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A B S T R A C T   

Contemporary Biocatalysis heavily relies on enzyme engineering as natural enzymes frequently lack the requisite 
attributes for effective organic synthesis. The inherent limitations in stability, catalytic activity, and selectivity of 
wild-type enzymes often hinder their suitability for chemical synthesis. 

Over the past 25 years, there has been an unprecedented advancement in protein engineering tools, 
empowering enzymologists to customise enzymes to precisely meet the demands of organic synthesis. 

In this discussion, we delineate some of the most crucial techniques in enzyme engineering and their signif-
icance in facilitating chemical synthesis.   

1. From random mutagenesis to (semi)rational design - a short 
historical outline 

Darwinian Evolution, the concept of biological evolution through 
variation, selection and inheritance has had a profound and lasting 
impact on modern biology. Also modern biotechnology is founded on 
Darwinism. 

The first in vitro evolution experiment was performed by Mills et al. 
[1], evolving a dwarf RNA genome of 218 bases from originally 4500 
bases (Spiegelmann’s monster). The term Directed Evolution was used for 
the first time by Francis and Hansche while adjusting the pH optimum of 
a Saccharomyces phosphatase [2]. Later Eigen and Gardiner first 
formulated the concept of non-natural Darwinian Evolution by gene 
mutagenesis, amplification and selection [3]. Liao et al. were the first to 
reported two recurring mutagenesis/screening cycles (to increase the 
thermal stability of kanamycin nucleotidyltransferase) [4]. The dawn of 
Directed Evolution was enabled by the development of molecular tools 
such as Oligonucleotide Directed Site-Directed Mutagenesis [5] and the 
Polymerase Chain Reaction (PCR) [6]. The low-fidelity, error-prone 
variant of the PCR (epPCR) [7] has for a long time been the preferred 
method for diversity generation [8,9]. epPCR mimics prokaryotic evo-
lution based on cell duplication. Stemmer introduced the eukaryotic 
(sexual replication) variant in form of Gene Shuffling [10]. Also known as 
molecular breeding or DNA recombination, gene shuffling is a powerful 
technique used in molecular biology and biotechnology to create genetic 

diversity through the recombination of existing, homologous DNA se-
quences. Hence, it recombines ‘already proven’ sequences and produces 
structurally more relevant diversity [11]. There are mainly three gene 
shuffling types: (1) shuffling of a single gene; (2) shuffling of a group of 
mutants that are rendered from a single gene, and (3) shuffling of two or 
more homologous sequences from the same protein family [12]. Espe-
cially family shuffling can dramatically increase the sequence diversity 
of the variants. In addition to DNA shuffling, other recombination 
techniques, including the staggered extension process (StEP) [13] and 
random chimeragenesis on transient templates (RACHITT) [14] as well 
as iterative truncation for the creation of hybrid enzymes (ITCHY) [15] 
deserve to be mentioned as they are used very often in the realm of 
protein engineering. 

Another milestone was the development of Site Saturation Mutagen-
esis (SSM) enabling the randomisation of selected sites within a protein 
[16–18]. The Megaprimer method [19] enabled the development of the 
so-called QuikChange™ protocol [20], which today is a standard tech-
nique in enzyme engineering. 

In 1997 Reetz et al. reported the first example of directed evolution 
to modulate the enantioselectivity of an enzyme (lipase) [9]. By 
repeating the evolutionary cycle of diversity creation (epPCR) and se-
lection (based on photometric activity testing of each mutant on both 
p-nitrophenol ester enantiomers) for four times, the power of Directed 
Evolution was impressively demonstrated. A major disadvantage of 
random methods for diversity generation is the sheer number of possible 
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mutations. To find the needle in the haystack, massive screening efforts 
are inevitable, which make random Directed Evolution experiments based 
on random mutagenesis expensive and cumbersome. A breakthrough 
occurred in 2005 when the concept of the Combinatorial Active-Site 
Saturation Test (CAST) [21] and Iterative Saturation Mutagenesis (ISM) 
[22] were developed. CAST/ISM strategies can be used in combination 
to improve the stereoselectivity, activity and robustness. Fig. 1 shows 
several key milestones for the development of enzyme engineering. 

The importance of biocatalysis for a more sustainable chemical in-
dustry is unquestioned and has been reviewed in some seminal review 
articles [23–26]. In this contribution, we highlight the power of modern 
enzyme engineering to tailor natural enzymes for the needs of organic 
chemists. As this contribution is part of an article collection honouring 
Prof. Manfred T. Reetz, a particular focus has been put on his contri-
butions to the field. 

2. Enzyme engineering for stability 

Enzyme stability is a crucial factor in any application, as the effec-
tiveness of enzymes depends on their ability to maintain their structure 
and activity over time. Various factors are known to negatively impact 
enzyme stability such as thermal inactivation, inactivation by non- 
aqueous cosolvents or inactivation by chemical modification. Appar-
ently, making enzymes more robust in hostile reaction conditions has 
been a preferred target for Enzyme Engineering from the very beginning 
[8,27]. 

2.1. Enzyme engineering for improved resistance against organic solvents 

Organic cosolvents are commonly used in biocatalysis to increase the 
solubility of hydrophobic reactants in aqueous reaction media. Water- 
soluble solvents can disrupt the native structure of enzymes by 
altering the hydrogen bonding and hydrophobic interactions that 
maintain their tertiary and quaternary structures. This disruption can 
lead to protein denaturation, causing a loss of enzymatic activity. Next 
to enzyme immobilisation (vide infra) and solvent engineering (e.g. by 
addition of stabilising additives) enzyme engineering has emerged as 
tool to improve enzyme robustness against organic solvents [28]. 

Chen and Arnold were amongst the first ones to use enzyme engi-
neering to improve enzyme activity and stability in organic solvents [8, 
27]. After several rounds of directed evolution using epPCR to ran-
domise subtilisin E, the authors achieved an approx. 250-fold increased 
activity of the enzyme in the presence of 60% (v/v) of dimethyl form-
amide (DMF). This strategy has also been applied successfully to other 
enzyme classes [28] such as laccases, [29] proteases [30], esterases 
[31], or P450 monooxygenases [32]. 

The random nature of this engineering approach, however, also ne-
cessitates screening of large libraries to cover the vast sequence space. 
Hence, high throughput screening assays are inevitable. As HTP exper-
imentation can be very cumbersome and time- and resource-intensive, 
the interest is shifting towards more rational approaches allowing for 
smaller libraries. Today, our fundamental understanding of the in-
teractions between enzyme and solvent molecules, renders rational 
design of more solvent-stable enzymes difficult. Martinez et al. 

Fig. 1. Some key milestones for the development of enzyme engineering.  

Fig. 2. Co-evolution of various desirable enzyme properties by gradual increasing the selective pressure.  

C. Paul et al.                                                                                                                                                                                                                                     
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recommended reducing the surface charge in e.g. subtilisin E to increase 
robustness against polar organic solvents [27]. Similarly, exchanging 
charged surface lysines by more hydrophobic alanines, penG acylase 
could be stabilised against DMF [33]. Surface amino acids exhibiting 
hydrogen bonds with solvent molecules are also attractive targets for 
substitution [34]. More recently, also disulfide bridges are in focus for 
enzyme stabilisation. In silico design tools such as Modelling of Disulfide 
Bonds in Proteins (MODIP) [35], Modeling of Disulfide Bonds in Pro-
teins (DbD2) and FoldX [36] can be used to design residue pairs to form 
disulfide bonds. Using these tools, double mutants of lipase from the 
thermophilic bacterium Geobacillus stearothermophilus T6 (LipT6) were 
constructed to form disulfide bonds. As a result, their stability in 70 % 
methanol was improved 5.5-fold [37]. Despite these success examples, 
rational engineering approaches for increasing solvent stability are 
scarce. 

Semi-rational approaches are more common. A number of studies 
have suggested that thermal stability and stability towards organic sol-
vents go hand in hand [38–42]. Therefore, it is not astonishing that the 
B-FIT method, originally developed by Reetz et al. to identify enzyme 
regions to target thermal stability (vide infra) [43], has also been suc-
cessfully applied to engineer more solvent resistant enzyme variants 
[38]. 

When engineering an enzyme for increased stability often a trade-off 
with activity is observed. Partially, this can be assigned to the generally 

reduced flexibility of an engineered enzyme. Therefore, it is advisable to 
screen libraries aiming at more stable enzyme mutants not only for 
stability but also for activity. This strategy has been applied frequently 
by the company CODEXIS to engineer more solvent stable enzymes [44]. 
For example, engineering an ADH for the reduction of (E)-methyl 
2-(3-(3-(2-(7-chloroquinolin-2-yl)vinyl)phenyl)-3-oxopropyl)benzoate 
consisted of several rounds of evolution with increasing selection pres-
sure (by increasing the solvent concentration as well as the reaction 
temperature in each consecutive screening step) and selecting for most 
active mutants (Fig. 2) [44]. A similar approach of sequential increase of 
the selection pressure was also applied for the evolution of a trans-
aminase [45]. 

2.2. Enzyme engineering for improved thermostability 

Thermal stability represents another enzyme property frequently 
addressed in enzyme engineering studies. Elevated temperatures are 
desirable e.g. in the case of poorly water soluble reactants. Also 
increased self-lifetimes and /or stability under process conditions 
motivate for engineering more thermostable enzymes. 

2.2.1. Rational design of thermostability 
Various in silico methods to predict thermostability are currently 

available (Table 1). Each method has been demonstrated to be beneficial 
in at least one literature example, however a generally applicable tool 
remains to be developed. According to Reetz et al. [12], a practitioner 
should focus on those methods that have already been successfully 
applied to the superfamily of the enzyme in question. 

There are reasons to assume that early life may have been developing 
under higher average temperatures than modern life faces. For example, 
indications exist that life developed at oceanic hot vents [55] and the 
assumption that Precambrian oceans were considerably hotter than 
today [56]. Hence, ancestral proteins may be assumed to have been 
intrinsically more thermostable than modern ones. Therefore, the 
so-called Ancestral Sequence Reconstruction (ASR) method has been 
receiving considerable attention to design thermoresistant enzymes [57, 
58]. In fact, this approach has been successfully demonstrated on 
various enzyme classes such as alcohol dehydrogenases [59], β-lacta-
mases [60], haloalkane dehalogenases [61], manganese peroxidases 
[62], photodecarboxylases [63], ene reductases [64] and many others 
[57]. 

2.2.2. Improving thermal stability using the B-FIT method 
One plausible model for thermal unfolding and denaturation (their 

loss of their quaternary and tertiary structure) of proteins is to assume a 

Table 1 
Selection of available online tools for the prediction of thermal stability.  

Software Input Availability Refs. 

I-Mutant Sequence or structure https://folding.biofold. 
org/i-mutant/i-mutant2. 
0.html 

[46] 

MAESTRO Structure https://pbwww.services. 
came.sbg.ac.at/?page 
_id=416 

[47] 

FoldX Structure http://foldx.embl.de/ [36] 
HotSpotWizard Sequence and 

structure 
http://loschmidt.chemi. 
muni.cz/hotspotwizard 

[48] 

FastML Multiple sequence 
alignment phylogenetic 
tree 

http://fastml.tau.ac.il/ [49] 

Ancestors Multiple sequence 
alignment and 
phylogenetic tree 

http://ancestors.bioinfo. 
uqam.ca/ancestorWeb/ 

[50] 

FireProt Sequence and 
structure 

http://loschmidt.chemi. 
muni.cz/fireprot 

[51, 
52] 

PROSS Structure http://pross.weizmann. 
ac.il 

[53] 

FRESCO Structure Stand alone [54]  

Fig. 3. Molecular basis for the acetaldehyde-related inactivation of DERA.  
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dynamic equilibrium of fully folded and partially folded enzymes. The 
latter can further unfold irreversibly to the catalytically inactive, de-
natured enzyme. Hence, rigidifying the enzyme especially by reducing 
the movement of the most flexible units within an enzyme represents a 
promising strategy to increase thermal stability. To identify such flexible 
regions, Reetz et al. proposed using the so-called B-factors of enzyme X- 
ray data [43]. B-factors indicate the dispersion of atomic electron den-
sities from their stable positions due to thermal motion. Hence amino 
acids and polypeptide regions with high B-factors are likely to be the 
most flexible regions within a given enzyme and therefore attractive 
targets for enzyme engineering. Within lipase A from Bacillus subtilis (Lip 
A) eight regions with high flexibility were identified (based on the 
B-factors) and subjected to iterative saturation mutagenesis (ISM, vide 
infra). While individual hits from the first libraries exhibited rather 
meagre improvements by a few degrees, their successive combination 
eventually resulted in mutants with exceptionally high stabilities even 
around boiling temperature. The B-FIT approach (B-factor iterative test) 
has ever since been applied to a broad range of enzymes (with B-factors 
obtained both, from X-ray structures and homology models) [12]. In a 
recent study the effectiveness of B-FIT was compared with computa-
tional methods [65] showing that B-FIT gave better results. This un-
derlines the (still) superiority of semi-rational approaches in enzyme 
engineering over in silico methods. The future will tell if machine 
learning algorithms [66] will become an effective tool to engineer 
thermal stability. 

2.2.3. Engineering enzyme stability towards reagents 
Next to hostile reaction conditions also the reagents themselves can 

represent an issue for enzyme stability. Class I aldolases such as the 
synthetically very relevant deoxyribose-5-phosphate aldolase (DERA) 
for example utilise reactive aldehydes as starting materials. Aldehydes, 
however, are also highly reactive molecules, which may e.g. form imines 
with lysine residues and thereby modify the polarity and charge distri-
bution of the enzyme. Provided, the modified amino acid residue plays a 
role in the catalytic mechanism, complete inactivation of the enzyme is 
not rare [67]. 

Dick et al. for example analysed the acetaldehyde-dependent inac-
tivation of DERA from Corynebacterium bovis [68]. The authors demon-
strated that crotonaldehyde (obtained from the DERA-catalysed 
dimerisation of acetaldehyde) cross-linked Lys167 and Cys47 account-
ing for the inactivation of the enzyme (Fig. 3). Mutation of the latter to a 
methionine residue (Cys47Met) resulted in a highly 
acetaldehyde-resistant DERA mutant. 

3. Enzyme engineering for selectivity 

Selectivity is one of the prime properties of enzymes valuable for 
organic synthesis. Envisioning efficient synthesis of highly added-value 
fine- and commodity chemicals as well as active pharmaceutical in-
termediates (APIs) especially stereoselectivity is desired. Naturally 
occurring enzymes do not necessarily exhibit sufficient (enantio)selec-
tivity towards a given starting material of interest, which is why the 
advent of enzyme engineering undoubtedly marked a landmark in bio-
catalysis [24]. It was the group of Reetz pioneering enzyme engineering 
for selectivity [69]. In his ground breaking contribution the enantiose-
lectivity of Pseudomonas fluorescens lipase A towards ɑ-methyl carbox-
ylic acid esters was increased from E = 1 (i.e. non-enantioselective) to E 
= 11.3 in four rounds of random mutagenesis (via epPCR) and selection 
(via UV/Vis determination of the mutants’ activity on the single sub-
strate enantiomers) [9]. In total 7600 mutant enzymes were tested in 
this study marking the overall bottleneck of the directed evolution 
approach. Therefore, work in the following years focused on the 
development of fast, reliable and (wherever possible) quantitative high 
throughput screening (HTS) assays [70]. A broad variety of analytical 
techniques have been evaluated for their suitability for HTS of mutant 
libraries comprising UV/Vis spectroscopy [71,72], capillary array elec-
trophoresis [73], circular dichroism [74], IR spectroscopy, NMR spec-
troscopy [75], mass spectrometry [76–78], FACS [79] and many others 
[70,80]. 

The concept of Darwinian Evolution in the test tube to control the 
enantioselectivity was soon taken up by leading research groups in the 
field of biocatalysis. For example, Alexeeva et al. evolved monoamine 
oxidase from a practically useless wildtype enzyme into an industrially 
relevant biocatalyst (Fig. 4) [81,82]. 

Fong et al. successfully applied directed evolution on aldolases [83], 
the Bornscheuer group on hydrolases [84,85] and Peters et al. on P450 
monooxygenases [86,87]. Despite these successes of directed evolution, 
its inherent numbers problem (random mutagenesis in a vast sequence 
space) cannot be satisfactorily solved. The desired mutant remained to 
be the proverbial needle in the haystack. 

With the advent of better bioinformatic tools, advanced DNA tech-
nology, crystal structures and homology models, semi-rational ap-
proaches kick-started their success [68]. Especially structural 
information about amino acids residing in the enzyme active site is 
invaluable if targeting catalyst properties such as substrate scope, ac-
tivity and selectivity. As today’s computational methods are yet not 
reliable enough for in silico prediction of successful mutants, a semi 
rational approach focusing on the randomisation of relevant amino acid 

Fig. 4. The evolutionary history of monoamine oxidase (MAO). Starting from a wild-type MAO with a very narrow substrate scope, Turner et al. have evolved over 
the years a portfolio of synthetically highly relevant mutants. 

C. Paul et al.                                                                                                                                                                                                                                     
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residues is most promising. Again, the Reetz group took a leading role 
here by developing the Combinatorial Active-site Saturation Test (CAST) 
(Fig. 5) [21]. In contrast to traditional saturation mutagenesis, various 
residues in selected regions are randomised simultaneously thereby 
giving access to synergistic mutations. This can be performed in various 
regions and the best mutants identified from each region can be com-
bined (Fig. 5). 

Iterative saturation mutagenesis methods have been successfully 
applied to engineer the enantioselectivity of many enzymes, and a few 
examples will be discussed in the following section. 

Heterocyclic ketones such as dihydrofurane-3-one are notoriously 
difficult targets for stereoselective reduction using chemical reducing 
agents since the pro-R and pro-S sides are sterically and electronically 
very similar. Sun et al. chose the ADH from Thermoethanolicus brockii 
(TbADH) as a starting point for the evolution of stereoselective enzymes 
for the reduction of dihydrofuran-3-one [88]. The wild-type TbADH 
exhibited modest enantioselectivity towards this substrate yielding the 
(R)-product at 23 % ee. Screening only 576 transformants, highly 
enantioselective mutants exhibiting R- and S-selectivity (ee > 99 % in 
both cases) were identified (Fig. 6a). Notably, Codexis evolved the ADH 

Fig. 5. General representation of the CAST/ISM strategy. As an example, amongst the relevant regions (A–E) A, B and E were selected for ISM.  

Fig. 6. Examples of ‘difficult’ stereoselective reductions accomplished with engineered TbADH.  

Fig. 7. Controlling the migrational tendency of carbonyl substituents in the enzymatic BV oxidation.  

C. Paul et al.                                                                                                                                                                                                                                     



Molecular Catalysis 555 (2024) 113874

6

from LactoBacillus brevis for the stereoselective reduction of the 
tetrahydrothiophen-3-one homologue [89]. 

Often, active site amino acid residues are chosen for ISM because of 
their direct contact with the starting material. Modifying amino acid 
residues, however, also bears the risk of impairing the catalytic mech-
anism. An alternative approach is to target flexible loop regions near to 
the active site. Qu et al. therefore developed the proline-induced loop 
engineering test (PiLoT) to target particularly loop regions [90]. They 
demonstrated the potential of this strategy at the example of TbADH--
catalysed reduction of yet another ‘difficult’ substrate (Fig. 6b) identi-
fying P84S and ΔP84 as highly enantioselective mutants. 

Another difficult reaction to control the selectivity is the Baeyer- 
Villiger oxidation. The regioselectivity of the O-insertion is chemically 
defined by the migrational tendency of the carbonyl substituents. As a 
rule of thumb, substituents stabilising carbocations migrate more 
readily and thereby control the regioselectivity of the O-insertion. The 
Reetz group engineered the Baeyer-Villiger monooxygenase (BVMO) 

from Thermocrispum municipale DSM 44,069 (TmCHMO) to override the 
substrate-dictated selectivity by destabilising the Criegee intermediate 
leading to the ‘normal’ ester (Fig. 7) [91]. 

4. Enzyme engineering for immobilisation 

Enzymes are the work horses in industrial biotechnology, and in 
order to achieve efficient reusability, stability and activity, immobili-
sation techniques are commonly applied in the industrial processes. This 
has led to huge successes. Two are in particular worth mentioning, the 
immobilisation and recycling of PenG for hundreds of times for peni-
cillin production [111] and the long term application of glucose isom-
erase in the high fructose corn syrup production, the largest enzyme 
catalysed process [112]. However, for immobilisations based on ad-
sorptions or encapsulations, enzyme loss caused by leaching often raises 
concerns. Covent bonding between the surface groups of the enzyme and 
the carriers has been a focus to improve the immobilised activity of the 
enzymes, but lower activities were often observed after immobilisation. 
This has been addressed in different manners and one of the first was to 
remove the lysine residues on the enzyme surface by genetic modifica-
tion [113]. For two lipases it was shown that selective removal could 
orient the immobilised lipase such, that the active site was directed to-
wards the reaction mixture and away from the carrier [114]. Following 
this line of orienting the enzyme by single attachment, tags were 
introduced to the enzyme. They followed the His-tag model, popular for 
enzyme purification. Therefore, a few engineering techniques for the 
enzymes to adopt better immobilisation efficiency were developed, such 

Fig. 8. Three-step continuous flow of the immobilised enzyme assemblies for the conversion of glycerol to D-fagomine.  

Fig. 9. Newly designed enzyme to catalyse Morita-Baylis-Hillman reactions.  

Fig. 10. Epoxide hydrolase engineered to catalyse a Baldwin-type cyclisation.  

Fig. 11. Schematic representation of a metal-loaded biotin binding to strep-
tavidin and thereby placing it in a chiral environment. 

C. Paul et al.                                                                                                                                                                                                                                     
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as the utilisation of Spy or Halo-based tags to create fused proteins, or 
linkers between the enzyme and the carriers were investigated. 

Peschke et al. genetically fused three enzymes using high-affinity 
tags: the alcohol dehydrogenase LbADH, the methylglyoxal reductase 
Gre2p and the NADP(H) regeneration enzyme glucose dehydrogenase 
GDH. A 39 amino acid streptavidin-binding peptide (SBP) tag that binds 
with high affinity to the protein streptavidin (STV) was employed, and 
the other systems such as SpyTag/SpyCatcher and Halo-tag were also 
used. Comparative studies demonstrated that the three systems can be 
used for immobilisation in a flow reactor [115]. 

In addition to affinity tags, linkers such as peptides [116,117] or 
polymers [118] have been used to create hybrid catalyst with enzymes 
and other catalysts. An additional approach for directed immobilisation 
is to use a functional group in the active site of the enzyme in combi-
nation with a suicide inhibitor attached to the carrier. In this way for 
instance the serine in a serine hydrolase can be utilised to attach this 
enzyme on a carrier decorated with an irreversible serine hydrolase 
inhibitor. Hartley et al. reported the use of engineered enzymes with this 
attachment methodology and at the same time they elegantly enable the 
recycling of cofactors without loss of activity [119]. Three modules of 
three biocatalyst have been assembled with flexible linkers in between 
to allow movement. The approach is thus a mixture of genetic engi-
neering and chemical modification. First the enzymes are linked by 
genetic modification, mimicking the polyketide synthases type 1 [120]. 

The modules were conversion of glycerol to DHAP via phosphorylation 
and oxidation steps using a Thermococcus kodakarensis glycerol kinase 
(GlpKTk) and a Mycobacterium smegmatis acetate kinase (AceKMs); E. coli 
glycerol-3-phosphate dehydrogenase (G3PDEc) and NADH oxidase from 
Clostridium aminovalericum (NOXCa) were utilised for the production of 
DHAP from glycerol -3-phosphate (G3P). Finally a cofactor-independent 
fructose aldolase (FruA) from Staphylococcus carnosus  was utilised to 
produce the N–Cbz-(3S,4R)-amino-3,4-dihydroxy-2-oxyhexyl phos-
phate (N–Cbz-3S,4R-ADHOP). To these assemblies of enzymes the 
cofactor was chemically attached. These assemblies of enzymes were 
immobilised via suicide inhibition. A three-step continuous flow reactor 
system was designed using the single-molecule multi-enzymatic re-
actions and superior space-time yields and TTNs to the synthesis of 
D-fagomine were achieved compared to the chemical synthesis (Fig. 8). 

5. Enzyme engineering for non-natural reactions 

The repertoire of enzyme catalysis covers a broad range of synthet-
ically useful transformations. Nevertheless, several transformations 
within chemical space remain out of scope for naturally occurring en-
zymes. However, the line between naturally occurring and new to nature 
is not always straightforward to draw. 

The Morita-Baylis-Hillman reaction is such an example. Reetz 
described that proteins such as serum albumin from diverse sources can 

Fig. 12. Comparison of the native reactivity of P450 monooxygenases with the engineered P411 enzymes.  

C. Paul et al.                                                                                                                                                                                                                                     



Molecular Catalysis 555 (2024) 113874

8

catalyse this reaction, while enzymes display even lower activity [121]. 
More recently this catalytic activity was engineered successfully into a 
protein and a Morita-Baylis-Hillmanases (MBHase) are today a fact 
(Fig. 9) [122,123]. 

Epoxide hydrolases catalyse the selective hydrolysis of epoxides by 
simultaneous activation of the oxirane moiety and the water nucleo-
phile. Recently Sun et al. repurposed the epoxide hydrolase from Rho-
dococcus erythropolis to catalyse Baldwin-type cyclisation reactions 
(Fig. 10) [124]. The engineering strategy based on the dissolution of the 
water activation network within the active site (Y53 and N55) as well as 
re-positioning the catalytic base D132 to facilitate the deprotonation of 
the alcohol moiety. The e. r. increased from 50:50 to 90:10 for the model 
substrate using the mutant SZ612. The highest stereoselectivity and 
conversions for the N- and O-heterocycles were up to 99:1 and 99 %, 
respectively. 

Despite the enormous successes of enzyme engineering in expanding 
the chemical space of biocatalysis there are still some chemical 

transformations remaining out of scope for enzymes composed of the 
canonical amino acids and the known cofactors. Transition metal- 
catalysed cross-coupling reactions for example can (so far) only be 
performed using non-biogenic metals such as Pt or Pd. To bridge this 
‘reactivity gap’, the so-called hybrid catalyst concept has been devel-
oped initially by Wilson and Whitesides [125]. 

The Whitesides approach consisted of chemically modifying biotin 
and introducing this modified chemical catalyst into biotin-binding 
streptavidin and thereby into the chiral environment of a protein. 
Later, Ward successfully developed this concept further by establishing 
efficient expression systems for streptavidin and engineering it (Fig. 12). 

This approach proved to be very successful for a broad range of 
metals and the engineering of their activity and selectivity in non- 
natural reactions such as nitrene insertions (Ir) [126] addition to 
C–––C-triple bonds [127], metathesis reactions (Ru) [128,129], 
C=C-double bond isomerisation [130], Suzuki couplings (Pd) [131], 
cyclopropanations (Rh) [132] and allylic alkylation [133]. Further re-
actions such as carbonyl reduction (Mn) [134], imine reductions,(Ir) 
[135] hydroxylation reactions (Fe) [136], cis-dihydroxylations (Os) 
[137] or sulfoxidations (V) [138] have been reported as well. 

Naturally, P450 monooxygenases catalyse the reductive activation of 
molecular oxygen to form a reactive oxyferryl species (compound I, Cpd 
I). The latter is responsible for the well-known oxyfunctionalisation re-
actions mediated by P450 monooxygenases (Fig. 11) [139–141]. 

Substituting the Fe central ion by other transition metals gives access 
to non-natural transformations using the protein scaffold as chiral 
ligand. Artificial Ir porphyrin-containing myoglobins are capable of 
carbene-type insertion reactions [142,143]. 

However, substituting the conserved, Fe-coordinating cysteine by a 
serine not only brings about a change of the spectral properties of the 
resulting variants (explaining their name as P411 enzymes) but, more 
importantly, to a dramatic change in reactivity. P411-enzymes are 
capable of forming FeII-centred carbenes and nitrenes catalysing C- or N- 
insertion (Fig. 11) [144–147]. Undoubtedly, these works have revolu-
tionised biocatalysis opening up new, previously not known to nature 
transformations. 

Recently, the expansion of the natural amino acid alphabet by non- 
canonical amino acids has opened up new avenues for enzyme engi-
neering and biocatalysis [148]. One particularly interesting approach 
was reported by Trimble et al. [149]. Installation of a genetically 
encoded photosensitizer into the scaffold of Methanococcus jannaschii 
tyrosyl-tRNA synthetase resulted in an artificial Diels Alderase capable 
of [2 + 2] cycloaddition reactions (Fig. 13). Structure-guided saturation 
mutagenesis further improved the activity and stereoselectivity of the 
artificial enzyme in some intramolecular [2 + 2] cycloaddition 
reactions. 

Expanding the reaction scope of enzymes by photoexcitation is a 
current research trend worth mentioning [150,151]. This approach was 
pioneered by Hyster who demonstrated that photoactivated NADH in 
alcohol dehydrogenases is capable of enantioselective, reductive deha-
logenation reactions (Fig. 14) [152,153]. Later on, this approach was 

Fig. 13. Design of an artificial Diels Alderase by genetically incorporating a 
photosensitiser. 

Fig. 14. The charge-transfer complex of enzyme-bound NAD(P)H and substrate can be photoexcited resulting in a single electron transfer (SET) and mesolytic 
cleavage of the leaving group (LG). The resonance stabilised substrate radical then selectively receives a hydrogen atom transfer (HAT) from the NAD(P)H radical 
cation, delivering the chiral product. 
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extended to flavin-dependent enzymes [154]. The radical character of 
this reaction can also be applied to catalyse intra-[155] and intermo-
lecular [156] C–C-bond forming reactions. 

The recent developments in enabling unnatural reactions in bio-
catalysis are exciting and impressive. Although it is relevant to highlight 
that the current state of the art of these approaches resembles more 
organocatalytic reaction conditions with catalyst loadings in the mol% 
range and several hours of reaction time, than native enzymatic re-
actions. Such reactions certainly pose a challenge of economic relevance 
and should be addressed further by enzyme engineering. 

6. Future aspects of enzyme engineering 

Enzyme engineering has been the primary tool to make biocatalysts 
suitable for the synthesis of industrially relevant products. Shifting from 
trial and error to rational design, we observe a trend to more mecha-
nism- and structure-guided design. Computational tools are constantly 
improving: the Rosetta algorithms [157,158] and the Damborsky met-
rics [52,159] can be applied in this endeavour. Meanwhile, the general 
trend for artificial intelligence (AI) assisted protein engineering [159, 
160], as exemplified by recent breakthroughs such as AlphaFold2 [161], 
will continue to spark the biocatalysis community. Nevertheless, accu-
rate predictions of sequence-function relationships remain challenging. 
Suitable AI-based algorithms that are specifically designed for protein 
engineering in improving the stereoselectivity, activity and stability are 
not yet fully established. 

In the past decades biocatalysis has been firmly established as a tool 
for the synthesis of chiral, high value-added products [162]. Yet, bio-
catalytic syntheses of bulk chemicals such as acrylamide remain scarce. 
Here, however, biocatalysis could really unfold its potential for greener, 
less energy- and resource-consuming syntheses. An increased focus of 
the biocatalysis community on such transformations is urgently needed. 
This also implies intensified interdisciplinary exchange with chemists 
and chemical engineers, both from industry and academia (Table 2). 
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