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Abstract: Frequency Response Matrix (FRM) estimation from measured data is an important step
towards the control of complex systems, including motion and thermal systems. Missing samples
in the measured data records, e.g., due to sensor failure or faulty data transmission, often occur.
In this paper, a method is presented for the nonparametric FRM identification of multiple-inputs
multiple-outputs (MIMO) systems from incomplete and noisy data records. The method exploits
time- and frequency-domain localizing wavelets to accurately estimate the FRM and its covariance
from the time-frequency plane. Good performance is demonstrated in a simulation study.
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1. INTRODUCTION

Nonparametric FRM identification from experimental
data is a crucial aspect in the design, control, and analysis
of dynamical systems. Particularly for highly complex sys-
tems, including closed-loop controlled MIMO motion and
thermal systems, FRM identification is considered simple,
fast, and accurate (Schoukens et al., 2009).
The handling of leakage errors is an important aspect in
nonparametric FRM identification. Among different FRM
identification approaches, including the spectral analysis
(SA) and empirical transfer function estimate (ETFE)
(Pintelon and Schoukens, 2012, Ch. 2), the Local Polyno-
mial Method (LPM) (Pintelon et al., 2010) is particularly
effective in handling leakage errors, by exploiting the fact
that leakage is induced by transient phenomena that ex-
hibit smooth frequency-domain characteristics.
In many practical cases, and especially for large MIMO
systems generating a large amount of data, the data cannot
be obtained uninterruptedly, which gives rise to missing
samples in the measured data record. Missing samples may
also originate from sensor or communication link failure
(Kar and Moura, 2009). The presence of locally missing
samples introduces a global perturbation in the frequency-
domain (Ugryumova et al., 2014), which complicates the
estimation problem.
Existing approaches to nonparametric FRM identification
with missing data aim at reconstruction of the missing
parts, and involve the estimation of additional parameters.
In Barbé et al. (2012), a spectrum reconstruction is per-
formed by estimating an additional transient contribution
per missing data part. In Schoukens et al. (2012), a similar
principle is applied in an extension of the classical LPM
framework. Since the number of estimated transients in-
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creases with the number of data gaps, the methods become
infeasible for an increasing number of data gaps.
Alternative reconstruction approaches consist in including
the missing samples as additional estimation parameters.
In Stoica et al. (2009), the missing samples are estimated
via an iterative spectrum reconstruction scheme, but the
approach is not formulated within a system identification
setting. In Ugryumova et al. (2014), the missing samples
are included as additional unknowns in an extended LPM.
The large-dimensional problem becomes intractable when
many missing samples are present.
Departing from reconstruction approaches, prior work
Dirkx et al. (2022, 2023) extends the LPM to an iden-
tification approach in the time-frequency plane, which
enables separating the effects of the missing samples in
the time domain from the system frequency response in
the frequency domain. The framework is limited to SISO
open-loop systems, and does not provide an quantification
of the estimation uncertainty.
Although important progress is made in FRM identifi-
cation, approaches for MIMO closed-loop controlled sys-
tems that can feasibly handle many or large missing data
parts are lacking. The aim of this paper is to present a
method for the nonparametric FRM estimation of closed-
loop controlled MIMO systems and their variance from
data records with missing samples, by extending upon the
results in Dirkx et al. (2022, 2023). Periodic excitation
signals are considered.
The main contributions of this paper are:

1. An extension of the wavelet-based LPM for FRM
estimation from incomplete data in Dirkx et al. (2022,
2023) to MIMO systems operating in closed-loop,

2. A procedure for estimating the covariance in the
estimated FRM from incomplete data,

3. A validation of the techniques in a simulation study.
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Notations Operations xF = X and XH = x denote the
Discrete Fourier Transform (DFT) of x and the inverse
DFT (IDFT) of X, with F and H the DFT and IDFT ma-
trix (Pintelon and Schoukens, 2012, Ch. 2), respectively.
Operator ⊗ denotes the Kronecker product. For a vector-
valued X, operation [X]n selects the n-th entry, whereas
for matrix-valued X operation [X]n,n selects the n-th
diagonal entry. Zero-based numbering is applied, unless
otherwise noted. Furthermore,

blkdg(X0, . . . , Xn−1) =



X0

. . .

Xn−1


 .

2. PROBLEM FORMULATION

2.1 FRM identification with missing data

Consider the closed-loop identification setup in Fig. 1,
whereG represents the ny×nu to-be-identified LTI system,

and C is a stabilizing LTI controller. Signal w[e] ∈ Rnu×NP

is an N -periodic excitation signal, for P ≥ 2 periods,
applied during an e-th identification experiment, where
e = 1, . . . , nu. The output y[e] is perturbed by noise ν[e],
characterized as a filtered random sequence.

The DFT of z[e] :=
[
u[e]T y[e]T

]T
is given by

Z [e](k) = Gz(Ωk)W
[e](k) + T [e]

z (Ωk) +N [e]
z (k). (1)

Herein, the transfer function Gz is given by

Gz : w �→ z :=

[
Gy

Gu

]
=

[
G
I

]
(I + CG)−1. (2)

The argument Ωk = e−1i·2πk/(NP ) is the discrete fre-
quency with k = 0, . . . , NP − 1. Term W [e] ∈ Cnu×NP

is the DFT of w[e]. Term T
[e]
z is the transient due to

the difference between the initial and the final system
conditions. The DFT of the noise contribution ν[e] onto
z[e] is governed by N

[e]
z (k) = N

[e]
zst(k) + T

[e]
h (Ωk), where

N
[e]
zst(k) = Hz(Ωk)E

[e](k) with Hz(Ωk) the monic noise
dynamics, E[e] is the DFT of a random noise realization,
and Th is the transient due to the difference between the
initial and the final conditions of the noise dynamics.

Suppose that a number of n
[e]
m samples is missing in the

measurement zm[e] of the output z[e]. Assuming that the
indices of the missing samples are known, the measurement
is expressed as zm[e] = z[e]M[e], where

[M[e]]n,n =

{
1 if sample n is available
0 if sample n is missing

, (3)

with n = 0, . . . , NP − 1. Also see Fig. 1.
Locally missing samples in the time domain have a global
impact in the frequency domain. This is evident from the
DFT of zm[e], given by

Zm[e] = Z [e]T m[e], (4)

where matrix T m[e] = HM[e]F becomes non-diagonal
when samples are missing. This implies that the principle
of frequency-separation is no longer valid when samples
are missing, which complicates the use of traditional FRM
estimation approaches that rely on this principle, including
SA, ETFE, and LPM (Pintelon and Schoukens, 2012).
The main goal of the method presented in this paper is to
generate an accurate nonparametric FRM of G(Ωk) in (2)
including its variance cov(vec(G(Ωk)) from the incomplete
closed-loop data zm.
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Fig. 1. Closed-loop identification setup with plant G, controller C.
Matrix M incorporates the structure of the missing samples.

2.2 Key idea: time-frequency plane LPM

The classical LPM (Pintelon et al., 2010) is an effective ap-
proach for nonparametric FRM estimation in the presence
of transients Tz, see (1). The main concept that is exploited
in the LPM is that the transient is a smooth function of the
frequency, and hence in a local frequency window it can
be described approximately by a linear-in-the-parameters
low order polynomial model. The LPM estimation consists
in solving the plant parameters Gz and the polynomial
coefficients via least squares minimization based on local
frequency-domain information. In Fig. 2(a), an example

of a DFT Z ( ) and the LPM estimate Ẑ ( ) is shown.
Herein, both the stationary response Gz(Ωk)W

[e](k) and
transient response Tz are accurately estimated.
When missing samples are present, the locality and
smoothness properties on which the LPM relies no longer
apply, recall (4), and hence the classical LPM no longer
provides a viable approach. This is exemplified in Fig. 2(b),
where the missing data is reflected by the DFT Zm ( ).
Clearly, the LPM estimate ( ) based on Zm is a poor
estimate of the underlying response Z ( ).
In this paper, this shortcoming of the classical frequency-
domain LPM is addressed by approaching the estimation
problem in the two-dimensional time-frequency plane. The
key point is that the time-frequency plane representation
enables characterizing the frequency response as function
of time. As such, it enables separating the effect of the
missing samples along the time dimension from the FRM
characteristics along the frequency dimension. This is il-
lustrated for the example data Zm in Fig. 2(c). Herein,
the effect of the missing samples is isolated in the part
( ) along the time axis. The time-frequency plane LPM
aims to estimate the FRM of G(Ωk) from the part in ( )
that is unaffected by the missing samples. The algorithm
is formalized in the next section.

3. TIME-FREQUENCY PLANE LPM

3.1 Regression model

The key idea of the method is to cast the estimation prob-
lem as a linear regression problem in the time-frequency
plane, that is insensitive to the missing data.
Consider the frequency-domain input-output relation (1),
and let the matrix Z be composed of the data of nu

experiments as Z =
[
Z [1], . . . , Z [nu]

]
. Matrices Zm, Tz, K̄,

and Nzst are structured likewise. Using that Zm = Z +
(Zm −Z), the regression model with missing samples is of
the form

ZmM̄ =
(
Θ̄K̄ + Ō +Nzst + (Zm − Z)

)
M̄. (5)

Herein, Θ̄ are the real-valued estimation variables that
describe the plant Gz and the plant and noise transient
T , and K̄ reflects the assumed model structure. Term Ō
contains higher order dynamics that are not encompassed
by the model structure in K̄. Explicit expressions for all
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Notations Operations xF = X and XH = x denote the
Discrete Fourier Transform (DFT) of x and the inverse
DFT (IDFT) of X, with F and H the DFT and IDFT ma-
trix (Pintelon and Schoukens, 2012, Ch. 2), respectively.
Operator ⊗ denotes the Kronecker product. For a vector-
valued X, operation [X]n selects the n-th entry, whereas
for matrix-valued X operation [X]n,n selects the n-th
diagonal entry. Zero-based numbering is applied, unless
otherwise noted. Furthermore,

blkdg(X0, . . . , Xn−1) =



X0

. . .

Xn−1


 .

2. PROBLEM FORMULATION
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The DFT of z[e] :=
[
u[e]T y[e]T

]T
is given by

Z [e](k) = Gz(Ωk)W
[e](k) + T [e]

z (Ωk) +N [e]
z (k). (1)

Herein, the transfer function Gz is given by

Gz : w �→ z :=

[
Gy

Gu

]
=

[
G
I

]
(I + CG)−1. (2)

The argument Ωk = e−1i·2πk/(NP ) is the discrete fre-
quency with k = 0, . . . , NP − 1. Term W [e] ∈ Cnu×NP

is the DFT of w[e]. Term T
[e]
z is the transient due to

the difference between the initial and the final system
conditions. The DFT of the noise contribution ν[e] onto
z[e] is governed by N

[e]
z (k) = N

[e]
zst(k) + T

[e]
h (Ωk), where

N
[e]
zst(k) = Hz(Ωk)E

[e](k) with Hz(Ωk) the monic noise
dynamics, E[e] is the DFT of a random noise realization,
and Th is the transient due to the difference between the
initial and the final conditions of the noise dynamics.

Suppose that a number of n
[e]
m samples is missing in the

measurement zm[e] of the output z[e]. Assuming that the
indices of the missing samples are known, the measurement
is expressed as zm[e] = z[e]M[e], where

[M[e]]n,n =

{
1 if sample n is available
0 if sample n is missing

, (3)

with n = 0, . . . , NP − 1. Also see Fig. 1.
Locally missing samples in the time domain have a global
impact in the frequency domain. This is evident from the
DFT of zm[e], given by

Zm[e] = Z [e]T m[e], (4)

where matrix T m[e] = HM[e]F becomes non-diagonal
when samples are missing. This implies that the principle
of frequency-separation is no longer valid when samples
are missing, which complicates the use of traditional FRM
estimation approaches that rely on this principle, including
SA, ETFE, and LPM (Pintelon and Schoukens, 2012).
The main goal of the method presented in this paper is to
generate an accurate nonparametric FRM of G(Ωk) in (2)
including its variance cov(vec(G(Ωk)) from the incomplete
closed-loop data zm.
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Fig. 1. Closed-loop identification setup with plant G, controller C.
Matrix M incorporates the structure of the missing samples.

2.2 Key idea: time-frequency plane LPM

The classical LPM (Pintelon et al., 2010) is an effective ap-
proach for nonparametric FRM estimation in the presence
of transients Tz, see (1). The main concept that is exploited
in the LPM is that the transient is a smooth function of the
frequency, and hence in a local frequency window it can
be described approximately by a linear-in-the-parameters
low order polynomial model. The LPM estimation consists
in solving the plant parameters Gz and the polynomial
coefficients via least squares minimization based on local
frequency-domain information. In Fig. 2(a), an example

of a DFT Z ( ) and the LPM estimate Ẑ ( ) is shown.
Herein, both the stationary response Gz(Ωk)W

[e](k) and
transient response Tz are accurately estimated.
When missing samples are present, the locality and
smoothness properties on which the LPM relies no longer
apply, recall (4), and hence the classical LPM no longer
provides a viable approach. This is exemplified in Fig. 2(b),
where the missing data is reflected by the DFT Zm ( ).
Clearly, the LPM estimate ( ) based on Zm is a poor
estimate of the underlying response Z ( ).
In this paper, this shortcoming of the classical frequency-
domain LPM is addressed by approaching the estimation
problem in the two-dimensional time-frequency plane. The
key point is that the time-frequency plane representation
enables characterizing the frequency response as function
of time. As such, it enables separating the effect of the
missing samples along the time dimension from the FRM
characteristics along the frequency dimension. This is il-
lustrated for the example data Zm in Fig. 2(c). Herein,
the effect of the missing samples is isolated in the part
( ) along the time axis. The time-frequency plane LPM
aims to estimate the FRM of G(Ωk) from the part in ( )
that is unaffected by the missing samples. The algorithm
is formalized in the next section.

3. TIME-FREQUENCY PLANE LPM

3.1 Regression model

The key idea of the method is to cast the estimation prob-
lem as a linear regression problem in the time-frequency
plane, that is insensitive to the missing data.
Consider the frequency-domain input-output relation (1),
and let the matrix Z be composed of the data of nu

experiments as Z =
[
Z [1], . . . , Z [nu]

]
. Matrices Zm, Tz, K̄,

and Nzst are structured likewise. Using that Zm = Z +
(Zm −Z), the regression model with missing samples is of
the form

ZmM̄ =
(
Θ̄K̄ + Ō +Nzst + (Zm − Z)

)
M̄. (5)

Herein, Θ̄ are the real-valued estimation variables that
describe the plant Gz and the plant and noise transient
T , and K̄ reflects the assumed model structure. Term Ō
contains higher order dynamics that are not encompassed
by the model structure in K̄. Explicit expressions for all
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(c) Time-frequency plane representation of the data
zm. The effect of the missing samples on the
frequency-domain characteristics is isolated in the ( )
part. The samples in ( ) are associated to the set D.

Fig. 2. Example of LPM estimation of Z(k) = G(Ωk)W (k) + Tz(Ωk) with and without missing samples.

variables in (5) are provided later. The key point of the
regression model (5) lies in the weighting matrix M̄ that
is employed to address the effect of the missing samples.
The following least squares estimator for (5) is considered:

ˆ̄Θ = �(ZmB̄K̄H)
(
�(K̄B̄K̄H)

)−1
, (6)

where B̄ = M̄M̄H . Consider the following result.

Theorem 1. (Dirkx et al. (2022)). Assume that Nzst = 0
and Ō = 0, such that the true system obeys Z = Θ̄K̄.

Then, the estimate ˆ̄Θ to (6) is exact, i.e., ˆ̄Θ = Θ̄, if:

i) (Zm − Z)M̄ = 0,
ii) K̄M̄ has full row rank.

Conditions i) - ii) in Thm. 1 formulate the essential
requirements for achieving an unbiased estimator of the
form (6) in view of the term (Zm − Z).
The conditions in Thm. 1 impose specific demands on the
selection of the parameters in (5). In the next sections,
explicit expressions for the matrix M̄ in (5) and the
parametrization {Kk̄j

,Θk̄j
} are presented.

3.2 Incorporating the time-frequency plane transform

The key point of the presented approach lies in selecting
the matrix M̄ such that the regression (5) is insensitive to
the term (Zm − Z). This is achieved by incorporating a
wavelet convolution to transform the data zm to the time-
frequency plane, by which the effect of the missing samples
is separated from the FRM of Gz in (1).

3.2.1. Wavelet convolution
The time-frequency plane representation is obtained by
convolving the data zm with a short-length oscillation,
denoted as the wavelet function ψj (Daubechies, 1990).

Definition 1. The circular convolution ξmj ∈ CNP of the
signal zm with the wavelet ψj is defined as

ξmj [n] := {zm� ψj}[n] :=
1

√
NP

NP−1∑
m=0

ψj [m] · zmNP [n−m]. (7)

where zmNP be the NP -periodic extension of zm ∈ R1×NP

and sample index n = [0, . . . , NP − 1].

By the convolution theorem, the transform ξmj obeys the
frequency-domain expression

ξmj = Zmdiag(Ψj)H, (8)

where Ψj is the DFT of ψj . Evidently, Ψj acts as a
frequency-domain window upon the data Zm. Hence, the

transform ξmj reflects the time-domain behavior of the
frequency components of Zm within the selected window,
and thus ξmj provides both time- and frequency-specific
information of Zm. This is exploited to make the effect
of the missing samples local in ξmj , which is achieved via
suitable selection of the wavelet. This is considered next.

3.2.2. Wavelet selection
The selection of a suitable wavelet function ψj is crucial
to obtain a transform ξmj in (7) that accurately reflects the
local frequency content of zm around the frequency line j,
and at the same time accurately localizes the effect of the
missing samples in the time domain. Perfect localization
in the two domains, however, cannot be simultaneously
achieved, as stated by the Heisenberg-Gabor uncertainty
principle, see e.g. Gröchenig (2001). Therefore, wavelet
selection involves a trade-off. In this paper, a type of
wavelet is considered that enables localizing the effect
of missing samples in the time domain, while achieving
accurate localization in the frequency domain.

Definition 2. (Dirkx et al. (2023)). Let j ∈ {N : j ∈
[0, NP − 1]}, and let δ ∈ {R : N/(2δ) ∈ N, δP ∈ N}.
Then, the wavelet ψ

[p]
j ∈ C1×NP , p ∈ N is defined as

ψ
[p]
j [m] = c[p]h[p][m] · e1i·2π

j
NP m, m = 0, . . . , NP − 1.

Herein, c[p] = (δ
√

P/N)p is a scaling constant and h[p] =
H(Fh)p, with superscript p the element-wise exponent.
Function h constitutes the rectangular function

h[m] =

{
1 if m ≤ N/δ
0 otherwise

.

Consider the following result.

Lemma 2. (Dirkx et al. (2023)). The wavelet function ψ
[p]
j

in Def. 2 satisfies the following properties:

a) Ψ
[p]
j = 1 at the j-th frequency line,

b) Ψ
[p]
j = 0 at frequency lines j ± αδP, α, p ∈ N+,

c) ψ
[p]
j has finite time-domain support of length l

[p]
ψ =

pN/δ − p+ 1, i.e., ψ
[p]
j [n] = 0 for n ≥ l

[p]
ψ ,

d) |Ψ[p+1]
j | < |Ψ[p]

j | at all but the j-th and j ± αδ-th
frequency lines.

An example of the resulting wavelet is given below.

Example 1. Let N = 500, P = 1, δ = 5. The correspond-

ing wavelets ψ
[2]
20 , ψ

[3]
20 are shown in Fig. 3. The wavelets
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Fig. 3. Wavelets ψ
[2]
20 ( ) and ψ

[3]
20 ( ) in the time- (top) and

frequency-domain (bottom). The wavelets extract frequency-
information around the frequency line 20, within the finite

wavelet duration l
[2]
ψ

= 199, l
[3]
ψ

= 298.

approximately extract local frequency-information around
the j-th frequency line within a local time-domain window

of l
[2]
ψ = 199, l

[3]
ψ = 298 samples, see properties a) and c)

in Def. 2. Increasing p lowers the time-domain localization
accuracy but improves the frequency-domain accuracy, see
properties c) and d), respectively.

A crucial property of the wavelets in Def. 2 is that their
support in the time domain is compact. This enables
confining the effect of the missing samples in the data zm

in the transform ξmj . Precisely, the samples ξmj [v] that are

unaffected by the missing samples are given by v ∈ D[e,p],

where D[e,p] =
⋂nm

i=1 D
[e,p]
i with

D[e,p]
i =

{
v ∈ N : max(w

[e]
m [i]−NP + l

[p]
ψ

, 0) ≤ v < w
[e]
m [i]

or min(w
[e]
m [i] + l

[p]
ψ

, NP ) ≤ v < NP
}
,

(9)

and where w
[e]
m ∈ Nn[e]

m contains the indices of the n
[e]
m

missing samples in the e-th experiment. This concept is
exemplified below.

Example 2. Consider the SISO system Gz with FRF
shown in ( ) in Fig. 2(c). The system is periodically
excited with N = 1200 and P = 5 in open-loop at frequency
lines j = 10, 30, . . . , 2990. The output is measured without
noise, but with samples 1200, . . . , 1250, and 3000, . . . , 3100
missing. The transforms ξmj for wavelets with p = 2, δ = 2
are illustrated in Fig. 2(c). The effect of the missing
samples is confined within the ( ) part.

The main result is that the transforms ξmj [v] for v ∈
D shown in ( ) in Fig. 2(c) provide a time-frequency
representation of the data zm that is fully unaffected by
the missing samples. This is exploited in the selection of
M̄ in (5) in the following.

3.2.3. Selection of matrix M̄
To pose the regression (5) in the time-frequency plane,
the matrix M̄ is selected as M̄ = blkdg(M̄ [1], . . . , M̄ [nu]),

where M̄ [e,p] =
[
M

[e,p]

k̃0
, . . . , M

[e,p]

k̃Ñ−1

]
with

M̄
[e,p]

k̃j
= diag(Ψ

[p]

k̃j
)HW [e,p]. (10)

The operation (10) reflects the time-frequency plane trans-

formation in (8) around a k̃j-th frequency line, with the

additional selection matrix W [e,p].

The main mechanism to achieve an exact estimator (6) in
the sense of Theorem 1 is to discard the affected samples
v in the transform ξmj [v], recall the part in ( ) in Fig. 2(c).

This is achieved by selecting the matrix W [e,p] in (10) as

[W [e,p]]v,v =

{
1 if v ∈ D[e,p]

0 otherwise
, (11)

for v = 0, . . . , NP − 1 and where D[e,p] is the set in (9).

The specific selection of the wavelet parameters {k̃, δ, p}
depends on the selected model parametrization {Kk̄j

,Θk̄j
}

in (5). This parametrization is presented next.

3.3 Local Polynomial Model Parametrization

In this section, the model parametrization in {Kk̄j
,Θk̄j

}
in (5) is specified. The local polynomial parametrization
as used in LPM for periodic excitations (Pintelon et al.,
2011) is used as basis. These local concepts are extended
to a global formulation to allow for incorporation of the
wavelet-based transform reflected by matrix M̄ in (10).

3.3.1. Parametrization in local frequency window
Given periodic excitation signals w, a distinction is made
between the excited frequency (EF) lines and the non-
excited frequency (NEF). The DFT W in (1) contains
energy only at the EF lines k̄ =

[
k̄0, . . . , k̄N̄−1

]
, where

k̄j = jγP with j = 0, . . . , �N/γ� − 1. Herein, γ ∈ N+ is a
excitation design parameter that controls the sparsity of
the excitation grid.
At the NEF lines k̄ + q, with q = [1, 2, . . . , γP − 1], the
frequency response Gz(Ωk)W (k) equals zero, see Fig. 4.
Hence, at the NEF lines, Z in (1) reduces to

Z(k̄j + q) = T (Ωk̄j+q) +Nzst(k̄j + q), (12)

where T = Tz + Th lumps the transient of the system Gz

and the noise dynamics Hz. The transient T is a smooth
function of the frequency. In a local frequency window, it
can be approximated by (R+ 1)-th order polynomials,

T [e](Ωk̄+q) = T [e](Ωk̄) +

R∑
s=1

t[e]s (k̄)qs +O[e](q), (13)

where O(q) = (1/
√
NP )O

(
(q/NP )R+1

)
is the remainder

of an (R+1)-th order Taylor series approximation around
T [e](Ωk̄), see Pintelon et al. (2010). At the EF lines, the
output is given by

Z(k̄j) = Gz(Ωk̄j
)W (k̄j) + T (Ωk̄j

) +Nzst(k̄j), (14)

The nΘ = nznu(R+ 2) estimation parameters around the
j-th EF line are collected in the vector

Θk̄j
=

[
Gz(Ωk̄j

), Θ
[1]
T (k̄j), . . . , Θ

[nu]
T (k̄j)

]
∈ Cnz×nu(R+2),

(15)

with Θ
[e]
T (k̄j) =

[
T [e](Ωk̄j

), t
[e]
1 (k̄j), . . . , t

[e]
R (k̄j)

]
. Com-

bining (13) - (15), Z is expressed at the nr frequency lines
k̄j + r, with r = [−γP + 1,−γP + 2, . . . , γP − 1] as

Z(k̄j + r) = Θk̄j
Kk̄j

(r) +Nzst(k̄j + r) +O(r), (16)

where Z(k̄j + r) is structured as

Z(k̄j + r) =
[
Z [1](k̄j + r), . . . , Z [nu](k̄j + r)

]
.

The regressor in (16) is given by
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Fig. 3. Wavelets ψ
[2]
20 ( ) and ψ
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20 ( ) in the time- (top) and

frequency-domain (bottom). The wavelets extract frequency-
information around the frequency line 20, within the finite

wavelet duration l
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approximately extract local frequency-information around
the j-th frequency line within a local time-domain window

of l
[2]
ψ = 199, l

[3]
ψ = 298 samples, see properties a) and c)

in Def. 2. Increasing p lowers the time-domain localization
accuracy but improves the frequency-domain accuracy, see
properties c) and d), respectively.

A crucial property of the wavelets in Def. 2 is that their
support in the time domain is compact. This enables
confining the effect of the missing samples in the data zm

in the transform ξmj . Precisely, the samples ξmj [v] that are

unaffected by the missing samples are given by v ∈ D[e,p],

where D[e,p] =
⋂nm

i=1 D
[e,p]
i with

D[e,p]
i =

{
v ∈ N : max(w

[e]
m [i]−NP + l

[p]
ψ

, 0) ≤ v < w
[e]
m [i]

or min(w
[e]
m [i] + l

[p]
ψ

, NP ) ≤ v < NP
}
,

(9)

and where w
[e]
m ∈ Nn[e]

m contains the indices of the n
[e]
m

missing samples in the e-th experiment. This concept is
exemplified below.

Example 2. Consider the SISO system Gz with FRF
shown in ( ) in Fig. 2(c). The system is periodically
excited with N = 1200 and P = 5 in open-loop at frequency
lines j = 10, 30, . . . , 2990. The output is measured without
noise, but with samples 1200, . . . , 1250, and 3000, . . . , 3100
missing. The transforms ξmj for wavelets with p = 2, δ = 2
are illustrated in Fig. 2(c). The effect of the missing
samples is confined within the ( ) part.

The main result is that the transforms ξmj [v] for v ∈
D shown in ( ) in Fig. 2(c) provide a time-frequency
representation of the data zm that is fully unaffected by
the missing samples. This is exploited in the selection of
M̄ in (5) in the following.

3.2.3. Selection of matrix M̄
To pose the regression (5) in the time-frequency plane,
the matrix M̄ is selected as M̄ = blkdg(M̄ [1], . . . , M̄ [nu]),

where M̄ [e,p] =
[
M

[e,p]

k̃0
, . . . , M

[e,p]

k̃Ñ−1

]
with

M̄
[e,p]

k̃j
= diag(Ψ

[p]

k̃j
)HW [e,p]. (10)

The operation (10) reflects the time-frequency plane trans-

formation in (8) around a k̃j-th frequency line, with the

additional selection matrix W [e,p].

The main mechanism to achieve an exact estimator (6) in
the sense of Theorem 1 is to discard the affected samples
v in the transform ξmj [v], recall the part in ( ) in Fig. 2(c).

This is achieved by selecting the matrix W [e,p] in (10) as

[W [e,p]]v,v =

{
1 if v ∈ D[e,p]

0 otherwise
, (11)

for v = 0, . . . , NP − 1 and where D[e,p] is the set in (9).

The specific selection of the wavelet parameters {k̃, δ, p}
depends on the selected model parametrization {Kk̄j

,Θk̄j
}

in (5). This parametrization is presented next.

3.3 Local Polynomial Model Parametrization

In this section, the model parametrization in {Kk̄j
,Θk̄j

}
in (5) is specified. The local polynomial parametrization
as used in LPM for periodic excitations (Pintelon et al.,
2011) is used as basis. These local concepts are extended
to a global formulation to allow for incorporation of the
wavelet-based transform reflected by matrix M̄ in (10).

3.3.1. Parametrization in local frequency window
Given periodic excitation signals w, a distinction is made
between the excited frequency (EF) lines and the non-
excited frequency (NEF). The DFT W in (1) contains
energy only at the EF lines k̄ =

[
k̄0, . . . , k̄N̄−1

]
, where

k̄j = jγP with j = 0, . . . , �N/γ� − 1. Herein, γ ∈ N+ is a
excitation design parameter that controls the sparsity of
the excitation grid.
At the NEF lines k̄ + q, with q = [1, 2, . . . , γP − 1], the
frequency response Gz(Ωk)W (k) equals zero, see Fig. 4.
Hence, at the NEF lines, Z in (1) reduces to

Z(k̄j + q) = T (Ωk̄j+q) +Nzst(k̄j + q), (12)

where T = Tz + Th lumps the transient of the system Gz

and the noise dynamics Hz. The transient T is a smooth
function of the frequency. In a local frequency window, it
can be approximated by (R+ 1)-th order polynomials,

T [e](Ωk̄+q) = T [e](Ωk̄) +

R∑
s=1

t[e]s (k̄)qs +O[e](q), (13)

where O(q) = (1/
√
NP )O

(
(q/NP )R+1

)
is the remainder

of an (R+1)-th order Taylor series approximation around
T [e](Ωk̄), see Pintelon et al. (2010). At the EF lines, the
output is given by

Z(k̄j) = Gz(Ωk̄j
)W (k̄j) + T (Ωk̄j

) +Nzst(k̄j), (14)

The nΘ = nznu(R+ 2) estimation parameters around the
j-th EF line are collected in the vector

Θk̄j
=

[
Gz(Ωk̄j

), Θ
[1]
T (k̄j), . . . , Θ

[nu]
T (k̄j)

]
∈ Cnz×nu(R+2),

(15)

with Θ
[e]
T (k̄j) =

[
T [e](Ωk̄j

), t
[e]
1 (k̄j), . . . , t

[e]
R (k̄j)

]
. Com-

bining (13) - (15), Z is expressed at the nr frequency lines
k̄j + r, with r = [−γP + 1,−γP + 2, . . . , γP − 1] as

Z(k̄j + r) = Θk̄j
Kk̄j

(r) +Nzst(k̄j + r) +O(r), (16)

where Z(k̄j + r) is structured as

Z(k̄j + r) =
[
Z [1](k̄j + r), . . . , Z [nu](k̄j + r)

]
.

The regressor in (16) is given by



3946	 Nic Dirkx  et al. / IFAC PapersOnLine 56-2 (2023) 3942–3947

2P 3P 4P1P0

Fig. 4. Frequency-domain representation of Z in (1) for P = 3, γ = 1
without noise. At the EF lines [1P, 2P, 3P, 4P ], the response
consists of the transient (grey arrows) and periodic response
(black arrows). At the remaining NEF lines, the response
contains only transient contributions. The grey curves represent
the local transient estimates based on the nr lines around
the [1P, 3P ] odd EF lines. The frequency-domain weights
introduced by Ψ1P and Ψ3P are shown in ( ) and ( ).

Kk̄j
(r) =




W (k̄j + r)

Inu ⊗



r0

...
rR





 ∈ Cnu(R+2)×nu(2γP−1). (17)

The obtained parametrization {Kk̄j
,Θk̄j

} describes the
frequency response in a local frequency window around
the EF line k̄j . To enable handling the global frequency-
domain impact of the missing samples, the parametriza-
tion is extended to a global parametrization {K̄, Θ̄} next.

3.3.2. Constructing the global regressor
In loose terms, the global regressor K̄ in (5) is obained
by stacking the local matrices Kk̄j

(r) in (17), such to
span all NP frequency lines. Precisely, it is composed as
K̄ =

[
K̄ [1], . . . , K̄ [nu]

]
, where

K̄ [e]=

[
0 1

2nΘ̄×1, K̃ [e], 0 1
2nΘ̄×1, conj(K̃ [e])I

0 1
2nΘ̄×1, iK̃

[e], 0 1
2nΘ̄×1, −iconj(K̃ [e])I

]
∈CnΘ̄×NP

(18)

where I is a ( 12NP −1)-dimensional exchange matrix, and

K̃ [e] ∈ C 1
2nΘ̄× 1

2NP−1 is composed of the local matrices

Kk̃j
(r) =

[
K

[1]

k̃j
(r), . . . ,K

[nu]

k̃j
(r)

]
in (17) as

[K̃ [e]]cj ,k̃j+r−1 = K
[e]

k̃j
(r), (19)

with k̃ = [k̃0, . . . , k̃Ñ−1] ⊂ k̄ and row index cj =

[jnΘ, jnΘ + 1, . . . , (j + 1)nΘ − 1]. The associated nΘ̄ =

2ÑnΘ parameters Θ̄ in (5) are collected in

Θ̄ =
[
�
[
Θk̃0

. . . Θk̃Ñ−1

]
�
[
Θk̃0

. . . Θk̃Ñ−1

] ]
. (20)

The result of the parametrization {K̄, Θ̄} in conjunction
with M̄ in (10) is that the estimator (6) yields a exact
estimate of Θ̄ in the absence of noise Nz and remainders Ō.
Exploiting (20), (15) and (2), the open-loop plant estimate

Ĝ(Ωk̄j
) is obtained from ˆ̄Θ via

Ĝ(Ωk̄j
) = Ĝy(Ωk̄j

)Ĝ−1
u (Ωk̄j

). (21)

3.3.3. Selection of parameters {k̃, δ, p}
The selection of the parameters {k̃, δ, p} plays an impor-
tant role in trading off between variance errors due to noise
Nz and bias errors due to remainders Ō (Dirkx et al.,
2022). The following selection balances between the two
criteria. The selection divides the identification problem

into two separate subproblems.
The first subproblem is aimed at estimation at the odd
EF lines by setting k̃ = k̃odd := γP [1, 3, . . . , N

2γ − 1].

Additionally, δ = γ is selected, which makes the zeros

of Ψ
[p]

k̃
coincide with all EF lines outside the current local

window, as shown in Fig. 4. The result is fourfold: 1) it
emphasizes Gz and the transient Tz locally around the
selected odd EF line, 2) it suppresses the contributions
from the other frequency lines, 3) it eliminates the contri-
butions from all other EF lines, and 4) this is achieved for
the largest card(D[e,p]). In a similar procedure, the second

subproblem is aimed at estimating Ĝ at the even EF lines
k̃even := γP [2, 4, . . . , N

2γ ].

The wavelet parameter p provides a further tuning variable
to control the trade-off between bias and variance errors.
Increasing p reduces bias at the expense of larger variance,
see Dirkx et al. (2022) for more details.

3.4 Variance estimation

In this section, the frequency-domain localization prop-
erties of the wavelet are exploited to estimate the noise-
induced variance errors in the estimated plant model Ĝ
from the measured incomplete data Zm.

Theorem 3. Let the wavelet DFT Ψk̃j
be decomposed as

Ψk̃j
= Ψ0

k̃j
+Ψ∆

k̃j
(22)

where Ψ0
k̃j

is defined as

[Ψ0
k̃j
]n =

{
[Ψk̃j

]n if n ∈ (k̃j + r)

0 otherwise
(23)

and where Ψ∆
k̃j

is the remainder, defined by (22) and (23).

Let the following assumptions hold:

i) The remainders Ō in (5) are zero,

ii) The noise DFT N
[e]
zst has a uniform magnitude over

the frequency lines k̃j + r, with covariance Czk̃j
,

iii) The wavelet remainder Ψ∆
k̃j

in (22) is negligible.

Let Mk̃j
:= blkdg(M

[1]

k̃j
, . . . ,M

[nu]

k̃j
). Then, the noise co-

variance is related to the weighted residual error Rk̃j
:=

(Zm − ˆ̄ΘK̄)Mk̃j
as

Czk̃j
=

1

Tr(PMk̃j
MH

k̃j
PH)

E
{
Rk̃j

RH
k̃j

}
, (24)

with P = (I − 1
2 B̄K̄H

(
�(K̄B̄K̄H)

)−1
K̄).

The proof is omitted to conserve space. Thm. 3 extends the
procedure in the classical LPM (Pintelon et al., 2010) to
the estimation from incomplete data in the estimator (6).
Expression (24) typically yields an accurate covariance es-
timate, since assumption ii) in Thm. 3 holds approximately
in a local window. Assumption iii) is approximately satis-
fied for frequency-domain localizing wavelets. Assumption
i) holds approximately by suitable choice of R.
The covariances in the estimated closed-loop transfer func-
tions Gz are estimated via the mapping

Cvec(Ĝz)
(k̃j) =

1

2
conj(SH

k̃j
Sk̃j

)⊗ Czk̃j
, (25)
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Fig. 5. The time-frequency plane estimators for p = 1 ( ), p = 2 ( ),
and p = 3 ( ) generate accurate FRMs of the true system G
( ), in contrast to the classical LPM ( ). The 95% confidence
regions (shaded) increase for an increasing value of p.

where

Sk̃j
=

[
�(B̄K̄H)

−�(B̄K̄H)

]
(�(K̄B̄K̄H))−1

(
s⊗

[
Inu

0nΘ−nu×nu

])

and s = [1 i]
T ⊗

[
δ0,j , . . . , δNk̃−1,j

]T
, with δa,b the

Kronecker delta. The mapping (25) is similar to Pintelon
and Schoukens (2012, Ch. 7). The mapping from the

closed-loop FRM Ĝz to the open-loop system Ĝ is done
according to (Pintelon and Schoukens, 2012, Ch. 7),

Cvec(Ĝ) = (Ĝ−1
u ⊗

[
Iny

−Ĝ
]
)Cvec(Ĝz)

(Ĝ−1
u ⊗

[
Iny

−Ĝ
]
)H ,

wherein the index k̃j is omitted.

4. SIMULATION STUDY

4.1 Simulation setup

The time-frequency plane LPM is applied to a 2 × 2
simulation model G, with 2 highly damped modes, and 2
lightly damped modes, with FRM shown in ( ) in Fig.
5. The system is closed-loop controlled by a PID-type
feedback controller. Random phase periodic excitations
with uniform spectrum and P = 5, N = 2000, γ = 2 are
used. The sampling time is Ts = 0.02s and a total number
of 500 samples are missing per experiment. The outputs z
are perturbed by white noise νy. Due to slow dynamics of
the highly damped modes, a significant transient is present
in the output z over the duration of the experiments.
The time-frequency plane LPM estimator is evaluated for
the values p = 1, 2, 3 and R = 2 and compared to the
classical LPM.

4.2 Identification results

The identified FRM models and their estimated 95%
confidence region bounds are shown in Fig. 5, together
with the true system ( ). The classical LPM ( ) delivers
a poor model. The estimates from the time-frequency
plane LPM accurately represent the true dynamics. The
uncertainty bound increases for increasing values of p.
This is supported by the error decomposition for different
values of p in Fig. 6. Clearly, bias is reduced for increasing
values of p. Concludingly, the observations are in line
with the statements in Sec. 3.3.3 and demonstrate good
performance of the presented techniques.

p = 1 p = 2 p = 3

1

0.5

1.5

Fig. 6. Variance ( ) and bias ( ) contributions in the model
error for p = 1, 2, 3. The values are equally scaled such that the
variance for p = 1 equals one.

5. CONCLUSIONS

The presented identification algorithm enables accurate
FRM estimation from incomplete data records. This is
achieved by employing a wavelet-based transform to ob-
tain a data representation in the time-frequency plane,
in which the effect of the missing samples in the time
domain is separated from the system characteristics in the
frequency domain. The time- and frequency domain local-
ization properties of the wavelets enable low-bias estimates
and give rise to a variance estimation procedure. This is
supported by results from a simulation study, in which
good identification performance is confirmed.
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u ⊗

[
Iny

−Ĝ
]
)Cvec(Ĝz)
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