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A B S T R A C T

Cyber–Physical Systems (CPSs) have gained traction in recent years. A major non-functional quality of CPS is
performance since it affects both usability and security. This critical quality attribute depends on the specialized
hardware, simulation engines, and environmental factors that characterize the system under analysis. While
a large body of research exists on performance issues in general, studies focusing on performance-related
issues for CPSs are scarce. The goal of this paper is to build a taxonomy of performance issues in CPSs. To
this aim, we present two empirical studies aimed at categorizing common performance issues (Study I) and
helping developers detect them (Study II). In the first study, we examined commit messages and code changes
in the history of 14 GitHub-hosted open-source CPS projects to identify commits that report and fix self-
admitted performance issues. We manually analyzed 2699 commits, labeled them, and grouped the reported
performance issues into antipatterns. We detected instances of three previously reported Software Performance
Antipatterns (SPAs) for CPSs. Importantly, we also identified new SPAs for CPSs not described earlier in
the literature. Furthermore, most performance issues identified in this study fall into two new antipattern
categories: Hard Coded Fine Tuning (399 of 646) and Magical Waiting Number (150 of 646). In the second
study, we introduce static analysis techniques for automatically detecting these two new antipatterns; we
implemented them in a tool called AP-Spotter. We analyzed 9 open-source CPS projects not utilized to
build the SPAs taxonomy to benchmark AP-Spotter. Our results show that AP-Spotter achieves 62.04%
precision in detecting the antipatterns.
1. Introduction

The term CPSs was first coined at the 2006 National Workshop on
Cyber–Physical Systems by Gill (2006). As described by Lee and Seshia
(2017), a CPS is an integration of computation with physical processes
whose behavior is defined by both cyber and physical parts of the sys-
tem. Examples of CPSs are medical devices (Chen, 2017), automation
of industrial manufacturing systems (Lee et al., 2015), air traffic control
and aircraft avionic systems (Lee, 2015), smart cars (Birchler et al.,
2022; Abdessalem et al., 2020; Gambi et al., 2019), and unmanned
vehicles (Shi et al., 2011; Khatiri et al., 2023).

In recent years, CPSs became of interest across many industries (De-
Franco and Serpanos, 2021; Okolie et al., 2018). The increased adop-
tion of CPSs increases the urgency to tackle CPSs-specific challenges
(Mittal and Tolk, 2019). A key challenge when working with CPSs is
that it is difficult to consider the parts in isolation due to the tight
interactions (Greer et al., 2019). As with other real-time systems, CPSs
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have a limited time to react to their environment (Jain et al., 2021).
For example, a self-driving car needs to react fast if suddenly a deer
wanders on the road. The performance of the system is a big factor in
how well it responds.

One of the standard methods for achieving high software per-
formance is to use a catalog of Software Performance Antipatterns
SPAs (Smith and Williams, 2001, 2000). This catalog documents the
common performance problems in the software architecture and design
of systems. The description of these antipatterns helps detect bad
design/coding choices that influence performance. A previous study
empirically showed that SPAs are beneficial while providing reusable
solutions applicable in various domains (Trubiani et al., 2014). More-
over, identifying SPAs helps design and inform refactoring actions,
which ensure that the performance antipatterns can be removed from
the project’s architecture or designs (Aleti et al., 2018; Calinescu et al.,
2017). Recent studies identified various performance antipatterns that
are widespread in classical software (i.e., not related to CPSs) (Smith
vailable online 24 November 2023
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and Williams, 2000, 2001, 2002b, 2003). In the context of CPSs, Smith
(2020) started a CPS-specific SPA catalog in 2020. This catalog de-
scribes nine performance antipatterns, three of which are CPS specific,
and six are also applicable to generic software. Although the an-
tipatterns introduced in Smith’s study facilitate the recognition and
refactoring of CPS performance-related issues and show the relevance
of performance antipatterns in an industrial context, their work has two
main limitations. First, the proposed catalog was formulated based on
the author’s experience, rather than empirically collecting and analyz-
ing data from existing and diverse CPSs. Second, their study did not
assess how common and widespread these antipatterns are.

The aim of this paper is twofold: (1) building an extensive taxonomy
(or catalog) of performance antipatterns in CPSs based on empirical
data and evidence collected from heterogeneous open-source systems;
(2) helping developers detect the most common and widespread an-
tipatterns. Therefore, this paper presents two studies that cover both
the classification (Study I) and the detection (Study II) of performance-
elated antipatterns in CPS.

Study I aims to identify, classify, and categorize performance is-
ues into a taxonomy. Therefore, we investigate the following research
uestions

RQ1: Which CPS-specific performance antipatterns can we identify in
open-source CPSs?

RQ2: How prevalent are CPS-specific performance antipatterns in open-
source CPS projects?

To answer these two research questions, we analyzed the code
istory of 14 open-source CPS projects publicly available on GitHub
nd used in prior studies related to CPSs (Zampetti et al., 2022). We
xamined commits that reported and fixed self-admitted performance
ssues by analyzing (1) commit messages, (2) code and project doc-
mentation, and (3) code changes. Self-admitted issues are identified
ased on performance-specific keywords (e.g., run-time, memory) using
tool that we implemented and coined PyRock. This resulted in 1059

andidate commits to validate manually. Through manual analysis, we
dentified 530 (81.11%) commits discussing one or more performance-
elated issues. We further expanded the keywords by using textual
nalysis methods (De Lucia et al., 2014) and topic modeling (Panichella
t al., 2013; Panichella, 2019). This resulted in 1640 additional com-
its, of which 163 commits (9.37%) contained one or more self-

dmitted performance-related issues. In total, we manually analyzed
699 commits, labeled them, and grouped the reported performance
ssues in common categories (or antipatterns).

In this final set of 2699 commits, we found eight instances of
mith’s (2020) CPS-specific antipatterns. Interestingly, we identified six
otential new CPS-specific performance antipatterns with 638 instances
n total. As this is exploratory research, we decided that for them to
e confirmed as antipattern, they needed to occur in more than two
rojects. Following this criterion, we confirmed four antipatterns:

• Magical Waiting Number. (9 projects, 150 instances) Lack of proper
waiting time, the potential of being often manually changed due
to adding support for slower/faster hardware platforms.

• Hard Coded Fine Tuning. (6 projects, 399 instances) Variables
that are closely related to hardware support, which keeps being
changed throughout the project’s history.

• Fixed Communication Rate. (5 projects, 66 instances) Frequent
changes are made to the communication rate of the hardware
modules, as the minimum latency is hard-coded (the same for all
platforms in all situations) instead of dynamically.

• Rounded Numbers. (5 projects, 10 instances) Mathematical errors
2

made due to type usage for situations requiring high accuracy. e
Study II aims at helping developers identify and detect the two
ost frequently occurring new antipatterns (Magical Waiting Number

nd Hard Coded Fine Tuning). To this aim, we present and assess a novel
ool, named AP-Spotter, that detects these antipatterns based on
tatic analysis methods. The benefit of using a static analysis technique
s that it is fast, compared to dynamic analysis, so it can give timely
eedback to the developer. We implemented this technique with the
P-Spotter tool. Therefore, we formulated the following research
uestion:

RQ3: How precise can our approach detect performance antipatterns?

To answer this research question, we ran AP-Spotter against a
enchmark of 9 additional open-source CPS projects not utilized to
uild the new SPAs taxonomy (i.e., not considered in Study I). We man-
ally validated the instances detected by AP-Spotter and reached a
recision of 63.39% for Magical Waiting Number, and 60.98% for Hard
oded Fine Tuning.

Paper Structure The remainder of the paper is structured as fol-
ows: Section 2 provides background and related work. Section 3 is
he repository mining study on Performance Antipatterns. Section 4
iscusses the new potential antipatterns from our study. In Section 5,
e explore automatically detecting CPS antipatterns and evaluate our
pproach empirically in our second study. Further, Section 6 discusses
he threats to the validity of our studies. And finally, Section 7 presents
ur conclusion.

. Background and related work

In this section, we give a brief overview of research relevant to our
tudies.

.1. Software Performance Antipatterns

The concept of design patterns for software was introduced in 1994
y Gamma et al. (1994), as a schematic to follow for designing software
omponents or subsystems. Software antipatterns stand opposite to
esign patterns, in that they describe patterns to be avoided because
f potential issues in the software’s security, performance, stability, or
aintainability (Brown et al., 1998; Moesus et al., 2019).

The specific subcategory of antipatterns in which we conduct our
tudy is called Software Performance Antipatterns (SPAs). SPAs focus
n common patterns in software architecture and design, which lead to
erformance issues in the system (Smith and Williams, 2000).

These antipatterns have been introduced by Smith and Williams
2000) and were later extended for pipe-and-filter architectures (Smith
nd Williams, 2002b) and concurrent programs (Smith and Williams,
003). Various studies have contributed towards defining SPAs for
ther application domains (e.g., databases Dugan et al., 2002), and
rovided solutions to tackle them (Smith and Williams, 2002a).

.2. Known SPAs for CPSs

To the best of our knowledge, there is only one prior study that
as identified SPAs specific to CPSs, this study was conducted by
mith (2020). In particular, Smith’s (2020) recent study carried out a
reliminary investigation into Performance Antipatterns for CPS. She
dentified three new SPAs specific to CPS and also recognized six other
PAs specific to CPS. Based on industrial experience in the field, Smith
2020) introduced three new SPAs specific to CPS and also recognized
ix other SPAs specific to CPS. These antipatterns are described in
able 1.

Despite the undisputable contribution by Smith (2020), the study
id not provide any empirical data to support the findings. Therefore,
ur goal is to shed light on the prevalence of SPAs in CPSs by perform-
ng an empirical study on a large set of CPSs, eventually extending the

xisting SPAs taxonomy.
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Table 1
Existing catalog of SPAs for CPSs by Smith (2020).

Name Type Description

Are We There Yet? CPS-specific Over-checking whether an event occurred. This problem usually stems from a polling procedure in CPS with small
checking intervals, compared to the frequency of event occurrences. This Performance Antipatterns leads to overusing
system resources.

Is Everything OK? CPS-specific Constantly checking the status of the system (e.g., storage space, battery usage). This performance issue happens when
the status checker threads and processes are triggered too often.

Where Was I? CPS-specific Processes that lost information about the system’s state, such as a system restart. It can also happen if too much time
(i.e., more than 1 min) is given to processes that keep the user waiting. This type of antipattern leads to execution
overheads to perform required calculations to drive the CPS back to the desired status.

Unnecessary Processing Generic Heavy and unnecessary processes are executed in critical scenarios (Smith and Williams, 2003). To tackle this
antipattern, the execution of processes whose outputs are not required in critical scenarios should be postponed.

How Many Times Do I
Have to Tell You?

Generic Invoking a method many times in scenarios in which the CPS could call the method only once and store and reuse the
returned outputs for the following processes. To address this antipattern, redundant calls should be removed.

More is Less Generic A CPS has access to too many resources that negatively impact the system’s overall performance (Smith, 2020). Adding
too many resources (such as threads and processes) may lead to extra overheads for tasks like scheduling and context
switching

The Ramp Generic The performance and efficiency of the CPS are exponentially reduced as the processing time linearly increases (Smith
and Williams, 2002b). This type of performance issue can occur in CPS for various reasons, such as changes in the
environment or processing a large amount of historical information (Smith, 2020).

Museum Checkroom Generic A CPS uses a simple First Come First Serve (FCFS) queue to manage resource allocation to processes (Bondi, 2014).
This can lead to performance issues in cases where this resource management system needs to handle too many
processes. To resolve it, CPS developers should implement priority queuing.

Falling Dominoes Generic A failure of a module leads to more failures in other modules (Smith, 2020). Since CPSs includes many small
interacting hardware pieces with various software modules, this common antipattern can also occur in a CPS.
Developers must ensure that modules are as isolated as possible to prevent this antipattern from occurring.
2.3. From automatic detection of performance issues to CPS-PAs

Performance issues in a system can e.g., negatively impact its se-
curity (Wu et al., 2016; Ashibani and Mahmoud, 2017) and usabil-
ity (Shackel, 2009). Therefore, detecting performance problems has
been of interest among researchers (Velez et al., 2021), from research-
ing Machine Learning methods for performance prediction (Kaltenecker
et al., 2020) to the creation of several tools to aid in detecting per-
formance issues earlier on. Some of the available tools are: (i) Per-
formanceHat (Cito et al., 2018) (This tool aids to bring awareness
to development choices and its impact on performance.) and (ii) Tod-
dler (Nistor et al., 2013) (An automated oracle to detect redundant
and inefficient use of loops, causing unnecessary performance degrada-
tion.). Applying performance models for analysis is a popular research
area, examples of different approaches in this field are: (i) detecting
performance regression using the system’s history (Mühlbauer et al.,
2019), and (ii) the interactions between configurations options towards
performance (Velez et al., 2021). Research into the different model-
ing options also resulted in the creation of PUMA (Woodside et al.,
2005), a tool architecture aiming to bridge the different available
design- and performance tools. In another work, Pinciroli and Tru-
biani investigate how architectural patterns in cyber–physical systems
can influence different performance metrics, e.g., the system response
time (Pinciroli and Trubiani, 2021). Their approach relies on stochastic
performance models and enables software architects to quantitatively
evaluate architectural patterns in terms of performance.

As manually detecting antipatterns is tedious, time-consuming, and
requires expert developers (Veliolu and Selçuk, 2017; Maiga et al.,
2012), automatic detection of antipatterns has also become a popular
research topic. Multiple approaches have been proposed in the litera-
ture to identify generic performance antipatterns, such as approaches
based on first-order logic representation (Cortellessa et al., 2014),
decision trees (Wert et al., 2013), multivariate analysis (Avritzer et al.,
2021), and load testing (Trubiani et al., 2018). Examples of tools
that have been created to automatically detect antipatterns are: (i)
DECOR (Moha et al., 2010) (Detects antipatterns such as The Spaghetti
Code and The Blob antipatterns) and (ii) PMD (PMD, 2023; Schügerl
et al., 2009) (A static code analyzer that can be used to detect Code
Duplication and the Leak Collection antipattern).
3

To the best of our knowledge, a recent article by Pinciroli et al.
(2021) is the only study that focused on detecting CPS-PAs. The au-
thors modeled the performance antipatterns for CPSs that have been
introduced by Smith (2020), by utilizing queuing networks. Then,
their tool monitors the components’ states dynamically to identify the
performance antipatterns in the CPS’s operation.

While their focus is on dynamically identifying performance an-
tipatterns, we approach this detection with static analysis and rely on
the project’s historical development. Dynamic analysis can have the
benefit of getting a rich insight into the antipatterns impact on the
system’s performance. For the static analysis method, the code does
not need to be run, therefore it can provide faster feedback to the CPS
developers (Ernst, 2003).

3. Study I — Commit-message based search for performance an-
tipatterns

In our first study, we aim (1) to empirically investigate how
widespread the antipatterns from the existing catalog created by Smith
(2020) are, and (2) to potentially identify any previously undocu-
mented antipatterns across open-source CPS projects.

Our investigation is steered by the following two research questions:

RQ1: Which CPS-specific performance antipatterns can we identify in
open-source CPSs?

RQ2: How prevalent are CPS-specific performance antipatterns in open-
source CPS projects?

This section is structured as follows: first, we discuss the projects
selected for this study (Section 3.1), followed by a description of
how we searched for performance issues (Section 3.2), the analysis
(Section 3.3), and results (Section 3.4). We discuss the results from this
study in Section 4.

3.1. Subjects

To derive a taxonomy of antipatterns in CPS projects, we selected a
set of 14 open-source CPS projects hosted on GitHub. We selected these
projects based on the following criteria:
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Table 2
Projects selected for Study I.
Project name Language Nr. of commits Stars Forks Domain

PX4-Autopilot C++ 35,537 4.8K 11.3K Automotive
Andruino-esp32 C 1747 8.5k 5.4k Arduino
Grbl C 699 3.2k 1.4k Arduino
DroneKit Android Java 5810 211 217 Drones
Node AR Drone JavaScript 281 1.7K 446 Drones
Android App Manager Java 231 10 12 Robotics
Cylon JavaScript 1323 3.8K 367 Robotics
Johnny Five JavaScript 3355 12.4K 1.8K Robotics
Robonomics-JS JavaScript 68 13 8 Robotics
Robonomics-Contracts JavaScript 502 78 31 Robotics
Vacuum Robot Mark II Java/C++ 54 28 3 Wheeled Robot
TurtleBot C++ 1142 236 280 Wheeled Robot
TurtleBot 3 Python 526 770 637 Wheeled Robot
Valetudo JavaScript 1043 2.5K 258 Wheeled Robot
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• Relevance: the project must be related to a CPS domain, such as
robotics, drones, or automotive.

• Activity : the project must have a minimum of 50 commits as we
have to identify self-admitted performance issues. This lower limit
was chosen to be inclusive of less active projects while excluding
projects that did not use GitHub to track and resolve issues.

• Popularity : a selection of popular and less popular projects must
be made; We selected the two most popular projects in the CPS
domain, i.e., the projects with the most stars and forks; nine
relatively popular projects; and an additional four projects with
less than 100 stars, as we are interested in antipatterns that arise
independently of the maturity of a project. From the most and
least popular projects, one project with a high star rating and one
with a high fork rating was selected. For the less popular project,
we selected two additional projects as this category of projects
were shown to have a low number of commits. The other eight
projects are selected to range between the least and most popular
projects.

• Programming language: the project must be written in C, C++,
Java, JavaScript, or Python. While C, C++ are the most
common programming languages for CPS (Zampetti et al., 2022),
we also consider other programming languages to increase the
generalizability of our results. Therefore, the resulting selection
of projects must be a diverse selection of programming languages
used.

This resulted in 14 projects, which are described in Table 2. Notice
hat the projects written in C, C++, and Python have also been used
n a prior study (Zampetti et al., 2022) aimed at characterizing CPSs
ccording to the type of functional bugs/issues they contain. Our selec-
ion comprises projects with various maturity levels: PX4-Autopilot and
acuum Robot Mark II have the highest and lowest contributions, with
5,537 and 54 commits to the main branch, respectively. Furthermore,
hese projects reflect different applications of CPS, such as software for
ontrolling drones, vacuum cleaners, or small robot kits. Table 2 also
ndicates the number of stars and forks for each of the CPS projects.
he most popular projects in this dataset are Johnny-Five with 12.4K
tars and PX4-Autopilot with 4.8K stars. This diversity in projects aims
o ensure that we find antipatterns not specific to one CPS domain, a
rogramming language, or the maturity projects.

.2. Analyzing self-admitted performance issues

To build our taxonomy of antipatterns, we manually analyzed and
lassified self-admitted performance issues, i.e., issues related to per-
ormance aspects (e.g., memory usage) that are mentioned by the
evelopers in the commit messages, or source code changes and com-
ents. Our main methodology is, therefore, based on manual analysis

f structured (source code) and unstructured (commit messages) data,
hich we manually classified into categories of antipatterns.
4

a

There are two ways to build a taxonomy (Rowley and Hartley,
017): (1) top down (also called enumerative), where the categories
re predefined, or (2) bottom up (or faceted), where the categories are
reated by analyzing the data. Since we have a pre-existing catalog
y Smith and Williams (2002a), we used a hybrid approach: for every
ommit we analyzed, we checked if it matched any of the categories
n Smith’s taxonomy; in case of no match, we marked them and later
lustered them into new categories.

As reported in Table 2, there are 52,318 commits in total to analyze
cross all projects. Since manually analyzing all commits in our dataset
ould be infeasible, we combined (1) keywords search, (2) information

etrieval, and (3) topic modeling techniques to extract a subset of
ommits that are likely to contain performance-related issues. This
‘candidate’’ list of commits was then manually analyzed for validation
to check for their relevance) and classification (for the creation of the
axonomy).

The next subsections detail the steps of our methodology as well
s the semi-automated tools we employed to identify the relevant
ommits.

.2.1. Initial keyword selection
We relied on a keyword search to extract the list of candidate

ommits for the manual analysis. That is, we manually selected a set
f keywords likely to be used in performance-related issues, and we
earched for commits containing at least one of these keywords. We
reated an initial set of keywords based on the authors’ experience.
urther, we expanded the list of keywords by including keywords from
he literature related to embedded systems and performance, i.e., Smith
nd Williams (2002a, 2000). We then manually analyzed a sample
et of commits and added any keywords we also deemed relevant.
able 3 reports the resulting list of 22 keywords. These keywords
ere also validated with domain experts from the H2020 COSMOS
roject (COSMOS, 2021).

.2.2. Keyword set expansion with information retrieval and topic modeling
To ensure we gathered all performance-related commits from each

roject, we applied both Information Retrieval (IR) and Topic Modeling
TM) techniques to expand our initial keyword set.

Data preprocessing. For each project, we downloaded all commit
essages and code changes. Then, we pre-process these artifacts by

okenizing the commit message, removing stop words, and stemming.
irst, tokenization aims to extract words in the text and remove non-
elevant characters, such as punctuation marks, special characters, and
umbers (Panichella, 2019). As commit messages can contain code
nippets, we split compound names (i.e., identifiers) into tokens using
amel case and snake case splitting (Panichella et al., 2016). For exam-
le, the method name get_data will be split into the two tokens get
nd data.
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Table 3
Keywords in our initial steps along with their description.

Keywords Explanation

performance, runtime As the focus of the research is performance, the keywords ‘performance’ and ‘runtime’ link directly to
any commit that is related to this area.

slow, slower, slowing, fast, faster, increase, decrease These adjectives are used to indicate a change in the commit in the described way. This could
indicate a performance improvement or decrease.

memory, memory-heap, memory-leak, memory leak, bottleneck,
overhead, deadlock, livelock, infinite, speed, impasse, hang, stuck

These keywords are chosen based on previous experience, books regarding performance, and found
during the analysis phase.
We further applied stop-word list and function to remove words that
do not contribute to the semantic content of the analyzed text (De Lu-
cia et al., 2013; Panichella et al., 2015). The former is a list of
generic words (i.e., prepositions, articles, auxiliary verbs, and adverbs)
that are commonly found in any text, thus, not providing any useful
information. Our stop-list includes the standard list for the English
language (Panichella et al., 2015), plus a list of words that are specific
to the programming languages (i.e., reserved keywords like class in
ava). The stop-word function instead removes words that are too
hort (De Lucia et al., 2013), i.e., that contain less than three characters.

Finally, we applied stemming algorithms to reduce the words to their
oot form. To this aim, we used the Porter stemming algorithm (Porter,
980).

Topic modeling. To better understand the context in which the
eywords are also used, we also applied topic modeling (Blei et al.,
003; Panichella, 2019), specifically Latent Dirichlet Allocation (LDA),
o each project separately. Fig. 1 depicts the overall process. Given a
oftware project A 1⃝, we apply LDA 2⃝ on all commit messages after
he pre-processing steps described above.

LDA requires setting three hyperparameters, namely 𝛼, 𝛽, and the
number of topics 𝑘 (Blei et al., 2003). For this study, we performed
unsupervised hyper-parameter tuning using genetic algorithms based
on the silhouette coefficient, as suggested by literature (Panichella
et al., 2013; Panichella, 2019). The resulting parameter values are as
follows: 𝑘 = 20, 𝛼 = 0.5, and 𝛽 = 0.2. To address the probabilistic nature
f LDA, we ran Gibb’s iterative process 10 times with different random
eeds (Panichella, 2019). Therefore, the topics obtained are the average
cross the repetitions. The topic modeling returned a list of 20 topics
er project, each containing 20 words 3⃝ that are statistically related

to one another according to LDA.
Using this methodology, we could quickly analyze each project’s

topics and words that might be of interest for further analysis. We
reviewed each word 4⃝ and identified words that are related to per-
formance issues. These words were then added to the list of keywords
for the next step of the methodology.

While we started with an initial set of 22 keywords, this procedure
led us to add 28 additional keywords after applying stemming. This
means that keywords like ‘‘time’’ will be used to represent all words (in
the commit messages) with the same root, such as ‘‘timing ’’, ‘‘timed’’,
‘‘timer ’’, and so on.

For the sake of brevity, we do not report the full list of keywords in
this paper. However, interested readers can find the list of keywords in
our online appendix (van Dinten et al., 2023).

3.2.3. Extraction of candidate commits
The keywords from the previous steps have then been used to

extract commits that should be manually analyzed. To this aim, we cre-
ated the tool PyRock. It mines the history of a Git project and returns
all commits whose message contains one of the targeted keywords.
Fig. 2 visualizes the tool’s architectural design.

PyRock requires two input parameters: (1) the repositories list and
(2) the local/remote flag. The former is a list of repositories on which
we want to perform the automated code history analysis. The latter
parameter indicates whether the repositories are available locally or
PyRock needs to fetch them remotely. For the local mode, the user
5

Fig. 1. Topic-Modeling process.

Fig. 2. PyRock Architecture.

also needs to provide the directory in which the local repositories are
stored.

These user inputs are first validated by PyRock’s Validate module
(see 1⃝ in Fig. 2). This module checks that the user has indicated which
mode (local/remote) to run and which repositories to analyze. In local

mode, PyRock will only check locally stored repositories; in remote
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mode, PyRock will only check remotely located repositories. Further,
t is possible to run PyRock with one or a full list of repositories.

After verification, PyRock selects each repository with the Reposi-
ories Selection module, see 2⃝ in Fig. 2, for initiating the next step. In
ocal mode, this module validates the input data and checks whether
he given repositories’ location contains the projects presented in the
epository list. In remote mode, it checks whether the repositories’
emote addresses are reachable.

To mine the history of the repositories ( 3⃝ in Fig. 2), PyRock
tilizes PyDriller (Spadini et al., 2018), a commonly used open-source
ython framework for mining Git repositories. PyRock passes the
nformation to PyDriller regarding each repository one at a time.

In the next step, the commit messages returned by PyDriller are
assed through the Match module, see 4⃝ in Fig. 2. This module utilizes
keyword file containing a list of keywords that could indicate a

otential performance antipattern and formed using IR and TM as
escribed in Section 3.2.2. See Table 3 for the keywords used in this
nalysis. This module considers any commit message containing at
east one of the performance-related keywords as a candidate commit
or further analysis. Finally, this module stores and returns the list of
ollected candidate commits, which are then considered for manual
alidation.

.3. Manual analysis

As a result of the previous steps, we obtained a list of 2699 commits
otentially related to self-admitted performance issues. Out of these,
059 commits are related to the keywords in our initial set (see Sec-
ion 3.2.1). In contrast, the remaining 1640 commits are related to the
eywords found by applying information retrieval and topic modeling
echniques (see Section 3.2.2).

Two authors of this paper manually analyzed these commits inde-
endently following an open coding procedure. The authors followed
rigorous procedure to ensure the quality of the analysis, handling

otential conflicts and disagreements. In particular, each validator sep-
rately read and analyzed each commit by reading the commit message.
f a commit was unclear, the validators further analyzed the code
hanges, the associated issues, pull requests, and documentation when
eeded. This allowed us to: (1) identify and remove false positives,
2) check eventual matches with the existing catalog by Smith and
illiams (2000), and (3) identify self-admitted performance issues that

o not belong to any of the existing CPS antipatterns.
Therefore, our manual analysis process required to follow seven

teps as described below:

1. Check the commit message for the developer’s explanation of
what has been done.

2. Code changes in the commit. Can we find any of Smith’s (2020)
CPS antipatterns? Do we see other potential antipatterns?

3. Check if the commit is mentioned in any issue or pull request,
to understand if the changes are linked to any other changes.

4. In case it is relevant, read comments and notes mentioned
in the issues and pull requests. What were the design consid-
erations discussed in the comments? More information received
regarding the original issue?

5. Read the documentation of the changed classes to obtain more
information regarding the developers’ design considerations po-
tentially.

6. Analyze the final version of the file in the main branch to check
if the CPS developers modify/revert the changes in the commit
under analysis. This can reveal if the changes were accepted or
if other issues were found with the proposed solution.

7. In case it is relevant, read the documentation regarding the
software and hardware architecture of the projects under
analysis. To understand the reasoning for changes to the design
6

due to added hardware support.
To further increase the reliability of our analysis, two external
validators (students) who are not authors of this paper cross-reviewed
1025 (38%) randomly sampled commits. This sample size was deter-
mined using power analysis (Triola et al., 2006), leading to a confidence
evel of 99% and a margin of error below 3.2%. The overall agree-
ent among the validators was 93.88%. In case of disagreements, the

alidators discussed the reasons for the disagreement and reached a
onsensus on whether the commit should be considered a performance
ssue or not and whether it fits in the existing taxonomy or not. In total,
he manual analysis took 904 h, including the cross-review process and
isagreement resolution.

The complete list of commits analyzed and the results of the manual
nalysis are available in our GitHub project.1

3.4. Results

Table 4 reports the results of our manual analysis for the 2699
commits that are potentially related to performance issues. It reports
(1) the number of false positives (e.g., commits not actually related
to performance issues), (2) commits related to performance issues that
are further categorized based on the existing catalogs. In particular,
we clustered the manually-validated (true positives) performance issues
based on whether they are related to the antipatterns in the exist-
ing catalog by Smith and Williams (2002a) (columns marked with
1⃝), generic performance antipatterns that occur in both traditional

software and CPS as suggested by Smith (columns marked with 2⃝),
eneric antipatterns reported in the literature for traditional software
nly (columns marked with 3⃝), generic performance issues (columns
arked with 4⃝), and performance issues that do not match any of the

xisting antipatterns 5⃝.
As we can observe, the number of false positives (i.e., commits not

elated to actual performance issues) is quite high, being 75.06% on
verage. This result was expected since some keywords (e.g., increase)
an be used in the commit message for different purposes, such as
ncreasing the number of features or increasing the waiting time for
oncurrency issues. However, we have kept ambiguous keywords in the
earch query to avoid missing relevant commits.

First and foremost, we can observe that performance issues are
idely common in the analyzed projects. Only four out of 14 ana-

yzed projects do not have any performance issues. The project with
he highest number of performance issues is PX4-Autopilot, with 653
erformance issues out of 1869 analyzed commits. Note that this
roject has the largest code history among all projects in our study.
evertheless, instances of performance issues can be found in the other
ine projects as well.

Finding 1. Self-admitted performance issues are widely-common in
71% of analyzed projects. Their frequency of occurrence in these
projects ranges from 2 up to 653.

With regard to the antipatterns, we could find instances of antipat-
terns by Smith in the selected projects. However, they are not the most
common, representing only 8 out of 770 performance issues identified
in our manual analysis. Generic performance issues (e.g., not specific
to CPS) cover in total 124 of the 770 performance issues. Finally, 638
performance issues (97.70%) are not covered by any of the existing
catalogs within CPS and traditional software.

Finding 2. The existing catalog of antipatterns for CPS by Smith and
Williams (2002a) characterizes only 8 out of 770 performance issues
identified in our manual analysis.

CPS projects are often characterized by other performance issues
that are not specific to CPS projects and that occur in more traditional
software projects. The most common generic performance issues are

1 https://github.com/ciselab/CPS_repo_mining.

https://github.com/ciselab/CPS_repo_mining
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Table 4
Number of manually analyzed commits and their classification in false positives (commits not related to performance issues) and true positives. Please note that there can be more
than 1 performance issue per commit. The latter are classified based on the existing performance antipattern catalogs. The column Performance Issues To Further Analyze denotes
the performance issues that do not match any of the existing antipatterns.
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Android App Manager 231 7 85.71 – – 1 – – – – – – – – – – – – – – – – – 1 2
Arduino-esp32 1747 140 81.43 – – 1 2 – – – – – – – – – – 2 – – 1 – 8 15 29
Cylon 1323 21 100.00 – – – – – – – – – – – – – – – – – – – – 0 0
DroneKit Android 5810 99 88.89 – – – 1 – – – – – 1 – – 1 1 – – – – 1 – 6 11
Grbl 699 217 91.71 – – – 1 – – – – – – – – – – – – – – – – 26 27
Johnny Five 3355 147 89.12 – – – – – – – – – 2 – – – – – – – – – – 12 14
Node AR Drone 281 48 97.92 – – – – – – – – – – – – – – – – – – – – 2 2
PX4-Autopilot 35,537 1869 69.40 1 3 1 12 1 – – – – 2 – – 1 – 55 1 2 5 – 18 551 653
Robonomics-Contracts 502 7 100.00 – – – – – – – – – – – – – – – – – – – – 0 0
Robonomics-JS 68 0 0.00 – – – – – – – – – – – – – – – – – – – – 0 0
Turtlebot 1142 24 83.33 – 1 – – – – – – – – – 1 – – 1 – – – – – 1 4
Turtlebot 3 526 27 37.04 – – – – – – – – – – – – – – – – – – – – 21 21
Vacuum Robot Mark II 54 2 100.00 – – – – – – – – – – – – – – – – – – – – 0 0
Valetudo 1043 91 92.31 – – – – 1 – – – 1 – 1 – – – – – – – 1 – 3 7

Total 52,318 2699 75.06 1 4 3 16 2 0 0 0 1 5 1 1 2 1 58 1 2 6 2 26 638 770
related to unnecessary processing, memory, and network usage. How-
ever, they characterize only 16.10% of the total number of performance
issues.

Finding 3. 97.70% of the identified self-admitted performance issues
are not covered by any of the existing catalogs within CPS and
traditional software.

4. Extending the taxonomy of CPS antipatterns

Given the large percentage of performance issues that do not match
existing antipatterns, we manually analyzed these instances in order to
identify common patterns and characteristics. To this aim, two authors
(hereafter referred to as annotators) of this paper manually analyzed the
638 performance issues that remained unclassified after the first
manual analysis (see Section 3.3). Each annotator manually analyzed
each of the 638 performance issues by inspecting (1) the commit
message, (2) the code changes, and (3) the documentation of the source
software project (if available). The annotators were asked to identify the
main reason/cause for the performance issue and to provide a short
description of the antipatterns and the reason why it was identified. At
the end of this procedure, the two annotators compared their results,
discussed the differences, and agreed on a final classification.

The resulting classification is reported in Table 5. The table also
includes the occurrence of each category across all projects in our
study. In reporting our results, we distinguish between performance
issues and performance antipatterns based on the number of projects
in which their instances occur. We consider reoccurring performance
issue patterns confirmed as an antipattern if they are found in more
than two projects. This is critical to discriminate between issues specific
to a single project (project-specific) from issues that can occur in CPS
systems in general (common antipatterns). Instead, performance issues
that have a negative effect on the system but occur in only one project
are not considered a confirmed antipattern. Further studies are needed
to confirm whether these project-specific issues might be common in
other CPS systems or not.
7

Table 5
Number of instances of Potential new CPS-PA from the manually analyzed commits.
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Android App Manager – 1 – – – – 1
Arduino-esp32 8 5 1 1 – – 15
Cylon – – – – – – 0
DroneKit Android 2 1 1 2 – – 6
Grbl 14 9 1 2 – – 26
Johnny Five 4 6 – 1 1 – 12
Node AR Drone – 2 – – – – 2
PX4-Autopilot 363 122 51 4 10 1 551
Robonomics-Contracts – – – – – – 0
Robonomics-JS – – – – – – 0
Turtlebot – – – – – 1 1
Turtlebot 3 8 1 12 – – – 21
Vacuum Robot Mark II – – – – – – 0
Valetudo – 3 – – – – 3

Total 399 150 66 10 11 2 638

In the remaining parts of this section, we discuss six identified
performance issues: Magical Waiting Number, Hard Coded Fine Tuning,
Fixed Communication Rate, Bad Noise Handling, Rounding Errors, and
Delayed Sync with Physical Events. We discuss each of these identified
performance issues by providing (1) an explanation of the potential
antipattern, (2) providing an example found in the Git history of one
of the projects in our dataset, (3) discussing whether such an issue can
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Fig. 3. Magical Waiting Number, visualization of two hardware targets with different
durations needed to complete calculations.

be considered an antipattern, and (4) proposing a solution to mitigate
the issue.

4.1. Magical Waiting Number

This SPA refers to the lack of a proper waiting time in the CPS when
interacting with hardware. When the CPS sends a request or invokes
a module in the hardware, it needs to correctly estimate the time it
takes for the hardware to finish the task and, if applicable, return the
response. We detected many scenarios in our analysis in which the CPS
developers either (i) mistakenly did not consider adding a waiting time
when sending a request to hardware, or (ii) put a hard-coded incorrect
global value for the time it expected the hardware devices to respond.

Example. Fig. 3 shows a visualization of this potential antipattern.
Here, two different hardware targets are shown, each with a different
amount of time needed to complete their calculations. If only one
waiting time is manually set, no matter what type of hardware is used,
a waiting time of 10 s will be used for both of them.

From this example in Fig. 3, when used in combination with hard-
ware that could have handled a one-second waiting time, there is
a nine seconds unnecessary delay. This could slow down the system
in multiple ways, for example: the information from the hardware
arrives slower than it could, resulting in other processes waiting for this
information before continuing. As another example, a thread could be
blocked, waiting for this information for an unnecessary duration. De-
pending on how often this information from the hardware is required,
the system’s performance will be more heavily influenced.

As an example, a reported issue in the Valetudo project2 exposes a
bug in which sending a request to the Viomi robot vacuum cleaner3 to
hange the time zone, takes the entire connection between the robot
nd the controller down. The root cause of this performance bug is
he little timeout considered by the CPS to complete the setting time
one task. According to the discussions about this bug in the Valetudo
epository,4 this task can take about 10 s. Hence, as presented in Listing
, this bug is fixed by increasing the timeout to 12 000 ms.

1 this.sendCommand( " get_prop " , [ " timezone " ],
2 {timeout: 12000}).then((res) => {
3 if (res.length > 0) {
4 const timezone = res[0];
5 if (timezone !== 0) {
6 // Set timezone to UTC

2 https://github.com/Hypfer/Valetudo/issues/799.
3 https://www.viomi.com.
4

8

https://github.com/Hypfer/Valetudo/pull/806. 9
7 this.sendCommand( " set_timezone " ,
[0],

8 {timeout: 12000}).then(_ => {
9 Logger.info(

10 " Viomi timezone adjusted to
UTC " );

11 });
12 }
13 }
14 });

isting 1: Code snippit of a commit that added a timeout to fix an issue
hat was causing the connection to be broken.

As one commentator replied in the discussion ‘If this is an ac-
ual timeout could we move this hardcoded 12 000 value somewhere into
onfig.json?’,5 we recommend this as the first step to mitigate this
ntipattern. In such a configuration file, the timeout could be made to
eflect the different hardware architecture if there is a need; see Listings
and 3.

1 const currentArchitecture = "
architectureOlderVersion " ;

2 const configArchitectures = require(’./config
.json’);

3 const durationTimeout = configArchitectures.
currentArchitecture.durationTimeout;

4

5 this.sendCommand( " get_prop " , [ " timezone " ],
6 {timeout: durationTimeout}).then((res) => {
7 if (res.length > 0) {
8 const timezone = res[0];
9 if (timezone !== 0) {

10 // Set timezone to UTC
11 this.sendCommand( " set_timezone " ,

[0],
12 {timeout: durationTimeout}).then(_

=> {
13 Logger.info(
14 " Viomi timezone adjusted to

UTC " );
15 });
16 }
17 }
18 });

Listing 2: Proposed solution in original code snippet.

1 {
2 " architectureOlderVersion " : {
3 " durationTimeout " : 120000
4 },
5 " architectureNewestVersion " : {
6 " durationTimeout " : 90000
7 }
8 }

Listing 3: Snippet of JSON file as part of the proposed solution.

Another proposed solution would be to receive a message when
the computation is ready. An example of this proposal can be seen in
Listing 4.

1 const setTimeZone = async () => {
2 const res = await sendCommand( " get_prop " ,

[ " timezone " ]);
3

4 if (res.length > 0) {

5 https://github.com/Hypfer/Valetudo/issues/799#issuecomment-
46773526.

https://github.com/Hypfer/Valetudo/issues/799
https://www.viomi.com
https://github.com/Hypfer/Valetudo/pull/806
https://github.com/Hypfer/Valetudo/issues/799#issuecomment-946773526
https://github.com/Hypfer/Valetudo/issues/799#issuecomment-946773526
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5 const timezone = res[0];
6 if (timezone !== 0) {
7 // Set up an event listener
8 const eventHandler = () => {
9 Logger.info( " Viomi timezone

adjusted to UTC " );
10 removeEventListener( " ready " ,

eventHandler);
11 };
12 addEventListener( " ready " ,

eventHandler);
13

14 // Set timezone to UTC
15 await sendCommand( " set_timezone " ,

[0]);
16 }
17 }
18 };

isting 4: Proposed solution containing an eventlistener to receive
message when ready. This example visualizes our second proposed

olution, but would require further adjustments in the codebase before
sage.

Is it a performance antipattern? As presented in Table 5, we
have detected Magical Waiting Number instances in 150 commits that
we have manually analyzed in this study. These commits are from
nine different projects: PX4-Autopilot, Valetudo, Johnny Five, Node
AR Drone, Grbl, Arduino-esp32, Android App Manager, DroneKit An-
droid, and Turtlebot 3. The projects are developed in four different
programming languages and used for various applications (e.g., control-
ling drones, vacuum cleaners, or robotic programming). Hence, given
that this kind of bad coding practice is frequently found in various
projects in our analysis, we consider Magical Waiting Number as a new
CPS-Performance Antipattern (PA).

Proposed solution(s) The refactoring solution should aim to as-
sign the waiting times dynamically according to the target hardware
module.

Magical Waiting Number
In short, the key property of this antipattern is: an added waiting time
to resolve an otherwise, potential, timing issue.

4.2. Hard Coded Fine Tuning

This potential antipattern occurs when a setting or value is manually
tweaked to improve the CPSs performance. In these cases, the result
of the software performance is verified by seeing the end result of
the change, rather than a calculated or documented reason. Making
a potential performance improvement with such a method can be a
slow process, as an adjustment to the same value is done over multiple
commits. We observed this antipattern based on the comments in the
connected issues and assumed from the changes made to the same
variable with the time/date of the changes.

Example. In PX4-Autopilot, we detected two linked commits6,7 where
multiple stack sizes are reduced to free up some memory, see also
Listings 5 and 6. However, one of the software modules in this CPS
(sdlog) needed that amount of memory. There is no test to ensure the
resources required by sdlog are upheld, and thereby, the build process
did not fail after this memory reduction, the developers noticed the
performance issue after implementation. These changes show that they
are tweaking the settings manually to see the results to free up some
memory.

6 https://github.com/PX4/PX4-Autopilot/commit/
b63a77edf78a198117757a1d5e2dbe34cde1263.

7 https://github.com/PX4/PX4-Autopilot/commit/
dd2715f84532f6c4c748cc97f0fe8a2982aa885.
9

8

1 deamon_task = task_spawn( " sdlog " ,
2 SCHED_DEFAULT ,
3 SCHED_PRIORITY_DEFAULT - 30,
4 2048,
5 sdlog_thread_main ,
6 (argv) ? (const char **)&argv[2] :

(const char **)NULL);

Listing 5: Example code: an adjustment was made to change the
memory stack size to 2048.

1 deamon_task = task_spawn( " sdlog " ,
2 SCHED_DEFAULT ,
3 SCHED_PRIORITY_DEFAULT - 30,
4 4096,
5 sdlog_thread_main ,
6 (argv) ? (const char **)&argv[2] :

(const char **)NULL);

Listing 6: Example code: the adjustment made to the memory stack
size was reverted back to 4096.

Is it a performance antipattern? As the examples show, manual
adjustments are not necessarily the most optimal setting for the system.
The process of manual adjustments does indicate that an adjustment
could positively impact the performance of the CPS. Outside of the area
of CPS, a similar phenomenon could be adjustments of stack size. The
reason we consider this antipattern as CPS specific, is the core challenge
with CPSs: their real-time response in a real environment. Every time
new hardware is added to the system, the hard-coded values need to
be fine-tuned to include the new hardware. With an increasing range of
hardware, the system needs to support, the constant adjustments could
become more difficult to manage.

As reported in Table 5, we detected 399 commits in our manual
analysis that strive to set the most optimum setting for the CPS. Given
these findings, we consider the Hard Coded Fine Tuning as a new
CPS-PA.

Proposed solution(s) The refactoring solution should aim to iden-
tify the values that have been tuned for each hardware argument,
before the subsequent releases. And adjust these values such that they
are easily adjustable based on the build target. Avoid having to use the
slowest setting for the list of supported targets.

Hard Coded Fine Tuning
In short, the key property of this antipattern is: hard-coded vari-
ables that would, potentially, need adjustment(s) if another hardware
support is added to the project.

4.3. Fixed Communication Rate

Many CPS projects contain multiple hardware modules working
synchronously together. These hardware modules need to communicate
with the minimum latency to make sure that the CPS performs as
expected. In these projects, the CPS developers should make sure that
this communication happens with the minimum latency to ensure the
performance and efficiency of the CPS. However, setting an excessively
high communication rate leads to a higher usage rate of resources (for
instance, higher energy consumption), which is especially unfavorable
for devices with limited energy resources (e.g., drones, robots, and
smart vacuum cleaners).

In our analysis, we detected cases where CPS developers set a fixed
communication rate between these devices and modules. In some other
cases, they set a limit for these communication rates. As we have seen,
for example, in a commit from PX4-Autopilot.8 Later, these developers
find scenarios where low communication rates negatively affect the
system’s performance.

8 https://github.com/PX4/PX4-Autopilot/commit/
1a4df0953e738041d9fdc2b2eb353a635f3003b.

https://github.com/PX4/PX4-Autopilot/commit/ab63a77edf78a198117757a1d5e2dbe34cde1263
https://github.com/PX4/PX4-Autopilot/commit/ab63a77edf78a198117757a1d5e2dbe34cde1263
https://github.com/PX4/PX4-Autopilot/commit/edd2715f84532f6c4c748cc97f0fe8a2982aa885
https://github.com/PX4/PX4-Autopilot/commit/edd2715f84532f6c4c748cc97f0fe8a2982aa885
https://github.com/PX4/PX4-Autopilot/commit/81a4df0953e738041d9fdc2b2eb353a635f3003b
https://github.com/PX4/PX4-Autopilot/commit/81a4df0953e738041d9fdc2b2eb353a635f3003b
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Example. In the DroneKit Android project architecture, Android de-
vices need to communicate with drones for controlling purposes. In this
project, the CPS developers set a default communication rate between
the Android device and the drone. However, they noticed that this
default rate is not enough when the user enters the tuning screen.
Hence, in one of the commits,9 they implemented a dynamic procedure
to increase the communication rate when a user opens the tuning screen
and returns the rate back to default when they close it. See also Listings
7 and 8 for the code changes.

1 public static void setupStreamRates(
MAVLinkClient MAVClient ,

2 int extendedStatus , int extra1, int
extra2, int extra3,

3 int position, int rcChannels , int
rawSensors , int rawControler) {

4 requestMavlinkDataStream(MAVClient ,
5 MAV_DATA_STREAM.

MAV_DATA_STREAM_EXTENDED_STATUS ,
extendedStatus);

isting 7: Code snippet as part of the changes made (by the developers
f the project) to adjust the communication rate when the user is in the
uning screen. Filename: MavLinkStreamRates.java

20 public class TuningFragment extends Fragment
implements OnTuningDataListner {

21

22 private static final int NAV_MSG_RATE = 50;
23 private static final int CHART_BUFFER_SIZE

= 20*NAV_MSG_RATE; // About 20s of data
on the buffer

. . . ...
63 @Override
64 public void onStart() {
65 super.onStart();
66 setupDataStreamingForTuning();
67 }
68

69 private void
setupDataStreamingForTuning() {

70 // Sets the nav messages at 50Hz and
other messages at a low rate 1Hz

71 MavLinkStreamRates.setupStreamRates(
drone.MavClient , 1, 0, 1, 1, 1, 0, 0,
NAV_MSG_RATE);

72 }
73

74 @Override
75 public void onStop() {
76 super.onStop();
77 MavLinkStreamRates.

setupStreamRatesFromPref((DroidPlannerApp
) getActivity().getApplication());

isting 8: Code snippets as part of the changes made (by the developers
f the project) to adjust the communication rate when the user is in the
uning screen. Filename: TuningFragment.java

Is it a performance antipattern? As is shown in Table 5, we
detected 66 commits in our manual analysis that strives to tackle the
fixed communication rate. We identified this performance issue in five
projects: (i) DroneKit Android (implemented in Java), which provides
a framework for developing applications for Android devices to control
drones, (ii) PX4 Autopilot (implemented in C++) that enables the

9 https://github.com/dronekit/dronekit-android/commit/
c9d9bc08147b0952eba4b6ef28701641a99bb21.
10
automated and manual control of moving devices such as multi-copters,
small airplanes, airships, balloons, rovers, boats, and even small sub-
marines, (iii) Arduino-esp32, Arduino ESP32 core (implemented in
C), (iv) Grbl, Parallel-port-based motion control for CNC milling (also
implemented in C), and (v) Turtlebot 3, a wheeled robot written in
Python and C++. Given these observations, we consider the Fixed
Communication Rate as a new CPS-PA.

Proposed solution(s) The refactoring action should aim to ensure
that the communication rates between hardware components adapt
during the operation of CPSs according to the need for communication
between the components. However, when considering this proposed
refactoring, the CPU and, thereby, power consumption can possibly
be affected. It would be interesting for future work to investigate the
impact of implementing the proposed solution.

Fixed Communication Rate
In short, the key property of this antipattern is: a fixed communica-
tion frequency rate could cause performance issues when set too low,
or an unnecessary high energy consumption when set too high.

4.4. Rounding Errors

In some scenarios, CPSs contains software modules that perform
calculations related to the physical events (e.g., the exact angle of a
robotic arm or the location of a drone) in the project. These calculations
should have the highest precision for more accuracy and reliability to
prevent any threat to the safety of different processes in the CPS. For
instance, one of the known mathematical calculation errors that can
endanger the precision of the calculations is a rounding error in which
one of the numbers is altered to a type with fewer decimals (Wilkinson,
1994; Frechtling and Leong, 2015).

Examples. In our analysis, we found eight commits in which CPS
developers changed the number types in these calculations to increase
the calculation precision and prevent rounding errors. As an example, a
commit in DroneKit Android10 changes the types of numbers related to
the latitude, longitude, and altitude of the drone from float to double.
The message of this commit also indicates that this change is applied to
increase the precision of these numbers. At first sight, this bad practice
leads to functional issues. For instance, in this example, the miscalcula-
tion of the drone’s latitude, longitude, and altitude leads to problems in
how the CPS functions. However, it can also – indirectly – negatively
impact the performance of the CPS. For example, a miscalculation in
detecting the proper coordination for the landing of drones can trigger
other correcting processes (e.g., recalculating the right coordinate or
recalculating other metrics for landing in the new location), which are
energy and time-consuming.

Is it a performance antipattern? As presented in Table 5, we
identified ten instances of Rounding Errors in our manual analysis.
These instances are detected in five projects, two of which are for con-
trolling various types of drones: DroneKit Android and PX4 Autopilot
(implemented in C++ and Java). We also found Rounding Errors in
Arduino-esp32, Grbl, and Johnny Five (the first two are implemented
in C and the last one in JavaScript). As with these three projects, we
think that this type of antipattern can be found in any CPS containing
mathematical calculations for physical values (e.g., robotics and self-
driving cars). For example, depending on the compiler and hardware
used, there is a difference in precision and range for using a float (Kel-
ley and Pohl, 2006). Some systems compensate for the functional errors
with correction actions; these are pure overhead and cause performance
issues or potentially crash the system. Given these findings, we consider
Rounding Errors as a new CPS-PA.

10 https://github.com/dronekit/dronekit-android/commit/
e29a5fde6f5c871ce956ffe6659e8b34f3d8a5b2.

https://github.com/dronekit/dronekit-android/commit/2c9d9bc08147b0952eba4b6ef28701641a99bb21
https://github.com/dronekit/dronekit-android/commit/2c9d9bc08147b0952eba4b6ef28701641a99bb21
https://github.com/dronekit/dronekit-android/commit/e29a5fde6f5c871ce956ffe6659e8b34f3d8a5b2
https://github.com/dronekit/dronekit-android/commit/e29a5fde6f5c871ce956ffe6659e8b34f3d8a5b2
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Proposed solution(s) Assure that the types of variables do not
ntroduce rounding errors for the values passed to the hardware-related
ethods. For example, review all number types (e.g., int, double, and

loats) used in hardware-related code to verify that the appropriate
recision is used.

Rounding Errors
In short, the key property of this antipattern is: using insufficient/in-
correct data types for high-accuracy calculations.

4.5. Delayed Sync with Physical Events

This issue refers to scenarios in which the CPS does not notify
running software processes and threads when an unexpected physical
event occurs. We detect two cases in our analysis that expose this
performance issue.

Examples. We detected this performance issue in TurtleBot and the
X4-Autopilot project. TurtleBot is a personal multi-functional robot
it with different input and output ports, including a USB port for
onnecting it to other controlling devices. In the detected issue, the
river node for communicating via this USB port is not notified and
s stopped if the USB connection is disconnected. In this scenario, if
he user plugs in another device, the driver node considers the new
evice as the previous one. This issue is fixed in one of the commits we
anually analyzed in this study.11 This commit assures that the driver

node fast-fails when the USB device is disconnected. This change also
ensures that the driver node does not mistakenly detect and re-associate
with a newly plugged-in USB device as the previous USB device.

Is it a performance antipattern? Since we identified two instances
of this issue in our analysis (see Table 5), we cannot confirm if this
performance issue commonly occurs in CPSs. Hence, for now, we do
not consider Delayed Sync with Physical Events as an antipattern.

4.6. Bad Noise Handling

Several hardware devices contain sensors that require software-
based noise-handling techniques to collect accurate data, as the input
collected from these devices can be noisy. However, in some situations,
the noise-handling techniques are not efficient, which entails that the
CPS needs to collect more data to increase the accuracy, but this
also leads to an increase in I/O resource consumption. Similar to
the previous section, we detected this performance issue in only two
projects. There were a total of ten instances found across these two
projects.

Examples. We detected this performance issue in PX4-Autopilot and
the Johnny Five project. The Johnny Five project is a JavaScript
robotics programming framework working with various hardware. This
project handles the noises by selecting the median value collected from
sensors. However, by looking at the changes in the code history of this
project,12 we noticed that the implemented median calculation was not
efficient enough. One of the commits13 in this project improves the
noise handling procedure with a faster and more stable technique.

Is it a performance antipattern? Similarly to the previous perfor-
mance issue, the Bad Noise Handling is detected in only two projects
in our analysis. Therefore, we currently cannot confirm that this per-
formance issue is common enough to be considered an antipattern.

11 https://github.com/turtlebot/turtlebot/commit/
2d46b705722b61948313e3f2ec167dcaeeb3359.
12 https://github.com/rwaldron/johnny-five/pull/138.
13 https://github.com/rwaldron/johnny-five/commit/
11

3541a70d7767e52fb9aa67b32d9f32669abf45f.
Table 6
Order of CPS-PAs occurrences detected in our study.

Antipattern Occurrence Of total CPS-PA
occurrences

Hard Coded Fine Tuning 399 63.03 %
Magical Waiting Number 150 23.70 %
Fixed Communication Rate 66 10.43 %
Rounding Errors 10 1.58 %
Is Everything OK 4 0.63 %
Where Was I 3 0.47 %
Are We There Yet 1 0.16 %

Total 633

4.7. Discussion

There is a notable relationship between the Magical Waiting Num-
ber, Hard Coded Fine Tuning, and Fixed Communication Rate antipat-
tern, as they relate to possible occurrences in which multiple tweaks
are necessary in order to – or attempt to – find the right value for the
system. From our observations, these tweaks seem to be the results of
feedback after running it on real hardware, not run in a simulation or
the results from unit- or integration-tests failures.

The main differences are the type of impact each has on the system.
The Magical Waiting Number antipattern reduces the benefits of using
faster components, potentially even crippling it by using out-of-date
information. Regarding the Fixed Communication Rate antipattern, it
impacts the balance between performance and energy consumption.

The Hard Coded Fine Tuning antipattern’s main aspect is the hard-
coded values that have the potential to undergo – or have already been
undergoing – changes in order to attempt to optimize performance,
which would have an impact on multiple aspects of the system. These
are not related to the timing of hardware components (such as the
Magical Waiting Number antipattern), or the frequency of communica-
tion (as is with the Fixed Communication Rate antipattern). But these
smaller tweaks are due to, for example, stack memory usage.

These differences between the antipatterns and their impact, led
us to the decision to have these as separate CPS-PAs, rather than
subsections of a single antipattern.

4.8. Revisiting RQ1 and RQ2

Summarizing the discussion of each identified CPS-PA and results,
we noted the occurrence of four previously undescribed CPS-PAs and
three from Smith (2020) (RQ1). Of these CPS-PAs, the Hard Coded
ine Tuning antipattern is the most prevalent with 63.03% of the
otal number of CPS-PA occurrences, followed by the Magical Waiting
umber antipattern with 23.70%. A short overview of the detected
PS-PA is shown in Table 6 (RQ2).

5. Study II – automated detection of the new CPS antipatterns

As we have seen in previous studies (Smith and Williams, 2000;
Moesus et al., 2019), antipatterns can negatively impact a system’s
performance and stability. Informing the developer of existing antipat-
terns in their system gives them the ability to resolve the issues (Aleti
et al., 2018; Calinescu et al., 2017), and therefore possibly improve the
software’s code quality (Gamma et al., 2009), performance (Trubiani
et al., 2014), and stability (Smith and Williams, 2002a).

In this section, we propose a novel approach to statically detect the
two most frequently occurring CPS-PA from our Study I (see Section 3),
in particular, the Magical Waiting Number and Hard-Coded Fine Tuning
antipatterns. We focus on these two antipatterns since they represent
the large majority (71.30%) of the instances of performance issues we
have identified in Study I (see Tables 4 and 5) and CPS-PA occurrences
(86.73%).

https://github.com/turtlebot/turtlebot/commit/f2d46b705722b61948313e3f2ec167dcaeeb3359
https://github.com/turtlebot/turtlebot/commit/f2d46b705722b61948313e3f2ec167dcaeeb3359
https://github.com/rwaldron/johnny-five/pull/138
https://github.com/rwaldron/johnny-five/commit/d3541a70d7767e52fb9aa67b32d9f32669abf45f
https://github.com/rwaldron/johnny-five/commit/d3541a70d7767e52fb9aa67b32d9f32669abf45f
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To detect these two antipatterns, we rely on static analysis rather
than dynamic analysis as done by Pinciroli et al. (2021). Our choice
is due to the fact that static analysis is faster since it does not require
re-running the code on the hardware or in a simulated environment,
nor the test cases, which are usually very expensive to run (Birchler
et al., 2022, 2023). Furthermore, it does not require to re-build old
releases of the CPS systems, which can be very challenging due to
obsolete hardware, dependencies, and libraries (Hassan et al., 2017;
Zaidman et al., 2008, 2011; Khatami and Zaidman, 2023). However,
static analysis has limitations as it requires manually validating the
raised warnings and removing false alarms (Kharkar et al., 2022).

In this section, we first describe our approach for detecting Magical
Waiting Number and Hard Coded Fine Tuning (Section 5.1), and then
we evaluate against a benchmark (Section 5.2) of nine open-source CPS
projects not considered in Study I.

5.1. Our approach: AP-spotter

We have implemented two detection strategies for the Magical
Waiting Number and Hard Coded Fine Tuning patterns in our tool, AP-
potter. Details of these strategies are in the following subsections
Sections 5.1.1 and 5.1.2). Our tool employs rule-based static analysis
echniques to detect performance issues in CPSs. In contrast to dynamic
etection approaches, static analysis techniques do not require high
omputational effort to monitor the application during execution. See
ig. 4 for the software architecture of our tool.
AP-Spotter runs over a project (refer to 1⃝ and 3⃝ in Fig. 4) in

search of one specific antipattern ( 2⃝) at a time. It analyzes the project
directory and selects the source code files (such as C++ classes) that
are of interest for the specific antipattern under analysis. For instance,
for the Magical Waiting Number antipattern, AP-Spotter selects
the files that contain the wait() method or similar method/func-
tion calls for hardware–software communication and multiprocessing
(step 4⃝). Since we are interested in antipatterns at the source code
level, AP-Spotter skips modules related to Git, Azure, Docker files,
documentation, web pages, Gradle usage, tests, test data, examples,
and templates. After this selection process, AP-Spotter creates an
Abstract Syntax Tree (AST) using ANTLR4 (Parr, 2013) 5⃝. Then, it
analyzes the structure of the AST in search of the antipattern ( 6⃝- 7⃝)
or which it was run. Our tool is publicly available on GitHub.14

The parser used in this tool is specifically for C++ projects, but there
re parsers available for other languages. This tool has been designed
o process an Abstract Syntax Tree (AST) resulting from any parser;
hereby making it possible to be extended to other languages for future
esearch.

.1.1. Detecting Magical Waiting Number
As described in Section 4.1, the Magical Waiting Number antipat-

ern occurs when two events happen: (1) a software component sends
request to hardware, and (2) the software waits for a fixed amount

f time or does not wait at all to read the response from the hardware.
To detect this antipattern, we first identify source code files that

mport drivers for the hardware; hereafter, we refer to these files as
andidate files. We then check whether these two events described
bove occur using specific rules (regular expressions). An overview of
he method for detecting this antipattern is presented in Fig. 5. This
rocedure contains three phases and is repeated for each candidate
ile. The first phase involves identifying the requests sent to hardware,
n which the detector analyzes each file to determine if it has any
irect request to hardware. In the second phase, our detector identifies
aiting commands after sending the request, i.e., statically identifying
aiting commands such as sleep or timeout methods. Finally, our
etector analyzes the code history of the CPS to determine whether

14 https://github.com/ciselab/CPS_SPA_Detection_Tool.
12
Fig. 4. AP-Spotter.

the waiting time was both hard-coded and manually changed in prior
commits.

Identifying the requests sent to hardware (Phase 1 in Fig. 5) As
the first step, the detector checks if it can find at least one request to
the hardware in the given candidate file (condition 1⃝ in Fig. 5). The
command used for sending the request to hardware varies depending
on the language and the project. For instance, PX4-Autopilot, a well-
known open-source CPS for controlling drones, is implemented in
C++ and uses SerialLib15 for serial communication between modules,
or MAVLink16 to communicate with MAVLink-based vehicles.17 We
designed regular expressions based on the documentation of these
libraries to find the send requests in a given source code file; in case of
a regex match, the file is considered as a candidate file to further check
for the presence of the Magical Waiting Number antipattern.

Suppose the detector cannot find any hardware request. In that case,
it assumes that it is not possible to find the Magical Waiting Number
in this file, stops the process, and continues with the next source code
file in the project repository. However, if it finds at least one request,
it enters the second phase of the detection procedure.

Identifying the waiting commands after the request (Phase
2 in Fig. 5) The second phase starts by searching for the waiting
command after the request to hardware (condition 2⃝ in Fig. 5). If it
cannot find any waiting command, it checks if the system uses any
method of detecting that the sent request has been finalized before
requesting the results (condition 3⃝ in Fig. 5). If it finds no method, the
detector identifies the request command as a Magical Waiting Number;
as the results might be read before it has completed the latest cycle
of gathering results. In contrast, the detector assumes that it is not an
antipattern if no usage can be found. If the detector manages to find any
waiting command in condition 2⃝, it checks the numeric value used
s the amount of time that the system needs to wait for the request

15 https://github.com/imabot2/serialib.
16 https://mavlink.io/en/.
17
 https://microsoft.github.io/AirSim/mavlinkcom/.

https://github.com/ciselab/CPS_SPA_Detection_Tool
https://github.com/imabot2/serialib
https://mavlink.io/en/
https://microsoft.github.io/AirSim/mavlinkcom/
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Fig. 5. General overview for detecting the Magical Waiting Number antipattern in CPS.

sent to the hardware (condition 4⃝ in Fig. 5). If a fixed hard-coded
alue is used, the detector enters Phase 3. However, if a variable is
sed to set the waiting time, it continues Phase 2 by finding the closest
tatement that assigns a value to this variable. Then, it checks whether
he assigned value is hard-coded (condition 5⃝ in Fig. 5). If the variable
s assigned dynamically, the detector decides that this pattern is not a
agical Waiting Number antipattern. However, if the value is assigned
hard-coded fixed value, the detection process enters Phase 3.

Analyze the code history (Phase 3 in Fig. 5) If the code under
analysis is still a potential antipattern (AP) according to Phase 2, we
start the last phase. The first condition happens when a hard-coded
fixed value is directly passed as the waiting time to the wait method
(true branch of condition 4⃝ in Fig. 5). The second condition regards
variables that are assigned to a hard-coded value and passed as the
waiting time (true branch of condition 5⃝ in Fig. 5). In both cases,
the detector checks if the hard-coded value used as the waiting time is
changed in the code history (condition 6⃝ in Fig. 5). If this hard-coded
value is changed, it shows that developers had to change the waiting
time because they either detected a physical event or a specific hard-
ware module that the previous waiting time was not suitable. Hence,
the detector considers it as the Magical Waiting Number antipattern.
However, if the hard-coded value is not changed in the code history,
we cannot be sure if there is any scenario in which the current hard-
coded value does not work, and thereby, the detector does consider it
as a potential antipattern.

5.1.2. Detecting Hard Coded Fine Tuning
Detecting this performance antipattern in CPSs requires (1) iden-

tifying the method calls that pass any numeric values to hardware
13

(e.g., requests, property setters, etc.); (2) checking whether the passed
Fig. 6. General overview for detecting the Hard Coded Fine Tuning antipattern in CPS.

numeric arguments are hard-coded in the code; and (3) checking if the
hard-coded value used for these arguments is changed in the project’s
code history. This antipattern can occur in any file; thus, we first
need to identify the code files of interest (same as the files used in
Section 4.2).

Fig. 6 illustrates the detection procedure for the Hard Coded Fine
Tuning antipattern. Similar to the detection procedure for Magical
Waiting Number, this detection method has three phases that can
be applied to each interesting code file. The first phase identifies
hardware-related methods, i.e., any request or method call passing
numeric values to hardware modules. The second phase analyzes input
arguments, where the detector analyzes each of the numeric input
arguments to hardware-related method calls and detects the ones that
are assigned from a hard-coded value. Finally, Phase 3 analyzes the
code history to check whether the hard-coded values are modified in
the CPS’s code history.

Identify hardware-related methods calls (Phase 1 in Fig. 6) In
the first step, the detector examines each of the lines of code in the
interesting files to detect any hardware-related method calls (e.g., re-
quests sent to hardware modules or method calls that set a value in
the property of hardware, etc.). This step is represented by condition
1⃝ in Fig. 6. Similar to detecting requests to hardware modules for

the Magical Waiting Number antipattern, if the detector knows the
library used for communication between software and hardware, or one
hardware module and another hardware component, it can easily detect

hardware-related methods, as it just needs to scan for the particular
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Table 7
Projects used with the detection tool AP-Spotter.

Project name Language Nr. of commits Stars Forks Domain

AirSim C++ 3523 13.2k 3.8k Automotive
Carla C++ 5439 7.8k 2.4k Automotive
Arduino C++ 4236 14.1k 12.5k Arduino
Arduino-IRremote C++ 684 3.6K 1.6k Arduino
ArduinoJson C++ 1553 5.7k 1k Arduino
RFID C++ 512 2.3k 1.3k Arduino
Ardupilot C++ 53,400 7.4k 12.8k Drone
CoppeliaSimLib C++ 375 57 28 Robotics
Ardumower C++ 1579 207 126 Wheeled Robot

methods. If the file under analysis does not contain any hardware-
related method calls, the detector assumes that it cannot find any Hard
Coded Fine Tuning antipattern in this file and continues the detection
process with the following interesting files. However, if the file invokes
at least one hardware-related method, the detection procedure for this
file enters Phase 2.

Analyze input arguments (Phase 2 in Fig. 6) For each of the
numeric input arguments passed to the hardware-related method call
that is detected in Phase 1, the detector inspects if the passed argument
is a hard-coded value (condition 3⃝ in Fig. 6). If this value is hard-
coded, the detector enters Phase 3. If the value passed as an argument
of the hardware-related method is a variable, the detector finds the
closest statement in the code that assigns a value to the variable. If this
assigned value is hard-coded (true branch of condition 4⃝ in Fig. 6),
the detector enters Phase 3. If assigned dynamically (false branch of
condition 4⃝ in Fig. 6, in short: no hard-coded value has been found
connected), the detector assumes that this case is not a Hard Coded
Fine Tuning antipattern. This comparison is done until all arguments
have been checked ( 5⃝ in Fig. 6). If no further arguments are available
and no antipattern has been detected (false branch of condition 5⃝
in Fig. 6), the detector concludes that there are no Hard Coded Fine
Tuning antipattern in this case.

Code history analysis (Phase 3 in Fig. 6) This section is similar to
the procedure explained for the Magical Waiting Number antipattern.
We examine the code history of the CPS to collect all the modifications
to the hard-coded values, which are passed to the hardware-related
method calls and requests (condition 6⃝ in Fig. 6). These hard-coded
values can be passed directly to the hardware-related method call or
assigned to variables that are passed later to these methods. If the
values are changed – the values within the method call –, it indicates
that developers found scenarios in which the hard-coded value was not
suitable (hence a Hard Coded Fine Tuning antipattern is detected). If
it was not changed, we cannot be sure if this value is not suitable for
all the possible scenarios in the operation of the CPS. Therefore, the
detector would indicate it as a potential antipattern.

5.2. Empirical evaluation

In this section, we evaluate the precision of the AP-Spotter
tool in detecting the Magical Waiting Number and Hard Coded Fine
Tuning antipatterns. Therefore, our second study is guided by our third
research question:

RQ3: How precise can our approach detect performance antipatterns?

5.2.1. Benchmark
To assess our tool, we have selected a set of 9 CPS projects that

were not previously used in Study I. This is because we want to avoid
any positive bias towards the projects we have manually analyzed to
identify the new antipatterns. In particular, we selected 9 projects,
14

whose statistics are summarized in Table 7. These projects differ in n
their sizes (number of commits, stars, and forks) and application do-
mains. All projects are developed in C++ (a constraint of our tool), are
open-source, and are publicly available on GitHub.

It is also worth noticing that six of these projects (i.e., Arduino,
Arduino-IR Remote, ArduinoJson, Carla, RFID, and Ardupilot), have been
used in a prior study aimed at classifying functional bugs in CPS (Zam-
petti et al., 2022). These projects have a high activity level and are
well maintained, these projects are known by the research community
as interesting projects to select when investigating code quality of CPS
systems.

Three additional projects are added to the list for analysis: (i)
AirSim, (ii) CoppeliaSimLib, and (iii) Ardumower. AirSim is a simulation
platform by Microsoft and used for AI research and experimenta-
tion (Shah et al., 2018), including assessing reinforcement learning
methods (Wei et al., 2019) and testing (Li et al., 2021). CoppeliaSim-
Lib is a library part of Coppelia Robotics (Coppelia Robotics, 2010),
its robotics simulation is i.a., of interest due to its physics engines
support (Farley et al., 2022) and known in the robotics community.
Ardumower is an open-source robotic project of interest in the DIY
community. This project has a lower popularity and number of com-
mits compared to some of the other projects selected. These projects
have been selected for their industrial usage, DIY community, machine
learning components, or popularity by researchers in their domain.

5.2.2. Study setup
To answer RQ3, we ran AP-Spotter on each project and collected

the files for which our tool indicates the presence of an antipattern
(hereafter called warnings). These warnings are potential antipattern
or antipattern instances, according to our approach. To assess the
detection precision, we manually validated the raised warnings con-
sidering (1) all commits (title, message, and code changes) related to
the file and statements for which the warning is raised, (2) the project
documentation, and (3) GitHub issues and pull-requests. This allowed
us to gain more information about the nature and rationale for the
applied changes.

For each project, the precision (1) is calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

where ‘TP’ is the number of true positives and ‘FP’ is the number of
false positives.

To assess the precision for each antipattern, we calculated the
weighted average precision (Min et al., 2002)(2) as follows:

𝐴𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑𝑛

𝑖=1(𝑇𝑃%𝑖𝑊𝑖)
∑𝑛

𝑖=1 𝐹𝑖
(2)

For the weighted average precision (𝐴𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑), the total number
of files of each project is taken into consideration; as a project with
a higher number of files, the ‘‘True positives’’ calculation would be
more accurate. The formula (2) is as follows: the sum of true positives
(𝑇𝑃%𝑖) times the project’s number of files (𝑊𝑖) as the weight. This is
then divided over the total number of files (𝐹𝑖), these are the sum of
iles of the projects where we have the precision calculated. A weighted
verage precision is used to balance the project’s size with the project’s
recision; for example, for the ‘Arduino-IRremote’ project in Table 8
Hard Coded Fine Tuning with # of Instances) the percentage of true
ositives is 100%, but the total number of files is 122. Therefore, we
ake this into lower consideration than ‘Ardupilot’ with a true positive
ercentage of 50.70% with 4515 files.

.2.3. Results
The total number of warnings that AP-Spotter raised for each

roject is reported in Table 8. In short, AP-Spotter detects the
agical Waiting Number antipattern in 3 projects, and the Hard Coded

ine Tuning antipattern in 4 projects.
For each project, the number of files containing warnings and the
umber of instances across these files are shown. In a number of files,
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Table 8
Projects analyzed with AP-Spotter and the number of antipattern occurrences found. Finally, the resulting Weighted Average Precision (Min et al., 2002) for each antipattern.

Hard Coded Fine Tuning Magical Waiting Number

Projects Total files # Files with TP Files # Instances TP Instances # Files with TP Files # Instances TP Instancesin project warnings warnings

AirSim 1450 0 – – – 7 3 (42.86%) 7 3 (42.86%)
Carla 1289 0 – – – 0 – – –
Arduino 1310 6 5 (83.33%) 9 8 (88.89%) 0 – – -
Arduino-IRremote 122 1 1 (100.00%) 1 1 (100.00%) 0 – – –
ArduinoJson 461 0 – – – 0 – – –
Ardumower 3350 4 3 (75.00%) 8 5 (62.50%) 0 – – –
Ardupilot 4515 59 26 (44.07%) 71 36 (50.70%) 5 3 (60.00%) 6 4 (66.67%)
CoppeliaSimLib 1289 0 – – – 4 3 (75.00%) 4 3 (75.00%)
RFID 68 0 – – – 0 – – –

Total 13 854 70 35 (50.00%) 89 50 (50.70%) 16 9 (56.25%) 17 10 (58.82%)

W. Avg. Precision 9297/7254 61.48% 60.98% 59.24% 63.39%
multiple instances of the antipattern are detected. For example, in the
Arduino project, the antipattern Hard Coded Fine Tuning is found in
6 files, with a total of 9 antipattern instances. We manually validated
each finding into true positives and false positives.

For the Hard Coded Fine Tuning antipattern, the sum of files is
9297. This result is the total number of files of the Arduino, Arduino-
IRremote, Ardumower, and Ardupilot projects combined. For the Mag-
ical Waiting Number antipattern, this sum of files is 7254. Based on
the total number of files from AirSim, Ardupilot, and CoppeliaSimLib.
These sum of files are used to calculate the weighted average precision
for each antipattern, see at the ‘W. Avg. Precision’ section in Table 8.

The total tool precision is also calculated using the weighted av-
erage precision calculation (Min et al., 2002); combining both the
results from Hard Coded Fine Tuning en the Magical Waiting Number
Instances results. This results in a total tool precision of 62.04%.

Examples of detected Hard Coded Fine Tuning antipattern instances
are: (i) changes to the target’s speed after test results18 and (ii) re-tuning
of the gyro sensitivity based on user-provided logs.19 These stood out
s their reasoning, as described in the commit message, clearly relates
o tweaking done after received feedback. Either by the community or
y test results. In the latter instance, it is unclear which stage of testing
as meant by the developer.

Further, examples from the detected Magical Waiting Number an-
ipattern instances are: (i) a hard-coded sleep duration, with no ex-
lanation regarding the chosen value, after started listening to Gazebo
opics20 and

(ii) relates to the support for multiple peripherals in the Software in
he Loop (SITL).21 A code snippet from this last example can be seen in
isting 9.

30 void SITL_State::wait_clock(uint64_t
wait_time_usec) {

31 while (AP_HAL::native_micros64() <
wait_time_usec) {

32 usleep(1000);
33 }
34 }

isting 9: ArduPilot SITL code-snippet.

18 https://github.com/ArduPilot/ardupilot/commit/
d392f8c0a74fa0ff603ae5283792cd335fcdfcb.
19 https://github.com/ArduPilot/ardupilot/commit/
3c4b163ce61a8d58651cb07e54bcfa0bbbdae44.
20 https://github.com/microsoft/AirSim/blob/main/GazeboDrone/src/
ain.cpp.
21 https://github.com/ArduPilot/ardupilot/blob/
9a0d8d0c0ff060f1ea9d85d6923bf70c1b15f8f/libraries/AP_HAL_SITL/SITL_
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eriph_State.cpp.
This code snippet shows the possibility of using a waiting function,
for which the duration can be given in microseconds. Even though this
function seems to support the possibility of requesting any duration in
microseconds, the waiting method always goes in steps of 1000 mi-
croseconds. This is not clearly described in the code or documentation.

5.2.4. Discussion and revisiting RQ3
In this section, we discuss the results of our empirical evaluation.
From our results, we can see that it is possible to automatically

detect the Hard Coded Fine Tuning (60.98%) and Magical Waiting
Number (63.39%) antipatterns, with a total tool precision of 62.04%
(RQ3). We also see a relatively high number of false positives. Review-
ing the results to investigate these false positives, shows that two main
challenges are causing these problems: (1) issues with building the AST,
and (2) the definition of these antipatterns require them to be closely
related to the hardware.

For the first point, regarding the AST, the AP-Spotter tool uses
an existing library to generate the AST. An incorrectly generated AST
will result in the AP-Spotter tool analyzing the information based
on an incorrect AST, resulting in a possible false positive. This could
be due to an issue in the library, or an edge case that the library does
not take into consideration (yet). For future research, we plan to re-
review these cases and provide assistance, in the form of pull requests
and issue creation, to the further development of the library.

The second point is related to the definition of these CPS-PAs.
They are closely related to hardware interaction with the rest of the
system. In our automatic detection approach, we describe that detecting
a hardware-related call is necessary; see Figs. 5 and 6. As this in
itself is a difficult challenge that requires insight into each project
and the libraries used, a more generic detection method will need to
be investigated in the future. For the AP-Spotter tool, a generic
approach was decided, which requires a pre-selection of interesting
modules to be made before running the AP-Spotter tool. This could
result in both possible false negatives and false positives. As we do
not have a catalog of antipatterns existing in the selected projects, we
cannot verify how many false positives are occurring.

5.2.5. Additional analysis
To further assess the performance of the AP-Spotter tool, we

conducted an additional analysis by running AP-Spotter on the
projects and commits we manually analyzed in Study I (Section 3).
Since AP-Spotter is designed to detect antipatterns for projects
written in C++ and the top two most frequent antipatterns, we focus
our analysis on the projects in Table 4 written in C++ and that contain
Hard Coded Fine Tuning and Magical Waiting Number antipattern. As
such, we ran our tool on PX4-Autopilot as it is the only project of
Study I that matched the requirements needed.

The dataset of the first study contains antipatterns on the commit

level. Therefore, we follow the following methodology:

https://github.com/ArduPilot/ardupilot/commit/dd392f8c0a74fa0ff603ae5283792cd335fcdfcb
https://github.com/ArduPilot/ardupilot/commit/dd392f8c0a74fa0ff603ae5283792cd335fcdfcb
https://github.com/ArduPilot/ardupilot/commit/53c4b163ce61a8d58651cb07e54bcfa0bbbdae44
https://github.com/ArduPilot/ardupilot/commit/53c4b163ce61a8d58651cb07e54bcfa0bbbdae44
https://github.com/microsoft/AirSim/blob/main/GazeboDrone/src/main.cpp
https://github.com/microsoft/AirSim/blob/main/GazeboDrone/src/main.cpp
https://github.com/ArduPilot/ardupilot/blob/09a0d8d0c0ff060f1ea9d85d6923bf70c1b15f8f/libraries/AP_HAL_SITL/SITL_Periph_State.cpp
https://github.com/ArduPilot/ardupilot/blob/09a0d8d0c0ff060f1ea9d85d6923bf70c1b15f8f/libraries/AP_HAL_SITL/SITL_Periph_State.cpp
https://github.com/ArduPilot/ardupilot/blob/09a0d8d0c0ff060f1ea9d85d6923bf70c1b15f8f/libraries/AP_HAL_SITL/SITL_Periph_State.cpp
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1. We gather all the commits in which the Magical Waiting Number
and/or Hard Coded Fine Tuning antipattern have been manually
identified.

2. We excluded commits not including/changing any C++ files.
3. We run AP-Spotter on the files that are in the remaining

commits.

To measure the performance of AP-Spotter, we used the recall
s we are interested in understanding how many of these manually val-
dated performance antipatterns it correctly detects. For completeness,
e compute recall for each antipattern separately as follows:

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

where 𝑇𝑃 indicates antipattern-related commits that AP-Spotter
correctly detects, while 𝐹𝑁 denotes antipattern-related commits that
our tool does not identify.

Total tool recall. Of the 1869 commits that are analyzed in Study
I, 403 commits contained at least one Hard Coded Fine Tuning or
Magical Waiting Number antipattern occurrence. From this selection
of commits (403 in total), 304 commits are related to C++ files, and,
thus, considered for evaluating our tool. These 304 commits contained
a total of 321 antipattern instances (both types); notice that a single
commit can contain files affected by both antipatterns.

Running the AP-Spotter tool resulted in finding the expected
antipattern in 316 commits (thus, they are true positives), with 5 false
negatives. Following the recall calculation in Eq. (3), this results in a
recall value of 98%.

Recall for each Antipattern. The recall for each antipattern is as
follows: (1) AP-Spotter reported 222 𝑇𝑃 and 2 𝐹𝑁 for Hard Coded
Fine Tuning, resulting in a recall of 99%; (2) AP-Spotter returned
99 𝑇𝑃 and 3 𝐹𝑁 for Magical Waiting Number, with a recall of 97%.

. Threats to validity

In this section, we review the threats to the validity of our studies
eparated by category.

To ensure the replicability of our studies, we provide the data
ollected during analysis and the tools created at https://github.com/
iselab/CPS_repo_mining for our first study, and https://github.com/
iselab/CPS_SPA_Detection_Tool for our second study. We also include
EADME.md files in these replication packages as a guide on how to
eplicate our studies.

.1. Internal validity

To select possible interesting commits for the first study, we se-
ected commits based on performance-related keywords. This is to find
eveloper-admitted performance issues and analyze these commits in
earch for possible antipatterns. This method relies heavily on the cho-
en keywords. To mitigate possible author bias in selected keywords,
e extended our set of selected commits by applying Topic Modeling

o the non-selected commits and adding relevant resulting commits to
ur data set. Further, these keywords were validated by domain experts
rom the H2020 COSMOS project (COSMOS, 2021). There is still a risk
f interesting commits being missed due to how the developers write
heir commit messages. In future research, we want to analyze the
rojects for Performance Antipatterns and review the keywords used
n their commit messages. Further, we want to research the possibility
f combining keywords for higher accuracy of gathering commits with
erformance issues.

For the second study, we manually validated each result of the
utomatic Detection Tool AP-Spotter. This method of validating

he results would only confirm true and false positives. Potential false
egatives that we are not aware of can still occur. One potential reason
ould be that the pre-selection criteria are too restrictive. This would
e overcome by having a benchmark project where all antipattern in
system are known. As far as we are aware, such a benchmark does

ot yet exist. In future research, we will create such a benchmark for a
16

mall system.
6.2. Conclusion validity

For the first study, we selected 14 projects. Extending the pool
of projects could potentially change the number of occurrences of
each antipattern and possibly confirm other potential antipatterns. We
mitigated this by having a broad and diverse selection of projects, but
for future research, it would be of interest to keep an eye on possible
occurrences of the potential antipatterns as described in this paper.

For the second study, we analyzed 9 projects, which differ from
those used in the first study. Only 3 projects showed warnings for
Magical Waiting Number and 4 projects for Hard Coded Fine Tuning.
Selecting a larger set of projects would give us a more accurate estimate
of the tool’s precision.

6.3. External validity

In the first study, we did not consider the age and current activity
level of each project. There is a possibility that the developers of older
projects were not aware of the existence of the SPA. Thereby, these
antipatterns could be more prevalent in older projects. The developers
of the newer projects, on the other hand, could have been aware of
the existence of these SPAs at the design stage of the project. Thereby,
these SPAs would not be occurring as often.

For the second study, the detection tool AP-Spotter analyzes the
urrent state of the project and the history of the file when detecting
otential antipatterns. As such, it could be that at some point in time
ntipatterns were present in the system, but were resolved before
he version that we analyzed. These antipatterns are not part of our
nalysis.

. Conclusion

Since the coinage of the term CPS in 2006 by Gill (2006), CPSs
ave increasingly become more part of our daily lives (Ashibani and
ahmoud, 2017; Okolie et al., 2018; DeFranco and Serpanos, 2021),

rom smart cars (Birchler et al., 2022) to medical devices (Chen, 2017).
his paper researches the occurrences of CPS Performance Antipatterns

n Open-Source projects on GitHub, further, it presents an approach
o detect the two most frequently occurring CPS-PA. The goal of this
aper is to aid developers in performance-demanding CPS projects and
ncreasing awareness of existing CPS-PAs.

We conducted two studies in this paper; first, we analyzed multiple
pen-source CPS projects to catalog the frequency of known CPS-
pecific antipatterns and search for unknown ones. In our second study,
e proposed an automatic detection approach for the two most fre-
uently occurring antipatterns, and we evaluated our approach against
set of different open-source CPS projects.

As we have seen from our results, we detected the following antipat-
erns in the open-source projects that we considered: (i) Hard Coded
ine Tuning, (ii) Magical Waiting Number, (iii) Fixed Communication
ate, (iv) Rounding Errors, (v) Is Everything OK, (vi) Where Was I,
nd (vii) Are We There Yet (RQ1). The most frequently occurring
ntipatterns are: (i) Hard Coded Fine Tuning (399 out of 646 occur-
ences), and (ii) Magical Waiting Number (150 out of 646 occurrences)
RQ2). Further, our automatic detection approach showed a precision
f 63.39% for Magical Waiting Number and 60.98% for the Hard Coded
ine Tuning antipattern. The main challenges for automatic detection
f these antipatterns are (i) building the AST, and (ii) detecting a
ardware connection in the modules (RQ3).

We hope that the AP-Spotter tool can be a starting point for
ractitioners and researchers to be used, extended, and adjusted for
he continuing effort of improving the overall performance and code
uality of CPSs.
This paper makes the following contributions:

https://github.com/ciselab/CPS_repo_mining
https://github.com/ciselab/CPS_repo_mining
https://github.com/ciselab/CPS_repo_mining
https://github.com/ciselab/CPS_SPA_Detection_Tool
https://github.com/ciselab/CPS_SPA_Detection_Tool
https://github.com/ciselab/CPS_SPA_Detection_Tool
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• PyRock: an open-Source mining repository tool to find commits
that are related to self-admitted performance issues based on the
commit message.

• A data set of 2699 potentially performance-related commits from
14 Open-Source projects.

• A catalog/taxonomy of new CPS-PAs identified through manual
classification and analysis of self-admitted performance issues.

• An approach for automatically detecting the two most frequent
occurring antipatterns, namely Magical Waiting Number and
Hard Coded Fine Tuning.

• AP-Spotter: An implementation of our proposed CPS-PAs de-
tection approach.

Replication packages for both studies are available openly on
GitHub.22,23 These replication packages contain the data collected
during the analysis and source code of the tools introduced in this
paper.

For future work, we want to conduct surveys and interviews with
the CPS developers to better understand why we see such a high
number of occurrences for each type of antipattern. Further, we would
like to see if an automatic detection tool for these antipatterns would
be helpful to the developers.
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