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ABSTRACT
We present here exact solutions to the equations of geophysical fluid
dynamics that depict inviscid flows moving in the azimuthal direction on
a circular path, around the globe, and which admit a velocity profile below
the surface and along it. These features render this model suitable for the
descriptionof theAntarctic circumpolar current (ACC). Thegoverningequa-
tions we work with–taken to be the Euler equations written in spherical
coordinates–also incorporate forcing terms which are generally regarded
as means that ensure the general balance of the ACC. Our approach allows
for a variable density (depending on the depth and latitude) of discon-
tinuous type which divides the water domain into two layers. Thus, the
discontinuity gives rise to an interface. The velocity in both layers and the
pressure in the lower layer are determined explicitly, while the pressure in
the upper layer depends on the free surface and the interface. Functional
analytical techniques render (uniquely) the surface and interface-defining
functions in an implicit way. We conclude our discussion by deriving rela-
tionsbetween themonotonicityof the surfacepressure and themonotonic-
ity of the surface distortion that concur with the physical expectations. A
regularity result concerning the interface is also derived.
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1. Introduction

We present here a mathematical perspective concerning geophysical water flows exhibiting strati-
fication, internal waves and a preferred (azimuthal) propagation direction. This task is carried out
by deriving and analysing a family of exact solutions to the geophysical water wave equations writ-
ten in spherical coordinates, in a rotating coordinate frame with the origin at a point on the Earth’s
surface that moves with the Earth and which incorporates forcing terms. These solutions describe
incompressible, inviscid, stratified, steady flows moving on a circular path in the azimuthal direction
completely around the globe and possessing a velocity profile below the surface and along it.

The previously mentioned aspects greatly apply to the Antarctic circumpolar current (Antarc-
tic circumpolar current)—the only major current that circumnavigates the globe flowing eastwards
through the southern regions of the Atlantic, Indian and Pacific Oceans along 23,000 km and hav-
ing (in places) a width of over 2000 km, cf. Refs. [1–4]. More precisely, the earlier mentioned forcing
terms provide the dynamical balance of ACC, cf. Refs. [5,6].
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An important feature of geophysical flows, also discussed here, is stratification. Indeed, it is known
[7,8] that in the southern oceans, strong meridional changes in air-sea buoyancy flux give rise to a
strong polar front along which the ACC flows in thermal wind balance with the density gradients.
One way in which stratification emerges is through eddies: it is argued in Ref. [7] that in collusion
with imposed patterns of mechanical and buoyancy forcing, the eddies can set the stratification in
both horizontal and vertical directions. Stratification also accommodates observed sharp changes in
water density (due to variations in temperature and salinity, cf. Refs. [9–13]), known as fronts or jets,
cf. Ref. [14].

In regard to the aspects mentioned earlier, we consider here a discontinuous density stratification
of general type: mindful of the earlier described stratification induced by eddies, we allow the density
to vary in the horizontal and vertical directions. Thus, in terms of spherical coordinates, the density
that we consider here varies in the radial and latitudinal coordinates, respectively.

Although complicated analytical issues concerning stratificationwere dealt with in the case of two-
dimensional flows, cf. Refs. [9,15–27], progress on the important issue of stratification in geophysical
flowsmaterialized only relatively recently, after the important developments by Constantin and John-
son [5,28] who constructed bymeans of spherical coordinates exact solutions to the geophysical fluid
dynamics (GFD) equations representing azimuthal, depth-varying flows of constant density, which
were able to capture the salient features of the equatorial undercurrent (EUC) and ACC, respectively.
For a selective list of recent works concerning exact solutions in GFD, we refer to Refs. [5,9,10,28–40].
Building upon the approaches in Refs. [5,28], Henry andMartin [41–43] constructed exact solutions
to GFD representing equatorial flows with continuously varying density depending on depth and
latitude. This type of approach was extended to include discontinuous density, cf. Ref. [38], and dis-
continuously varying density together with forcing terms, cf. Refs. [44,45]. Here, we extend previous
approaches [5,44,46–49] (regarding exact solutions pertaining to EUC andACC) and so include forc-
ing terms in the presence of a density stratification that varies (discontinuously) with respect to depth
and latitude: we allow a vertical layering of the flow, with two layers of different, non-constant den-
sities, where the denser layer sits below the less dense one (stable stratification). The discontinuity in
density gives rise to an interface that behaves like an internal wave [7,8,18–20,50,51].

The layout of the paper is as follows: we introduce in Section 2 the governing equations (in
spherical coordinates) and their boundary conditions for geophysical flows. Thereafter, we derive
in Section 3 explicit solutions for the velocity field and the corresponding pressure function in the
two layers of the fluid domain. From the dynamic boundary condition, we find an implicit relation
between the imposed pressure and the resulting surface distortion. The interface defining function
appears also implicitly as a condition expressing the balance of forces at the interface. In conjunc-
tion with the implicit function theorem, the two implicit equations are used to prove that any small
enough perturbation of the pressure required to preserve an undisturbed free surface (following the
curvature of the Earth) triggers unique functions, describing the surface and the interface, respec-
tively. Finally, we prove that the solution we derived displays expected physical properties: a decay of
the surface height occurs as soon as the pressure along the free surface increases. Moreover, we also
prove that the interface defining function has very good regularity properties.

2. Physical problem and governing equations

In this section, we provide the governing equations for geophysical flows written in spherical coor-
dinates to accommodate the shape of the Earth, together with the boundary conditions for the free
surface and a rigid bed.

We will work in a system of right handed coordinates (r, θ ,ϕ) where r denotes the distance to the
centre of the sphere, θ ∈ [0,π] is the polar angle (the convention being that π/2 − θ is the angle
of latitude) and ϕ ∈ [0, 2π] is the azimuthal angle (the angle of longitude). While in this coordinate
system the North and South poles are located at θ = 0,π , respectively, the Equator sits on θ = π/2,
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Figure 1. The spherical coordinate system: θ is the polar angle, ϕ is the azimuthal angle (the angle of longitude) and r represents
the distance to the origin.

and the ACC is situated at θ = 3π/4. The unit vectors in this system are

er = (sin θ cosϕ, sin θ sinϕ, cos θ),

eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ),

eϕ = (− sinϕ, cosϕ, 0)

with eϕ pointing fromWest to East and eθ from North to South, cf. Figure 1.
Throughout this paper, wemake the following simplifying assumption on the location of the ACC.

We assume that the angle of latitude θ lies in the compact interval Iθ :

θ ∈ Iθ :=
[
3π
4

− π

18
,
3π
4

+ π

18

]
. (1)

We are guided in our study by the observations made in Ref. [52] asserting that the Reynolds number
is, in general, extremely large for oceanic flows. Accordingly, we will consider incompressible and
inviscid flows. For 0 < r2 < r1 � R and Rj := R + rj, j = 1, 2, we consider the two fluid layers Dj
separated by an interface and bounded by the bottom and a free surface, which are described by the
graphs of the functions h, d and k, respectively:

D1 := {(r, θ ,ϕ) : R2 + h(θ ,ϕ) ≤ r ≤ R1 + k(θ ,ϕ)},
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D2 := {(r, θ ,ϕ) : R + d(θ ,ϕ) ≤ r ≤ R2 + h(θ ,ϕ)}.

We associate R with the Earth’s radius. The given function d describes the bottom topography,
whereas h and k describe the unknown deviations of the interface and the free surface from their
unperturbed locations at R2 and R1, respectively. In particular, the density, ρ, is discontinuous with a
jump at the interface R2 + h. More precisely, ρ = ρ1(r, θ) in D1 and ρ = ρ2(r, θ) in D2.

Let

u = wer + veθ + ueϕ .

Then the Euler equations in the rotating frame for (wj, vj, uj) within Dj, j = 1, 2, are given by

wj,t + wjwj,r + vj
r
wj,θ + uj

r sin θ
wj,ϕ − 1

r
(v2j + u2j ) − 2�uj sin θ − r�2 sin2 θ

= −pj,r
ρ

+ Fr
j ,

vj,t + wjvj,r + vj
r
vj,θ + uj

r sin θ
vj,ϕ + 1

r
(wjvj − u2j cot θ) − 2�uj cos θ − r�2 sin θ cos θ

= −pj,θ
rρ

+ Fθ
j ,

uj,t + wjuj,r + vj
r
uj,θ + uj

r sin θ
uj,ϕ + 1

r
(wjuj + vjuj cot θ) + 2�wj sin θ + 2�vj cos θ

= − pj,ϕ
rρ sin θ

+ F
ϕ
j , (2)

which incorporate both Coriolis effects and centripetal acceleration (� ≈ 7.29 × 10−5 rad s−1 refers
to the constant rotation speed of the Earth), cf. Ref. [28]. Here, pj(r, θ ,ϕ) denotes the pressure
field and Fj = (Fr

j er ,F
θ
j eθ ,F

ϕ
j eϕ) is the body-force vector. Additionally to (2), the equation of mass

conservation is required to be satisfied:

1
r2

∂

∂r
(r2ρwj) + 1

r sin θ

∂

∂θ
(ρvj sin θ) + 1

r sin θ

∂

∂ϕ
(ρuj) = 0. (3)

The GFD (2) and (3) are supplemented with the following boundary conditions. At the free surface
r = R1 + k(θ ,ϕ), we require the dynamic boundary condition

p1 = P1(θ ,ϕ) (4)

(for a prescribed function P1) and the kinematic boundary condition

w1 = v1
r

∂k
∂θ

+ u1
r sin θ

∂k
∂ϕ

(5)

to be satisfied. At the interface r = R2 + h(θ ,ϕ), we require the normal components of the velocity
fields uj to be equal:

(w1er + v1eθ + u1eϕ) ·
(
er − hθ

r
eθ − hϕ

r sin θ
eϕ
)

= (w2er + v2eθ + u2eϕ) ·
(
er − hθ

r
eθ − hϕ

r sin θ
eϕ
)
. (6)
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Moreover, to ensure the balance of forces, we require that

p1 = p2 on R2 + h(θ ,ϕ). (7)

At the rigid ocean bottom r = d(θ ,ϕ), it holds that

w2 = v2
r

∂d
∂θ

+ u2
r sin θ

∂d
∂ϕ

. (8)

3. Exact solutions

This section is concerned with the derivation of exact solutions to the problem (2)–(8).We first estab-
lish explicit formulas for the velocity field and the pressure in the layers D1 and D2. Subsequently,
we prove an existence type result for the surface and interface defining functions, respectively, by
exploiting the balance of forces at the interface between the two fluid domains D1 and D2.

3.1. The velocity field and the pressure

We seek a steady flow governed by (2) with Fj(r, θ) := (−g,G(r, θ), 0), where g is the gravity of
Earth and G denotes a general body force vector in θ direction, and (3) together with (4)–(8), which
propagates purely in the azimuthal direction and does not depend on ϕ. Therefore, the velocity
field satisfies wj = vj = 0 and uj = uj(r, θ), pj = pj(r, θ), h = h(θ), k = k(θ), and for consistency
d = d(θ). Without loss of generality, we will assume that

h
(
3π
4

)
= 0. (9)

Then (3) and (4)–(8) are automatically satisfied, while the Euler equations reduce to

⎧⎪⎪⎨
⎪⎪⎩

−u2j
r − 2�uj sin θ − r�2 sin2 θ = − pj,r

ρ
− g,

−u2j
r cot θ − 2�uj cos θ − r�2 sin θ cos θ = − pj,θ

ρr + G(r, θ),
0 = pj,ϕ .

(10)

Remark 3.1: Concerning the nature of the forcing term above, it is argued in Ref. [5] that a relevant
choice is

G(r, θ) = −2�u0 cos θ , (11)

where u0 is the velocity of a linear flowwhich comes about by ignoring the nonlinear advection terms
in (10).

We remark that the system (10) can be written as

{
ρ

(uj+�r sin θ)2

r = pj,r + gρ,
ρ(uj + �r sin θ)2 cot θ = pj,θ − ρrG(r, θ).

(12)
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The shape of the previous system calls for the elimination of the pressure. Indeed, denoting

Uj(r, θ) := (uj + �r sin θ)2

r

for j = 1, 2, we obtain that Uj satisfies

sin θ
∂(ρ(r, θ)rUj)

∂θ
− r cos θ

∂(ρ(r, θ)rUj)

∂r
= r sin θ

(
gρθ + ∂(ρrG)

∂r

)
(13)

in Dj, j = 1, 2. Utilizing the method of characteristics (cf. Ref. [42]), we infer from the previous
equation that the azimuthal velocity uj (j = 1, 2) is given as

uj(r, θ) = −�r sin θ

+

√√√√Fj(r sin θ) + r sin θ
∫ f (θ)

0
[
Hj,r(r̄(s), θ̄ (s)) + gρj,θ (r̄(s), θ̄ (s))

]
ds

ρj(r, θ)
(14)

for some arbitrary continuously differentiable functions x �→ Fj(x), j = 1, 2, differentiable functions
and

f (θ) := 1
2
ln

1 − cos θ
1 + cos θ

, Hj(r, θ) := rρj(r, θ)G(r, θ)|r∈Dj ,

r̄(s) := r sin θ cosh(s), θ̄ (s) := arccos(− sinh(s)). (15)

Plugging (14) into (12) yields that

pj,r = −gρj(r, θ) + Fj(r sin θ)

r
+ sin θ

∫ f (θ)

0

[
Hj,r(r̄(s), θ̄ (s)) + gρj,θ (r̄(s), θ̄ (s))

]
ds, (16a)

pj,θ = Hj(r, θ) + cot θ

(
Fj(r sin θ) + r sin θ

∫ f (θ)

0

[
Hj,r(r̄(s), θ̄ (s)) + gρj,θ (r̄(s), θ̄ (s))

]
ds

)
. (16b)

Introducing the change of variables y = r sin θ and integrating (16a) for r ∈ [R + d(θ),R2 + h(θ)]
leads to

p2(r, θ) = −g
∫ r

R+d(θ)

ρ2(r′, θ) dr′ +
∫ r sin θ

(R+d(θ)) sin θ

[
F2(y)
y

+ F2(y, θ)

]
dy + C2(θ), (17)

where θ → C2(θ) is a function such that

C′
2(θ) = H2(R + d(θ), θ) − gρ2(R + d(θ), θ)d′(θ)

+
[
F2((R + d(θ)) sin θ)

(R + d(θ)) sin θ
+ F2((R + d(θ)) sin(θ), θ)

]
((R + d(θ)) sin(θ))′ (18)

and

Fj(y, θ) :=
∫ f (θ)

0

[
Hj,r

(
y cosh(s), θ̄ (s)

)+ gρj,θ
(
y cosh(s), θ̄ (s)

)]
ds for j = 1, 2.

Denoting Fj,θ (y, θ) := (∂Fj/∂θ)(y, θ), we have from the above that

Fj,θ (y, θ) = csc θ[Hj,r(y csc θ , θ) + gρj,θ (y csc θ , θ)], j = 1, 2, (19)

which will be used later.
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Following the same procedure for p1(h, r, θ) and using (9), we get:

p1(h, r, θ) = −g
∫ r

R2+h(θ)

ρ1(r̃, θ) dr̃ +
∫ r sin θ

(R2+h(θ)) sin θ

[
F1(y)
y

+ F1(y, θ)

]
dy + C1(h, θ), (20)

where

C1(h, θ) =
∫ θ

3π/4
H1(R2 + h(θ̃), θ̃ ) dθ̃ − g

∫ θ

3π/4
ρ1(R2 + h(θ̃), θ̃ )h′(θ̃) dθ̃

+
∫ θ

3π/4

[
F1((R2 + h(θ̃)) sin θ̃ )

(R2 + h(θ̃)) sin θ̃
+ F1((R2 + h(θ̃ )) sin θ̃ , θ̃ )

]
((R2 + h(θ̃)) sin θ̃ )′dθ̃ + c

(21)

for some constant c.

3.2. Implicit equations for the free surface and for the interface

This section is devoted to the determination of the free surface and of the interface. To begin with,
we exploit now the balance of forces at the interface r = R2 + h(θ) in order to obtain an equation for
the function θ → h(θ). That is, Equation (7) reads now

p1(R2 + h(θ), θ) = p2(R2 + h(θ), θ), (22)

which can be written equivalently as

C1(h, θ) =
∫ (R2+h(θ)) sin θ

(R+d(θ)) sin θ

(
F2(y)
y

+ F2(y, θ)

)
dy − g

∫ R2+h(θ)

R+d(θ)

ρ2(r̃, θ) dr̃ + C2(θ). (23)

We now pass to a functional analytic setting and so we define nondimensional quantities. First, we
set

〈(θ) := h(θ)

R2
, ‖(θ) := k(θ)

R1
.

We can now write (23) as

G2(〈) = 0, (24)

where the operator G2 acts from the Banach space C1(Iθ ) into itself and is given as

G2(〈)(θ) := 1
Patm

(∫ (1+〈(θ))R2 sin θ

(R+d(θ)) sin θ

(
F2(y)
y

+ F2(y, θ)

)
dy − g

∫ (1+〈(θ))R2

R+d(θ)

ρ2(r̃, θ) dr̃

)

−C1(〈, θ) + C2(θ)

Patm
, (25)

where Patm denotes the constant atmospheric pressure.
To obtain an equation for the free surface (non-dimensional) defining function, we utilize the

dynamic condition at the surface (4), and so obtain the equation

P1(θ) = −g
∫ R1+k(θ)

R2+h(θ)

ρ1(r̃, θ) dr̃ +
∫ (R1+k(θ)) sin θ

(R2+h(θ)) sin θ

[
F1(y)
y

+ F1(y, θ)

]
dy + C1(h, θ), (26)

called the Bernoulli relation. The latter provides a connection between the pressure at the free surface
and the shape of the free surface and of the interface, respectively. Setting P1(θ) := P1(θ)/Patm, we
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can rewrite the Bernoulli relation as the operator equation

G1(‖, 〈,P1) = 0, (27)

whereG1 is an operator from the Banach spaceC(Iθ ) × C1(Iθ ) × C(Iθ ) into itself and is given through

G1(‖, 〈,P1)(θ) :=

= 1
Patm

(∫ (1+‖(θ))R1 sin θ

(1+〈(θ))R2 sin θ

(
F1(y)
y

+ F1(y, θ)

)
dy − g

∫ (1+‖(θ))R1

(1+〈(θ))R2
ρ1(r̃, θ) dr̃ + C1(〈, θ)

)

− P1(θ). (28)

Remark 3.2: The previous discussion shows now that the unknowns (‖, 〈) are solutions to the
equation

(G1(‖, 〈,P1), G2(〈)) = 0, (29)

which will be studied by availing of the implicit function theorem [53]. To this end, we identify first
a pair (‖, 〈) of explicit solutions to (29).

Denoting by P01 the surface pressure for the undisturbed interface (h(θ) = 0) and free surface
(k(θ) = 0), we derive from (26) that

P01(θ) = −g
∫ R1

R2
ρ1(r̃, θ) dr̃ +

∫ R1 sin θ

R2 sin θ

[
F1(y)
y

+ F1(y, θ)

]
dy

+
∫ θ

3π/4

[
F1(R2 sin θ̃ ) cot θ̃ + F1(R2 sin θ̃ , θ̃ )R2 cos θ̃ + H1(R2, θ̃ ) dθ̃

]
dθ̃ . (30)

Setting now P0
1 (θ) = P01/Patm and 〈0 := 0, ‖0 := 0, we have from (28) and (30) that

G1(‖0, 〈0,P0
1 ) = 0.

Furthermore, G2(〈0) = 0 if and only if
∫ R2 sin θ

(R+d(θ)) sin θ

(
F2(y)
y

+ F2(y, θ)

)
dy − g

∫ R2

R+ d(θ)

ρ2(r̃, θ) dr̃ − C1(0, θ) + C2(θ) = 0. (31)

To be able to apply the implicit function theorem to Equation (29), we need to com-
pute the derivatives of the operator involved in (29). First, we compute (G2,〈(0)〈)(θ) =
lims→0 (G2(s〈)(θ) − G2(0)(θ))/s. We obtain

(G2,〈(0)〈)(θ) =
(
F2(R2 sin θ) + (R2 sin θ)F2(R2 sin θ , θ) − gR2ρ2(R2, θ)

) 〈(θ)

Patm

− C1,〈(0)(〈)(θ)

Patm
. (32)

The fact that h(3π/4) = 0 and (19) yield

C1,〈(0)(〈)(θ) = R2
∫ θ

3π/4
H1,r(R2, θ̃ )〈(θ̃ ) dθ̃ − gR2ρ1(R2, θ)〈(θ)

+ gR2
∫ θ

3π/4
ρ1,θ (R2, θ̃ )〈(θ̃ ) dθ̃ + (R2 sin θ)F1(R2 sin θ , θ)〈(θ)
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− R2
∫ θ

3π/4
F1,θ (R2 sin θ̃ , θ̃ )〈(θ̃ ) sin θ̃ dθ̃ + F1(R2 sin θ)〈(θ)

= −gR2ρ1(R2, θ)〈(θ) + (R2 sin θ)F1(R2 sin θ , θ)〈(θ)

+ F1(R2 sin θ)〈(θ). (33)

Thus,

Patm(G2,〈(0)〈)(θ)

= (
F2(R2 sin θ) − F1(R2 sin θ) − gR2(ρ2(R2, θ) − ρ1(R2, θ))

) 〈(θ)

+ (R2 sin θ)(F2(R2 sin θ , θ) − F1(R2 sin θ , θ))〈(θ)

= −gR2 (ρ2(R2, θ) − ρ1(R2, θ)) 〈(θ)

+ (u2(R2, θ) + �R2 sin θ)2ρ2(R2, θ)〈(θ)

− (u1(R2, θ) + �R2 sin θ)2ρ1(R2, θ)〈(θ), (34)

where we have also used (14). Owing to the remark that the velocity in ocean flows does not exceed
1m/s, we have that gR2 clearly exceeds the quantity

(u2(R2, θ) + �R2 sin θ)2ρ2(R2, θ) − (u1(R2, θ) + �R2 sin θ)2ρ1(R2, θ).

Therefore, there exists a constant α < 0 such that the inequality

(u2(R2, θ) + �R2 sin θ)2ρ2(R2, θ) − (u1(R2, θ) + �R2 sin θ)2ρ1(R2, θ)

− gR2 (ρ2(R2, θ) − ρ1(R2, θ)) ≤ α (35)

holds for all θ ∈ Iθ . This shows that G2,〈(0) : C1(Iθ ) �→ C1(Iθ ) is a linear homeomorphism.
Clearly, G2,‖(0)‖ = 0 for all ‖.

Patm(G1,‖(0, 0,P0
1 )‖)(θ) = R1 sin θ

(
F1(R1 sin θ)

R1 sin θ
+ F1(R1 sin θ , θ)

)
‖(θ)

− gR1ρ1(R1, θ)‖(θ)

= (u1(R1, θ) + �R1 sin θ)2ρ1(R1, θ)

− gR1ρ1(R1, θ)‖(θ). (36)

Since the term gR1 greatly outweighs the velocity term (u1(R1, θ) + �R1 sin θ)2, we can infer that
there is a constant β < 0 such that(

(u1(R1, θ) + �R1 sin θ)2 − gR1
)
ρ1(R1, θ) ≤ β for all θ ∈ Iθ . (37)

The latter inequality allows us to conclude that the operator G1,‖(0, 0,P0
1 ) : C(Iθ ) �→ C(Iθ ) is a linear

homeomorphism. Using now (28), we compute

(G1,〈(0, 0,P0
1 )〈)(θ) = −F1(R2 sin θ) − (R2 sin θ)F1(R2 sin θ , θ) + gR2ρ1(R2, θ)

Patm
〈(θ)

+ C1,〈(0)(〈(θ)

Patm
= 0, (38)
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the last equality being true by formula (33).
We can summarize the previous discussion by inserting the results into the matrix

(G1,G2)‖,〈(0, 0,P0
1 ) =

(G1,‖(0, 0,P0
1 ) G1〈(0, 0,P0

1 )

G2,‖(0, 0,P0
1 ) G2,〈(0, 0,P0

1 )

)

=
(G1,‖(0, 0,P0

1 ) 0
0 G2,〈(0, 0,P0

1 )

)
, (39)

which is a linear operator C(Iθ ) × C1(Iθ ) �→ C(Iθ ) × C1(Iθ ), that is also a homemorphism by the
discussions following (35) and (37).

The previous considerations allow now the utilization of the implicit function theorem which
guarantees the existence of a unique solution to Equation (29) representing the free surface and the
interface of the flow with velocity field (14) and pressure given by (17) and (20). We formulate the
result in the following theorem.

Theorem 3.3: For any sufficiently small perturbation P1 of P0
1 , there is a unique 〈 ∈ C1(Iθ ) solution

to (24) and a unique ‖ ∈ C(Iθ ) that satisfies (27).

4. Properties of the exact solutions

This section is devoted to proving a regularity property of the interface as well as to deriving a relation
between themonotonicity of the free surface and themonotonicity of the pressure exerted on the free
surface.

Proposition 4.1: Assuming that the azimuthal component of the velocity field does not exceed 1ms−1

and that the change in density across the interface (represented by the function 〈) is at least 0.2 kgm−3,
we have that 〈 ∈ C∞(Iθ ), provided 〈 ∈ C1(Iθ ) and the functions F1, F2 (giving the velocity fields in the
two layers) are infinitely differentiable).

Proof: We recall that, fromTheorem 3.3, we have that 〈 ∈ C1(Iθ ) satisfies G2(〈)(θ) = 0 for all θ ∈ Iθ .
Passing to differentiation with respect to θ in the implicit equation for 〈, we have that

(F2 − F1)
(
(1 + 〈(θ))R2 sin θ

) 〈′(θ)

1 + 〈(θ)

+ (R2 sin θ)(F2 − F1)
(
(1 + 〈(θ))R2 sin θ , θ

) 〈′(θ)

− gR2(ρ2 − ρ1)
(
(1 + 〈(θ))R2, θ

) 〈′(θ)

+ (F2 − F1)
(
(1 + 〈(θ))R2 sin θ

)
cot θ

+ (1 + 〈(θ))R2 sin θ(F2 − F1)
(
(1 + 〈(θ))R2 sin θ , θ

)
cot θ

+ (H2 − H1)
(
(1 + 〈(θ))R2, θ

) = 0. (40)

We aim to show in the following that the term from (40) multiplying h′(θ) has constant sign. To this
end, we remark first that

(F2 − F1)
(
(1 + 〈(θ))R2 sin θ

)
1 + 〈(θ)

+ (R2 sin θ)(F2 − F1)
(
(1 + 〈(θ))R2 sin θ , θ

)

= ρ1(R2, θ)
[
u22
(
(1 + 〈(θ))R2, θ

)− u21
(
(1 + 〈(θ))R2, θ

)]
1 + 〈(θ)
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+ 2ρ1�R2(sin θ)
[
u2
(
(1 + 〈(θ))R2, θ

)− u1
(
(1 + 〈(θ))R2, θ

)]
+ (ρ2 − ρ1)

[
u2
(
(1 + 〈(θ))R2, θ

)+ �R2(1 + 〈(θ)) sin θ
]2

1 + 〈(θ)

≤ R2

(
ρ1u22
R2

+ 2ρ1�u2 + (ρ2 − ρ1)(u2 + �R2(1 + 〈(θ)) sin θ)2

R2

)

< gR2(ρ2 − ρ1)
(
(1 + 〈(θ))R2, θ

)
, (41)

where, in the last inequality, we have used the assumptions (about the ranges of the velocity field and of
the differences in density across the interface, respectively) made in the statement of the proposition.
Thus,

(F2 − F1)
(
(1 + 〈(θ))R2 sin θ

)
1 + 〈(θ)

+ (R2 sin θ)(F2 − F1)
(
(1 + 〈(θ))R2 sin θ , θ

)
− gR2(ρ2 − ρ1)

(
(1 + 〈(θ))R2, θ

)
< 0, (42)

and so the assertion in the statement of the proposition is proved. �

We conclude by some properties exhibited by the exact solutions derived earlier. These properties
agree with what is observed on physical grounds and establish a connection between the free sur-
face, ‖, and the pressure P1 exerted on the surface. We will carry out the necessary arguments under
the assumption that P1 is a differentiable function. A bootstrapping argument [53] ensures that the
differentiability of P1 implies the differentiability of ‖.

Theorem 4.2 (Monotonicity relations): If the pressure P1 exerted on the free surface increases, then
the surface itself must decrease. On the other hand, an amplification of the free surface can only happen
in the presence of a decreasing pressure.

Proof: We notice first that equality (19) entails

∫ (1+‖(θ))R1 sin θ

(1+〈(θ))R2 sin θ

F1,θ (y, θ) dθ =
∫ (1+‖(θ))R1

(1+〈(θ))R2

(
H1,r(ξ , θ) + gρ1,θ (ξ , θ)

)
dξ

= H1
(
(1 + ‖(θ))R1, θ

)− H1
(
(1 + 〈(θ))R2, θ

)
+
∫ (1+‖(θ))R1

(1+〈(θ))R2
gρ1,θ (ξ , θ) dξ . (43)

Differentiating now in (27), we obtain by means of (43) that

P ′
1(θ)Patm

=
(
F1
(
(1 + ‖(θ))R1 sin θ

)
1 + ‖(θ)

+ R1(sin θ)F1
(
(1 + ‖(θ))R1 sin θ , θ

)) ‖′(θ)

+ (
F1
(
(1 + ‖(θ))R1 sin θ

)+ (1 + ‖(θ))R1(sin θ)F1
(
(1 + ‖(θ))R1 sin θ , θ

))
cot θ

+
∫ (1+‖(θ))R1 sin θ

(1+〈(θ))R2 sin θ

F1,θ (y, θ) dθ

− gR1ρ1
(
(1 + ‖(θ))R1, θ

) ‖′(θ) + gR2ρ1
(
(1 + 〈(θ))R1, θ

) 〈′(θ)
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− g
∫ (1+‖(θ))R1

(1+〈(θ))R2
ρ1,θ (r̃, θ) dr̃ + ∂

∂θ
(C1(h, θ)) . (44)

Employing now (14), (21) and (43), we have

P ′
1(θ)Patm

=
((

u1
(
(1 + ‖(θ))R1 sin θ , θ

)+ �R1(1 + ‖(θ)) sin θ
)2

1 + ‖(θ)
− gR1

)
ρ1
(
(1 + ‖(θ))R1, θ

) ‖′(θ)

+ (
u1
(
(1 + ‖(θ))R1 sin θ , θ

)+ �R1(1 + ‖(θ)) sin θ
)2

ρ1
(
(1 + ‖(θ))R1, θ

)
cot θ

+ (1 + ‖(θ))R1ρ1
(
(1 + ‖(θ))R1, θ

)
G
(
(1 + ‖(θ))R1, θ

)
. (45)

The proof of the enunciated property is concluded by noticing that the term

(
u1
(
(1 + ‖(θ))R1 sin θ , θ

)+ �R1(1 + ‖(θ)) sin θ
)2 cot θ

+ (1 + ‖(θ))R1G
(
(1 + ‖(θ))R1, θ

)
(46)

is negative. Indeed, replacing G from (11), the expression in (46) can be written as
(
u21 + 2u1�R1(1 + ‖(θ)) sin θ

)
cot θ

+ �R1(1 + ‖(θ))
(
�R1(1 + ‖(θ)) sin θ − 2u0

)
cos θ , (47)

where u0 has the size of an azimuthal velocity. It is easy to see that the sizes of the physical quantities
involved yield that the term�R1(1 + ‖(θ)) sin θ is much bigger than 2u0. This shows that the expres-
sion in (47) is negative for all θ ∈ Iθ . Furthermore, the realistic sizes of the quantities u1, � and R1
yield that for all θ ∈ Iθ , it holds

(
u1
(
(1 + ‖(θ))R1 sin θ , θ

)+ �R1(1 + ‖(θ)) sin θ
)2

1 + ‖(θ)
− gR1 < 0. (48)

These considerations show via (45) that if for some θ ∈ Iθ holds that P ′
1(θ) ≥ 0, then we must have

that ‖′(θ) < 0. Moreover, if there is θ ∈ Iθ such that ‖′(θ) ≥ 0, then, necessarily, it must hold that
P ′
1(θ) < 0. �
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