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Abstract: In direct time-of-flight (D-TOF) light detection and ranging (LIDAR), accuracy
and full-scale range (FSR) are the main performance parameters to consider. Particularly, in
single-photon avalanche diodes (SPAD) based systems, the photon-counting statistics plays
a fundamental role in determining the LIDAR performance. Also, the intrinsic performance
ultimately depends on the system parameters and constraints, which are set by the application.
However, the best-achievable performance directly depends on the selected depth estimation
method and is not necessarily equal to intrinsic performance. We evaluate a D-TOF LIDAR
system, in the particular context of smartphone applications, in terms of parameter trade-offs
and estimation efficiency. First, we develop a simulation model by combining radiometry and
photon-counting statistics. Next, we perform a trade-off analysis to study dependencies between
system parameters and application constraints, as well as non-linearities caused by the detection
method. Further, we derive an analytical model to calculate the Cramér–Rao lower bound (CRLB)
of the LIDAR system, which analytically accounts for the shot noise. Finally, we evaluate a
depth estimation method based on artificial intelligence (AI) and compare its performance to the
CRLB. We demonstrate that the AI-based estimator fully compensates the non-linearity in depth
estimation, which varies depending on application conditions such as target reflectivity.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Depth sensing, defined as the method of obtaining a measure of the distance between a sensor and
a target surface, has been an active field of research in automotive and consumer electronics. It
plays a fundamental role in providing input information to systems, such as autonomous driving
and face recognition. The intrinsic performance in depth sensing is only determined by the quality
of input data obtained with the ranging hardware. However, the best achievable performance is
also determined by the utilized depth estimation algorithm and noise rejection method.

There are several competing or complementary technologies available for depth sensing, such
as light detection and ranging (LIDAR), radio detection and ranging (RADAR), sound navigation
and ranging (SONAR), among others. Autonomous driving has been the leading force to develop
LIDAR systems that are more compact, have lower costs, and achieve improved reliability as
well as full-scale range (FSR). The main advantage of LIDAR is the ability to resolve targets
with excellent angular resolution. On the other hand, the main disadvantages of LIDAR are its
limited FSR, and difficulty to work under unfavorable environmental conditions, such as rain and
fog. In order to build advanced driver assistance systems (ADAS), a sensor fusion approach is
preferred so the disadvantages of either technique are compensated [1–5]. Also, LIDAR sensors

#507975 https://doi.org/10.1364/OE.507975
Journal © 2024 Received 13 Oct 2023; revised 27 Dec 2023; accepted 28 Dec 2023; published 16 Jan 2024

https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.507975&amp;domain=pdf&amp;date_stamp=2024-01-16


Research Article Vol. 32, No. 3 / 29 Jan 2024 / Optics Express 3007

are utilized in the smartphone industry to perform tasks such as face recognition, scene modeling,
auto-focus assistance, etc. [6–10].

Essentially, a LIDAR sensor emits light and some portion of it is reflected back from a target
surface to the sensor. Typically, the light source is a laser and the detection part is composed of a
photodetector array or integrated camera [11–14]. The depth information is calculated directly or
indirectly from the round-trip time-of-flight (TOF) of the detected light. LIDAR can be classified
in two main sub-categories, namely indirect TOF (I-TOF) and direct TOF (D-TOF), depending
on how the actively generated light is modulated and measured [15]. Other techniques that are
based on light interferometry, such as frequency-modulated continuous wave (FMCW) LIDAR,
also show potential for depth sensing [16].

In D-TOF sensors, the laser light is generated following a pulse-width modulation (PWM)
scheme with a very low duty cycle, so the spatial resolution is improved and optical peak power
is increased. There are mainly two techniques in D-TOF LIDAR, namely flash and scanning
LIDAR [16]. Flash LIDAR is utilized in short range application such as in smartphones [10]. On
the other hand, scanning LIDAR can achieve a larger FSR and therefore shows more potential for
automotive applications [17,18]. In both cases, the FSR of the LIDAR system is limited by the
irradiance of the background light, maximum laser power required by safety regulations, as well
as the optical sensitivity.

In this paper, we specifically select the case of smartphone LIDAR to investigate effects such
as non-linearities, trade-offs between parameters and constraints, etc. For this purpose, we
develop a custom pseudo ray-tracing algorithm that is coupled to a Monte Carlo (MC) code to
simulate the LIDAR system. Most important, we evaluate depth estimation methods, such as
deep-learning based methods, in terms of statistical efficiency. For such evaluation, we calculate
the Cramér–Rao lower bound (CRLB) by utilizing an analytical model, and compare it to the
performance of the depth estimation methods. It is important to mention that the analytical model
utilized to calculate the CRLB accounts for the shot noise.

2. LIDAR system modeling

In order to model general scenarios in SPAD-based D-TOF LIDAR, we propose a generic D-TOF
LIDAR sensor that is shown in Fig. 1(a). The generic sensor is composed of a vertical-cavity
surface-emitting laser (VCSEL), and a SPAD array that is connected to several time-to-digital
converters (TDCs) [12–14,18–20].

We optimize the system parameters considering smartphone applications. However, the
presented model and equations are valid for any D-TOF application in which correlation-based
noise filtering methods, such as coincidence filters, are not utilized. It is important to note that
correlation-based methods require complex hardware implementations [20].

The sensor’s principle of working is simply based on emitting a light pulse with the VCSEL,
which arrives at a target surface, part of the light is reflected back and captured by the SPAD
array. The distance is calculated by measuring the time difference between the emitted pulse and
detected pulse. Normally, the system performs multiple measurements based on time-correlated
single-photon counting (TCSPC) cycles, in order to form a histogram of the recorded time
differences or timestamps. The timestamps are calculated by the TDCs (see Fig. 1(b)), and we
consider an architecture where multiple SPADs share a single TDC through timelines. The shared
timelines allow to have a lower number of TDCs with respect to the number of SPADs [21].

To study the proposed D-TOF LIDAR sensor performance and evaluate several depth estimation
methods, we propose a simulation and signal processing flow that is shown in Fig. 2. The optical
modeling stage estimates the detected number of VCSEL photons per TCSPC cycle Sp, and the
noise rate Nr in terms of counts per second. The noise events can include spurious counts due
to background light as well as dark counts. Next, the time statistics modeling stage simulates
the random and temporal behavior of the photon-counting process. For signal generation, we
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Fig. 1. Diagram and operation of a generic LIDAR sensor. (a) sensor block diagram. (b)
generic timing diagram.

consider that the SPADs are recharged at the beginning of the TCSPC cycle. Also, when a
detection occurs, the fired SPADs are kept quenched until the next recharge phase (see Fig. 1(b)).

Fig. 2. Simulation and signal processing flow

The simulation and signal processing flow can simulate a single D-TOF LIDAR scenario
with fixed simulation parameters. As a result, it outputs a single value that corresponds to the
estimated target depth d̂T, which is calculated based on a timestamp histogram HT. However, in
practice, we simulate several scenarios in the same run by sweeping the simulation parameters.

In the following subsections, details about the optical and time-statistics modeling stages are
described and discussed.

2.1. Optical model

Typically, in D-TOF LIDAR, the target surface is considered to be an ideal light diffuser. In order
to simplify the simulation model, previous works assume that the incidence angle between a
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light ray from the laser to the target surface is always perpendicular [18,20]. However, when the
D-TOF LIDAR sensor moves closer to the target, the incidence angle of the light ray cannot be
longer considered perpendicular (see θe,i,j in Fig. 3(a)).

Therefore, we propose a model in which the target surface is divided into sub-elements ∆Ti,j,
which are considered as individual Lambertian reflectors. Also, this pixelated model can consider
situations in which the laser field-of-illumination (FOI) exceeds the target surface area (see
Fig. 3(a)). In this model, the detector consists of a lens, an optical bandpass filter and a SPAD
array. The detector collects the summation of the diffused power from the pixelated sub-elements
whose locations are inside the FOI of the VCSEL, and the field-of-view (FOV) of the detector
(see Fig. 3(b)).

The optical model is based on a pseudo-sequential ray tracing algorithm that first calculates
light paths between the VCSEL and the target surface. Next, it calculates the light paths between
the sub-elements of the pixelated target surface and the SPAD array.

2.1.1. Signal event

A signal event is defined as a VCSEL photon detection that generates avalanche current in a
SPAD. The signal light path is divided into two sub-paths: the emission path in which the VCSEL
emits photons to the target (see Fig. 3(a)); and the reflection path in which the target reflects back
photons onto the sensor lens (see Fig. 3(b)).

In the first sub-path, the amount of received VCSEL light by a sub-element of the pixelated
target surface is calculated. The VCSEL and the SPAD array are placed at the beginning of the
d-axis and are denoted as d = 0. And we define dT as the distance from the VCSEL surface to
the target surface.

The coverage sphere of the VCSEL is determined by a cone with its apex angle 2θe, which is
equal to the FOI (see Fig. 3(a)). The total solid angle that corresponds to the FOI, ΩFOI, can be
approximated as

ΩFOI =

∫ 2π

0

∫ θe

0
sin θdθdϕ ≈ 4π sin2 θe

2
= 4π sin2 FOI

4
. (1)

At every sub-element ∆Ti,j, we define θe,i,j as the incident angle between a VCSEL light ray
and the normal vector to the surface of ∆Ti,j (see Fig. 3(a)). And we define dT as the distance
from the VCSEL surface to the target surface. So, the distance de,i,j from the VCSEL to ∆Ti,j is
given by

de,i,j =
dT

cos θe,i,j
. (2)

And the solid angle ∆Ωi,j from ∆Ti,j is

∆Ωi,j =
ˆ∆Ti,j

d2
e,i,j

, (3)

where ˆ∆Ti,j is the area of ∆Ti,j.
A received radiant flux ∆Φe,i,j by ∆Ti,j, when it is located inside the FOI, is calculated as the

ratio between ΩFOI and ∆Ωi,j; and multiplied by the total VCSEL optical power Ps, as a dot
product. This calculation is expressed as

∆Φe,i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ps ˆ∆Ti,j

4π sin2(FOI
4 )d2

e,i,j
cos θe,i,j |θe,i,j | ≤

FOI
2

0 |θe,i,j |>
FOI
2

. (4)

The second sub-light-path of the ray tracing algorithm corresponds to the detected light by
the SPAD array, which is back-reflected from the target surface (see Fig. 3(b)). The radiant flux
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∆Φs,i,j emitted by the ∆Ti,j is the product of the received radiant flux and the reflectivity ρ of the
target surface, and is defined by

∆Φs,i,j = ρ∆Φe,i,j. (5)

The detected radiant intensity ∆Ie,i,j, emitted from ∆Ti,j, is proportional to the product of the
peak radiant intensity I0,i,j and cosine θs,i,j, which is the angle between the sensor lens Ŝ and the
normal vector of ∆Ti,j (see Fig. 3(b)). ∆Ie,i,j is given by

∆Ie,i,j = I0,i,j cos θs,i,j. (6)

A plane radiator or reflector that is perfectly diffusive emits light in all directions. Further, the
total emitted power is contained within half sphere with respect to the normal of that plane (see
Fig. 3(b)). Therefore, the radiant flux ∆Φs,i,j diffused from ∆Ti,j of the target is calculated as the
surface integral of the diffused radiant intensity ∆Ie,i,j over the solid angle Ω of the half sphere

∆Φs,i,j =

∫
Ω

∆Ie,i,jdΩ = πI0,i,j. (7)

Approximating the illumination with the inverse-square law, the irradiance ∆Ee,i,j, measured at
the sensor lens and emitted by ∆Ti,j, is expressed as

∆Ee,i,j =
Ie,i,j

r2 =
∆Φs,i,j cos θs,i,j
πd2

s,i,j
, (8)

where ds,i,j is the distance from ∆Ti,j to the D-TOF LIDAR sensor.
The total radiant flux Φs sampled at the lens, whose area is Al, is the summation of the radiant

flux ∆Φs,i,j of every ∆Ti,j, but only if they are inside the FOV. Φs is calculated as follows

Φs =
∑︂
i,j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Al∆Φs,i,j(cos θs,i,j)2

πd2
s,i,j

|θs,i,j | ≤
FOV

2

0 |θs,i,j |>
FOV

2

. (9)

Finally, the number of photons per TCSPC cycle Sp, is calculated as

Sp = Φsηlηf
2λ
πfhc

PDE, (10)

where h is the Plank’s constant, c is the light speed, f is the VCSEL repetition frequency, and λ is
the VCSEL center wavelength. The photon detection efficiency (PDE) is defined as the product
of photon detection probability (PDP) and fill factor (FF) of the SPAD array. Also, it accounts for
a reduction ratio 2/π since the light-sensitive area of the SPAD array is represented as a square,
and it is inscribed in a circle that corresponds to the light projected by the lens [20]. An optical
bandpass filter is placed between the lens and the SPAD array to reduce background ambient
light (see Fig. 3(b)). So, the transmittance of the optical bandpass filter ηf is also considered as a
power loss.

2.1.2. Noise event

A noise event is defined as any SPAD avalanche that is not triggered by a photon emitted from the
VCSEL. Noise events come from artificial light or natural light in the two different light paths:
photons emitted from a noise source to the target and the target reflects photons to the sensor
lens; or direct emission of photons to the sensor lens. We only consider the first light path (see
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Fig. 3. Setup of the optical simulation. (a) Diagram of the forward emissions of the VCSEL
light and background illumination. (b) Diagram of SPAD array’s light detection of the
backward reflection.
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Fig. 3). Additionally, dark counts can trigger SPAD avalanches, but in practice the dark count
rate (DCR) is significantly smaller than the noise rate produced by background ambient light.

We use the equivalent light irradiance, En, at sea level to estimate the background noise power.
Similar to the signal event calculation, we utilize the same ray tracing equations but by replacing
Φs,i,j in Eq. (9) by

∆Φn,i,j = ρEn ˆ∆Ti,j. (11)

Therefore, we obtain an expression for the total radiant flux measured at the sensor lens, due to
noise photons only, expressed as

Φn =
∑︂
i,j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Al∆Φn,i,j(cos θs,i,j)2

πd2
s,i,j

|θs,i,j | ≤
FOV

2

0 |θs,i,j |>
FOV

2

. (12)

Similarly as in Eq. (10), we calculate the noise rate per time unit Nr as

Nr = Φnηlηf
2λ
πhc

PDE. (13)

2.2. Statistical model

The output of the time statistics modeling stage is a single histogram represented by the vector
HT, when simulating fixed optical parameters. The timestamps of signal and noise events are
generated using Sp and Nr as input information, which are calculated from Eqs. (10) and (13)
respectively (see Fig. 2).

In a single TCSPC cycle, the number of detected VCSEL photons X is a random variable (RV)
that follows a Poisson process. Its probability density function (PDF) is defined as

P(X = k) =
Sk

p

k!
e−Sp , (14)

where Sp is the expected number of signal events per TCSPC cycle. We assume that the VCSEL
light pulse has a Gaussian shape and neglect any dispersion effects. Therefore, the timestamp of
a signal event is represented by a RV with a Gaussian PDF given by

f (t | 2
dT
c

,σl) = N(t | 2
dT
c

,σl), (15)

where σl relates to the VCSEL pulse width, and N is the Gaussian function.
The noise events are uniformly distributed over time. Their timestamps are represented by an

RV with exponential PDF, which is defined by

g(t | Nr) =

{︄
Nre−Nrt t ≥ 0
0 t<0

. (16)

Based on the Monte Carlo method, random signal timestamps are generated following Eqs. (14)
and (15), and noise timestamps are generated following Eq. (16). Next, the signal and noise
timestamps are grouped together and sorted. In the case of having a single-TDC system, only the
first timestamp is added to the HT. In the case of multiple TDCs, this process is repeated for
every subgroups composed of many SPADs and a single TDC, and the first timestamp of every
TDC is added to the HT. The timestamp generation process and update of HT is repeated for
every TCSPC cycle.
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Additionally, we consider that the dominant factor in the timing uncertainty is the rounding
effect produced by TDC’s least significant bit (LSB) of size ∆TDC. Therefore, we perform a
timestamp rounding by considering ∆TDC as bin size when calculating HT. In our model, the
sensor is able to detect several photons per laser pulse. However, we consider that a single SPAD
is working in photon-starving mode and assumed that the SPAD timing jitter is much smaller
than σl. When SPADs are not working in photon-starving mode, the so-called multi-photon
distortion affects the SPAD timing jitter [22].

3. System trade-off analysis

In this section, we perform a system trade-off analysis by using the models described in the
previous section. We define two criteria to evaluate the system performance, namely the depth
range and depth resolution.

We define parameters that are swept during the analyses and categorize them into two subsets,
namely variable and fixed. The variable parameters can be modified by the system during
operation, and the fixed parameter are constrained by the application. The variable parameters
are Ps, total number of TCSPC cycles NTCSPC, PDP, and the TDC bin size ∆TDC. The fixed
parameters are En and ρ. It is important to mention that in this section we consider a system with
a single TDC. Also, appendix C explains how the models and results of single-TDC systems can
be re-adjusted to be re-interpreted for multiple-TDC systems.

Also, appendix A shows additional static parameters that are common for all simulations.

3.1. Depth range

The aim of the depth range analysis is to find the maximum distance that the system can detect
under limiting conditions. We utilize the find peaks function (FPF) from MATLAB as a reference
algorithm to estimate dT[23]. In this analysis, we gradually increase dT until the FPF is unable to
locate a signal peak, and the final valid value of dT is considered as the depth range.

Figure 4 shows the maximum depth under different parameter values. The system fails when
NTCSPC is lower than 500. Furthermore, the depth range decreases with the increase of En.

We observe that ρ and ∆En are highly dependent parameters when determining the depth
range. Therefore, we perform a depth range analysis with two extreme values of ρ, and sweeping
∆En as well as Ps (see Fig. 4(d)). It can be found that for the ρ value of 60 % the depth range is
slightly higher for low Ps values. Also, it reaches a faster saturation when increasing the Ps. On
the other hand, the 8 % ρ has a slight lower depth range for low Ps values, but its depth range
continues to increase as Ps increases. The explanation to this observation that in the curve with a
ρ value of 8 %, the depth range is restricted by the VCSEL power, only. In the curve with higher
ρ, the depth range is restricted by the amount of reflected background light.

Also, we further analyze the effect of PDP in the depth range in appendix B.

3.2. Depth resolution

In the depth resolution analysis, we study the mean-square-error (MSE) of the system when
estimating dT. In this section, we also utilize the FPF as our estimation method to locate the
VCSEL peak position in HT. Further, d̂T is simply calculated as the time of the peak found by
FPF from HT, and converted into the corresponding half distance. For a better understanding of
the analysis, we report the

√︁
ˆMSE in order to have consistency in the depth unit. Also, we study

the variance σMSE and bias component BMSE of the MSE, separately.
In this analysis, we select a standard value of Ps equal to 7.36 mW, which allows a depth range

of 0.5 m when PDP = 2 % (see Fig. 11 in appendix B), and is below the maximum safety value
when utilizing NTCSPC = 10000 [24].
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Fig. 4. Depth range under variable and fixed parameter conditions, each individual shows
the depth range as a function of Ps. (a) depth range with NTCSPC as parameter. (b) depth
range with En as parameter. (c) depth range as ρ as parameter. (d) depth range under extreme
conditions of ρ and En. When the corresponding parameters are not swept, they are set as
NTCSPC = 30000, ∆TDC = 25 ps, En = 0.1 W m−2 nm−1, and ρ = 8 %.

We sweep the variable parameters, and for every point in the sweep we generate 1,000
histograms to calculate the MSE. Fig. 5 shows the results when sweeping the variable parameters
and Fig. 6 shows the results when sweeping the fixed parameters.

First, we simulate the depth resolution while sweeping NTCSPC (see Fig. 5(a)). We find that the
MSE remains almost unchanged with respect to NTCSPC (see Fig. 5(a)). However by analyzing
BMSE and σMSE separately, we find that the MSE value is mainly determined by BMSE. It is
important to note that BMSE is an order of magnitude larger than σMSE. Also, the value of
BMSE does not depend on NTCSPC; and as expected, σMSE decreases as NTCSPC increases (see
Fig. 5(b)). The large value of the BMSE is explained by order statistics [25,26]. This effect is
further elaborated in appendix D.
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Fig. 5. Depth resolution under variable parameter conditions, and subdivided into BMSE
and σMSE. (a)

√︁
ˆMSE with NTCSPC as parameter. (b) BMSE and σMSE with NTCSPC as

parameter. (c)
√︁

ˆMSE with Ps as parameter. (d) BMSE andσMSE with Ps as parameter. When
the corresponding parameters are not swept, they are set as Ps = 7.36 mW, NTCSPC = 10000,
∆TDC = 25 ps, En = 0.1 W m−2 nm−1, and ρ = 8 %.

Next, we simulate the MSE as function of Ps (see Figs. 5(c) and 5(d)). And again, the change
in BMSE is explained by order statistics; as the total number of VCSEL photon arriving at the
detector changes with respect to Ps. The tendency in Figs. 6(c) and 6(d) is also explained by a
bias shift.
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Fig. 6. Depth resolution under fixed parameter conditions, and subdivided into BMSE
and σMSE. (a)

√︁
ˆMSE with En as parameter. (b) BMSE and σMSE with En as parameter.

(c)
√︁

ˆMSE with ρ as parameter. (d) BMSE and σMSE with ρ as parameter. When the
corresponding parameters are not swept, they are set as Ps = 7.36 mW, NTCSPC = 10000,
∆TDC = 25 ps, En = 0.1 W m−2 nm−1, and ρ = 8 %.

4. Cramér–Rao lower bound

The CRLB predicts the optimum performance that can be achieved by any unbiased estimator,
and is only determined by the estimator’s input data. It is calculated from a likelihood function
that relates the estimator’s input data and the parameter to be estimated, which are HT and dT,
respectively, in this case. In this section, we describe in detail the steps to calculate the CRLB of
the 1D-TOF LIDAR system (see Fig. 1(a)).

First, we define a timestamp as an RV that corresponds to photon detection time with respect
to an uncorrelated signal (see Fig. 1(b)). Next, we continue with the calculation of the timestamp
PDF of background photons, only. We assume that the emission process of the background
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light source is Poissonian. Therefore, the timestamp PDF, when the sensor is only exposed to
background photons is given by Eq. (16), which is derived from random Poisson points [27].

So far, we consider that our system has a single TDC and so it can only record the first photon
detection. Therefore, we can derive Eq. (16) by utilizing order statistics with first order, as an
alternative way to random Poisson points. To do so, we propose to define the PDF of the unsorted
background photons’ timestamps as follows

sN(t) = lim
T→+∞

{︄
0 fort<0
1
T fort ≥ 0

. (17)

Also, the size of the unsorted timestamp set is given by

R = lim
T→+∞

NrT . (18)

T must tend to infinity in order to achieve the definition of random Poisson points [27]. Next,
we calculate the PDF of the first background photon’s timestamp. We define it as the PDF of the
first order statistic of set composed of R independent and identically distributed (IID) RVs with
PDF equal to sN, and is given by

n1(t) = lim
T→+∞

R[1 − SN(t)]R−1sN(t)

= lim
T→+∞

R[1 −
t
T
]R−1 1

T
H(t)

= lim
T→+∞

Nr[1 −
t
T
]NrT−1H(t)

= Nre−NrtH(t),

(19)

where H(t) is the unit step function. It is important to note that n1(t) considers the influence of
the shot noise. Also, Eq. 19 express the relationship between order statistics and random Poisson
points. The next step is to calculate the PDF of the timestamp that corresponds to the first photon
detection, but when the VCSEL is turned on. Therefore, we define the PDF of the unsorted
photons’ timestamps, which includes VCSEL and background photons, as

sN+P(t | dT) = lim
T→+∞

{︄
0 for t<0
1
T +

SP
R N(t | 2 dT

c ,σl) for t ≥ 0
. (20)

Similarly as in Eq. 19, we define the first detected timestamp as the first order statistic of a set
composed of R IID RVs with PDF equal to sN+P. Subsequently, the PDF of fist timestamp, which
corresponds to VCSEL and background photons, is given by

p1(t | dT) = lim
T→+∞

R[1 − SN+P(t)]R−1sN+P(t). (21)

At this point, we can consider that p1 approximates a PDF that corresponds to the time between
random Poisson points with nonuniform density [27], as far as T tends to infinity. Next, we define
the likelihood function, which relates the estimator’s input data to the parameter to be estimated,
as follows

l(t | dT) = p1(t | dT) ∗ U(t | [0,∆TDC]). (22)

The uniform distribution U(t | [0,∆TDC]) models the rounding effect due to the finite size
of the TDC’s LSB. Also, we assume that the single-shot resolution of the TDC is only limited
by the LSB size. We do not consider differential nonlinearity (DNL) or integral nonlinearity
(INL) effects in the TDC. Timing jitter, DNL, or INL effects can be modeled by replacing
U(t | [0,∆TDC]) by a customized PDF (see appendix E).
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Finally, we rescale the likelihood function as follows

l′(t | dT) =
l(t | dT)∫ Th

0 l(t | dT)dt
, (23)

where Th is the maximum time range of the timestamp histogram HT or TDC full scale range. In
all calculations, we consider an 8-bit TDC, so Th is equal to 6.4 ns when ∆TDC = 25 ps.

The Fisher information I1(dT) observed in one single detection is given by

I1(dT) =

∫ Th

0
[
∂

∂dT
l′(t | dT)]

2 1
l′(t | dT)

dt. (24)

Since every TCSPC cycle is independent from each other, assuming that the target is static
during the detection process, the Fisher information observed in HT is calculated as

Ih(dT) = NhI1. (25)

Nh represents the total number of counts contained in HT and is subject to shot noise. However,
the shot noise influence in Nh can be neglected since the histogram typically contains several
thousands of counts. Finally, the CRLB is defined as the inverse of Ih(dT).

We numerically calculate p1(t | dT) for two difference ρ values with a time step of 1 ps (see
Fig. 7). In this calculation, we also consider two cases per ρ value: T = Th and T = Th · 104.
Obviously, the second case aims to approach that T tends to infinity, numerically. In addition,
we calculate HT using the MC code of subsection 2.2 but we reduce ∆TDC to 1 ps and increase
NTCSPC to 107.

Fig. 7. p1(t | dT) calculated with the analytical and MC models for two different
reflectivity conditions and two different T values. The system parameters are Ps = 7.36 mW,
NTCSPC = 107, ∆TDC = 1 ps, En = 0.4 W m−2 nm−1, and dT = 0.5 m. In (a) ρ is 8 % and
in (b) ρ is 60 %.

As observed in Fig. 7, p1(t | dT) is perfectly matching HT generated by the MC code when
T = Th · 104. It is worth noticing that the analytical model includes the shot noise influence in the
detection process as long as T tends to infinity. Previous analytical models utilized to calculate
the CRLB in estimation problems with single-photon detectors did not account for influence of
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the shot noise [28,29]. However, in a LIDAR case, the shot noise has a significant influence since
the average number of detected photons per TCSPC cycle is rather low.

Finally, we calculate the
√

CRLB with respect to dT for the two different ρ values (see Fig. 8),
as well as for T = Th and T = Th · 104. In the numerical calculation, R is rounded to the nearest
integer number (see Eq. (21)), which causes numerical artifacts in the

√
CRLB due to large

discontinuities in l(t | dT). This effect is minimized as T tends to infinity (see Fig. 8).

Fig. 8. CRLB calculated for two reflectivity conditions and two different T values.
The system parameters are Ps = 7.36 mW, NTCSPC = 30000, ∆TDC = 25 ps, and En =
0.4 W m−2 nm−1. In (a) ρ is 8 % and in (b) ρ is 60 %.

5. Full system performance

So far, we utilize the FPF as our reference estimation method. However, as explained in section
3.2, this method is biased. Also, the behavior of the FPF depends on its input parameters, such
as the minimum peak prominence, which requires to be adjusted depending on the application
conditions [23]. Therefore, we propose to utilize artificial neural networks (ANNs) as a robust
and unbiased depth estimator, which can be trained to adjust its coefficient, automatically.

In this section, we evaluate the performance of an improved version of the FPF (see appendix
D) and compare it to the ANN-based depth estimator’s performance. In addition, we benchmark
the performance of both methods against the CRLB that is calculated in section 4.

5.1. Artificial neural network

Depth estimation based on a feedforward ANNs can directly calculate the depth and internally
compensate for the non-linearities of the system [30]. To clarify, the ANN is not used as a
classifier since it has a single output which directly gives d̂T. The ANN inputs are the counts
of the 256 bins of single histogram HT, and the ANN has single hidden layer with 8 neurons.
The output neuron’s activation function is linear and the hidden neurons’ activation function is a
tansig function.

To obtain a representative training set, we generate many HT by linearly sweeping the
parameters of the model. We assume that the parameters of the system are already fixed, and
swept only the fixed parameters (see Tables 3, 4 and 5). Thus, Ee, ρ, and dT are the three
parameters that are swept to obtain the training set (see Table 1). It is important to mention that
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at every parameter condition, the simulation is repeated for 5 times, in order to account for the
statistical effects.

Table 1. Range of parameter sweeps in ANN training
and testing sets. The variable parameters are:

NTCSPC = 30000, ∆TDC=25 ps, and Ps = 7.36 mW.

parameter start end step training step test

En (W m−2 nm−1) 0 0.4 0.04 0.04

ρ (%) 8 60 1 1

dT (m) 0 0.6 0.0025 0.01

5.1.1. ANN performance evaluation

We evaluate the performance of the ANN to input histograms that are not used during training.
Therefore, we create a testing set in addition to the training set (see Table 1). We combine all
patterns that belong to the same value of dT and evaluate the ANN performance by creating a
distribution of d̂T per dT value. Fig. 9 shows the d̂T at every dT of the testing set as an error
bar plot, where the bar width represents in interquartile range. As observed in Fig. 9, the
non-linearities of the signal peak in HT are perfectly compensated by the ANN. In addition, the
selection of 8 hidden neurons is not arbitrary, and it was chosen after observing that a further
increase of hidden neurons do not improve significantly the estimation performance, for the
utilized dataset size.

Fig. 9. Linearity evaluation of the ANN for the testing set.
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Table 2. Performance summary of the estimated
depth shown as d̂T ± 2 ˆσdT .

depth: dT (m) improved FPF: d̂T (m) ANN: d̂T (m)

0.1 0.0943±0.0120 0.1000±0.0016

0.2 0.2022±0.0102 0.1999±0.0028

0.3 0.3039±0.0096 0.3000±0.0033

0.4 0.4036±0.0100 0.4000±0.0029

0.5 0.5007±0.0100 0.4998±0.0035

0.6 0.5977±0.0095 0.6001±0.0049

5.2. Performance comparison

In this subsection, we compare the performance between the improved FPF (see appendix D)
and ANN. We select six distributions from the linear sweep, calculate d̂T minus dT, and show
the results as a set of boxplots (see Fig. 10). It can be observed that the error distribution of the
improved FPF is more irregular with respect to the ANN. Additionally, it appears that the linearity
of the ANN is significantly better compared to the improved FPF. Also, Fig. 10 compares the
±3

√
CRLB to the error distribution of the estimation methods.

Fig. 10. Distribution of the estimation error for the testing set of the improved FPF and the
ANN depicted as a boxplot and compared to the CRLB. (a) improved FPF performance;
(b) ANN performance. The CRLB is calculated with Ps = 7.36 mW, NTCSPC = 30000,
∆TDC = 25 ps, En = 0.4 W m−2 nm−1, ρ is 60 %, and T = Th · 104.

In addition, Table 2 shows a comparison summary expressed as sample mean and standard
deviation of the d̂T distribution. It can be observed that the standard deviation achieved by the
ANN is significantly lower compared to the improved version of the FPF.
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Fig. 11. Depth range under different PDP conditions. The simulation parameters are set as:
NTCSPC = 30000, ∆TDC = 25 ps, En = 0.4 W m−2 nm−1, and ρ = 60 %.

6. Discussion and conclusions

The proposed simulation model based on radiometry and photon-counting statistics of section 2
is a simple method, which is not only limited to simulate D-TOF LIDAR systems for smartphone
applications. The simple approach of pixelating the target surface overcame the limitation of
previous models [18,20]. In addition, this approach allows to accurately simulate conditions
when the target surface is close to the sensor, as well as conditions when the target surface is
smaller than the FOI or FOV.

In subsection 3.1, we determine that the main parameter that limits the FSR of the LIDAR
system is Nr, either if the target is highly reflective (high ρ values) or under high background
irradiance (En). The reason behind this effect is that Nr determines the chance that a TDC is
available for a laser photon detection. Also, in appendix C, we show that the influence of Nr
on the entire system is reduced by increasing the total number of the TDCs; which effectively
reduces the background photon rate per individual TDC. In addition, we showed that a longer
FSR is obtained by increasing NTCSPC, however this decreases the maximum estimation per unit
time that the system can achieve. In addition, we also show in appendix C that a single-TDC
system can model a multiple-TDC system by readjusting the simulation parameters, accordingly.

In subsection 3.2, the linearity of the system is mainly influenced by the PDF shape of the first
photon timestamp p1(t|dT), which is left-skewed with respect to the VCSEL temporal intensity
f (t). This effect of a shifted histogram peak even if the target is at the same dT depends on SP,
which subsequently depends on Ps and ρ. Also, we conclude that if the BMSE is compensated,
the reminder σMSE is improved if the total number of detected laser photons per histogram is
incremented. This is achieved by increasing Ps, ρ, or NTCSPC.
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In section 4, we analytically calculate the CRLB that corresponds to the depth estimation of
a given D-TOF LIDAR system. We approximate the condition of random Poisson points with
nonuniform density by simply extending the calculation time of p1(t|dT) to infinity, and therefore
account for the shot noise. It is important to mention that in this application of single-photon
detection, the shot noise has a fundamental influence since the average number of detected
photons, per TCSPC cycle, could be lower than the unity.

Finally, we propose the utilization of AI based methods for depth estimation, in section 5.
We determine that the ANN can automatically compensate for the systematic based produced
by the single-photon detection method. In addition, this method has a significantly improved
depth resolution in comparison to the reference method, which is based on finding peaks in the
timestamp histogram.

Nomenclature

∆Φn,i,j radiant flux emitted by ∆Ti,j, due to background light photons only

∆Φs,i,j radiant flux emitted by ∆Ti,j, due to VCSEL photons only

∆Ie,i,j detected radiant intensity by the D-TOF LIDAR sensor, due to VCSEL photons only

∆Ti,j sub-element of the target surface

∆Ωi,j solid angle between ∆Ti,j and the VCSEL

∆Φe,i,j radiant flux received at ∆Ti,j, due to VCSEL photons only

∆TDC TDC bin size

ηf optical bandpass filter transmittance at λ

ηl lens transmittance at λ

ˆ∆Ti,j area of ∆Ti,j

d̂T estimated target depth

λ VCSEL center wavelength

HT timestamp histogram

I1(dT) Fisher information observed in one single detection

Ih(dT) Fisher information observed in a HT

Φn radiant flux received at the lens of the D-TOF LIDAR sensor, due to background light photons
only

Φs radiant flux received at the lens of the D-TOF LIDAR sensor, due to VCSEL photons only

ρ reflectivity of the target surface

σl VCSEL pulse width in terms of standard deviation

σMSE estimator’s standard deviation

θe,i,j angle between a VCSEL ray trajectory and the normal to the surface of ∆Ti,j

θs,i,j angle between the sensor and the normal vector of ∆Ti,j
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ξ equivalence constant between a systems with single and multiple TDCs

A′
l equivalent area of the receiver lens for a subgroup of SPADs and single TDC

Al area of the receiver lens

BMSE estimator’s bias

de,i,j the distance from the VCSEL to ∆Ti,j

ds,i,j distance from ∆Ti,j to the D-TOF LIDAR sensor

dT target depth

En equivalent solar irradiance at sea level

f VCSEL repetition frequency

f (t | 2 dT
c ,σl) normalized VCSEL intensity over time or timestamp PDF of unsorted photons

g(t | Nr) timestamp PDF of the first detected background photon

l′(t | dT) normalized likelihood function with respect to Th

l(t | dT) likelihood function

Nh Total number of counts contained in HT

Nr noise rate per time unit

NTCSPC total number of TCSPC cycles

N ′
TCSPC equivalent TCSPC cycles of a single-TDC sensor utilized for modeling a multiple-TDC

sensor

p1(t | dT) timestamp PDF of the first detected photon

Ps VCSEL optical power

R timestamp set size

SN+P(t) unsorted timestamp CDF of background light and VCSEL photons

sN+P(t) unsorted timestamp PDF of background light and VCSEL photons

SN(t) unsorted timestamp CDF of background light photons

sN(t) unsorted timestamp PDF of background light photons

Sp detected number of VCSEL photons per TCSPC cycle

T maximum time utilized to calculate p1(t | dT)

Th maximum time range of the timestamp histogram HT

U(t | [0,∆TDC]) Uniform distribution with support [0,∆TDC]

ANNs Artificial neural networks

CRLB Cramér–Rao lower bound
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DCR dark cont rate

FF fill factor

FOI field-of-illumination

FOV field-of-view

FPF find peaks function

FSR full scale range

M total number of SPADs

MC Monte Carlo

MSE mean-square-error

PDE photon detection efficiency

PDF probability density function

PDP photon detection probability

SPAD single-photon avalanche diode

TCSPC time-correlated single-photon counting

TDC time-to-digital converter

VCSEL vertical-cavity surface-emitting laser

Appendix A System parameters

Since, we focus our analysis on smartphone LIDAR applications, we define our systems parameters
based on the characteristics of commercially available sensors [31–34]. Tables 3, 4 and 5 show
parameters that are not classified as either variable nor fixed parameter, and are used in the
simulations.

Appendix B PDP influence in depth range

In the depth range analysis, we find out that PDP has a drastic impact on Nr, which is one of the
main factor that limits the depth range. Therefore, we evaluate the effect of PDP, separately, by
sweeping its value from 1% to 4%. In this simulation, we choose the highest background light
condition and target reflectivity (see Fig. 11). The value of En is selected according to [32], and
the PDP sweep range is derived from [37].

From Fig. 11, it can be observed at high background noise, the increase of PDP decreases the
depth range. The reason is that the probability of detecting background photon before the arrival
of VCSEL photons increases exponentially with respect to PDP. Therefore, for high values of
En and PDP, the VCSEL photons are missed. We consider that a maximum distance of 0.5 m is
sufficient for a smartphone application [31–34], and so we fixed the PDP value to 2 % in all of
the simulations.

We consider that Ps is the easiest controllable parameter in the system. Thus, each time we
simulate the depth range, we also sweep the VCSEL power up a maximum value of 20 mW. We
consider that if a target is too close to the sensor, for eye safety reason, the sensor can immediately
turn off the VCSEL after one complete measurement cycle. Therefore, the exposure time is equal
to the inverse of the repetition rate multiplied by NTCSPC. For example, the maximum value of Ps
for a class 1 sensor with NTCSPC = 30000 is equal to 12.77 mW [24].
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Table 3. SPAD array parameters.

definition symbol value

lens area (derived from [31–34]) Al 0.54 mm2

lens transmittance (according to [35]) ηl 94 %

bandpass transmittance (according to [36]) ηf 94 %

bandpass width (according to [36]) BO 10 nm

field-of-view (derived from [31–34]) FOV 21°

total number of SPADs (derived from [31–34]) M 196

fill factor (derived from [12,13,18–20]) FF 25 %

Table 4. VCSEL parameters.

definition symbol value

VCSEL center wavelength (according to [31]) λ 940 nm

VCSEL repetition freq. (derived from [31–34]) f 40 MHz

VCSEL pulse width (std) (derived from [31–34]) σl 127.65 ps

field-of-illumination (according to [32]) FOI 21°

Table 5. Target surface parameters.

definition symbol value

target length (according to [32]) L 260 mm

target width (according to [32]) W 200 mm

Appendix C System with Multiple TDCs

In this section we expand the equations and models of section 2 in order to simulate systems
composed of multiple TDCs. As shown in Fig. 1(a), the SPADs are shared in subgroups that are
connected to a single TDC. For example, if we have 14 TDCs in the system, the total number of
196 SPADs are shared in subgroups of 14 SPADs per TDC.

By modifying the values of NTCSPC and Al, we can approximate the condition of having several
smaller and statistically independent SPAD arrays or subgroups connected to a single TDC.
Therefore, assuming that we have ξ total TDCs in the system, we can recalculate an equivalent
and smaller lens area as follows

A′
l =

Al
ξ

. (26)

By replacing Al and A′
l in Eqs. (9) and (12), we can obtain a TOF histogram of a subgroup

of SPADs connected to a single TDC. In this calculation, we assume that the light power is
distributed uniformly across the SPAD array’s active area. Since we have multiple subgroups,
the overall effect is accounted by increasing NTCSPC, as follows

N ′
TCSPC = ξNTCSPC. (27)

We re-run the MC code and fully account for a system composed of multiple TDCs, and
compare to the model of a single TDC with modified A′

l and N ′
TCSPC. The output TOF histogram

for both cases are shown in Fig. 12, and obviously, they are statically equivalent.
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Fig. 12. Comparison between fully modeled multiple-TDC system and equivalent single-
TDC system. The system parameters are Ps = 7.36 mW, NTCSPC = 30000, ∆TDC = 25 ps,
En = 0.4 W m−2 nm−1, ρ = 60 %. (a) TOF histogram obtained with fully modeled a system
with 14 TDCs. (b) TOF histogram obtained with modeling the equivalent single-TDC
system.

Also, it is importance to note that just by increasing the number of TDCs in the system, without
using any background-light rejection method, the noise counts are reduced and signal counts are
increased.

Appendix D Improved find peak function

According to the analysis in section 3.2, the signal peak found in HT is shifted with respect to the
VCSEL intensity peak. The reason is that the shape of the signal peak is left-skewed with respect
to the VCSEL pulse, because the system can only detect the first photon (see Fig. 13). So, in
order to compensate the bias we utilize a simple linear regression, which is expressed as follows

d̂T
′
= Kd̂T + B, (28)

where K and B are coefficients of the linear regression. These two coefficients are calculated
based on fitting the typical obtained depth with the target depth.

We add another improvement to the FPF that is a simple background subtraction algorithm,
which is performed in three steps. First, background-light timestamps are measured with the
VCSEL intentionally turned off, and we save the corresponding timestamp histogram. Next, we
turn on the VCSEL, capture timestamps and generate a new timestamp histogram. Finally, we
input to the FPF the subtraction between the two previous histograms. In this way, we remove the
exponential shape contained in the HT.
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Fig. 13. p1(t|dT) against VCSEL pulse. The system parameters are Ps = 7.36 mW, En =
0.04 W m−2 nm−1, dT = 0.2 m, and ρ is 8 %.

Appendix E Influence of TDC timing jitter

We perform an extra MC simulation to depict the influence of the TDC timing jitter on the system
performance. It is important to note that the SPAD jitter, VCSEL pulse width, and TDC timing
jitter cannot be added in quadrature. The reason behind this is that the photons go through a
sorting process before they are detected by the TDC. Also due to this reason, the laser peak width
in the timestamp histogram can be narrower than the addition in quadrature of the SPAD jitter
and VCSEL pulse width; given that the number of average detected photons is larger than the
unity [38].

Figure 14 shows HT when we model the TDC timing jitter as a Gaussian R.V., which is added
to the timestamps after the sorting process. We intentionally reduce ∆TDC to 1 ps and increase
NTCSPC to 107, to observe the influence of the timing jitter in HT. As shown in Fig. 14, a TDC
timing jitter up to 100 ps FWHM has not significant influence on the peak width in HT that
corresponds to the laser photons.
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Fig. 14. HT calculated with the MC model for several TDC timing jitter values. The system
parameters are ρ is 8 %, Ps = 7.36 mW, NTCSPC = 107, ∆TDC = 1 ps, En = 0.4 W m−2 nm−1,
and dT = 0.5 m.
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