (and
hus measurement times). The measurement time points were at 𝑡 ∈ {0, 13 ,

2
3 , 1} , so with 𝑇 = 1

3 and 𝛼 = 4, we expect an amplitude

ormalization constant of 𝑐1 =
√

1−𝑒−𝛼𝑇
𝛼𝑇 = 0.74, and thus the relation 𝑢 = 𝑐1𝑞, and 𝑟 = −𝑞∗. Note that while the path-average

approximation (12) is Lax-integrable, the true underlying lossy NLSE with amplification is not. This example thus demonstrates that
the method is able to identify an integrable approximation to a non-integrable system from data.

We generated the input signals under periodic boundary conditions from complex, circularly symmetric, zero-mean Gaussian
distributed random samples, and ideally low-pass filtered these to maximum wave number 0.5 cycles/spatial unit. The measurement
points were 𝑥 = −4,−3.95,−3.9,… , 4. Next, we propagated each signal numerically, boosting the signal just before every
measurement. Finally, low-pass filtered radially symmetric white Gaussian noise (maximum wavenumber 0.5 cycles/spatial unit)
with root mean squared amplitude equal to 1% of the signal amplitude was added to the input and output signals (SNR = 104). We
generated 𝑁 = 21 input signals in total, with mean squared amplitudes varying between 0.2 and 0.6, to ensure that the data was
rich enough. The initial starting points were chosen as described in Section 3.3.

The results of the algorithm are shown in Fig. 2. From Fig. 2(c) we note that only the focusing and defocusing NLSE approximately
conserve the first global quantity. We then observe that the fNLSE (𝑟 = −𝑞∗) and dNLSE (𝑟 = +𝑞∗) can be distinguished by the fact
that 𝐶3 and 𝐶5 are not conserved very well for 𝑟 = +𝑞∗, whereas 𝑟 = −𝑞∗ conserves these much better. From Fig. 2(b), we observe
that the guess based on Eq. (10) is indeed reasonably close to the reference value for the scaling constant 𝑐1, despite the path-average
approximation and the noise. However, we found that the identified 𝑐1 was structurally lower than the reference value by 3%, even
when the data was noiseless. This may indicate that the global quantities become slightly biased with respect to the path-averaged
6

approximation.
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4

Fig. 1. Focusing MKdV generated dataset and the results of the identification algorithm. (a) One of the trajectories at first and last measuring time. (b) The
initial, identified, and correct coefficients when assuming the relation 𝑟 = −𝑞, i.e., the correct relation for the focusing MKdV. (c) The conserved quantities at
the identified coefficients for each of the three considered relations 𝑟(𝑞). The choice 𝑟(𝑞) = −𝑞 shows the least variation and is therefore accepted.

.3. Case 3: Noisy data from the integrable sine-Gordon data (non-trivial q(u))

In this subsection, we consider data obtained from the sine-Gordon equation 𝑢𝑡𝑥 = sin(𝑢) in light-cone coordinates. This equation
has correct choice 𝑞 = 0.5𝑢𝑥, which is different from the more common relation 𝑞 = 𝑐1𝑢 used for the KdV and the NLSE. The data set
was generated by simulating a kink-antikink collision of the sine-Gordon equation in physical coordinates (𝛼, 𝛽), i.e. 𝑢𝛽𝛽 = 𝑢𝛼𝛼−sin(𝑢),
and then transforming the data through 𝑡 = 𝛼+𝛽

2 , 𝑥 = 𝛼−𝛽
2 . The initial data was taken as a linear summation of a kink- and an antikink

solution [46] that were sufficiently far apart to closely approximate an exact double soliton:

𝑢(𝛼, 0) = 4atan
(

𝑒𝛾1(𝛼−𝛼1)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
kink

+−4atan
(

𝑒𝛾2(𝛼−𝛼2)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
anti−kink

, (13a)

𝑢𝛽 (𝛼, 0) = −2𝛾1𝑣1sech
(

−𝛾1(𝛼 − 𝛼1)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
kink

+−2𝛾2𝑣2sech
(

−𝛾2(𝛼 − 𝛼2)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
anti−kink

, (13b)

with
(

𝑣1 =0.2, 𝛾1 =
√

1
1−𝑣21

, 𝛼1 = −2
)

and
(

𝑣2 = −0.1, 𝛾2 =
√

1
1−𝑣22

, 𝛼2 = 3
)

, (13c)

where 𝛼1 (resp. 𝛼2) is the initial positions of the (anti-)kink, and 𝑣1 (resp. 𝑣2) the velocity. The initial signal was then numerically
propagated until after the collision, Measurements in physical coordinates were taken in the region 𝛼 = −20,−19.96,… , 20, and
7
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Fig. 2. Focusing NLSE generated dataset, 𝑡 ∈ {0, 0.33, 0.67, 1}, 𝑁 = 21, 𝑥 = −4,−3.95,−3.9,… , 4, signal bandwidth = 1 Hz. (a) One of the 21 signals from the
ataset, shown at 𝑡 = 0 and 𝑡 = 1. (b) The initial, identified, and correct coefficients when assuming the relation 𝑟 = 𝑞∗, i.e., the correct relation for the fNLSE.
c) The conserved quantities at the identified coefficients for each of the five considered relation 𝑞(𝑟). The choice 𝑟(𝑞) = −𝑞∗ shows the least variation and is
herefore accepted.

= 0, 0.04,…20, which were transformed to light-cone coordinates. The resulting light-cone domain becomes diamond-shaped,
nd we considered only a square domain from it, resulting in the final measurement locations 𝑥 = −16,−15.92,−15.84,… , 16,
= −3,−2.8,−2.6,… , 0. Only a single (𝑁 = 1) trajectory was used, which measured the developing wave nearly continuously,

nstead of at only a few moments in time. This example thus illustrates that it is also possible to use continuous fields. Finally,
e measured the smallest bandwidth containing 99% of the power of the initial condition 𝑢(𝑥, 𝑡 = −3), and added white Gaussian
oise, ideally low-pass filtered to this bandwidth, to all space-series measurements leading to SNR = 104. The full signal is shown
n Fig. 3(a).

The results are shown in Fig. 3. From Fig. 3(c) we observe that the conserved quantities are best conserved by the choice 𝑟(𝑞) = −𝑞.
he correct choice 𝑞(𝑢) = 0.5𝑢𝑥 was indeed identified up to noise as shown in Fig. 3(b).

.4. Case 4: Noiseless and noisy transformed data from the integrable KdV (more complicated q(u))

In this subsection, we again consider only two measurement time points, but this time for a transformed KdV. The data was
enerated by initializing a random, Gaussian distributed random signal with periodic boundary conditions, and ideally low-pass
iltering it a maximum wave number of 1 cycles/spatial unit, with 𝑥 = −4,−3.95,−3.9,… , 4. The generated input signal was

propagated according to the KdV 𝑣 = −𝑣 − 6𝑣𝑣 for 𝑇 = 1 time unit. Finally, all signals were mapped to the measurement
8
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Fig. 3. Noisy Sine–Gordon data. (a) The full dataset consisting of a kink-antikink soliton in light-cone coordinates, shown between 𝑡 = −3 and 𝑡 = 0. (b) The
initial, identified, and correct coefficients when assuming the relation 𝑟 = 𝑞∗, i.e., the correct relation for the fNLSE. (c) The conserved quantities at the identified
coefficients for each of the considered relations 𝑞(𝑟).

variable 𝑢, given by 𝑢 = − 1
2 +

√

𝑣 + 1
4 ∶ [− 1

4 ,+∞) → [− 1
2 ,+∞), such that the correct mapping back is 𝑣 = 𝑞(𝑢) = 𝑢 + 𝑢2. We carefully

respected the domain for 𝑣 to ensure that the mapping is a bijection on the given domains. We generated 𝑁 = 41 input signals in
total, with power 𝑢2 varying between 1 and 20 after the transformation, to ensure that the data was rich enough. Since we found
that the method fails for the SNR used in the previous examples, we first consider the case of no noise. We then investigate other
SNRs and discuss a potential explanation.

The results for the noiseless case are shown in Fig. 5. We observe from the conserved quantities in Fig. 5(c) that the conserved
quantities do not vary much for all three choices of 𝑟(𝑞), but only the KdV conserved them perfectly (due to the lack of noise in the
signal). From Fig. 5(b) we observe that a nearly perfect solution was identified: 𝑞ID(𝑢) = 1.0000𝑢−0.0009𝑢𝑥 +0.9999𝑢2. Although the
term 𝑢𝑥 was negligible, it decreased the error by 30% with respect to the reference solution 𝑞ref = 𝑢 + 𝑢2, and was thus accepted
over the 2D solution.

Upon redoing the experiment with noise, we found that a near-correct solution was still identified at SNR = 107. However, when
increasing the noise to the level of previous examples, SNR = 104, we found that the identified solution 𝑐ID = (9.62, 0,−1.29, 0, 0) was
completely different from the reference solution (1, 0, 0, 1, 0), although the conserved quantities were still varying very little. Upon
inspection, we found that the error at this 𝑐 was about twice as low as at the reference solution.

We have the hypothesis that the significantly lower error in the identified solution than in the reference solution is due to the
different noise amplification properties of the library functions. For example, consider the influence of noise in the library functions
𝑔1(𝑢) = 𝑢 and 𝑔3(𝑢) = 𝑢2. Let 𝑢 = 𝑢0 + 𝜀 denote the noiseless signal plus noise 𝜀, with |𝜀| ≪ |𝑢|. The relative noise in the library
function 𝑢 = 𝑢 + 𝜀 is then given by 𝑢−𝑢0 = 𝜀 . However, in the quadratic library function 𝑢2 = (𝑢 + 𝜀)2, the relative noise is given
9
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Fig. 4. The error for the reference solution 𝑞 = 𝑢 + 𝑢2 and for 𝑞 = 𝑐1𝑢 at optimal 𝑐1, for various levels of the SNR. At high SNR, the reference solution is
near-perfect, while the error for 𝑞 = 𝑐1𝑢 consists only of a model mismatch error. However, at lower SNR, the error in the reference solution grows approximately
twice as fast as for 𝑞 = 𝑐1𝑢.

by
𝑢2−𝑢20
𝑢20

=
(◁𝑢0

2+2𝑢0𝜀+��
∼0

𝜀2)−◁◁𝑢
2
0

𝑢20
≈ 2 𝜀

𝑢0
. We thus observe that the relative noise in library function 𝑔3(𝑢) = 𝑢2 is twice as large as in library

unction 𝑔1(𝑢) = 𝑢. We thus expect the error to consist of a contribution due to the model mismatch, and a part due to the noise:
= 𝐸mismatch + 𝐸noise. For the reference solution, there is no contribution due to model mismatch, but the error due to noise will

e approximately twice as large than for incorrect solutions of the form 𝑞 = 𝑐1𝑢. If the mismatch is small, a wrong 𝑞 might thus be
identified even for quite high SNRs. To test this hypothesis, we compared the errors at the reference solution 𝑞 = 𝑢+𝑢2 and at 𝑢 = 𝑐1𝑢
(such that 𝑐1 minimized the error) for various noise levels. As is shown in Fig. 4, it indeed turns out that the error contribution due
to noise is approximately twice as large in 𝑞 = 𝑢 + 𝑢2 as in 𝑢 = 𝑐1𝑢, and that the reference solution leads to a higher error already
at SNR= 106.

As it should, the proposed method identifies the correct solution if the SNR is large enough. However, it seems likely that the
range of sufficiently large SNRs could be expanded by equalizing the impact of noise for the different library functions. For example,
one could try to select the library functions for 𝑢 more carefully. When we removed the library functions 𝑢 and 𝑢2, and replaced
those with the single library function 𝑢 + 𝑢2, the reference solution was identified at SNR = 104. We also attempted to replace the
library functions 𝑢 and 𝑢2 with 𝑢 + 1

2 𝑢
2 and 𝑢2, such that the library still spans the same space as before, but these two library

functions are affected in similar amounts by the noise due to their quadratic term. However, the identified solution still converged
to approximately 𝑐1𝑢 = 𝑐1

[

(𝑢 + 1
2 𝑢

2) − 1
2 (𝑢

2)
]

, as the higher noise in the quadratic terms of the two library functions still cancel
out for this solution. Nevertheless, there might be better, systematic ways to design the library. Alternatively, one could also try
to weight the contributions from the different library functions in the error to compensate for differences in their noise-sensitivity.
Choosing these weights however is a non-trivial problem that is beyond the scope of this paper.

4.5. Case 5: Noiseless viscous Burgers’ equation with complex viscosity coefficient

Finally, we would like to illustrate the behavior of our algorithm for an equation that does not seem to fit into our AKNS-ansatz.
The equation is a viscous Burgers’ equation with a complex viscosity coefficient:

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥, 𝜈 = −𝑖. (14)

A single realization of the signal is shown in Fig. 6(a), which was propagated from 𝑡 = 0 to 𝑡 = 1. In total, we generated 41 sets
of input–output signals. No noise was added to the signals. As we apply our algorithm on this data set, we observe in Fig. 6(b)
that none of the considered choices for 𝑟(𝑞) result in well-conserved quantities. This suggests that this dataset may not fit any of the
considered integrable AKNS-type PDEs.

However, the poor conservation of the quantities (5) can also arise for other reasons. It could be due to noise, or because the
considered space of functions for 𝑞 and 𝑟 is not large enough. It could also arise when the starting points in the space for 𝑞(𝑢) were
not close enough to the correct solution. A large error alone therefore does not necessarily imply that the data does not originate
from an AKNS-type system (or a system close to one) in the considered search space, and further investigations are required to
eliminate the alternative causes discussed above.

We finally remark that on the other hand, even a perfect conservation of the quantities (5) does not guarantee that the system is
from the considered class of AKNS systems because only a finite number of conserved quantities is considered for the computation
of the error. In such cases, the identified 𝑟(𝑞) and 𝑞(𝑢) should be further tested w.r.t. other criteria. For example, one could check
numerically if the spectrum of the identified 𝐿-operator stays constant during propagation. Another possibility would be to
determine the PDE that corresponds to the identified Lax pair, and use it to numerically propagate the inputs in the data set.
10

The result should match the corresponding outputs in the data set.
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Fig. 5. Noiseless KdV data 𝑣(𝑥, 𝑡), transformed as 𝑢 = − 1
2
+
√

𝑣 + 1
4
. The signal domains and parameters were 𝑡 ∈ {0, 1}, 𝑁 = 21, 𝑥 = −4,−3.95,−3.9,… , 4, signal

andwidth = 1 Hz. (a) One consisting of a kink-antikink soliton in light-cone coordinates, shown between 𝑡 = −3 and 𝑡 = 0. (b) The initial, identified, and correct
oefficients when assuming the relation 𝑟 = 𝑞∗, i.e., the correct relation for the fNLSE. (c) The conserved quantities at the identified coefficients for each of the
onsidered relations 𝑞(𝑟).

. Conclusion

We proposed and demonstrated an automatic, data-driven identification method for the spectral operator of AKNS-type Lax pairs.
iven measured data from an unknown, not necessarily Lax-integrable PDE, it finds the spectral operator 𝐿 of the Lax pair that
xplains the given data best by matching conserved quantities. To the best of our knowledge, it is the first such method. It enables
on-specialists to discover Lax-integrable systems ‘‘in the wild’’, and paves the way to exploiting the strong theoretical properties
f Lax-integrable PDEs in new application areas. In contrast to conventional PDE identification methods, the measurements can
e taken at time points that are far apart (assuming time is the evolution variable), which is an important practical advantage.
nly two different time points are required. We focused on finding the 𝐿 operator of the Lax pair in this paper because together
ith the easily measurable linear dispersion relation of the underlying PDE, it already completely specifies the Lax-integrable PDE

hat belongs to the Lax pair, and therefore also the propagation operator 𝐴, which is the second part of the Lax pair. The spectral
perator is furthermore already sufficient to perform nonlinear Fourier analysis.

The method was demonstrated on noisy measurements from the MKdV, the NLSE and the sine-Gordon equation, as well as on
oise-free and noisy data from a transformed KdV. By choosing initial guesses for the coefficient vectors that evoke different parts
f the conservation laws with similar strength, and then performing searches in low-dimensional spaces of 𝑘-sparse vectors, we
ere able to identify the correct spectral operator for a variety of (nearly) Lax-integrable systems. We found that the algorithm
enerally works well if the amount of noise in the data is less than 1% of the signal amplitude, although one case required less
oise. We remark that PDE identification methods in general require relatively high signal-to-noise ratios so that e.g. higher-order
erivatives of the data can be computed. As a next step, the method should be investigated with real-world data. If the noises in
11
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Fig. 6. Results for the viscous Burgers equation 𝑢𝑡 + 𝑢𝑢𝑥 = 𝜈𝑢𝑥𝑥 with complex viscosity coefficient 𝜈 = −𝑖.

such scenarios turn out to be too strong, approaches such as filtering and/or weak formulations should be incorporated to reduce
the impact of the noise on the identification process. Additionally, as discussed in the last example, methods for taking the different
noise amplification properties of the library functions into account should be investigated.
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