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Summary

Compliant shell mechanisms are defined as spatially curved thin-walled structures able
to transfer or transform motion, force or energy through elastic deflection. They are a
sub-category of compliant mechanisms which also gain there motion from elastic de-
formation. As such they store energy during motion, in addition to providing desired
kinematics. One major benefit of this attribute is that several functions of a mechanism
or a machine can be integrated into a single monolithic part; this is often called function
integration.

Certain force-deflection behaviour can be purposefully designed by tailoring the en-
ergy storage over the range of motion. This is useful for passive exoskeletons where shell
mechanisms are used to compensate the user’s body weight and thereby decrease the fa-
tigue accumulated during work. Other applications can be medical devices which often
need specific kinetics while operating in a small environment. Shell mechanisms or shell
flexures provide different kinetic behaviour than their flat counterparts: the wire flexure
and leaf spring flexure. These properties of shell flexures can be leveraged to create more
compact force generators.

Shell mechanism research is a relatively new field, with articles introducing novel de-
signs with a specific behaviour in mind, such as constant force or moment generators.
The state of the art presents what shell mechanisms are capable of. However, the state of
the art provides little guidance in how to analyse and design shell mechanisms in gen-
eral. The objective of this thesis is to propose tools for the analysis and design of compli-
ant shell mechanisms or flexures and to develop understanding of this class of mecha-
nisms. This thesis is divided into three parts. Part I presents the eigenscrew decomposi-
tion as a tool to understand and design the kinetics of all compliant (shell) mechanisms.
Part II discusses the properties of a buckled tape spring and a method to synthesise a
wide array of force-deflection behaviour. In part III, a novel category of shell mecha-
nisms is introduced. A curved surface is patterned with a lattice, which is able to deform
in the membrane of the shell. This is opposed to other shell mechanism that work pri-
marily through the bending of the membrane.

Part I consists of chapters 2 to 4. Chapter 2 uses the eigenscrew decomposition to
show the kinetics of several shells. It also introduces the unified stiffness metric, which
allows the comparison of the rotational and translational stiffness. This metric is based
on intrinsic properties of the eigenscrews and enables the user to determine the de-
grees of freedom of any compliant mechanism. Chapter 3 introduces a scoliosis brace
that was designed with the help of the eigenscrew decomposition. It uses the decom-
position in two ways: an eigenscrew is used as an objective function in an optimisa-
tion scheme and aligned eigenscrews are also used to design a parallel shell mechanism.
Chapter 4 demonstrates the use of the eigenscrew decomposition in the analysis of com-
pliant mechanisms in general. It can be used to show the parasitic motions present in
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a variety of compliant mechanisms. Chapter 4 ends with an analysis of a buckled tape
spring, which validates the behaviour seen in literature and shows it can also be used for
zero stiffness flexures.

Chapter 5 is the first chapter of part II and continues with an analysis of a buckled tape
spring. Specifically it presents the influence of the geometry on the energy content and
deformation of the tape spring. A tape loop is a straight-line mechanism created by two
buckled tape springs in parallel. Chapter 6 introduces a constant-force tape loop based
on the knowledge gained in chapter 5. It achieves this by varying the cross-section of the
tape spring along its length.Chapter 7 is the final chapter of part II and builds on the work
in chapter 5 and chapter 6. A synthesis method is proposed that can generate a wide
array of force-displacement behaviour. It does this through obtaining a mathematical
model of tape loop behaviour and using this model in a system identification scheme.

Chapter 8 is the only chapter of part III and introduces the use of lattices on curved sur-
faces. The resulting structures are capable of uniform scaling or dilation. The proposed
method first converts a surface into a polyhedron consisting of only triangles. These
triangles are then replaced by pantographs that are capable of uniform scaling. The tri-
angles are connected to each other in such a manner that the entire structure is able to
dilate with a single degree of freedom. This method is proven to work on any surface.
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Elastische schaalmechanismen worden gedefinieerd als ruimtelijk gekromde dunwan-
dige structuren die in staat zijn om beweging, kracht of energie over te dragen of te trans-
formeren door middel van elastische vervorming. Ze zijn een subcategorie van elasti-
sche mechanismen die hun beweging ook verkrijgen door elastische vervorming. Naast
het leveren van gewenste kinematica, slaan ze ook energie op tijdens hun beweging. Een
groot voordeel van deze eigenschap is dat verschillende functies van een mechanisme
of een machine kunnen worden geïntegreerd in een enkel monolithisch onderdeel; dit
wordt vaak functie-integratie genoemd.

Bepaald kracht-weggedrag kan doelbewust worden ontworpen door deze energieop-
slag over het bewegingsbereik aan te passen. Dit is handig voor passieve exo-skeletten
waarbij schaalmechanismen worden gebruikt om het lichaamsgewicht van de gebrui-
ker te compenseren en zo de tijdens het werk opgebouwde vermoeidheid te verminde-
ren. Andere toepassingen kunnen medische apparaten zijn die vaak specifiek kracht-
weggedrag nodig hebben terwijl ze in een kleine ruimte moeten werken. Schaalme-
chanismen of gekromde elastische elementen hebben ander gedrag dan hun vlakke te-
genhangers: de spriet en bladveer. Deze eigenschappen kunnen vervolgens worden ge-
bruikt om compactere krachtgeneratoren te creëren.

Onderzoek naar schaalmechanismen is relatief nieuw, dit onderzoek introduceert vaak
nieuwe ontwerpen met een specifiek gedrag in gedachten, zoals constante kracht- of
momentgeneratoren. De huidige stand van het onderzoek laat goed zien waartoe schaal-
mechanismen in staat zijn. De huidige stand van het onderzoek biedt echter weinig
richtlijnen voor het analyseren en ontwerpen van shell-mechanismen in het algemeen.
Het doel van dit proefschrift is om hulpmiddelen voor de analyse en het ontwerp van
elastische schaalmechanismen te introduceren en om begrip van deze klasse van me-
chanismen te ontwikkelen. Dit proefschrift is verdeeld in drie delen. Deel I presenteert
de eigenscrew-decompositie als hulpmiddel om de kinematica en kinetica van alle elas-
tische (schaal) mechanismen te begrijpen en te ontwerpen. Deel II bespreekt de eigen-
schappen van een geknikte rolmaat en introduceert een methode om een breed scala
aan kracht-weggedrag te synthetiseren met dit element. In deel III wordt een nieuwe ca-
tegorie van schaalmechanismen geïntroduceerd. Een gebogen oppervlak met een ras-
terwerk, dat kan vervormen in het membraan van de schaal. Dit is in tegenstelling tot an-
dere schaalmechanismen die voornamelijk werken door het buigen van het membraan.

Deel I bestaat uit hoofdstuk 2, 3 en 4. Hoofdstuk 2 gebruikt de eigenschroefdecompo-
sitie om de kinetica van verschillende schalen te tonen. Het introduceert ook de gecom-
bineerde stijfheidsmaat (unified stiffness metric), die de vergelijking van een rotatiestijf-
heid met een translatiestijfheid mogelijk maakt. Deze maat is gebaseerd op intrinsieke
eigenschappen van de eigenschroeven en stelt de gebruiker in staat om de vrijheidsgra-
den van een elastisch mechanisme te bepalen. Hoofdstuk 3 introduceert een scoliose-
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corset dat is ontworpen met behulp van de eigenschroef-decompositie. Het gebruikt de
decompositie op twee manieren: een eigenschroef wordt gebruikt als een doelfunctie
in een optimalisatieschema en uitgelijnde eigenschroeven worden ook gebruikt om een
parallel schaalmechanisme te ontwerpen. Hoofdstuk 4 demonstreert het gebruik van de
eigenschroefdecompositie bij de analyse van elastische mechanismen in het algemeen.
Het kan worden gebruikt om de parasitaire bewegingen aan te tonen die aanwezig zijn
in veel elastische mechanismen. Hoofdstuk 4 eindigt met een analyse van een geknikte
rolmaat, die het gedrag uit de literatuur valideert en aantoont dat het ook kan worden
gebruikt voor elastische elementen zonder stijfheid.

Hoofdstuk 5 is het eerste hoofdstuk van Deel II en gaat verder met een analyse van
een geknikte rolmaat. Hoofdstuk 5 presenteert het de invloed van de geometrie op de
energie-inhoud en vervorming van de rolmaat. Een bandlus is een rechtgeleidingsme-
chanisme dat wordt gecreëerd door twee parallelle geknikte rolmaten. Hoofdstuk 6 in-
troduceert een bandlus met constante kracht op basis van de kennis die is opgedaan in
hoofdstuk 5. Dit wordt bereikt door de dwarsdoorsnede van de rolmaat over de lengte te
variëren. Hoofdstuk 7 is het laatste hoofdstuk van deel II en bouwt voort op hoofdstuk-
ken 5 en 6. Er wordt een synthesemethode voorgesteld die een breed scala aan kracht-
weggedrag van bandlussen kan genereren. Dit wordt gedaan door een wiskundig model
van bandlusgedrag te verkrijgen en dit model te gebruiken in een systeemidentificatie-
schema.

Hoofdstuk 8 is het enige hoofdstuk van deel III en introduceert het gebruik van rasters
op gebogen oppervlakken. De resulterende structuren zijn in staat tot uniforme schaal-
vergroting of dilatatie. De voorgestelde methode zet eerst een oppervlak om in een veel-
vlak dat alleen uit driehoeken bestaat. Deze driehoeken worden vervolgens vervangen
door pantografen die uniform kunnen schalen. De driehoeken zijn zodanig met elkaar
verbonden dat de hele structuur kan schalen met een enkele vrijheidsgraad. Daarnaast
is het bewezen dat deze methode op elk oppervlak werkt.
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Introduction

Shells often evoke images of eggs, shells of crustaceans and tortoises or the
exoskeletons of insects. In the domain of human-made structures, shells can be seen
in domes, vaulted ceilings, pressure vessels and wings, among others. The common
denominator is that these shells are designed for minimum compliance; thin shells
are very resistant to loads and deformation due to their geometry.

Calladine [1] distils the two main attributes of shells : continuity and curvature.
Curvature is relatively self-explanatory. A shell needs to be curved in order be
considered a shell; e.g. a flat plate is at best a degenerate shell. Continuity can
have more than one meaning. Calladine makes the distinction that shells need to be
structurally continuous in order to be able to transmit forces. This allows structures
consisting of multiple parts, such as masonry domes or riveted pressure vessels, to
classify as shells. Incidentally, this distinction also allows a shell with holes to be
classified as a shell structure; as a shell containing holes is able to transmit forces.
These two attributes, continuity and curvature, also will be of use in categorising
compliant shell mechanisms. A compliant shell mechanism is a shell, and thus
curved and structurally continuous, and a compliant mechanism.

Compliant Mechanisms
Compliant mechanisms make use of high compliance to achieve specific kinematics.
They make use of elastic deformation to achieve motion or load transmission, which
requires the same structural continuity as shells [2]. Compliant mechanisms can
be completely monolithic, i.e. consisting out of one single uninterrupted piece of
material. In some cases, most of the mechanism deforms when loaded, which is
called distributed compliance. In other cases, only parts of the mechanism deform
whereas other parts stay rigid; this is called lumped compliance. The rigid parts
carry the same functionality as links in rigid mechanisms; the deforming parts are
similar to joints and are called flexures. The rigid parts and flexures exist in different
configurations or topologies to achieve the desired kinematics.

Despite the many possible topologies of compliant mechanisms, there are two
main flexures that make up most of the flexure elements: the wire flexure and the
leaf spring flexure. In precision engineering, both can be considered as straight beam
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elements and vary only in the type of cross section. Their cross-sectional lengths are
comparatively small to the length of the flexure, allowing the use of beam theory.

A wire flexure usually has a circular or square cross section, whereas a leaf spring
flexure has a rectangular cross section with a high aspect ratio. These flat and
prismatic flexures meet part of the requirements for shells as they are (structurally)
continuous. They lack curvature, however. A simple way to create a compliant
shell mechanism is then to add a curvature to an existing flexure or mechanism.
This is precisely what has been done in literature. In some mechanisms, compliant
shells are used as flexures which are connected to rigid parts [3–5]; which can be
considered as lumped compliance . In other mechanisms the entire shells deform
to achieve the desired behaviour [6, 7], which can be considered as distributed
compliance.

Kinetics of Mechanisms
Compliant shell mechanisms have more complex shapes that their flat and straight
counterparts; however all mechanisms in the real world are inherently spatial.
The kinematics of most existing compliant mechanisms, including compliant shell
mechanisms, is mostly planar [2, 6–11]. Usually the analysis is then also only planar,
with some analyses looking at attributes such as support stiffness separately [12, 13].
For compliant mechanisms with straight flexures, this is logical due to the small
size, small deformations and lumped compliance. In compliant shell mechanisms
this cannot be so easily overlooked as they have spatial geometries, large non-linear
deformations, and distributed compliance. As such a comprehensive strategy of
analysing these mechanisms in three dimensions is needed.

Rigid link spatial mechanisms are often analysed in a complete three dimensional
fashion. A fully spatial analysis is needed to fully understand the kinematics or
dynamics of delta robots, steward platforms, among others. Synthesis is also done in
a spatial manner [14].

A method that is often used for this purpose is screw theory. Screw theory builds
on the fact that any rigid body motion can be defined by the combination of a
rotation about a line and a translation along that same line. This is known as
Chasles’ theorem. A similar concept can be derived for loads using Poinsot’s theorem
[15]. The mathematical framework provided by screw theory allows to express the
kinetics of rigid bodies as geometry. This makes it a visual method; it allows the user
to see rotational axes, translations and loads on mechanisms. This type of analysis
is very insightful for compliant mechanisms to see the kinetics of a mechanism. It
is especially useful for shell mechanisms where the kinetics are not immediately
obvious.

Eigenscrew decomposition is a method that links screw theory with compliant
mechanisms. It is a specific eigenvalue decomposition of the stiffness and
compliance matrix and was introduced by Lipkin et al. [16, 17]. The eigenvalues are
eigenstiffnesses and the accompanying eigenvectors are screws. These screws and
eigenstiffnesses give insight into the kinetic behaviour of a compliant mechanism.
As long as the stiffness matrix of a compliant mechanism at a certain pose is
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known, insight can be gained from performing the eigenscrew decomposition. In
this thesis eigenscrew decomposition is used to analyse and design compliant (shell)
mechanisms.

Categorization of Shells
Compliant shell mechanisms have already been discussed in literature. Seffen [18]
defined them as "open, thin-walled, discretely corrugated structures, with flat facets
or curved regions of shell interconnected by folds or hinge lines”, or ”discretely
corrugated structures, capable of undergoing large, reversible displacements”. In
turn Radaelli [19] combined Farshad’s and Howell definitions of shells and complaint
mechanisms respectively to arrive at the following definition:"compliant shell
mechanisms are spatially curved thin-walled structures able to transfer or transform
motion, force or energy through elastic deflection". Both definitions focus on the
elastically deformable geometries that are thin-walled and curved. Nijssen [20] used
these definitions and the attributes described by Calladine and categorised compliant
shell mechanisms by their geometrical continuity and curvature. This is useful as it
is then possible to classify completely different mechanisms as shell mechanisms,
but in fundamentally different categories. Categories such origami shell mechanisms
as devised by Schenk et al. [21] or smooth shell mechanisms as devised by Radaelli
et al. [7, 9, 22].

This notion of geometric and structural continuity and Gaussian curvature can be
used to extend the framework so that any shell mechanism can be placed into a
distinct sub-category of shell mechanisms.

A subdivision of shells based on continuity can be made; there are several
categories of geometric continuity [23].

• In a G2 surface adjacent points will have common centres of curvature, this is
often seen as perfectly smooth. This class contains all classical shell shapes,
such as the cylinder, double parabolic, sphere and a saddle shape.

• A G1 surface does not have sharp edges, but adjacent points on the geometry
can have different centres of curvature, examples are rounded polyhedra, such
as a rounded cube. This type of surfaces appear smooth but are in fact not.

• A G0 surface is completely continuous, but will contain sharp edges, such as
the hinge lines of origami.

These are the classical categories of geometric continuity, however to also cover
structural continuity, another category is needed. This type of geometry is not
completely geometrically continuous, but can be structurally continuous as it can
transmit and transform deformations and loads. Shells with holes or non-monolithic
shell fall in this category, which is dubbed a G−1 surface, see chapter 1 for examples
of all the categories of continuity.

Geometric continuity is also present in computer aided design (CAD) programs,
where structures are constructed with mathematically defined surfaces. For instance,
a shell can be modelled by a NURBS surface, which consists of several interconnected
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Figure 1.1.: The different categories of structural continuous shapes: a shell with
holes, G−1, a shell with sharp edges, such as origami G0, a shell with
rounded edges, G1and a completely corrugated shell, G2.

NURBS patches. The continuity of each patch can be controlled by the knot vector
of the NURBS patch. A single NURBS patch can be G0,G1 or G2 continuous and
therefore cannot have holes [24]. Several patches can create a surface with holes,
with adjacent patches connecting with positional continuity.

Surfaces that are G2 continuous are called regular surfaces [25]. They are
completely smooth over their domain. Apart from the edges, locally any shell will be
G2 continuous. In these areas several distinctions can be made. On every point on a
regular surface, the Gaussian curvature can be determined; the Gaussian curvature
is the product of the principal curvatures, see fig. 1.2. Several types of points can be
denoted:

Figure 1.2.: A shell of which at any point the two principal curvatures (dark green)
can be determined. The two planes (magenta) of principal curvature are
perpendicular to each other.

• elliptical point - a point where both curvatures have the same sign, also
positive Gaussian curvature.

• hyperbolic point - a point where the curvatures have opposite signs, also
negative Gaussian curvature.
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• parabolic point - a point where one of the curvatures is zero, also zero
Gaussian curvature.

• umbilical point - a point where the curvatures are equal.

The arrangement of points on a surface determines what type of surface it is. There
are surfaces that have only a single type of Gaussian curvature; these can be either
all negative, positive or zero Gaussian curvature. A regular surface with only elliptical
points is a synclastic surface; whereas a surface with only hyperbolic points is a
anticlastic surface. A monoclastic surface is a surface with only parabolic points[25].
Several types of surfaces are not covered by this definition and will be defined
presently. An aclastic surface is a surface with there is no curvature at all. Any other
surface has multiple types of points is coined amphiclastic. The last category is
when there is a repeating series of sign curvature changes in one or more directions.
This repeating pattern is defined as polyclastic. This type of curvature is also known
as a corrugation. An overview of all type of surfaces is given in fig. 1.3.

Figure 1.3.: The types of surfaces determined by the arrangement of Gaussian
curvature on their membrane

In these categories there exist special geometries where the (Gaussian) curvature
is equal everywhere on the surface. This type of surface is not possible in the
amphiclastic and corrugation categories as curvature change is the defining property
of those categories. For the other categories the geometries with constant curvature
are as follows:

• aclastic - plate, which is the only surface in the aclastic category

• monoclastic - open cylinder

• synclastic - open (half) sphere

• anticlastic - open pseudosphere

An overview of these surfaces is given in fig. 1.4.
This classification of continuity and curvature allows assigning any shell mechanism

to one of the described categories. In terms of continuity, a regular surface, G2,
is the most rudimentary surface since all other surface are at least a collection of
smooth surfaces. Of the regular surfaces, the aclastic is the simplest geometry as it
contains no curvature al all. A flat plate is not a shell, however. The next simplest
geometry is the open cylinder, which only has a constant curvature in one direction.
In this thesis the open cylinder or tape spring geometry is studied further to better
understand its capabilities as a shell flexure or mechanism.
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Figure 1.4.: Geometries that have a constant curvature across their surface

Applications of Compliant Shell Mechanisms
Compliant shell mechanisms or shell flexures are an extension of their non-curved
counterparts and so they can be used in similar applications. Compliant mechanisms
store energy during motion along with providing the desired kinematics. Containing
several functions in one monolithic part is one major benefit of compliant
mechanisms in general; this is often called function integration.

Shells distinguish themselves from flat elastic elements by displaying more complex
behaviour. For instance, a tape spring will buckle when deformed sufficiently; the
fold that was created during buckling will act as a constant moment hinge [26].
This is a degree of freedom that was not there before buckling. This behaviour is
leveraged in, for example, the deployment of solar panels in space. The solar panels
are connected by tape springs. When the solar panels are folded together during
launch, the tape spring are buckled, enabling rotation of the panels. In orbit the
solar array is unfolded and the tape springs return to their straight configuration.
The straight tape springs prohibit rotation and as a result the solar array forms a
relatively rigid surface [3–5].

Tape springs or slit tubes are also found in extensible booms; so called STEMs are
used as rigid booms for e.g. antennas [27]. When extended the tape spring is rigid;
however, it can be rolled up to a relatively small package when the tape spring is
buckled. This is of course very similar to a carpenter tape: an everyday use shell
mechanism.

Their distinct degrees of freedom and force-deflection behaviour could make shell
mechanisms useful in an array of other applications: applications such as gravity
balancers [7]. Gravity balancers are useful for e.g. passive exoskeletons where shell
mechanisms are used to compensate the user’s body weight and thereby decreasing
the fatigue accumulated during work [20]. Other applications could be medical
devices which often need specific kinetics while operating in a small environment.
The properties of shell flexures can be leveraged to created smaller and more
compact force generators.

Objectives and Contributions of this Thesis
This thesis aims to further the understanding and capabilities of shell mechanisms. It
does this in two ways. First, it illustrates the capabilities of eigenscrew decomposition
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in both the analysis and design of compliant (shell) mechanisms. This thesis presents
a framework for the analysis of shell mechanisms using eigenscrew decomposition
and presents an application where eigenscrew decomposition was used as an integral
part of the design process.

Furthermore, it elaborates on the tape spring as a shell flexure element. The tape
spring is a cylindrical flexure and a monoclastic geometry with a constant Gaussian
curvature. It is the simplest shell flexure in the categorisation of shells in this thesis
and its behaviour makes it useful as a flexure in mechanisms. However, the analysis
was never done in a spatial manner which limits its implementation as a flexure.
This thesis provides an in-depth analysis of the capabilities of this curved flexure
element. This thesis also presents an application of a tape spring mechanism, where
its unique behaviour is used to achieve a desired force-deflection behaviour. Lastly,
this thesis also present an synthesis method which captures the unique behaviour of
tape spring mechanisms and provides an accessible and quick approach to design
an array op tape spring mechanisms.

Thesis Outline
This thesis is split into three parts.

Part I contains chapters 2 to 4 and pertains to the use of eigenscrew decomposition
in compliant (shell) mechanisms. Chapter 2 discusses a method to ascertain the
kinematics of complex shell geometries and ways to discern between degrees of
freedoms and constraints of several shell flexures. Chapter 3 discusses the use
of eigenscrew decomposition in the design of a scoliosis brace, showcasing the
decomposition as a design and optimisation tool. Chapter 4 discusses ways to
analyse parasitic motion and other well-known effects in compliant mechanism
using eigenscrew decomposition.

Part II contains chapters 5 to 7 and discusses tape springs as a flexure element.
Chapter 5 discusses the effect of the geometry of the tape spring on its mechanical
behaviour. Chapter 6 elaborates on a mechanism consisting of tape springs and how
the geometry can be tailored to get a constant force behaviour. Chapter 7 elaborates
on this design and proposes a method to synthesize tape spring geometries given a
desired force-displacement behaviour.

Part III contains chapter 8 and discusses a class of shell mechanism that is curved
and structurally continuous, but is not based on any of the regular shapes. The
deformation can also happen in the membrane of shell and not only due to bending
of the shell. This is different from the archetypal shell mechanism and is added to
this thesis to illustrate the spectrum of behaviours shell mechanisms are capable of.
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Unified Stiffness Characterization

of Nonlinear Compliant Shell
Mechanisms

Joost R. Leemans, Charles J. Kim, Werner W.P.J. van de
Sande, Just L.Herder

Compliant shell mechanisms utilize spatially curved thin-walled structures to transfer
or transmit force, motion, or energy through elastic deformation. To design spatial
mechanisms, designers need comprehensive nonlinear characterization methods, while
the existing methods fall short of meaningful comparisons between rotational and
translational degrees-of-freedom. This paper presents two approaches, both of which
are based on the principle of virtual loads and potential energy, utilizing properties
of screw theory, Plücker coordinates, and an eigen-decomposition. This leads to two
unification lengths that can be used to compare and visualize all six degrees-of-freedom
directions and magnitudes in a nonarbitrary, physically meaningful manner for
mechanisms exhibiting geometrically nonlinear behaviour.

This chapter originally appeared as J. R. Leemans, C. J. Kim, W. W. P. J. van de Sande, and
J. L. Herder. “Unified Stiffness Characterization of Nonlinear Compliant Shell Mechanisms”. In: Journal
of Mechanisms and Robotics 11.1 (2019)[1]
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2.1. Introduction
The geometry of compliant shell elements makes them useful as building blocks
for spatial mechanism design. The behavior of compliant shell mechanisms has
been researched analytically by Seffen [2] and Pellegrino [3] and computationally
by Radaelli and Herder [4]. Similar to other compliant mechanisms, characterizing
compliant shell mechanisms is challenging due to intertwined kinematics and
kinetics. Furthermore, stiffness, compliance, and thus, freedom and constraint
directions change in a nonlinear fashion under large deformations.

A fundamental characteristic of a rigid body mechanism is its degrees-of-freedom
describing the constraint and free motion directions. Compliant shell mechanisms,
however, do not have clear distinctive constraint and free motion directions, since
motion tendencies are determined by the relative compliance of the mechanisms.

To characterize compliant shell mechanisms, we consider the relative compliances
of the kinematic degrees-of-freedom for spatial compliant mechanisms defined by
Nijssen [5] as

The motion tendency of a mechanism in 3D space, defined by
the relationship between the three rotational and three translational
compliances

The phrase relative compliances refers to the ratio of compliances between the
relative kinematic degrees-of-freedom, which are from here on referred to as the
degrees-of-freedom. Determining and utilizing these degrees-of-freedom has proven
useful in the characterization and synthesis of spatial mechanisms [5–7].

In related work, different methods have been used to characterize the
degrees-of-freedom of compliant mechanisms.

The existing methods do not address the coupling between translations and
rotations, and thus, discuss the rotations and translation separately, for example,
by using compliance ellipsoids [6]. Methods to characterize principal compliance
axes while including coupling were first introduced by Lipkin and Patterson [8],
utilizing Plücker coordinates. Lin et al. [9] introduced an independent derivation
of principal compliance axes using hybrid coordinates. Two incomparable principal
rotational and translational compliance directions and corresponding magnitude
multiplier groups, containing all six degrees-of-freedom result from Lin and Lipkin’s
derivation. A full comparison and order of the six degrees-of-freedom would give
deeper insight into kinematic characteristics, such as the determination of whether
a mechanism is predominantly rotational or translational compliant. Methods to
convert these multiplier groups into compatible units introduce arbitrarily defined
characteristic lengths [10–12] lacking a physical consistent meaning. Because the
lengths are arbitrary, unified compliances are not systematically comparable between
mechanisms.

A method with comparable results to a section of this paper is introduced by
Lin et al. [9]. Lin’s derivation is based on a geometrical interpretation of hybrid
coordinates to derive principal stiffness axes. The corresponding stiffnesses are
converted to similar units based on the principle of potential energy. By introducing
the principle of potential energy, all directional information is lost, since energy is a
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scalar quantity. Lin introduces a method to show that the results of their paper are
frame-invariant. The same method can be applied to show that the results of this
paper are frame-invariant.

This paper presents two approaches that utilize properties of screw theory, Plücker
coordinates, and Lipkin’s eigen-decomposition which lead to the unified compliances.
The unified compliances, consisting of two multiplier groups with identical units,
facilitate a comparison between all six degrees-of-freedom compliance magnitudes
in a consistent, insightful manner while including coupling. The unification is
utilized in a spatial characterization of nonlinear behaving compliant mechanisms.

Section 2.2 presents background theory on Pücker coordinates, stiffness matrices,
and Lipkin’s eigen-decomposition. Section 2.3 presents Lipkin’s eigen-decomposition
graphically. The background theory and visualization are used to determine two
approaches that lead to the unification of the compliances in section 2.4. The
unification is used to present a visual characterization of the kinematic behavior
of two well-known compliant flexure mechanisms as illustrated in section 2.5.
In section 2.6, the characterization is used to analyze the nonlinear behavior of
compliant shell mechanisms. Section 2.7 introduces a physical prototype that
demonstrates the efficacy of the presented characterization method. Section 2.8
discusses the contributions of the presented work, while a brief summary is given
and a general conclusion is drawn in section 2.9.

2.2. Background
According to Chasles’ theorem [13], a displacement in three-dimensional space can
be expressed in Plücker axis coordinates vector form as a twist T containing linear δ
and angular γ displacements defined as

T =
[
δi

γi

]
=

[
(ri ×γi )+hiγi

γi

]
, i = 1,2,3 (2.1)

This form expresses the translation in terms of a combination of angular
displacement γ and the 3×1 location vector ri and h the pitch scalar. The Plücker
axis coordinates in vector form are visualized in fig. 2.1.

The magnitude of the twist is defined as

|T| =
{p

δ ·δ if γ= 0
p
γ ·γ otherwise

(2.2)

and the direction of the twist is defined as the direction of the angular deformation.
The dual of Chasles’ theorem is Poinsot’s theorem. It states that any wrench can be
constructed by a force and torque along the same axis [14]. In Plüker ray, coordinate
vector from the wrench w contains the linear forces f and the moment couples τ

defined as

w =
[

fi

τi

]
=

[
fi

(bi × fi )+di fi

]
, i = 1,2,3 (2.3)
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Figure 2.1.: Visual representation of the Plücker axis coordinates in vector form

where bi is the 3×1 location vector pitch and di is the ratio of angular torque to
linear force. The magnitude of the wrench is defined as

|w| =

p
τ ·τ if f = 0√
f · f otherwise

(2.4)

and the direction of the wrench is seen as the direction of the force. The
relationship between the displacement and the load of a specific point of interest can
be described by the secant stiffness matrix Ks or its inverse, the secant compliance
matrix Cs , respectively, expressed as

w = Ks∆T , ∆T =Cs w (2.5)

where Ks and Cs are the 6×6 secant stiffness and secant compliance matrix,
respectively, and ∆T is an incremental displacement step [15]. A secant matrix
describing an infinitesimal incremental step is known as the tangent matrix, and it
is defined as

Kt = lim
∆T→0

Ks , Ct = lim
∆T→0

Cs (2.6)

The tangent matrices describe a linearized configuration-dependent relation
between the displacement and the load. The tangent stiffness and compliance
matrices are composed of a physical and geometrical stiffness and compliance
matrix. Nonlinear behavior can be analyzed by using either the secant stiffness matrix
or by making an incremental linearized analysis of each quasi-static equilibrium
based on the tangent stiffness matrix. As noted by Simo, analyzing geometric
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nonlinearities while assuming linear material behavior results in symmetric tangent
stiffness matrices [16].

Any symmetric positive definite nonsingular tangent stiffness Kt and tangent
compliance matrix Ct can be decomposed into an eigen-system as described by
Lipkin and Patterson [8]. The eigen-decomposition describes three translational and
three rotational principal axes, with corresponding stationary multiplier values of the
translational and rotational stiffness. Lipkin’s eigen-decomposition of the tangent
stiffness matrix Kt is defined as

Kt =
[

ŵ f ŵγ

][
k f 0
0 kγ

][
ŵ T

f

ŵ T
γ

]
(2.7)

and the resulting tangent compliance matrix eigen-decomposition is defined as

Ct =
[
T̂ f T̂γ

][
a f 0
0 aγ

][
T̂ T

f

T̂ T
γ

]
(2.8)

where for i = 1,2,3, multipliers kγi > 0 are the angular stiffnesses in the directions
of the γi , multipliers and k f i > 0 are the translational stiffnesses in the directions of
fi . The inverse of a translational stiffness gives the translational compliance

a fi =
1

k fi

(2.9)

and the inverse of a rotational stiffness gives the rotational compliance

aγi =
1

kγi

(2.10)

w f are the eigen-wrenches, these directions are also known as the wrench axes,
defined as

w fi =
[

fi

τi

]
, i = 1,2,3 (2.11)

Applying an eigen-wrench w f i leads to an induced twist T f i a pure translational
displacement parallel to the force direction fi , the induced twists T f are defined as

T fi =
[

a fi fi

0

]
, i = 1,2,3 (2.12)

Tγ are the eigen-twists, these directions are also known as the twist axes, defined
as

Tγi =
[
δi

γi

]
, i = 1,2,3 (2.13)

Applying an eigen-twist Tγi leads to an induced wrench wγi a pure moment
parallel to the rotational direction γi , the induced wrenches wγ are defined as
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wγi =
[

0
kγiγi

]
, i = 1,2,3 (2.14)

The above wrenches and twists are normalized with respect to the defined
magnitudes to be used in the eigen-decompositions of eq. (2.7) and eq. (2.8)

T̂ = T

|T| (2.15)

and

ŵ = w

|w| (2.16)

Upon the normalization of the twist and wrench eigen-decomposition described in
eq. (2.2) and eq. (2.4), the direct magnitude relation is lost. In terms of magnitude,
the induced twists and wrenches are no longer a direct result of the eigen-wrenches
and eigen-twists. After normalization, only the directional relations remain valid.

2.3. Visualization of the Eigen-Decomposition
In this section, we provide visual interpretation of the eigen-wrench directions for
a specific shell mechanism to increase the understanding of the wrench and twist
axes. Consider the compliant shell mechanism that is fully constrained along the
bottom edge and the point of interest at which Ct is determined is indicated by a
black dot fig. 2.2.

The acrylic (E=3.2GPa, ν=0.35) shell mechanism is analyzed as an isogeometric
analysis (IGA) shell [17] . The 2mm thick geometry is defined by NURBS [18],
wherein a third polynomial follows a 3×5 grid. Five coordinates are placed on three
planes in y =−0.05, y = 0, and y = 0.05. The x and z coordinates are defined in
table 2.1. The three principal eigen-twist directions are shown in fig. 2.2a. A rotation
of the point of interest around a twist axis plus a translation along this axis leads to
pure parallel moments around this twist axis.

Table 2.1.: NURB coordinates corrugated shell

point 1 2 3 4 5
x 0.00 0.00 0.04 0.00 0.00
y 0.00 0.04 0.08 0.11 0.15

The three principal eigen-wrench directions can be seen in fig. 2.2b. A force along
a wrench axis plus a moment around this axis leads to a pure translation along the
wrench axis.

Figure 2.2a and fig. 2.2b both provide information on the twist and wrench spatial
directions, while excluding the compliance and stiffness multipliers. Thus, these
figures do not show the magnitude of compliance corresponding to these directions.
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Figure 2.2.: Visual representation eigen-decomposition: (a) twist axes, (b) wrench
axes, (c) twist compliance vectors, and (d) wrench compliance vectors

By plotting vectors along the directions of the wrench and twist axes with the length
of their corresponding stationary compliance multipliers, both the direction and the
magnitude of compliance are visualized in an intuitive manner.

Figure 2.2c shows the vectors along the twist axes with the magnitude of the
corresponding rotational compliance multipliers aγ. The longer the vector, the larger
the rotational compliance around the twist axis that the vector represents.

Figure 2.2d shows the vectors along the wrench axes with the magnitude of the
corresponding translational compliance multipliers a f . The longer the vector, the
larger the translational compliance along the wrench axis that the vector represents.

Figure 2.2d and fig. 2.2c both provide the directional information of the twist and
wrench axes and the corresponding compliance magnitude.
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2.4. Unification Methods
The eigen-decomposition presented in section 2.2 is insightful, however, the
magnitudes of the rotational and translational vectors cannot be compared because
they are composed of different units. Consider the decomposition in eq. (2.8). The
upper three stationary multipliers a f are translational compliances given as length
per force. The lower three stationary multipliers aγ are rotational compliances given
as angle divided by force multiplied by length. The rotational and translational
multipliers are not directly comparable due to their different units. To enable
this comparison, we utilize unification variables, which will be defined based on
equivalent compliance by virtual load or potential energy. In this section, we discuss
two unification approaches by converting the units of a fi into aγi and the units of
aγi into a fi . The conversion of the units of aγi into a fi can be done by expressing
rotational compliance as an equivalent translational compliance at the point of
interest using a unification length χi . The conversion of the units of a fi into aγi

can be done by expressing translational compliance at the point of interest as an
equivalent rotational compliance using a unification length ψi . In equation form,
the unification approaches are given as

ã fi =χ2
i aγi (2.17)

and

ãγi =
a fi

ψ2
i

(2.18)

We introduce two methods to obtain the unification lengths. The first method
utilizes virtual load and displacements, and the second method is based on the
principle of potential energy. The strengths and weaknesses of both methods are
discussed in section 2.4.3.

2.4.1. RasT: Rotational as Equivalent Translational Compliance
The first approach expresses rotational compliance as an equivalent translational
compliance at the point of interest. We call this the RasT approach. Both the virtual
loads and the potential energy are used separately to determine unification length
χi .

Virtual Load Method

Converting the rotational compliance into an equivalent translational compliance at
the point of interest using the virtual load method can be done in three consecutive
steps:

1. Express δeqi , an equivalent translation at the point of interest in terms of
rotation around the twist axis.

2. Express Feqi , an equivalent virtual force at the point of interest in terms of
the induced counteracting pure parallel moment couple that corresponds to a
rotation around the twist axis.
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3. Calculate an equivalent translational compliance ã fi by dividing the expressions
above such that

ã fi =
δeqi

Feqi

(2.19)

Figure 2.3.: Equivalent translation geometry

Figure 2.4.: Equivalent virtual force geometry

Figure 2.3 and fig. 2.4 both show the point of interest of a spatial compliant
mechanism as indicated by the dot and one of the three principal twist axes Tγi ,
used to explain the three steps:

Step I. Express δeqi , equivalent translation.
The equivalent translation at the point of interest is expressed in terms of a screw

around the twist axis. The total translation corresponding to a rotation θi is a
combination of translation, δri , along the arc length around the twist axis and a
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translation, δhi , along the twist axis. The resulting equivalent translation δeqi follows
a path along a cylinder, is illustrated in fig. 2.3.

The displacement along the arc can be expressed as the product of the angle of
rotation and the radius (the arc-length). The radius that defines the displacement
along the arc is the shortest distance between the point of interest and the twist
axis. This length is defined in Plücker axis coordinates as the location vector ri as
shown in fig. 2.1. The displacement along the arc-length is thus given as

δri = |ri |θi (2.20)

The point of interest translates along the twist axis, due to the pitch hi , given by
the pitch times the rotation

δhi = hiθi (2.21)

The resulting displacement due to the two perpendicular displacements on a
cylinder is calculated using the Pythagorean theorem. The equivalent translation
expressed in terms of the corresponding rotation is thus given as

δeqi =
√

h2
i +|ri |2θi (2.22)

Step II. Express Feqi ,equivalent virtual force.
The equivalent virtual force at the point of interest in the opposite direction of the

equivalent displacement is expressed in terms of the induced moment corresponding
to a rotation around the twist axis.

Consider a virtual force Fmi applied at a distance ri . The magnitude and direction
of Fmi results in the same moment magnitude, Mi , parallel to the corresponding
rotation θi . By decomposing this virtual moment force vector, with one of the
components in the direction of the equivalent translation determined in Step I, the
equivalent virtual force Feqi can be defined. The introduced virtual moment force
vector Fmi is given as

Fmi =
Mi

|ri |
(2.23)

The geometry required to decompose the virtual moment force FMi to the
equivalent virtual force Feqi is shown in fig. 2.4, where βi is the angle between δeqi

and δri . By geometry, βi is also the angle between Fmi and Feqi , which is defined as

βi =
Fmi

Feqi

= δeqi

δri

=
√

(h2
i +|ri |2)θi

|ri |θi
(2.24)

Combining eq. (2.23) and eq. (2.24), the equivalent virtual force is

Feqi =
Mi√

h2
i +|ri |2

(2.25)

Step III: Express ã fi , The equivalent translational compliance.
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The third step is to substitute eq. (2.22) and eq. (2.25) with eq. (2.19)

ã fi =
δeqi

Feqi

= (h2
i +|ri |2)

θi

Mi
(2.26)

The unification length χi follows from eq. (2.17) and eq. (2.26)

χi =
√

h2
i +|ri |2 (2.27)

Potential Energy Method

To unify the rotational compliance multipliers aγi into equivalent translational
compliance multipliers, ã fi , the principle of potential energy can be used as well.
In this section, the rotational energy is compared with the corresponding virtual
equivalent translational energy due to the rotation. The eigentwist induces a pure
moment around the twist axis, and therefore, the corresponding potential energy is
solely dependent on the rotational stiffness and rotation. The potential energy of the
eigentwist is defined as

Uγi =
1

2
kγi θ

2
i (2.28)

By introducing an equivalent translational stiffness k̃ fi and the equivalent
translation δeqi corresponding to the rotation given in eq. (2.22), we can express the
stored energy as

1

2
kγi θ

2
i = 1

2
k̃ fi δ

2
eqi

(2.29)

By substituting eq. (2.22) with eq. (2.29), the equivalent translational stiffness can
be defined as

k̃ fi =
kγi

h2
i +|ri |2

(2.30)

The inverse of the translational and rotational stiffness results in the translational
and rotational compliance, as stated in eq. (2.9) and eq. (2.10). The equivalent
translational compliance of the rotational compliance is thus given as

ã fi = (h2
i +|ri |2)aγi (2.31)

The unification length follows from eq. (2.17) and eq. (2.31)

χi =
√

h2
i +|ri |2 (2.32)

which exactly matches eq. (2.27).
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2.4.2. TasR: Translational as Equivalent Rotational Compliance
The TasR approach expresses the translational compliance as an equivalent rotational
compliance. Converting the translational compliance into an equivalent rotational
compliance at the point of interest can be done using both the TasR equivalent of
the virtual load and the potential energy RasT approach. The analogous steps in the
virtual load method for TasR are the following:

1. Express an equivalent rotation at the point of interest, θeqi , in terms of a
translation parallel to the wrench axis.

2. Express an equivalent virtual moment at the point of interest, Meqi , in terms
of the counteracting force corresponding to a translation parallel to the wrench
axis.

3. Calculate an equivalent rotational compliance, ãγi , by dividing the expressions
above to obtain the equivalent translational compliance.

The potential energy method TasR equivalent is accomplished by introducing an
equivalent rotational stiffness. This stiffness is defined in terms of the translational
stiffness corresponding to the wrenches. Both the virtual load and the potential
energy TasR approaches result into the unification length

ψi =
√

|d 2
i |+b2

i (2.33)

which has the same form as the unification length expressed in eq. (2.32) from the
RasT approach.

2.4.3. Approach and Method Comparison
Both the virtual load method and the potential energy method result into the same
unification lengths. The potential energy method is more straightforward, however,
it gives less insight into the actual kinematics compared to the virtual load method.
While the end results of both methods yield similar conclusions, the virtual load
method includes interesting substeps with physical relevance. The substep results in
themselves can form the basis for specific designs. Knowledge of the composition of
the substeps provides the opportunity to vary parameters in an intelligent manner to
achieve specific objectives. In addition, energy in any form is a scalar quantity. Using
the introduced potential energy method, all directional information is excluded.

The RasT unification approach characterizes a mechanism as if a point of interest
will be displaced using solely forces. The RasT approach is physically comparable
as if the point of interest is displaced, along the wrench and around the twist axis,
using a ball-and-socket-joint while evaluating the traveled path and the reaction
force. Consequently, using the RasT approach pure decoupled rotations around
the point of interest is impossible to excite, therefore the RasT approach cannot
evaluate the corresponding compliance multipliers. The TasR approach characterizes
a mechanism as if the less intuitive opposite is the case, when a point of interest will
be displaced solely using couple moments. Consequently, using the TasR approach,
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the unified compliance values corresponding to eigen-wrenches that are pure forces
in line with the point of interest cannot be evaluated.

To circumvent degrees of freedoms that cannot be evaluated, one could use either
the TasR or the RasT approach. If both approaches result in degrees-of-freedom
magnitudes that cannot be evaluated, the combination of the two will give the
best characterization. The RasT approach is more intuitive and accounts for the
coupling of the rotations and translations by including twist pitch, hence section 2.5
and section 2.6 will focus on this approach. However, both approaches in their
context, separately or combined, are a powerful characterization for comparing all
six degrees-of-freedom.

2.5. Characterization
This section shows the effectiveness of the characterization to compare all six
degrees-of-freedom using the unification lengths.

All subsequent introduced mechanisms are analyzed in SPACAR and IGA shells
of which the accuracy and validation are evaluated in the work of references [17]
and [19]. The accuracy of the introduced methods depends on the accuracy of the
determined tangent stiffness matrices, which are calculated from the computational
analysis. A number of well-known compliant elements are presented along with an
example of a compliant shell. A brief physical prototype demonstrates the efficacy
of the presented characterization in ??.

2.5.1. Unified Compliance Matrix
The unification lengths χi and ψi result in unified stationary compliance multipliers,
which can be represented in matrix form. In the RasT approach, the unification
length of eq. (2.27) is substituted with eq. (2.8). The rotational compliance
multipliers are multiplied by the unification length squared h2

i +|ri |2, which yields
the equivalent translational compliance. In matrix form, this produces the diagonal
unified stationary translational compliance multiplier matrix ã f given as

ã f =
[

a fi 0
0 (h2

i +|ri |2)aγi

]
(2.34)

In the case of the TasR approach, the unified rotational compliance multiplier
matrix ãγ is found by substituting the unification length in eq. (2.33) with eq. (2.8)

ãγ =
[ a fi

(b2
i +|di |2)

0

0 aγi

]
(2.35)

The complete eigen-decomposition of the tangent compliance matrix can be
expressed as

Ct =
[
T̂ f T̂γ

][
I 0
0 1√

(h2
i +|ri |2)

]
ã f

[
I 0
0 1√

(h2
i +|ri |2)

][
T̂ f

T̂γ

]
(2.36)
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The TasR approach yields the complete decomposition as

Ct =
[
T̂ f T̂γ

][
b2

i +|di |2 0
0 I

]
ãγ

[
b2

i +|di |2 0
0 I

][
T̂ f

T̂γ

]
(2.37)

2.5.2. Direction and Unified Compliance Magnitude Visualized
The eigen-twists T̂γi and the eigen-wrenches ŵ fi can be visualized as unified
compliance vectors, with lengths corresponding to values in the unified compliance
matrix ã fi or ãγi . The introduced unified compliance vectors are indicated with T̃γi

and w̃ fi , where |T̃γi | = ãγi and |w̃ fi | = ã fi . Using this visualization, the dominant
compliance directions become evident.

The utility of this method is first shown through two well-known compliant flexure
mechanisms, the cross-pivot flexure and the double-parallelogram flexure. These
examples have been chosen because they have distinct kinematic characteristics. The
visualization using the unified compliance matrix confirms the expected behavior of
these well-described mechanisms.

Both mechanisms are analyzed in SPACAR. The mechanisms are composed of blue
spring steel (E=205GPa, ν=0.3) flexures with the following geometry: l = 75mm, w =
15mm, and h = 0.5mm.

Cross Pivot Flexure Mechanism

The cross pivot flexure mechanism consists of two perpendicular flexures and two
parallel rigid bodies. The lower rigid body is fully constrained and the center of the
upper rigid body is considered to be the point of interest. Using SPACAR, the 6×6
tangent compliance matrix Ct is determined. Figure 2.5 shows the twist and wrench
compliant axes of the mechanism.

The stationary translational compliance multipliers corresponding to the wrench
axes are given in table 2.2. The largest translational compliance multiplier is
underlined and corresponds to wrench w f1 . The stationary rotational compliance
multipliers and the pitches corresponding to the twist axes are given in table 2.3.
The largest rotational compliance multiplier is underlined and corresponds to twist
axis Tγ3 . The compliance multipliers in table 2.2 and table 2.3 cannot be compared
directly, therefore the unified compliance matrices are introduced. Figure 2.6 shows
all six unified compliance vectors along the twist and wrench axes with unified
compliance magnitudes ã f using the RasT approach. As expected, the largest unified
compliance vector is in the direction of twist axis Tγ3 at the intersection of the
flexures. The other unified compliance vectors are too small to visualize using linear
magnitude representation, because they are orders of magnitude smaller than the
vector along Tγ3 . The corresponding comparable unified compliance magnitudes are
given in table 2.4.

As can be seen in table 2.4, the multipliers are at least three orders smaller
than the underlined multiplier corresponding to the most dominant rotational
degree-of-freedom. The cross flexure mechanism is dominantly rotational compliant,
which is consistent with what is known about the cross-pivot flexure. The
total relative degree-of-freedom order based on the unified compliance multipliers
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Figure 2.5.: Principal compliance directions of the cross pivot flexure mechanism

Table 2.2.: Compliance magnitudes and corresponding wrench axes of the cross pivot
flexure

correspondence wrench translational compliance (a fi )
w f1 2.50×10−7mN−1

w f2 2.00×10−8mN−1

w f3 2.00×10−8mN−1

Table 2.3.: Compliance magnitudes and corresponding twist axes of the cross pivot
flexure

correspondence twist rotational compliance (aγi ) pithch (hi )
Tγ1 1.06×10−3radN−1 m−1 7.50×10−3m
Tγ2 1.06×10−3radN−1 m−1 7.50×10−3m
Tγ3 4.8×10−1radN−1 m−1 0.00×101m

following from the RasT approach indicated by the unified compliance vector
magnitudes is given as
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Figure 2.6.: Unified compliance vectors of the cross pivot flexure mechanism

Table 2.4.: Twist and wrench axes with corresponding unified compliance magnitudes
of the cross pivot flexure mechanism

correspondence axes unified compliance (ã fi )
w f1 2.50×10−7mN−1

w f2 2.00×10−8mN−1

w f3 2.00×10−8mN−1

Tγ1 8.08×10−7mN−1

Tγ2 5.99×10−8mN−1

Tγ3 3.38×10−4mN−1

|T̃γ3 |≫ |T̃γ1 | > |w̃ f1 | > |T̃γ2 | > |w̃ f3 |/|w̃ f2 | (2.38)

Double Parallelogram Flexure Mechanism

The double parallelogram flexure is designed to have one dominant translational
degree-of-freedom. Figure 2.7 shows the twist and wrench compliant axes of the
mechanism.

The translational compliance multipliers corresponding to the wrench axes are
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Figure 2.7.: Principal compliance directions of the double parallel flexure mechanism

given in table 2.5, and the rotational compliance multipliers and the pitches
corresponding to the twist axes are given in table 2.6. The largest translational
and rotational compliance multipliers are underlined and correspond to wrench w f1

and twist Tγ3 . The compliance multipliers in table 2.5 and table 2.6 can only be
compared directly using the unified compliances ãγ and ã f . Figure 2.8 shows the
unified compliance vectors along the twist and wrench axes with the corresponding
unified compliances as magnitudes.

Table 2.5.: Compliance magnitudes and corresponding wrench axes of the double
parallel flexure mechanism

correspondence wrench translational compliance (a fi )
w f1 4.50×10−4mN−1

w f2 5.00×10−7mN−1

w f3 2.00×10−8mN−1

As can be seen in fig. 2.8, the largest unified compliance vector is in the direction
of wrench axis w f1 as is expected. It originates from the point of interest in the
x-direction perpendicular to the face of the flexures. The other unified compliance
vectors are too small to visualize using linear magnitude representation. The
corresponding unified compliance magnitudes resulting from both approaches are
given in table 2.7. As can be seen in table 2.4, resulting from both approaches,
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Table 2.6.: Compliance magnitudes and corresponding twist axes of the double
parallel flexure mechanism

correspondence twist rotational compliance (aγi ) pithch (hi )
Tγ1 3.12×10−3radN−1 m−1 0.00m
Tγ2 7.80×10−3radN−1 m−1 0.00m
Tγ3 1.07×10−1radN−1 m−1 0.00m

Figure 2.8.: Unified compliance vectors of the double parallel flexure mechanism

the largest unified compliance magnitude, corresponding to the most dominant
degree-of-freedom, is at least two orders larger than the other magnitudes. The
double flexure mechanism is thus dominantly translational compliant consistent
with the objective of the design. The total degree-of-freedom order based on the
unified compliance multipliers ã fi following from the RasT approach indicated by
the unified compliance vector magnitudes is given as

|w̃ f1 |≫ |T̃γ3 | > |w̃ f2 | > |T̃γ1 | > |w̃ f3 | (2.39)

As discussed in section 2.4.3, the fully decoupled rotational degree-of-freedom
Tγ2 cannot be calculated using the RasT approach. More insight is accumulated
using the TasR approach. The total degree-of-freedom order based on the unified
compliance multipliers ãγi following from the TasR approach indicated by the
unified compliance vector magnitudes is given as
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Table 2.7.: Twist and wrench axes with corresponding unified compliance magnitudes
of the cross pivot flexure mechanism

correspondence axes unified compliance (ã fi ) unified compliance (ãγi )
w f1 4.50×10−4mN−1 3.20×101radN−1 m−1

w f2 5.00×10−7mN−1 3.56×10−4radN−1 m−1

w f3 2.00×10−8mN−1 -
Tγ1 4.40×10−8mN−1 3.12×10−5radN−1 m−1

Tγ2 - 7.80×10−4radN−1 m−1

Tγ3 1.50×10−6mN−1 1.07×10−3radN−1 m−1

|w̃ f1 |≫ |T̃γ3 | > |T̃γ2 | > |w̃ f2 | > |T̃γ1 | (2.40)

where the multiplier corresponding to wrench w f3 cannot be evaluated. Apart
from the unevaluated degrees-of-freedom, both approaches show the same order of
compliance. The order based on both the RasT and the TasR approach can be
interpreted as

|w̃ f1 |≫ |T̃γ3 | > |T̃γ2 | > |w̃ f2 | > |T̃γ1 | > |w̃ f3 | (2.41)

2.6. Nonlinear Characterization
The visualization using the unified compliance mulitpliers ã f and ãγ, introduced
in section 2.5 can be used to characterize the nonlinear behavior of compliant
mechanisms. A displacement of the point of interest can be analyzed incrementally.
For each quasi-static-equilibrium, the wrench and twist axes with the corresponding
unified compliance multiplier matrices can be determined. This section shows the
nonlinear analysis of the introduced cross pivot flexure mechanism and two shell
mechanisms using the unified compliances ã f following from the RasT approach.

2.6.1. Cross Pivot Flexure Mechanism Nonlinear Characterization
The point of interest of the cross pivot flexure mechanism introduced in section 2.5.2
is subjected to a counter-clockwise rotation around the y-direction of magnitude
π
3 . Figure 2.9 shows the unified stiffness visualization applied to the cross pivot
flexure mechanism. The initial mechanism and unified compliance vectors are more
transparent.

Only the unified compliance vector corresponding to twist Tγ3 appears in fig. 2.9,
since the other compliance magnitudes corresponding to the degrees-of-freedom are
too small to visualize using linear magnitude representation. The vector magnitude
corresponding to twist Tγ3 is constant at 3.38×104mN−1 during the rotation, but
shows axis drift, another known quality of the cross-pivot flexure.



2

32 2. Unified Stiffness Characterization of Nonlinear Shell Mechanisms

Figure 2.9.: Unified compliance vectors along a rotation of the point of interest
around the y-axis range of motion

2.6.2. Single Corrugated Compliant Shell

The examples of the cross-pivot flexure and the double-parallelogram flexure
demonstrate the utility of the characterization and how the results may be
interpreted with respect to a compliant mechanisms primary kinematic behavior.
The power of the characterization becomes more apparent in compliant shell
mechanisms, as they have even less predictable and distinguishable degrees-of-
freedom. The single corrugated shell mechanism was introduced in section 2.3. The
mechanism is fully constrained along the bottom edge and the point of interest is
in the center of the opposing edge, indicated by a black dot. Figure 2.10 shows
the unified compliance visualization applied to the single corrugated compliant shell
mechanism.

It shows the largest unified compliance vector corresponding to direction of twist
Tγ3 , which means that the largest compliance direction is a screw around the
direction of twist Tγ3 . The second largest unified compliance vector corresponds
to direction of wrench w f1 which is a pure translation parallel to the direction of
wrench w f1 . The other unified compliance magnitudes are relatively small, intuitively
explainable by the larger moment of inertia of the corresponding cross section.
The total initial relative degree order based on the unified compliance multipliers
ã f following from the RasT approach indicated by the unified compliance vector
magnitudes is given as
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Figure 2.10.: Unified compliance vectors single corrugated shell

|T̃γ3 | > |w̃ f1 | > |T̃γ2 | > |T̃γ1 | > |w̃ f2 | > |w̃ f3 | (2.42)

What is of specific interest is how these unified compliance vectors change
over a large range of motion. Figure 2.11shows the unified compliance vectors
through a large deformation along the transverse bending direction. The point of
interest is subjected to a displacement along the positive x-axis direction. All other
degrees-of-freedom are unconstrained. The unified compliance vectors are shown
per quasi-static-equilibrium state during the displacement of the point of interest,
as shown in fig. 2.11. The path of the point of interest is indicated with a black
line. The initial configuration and unified compliance vectors are represented more
transparently. Additionally, for visibility, only the four largest vectors are shown.

The magnitudes of the unified compliance,ã f , are plotted against the absolute
displacement of the point of interest in fig. 2.12.

The initial values on the left of the graph represent the compliances for the
undeformed mechanism. As shown, the mechanism is predominantly rotational
compliant. Figure 2.12 shows that this order remains along the displacement of the
point of interest. As discussed in section 2.2, the unified compliances are derived
from the tangent stiffness matrix. The tangent stiffness matrix is composed of a
physical stiffness and a geometrical stiffness matrix.

The change of vector directions and magnitude ratios is relatively constant. The
directions of both wrench w f1 and twist Tγ3 relative to the point of interest remain
similar along the deformation. w f1 stays perpendicular to the flexure mechanism
and Tγ3 stays parallel to the face of the shell. The compliance magnitudes related
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Figure 2.11.: Unified compliance vectors single corrugated shell along displacement

Figure 2.12.: Magnitude plot unified compliance over range of motion of the single
corrugated shell

to the twist and wrench axes in the direction of displacement decrease along the
motion, which are explained by, build up, internal stress. Despite the assumed linear
material behavior, described by Hookes Law in the physical stiffness matrix, the
mechanism exhibits nonlinear behavior. This behavior is induced by the nonlinear
geometry stiffness matrix. However, the physical stiffness matrix is dominant since
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the overall shape of the mechanism does not undergo significant changes.

Extruded Spiral Compliant Shell

Another interesting compliant shell mechanisms is the extruded spiral compliant
shell mechanism (fig. 2.13). The material properties are identical to the single
corrugated shell mechanism. The 2mm thick geometry is defined by NURBS [18], a
third polynomial follows a 3×5 grid. Five coordinates are placed on three planes in
y = -0.05, y = 0, and y = 0.05. The x and z coordinates are defined in table 2.8. The
mechanism is fully constrained along the bottom edge and the point of interest is in
the center of the opposing edge, indicated by a black dot. The initial configuration
is shown in fig. 2.13.

Figure 2.13.: Unified compliance vectors of the spiral shell mechanism

Table 2.8.: NURB coordinates extruded spiral shell

point 1 2 3 4 5
x 0.00 -0.03 0.00 0.03 0.00
y 0.00 0.04 0.08 0.06 0.04

The total initial degree-of-freedom order based on the unified compliance
multipliers ã f following from the RasT approach indicated by the unified compliance
vector magnitudes is given as

|T̃γ3 | > |w̃ f1 | > |T̃γ2 | > |T̃γ1 | > |w̃ f2 | > |w̃ f3 | (2.43)

Although the mechanism is still a developable surface, predicting the locations
and magnitudes of the compliance vectors is already more challenging compared to
the previous shell mechanism. The two largest unified compliance vectors are twist
Tγ3 and wrench w f1 . As in the previous example, these vectors are visualized during
a displacement of the point of interest. The initial configuration of the mechanism
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is depicted in fig. 2.13. The point of interest is translated along the x-axis, while
motion in the other directions is unconstrained, as can be seen in fig. 2.14.

Figure 2.14.: Unified compliance vectors of the spiral shell mechanism during motion

The most significant difference with the previous shell mechanism is the nonlinear
behavior of the compliance magnitudes, which results in a changing compliance
magnitude order under large deformation. This behavior is represented in fig. 2.15
which shows the unified compliance against absolute displacement of the point of
interest.

Figure 2.15.: Magnitude graph unified compliance over range of motion of the spiral
shell mechanism

The magnitude of the compliance directions behaves highly nonlinearly along the
translational trajectory of the point of interest. The direction of twist Tγ3 stays the
same along the deformation, while the direction of wrench w f1 changes substantially
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relative to the face of the mechanism. As discussed in the previous shell example,
the nonlinearity cannot be due to the stress building up, since this is defined by
Hookes linear law. The nonlinearity is due to the geometric stiffness matrix. The
change in magnitudes is significant, resulting in a changing order of the unified
compliances along the motion. In this example, half of the compliance magnitudes
increase initially, as the mechanism unfolds and undergoes significant geometrical
changes. The decreasing geometry stiffness matrix change is more significant than
the linearly increasing physical stiffness matrix halfway through the motion, when
the mechanism is unfolded. From then on, the geometry stays relatively similar, thus
less nonlinearity is induced by the geometry change. The increased physical stiffness
becomes the most predominant factor and the unified compliance start to decrease
at the end of the motion.

2.7. Validation
To demonstrate the efficacy and validate critical components of the unification
method presented in section 2.4, an experiment was conducted on a physical model
of a single corrugated shell. The geometry of the physical model is the same as the
shell introduction in three, except for the smaller corrugation amplitude of 14mm.
The experiment compared a physical compliant shell mechanism, fabricated from
polyethylene terephthalate (E=2.1GPa, ν=0.35) using vacuum thermoforming, with a
computational model based on the isogeometric analysis framework of [17]. The
measurement setup of the experiment is shown in fig. 2.16.

The eigen-twist and eigen-wrench of the physical model were analyzed in a
Zwick Z005 universal tester with two separate experiments. One eigen-twist and
one eigen-wrench were identified by applying various twists on the top edge of a
clamped-free physical model similar to the mechanism in fig. 2.10, while evaluating
the induced loads using an ATI Mini40-2 6 DoF load cell. Based on the analysis and
assumed preserved symmetry during fabrication of the physical model, the applied
twists were varied by varying the location vector along a predefined path.

The location vector is varied by brackets with a variable offset, which can be seen
with different offsets in fig. 2.17. The offsets vary the location vector magnitude |ri |
of the applied twists. The offset in the brackets is varied by varying the amount and
thickness of the used steel plates.

The applied twist and the induced load were compared until they matched the
definitions of the eigen-twist and eigen-wrench presented in section 2.2, to find the
location and corresponding stationary stiffness multipliers.

The resulting RasT and TasR unified stiffnesses based on the determined
components of Lipkin’s eigen-decomposition of the experiment and computational
model were compared per eigen-twist and eigen-wrench. The unified stiffness results
of the model and experiment are shown in table 2.9 and table 2.10.

The RasT and TasR unified stiffnesses of the corresponding eigen-twist,
respectively, differ by +9.21% and -0.93%. The RasT and TasR unified stiffnesses of
the corresponding eigen-wrench, respectively, differ by +3.90% and -13.90%.

The experimental results are well within a reasonable margin of error and
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Figure 2.16.: Measurement setup

Figure 2.17.: Location vector offset bracket

Table 2.9.: Eigen-twist Tγ3 components
Model Experiment

RasT unified stiffness 3.91×104Nm−1 4.3×104Nm−1

TasR unified stiffness 4.33Nmrad−1 4.3Nmrad−1

corroborate the accuracy of the model proposed in this paper. The discrepancies
can be partially attributed the production process of the physical model, friction in
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Table 2.10.: Eigen-wrench w f3 components
Model Experiment

RasT unified stiffness 8.26×104Nm−1 7.95×104Nm−1

TasR unified stiffness 1.47Nmrad−1 1.23Nmrad−1

the test setup, and the variability in material properties.

2.8. Discussion
The characterization presented in this paper has benefits compared to the existing
methods. Most characterizations do not address the coupling between rotations and
translations [6] and are only able to separately compare rotational degrees-of-freedom
and translational degrees-of-freedom, within one mechanism [7]. To compare
rotational and translational compliances with each other, it is necessary to introduce
a unification variable. Where the existing methods introduce arbitrarily chosen
unification variables [10], this paper introduces two consistently derived unification
lengths with physical significance. The unification lengths account for coupling, thus
allowing the fair comparison of rotational and translational compliances within and
between mechanisms.

Two unification lengths were developed based on two approaches. The unification
length resulting from the RasT approach, based on Plücker coordinates, is derived
independently and yielded similar results as Lin’s et al. [9] work, based on hybrid
coordinates, used to optimize graspers. Lin does not recognize the limitations
of the results that became apparent when used to characterize the behavior of
nonlinear compliant shell elements. We eliminate these limitations by introducing
both the RasT and the TasR approach. Both Lin’s derivation and the introduced
potential energy method are more straightforward than the introduced virtual load
method; however, they give less insight into the actual kinematics. The virtual
load method includes substeps with physical relevance, these substeps themselves
can form the basis for designs. Thorough knowledge of the composition of these
substeps provides the opportunity to vary parameters in an intelligent manner to
reach specific objectives. Additionally, energy, in any form, is a scalar quantity. By
introducing the principle of potential energy, all valuable directional information is
lost.

2.9. Conclusion
This paper introduces a method for the characterization of nonlinear behavior
for large deflections in complex compliant mechanisms that considers coupling
and allows the comparison of stiffness between all six degrees-of-freedom. The
characterization is based on consistently derived nonarbitrary unification variables
based on equivalent compliance by virtual load and potential energy, therefore
allows the comparison of compliance between degrees-of-freedom of different
mechanisms. With this comprehensive comparison, the opportunity rises to order all
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degrees-of-freedom, within and between mechanisms in terms of the corresponding
compliance. The most predominant degrees-of-freedom can be identified along
the trajectory of large deflections of compliant mechanisms. The characterization,
presented in this paper, applied to any mechanism with a symmetric positive
definite nonsingular compliance matrix. This includes both compliant flexure and
shell mechanisms.
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3
Shape optimization framework

for the path of the primary
compliance vector in compliant

mechanisms

Hylke Kooistra, Charles J. Kim, Werner W.P.J. van de
Sande, Just L.Herder

The primary compliance vector (PCV) captures the dominant kinematic behaviour
of a com pliant mechanism. Its trajectory describes large deformation mechanism
behaviour and can be integrated in an optimization objective in detailed compliant
mechanism design. This paper presents a general framework for the optimization of
the PCV path, the mechanism trajectory of lowest energy, using a unified stiffness
characterization and piecewise curve representation. We present a meaningful objective
formulation for the PCV path that evaluates path shape, location, orientation, and
length independently and apply the framework to two design examples. The
framework is useful for design of planar and shell compliant mechanisms that traverse
a specified mechanism trajectory and that are insensitive to load perturbations.

This chapter originally appeared as H. Kooistra, C. J. Kim, W. W. P. J. van de Sande, and
J. L. Herder. “Shape optimization framework for the path of the primary compliance vector in
compliant mechanisms”. In: Journal of Mechanisms and Robotics 12.6 (2020)[1]
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3.1. Introduction
Compliant mechanisms have been designed for a variety of purposes [2]. One
fundamental quality that has received less attention is the nature of large
displacements in compliant mechanisms. Often mechanisms are designed by
intuition to achieve a single degree of freedom [3]. Most flexure designs are of this
type. Yet, these same designs sometimes suffer from parasitic error even without
the application of off-axis loads. In other work that pertains to path generating
compliant mechanisms, output displacement is largely unconstrained [4]. As a
consequence, output displacement is often very sensitive to external load.

One of the limitations of previous work in large deflection compliant mechanisms
is that the designs are sometimes created in an ad-hoc way that relies heavily on
tacit knowledge. This is the case with many flexure-based designs. As noted by Zhu,
et. al [5], while there has been much progress in topology optimization, there is
limited research in topology optimization for path generating compliant mechanisms
[4, 6, 7]. The research has yielded non-obvious designs that meet path requirements,
but it does not consider the fundamental three-dimensional stiffness characteristics
of the mechanisms. Thus, the optimization often yields designs which traverse
desired paths only under the specified boundary or loading conditions.

We consider the trajectory of the primary compliance vector (PCV) to capture the
dominant kinematic behavior of a mechanism [8, 9]. The PCV is a generalized
6-vector representing a twist that captures the direction and location of a degree of
freedom (DOF) axis and is intrinsic to the geometry of a mechanism and invariant
under coordinate transformations. Both the location and direction of the PCV
change as the mechanism deforms. All PCV locations combined form a path that
characterizes large deformation behavior. The PCV of a cross-pivot flexure is in
the direction of flexure width and initially located at half the height. Under large
deformation, it moves in the direction of the actuation; that movement is defined as
axis drift [10].

In this paper, we give particular attention to compliant shell mechanisms, which
are a sub-category of compliant mechanisms. They are defined as spatially curved
thin-walled structures able to transfer or transmit force, motion or energy through
elastic deformation [11–13]. They have similar benefits over rigid-body mechanisms
as compliant mechanisms. They reduce wear and backlash making them useful
in high precision environments, or eliminating the need for lubrication making
them useful in many different types of environments [14]. Added to these benefits
compliant shell mechanisms have topological advantages over typical compliant
mechanisms [12]. They are useful in applications where compliant mechanisms need
to be shaped around objects, such as the human body for the use of support system
against gravity [13].

While previous research has focused on large deflection characterization of
flexure-based designs or topology optimization for path generation, there is a need
to develop a systematic means by which compliant mechanism designs can achieve
large deflection motion by drawing from intrinsic characteristics of a mechanism.
We present an optimization framework that refines mechanism shape to satisfy large
deformation kinematic requirements. It meets these requirements by tracking the
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PCV path. Furthermore, we explore relevant design variables. The optimization
framework can equally be applied to topologies consisting of flexures, beams, or
other compliant elements. Compliant shell mechanisms, however, have distinct
parameterizations that can be more versatile than simpler linear or curvilinear
elements.

The paper is organized as follows. In section 3.2 we present background concepts
that are incorporated into the shape optimization framework. In section 3.3, we
present the framework in terms of objective function, design variables, and solution
method. Next, we demonstrate the framework with two design examples. Finally, we
discuss the contributions of this paper and draw conclusions in section 3.5.

3.2. Background
In this section we review the literature pertaining to background concepts utilized in
the shape optimization framework and describe specific aspects of the research that
is distinct from the literature. First, the PCV is described using a unified stiffness
characterization. The full description of this characterization is found in [9], and the
text gives a summary of the results. Second, we present a simplified polygonal curve
representation drawing from the research on Fourier Descriptors [15] that will be
used to describe both the desired and actual PCV trajectory. Lastly, surrogate-based
optimization is described as an optimization algorithm suited to the task of shell
mechanism optimization undergoing large deformations.

3.2.1. Primary Compliance Vector (PCV)
Lipkin developed the eigentwist and eigenwrench decompositions to describe the
primary characteristics of the stiffness of a robot [8]. The primary stiffness and
compliance characteristics of a mechanism can be ascertained by two eigenvalue
problems that yield the eigenwrenches and eigentwists. A wrench or a load is
expressed in Plücker coordinates as follows [16].

W = {
f | m

}T = {
f | rW × f +hW f

}T
(3.1)

A wrench is a screw that is expressed as six by one column vector. The force f
makes up the upper half and the moment m the lower half. The moment is split
into two parts. One is perpendicular to the direction of the force f and is the cross
product of the force and the location vector rW . The second is parallel to the force
and influenced by the scalar pitch hW .

A twist is also a screw in which the translation δ makes up the upper half and the
rotation ρ the lower half.

T = {
δ | ρ

}T = {
rT ×ρ+hTρ | ρ

}T
(3.2)

The translation δ is split. One part is perpendicular to the direction of the rotation
ρ and is the product of the force and the location vector rT . The second part is
parallel to the rotation and influenced by the scalar pitch hT .
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For a given 6×6 stiffness matrix, Kt , and its inverse, Ct = K −1
t , the eigenwrenches

and eigentwists are found by solving the eigenvalue problems [8].

k f ŵf = KtΓŵf (3.3)

aγT̂γ =Ct∆T̂γ (3.4)

where

Γ=
[

I 0
0 0

]
,∆=

[
0 0
0 I

]
(3.5)

and ŵf are eigenwrenches, k f are eigenwrench stiffness multipliers, T̂γ are eigentwist
and aγ are eigentwist compliance multipliers. The force parts of the eigenwrenches
are orthonormal, while the rotational parts of the eigentwists are orthonormal. The
eigenwrenches and eigentwists are normalised so that the force and rotation parts
are unit vectors.

Solving the eigenvalue problem yields eigenwrenches that induce pure and parallel
translations and eigentwists that induce pure and parallel moments.

The eigencompliances, aγ and a f = k−1
f , cannot be directly compared because they

describe distinct phenomena and have different units. To reconcile this, Leemans
developed a unified stiffness characterization that enables systematic and meaningful
ordering of the rotational and translational compliances [9]. The unification variable
χi expresses rotational compliance as equivalent translational compliance.

α̃ f =
[
a f 1 a f 2 a f 3 χ2

1aγ1 χ2
2aγ2 χ2

3aγ3
]

(3.6)

χi =
√

h2
i +

∣∣ri
∣∣2

(3.7)

Where: hi is the pitch of the eigen-twist, and ri is the shortest vector from the
point of interest (POI) on a mechanism to the line of an eigen-twist.

The reconciliation of units in eq. (3.6) and eq. (3.7) is significant in that the relative
compliance of the eigentwists and eigenwrenches can be directly compared. Lipkin
showed that the eigentwists and eigenwrenches are invariant under coordinate
transformation, and Leemans showed that the unified characterization is also
invariant. Finally, the PCV is the eigen-twist or eigen-wrench with the largest unified
compliance multiplier value.

The unified characterization can be applied to a mechanism that undergoes large
deformation by incremental calculation of the tangent stiffness (or compliance)
matrix. The incremental evaluation of the eigen-decomposition results in a PCV
at a specific deformation, because the tangent stiffness matrix changes as the
deformation increases. The path of the PCV can be traced for a mechanism through
large deformations; this path is obtained by incrementally applying a moment that
is parallel to the PCV. Thus, the PCV path represents the direction of lowest stored
strain energy.
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3.2.2. Curve shape representation
In this paper we are interested in comparing the shape of target curves with the
trajectory of a compliant mechanism. Consider the red and blue curves in fig. 3.1.
The shapes of the blue curves in fig. 3.1b-d are similar to the red curve but are of
different location, scale, and orientation, respectively. The shape of the red curve in
fig. 3.1a, however, is very different from the blue curve. If shape similarity were
calculated using structural (point to point) error, the blue curve in fig. 3.1a would
yield the best results. It is clear that structural error does not directly capture shape
similarity. Further, the example in fig. 3.1e illustrates a case in which structural
error cannot be utilized, because the number of comparison points is not the same
between the red and blue curves.

In related research, Fourier descriptors have been developed to capture the shape
of a curve and address the challenges presented in fig. 3.1. Zahn developed
Fourier descriptors and used them successfully for pattern recognition [15]. Ullah
developed a synthesis method for rigid link mechanism path generation using Fourier
descriptors [17]. These descriptors characterize a path shape independent of length,
orientation, and location. Rai and Mankame adapted this method for end-effector
path generation of hybrid planar path generators and compliant non-smooth path
generators, respectively [4, 18].

In this paper, we utilize a simplified curve representation that is independent of
curve location, scale, orientation, and number of control points, while still capturing
the shape of the curve. In this representation, curves are normalized with respect
to arc-length, which renders the representation independent of scale. Further, only
change in curve orientation is captured, which eliminates dependence on both
location and orientation.

Consider a piece-wise linear curve with m vertices vi ∈ (xi , zi ) for i = 1..m. The
curve segment length may be found as the distance between vertices

ℓi = |vi+1 − vi | =
√

(xi+1 −xi )2 + (zi+1 − zi )2. (3.8)

where ℓi is the length of i th the curve segment.
The total length of the curve is L =∑m−1

1 ℓi and the normalized segment length,
ℓ̃i , is found by dividing each curve segment length by L such that

ℓ̃i = li

L
. (3.9)

We define the bend, φi , as the angle change between successive curve segments.
In terms of vertex locations, the bend at each vertex is found as

φi =∠(vi+2 − vi+1)−∠(vi+1 − vi ). (3.10)

for i = 2..m −2.
We assume that the first and last vertices are connected by a line segment , so

φm−1 =∠(v1 − vm)−∠(vm − vm−1) and φm =∠(v2 − v1)−∠(v1 − vm).



3

48 3. Shape optimization framework for the path of the PCV in compliant mechanisms

Finally, the bend function can be represented as a function parameterized with
respect to normalized arc-length such that

y(t ) =φ1 +
m−1∑
i=2

φi H(t − l̃i−1) (3.11)

where t = (0,1) is the normalized arc-length parameter and H is the Heaviside step
function.

This formulation is consistent with the parameterization of polygonal curves
in Zahn [15], except that Zahn takes further steps to make y(t ) periodic and
describe it using a Fourier Series. The advantages of those two steps is that such
a representation is insensitive to starting points, meaning that two curves under
comparison could be assessed for similarity even if they were described at different
relative starting points. In this paper, we are not concerned about the ability to
assess curves in this manner because we consider the starting point as a known.

There are certain advantages of not representing y(t ) as a Fourier Series (fig. 3.1c).
Representing y(t ) as a Fourier Series raises several questions such as: (i) how
many terms of amplitudes and phases should be compared? and (ii) what is
the relationship between the shape of the curve and the amplitudes and phases?
These questions are particularly problematic in a optimization context because they
introduce additional complexity and abstraction from a physical phenomenon.

As will be presented in section 3.3.2, we directly utilize y(t ) to compare candidate
and target curves. The representation still addresses the goals of insensitivity to
location, scale, orientation, and number of control points.

3.2.3. Surrogate-Based Optimization
In this paper we utilize surrogate-based optimization due to the computationally
expensive non-linear finite element analysis necessary to determine the path of
the PCV. In surrogate-based optimization, a fast and analytically tractable surrogate
model replaces a computationally expensive model [19, 20]. The optimization process
comprises construction, optimization, checking, and updating of the surrogate model
as illustrated by fig. 3.3.

The main advantage of surrogate-based optimization is the decrease in calls to
the objective function [20]. Which causes a large reduction of computation time for
complicated objective functions based on finite element modeling. Furthermore, it
overcomes discontinuities, local minima, noise in the objective function, and it is
easier to differentiate. Finally, a surrogate-based optimization converges for a given
search-space due to the manner in which the model is represented [21].

3.3. Optimization Framework
In this section we present a shape optimization framework for the lowest energy
path of a compliant shell mechanism. To that end the following subsections describe
the objective formulation, error formulation, and design variables.
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Figure 3.1.: The desired shape in red and the actual shape in blue [18]

3.3.1. Conditions

A polygon is needed for the mapping from incremental primary compliance vectors
to the shape describing step-functions. For the mapping to be valid, the orientation
of the PCV should not change over the deformation. Furthermore, the desired and
actual PCV should be aligned. The equality constraint in eq. (3.12), which is valid
for a twist PCV, introduces this condition.

c1 =ρ(x)i ·ρ∗−1 = 0 (3.12)

where c1 is the first equality constraint, and ρ is the PCV direction vector. The
desired PCV direction (ρ∗) should not change over the deformation.
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Figure 3.2.: An arbitrary path, the matching step-function, and the Fourier transform
of that step-function

Figure 3.3.: Flowchart of the surrogate-based optimization process

3.3.2. Objective Formulation

The goal of shape optimization in this paper is for the final mechanism to follow a
specific trajectory. To that end, we introduce the PCV path. The PCV path connects
the PCV locations resulting from incremental application of load along the PCV. As
such, the PCV path represents a trajectory wherein the mechanism achieves lowest
strain energy. By definition, the PCV is the twist (or wrench) that results in the
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lowest potential energy. When applied in a geometrically non-linear analysis, the
PCV path is calculated by applying a moment along the PCV at each load step.

The PCV path is illustrated with blue line segments in fig. 3.6 for some flexures
with moment applied as shown. In this particular planar case, the PCV is always
an eigentwist caused by a moment applied in the direction perpendicular to the
illustrated plane.

PCV parameters such as location and direction are determined through
manipulation of the stiffness matrix as described in Lipkin and Leemans [8, 9].
The stiffness matrices are extracted from non-linear finite element analysis of the
mechanism. For each load step in the analysis, the PCV location can be calculated
as the shortest vector (ri ) between the point of applied load (or displacement) and
the line of the PCV. That is,

ri = (δi −hiρi )×ρi

ρi ·ρi
(3.13)

where δi is the translation vector of the PCV, ρi is the direction vector, and hi is the
pitch. The PCV pitch is calculated as

hi = ρi ·δi

ρi ·ρi
. (3.14)

Together all PCV locations form the PCV path. This path is projected on a plane
and expressed as vertices of a polygon.

The PCV path can be characterized by its shape, location, orientation, and overall
length in terms of the curve representation method described in section 3.2.2. The
bend angle φi and normalized arc-length ℓ̃i characterize the shape (fig. 3.2a). We
choose the location of the undeformed PCV as the path location. Orientation and
length are calculated from the vector between the undeformed PCV and the final
PCV.

Error formulation

Error is calculated between the PCV path for a mechanism design and the desired
PCV path such that

Ψtot = ws

( Ψs

Ψs1

)2
+wd

( Ψd

Ψd1

)2
+wθ

( Ψθ

Ψθ1

)2
+wℓ

( Ψℓ

Ψℓ1

)2
(3.15)

where Ψs is path shape error, Ψd is location error, Ψθ is orientation error, Ψℓ is
length error, w represents the weight-factors, and subscript 1 indicates the initial
error value. The error calculations are normalized with respect to an initial design.
The errors are scaled such that each error term of the initial design equals unity. The
conceptual design approximates the desired characteristics, thus values of unity are
reasonable for the initial design. Scaling the individual errors makes them insightful,
have a similar magnitude, and makes weight-factors predominantly related to the
importance of a characteristic. Further, squaring the individual errors penalizes
designs that perform worse than the initial design quadratically, award designs that
perform better, and avoids discontinuities due to the sign of each error term.
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Path shape error

The path shape error is calculated as the integrated absolute difference between the
PCV path and the desired trajectory.

Ψs =
∫ 1

0
|y(t )− y∗(t )|d t (3.16)

where y(t ) is a function that captures the PCV path and y∗(t ) is a function that
captures the desired PCV path. Both y(t ) and y∗(t ) should be determined from
piecewise linear curves as described in section 3.2.2. The integral limits indicate that
the integration is performed over a normalized length scale.

Figure 3.4 is a graphical clarification of the error between the shape of the blue
and red path of fig. 3.5a. Figure 3.4a shows both step-functions, while the area of
plot in fig. 3.4b represents the error.

Path location error

In most cases, rigid body translations of the mechanism can satisfy the PCV path
location objective. Possible design space bounds can limit the range of rigid body
translations. Equation (3.17) calculates the distance between the initial primary
compliance vectors of the actual and reference PCV path. With this formulation, the
framework can satisfy path location while respecting design space limits.

Ψd =
√

(x1 −x1
∗)2 + (z1 − z1

∗)2 (3.17)

(x1, z1) and (x∗
1 , z∗

1 ) are the initial vertices on the PCV path and the target curve,
respectively.

Path orientation error

Analogous to the location, design space bounds can prevent the path orientation
objective from being satisfied with rigid body rotations. Equation (3.18) includes
the orientation of the PCV path in the total objective. This equation calculates the
difference in angle that the closing line segment, the dashed red line in fig. 3.2a,
makes with the x-axis.

Ψθ =∠(vm − v1)−∠(v∗
m − v∗

1 ) (3.18)

Path length error.

Error in path length follows from comparing the arc-lengths of the closing line
segment between the actual path and reference path.

Ψℓ = |vm − v1|− |v∗
m − v∗

1 | (3.19)

Path length is strongly related to the displacement of the point of interest and
thus the applied boundary conditions and overall compliance. For example, if a load
is applied to the POI, the path length could be matched by adapting the overall
compliance.



3.3. Optimization Framework

3

53

Figure 3.4.: The shape error (in gray) between the red and blue path

Figure 3.5.: The desired path in red, the actual path in blue, and the design variable
effect in dashed blue

Error in path length may be mitigated by placing constraints on the minimum
and/or maximum overall compliance, expressing the desired path length as a ratio
of the POI displacement, or applying a displacement boundary condition.

3.3.3. Design Variables
Effective design variables are those that when changed impact desired behavior.
Consider the three planar geometries shown in fig. 3.6. In this exercise, the PCV path
for each is shown in blue. All geometries in fig. 3.6 share the same base and the
same point of interest. When a moment is applied at the point of interest in the
direction indicated in the figure, this point will rotate about the PCV.

Figure 3.6a shows a straight flexure with a constant cross-section. In fig. 3.6b the
top of the flexure is thickened to a thickness t2, the lower part still has a thickness of
t1. This change in geometry moves the location of the PCV path towards the base of
the mechanism. This is logical since most deformation will occur there. The shape
of the path is not severely affected.

In fig. 3.6c the curvature along flexure length alters the initial geometry. The
flexure shape is produced by a spline that connects the base, the point (m,d) and



3

54 3. Shape optimization framework for the path of the PCV in compliant mechanisms

the point of interest (POI). These variables change the PCV path shape compared
to fig. 3.6a , without appearing to have a significant impact on overall magnitude
of compliance. These two examples highlight types of variables that change the
behavior of the PCV.

In this paper, we consider mechanisms comprised of single isotropic materials, so
the design variables are limited to the geometry of the mechanism. We consider both
planar compliant mechanisms and spatial compliant shell mechanisms. As alluded
above, the PCV path shape of planar mechanisms is driven largely by mechanism
shape (e.g. curvature) and less so by thickness changes. Variables that may affect
the PCV path in compliant shell mechanisms pertain more to the overall mechanism
shape, rather than the local thicknesses. Thickness changes can be used to change
the location of the PCV path (assuming that slender beams or thin shells remain so).

3.3.4. Solution Method
The selected solution method is the surrogate-based optimization algorithm in the
Matlab Global Optimization Toolbox [22]. It is selected because of the earlier
mentioned advantages. An additional advantage is the requirement of lower and
upper bounds on the design variables. These bounds help to enforce a search-space
for which the finite element model converges.

A penalty objective function implements constraints, because the surrogate-based
optimization algorithm does not accept constraint equations, and because the
number of FEM evaluations should be kept to a minimum. If statements enforce
constraint violations. If a constraint is violated, the objective is set to a large value.

3.4. Design Examples
The design examples in this section give an indication of the use, outcome, and
generality of the presented framework. We apply the framework to a straightforward
flexure mechanism and a more complicated shell mechanism. First, we introduce a
design case and a conceptual design. Second, we formulate the objective, followed
by the parametrization and modelling of the mechanism. Finally, we present the
outcome.

3.4.1. Curved Flexure Mechanism
Case

A rod needs support while maintaining a rotational degree of freedom, and during
rotation, its center must displace horizontally, like a rod rolling on a table. Figure 3.7
illustrates the problem together with a conceptual solution. Dashed lines illustrate
the deformed configuration.

The conceptual design connects a curved flexure mechanism (in gray) to the rod
with a rigid element (in black). When the twist compliance vector of the flexure and
the rotational axis are aligned properly, the flexure allows for the rotational degree
of freedom. However, the PCV path (in red) requires design refinement to meet the
horizontal displacement requirement.
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Figure 3.6.: Three flexure geometries with their PCV path in blue

Figure 3.7.: Desired rod behavior supported by a curved flexure and a rigid element

Objective

The objective is a straight line PCV path such that v∗
i = (0.001(i −1),0) for i = 1..11.

Location and orientation are not in the objective, because the design space allows
for rigid-body transformations. These transformations can satisfy orientation and
location objectives. Thus, a linear relation between the desired x and z components
describes the desired PCV path. Furthermore, we will select design variables that
have little effect on path length, making the initial and final location of the PCV
arbitrary. Equation (3.15) presents the objective function. ws is equal to unity, all
other weight-factors are equal to zero, because the only objective to be met is related
to path shape.
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Parameterization.

Design variables as suggested in fig. 3.6c, curvature amplitude (m) and location of
the maximum amplitude (d), are used to obtain a straight line PCV path. These
variables are able to affect the shape of the PCV path, and they do not influence
path length in a significant way. They affect path location and orientation, so rigid
body transformations can overcome misalignment of location and orientation after
optimizing mechanism shape.

Other parameters like dimensions, thickness, and material properties are presented
in table 3.1 and kept constant.

Finite element modeling

Finite element modelling was performed in the ANSYS APDL environment. The
geometry is defined by key-point locations, which are related to the design variables
and calculated by Matlab. The key-points form an area, and shell (SHELL181)
elements are used to mesh this area. Shell element were used with the assumption
that the in-plane thickness remain small compared to the other dimensions and also
so that the three dimensional stiffness matrix could captured.

Connecting all nodes that form the attachment edges with rigid (RIGID184)
elements achieves rigidity of these respective edges. A pilot point is added to
the middle of both edges, representing the fixed point and the POI. Loads and
displacement constraints are applied to these points. The twist PCV over a large
range of motion follows from applying a 0.25m torque on the top pilot point.

Auto-stepping in the ANSYS non-linear solver was used to solve the model. The
global stiffness matrix was extracted from ANSYS at given loading intervals and then
exported to Matlab. The optimization algorithm then calculates the PCV path and
determine new values for the design variables. One of the benefits calculating the
shape error (rather than the structural error) is that it is much more amenable to
auto-stepping.

Results

Running a surrogate-based optimization as described in section 3.3.4, with 200
iterations and a search space as indicated by table 3.2, produces the optimized
design in fig. 3.8a. The final curvature amplitude (m) equals: −0.019m; the final
location of the maximum amplitude (d) is equal to 0.240m. This figure also gives
insight into the performance of the optimized geometry. The PCV path (in blue)
closely approaches the desired straight-line path shape. Figure 3.8b presents the
perpendicular distance between the desired horizontal path and the actual PCV path.
It shows that the maximum deviation is 0.1mm over a PCV path length of 12mm,
and a POI rotation of 19.5◦ .

3.4.2. Scoliosis Brace Mechanism
Case

A passive scoliosis brace that provides corrective loads while retaining patient
mobility could significantly increase scoliosis bracing treatment success [23]. The
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Table 3.1.: Constant curved flexure parameters
Height 0.2 [m]
Width 0.1 [m]

Thickness 2 [mm]
Modulus 2 [GPa]

Poisson ratio 0.4 [1]

Table 3.2.: Search-space bounds
Amplitude (m) location (d)

lower-bound -0.2 0.1 hei g ht
upper-bound 0.2 0.9 hei g ht

Figure 3.8.: Resulting PCV trajectory of the optimized curved flexure design

brace should permit sagittal bending while applying corrective load.
Figure 3.9a presents a conceptual design that has a single relative degree of

freedom - the blue twist PCV in the sagittal bending direction. A torque actuation on
the top of the mechanism (black arrow in fig. 3.9a) and fixation of the bottom (red
area) introduces sagittal bending to the design. The extent to which sagittal bending
is allowed and brace comfort depend on the alignment of mechanism PCV and
the sagittal bending axis of the spine. Proper alignment during the entire motion
prevents over-constraint and uncomfortable loads on the torso.

Objective

The optimization should refine the conceptual design into a detailed design that
matches the location and trajectory of the desired sagittal bending axis. Dries
measured the spinal movement of scoliosis patients and calculated twist axes for
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Figure 3.9.: (a) Conceptual design with the twist PCV (T1) and secondary (w1) and
tertiary (w2) compliance directions (b) Optimized design

sagittal bending between the pelvis and upper torso [24]. Table 3.3 presents the
points on the target polygon curve. The axis is initially located at x = 0.01m and
z = 0.075m in mechanism coordinates.

The path length is arbitrary because the design is parameterized in such a way
that path length can be changed after optimization and the trajectory is close to a
linear relation. Therefore, the path length error weight-factor is set to zero.

The extent to which rigid body transformations can be performed is limited
because the mechanism has to circumscribe the torso. Therefore, the objective
includes path orientation and location. The human spine can overcome deviations
in path shape by engaging vertebrae to a different extent. Thus, path shape is rated
less important than path orientation and path location. Weight-factors related to
these characteristics are set to three. The path shape weight-factor is set to unity.
Equation (3.15) presents the objective formulation.

Parameterization

The initial concept design to address this scoliosis brace problem is to combine two
half-period sinusoidal helices as shown in fig. 3.9a. The geometry is captured with
the following parameterization

x(u, v) =
(
0.088+0.055

(
1−cos

5π

3
v
))

cosu (3.20)

y(u, v) =
(
0.11+0.055

(
1−cos

5pi

3
v
))

sinu (3.21)

z(u, v) =p |u|− v (3.22)

Where: x, y , and z are the respective coordinates. −π≤ u ≤ π represents the
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Table 3.3.: Polygon data belonging to the sagittal bending axis
load-step 1 2 3 4 5 . . .
x∗ [m] 0.010 0.013 0.016 0.019 0.022 . . .

z∗ [m] 0.075 0.077 0.079 0.081 0.084 . . .

load-step 6 7 8 9 10 11
x∗ [m] 0.025 0.028 0.031 0.034 0.037 0.040

z∗ [m] 0.086 0.088 0.090 0.092 0.094 0.096

rotation in radians, −0.015 ≤ v ≤ 0.015 represents shell width in meters, and p is
the pitch in meters per radian.

Table 3.4 presents material properties and thickness of the mechanism. t is a
thickness variation that will be discussed later on.

To be able to satisfy the total objective function, design variables should affect path
location, orientation, and shape. They should influence individual characteristics
without worsening other characteristics, or be able to compensate secondary effects
such as pitch.

Mechanism pitch strongly relates to mechanism shape. Pitch describes the
inclination per rotation between the fixed point and the POI (see fig. 3.10). This
makes it a good parameter for optimizing path shape. Pitch does not rotate the
mechanism but it has an effect on the relative orientation of the red dots in fig. 3.10.
It also affects path orientation and location.

To compensate secondary effects of pitch and meet the orientation objective,
rotation around the Y-axis is the second design variable (β in fig. 3.10). It is
formulated in such a way that the relative orientation of the pilot points is bounded
by the combination of pitch and rotation. For example, a small pitch value allows
for a large rotation value because these values leave enough room for a human
torso between the red dots in fig. 3.10. To guarantee enough room for the patient’s
torso, the geometric equations include rotation in such a way that the horizontal
distances remain constant. This parameterization does affect mechanism length, so
path length could be affected. This design variable also affects path location.

A difference in thickness between the front and back half of the mechanism (t1

and t2 in fig. 3.10) shifts path location along the line connecting the attachment
points. A final design variable that shifts the entire mechanism in the vertical
direction (d in fig. 3.10) allows moving the path in 2 dimensions, in combination
with the difference in thickness. Thus, it is possible to meet the path location
objective.

The finite element model was directly meshed in the ANSYS APDL environment
using SHELL181 elements. The elements were generated using the parametric
equations of the shell in eq. (3.20) -eq. (3.22) using 6 elements across the sinusoidal
cross section and 30 elements along the helical arc-length for each half of the
mechanism. The model was discretized to use a small number of elements while
also achieving sufficient accuracy.

The twist PCV over a large range of motion follows from applying a 0.75Nm torque
on the top pilot point.
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Table 3.4.: Brace mechanism parameters
thickness 2±t [mm]

E-modulus 2 [GPa]
Poisson’s ratio 0.4 [1]

Figure 3.10.: Visualization of brace-mechanism design variables

Result

Running a surrogate-based optimization as described in section 3.3.4, with 398
iterations and a search space as indicated by table 3.5, produces the optimized
design in fig. 3.9b. The purple half of the design has a thickness of 2.3mm, the cyan
half has a thickness of 1.8m, mechanism pitch is 0.0076mrad−1, rotation is 41◦, and
vertical shift is 0.0095m.

Table 3.5.: Search-space bounds
Amplitude (m) location (d)

lower-bound -0.2 0.1 hei g ht
upper-bound 0.2 0.9 hei g ht

Figure 3.11 gives insight into the performance of the optimized geometry. The
optimized PCV path (in red) closely approaches the desired PCV path, the blue arrow
indicates the desired orientation and location. The black line indicates the initial
PCV path. Figure 3.12 presents the perpendicular distance between the desired path
and the actual PCV path. It shows that the maximum path deviation is 0.44mm with
a POI rotation of 40.5◦. The initial PCV location is off by 0.30mm, and the difference
in orientation is 0.76◦. The black line represents the PCV path of the conceptual
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design. Furthermore, fig. 3.13 presents the unified compliance ratios. The relative
compliance of w1/T1 reaches a maximum value near 0.2, this indicates that the
mechanism is at least 5 times stiffer in all other directions compared to the PCV
path.

Figure 3.11.: Resulting PCV path in red under large deformation, desired orientation
and location in blue, initial PCV path in black
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Figure 3.12.: Rotated close up of the desired (blue), actual PCV path (red), and PCV
path of the initial design (black)

Figure 3.13.: Unified compliance ratios indicating the degrees of freedom
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3.5. Discussion
3.5.1. Optimization Framework
In this paper, we have presented a framework for the design optimization of
compliant mechanisms with respect to PCV path. Through the two examples in
section 3.4, we demonstrated that the framework is capable of generating optimized
geometries while separately accounting for PCV path shape, length, orientation, and
position. In the examples, there is only marginal error between desired and actual
PCV path as shown in fig. 3.8b and fig. 3.12. That the optimization resulted in
good matching of the PCV path with very simple geometries is evidence that the
formulation is well posed. Also, because of the use of the Fourier Descriptors, the
optimization is not sensitive to the size of load steps taken by the non-linear FEA
solver. This is significant, because this would not be possible with an objective
based on structural error.

In this paper we only considered PCVs that remain aligned during deformation.
If we relax this condition, the piece-wise linear curve might not be in a single
plane. The objective formulations then need to capture the 3D nature of this
curve. Furthermore, the piece-wise linear curves are no longer fully described by the
step-function representation. A 3D rotation formalism needs to be used to capture
the changing alignment of the PCV.

The PCV is determined from the tangent compliance (or stiffness) matrix. This
tangent compliance matrix can be split into two matrices, the physical stiffness
matrix and the geometric stiffness matrix [25].

C−1
t = Kt =

∫
V

(BTDB+G)dV = Kp +Kg (3.23)

where B is the differentiation matrix, D is the elasticity matrix which includes
material properties, G is the geometric stiffness matrix, which when integrated
over the volume is equal to Kg . Lastly, Kp is the physical stiffness matrix.
The physical stiffness matrix, Kp , describes the initial un-deformed behavior,
whereas the geometric matrix, Kg , is based on changing geometry and captures
the geometrically non-linear behavior. Because the tangent compliance matrix
contains all instantaneous kinematic characteristics of a compliant mechanism,
design variables that influence the physical stiffness matrix have an effect on the
location of the undeformed PCV. Affecting the path of the PCV (fig. 3.5b) is more
challenging. Design variables must have an impact on Kg to influence the path
of the PCV. Leemans suggests that changes in overall second moment of area and
overall mechanism length in compliant shell mechanisms also impact the path of
the PCV [9].

The primary contribution of this paper is the optimization for the PCV path in
compliant mechanisms. Whereas in previous work [9, 10] only analyzed the behavior
of the PCV path, this paper presents a systematic framework to optimize a design
for an arbitrary desired PCV path. In research pertaining to topology optimization
of path generating compliant mechanisms, output paths of resulting mechanisms
are often sensitive to perturbation of loads at the output. This is because the
optimization problem is posed with respect to the path of the mechanism under
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prescribed loading. The PCV path, however, represents a trajectory with the lowest
stored strain energy for a given displacement. By optimizing for the path of lowest
strain energy, it is possible to design mechanisms that are preferentially compliant
only in the desired motion directions.

In this paper the topologies of the mechanisms were pre-selected such that they
were both single degree of freedom, while the optimization guided the selection of
parameters to achieve the specified path. While topology synthesis is outside the
scope of this paper, it is notable that the quality of the optimization results depends
largely on the appropriate selection of the mechanism topology.

One of the principle challenges in the design of compliant mechanisms is to
effectively exploit complex elasto-kinematic relationships to attain desired kinematic
behavior. The presented framework deals directly with these elasto-kinematic
relationships by relating kinematic behavior to the path of the PCV. The PCV is
an intrinsic characteristic of a mechanism [9], so there is no ambiguity in the
selection of loading (or boundary) conditions by following the PCV path. With the
goal of a PCV path, designs that are susceptible to significant parasitic errors due
perturbations of the end-load are more easily avoided.

3.5.2. Objective Formulation
The objective formulation presented in section 3.3.2 is distinct from the original
Fourier Series Descriptors described by Zahn [15] and later implemented by Ullah
[17] and Mankame [18] in that the shape of the target and designed curve is
represented by step functions of angle changes parameterized by a normalized arc
length, i.e. bend function. The key distinction in the presented work is that the error
between the step functions is directly integrated to calculate error. Zahn suggests to
represent the step functions as Fourier Series and subsequently to calculate the error
of harmonic amplitudes and phase shifts. The fourier series serves to smooth target
and actual slope function, although the best representation of the non-continuous
step functions requires utilization of higher harmonics and ideally result in a nearly
discontinuous function. Like the harmonic amplitude of the fourier descriptors, the
bend function is independent of the size, orientation, and position of the curve.
Utilizing the discrete bend functions in the objective formulation directly measures
shape and was effective in optimizing for the PCV path as demonstrated in fig. 3.8
and fig. 3.11.

3.6. Conclusion
This paper introduced a framework to optimize the large deformation kinematic
behavior of a compliant shell mechanism. We presented the PCV path to represent
the lowest energy path of a mechanism trajectory. This is in contrast to formulations
that prescribe loading without considering the PCV and may suffer from path
deviation due to load perturbation. The bend function representation presented
in this paper enabled comparison of open piecewise linear curves independent of
location, scale, and orientation. Together the PCV path and bend function were
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effectively implemented in an optimization framework that resulted in mechanism
designs that with minimal path deviation.

3.7. Author Contributions
H.K. and C.J.K. proposed the research. H.K. designed the research and did the
analyses and wrote the paper. C.J.K., W.W.P.J.S. and J.L.H. supervised the project and
reviewed the paper.
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4
Kinetic analysis of spatial

compliant mechanisms using
eigenscrew decomposition

Werner W.P.J. van de Sande, Just L.Herder

Parasitic motions and loads are unwanted behaviour accompanying the desired
behaviour in compliant mechanisms. These parasitic motions often cannot be
avoided in compliant mechanisms, but usually are to be kept at a minimum. The
instantaneous kinematic characteristics of a compliant mechanism are encoded in the
stiffness matrix. An eigenscrew decomposition will help visualize these kinematics as
principal screws. These lines are called eigenwrenches and eigentwists. Any wrench
or twist that is not an eigenwrench or -twist will lead to parasitic motion. This
article introduces two parasitic motion metrics using eigenscrew decomposition: axis
misalignment and axis drift. Axis drift is the amount of translation or moment
accompanying the desired rotation or force respectively. Axis misalignment expresses
the misalignment between a desired degree of freedom with the actual freedom space.
These metrics are applied to two spatial compliant mechanisms to showcase their
usefulness, namely a tip-tilt-piston platform and a tape spring.

This chapter is submitted to Precision Engineering as: W.W.P.J. van de Sande and J.L.
Herder.,“Kinetic analysis of spatial compliant mechanisms using eigenscrew decomposition“.
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Introduction
Compliant mechanisms obtain their motion from the elastic deformation of their
material. The benefits of compliant mechanisms are numerous. Their lack of play
and hysteresis ensures deterministic system behaviour [1]. This makes them useful
in applications where precision and repeatability are important. They also have
some drawbacks, such as limited range of motion and inherent parasitic motion [2].

Parasitic motions and loads are the unwanted behaviour accompanying the desired
behaviour. Part of this is due to the elastic deformation of the flexures; another part
is due to the topology of the mechanisms. An example of this parasitic motion is
the so-called shortening effect in a parallel leaf spring guidance [3]. As the coupler
link translates in the desired direction it also moves laterally. This parasitic motion
arises from the topology of the mechanism, which is based on a parallelogram type
four-bar linkage. Additionally, as the leaf spring guidance moves, the coupler link
also rotates [4, 5]. This parasitic motion is due to the elastic deformation of the
flexures and is therefore not present in pseudo rigid body models [6]. The parasitic
rotation can be eliminated when the force is applied at the proper location, i.e. the
centre of compliance halfway along the length of the flexures [3]. Both the parasitic
translation and rotation are considered undesired responses to a specific load and
are characteristic of the parallel leaf spring guidance.

Another example is the axis drift or centre shift in cross-flexure joints. These types
of mechanisms are intended to act as revolute joints. However, during rotation the
axis of rotation moves, limiting their use as high precision joints. This centre shift
has been already analysed in depth in literature [7, 8]. In these works it is used as a
metric for the change in location of the rotational axis of the flexural pivot. Lobontiu
et al. [9] have done similar work on notch hinges which also are intended to act
as revolute joints. Lai et al. [10] have introduced a method using screw theory to
model the rotational precision of compliant revolute/spherical joints in 3D.

Most methods of classifying parasitic motion are only valid for a single type of
mechanism and are often only valid in the planar case. Some examples exist that
introduce a more comprehensive method for all types of mechanisms. Patil et al.[11]
introduce a method that treats flexure joints as screw vectors with scalar compliance
parameters connected to these vectors to represent their compliance. They use
this simplified model of the compliance of a mechanism to investigate the effects
of geometric errors. Li et al.[12] introduce a method to minimize parasitic motion
by decomposing the mechanism in its rigid and compliant parts. The mechanism
is then reconfigured, given some constraints, to minimize the parasitic motion. In
both cases simplifications of the mechanism are made in order to analyse them or
apply the proposed method.

We observe that end-effectors of compliant mechanisms without any parasitic
motion have decoupled motion; meaning that a load (force or moment, respectively)
in one direction leads to motion (translation or rotation, respectively) in the direction
of the load only, in other words, parasitic motion is not present. This behaviour
is easily represented by a diagonal compliance matrix. Generally, the compliance
matrix of a compliant mechanism may have non-zero off-diagonal terms, in which
case a force or moment in one direction leads to motion in multiple directions.
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For non-diagonal compliance matrices, the compliance (or stiffness) matrix can be
decomposed in its principle screws of potential [13]. These eigenscrews come in
two variants: eigenwrenches and eigentwists. Eigenwrenches describe a combination
of a force and a moment and induce a parallel translation; eigentwists describe
a combination of a translation and a rotation and induce a parallel moment. In
addition, the decomposition yields eigenstiffnesses, which are the stiffnesses of these
eigenscrews.

As such, we can use the full rank 6-by-6 compliance or stiffness matrix of any
mechanism or structure in a given pose to analyse parasitic motions and loads in
three dimensions. Any load or motion can be described as a screw. When an
applied load is an eigenwrench, the response will be a translation parallel to the
eigenwrench and there will be no parasitic motion. Similarly, if an applied motion
is an eigentwist, the response will be a moment parallel to the eigentwist and there
will be no parasitic loads. Conversely, when a screw is not a eigenscrew, there will
be parasitic motions or loads.

In this article we demonstrate how the eigenscrew-decomposition can be used to
analyse the behaviour of a compliant mechanism under specific loads or motions.
As the decomposition is based on the 6 by 6 compliance matrix, behaviour can be
analysed in three dimensions. Another benefit is that all compliant mechanisms
can be analysed by the same method. We introduce two metrics than can be used
to analyse any compliant mechanism at any relevant pose. The metrics are all
based on the property that any screw (load or motion) can be expressed as a linear
combination of eigenscrews. This linear combination is unique for each screw. By
extension, this also allows the use of the metrics on any kind of elastic structure,
such as compliant shell mechanisms. Compliant shell mechanisms are spatially
curved thin-walled structures that are capable of transferring motion and loads
through elastic deformation [14]. As these mechanisms often have complex spatial
and non-intuitive behaviour, the eigen-decomposition and the associated metrics
could be crucial to understand those mechanisms.

The article first presents the relevant fundamentals of screw theory and
state-of-the-art of the eigenscrew-decomposition. These fundamentals are then
used to develop metrics to evaluate the parasitic behaviour present in compliant
mechanisms. The metrics are illustrated with the help of two examples: a
tip-tilt-piston platform and a folded tape spring, which is a type of shell mechanism.
The article ends with an discussion and conclusion on the usability and limitations
the metrics and of the benefit of using eigenscrews for parasitic motion analysis.

Fundamentals
In this section we discuss the fundamentals and state-of-the-art of the eigenscrew-
decomposition. Since the decomposition yields screws, wrenches and twists are
introduced first. Afterwards we look at the decomposition and related concepts.

A compliance matrix maps loads to displacements; the stiffness matrix does the
reverse. The loads or wrenches are expressed in Plücker coordinates [15].
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W = {
f | m

}T = {
f | rW × f +hW f

}T
(4.1)

The force f makes up the upper half and the moment m the lower half of the
wrench W in eq. (4.1). The moment has a term that is perpendicular to the direction
of the force f and is equal to the cross product of the force and the location vector
rW . The other term is parallel to the force and influenced by the scalar pitch hW .

Displacement or twists T are screws where the translation δ makes up the upper
half and the rotation ρ the lower half.

T = {
δ | ρ

}T = {
rT ×ρ+hTρ | ρ

}T
(4.2)

Like the moment in a wrench, the translation δ also has two terms. One term is
perpendicular to the direction of the rotation ρ and is the product of the rotation
and the location vector rT . The second term is parallel to the rotation and influenced
by the scalar pitch hT . Note that the location dependent part of the twist is in the
upper half, whereas it is in the lower half for the wrench.

The pitch of a screw can be determined by the dot product of the upper half and
bottom half. So for a wrench and twist the pitch (hW and hT respectively) can be
determined as follows [15].

hW = f ·m

f · f
; hT = ρ ·δ

ρ ·ρ (4.3)

The location of a screw can be determined by using the cross product. The
location vectors (rW and rT respectively) for a wrench and a twist are determined as
follows:

rW = f ×m

f · f
; rT = ρ×δ

ρ ·ρ (4.4)

In general, the magnitude of a wrench is defined as the magnitude of the force
component and the magnitude of a twist is defined as the magnitude of the
rotational component. In the cases where only a pure moment or translation exists,
i.e. when the force and rotational components are zero, the magnitude of the
moment and the translation are used for the magnitude of the wrench and twists
respectively [13].

The centre of compliance is the point P in a compliant mechanism where a load
applied at that location yields a motion in the same direction [3]. In a coordinate
system that has that point P as the origin, this will yield a diagonal compliance
matrix for the compliant mechanism.

More generally, Lipkin and Patterson developed the eigenscrew-decomposition of
a stiffness or compliance matrix to describe the stiffness properties of a robot [13].
It is a decomposition of a single stiffness matrix, so the resulting eigenscrews and
eigenstiffnesses only describe the behaviour of the end-effector at single pose of the
mechanism. The decomposition shows that a full rank compliance or stiffness matrix
always has six uncoupled load-displacement relations. The result is two 3-systems:
a system of forces and parallel translations and a system of rotations and parallel
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moments. The centre of compliance exists in the unique case when the 3-systems
are co-located and aligned. Ciblak and Lipkin have defined several other unique
cases where one or more eigenscrews align or intersect [16].

A 6×6 stiffness matrix, K, and its inverse, C, can be decomposed by solving two
eigenvalue problems [13], which are defined as:

kŴŴ = KΓŴ (4.5)

cT̂T̂ = C∆T̂ (4.6)

where

Γ=
[

I 0
0 0

]
,∆=

[
0 0
0 I

]
(4.7)

and Ŵ are eigenwrenches, kŴ are the corresponding eigenstiffnesses, T̂ are
eigentwists and cT̂ are the corresponding eigencompliances.

Since the matrices KΓ and C∆ are of rank 3, the stiffness matrix yields 3
eigenwrenches and 3 eigenstiffnesses and the compliance matrix yields 3 eigentwists
and 3 eigencompliances. These eigenwrenches Ŵi induce pure and parallel
translations Ťi and the eigentwists T̂i induce pure and parallel moments W̌i .

The eigenbasis of wrenches (W̄ in eq. (4.8)) is defined as the combination of
eigenwrenches Ŵ and induced moments/wrenches W̌. Similarly the eigenbasis
of twists (T̄) is defined as the combination of induced translations/twists Ť and
eigentwists T̂, as follows:

W̄ = [
Ŵ W̌

]
, T̄ = [

T̂ Ť
]

(4.8)

The complete system of stiffness multipliers is defined as a diagonal matrix
composed of the translational eigenstiffnesses (kŴ) and the inverse of the rotational
eigencompliances cT̂. The complete system of compliance multipliers is the inverse
of this.

k =
[

kŴ 0
0 cT̂

−1

]
,c =

[
kŴ

−1 0
0 cT̂

]
(4.9)

The elements of the decomposition compose the stiffness and compliance matrices
as follows.

K = W̄kW̄T ,C = T̄cT̄T (4.10)

The eigenbasis of wrenches can be divided into four sub-matrices.

W̄ = [
Ŵ W̌

]= [
WA 0
WB WD

]
(4.11)

The eigenwrenches Ŵ consists of force part WA and a moment part WB. The
induced wrenches W̌ consists of pure moments, WD, only ; therefore the force part
is zero.
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Simarly, the eigentwists T̂ consists of a rotation part TD and a translation part TB.
The induced twists Ť consists of translations, TA, only.

T̄ = [
T̂ Ť

]= [
TA TB

0 TD

]
(4.12)

The matrices TD and TA are the directions of eigentwists and induced twists
respectively. These matrices are orthonormal and form a rotation matrix. Since
the eigentwists and induced twists are parallel to the induced wrenches and
eigenwrenches respectively, the following equalities hold:

TA = WA,TD = WD (4.13)

The matrix WB contains the pitches and locations of the eigenwrenches. After the
decomposition, this matrix is expressed in the global coordinate frame. When it is
expressed in the orientation frame of the eigenwrenches, i.e. transformed by the
matrix WA

T , the matrix looks as follows.

WAWB = WA
T WB =

 hŴ1
−rŴ2z

rŴ3y

rŴ1z
hŴ2

−rŴ3x

−rŴ1y
rŴ2x

hŴ3

 (4.14)

In this matrix hŴ1
, hŴ2

and hŴ3
are the pitches of the eigenwrenches. The

off-diagonal terms are the components of the location vectors. These terms are
in the orientation frame of the eigenwrenches, WA , and therefore they have no
component parallel to the eigenwrenches or

rŴ1x
= rŴ2y

= rŴ3z
= 0. (4.15)

The same holds for the eigentwists and the matrix TB. Here, the structure of
eq. (4.14) emerges after the matrix is expressed in the orientation frame of the
eigentwists, i.e. transformed by the matrix TD

T .
The system of eigentwists and induced twists and the system of eigenwrenches

and induced wrenches form a basis. As such, any twist or wrench respectively is a
linear combination of these bases. The linear combination can be obtained using
Gaussian elimination.

[
Ŵ W̌ | W

]→ [
I | λ

µ

]
(4.16)

[
Ť T̂ | T

]→ [
I | µ

λ

]
(4.17)

The linear combination can be interpreted as a screw in the eigenbasis coordinate
system. The linear combination of the eigenscrews, λ, can be seen as the direction
of the screw. The linear combination has a location; the parameter µ shifts the screw
to the desired location and pitch; it does nothing to the direction of the screw.

Any twist can be expressed by the linear combination of elements of the eigenbasis
of twists.
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T = [
Ť T̂

][
µ

λ

]
(4.18)

The stiffness matrix maps the twist to the resulting wrench as follows

[
Ť T̂

][
µ

λ

]
K−→ [

Ŵ W̌
]

k
[
µ

λ

]
(4.19)

Likewise a wrench can be expressed by the eigenbasis of wrenches and the linear
combination.

W = [
Ŵ W̌

][
λ

µ

]
(4.20)

The compliance matrix maps the twist to the resulting wrench as follows.

[
Ŵ W̌

][
λ

µ

]
C−→ [

Ť T̂
]

c
[
λ

µ

]
(4.21)

The induced screws have no location and can be seen as vectors instead of screws.
A linear combination λ of eigenscrews will lead to the same linear combination of
induced screws scaled by the eigenstiffness or -compliances.

T̂λ
K−→ W̌kT̂λ, Ŵλ

C−→ ŤcŴλ (4.22)

Visually this is represented as a unit sphere that is mapped to an ellipsoid [17].
The linear combination (λ) is a radial vector. This radial vector is then scaled when
mapped to the ellipsoid which changes the length and the direction.

As there are two types of induced screws, there are only two ellipsoids. The
stiffness ellipsoid (fig. 4.1) maps a linear combination of eigentwists to a moment;
the semi-major axes of the ellipsoid are the lengths of the three rotational
eigenstiffnesses, kT̂i

. The compliance ellipsoid (fig. 4.2) maps a linear combination
of eigenwrenches to a translation; here the semi-major axes of the ellipsoid are the
lengths of the three translational eigencompliances, cŴi

.
The degrees of freedom and constraints in three dimensions of a mechanism add

up to six. A full rank compliance or stiffness matrix of such a mechanism is also
of rank 6. Therefore the six eigencompliances, c, or the eigenstiffnesses, k can
be used to ascertain the degrees of freedom and constraints of a mechanism. It
can be used similar to modal analysis, where the eigencompliances are akin to
the modal frequencies and the eigenscrews are akin to the modal shapes. The
eigencompliances (or -stiffnesses) for the eigenwrenches and (or -twists) are sorted
separately to ascertain the number of degrees of freedom for each 3-system. This can
be done by inspecting the compliances and determine what the order of magnitude
of the eigencompliances are.

The eigencompliances of the two 3-systems, cT̂ and cŴ = kŴ
−1 , cannot be directly

compared because they have different units. The unified stiffness characterization
introduced by Leemans et al. [18] enables systematic and meaningful ordering of the
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Figure 4.1.: Mapping of a linear combination of eigenwrenches to the corresponding
linear combination of the induced twists; this linear combination is
scaled by the eigencompliances. Visually a unit sphere is scaled to an
ellipsoid.

Figure 4.2.: Mapping of a linear combination of eigentwists to the corresponding
linear combination of the induced wrenches; this linear combination is
scaled by the eigenstiffnesses. Visually a unit circule is scaled to an
ellipsoid.

rotational and translational compliances. The unification multiplier χi allows the
rotational eigencompliances to be expressed as translational eigencompliances,

c̃W̄ = [
cŴ1

cŴ2
cŴ3

χ2
1cT̂1

χ2
2cT̂2

χ2
3cT̂3

]
(4.23)

where the unification multiplier, χi , is defined as follows.

χi =
√

h2
i +

∣∣ri
∣∣2

(4.24)

Here hi is the pitch of the i th eigentwist, and ri is the shortest distance from the
point of interest of a mechanism to the line of an eigentwist. The pitch and/or
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the distance to the end-effector will generally exist and are unique and non-trivial.
However, problems arise when eigentwists pass through the end-effector and/or
have no pitch. In this situation the compliance of that rotation becomes zero
(infinitely stiff). This corresponds with the actual behaviour of the mechanism, but
is not helpful in expressing rotational compliances as translational compliances. For
those cases, Leemans et al.[18] provide the option to do the reverse: to express
the translational compliances as rotational compliances. The reconciliation of units
in eq. (4.23) is significant in that the relative compliance of the eigentwists and
eigenwrenches can be directly compared. Lipkin showed that the eigentwists and
eigenwrenches are invariant under coordinate transformation, and Leemans et al.
showed that the unified characterization is also invariant.

Metrics
The eigenstiffness and eigenscrews can be used directly to analyse mechanism
behaviour [19]. However, an eigenscrew alone does not show if it is a constraint
or a degree of freedom and how it evolves over the range of motion. A screw
that describes desired behaviour can be expressed by the linear combination of
eigenscrews. This linear combination might change over the range of motion, which
in turn changes the behaviour of that screw; e.g. a free screw can become a
constrained screw. In this section we introduce two metrics that use the elements of
the decomposition to obtain insight in the parasitic behaviour present in a compliant
mechanism.

The difference between the actual revolute axis of a hinge mechanism and the
desired one is often called axis drift [20]. This is equal to comparing a desired
rotation twist with the eigentwist that is an actual degree of freedom of the system.
In two dimensions this only involves an offset of the axis. In three dimensions the
axes can also differ in orientation. Axis drift is thus made up out of two parts: axis
misalignment, i.e. a difference in orientation, and actual axis drift, e.g. a difference
in location.

Axis misalignment
A desired orientation of a degree of freedom (or a constraint) can be directly
compared with the orientation of a actual degree of freedom (or constraint). The
misalignment between the desired orientation and the eigentwist or -wrench can be
obtained with their cross product as follows:

εT = ∥ωdesi r ed ×ωT̂ ∥ (4.25)

εW = ∥ fdesi r ed × fŴ ∥ (4.26)

Here the axis misalignment, ϵT for a twist and ϵW for a wrench, is obtained from
cross product of the direction of the twist, ωdesi r ed , and wrench, fdesi r ed under
review with an eigentwist ωT̂ or eigenwrench, fŴ , respectively.
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The λ and µ vectors can also be used to compare two screws in three dimensions.
When there is a clear delineation in the eigenstiffnesses, the λ vector can be
subdivided between the freedom space and the constraint space.

λ=λDoF +λconstr (4.27)

Ideally, constraints have infinite stiffness and degrees of freedom have infinite
compliance. In reality, this is never the case and the stiffness of constraints and
degrees of freedoms are typically separated by several orders of magnitude at most.
The eigenstiffness values help split the λ vector into a constraint part and a freedom
part.

λDoF = cλ

cmax
(4.28)

λconstr ai nt = kλ

kmax
(4.29)

As constraints will have significantly higher stiffness, pre-multiplying the λ-vector
with the eigenstiffnesses, k, and dividing it by the highest eigenstiffness, kmax , will
emphasise the part of the vector that is in the constraint space (see eq. (4.29)).
The same holds for the degrees of freedom; however the λ-vector is scaled by the
eigencompliances. When constraints have infinite stiffness and degrees of freedom
have infinite compliance, eq. (7.4) and eq. (4.29) will add up to the λ vector. If there
is a clear delineation between constraints and degrees of freedom, the summation
will be close to the λ vector. When this is not so, λDoF and λconstr ai nt will be almost
equal and will not add up to λ.

Depending on the desired nature of the twist or wrench, either λDOF or λconstr is
of interest and can be compared to the entire λ-vector. The misalignment of two
vectors is derived with the cross product. In the case of a desired DOF, the axis
misalignment is defined as,

εDOF = ∥λDoF ×λ∥
∥λDoF ∥

(4.30)

whereas in the case of a desired constraint it is defined as follows:

εconstr = ∥λconstr ×λ∥
∥λconstr ∥

(4.31)

The concept of axis misalignment can be illustrated by the example of a parallel
leaf spring guidance; this mechanism is designed to provide a straight-line motion,
see fig. 4.3. However, after some motion the end-effector starts to move in the
z-direction as well as move in the desired x-direction. The intended straight
line motion is described by the λ vector, whereas the λDOF vector describes the
combined motion in the x- and z-directions. The misalignment of the desired λ

vector with its sub-vector denotes how much the λ vector is in the desired space.
Explicitly, increasing axis misalignment indicates increasing stiffness or compliance
of the λ vector for a desired DoF or constraint, respectively. Conversely, increasing



4

79

axis misalignment can also indicate parasitic motions or loads with respect to the
desired DoFs or constraints respectively. For instance, a motion will follow the
path of least resistance and will not move into a constraint direction unless forced;
since additional forces are required to force that motion. This will cause increased
stiffness. When the motion is not forced, the mechanism moves within the DoF
space only. The difference between the desired motion and the actual motion is the
parasitic motion. For a constraint, the stiffness in the desired direction is reduced or
the true constraint direction has changed.

Figure 4.3.: A straight-line guidance: as the leaf springs deflect, the end-effector
moves in positive x-direction (desired), but also in negative z-direction
(parasitic).

Axis drift
Concurrently, the vector µ expresses how much a line of a twist or wrench is shifted
from the linear combination of eigenscrews. When two screws are parallel, the
difference in µ is the distance between the two screws. This is the same as axis drift
of a compliant hinge in the planar case. Here the amount of axis drift denotes the
amount of parasitic translation of an end-effector. When comparing two parallel
screws, their µ vectors can be used to express their location with respect to each
other.

When two screws are not parallel, the difference between two µ vectors is only an
indication of the distance between the two screws. Mathematically, the vector µ

defines the amount of induced screws in the linear combination. In other words,
in that situation the screw is not a linear combination of eigenscrews, but a linear
combination of eigenscrews and induced screws. For a twist this means that the
resulting wrench will not be a pure moment; there will also be a parasitic force. For
a applied wrench, the resulting twist will not be a pure translation and there will be
a parasitic rotation. Therefore the vector µ is also a measure for parasitic motions or
load.
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Figure 4.4.: A cross-flexure hinge: as the leaf springs deflect, the end-effector rotates,
but also translates laterally.

Using the axis drift of a compliant cross-flexure hinge as an example, the vector µ
denotes the amount of induced twists, i.e. translations, in the linear combination
of the desired motion. The rotational degree of freedom is the the most compliant
eigentwist. Axis drift can be analysed by comparing the most compliant eigentwist in
the neutral position and the most compliant eigentwist in a deflected pose (red and
green line in fig. 4.4 respectively). These poses have their own eigenbasis. However,
when one eigentwist is expressed in the eigenbasis of the other, induced twists are
needed. The presence of these induced twists in the linear combination indicates
parasitic motion which in this case is a translation.

In this work axis drift is defined as the length of the µ vector.

β= ∥µ∥ (4.32)

Like with axis misalignment, axis drift can be explained in several ways. Any twist
can be applied by a linear combination of eigentwists and induced twists. Forcing
the twist adds additional stiffness terms. Leaving the location of the twist free,
i.e. only the combination of eigentwists, but enforcing the direction, does not add
stiffness terms; however, there will be parasitic translation with respect to the desired
twist.

Induced wrenches are needed to be able to create any random wrench. When
induced wrenches are present in the linear combination they add compliant terms
which results in parasitic rotations. If no parasitic motion is wanted, µ has to be
kept zero; this results in a pure translation. However, since no additional compliance
terms are allowed, the stiffness is higher than when parasitic motion would be there.
An overview of the effects of the µ vector for twists and wrenches is shown table 4.1.
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Table 4.1.: Effects on twist and wrenches when a parasitic component is present
parasitic component no parasitic component

twist parasitic translation increased stiffness
(forced twist location)

wrench parasitic moment -
decreased stiffness
(forced wrench location)

From the stiffness (eq. (4.19)) and compliance mapping (eq. (4.21)), it can be
seen that a non-zero µ vector will always add stiffness or compliance terms to
the response for a twist or wrench respectively. This is irrespective of whether the
linear combination of eigenscrews is a DoF or a constraint. Simultaneously, the set
of added induced screws can be mostly in the DoF or constraint space. As such,
the effect of the added induced screws on the mechanism behaviour will differ.
Therefore axis drift does not provide the same insight as axis misalignment when it
comes to stiffness behaviour.

Example Tip-Tilt-Piston platform
The metrics are illustrated using a tip-tilt-piston platform. It is constructed by three
wire flexures placed in the same plane, but their axial lines are not intersecting at
the same point; this a plane of lines in FACT terminology [21] (see fig. 4.5). It allows
for two in-plane rotations and an out-of-plane (z) translation.

Figure 4.5.: A tip-tilt-piston platform with the FACT constraint lines highlighted in
blue and the end-effector denoted by the white dot. The platform
consists of three rigid links (thick black lines); the platform is connected
to the ground through three wire flexures (thin black lines).

The specifications of the platform are listed in table 4.2. The mechanism is
modelled in the SPACAR program [22]. The wire flexures are modelled with four
beam elements each and the centre platform is modelled with three rigid beams. A
moment of 5Nm is applied in the y-direction in 100 steps; this causes the plaform
to rotate about 20◦.
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As the platform moves, the wire flexures deflect, changing the behaviour of the
mechanism. This change of behaviour is investigated by evaluating specific screws.

Table 4.2.: Specifications of the platform
value unit

length wire flexures 100 mm
width wire flexures 2 mm
height wire flexures 2 mm
radius platform 100 mm
Poisson’s ratio wire flexures 0.3 -
Young’s Modulus wire flexures 210 GPa

Four screws are evaluated; two wrenches of which one is a DoF and one is a
constraint and two twists, again one DoF and one constraint. All screws under
review pass through the centre of the platform; this location is defined as the
end-effector. Its location changes when the platform moves and as a result the
screws are updated. However, the orientation of the screws is maintained. In the
neutral position the screws are as follows.

WDoF = {
0 0 1 0 0 0

}T
(4.33)

Wconstr =
{
1 0 0 0 0 0

}T
(4.34)

These are a vertical out-of-plane force and an in-plane force respectively. The twists
in Plücker co-screw coordinates are as follows.

TDoF = {
0 0 0 0 1 0

}T
(4.35)

Tconstr =
{
0 0 0 0 0 1

}T
(4.36)

These are an in-plane rotation and a vertical rotation respectively. For all screws the
eigenstiffnesses, the axis misalignment and the axis drift are evaluated to show the
behaviour of that screw. The platform can rotate about the y-axis of the system (see
fig. 4.7); this rotation is caused by a moment. In Plücker screw coordinates this
moment is defined as follows.

W2 =
{
0 0 0 0 1 0

}T
(4.37)

The platform is rotated 20◦ in total due to a moment applied in the x-direction.
As the platform rotates the eigenwrenches and -twists also change. They start
out coincident at the end-effector, see fig. 4.6. As the rotation increases, the two
three-systems rotate, but not in the same manner as the platform itself. They are
also no longer coincident, see fig. 4.7.
At an angle 20◦, one eigenstiffness of the eigenwrench is only about 4% of the
original stiffness in the neutral position (red line in upper graph of fig. 4.8).
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Figure 4.6.: System of eigenscrews in the neutral pose with the eigentwists in red
and the eigenwrenches in blue

Figure 4.7.: System of eigenscrews in the deformed pose with the eigentwists in red
and the eigenwrenches in blue, the eigenscrews are labeled for reference.
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However, constraints and degrees of freedoms are still strongly separated. The
eigenstiffness of the eigenwrench DoF (yellow line in upper graph of fig. 4.8) remains
roughly constant. These eigenstiffness were obtained by decomposing the 6×6
stiffness matrix at every incremental step; the eigenvalues of those matrices are the
eigenstiffnesses.

Figure 4.8.: Stiffness of all eigenwrenches and eigentwists during motion plotted
on a semi-log scale. Colours denote direction of original/undeformed
eigenscrews: red and blue are in the plane of the platform, yellow is in
the vertical direction, the labels refer to the labels in fig. 4.7.

For the eigentwists, the eigenstiffnesses of the two DoFs (red and blue lines in lower
graph of fig. 4.8) stays roughly similar in stiffness; the constraint (yellow line in lower
graph of fig. 4.8) is only about 7% of the original stiffness. Again, the constraints
and degree of freedom stay clearly separated.

The misalignment of the wrenches and twists can be seen in fig. 4.9 and
fig. 4.10 respectively. The original screws become slightly less aligned with their
corresponding eigenscrews; i.e. the desired DoF becomes less aligned with the free
eigenscrews and the desired constraints become less aligned with the constrained
eigenscrews. This result indicates increased stiffness for the original DoFs and
decreased stiffness of the original constraints.

Checking both direct misalignment and the misalignment with the free-
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Figure 4.9.: The misalignment of the two wrenches under review between the
freedom space (orange), between the constraint space (light blue) and
the direct misalignment between an originally horizontal eigenwrench
(dark blue) and the vertical eigenwrench (red); the misalignment with
the freedom space and the free wrench completely overlap.

dom/constraint space works well for the free wrench and twist and for the constraint
twist. However, the constraint misalignments of the constraint wrench appear
different. This has two causes. First, the wrench under review is only in-plane
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Figure 4.10.: The misalignment of the two twists under review between the freedom
space (orange), between the constraint space (light blue) and the direct
misalignment between an originally horizontal eigentwist (red) and the
vertical eigentwist (dark blue); the misalignment with the constraint
space and the constraint wrench completely overlap.

with the constraint eigenwrenches; it is not perfectly aligned with either of them.
This results in a higher direct misalignment from the start (dark blue in bottom
graph fig. 4.9). Second, as the wrench under investigation is a linear combination
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of the two constraint eigenwrenches it also has a component of the eigenwrench
that loses stiffness during the range of motion. Due to the scaling of the constraint
misalignment metric this shows as a increased misalignment.

For both wrenches under review the misalignment with the freedom space and the
free wrench completely overlap. This should be the case, as the freedom space of
the wrenches only contains the free (vertical) wrench. Similarly, the misalignment
with the constraint space and the vertical eigentwist overlap for the twists under
review; again, this corresponds with the fact that the constraint space of the twists
only contains the vertical twist.

Figure 4.11.: Axis drift of the two wrenches under review, with the free wrench in red
and the constraint wrench in blue

The axis drift of the wrenches and twists can be seen in fig. 4.11 and fig. 4.12
respectively. Most screws show a quick rise in axis drift but start to level off at
10◦. This can be seen in fig. 4.7, where most of the eigenscrews have moved away
from the center of the platform. In addition, the location of the flexures causes
the platform to also rotate as it moves upward; this motion is like a screw motion,
i.e. a screw with a pitch. The motion away from the centre and the pitches in
the eigenscrew all cause parasitic motions and loads. The difference in axis drift
is most apparent in the twists; the free twists have the lowest axis drift, whereas
the constraint twist has the greatest axis drift of all screws. Again, this can be
seen in fig. 4.7 where the vertical (constraint) eigentwist has moved away from the
centre quite severely. The horizontal (free) eigentwists only have moved a little. The
constraint wrench under investigation has quite some axis drift, since one of the
constraint horizontal eigenwrenches has also moved away from the centre. The free
wrench has lower axis drift, but still more than the location of the free eigenwrench
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Figure 4.12.: Axis drift of the two twists under review, with the free twist in red and
the constraint twist in blue

in fig. 4.7 would indicate. This is due to the pitch of that eigenwrench.
For the twists, the axis drift indicates parasitic translation, which can be understood

as the platform moving up or down as the platform is actuated along the twists
under review. The parasitic motion accompanying the wrenches is rotation. When
the wrenches under review are applied, they induce a parasitic moment causing the
platform to rotate about one of the eigentwists. However, when the stiffness of these
eigentwist is high, the parasitic rotation will be minimal. This is the case for the
vertical eigentwist, but not the two horizontal eigentwists.

Example Folded Tape Spring
The metrics will also be used on a folded tape spring. This is a shell structure; these
type of structures often have less intuitive behaviour. A tape spring has one constant
radius of curvature. The behaviour of tape springs has been studied in literature
before. Specifically, the buckling of tape springs has been investigated [23–27]. At
first the tape spring is completely undeformed (left in fig. 4.13). When a moment
in the x-direction or a force in the z direction is applied, the tape spring bends.
At a certain load the tape spring will buckle and a localised fold will start to form
(middle in fig. 4.13). This fold has a constant radius when fully formed (right in
fig. 4.13). As the tape spring buckles, it displays negative stiffness as the required
moment for bending rapidly decreases. Further rotation does not require additional
loads; i.e. post buckling the tape spring displays zero stiffness behaviour.

There are two ways to fold a tape spring, so called opposite and equal sense
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Figure 4.13.: Development of a tape spring fold subjected to opposite sense bending

bending [27]. In equal sense bending the tape spring is bent such that the concave
sides face each other after buckling. Opposite bending is bending in the opposite
direction, i.e. the convex sides face each other after buckling. With opposite sense
bending there is snap-through after which the range of zero stiffness is reached (B
in fig. 4.14). When the fold is formed and the rotation is reversed there is snap-back,
but at a smaller angle than the snap-through (D in fig. 4.14). The moment required
to achieve buckling in opposite sense bending is higher (A in fig. 4.14) than in equal
sense bending (F in fig. 4.14). Equal sense bending does not display hysteretic
behaviour when reversing the rotation.

Figure 4.14.: Moment-angle graph of tape spring folding, with opposite sense bending
as positive, figure adapted from [27].

Vehar et al. [28] describe a tape spring fold as a dyad with a moveable revolute
joint and two coupled prismatic joints (see fig. 4.15). The two prismatic joints are
coupled as the tape spring length is fixed; therefore the prismatic joints have equal
but opposite displacements. As such a tape spring fold has two degrees of freedom:
the rotation due to the revolute joint and a translation due to the coupled motion of
the two prismatic joints. Both these degrees of freedom have zero stiffness.
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Figure 4.15.: Rigid body kinematics of a tape spring fold

The goal is to validate the use of the eigenscrew decomposition to obtain kinematic
traits of a shell. In this example we will analyse the degrees of freedom and possible
parasitic motion of a folded tape spring. We consider an initially straight clamped
tape spring. Its end-effector is located at the free end. The kinematics can be
modeled by an open-loop PSP chain as shown in fig. 4.15. In order to conserve
length, the prismatic joints in fig. 4.15 have equal but opposite displacements:
q3 =−q1. Any planar rigid body transformation of this point can be expressed as
follows.

P (t ) = A(t )p =
[

R(θ+q2) t
0 1

]
p (4.38)

in which the homogeneous transformation matrix A transforms the original point p
at θ = 0 to a new point P at a new location. The transformation matrix A consists of
a 2-D rotation matrix R(θ+q2) and translation t. For brevity the rotation matrix is
denoted as R, unless otherwise specified.

The movement of the end-effector of a tape spring can be described as three
consecutive transformations. First we apply a transformation along the along
prismatic joint q3 of the tape spring. Then we apply a rotation along the fold
centre and finally we apply a translation along prismatic joint q1, which is equal
in magnitude as the translation along q3 but in the opposite direction. The total
transformation is equal to the product of these transformation matrices,

Atot = A1A2A3 (4.39)

in which first the translation of −q1 along the second link is described:

−q1 =−{
q1,0

}T
,

A3 =
[ I2 −q1

0 1

]
(4.40)

followed by a rotation along the fold centre; which is a pure rotation around a
specific point c. This transformation is expressed as follows [15],
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A2 =
[ I2 c

0 1

][
R 0
0 1

][ I2 −c
0 1

]=[R (I2−R)c
0 1

] (4.41)

ending with a translation of q1 along the first link.

A1 =
[ I2 q1

0 1

]
(4.42)

The resulting transformation matrix is as follows.

Atot =
[ I2 q1

0 1

][R (I2−R)c
0 1

][ I2 −q1
0 1

]=[R (I2−R)(c−q1)
0 1

] (4.43)

From eq. (4.43) it can be seen that if the variable q1 is zero, i.e. no translation
of the fold, the end-effector rotates about the fold centre. However, this rigid body
equivalent does not completely describe the movement of a tape spring; as the angle
of the fold changes so does the length of the fold itself. This causes a parasitic
translation of the end-effector. The fold has a radius and the arc length of the tape
spring fold is equal to l f = rθ. This effect causes the links to shorten by the same
amount; this can be described as a translation of the second link along its length by

−lf =−{
rθ,0

}T
(see fig. 4.16).

Figure 4.16.: Rigid body kinematics of a tape spring fold that takes fold length into
account

This effect can be expressed by adding an additional transformation matrix.

Atot =
[ I2 q1

0 1

][R (I2−R)c
0 1

][ I2 −lf
0 1

][ I2 −q1
0 1

]
(4.44)

The effect on the centre of rotation of this extra translation in the rotational degree
of freedom can be obtained by setting q1 in eq. (4.44) to zero which then reduces to
the following.
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Aq2 =
[R (I2−R)c

0 1

][ I2 −lf
0 1

]
=[

R −Rl f +(I2−R)c
0 1

] (4.45)

The updated centre of rotation can be determined from the upper right part of the
transformation matrix [15].

c′ = 1

2−2cos(θ)
(I2 −RT )((I2 −R)c−Rl f ) (4.46)

After some manipulations, this works out to be as follows:

c′ = c+ 1

2−2cos(θ+q2)
(I2 −R)l f =

c+ 1

2

[
1 cot

θ+q2
2

−cot
θ+q2

2 1

]
l f

(4.47)

or rewritten as an orthonormal matrix.

c′ = c+ 1

2si n θ+q2
2

[
si n

θ+q2
2 cos

θ+q2
2

−cos
θ+q2

2 si n
θ+q2

2

]
l f (4.48)

This shows that the centre of rotation is off-set from the fold centre, which indicates
a parasitic translation in addition to the intended hinge-like behaviour of a folded
tape spring.

Equation (4.48) gives a centre of rotation if the rotation from θ to θ+q2 is applied
in a single step. However, this motion is often done in steps. These steps have
different instantaneous centres of rotation. These incremental instantaneous centres
can be obtained from the incremental transformation matrix. This matrix can be
obtained by first transforming back to the original position from the i −1th position
after which we transform forward to the i th position.

Aq2,i ,i−1 = Aq2,i A−1
q2,i−1 (4.49)

Again, the centre of rotation of this matrix can be obtained from the upper right
part akin to eq. (4.46).

The direction of the translational degree of freedom, q1, can be obtained by fixing
the revolute joint; i.e. q2 = 0. The corresponding transformation matrix of the second
link can be written as translation rotated by an angle θ. The rotation is determined
by the angle of the fold:

A2 =
[

R(θ) 0
0 1

][ I2 −q1
0 1

][
R(θ)T 0

0 1

]
=

[
I2 −R(θ)q1
0 1

]
(4.50)

the total transformation matrix is then as follows:
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Aq1 = A1A2 =
[ I2 q1

0 1

][ I2 −R(θ)q1
0 1

]
=[

I2 q1−R(θ)q1
0 1

]
=

[
I2 (I2−R(θ))q1
0 1

] (4.51)

This describes a translation of the prismatic joint q3 followed by a equal but opposite
translation of the prismatic joint q1. The shape of the upper right part of the matrix
Aq1 in eq. (4.51) is similar to that of eq. (4.47); as such the direction of the degree of
freedom is as follows:

(I2 −R(θ))q1 = 2si n
θ

2

[
si n θ

2 cos θ2
−cos θ2 si n θ

2

]
q1 (4.52)

From this it can be seen that the direction of the degree of freedom is in the
direction of half the angle of the fold. Both links change in length. As one gets
shorter, the other gets longer by the same amount. However, the second link can be
at an angle which influences the overall direction of movement of the end-effector.

The tape spring was modelled in our IGA software operating within MATLAB [29];
the mechanical properties of the studied tape spring are listed in table 4.3. The tape
spring was modeled with 15 elements in the transverse direction and 100 elements
in the longitudinal direction. One end of the tape spring was fixed; at the other
end a rotation is applied perpendicular to the mid-plane of the tape spring. The
in-plane translation of the free end was unconstrained, allowing the end-effector to
rotate about any axis parallel to the applied rotation. However, the other directions
were constrained; i.e. translation in x-direction and rotation around the y and
z-directions. This applies a perfect moment and the rotation will be around an
eigentwist. The rotation is applied up to 90◦; at this angle to fold is fully formed
after which the angle is reduced to zero again to observe the snap-back behaviour
and get a complete loop. The simulation converged with incremental 97 steps for
the total motion, i.e. to 90◦ and back. This rotation was diplacement controlled.

Table 4.3.: Geometrical and material properties of the simulated tape spring
property value unit
subtended angle 0.75π rad
radius 5 mm
thickness 50 µm
length 0.15 m
Young’s modulus 210 GPa
Poisson’s ratio 0.3

First, we look at the moment plot in fig. 4.17. We see that it is similar to the plot
of fig. 4.14, which indicates that the tape spring was indeed subjected to opposite
sense bending.

Next we will analyse the eigenstiffnesses to validate the amount of degrees of
freedom. Additionally, we are interested in the rotational degree of freedom. Two
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Figure 4.17.: Moment-angle graph of the simulated folded tape spring

things are of particular interest: the location of the centre of rotation and the
stiffness of that rotation. The position and orientation of the end-effector can be
retrieved at every step. Akin to eq. (4.38) the position of the end-effector at a
arbitrary step can be described as follows:

Pi = Ri p0 + ti (4.53)

in which Pi is the location of the end-effector at an arbitrary step i . The matrix Ri

is the rotation matrix corresponding to that step, retrieved from the orientation of
the end-effector. The point p0 is the location of the end-effector in the undeformed
state. The vector ti describes the translation needed to get to Pi given the rotation
of the point p0 and is the only unknown in this equation. This vector, ti , is needed
to obtain the centre of rotation akin to eq. (4.46).

For the incremental centre of rotation the equation changes. Here the point Pi is
obtained from the rotation matrix Ri RT

i−1, which rotates from the orientation of the
end-effector at location Pi−1 and at step i −1 back the undeformed state and then
rotates to the orientation at step i . Again, the translation ti ,i−1 is the only unknown
and is needed obtain the incremental centre of rotation using the following equation:

Pi = Ri RT
i−1Pi−1 + ti ,i−1 (4.54)

The translation ti ,i−1 can be written in the shape of eq. (4.45); i.e. the translation
split into a rotation around a point plus a pure translation as follows:

ti ,i−1 = (I2 −Ri RT
i−1)c f old + ti ncr (4.55)

Specifically, the additional translation, ti ncr , of the end-effector is of interest when
the centre of rotation is set at the fold centre c f old . This translation can be directly
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compared to axis drift as they are both expressions of parasitic translations.

Lastly, we are interested in the translational degree of freedom. Eq. 4.52 and

q1 = {
q1,0

}T
gives us the y- and z- components of the direction of the degree of

freedom. The x-component should be zero as the mechanism is modelled (and
displaced) as a planar mechanism. The axis misalignment metric shows if this
direction in the freedom space and allows this direction to be compared to the
direction of the lowest stiffness eigenwrench. Next to the direction, the stiffness of
that eigenwrench is also investigated.

Figure 4.18 shows how the tape spring bends and buckles; it displays the
cross-section of the tape spring in the y z-plane at x = 0. The fold centre and radius
were obtained by fitting a circle to the cross-section with a linear regression scheme.
The fold is not immediately formed: the radius shrinks as the fold angle increases.
After 45◦ of rotation the radius does not change much as the fold seems fully formed.
The fold centre shifts during the rotation; this influences the instant centres and the
location of the eigentwist; the incremental centres and eigentwist locations match.

Figure 4.18.: Shape of tape spring during bending, seen at the plane x = 0, the shape
with the largest angle is shown in orange, the fitted folds are denoted by
the dashed lines, the fitted fold centres are circles, the instant centres
of rotation by squares, the incremental instant centres of rotation by
diamonds and the location of the degree of freedom eigentwist by stars.

The semi-log scale is not suited to show negative stiffnesses as these show up as
gaps in the graphs in fig. 4.19. In addition the data was smoothed with a moving
average filter to remove high frequency noise. Nonetheless, they do provide some
insight. Prior to buckling there is one eigenwrench that is very stiff; this eigenwrench
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is in the axial/longitudinal or y-direction of the tape spring as define in fig. 4.13. A
tape spring is similar to a leaf spring prior to buckling, so this is clearly a constraint.
The next stiffest is the translational stiffness in the x-direction. The stiffness is
at least two orders more compliant that the axial direction and remains relatively
constant over the full range of motion. The most compliant eigenwrench is the
translational degree of freedom covered in the planar analysis. It becomes more
compliant when the angles is increased; it roughly reduces stiffness by a factor 5
over the full range. It does not show zero stiffness behaviour. When the fold is fully
formed at roughly 45◦ all eigenwrenches have a stiffness that are within a factor 40
of each other.

Figure 4.19.: Stiffness of all eigenwrenches and eigentwists plotted on a semi-log scale,
note that gaps in the lines denote negative stiffness as they cannot be
plotted on a log scale. Colours denote direction or original/undeformed
eigenscrews: x-direction (blue), y-direction (red),z-direction (yellow)

Prior to buckling, the distinction between freedoms and constraints of the
eigentwists is a lot more clear. The rotation that resembles torsion is at least two
orders of magnitude more compliant than the other two directions. This is a degree
of freedom of a tape spring not visible in the planar analysis. This degree of freedom
slowly becomes slightly more compliant as the angle is increased. The rotation
about an axis in the x-direction is at first a constraint but displays negative stiffness
during buckling, after which it shows stiffness similar to the torsional stiffness. This
is the rotational degree of freedom covered in the planar analysis. The remaining
stiffness, that about an axis in the z-direction, also shows a dip in stiffness during
buckling but remains always an order of magnitude higher than the other two.

Figure 4.20 shows the eigenstiffness of the planar degree of freedom eigentwist.
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Figure 4.20.: Stiffness of planar degree of freedom eigentwist plotted on a linear scale
to show negative stiffness

The occurrence of snap-though and snap-back are clearly visible. Figure 4.21
shows several metrics to obtain parasitic motion. The data starts at an angle of
approximately 10◦, since the folds only start to appear at that angle. Axis drift
and the translation obtained though the incremental rigid body kinematics (see
ti ncr in eq. (4.55)) match. Both express the parasitic translation of the end-effector
contrasted with the pure rotation of the tape spring around the fold centre. This
shows that axis drift can be used as a metric for parasitic motion. The radius is also
plotted in fig. 4.21 as it is related to the incremental translation of the second link,
which is r dθ.

Figure 4.22 shows the misalignment of the translational degree of freedom deduced
in eq. (4.52). In total three misalignments are shown, these are: the misalignment
between the freedom space and the DoF (red in fig. 4.22), the misalignment between
the constraint space and the rigid body DoF (blue in fig. 4.22) and the direct
misalignment between the highest compliant eigenwrench and the rigid body DoF
(yellow in fig. 4.22). The DoF is almost mostly aligned with both the freedom space
and the highest compliance eigenwrench, indicating that this rigid body DoF is
indeed free. The misalignments appear quite ragged, which is likely due to some
numerical errors in the simulation.

Figure 4.23 shows the misalignment of the planar force constraint (perpendicular to
the translational DoF). The misalignments between the rigid body constraint and the
freedom space, the constraint space and the most corresponding planar eigenwrench
(in the y z-plane but perpendicular to the highest compliance eigenwrench) are
shown in red, blue and yellow respectively. The rigid body constraint remains
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relatively aligned with the corresponding eigenwrench; this makes sense as it this
was also the case for the perpendicular DoF; similar results are obtained for the
misalignment with the constraint space. The misalignment with the freedom space
decreases after 50◦, (red in fig. 4.23). This indicates that as the fold is established
and grows the compliance in all directions also grows.

Figure 4.21.: The radius of the fold (red), the axis drift metric for a twist located at
the fold centre (blue) and the translation of the end-effector resolved
through rigid body kinematics (yellow)
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Figure 4.22.: The misalignment between the freedom space and the planar rigid
body DoF (red), the misalignment between the constraint space and the
planar rigid body DoF (blue) and the direct misalignment between the
highest compliant eigenwrench and the planar rigid body DoF (yellow).

Figure 4.23.: The misalignment between the freedom space and the planar rigid body
constraint(red), the misalignment between the constraint space and the
planar rigid body constraint (blue) and the direct misalignment between
the other eigenwrench in the y z-plane (perpendicular to the highest
compliance eigenwrench) and the planar rigid body constraint (yellow)
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Discussion
If a mechanism has a full rank stiffness matrix with an arbitrary end-effector at
an arbitrary pose, then eigenscrew decomposition is possible; this property makes
eigenscrew decomposition uniquely suited for use as an analysis tool for any
type of compliant mechanism; this allows side-by-side comparison of a varying
array of mechanisms. The examples used in this article have different degrees of
freedoms. This showcases that the metrics can be used for any mechanism with
an end-effector, having degrees of freedom between 1 and 6. The usefulness of
eigenscrew decomposition can be further enhanced by applying the unified stiffness
method proposed by Leemans et al. [18], which allows for comparison between
rotational and translational stiffnesses.

A downside of using the eigenscrew decomposition is that it is derived from
the stiffness matrix. This matrix is often only valid at a single pose and thus
decomposition over the full range of motion can be computationally expensive.
Irrespective of whether the behaviour of a mechanism can be analysed intuitively or
through other metrics, the eigenscrew decomposition and the derived metrics will
always provide an insight to the behaviour.

Although the metrics can be applied to any compliant mechanism, some metrics
are more useful than others depending on the situation. Axis misalignment is mostly
useful for situations where the direction of the DOFs or constraints is expected
to change significantly during motion. For instance, this is the case in a parallel
leaf spring guidance. Behaviour like the shortening effect, i.e. lateral motion
accompanying the desired motion, can be easily studied with the axis misalignment
metric. This makes axis misalignment also useful to analyse the evolution of support
stiffness during motion, for instance.

The axis drift metric is a relatively straightforward metric: more axis drift means
more parasitic motion or load. Axis drift intrinsically has a distance component. This
distance has an absolute value; however, the relevance of this value is dependent on
the size of the mechanism. A certain value of axis drift is more severe in a small
mechanism than a larger mechanism; the size of the mechanism has be kept in mind
when assessing the axis drift. Additionally, axis drift also adds either compliance or
stiffness that could be, but is not necessarily, detrimental. Axis drift of a parallel leaf
spring guidance, for instance, adds compliance in the intended direction, which on
its own is not a drawback. The added parasitic rotation could be. If parasitic motion
is detrimental, axis drift has to be kept at a minimum. As such, the axis drift metric
is very powerful.

Axis misalignment and drift are excellent for expressing parasitic motion, other
than that they give only an indication of the behaviour of the mechanism. If
the actual behaviour is needed, the actual stiffness or compliance composition is
required. It does describe the precise response, but also requires more computation
and can be less insightful.

Depending on the situation it can be more beneficial to compare the misalignment
between an intended freedom or constraint and its closest eigentwist or -wrench,
since it shows precisely whether the intended DoF or constraint is still aligned with
one of the principal screws of the compliant mechanism. It is important to ensure
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that this principal eigenscrew is still in the freedom or constraint space. This can be
done by checking the corresponding eigenstiffness.

The tip-tilt-piston platform has full rank stiffness matrix at every evaluated pose.
However, there are many mechanisms that have a rank deficient stiffness matrix at
some poses; for instance, mechanisms that have a zero-stiffness degree of freedom.
The folded tape spring showed such behaviour; however, due to numerical errors,
the stiffness matrix was not rank deficient. Lipkin et al. have touched upon enabling
eigenscrew decomposition for rank deficient matrices [13]. This would allow the
use of the metric on zero-stiffness mechanisms and not rely on numerical errors to
condition the stiffness matrix.

The interpretation of the stiffnesses of the folded tape spring is not straightforward.
Intuitively, a tape spring is constrained in all translational directions prior to
buckling. However, after buckling the eigenstiffnesses of the eigenwrenches are still
quite high; this would indicate that the translational directions are still constrained.
It definitely does not show the zero stiffness of one eigenwrench that we would
expect from literature. Why this is, is not clear; it could be related to the fact that
the stiffness matrix is already near singular due to the zero stiffness eigentwist.
Another explanation is that the fold of the tape spring is being compressed, which
influences the results. However, in the simulations, in-plane translations are left free
and an rotation is applied. This results in a pure moment being applied, which
should not compress the fold. Additionally, compressing the fold would influence
both the rotational and translational zero stiffness modes, which is not observed. As
such, this requires further study.

The results of the eigentwists are more clear. After buckling, it appears that all
three eigentwists are degrees of freedom.

The locations of one of the eigentwists line up with the incremental centres of
rotation. These eigentwists were derived from stiffness matrices that were obtained
incrementally, i.e. tangent stiffness matrices. If we were to obtain the secant stiffness
matrices from the neutral position of the tape spring to each of the evaluated poses
of the tape spring, they would likely align with the instant centres of rotation. Due
to the complexity of the simulation, this was not validated.

Conclusion
We have shown that parasitic motions and loads in compliant mechanisms can be
analysed using eigenscrew decomposition. Eigenscrew decomposition is a useful tool
to visualize the kinematics of compliant mechanisms. We introduced two metrics
that can be used on any compliant mechanism; they are not specific to any type
of compliant mechanism. The metrics are suitable to analyse points of interests of
mechanisms with any number of degrees of freedom.

The metrics are based on the fact that any screw can be expressed as a linear
combination of the eigenscrews and induced screws; this puts the screw in question
in eigenbasis coordinates. These coordinates can then be used in the metrics.

In three dimensions two screws can differ in two ways: they can be separated
in distance, often described in literature as axis drift. Secondly they can differ
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in orientation, which is analysed by the axis misalignment metric. Both axis
misalignment and axis drift are indications of parasitic motion/load. Increased axis
misalignment is also an indication of changed stiffness behaviour as the intended
freedom or constraint space is no longer aligned with the actual freedom or
constraint space.

The axis misalignment metric captures the freedom and constraint spaces
by scaling the original direction of the screw with the eigencompliances and
eigenstiffnesses respectively. Although this metric can exaggerate changed stiffness
behaviour, it does allow for directly checking changed stiffness behaviour. In some
instances it is better to directly compare the misalignment between a desired screw
and a specific eigenscrew of the mechanism. This is the case in a cross-flexure
hinge, where the free eigentwist is the only eigenscrew of interest when analysing
the degrees of freedom.

The most powerful attribute is that these metrics can be used on any compliant
mechanism. To illustrate this, the metrics were used on two very different compliant
mechanisms. First, a tip-tilt-piston platform was studied, which has three degrees of
freedoms. We explored the parasitic motion when the platform was rotated. Second,
we investigated the behaviour of a folded tape spring and analysed the parasitic
motion that accompanies the intended hinge-like behaviour. Especially this last
example showcases how the metrics and eigenscrew decomposition in general can
help gain insight into the behaviour of compliant mechanisms where their motion
cannot always be intuitively deduced. These mechanisms often use large deflections
or complex geometries and it can be very hard to understand their behaviour
through conventional means.

4.1. Author Contributions
W.W.P.J.S. proposed and designed the research, performed the numerical calculations
and wrote the paper. J.L.H. supervised the project and reviewed the paper.
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Properties of Two-fold Tape Loops:

The Influence of the Subtended
Angle

Marinus G. de Jong, Werner W.P.J. van de Sande, Just
L.Herder

Tape springs are thin-walled structures with zero longitudinal and constant transverse
curvature. Folding them twice and connecting both ends create a tape loop which acts
as a linear guide. At this time, there is insufficient understanding of the influence of
the tape spring’s cross section on its behaviour. This study investigates the influence of
the subtended angle on the tape spring’s behaviour, especially the energy distribution
and the fold radius. First, some key aspects in the design of a twofold tape loop are
discussed. By performing a curvature analysis of this folded geometry, the different
regions within a tape spring are identified. This information is used to identify the
influence of the subtended angle on the geometry and energy state of the tape loop.
The fold radius and fold angle are determined by analysing the geometry of the fold
region. The analysis showed that the energy within the transition regions cannot be
neglected. The energy within these regions and the length of the transition regions
both increase with the subtended angle. It is also shown that the fold radius is not
constant when the subtended angle is small. The subtended angle should be above
100 deg to ensure a constant radius.

This chapter originally appeared as M. G. De Jong, W. W. P. J. van de Sande, and J. L. Herder.
“Properties of Twofold Tape Loops: The Influence of the Subtended Angle”. In: Journal of Mechanisms
and Robotics 11.2 (2019)[1]
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5.1. Introduction
Compliant mechanisms are mechanisms that move due to elastic deformation of
slender segments. These mechanisms have advantages compared to traditional
mechanisms such as reduced wear, reduced or eliminated backlash, no need for
lubrication and possibilities for monolithic designs [2].

Most compliant mechanisms consist of beam flexures that move in a plane, such
as compliant grippers [3] and MEMS devices [4]. A relatively new area in the field of
compliant mechanisms is that of shell mechanisms. These mechanisms have curved
flexures and have complex shapes and kinetics [5].

As shells are defined as curved thin-walled structures, one of the most basic
shell elements is a tape spring: a thin-walled open cylindrical structure with zero
longitudinal and constant transverse curvature. A carpenters tape is an example of
such geometry. Despite its simple geometry, a tape spring has some remarkable
properties, such as being stiff before buckling while being compliant after buckling,
having a constant fold radius [6] and constant moment after buckling [7]. Because
of these properties, tape springs are used as hinges [8] or as deployable structures in
space [9–14].

A special configuration of a folded tape spring is a tape loop, which is a tape
spring with multiple folds and its ends connected to each other. Vehar [15] examined
different setups with a different number of folds and determined the degrees of
freedom. The simplest configuration of a tape loop is with two folds, which acts as a
zero force and zero stiffness linear guide.

A two-fold tape loop is the monolithical equivalent of a rolamite, which has the
same working principle [16]. A rolamite can act as force generator by changing the
geometry of the band [17, 18]. In further analogy to the rolamite, a tape loop can
be turned into a force generator by changing the cross section of the tape spring.
Radaelli [19] suggested a constant force mechanism using a two-fold tape loop with
a tapered tape spring. However, to make a more generic force generator out of a
tape loop, more insight into the influence of the tape spring’s cross section on its
geometry and energy state is desired.

Quite some theoretical research has been performed on tape spring buckling [20],
deployment dynamics [7] and the fold curvature [21]. Seffen derived an analytical
formula of the strain energy within the fold region of a tape spring [22]. The fold
region however is not the only region where strain energy is stored. There is also
a transition region between the undeformed region and the bent region, which
contains an amount of strain energy. However, it is not known how much energy is
stored in that region.

This paper first presents several key aspects in the design of a two-fold tape
loop: such as the range of motion, limits on the thickness of the shell and existing
expressions for the energy state. Together these aspects comprise the mechanical
behavior of the tape loop. The influence of the subtended angle on this behavior
is investigated. The subtended angle is the angle in transverse direction of the tape
spring. This analysis is divided into two categories: the influence on the geometry
and the influence on the energy state of the tape loop. The description of the
energy state of the tape loop is desired in the synthesis of a force generator using
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tape loops. Another important factor that is determined is whether the fold radius
remains constant while varying the cross-section, since otherwise the tape loop will
not act as a straight-line guide.

This paper starts with presenting aspects of mechanical behavior of a tape loop.
Then the methods used in analysis are explained. Subsequently, the results of the
FEM analysis are shown. In the discussion, the reprecussions of the results and the
limitations of the method are discussed. Finally the paper concludes with some
remarks.

5.2. Tape spring basics
5.2.1. Parameters of a Folded Tape Spring.
A tape spring fold is created by applying a moment to both ends of a tape spring. A
tape spring can be folded into two directions: equal sense or opposite sense. The
fold is defined as equal sense when the concave sides of the tape spring are facing
towards each other, opposite sense when they are facing away [22]. Figure 5.1 shows
an equal sense folded tape spring together with its undeformed geometry. The
length direction is designated the longitudinal direction and the curved direction
the transverse direction. The original geometry has a constant transverse radius R
and zero longitudinal radius with a so-called subtended angle α, thickness t and
length L. The fold can be created by buckling the tape spring; this creates an area
of equally deformed geometry. There is some discussion whether the fold radius is
equal to the tape spring radius [6, 10]. The transverse radius is also called the tape
spring radius; the folded geometry has a fold radius R∗ with a fold angle θ.

5.2.2. Tape Spring Regions.
Three different regions can be identified within a folded tape spring. Figure 5.2
shows a folded tape spring with the different regions numbered.

The first region is the undeformed region. This is where the tape spring has its
original underformed shape. In this region, the transverse curvature is 1

R and the
longitudinal curvature is zero. The second region is the transition region. In this
region the tape spring goes from the original to fully deformed shape. The transverse
and longitudinal curvatures are between the curvatures in the undeformed and
deformed regions. The third region is called the fold region. Here the tape spring is
fully deformed, having a transverse curvature of zero and a longitudinal curvature of

1
R∗ .

Tape Loop.

By folding a tape spring twice and connecting both sides, a two-fold tape loop is
created. The motion is applied to the upper side of the loop while the lower side is
clamped, as shown in fig. 5.3. This creates a compliant straight-line mechanism.

Using a tape spring in the two-fold tape loop configuration has two implications
for the parameters: 1) the folding angle θ of the two folds is constant and around
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R*

θ

αR

t
L

Figure 5.1.: Parameters of an undeformed tape spring (left) and a equal-sense folded
tape spring (right)

2 31

Figure 5.2.: Different regions within a folded tape spring: 1) undeformed region, 2)
transition region, 3) fold region

π radians, 2) the subtended angle α can have a maximum value of π radians,
otherwise the top and bottom sides of the tape loop would collide.

The first implication pertains to the fact that the orientation between the upper
and lower segments is always π radians; most of this orientation change is attributed
to the fold. Part of it will be due to the transition region; together they effect a π

radians orientation change. The second implication comes from the fact that the
longitudinal radius R∗ is almost equal to the transverse radius R. The angle of the
fold is near π radians. When the subtended angle is also π radians, the edges of the
tape spring of the upper and the lower segments are close together. The distance
between the upper and lower segments seen in fig. 5.3 goes to zero. Any subtended
angle higher than this value might cause collisions between the upper and lower
segments.

Range of Motion.

As the tape loop moves left or right, at some point one of the folds will near the
clamping, see fig. 5.3. When the transition region hits the clamping, the part of
the tape spring at the edge of the clamping wants to flatten in transverse direction.
This flattening is restricted by the clamping. This results in a high stiffness in the
direction of the motion, which limits the range of motion (ROM).

The range of motion without this stiffening effect is determined by the length of
the undeformed regions at the the bottom. If we assume that the tape spring is
clamped along a line, the clamping has no length. We choose the tape loop to have
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Lfold

Ltransition

x

Figure 5.3.: A two-fold tape loop, some characteristic lengths are highlighted, the
end-effector is denoted by x

a length of 2L. The position of x is maximum when the length of the left bottom
undeformed region is zero. The transition zone then hits the clamping as can be
seen in fig. 5.3.

xmax =−Ltr ansi t i on + (L−L f old −Ltr ansi t i on)

= L−L f old −2Ltr ansi t i on
(5.1)

The start and the end of the fold have the same x-coordinate; therefore the length
of the fold does not directly contribute to the x-position. The remainder of the tape
loop half forms the upper region; the length of this remainder can be expressed as a
function of the tape spring length, the length of the fold and the lower region. The
position of x is at a minimum when the length of the bottom right underformed
region is zero.

xmi n = Ltr ansi t i on − (L−L f ol d −Ltr ansi t i on)

=−L+L f old +2Ltr ansi t i on
(5.2)

The range of motion is the difference between these outermost positions.

ROM = xmax −xmi n

= 2L−2L f old −4Ltr ansi t i on
(5.3)

Relation Between Radius and Thickness.

The von Mises principal plane stress is

σν =
√
σ2

1 −σ1σ2 +σ2
2. (5.4)

Kirchhoff-Love plate theory for an isotropic and homogeneous plate without shear
strain gives an expression for the stress, σ⃗:

σ⃗=
[
σ1

σ2

]
= E

1−ν2

[
1 ν

ν 1

]
ϵ⃗max (5.5)
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where ϵ⃗max is the maximum strain, E the Young’s modulus and ν the Poisson’s
Ratio. In case of an equal sense folded tape spring, the maximum strain is in the
fold; the strain in the longitudinal direction is ϵ1 = t/2R∗ and in the transverse
direction ϵ2 =−t/2R. Equation (5.4) can put into eq. (5.5) to obtain an expression for
the von Mises stress. In the case of R∗ = R∗, this equation simplifies to the following
expression.

σν = Et
p

3

2R(1+ν)
. (5.6)

This expression shows that the von Mises stress increases with the thickness and
decreases with the radius. According to the von Mises yield criterion, a material
starts to yield when the von Mises stress reaches the yield strength of a material,
so σν ≤ σy to prevent plastic deformation. Using this criterion, eq. (5.6) can be
rearranged to obtain the required relation between t and R

t < 2σy(1+ν)

E
p

3
R. (5.7)

Equation of Energy.
The potential strain energy, U , for a fold in a tape spring without twist, using the
definitions as shown in fig. 5.1 and fig. 5.4, is given by

U = αD

2

∫ θ/2

−θ/2

[
R

r (β)
+ r (β)

R
±2ν

]
dβ (5.8)

with the flexural rigidity D = Et 3/12(1−ν2), [22]. The plus-minus sign is for
respectively opposite or equal sense bending. This equation does not take the
transition regions into account.

With the use of several other assumptions, eq. (5.8) can be simplified. It has been
suggested that the fold radius is constant (r (β) = R∗) and that the fold radius R∗ is
equal to R [6]. Furthermore, since in this paper a single fold of a two-fold tape loop
is considered, the fold angle θ can be set to π. With these assumptions, eq. (5.8) can
be reduced to

U = D(1±ν)απ (5.9)

where the plus-minus sign represents respectively opposite and equal sense
bending [7].

Investigation
The goal for our investigation is twofold. What is the influence of the subtended
angle on the geometry of the tape loop and what is the influence on its energy state?
A tape spring is modeled in a FEM model. One of the endpoints is clamped while
the other endpoint is rotated π radians to create a single fold. The tape spring is
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r( )

/2

Figure 5.4.: Definition of parameters associated with deformation of a tape spring
[22].

bent such that a equal sense fold is obtained. The subtended angle will be varied
between 80 and 170 degrees in steps of 5 degrees. All other parameters as shown in
fig. 5.1 are constant as given in table 5.1.

The output of the model is the deformed geometry and the strain energy per
surface area within the tape spring. The deformed geometry is used to find the
different regions within the tape spring by analyzing the curvature. The curvature in
the undeformed region is zero in the longitudinal direction and 1/R in the transverse
direction. In the fold region, this is the reversed; the longitudinal curvature is 1/R∗.
The different regions can be identified by analyzing the curvature in transverse
direction. The transverse curvature will decrease in the transition zone. In the fold
region, it will be zero. The curvature is obtained by curve fitting circles on transverse
lines along the longitudinal direction of the tape spring.

Some definitions are required to obtain the regions; the transition region starts
when the curvature drops below 1/R. The transition region ends when the curvature
falls below 5% of the original tape spring curvature. This value is chosen to
accommodate for errors in the FEM analysis. Below this value, the fold region starts.

As the different regions are defined, the length of the transition region can be
determined by measuring the length between the start of the transition region and
the start of the fold region.

Once the regions are known, other geometry and energy information can be
obtained. The range of motion is known when the lengths of the regions are known.
The fold radius is determined by fitting a circle to the data points in the fold region
in the longitudinal direction. The fold angle is determined by calculating the angle
between the edges of the fold region and the center of the fitted circle. The strain
energy is summed per region to get the energy division among regions.

FEM Analysis.

A Matlab based finite element software package of the Delft University of Technology
is used for this analysis [23]. The model is based on isogeometric analysis (IGA).
Within this framework a geometry is defined using NURBS. For a detailed description
of the IGA working principle, the reader is referred to [24].
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Table 5.1.: Used values for tape spring parameters

R t L θ E ν

[mm] [mm] [mm] [rad] [GPa] [-]
21 0.2 1000 π 210 0.3

The cross section of the tape spring geometry is defined by an arc with a
subtended angle α that is linearly divided into 21 points in the transverse direction.
The geometry in the length direction is then defined by linearly spacing these cross
sections in longitudinal direction over length L, divided into 300 points. In addition,
two pilot points are defined at the centroid of the cross section at both ends of the
geometry which are connected through beams to each point of the corresponding
curved edges. The motions are applied to these pilot points.

The folding process, shown in fig. 5.5, is performed in two steps: first a rotation
of π is applied to one of the pilot points while the other pilot point is fixed, which
forces the tape spring to buckle. Secondly the rotated endpoint is translated to the
same height as the fixed pilot point while constraining the rotation.

5.3. Results
Not all subtended angles resulted in a converged simulation. The following angles in
degrees did converge and were included in the analysis.

α= (85◦,90◦,95◦,100◦,105◦,110◦,115◦,120◦,

125◦,140◦,145◦,155◦,160◦,165◦170◦). (5.10)

In the remainder the subtented angles are expressed in radians. By analyzing the
curvature of the cross sections in transverse direction, the undeformed, transition
and fold regions were determined.

The transverse curvature starts at its undeformed value, indicated by the dashed
line in fig. 5.6. It rises when it nears the transition zone; however this change in
curvature amounts to a radial change of at most 0.4mm: twice the thickness of the
tape spring. When the curvature falls below the original curvature its decreases
sharply, this marks the start of the transition zone. The other dashed line indicates
5% of the original curvature. This marks the start of the fold region and the end of
the transition zone. This value was chosen to filter out some numerical errors in the
simulation in the fold region. Allthough this value is somewhat arbitrary, it does not
change the lengths of the region significantly since the slope of the curvature is so
severe.

This data is used to obtain the geometry of the tape spring. Figure 5.7 shows the
length of a single transition region as well as the fold radius and angle as a function
of the subtended angle. It shows that the length of the transition regions increases
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(a) (b) (c)

Figure 5.5.: FEM steps: a) end-point rotation of π, b) vertically displace end-points
to same height, c) final deformed geometry
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Figure 5.6.: Transverse curvature along the length of the tape springs of the solved
simulations, dashed lines indicate bounds of the transition region, darker
lines indicate a smaller subtended angle

with the subtended angles. An second order ordinary least square fit is performed
on the simulation data and found an expression with a standard error of 1.1 ·10−3.

Ltr ansi t i on(m) = 1.7 ·10−2 −1.1 ·10−2α+2.3 ·10−2α2 (5.11)

The transition zone length Ltr ans is a function of the flexural rigidity D and the
subtended angle α in radians.

The figure shows that fold radius is larger than the tape spring radius (indicated
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by the dashed line in fig. 5.7), with a mean value 22.1mm. The maximum difference
between the tape spring radius and the fold radius is 7%. Above 1.75 radians the
radius is fairly constant.

Figure 5.7 also shows that the fold angle θ is not equal to π radians but varies
between 2.68 radians and 2.75 radians with a mean value of θ̄ = 2.73 radians or 156.2
◦.

The range of motion can be determined using eq. (5.3) from the geometry
parameters seen in fig. 5.7. The range of motion decreases with increasing subtended
angle (fig. 8.5). The transition zone and the fold region is not dependent on the tape
loop length. With a smaller tape loop length the ROM might go to zero.

The resulting region decomposition can be seen in an overview in fig. 5.9. The
fold circumference, e.g. the product of the fold radius and angle, is constant.

Using the information of the different regions within a tape spring, the energy
related to each region could be determined. This energy is summed per region to
see the distribution between the different regions, as shown in fig. 5.10. The figure
shows that a significant part of the total energy is within the transition regions,
starting at roughly 35% of the fold energy at a subtended angle of 1.5r ad to about
80% of the fold energy at a subtended angle of 3 ◦. There is also a small amount of
the energy in the undeformed region at smaller subtended angles; this was neglected
since it amounted to less than 1% of the total energy content. The energy for both
regions was fitted with a first and second order ordinary least square fit for the fold
and transition region respectively. The standard errors are 2.5 ·10−4 and 2.2 ·10−3 for
the fold and transition zone fits respectively; the expressions are as follows.

Utr ansi t i on = D(1−ν)θ̄(0.967−1.12α+0.543α2) (5.12)

U f old = D(1−ν)θ̄(−0.163+1.06α) (5.13)

Figure 5.10 and eq. (5.13) show that the fitted energy profiles in the fold are
close to the theoretical values stated in literature (see eq. (5.9)). The energy is the
transition zones is epressed in the same manner, but it has a quadratic term.

The total energy contained within a tape spring can be seen in fig. 5.11. This
energy is the sum of the energy of the fold and transition zones.
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Figure 5.7.: Length of the transition zones, fold radius and fold angle as function of
the subtended angle
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Figure 5.8.: Range of motion for different subtended angles, the length of the total
tape loop is 2m
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Figure 5.9.: Regions in half of a tape loop for different subtended angles
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Figure 5.10.: Energy per region for different subtended angles
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energy is divided per region



5

122 5. Properties of Two-fold Tape Loops: The Influence of the Subtended Angle

5.4. Discussion
Figure 5.11 shows that the energy in the transition zone cannot be neglected. The
ratio of the transition and the fold region increases with the subtended angle. At
small subtended angles, there is also a negligible fraction of the energy within the
undeformed region. At even lower subtended angles it can be understood that a
tape spring starts to behave like a flat leaf spring. In a leaf spring, the energy is not
concentrated at a fold like in a tape spring, but is evenly distributed in the whole
structure. The energy of the underformed energy might also be due to an inaccurate
definition of the regions. There are small inaccuracies in the simulation themselves.
The method also uses certain limits to determine the length of the regions; these
limits are chosen and have a margin of error.

There is agreement between the simulation and the simple equation of energy
in the fold. As such, this equation can be used for synthesis. The results of the
simulation also indicate a limit on the usability of the expression. Below 100 degrees
tape loop behavior is no longer assured and the equation becomes inaccurate. In
addition, the energy in the transition region cannot be neglected and must be
included. As far as the authors are aware no analytical formulation exists that
describe the energy content of the transition region; the expression in this paper
serves as a first estimation of this formulation.

The results were obtained using FE simulation; it could also be done using the
analytical formulations. This would eliminate uncertainties introduced by the FE
modelling. In this article all variables of a tape spring were set to a single value
except the subtended angle. The qualitative behavior might be different at different
values of e.g. the radius, thickness, etc. However, part of the results match with
theory which indicates that the chosen parameters are descriptive of a general tape
spring.

Three simulations did not converge: 80, 130 and 135 degrees. The initial rotation
to create a fold is a buckling problem. Equal sense buckling of a tape spring has a
bending and a torsional component. The rotation applies a moment which creates
torsional folds near the ends of the tape spring. If the rotation is increased further
these folds merge into each other creating a tape spring fold [7]. In some simulations
this merger did not happen and caused the simulation to fail. The reason behind
this is not entirely clear. The amount of elements is the same in each simulation,
therefore the element size is different in each simulation. This likely causes the
problem to become ill-conditioned.

The fold radius is clearly not the same as the tape spring radius with a maximum
difference of 7%. However, when comparing the energy with the actual fold radii
using eq. (5.8) and simplified eq. (5.9) where the radii are assumed to be equal,
the maximum difference in calculated energy is only 0.32%. This difference is
small enough to be neglected. Furthermore, the fold radius gets larger at small
subtended angles. This can be explained by the same phenomena as with the
energy distribution. When folding a leaf spring, the smallest energy state of the
leaf spring is with the largest radius as possible. Analogously a tape spring with a
small subtended angle has a large fold radius. When using a tape spring with varied
subtended angle as a force generator, this results in an imperfect straight line linear
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guidance. However, when the subtended angle is larger than 100 ◦, the fold radius is
fairly constant. So when keeping the subtended angle above this value, a tape loop
could be used as a linear force generator. Figure 5.7 shows that the fold angle is not
equal to π radians, but varies from 2.68 radians to 2.75 radians. This is explained by
the fact that the curvature of the structure in transverse direction is still not zero,
while the structure starts to deform in longitudinal direction. The definition of fold
region is that it starts when the curvature in transverse direction is zero, so a small
part of the folding already occurs in the transition regions. The product of the fold
radius and the fold angle, the fold circumference was independent of the subtended
angle. This was unexpected, but the reason is not understood.

The fits show remarkable agreement with the data points. The order of the fits was
chosen by hand. The expression for the energy in the fold region has also a term
independent of the subtended angle in it; this makes it different from the simplified
equation (eq. (5.9)).These values are influenced by the simulation results below 100◦,
which skew the fit. However, the energy in the fold is linear with respect to the
subtended angle and the fit is close to the theoretical expression found in literature.

5.5. Conclusion
We have presented several key aspects that are important for the behavior of a
two-fold tape loop.

We have investigated the influence of the subtended angle on these key aspects.
FE simulations where the subtended angle was varied between 85 degrees and 170
degrees were used to analyse the geometry and energy state of the tape loop. By
using the transverse curvature in a folded tape spring, the lengths of regions of
a tape loop were identified. From this all other geometry and energy states were
determined.

We have found expressions for the length of the transition zones and the energy
in the transition zones and fold regions. The energy in the transition zones is not
negligible and has to be taken into account in the design of force generators. At large
subtended angles the energy in the transition zone is about 80% of the energy of
the fold region. The energy in the fold region increases linearly with the subtended
angle and closely agrees with the theoretical expression. The energy in the transition
zone increases quadratically with respect to the subtended angle.

The fold radius gets larger with a smaller subtended angle and is always larger
than the tape spring radius. The radius dependency can be a problem when a tape
loop is used as a linear guide. Nonetheless, this problem can be limited by using
subtended angles above 100 degrees.

The fold angle is not a constant of π radians, but varies between 2.68 radians to
2.75 radians with a mean value of 2.73 radians.

These results imply that the transition regions can not be neglected, but should
be incorporated into the synthesis method of a force generator using two-fold tape
loops. The subtended angle should preferably be larger than 100 degrees to limit the
subtended angle dependency of the fold radius.
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Design and evaluation of a passive

constant force mechanism for a
cardiac ablation catheter

Werner W.P.J. van de Sande, Awaz Ali, Giuseppe Radaelli

Contact force management has been proven to have a positive effect on the outcome
of cardiac ablation procedures. However, no method exists that allows maintaining
a constant contact force within a required and effective range. This work aims to
develop and evaluate such a constant force mechanism for use in an ablation catheter.
A passive constant force mechanism was designed based on a tape-loop. The tape-loop
consists of two tapered springs that work in parallel. A finite element analysis was
carried out to verify the behavior and performance of the design. A design based
on requirements for a constant force ablation tip showed an average force of about
7.8×10−2 N±8×10−3 N over 20mm in simulation. A scaled prototype was built and
evaluated to prove the validity of the concept; this prototype provides an average
force of 1.3×10−1 N±1.6×10−2 N over 35mm. The mechanism allows for controlled
delivery of contact force within a desired and effective range. Based on these findings
it can be concluded that the approach is successful but needs to be optimized for
future applications. Being able to control the delivery of contact force in a constant
range may increase the effectivity of cardiac ablation procedures and improve clinical
outcomes.

This chapter originally appeared as W. W. P. J. van de Sande, A. Ali, and G. Radaelli. “Design
and evaluation of a passive constant force mechanism for a cardiac ablation catheter”. In: Journal of
Medical Devices 15.2 (2021)[1]
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6.1. Introduction
RADIO Frequency (RF) ablation catheters are commonly used for the treatment
of atrial fibrillation (AF). For an effective treatment that isolates the rhythm
disturbances, the contact between ablation tip and heart tissue must be constant
and lead to transmural lesions. More specifically, the amount of applied contact
force plays a significant role in the treatment when creating transmural lesions [2].
The amount of contact force that is applied to the tissue is dependent on the
controllability and stability of the catheter tip. Generally, the electrophysiologist
experiences a variable contact force that increases and decreases along with the
cardiac cycle, ranging between 0 and 0.39 N. In addition to the cyclic cardiac
movements and blood flow, the complex atrial anatomy as well as the clinical
requirements for circumferential or linear ablations make it a challenging task to
deliver the appropriate amount of contact force and generate transmural lesion.
A contact force below the required value goes at the expense of the effectivity of
the treatment. A contact force higher than the required value can result in tissue
perforations and steam pops. Earlier studies showed a recurrence rate of 100% one
year post treatment when the mean catheter contact force was below0.10 N [3]. When
the mean contact force was above 0.20 N, the success rate of the procedure increased
to 80% [3]. Moreover, as the lesions are created by ablating a subsequent number
of transmural points, the risk of incomplete isolation remains with variable stability
and therefore with variable contact force. A constant contact force range could
prevent the decreased effectivity or negative side-effects related to the fluctuating
contact force. It would additionally allow the possibility of dragging the ablation
catheter tip along the pathway, hereby decreasing the risk of incomplete isolation.
However, no such ablation catheter exists yet.

Even though there are no known catheters that allow for a constant contact force,
some efforts have been made in the past decade to simplify or solve the issue
using different methods or surrogates [4]. First, contact force sensors are widely
applied in ablation catheters and allow a visualization of the amount of applied
force. Commercially available examples of this type of ablation catheter include
the TactiCath® catheter (St. Jude, MN, USA) showing real-time visualizations of
the contact force, and the ThermoCool® SmartTouch™ catheter (Biosense Webster,
USA) which displays graphical and numerical visualizations of the contact force. The
IntelliSense® (Hansen Medical Inc., Mount View CA, USA) provides besides contact
force visualization, also feedback in the form of vibration. Multiple studies have
proven the positive effect of the systems on the effectivity of the procedure [5, 6];
however, these systems do not provide a feedback loop in adjusting the contact
force. Second, various efforts have been made to compensate for the beating
heart motion and thereby simplify the manipulation of the catheter during ablation.
Examples include robotic systems and steerable catheters that have shown significant
improvements in the control of the amount of delivered contact force [7–9] such
as the Agilis steerable sheath and the Stereotaxis magnetic system. Third, various
balloon- and basket- configurations have been developed to aid the placement and
stabilization of the catheter tools inside the heart while the ablation is carried
out [10, 11]. However, none of the developed and studied systems allows for
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controlled delivery of a contact force within a desired and effective range.
In terms of efficiency and effectivity, the ablation procedure can potentially benefit

from a mechanism that provides a constant force at the catheter tip. Actively
controlled mechanisms, in which the applied force is measured and controlled by a
feedback loop and an actuator, e.g. an electromotor, present multiple challenges and
drawbacks for the present case. This includes for example the reliability, feedback
time delay, miniaturization, complexity and costs. A passive mechanism that applies
a constant force without active control could lead to a more elegant, collocated
solution. There are numerous examples of passive constant force mechanisms for
various applications and sizes [12–17]. However, most systems found in literature
occupy a large volume with respect to the range of motion where the force is
constant. The large volume-to-range ratio makes these systems unsuitable for the
current application because the mechanism must be fed through the narrow catheter
sheath. The known systems where the range of motion is large, e.g. [15] and [18],
present other drawbacks in terms of lateral stiffness and drift with respect to the
desired rectilinear motion in the direction of the applied force. In the current case
this can lead to uncontrolled positioning of the catheter tip.

A tape loop [19, 20] is a compliant mechanism that has a better volume-to-range
ratio. A tape loop is created when the two ends of a tape spring are connected.
This determines the kinematics of the resulting mechanism, namely a rectilinear
motion. A basic tape loop has a constant cross section which creates a zero force
and zero stiffness straight-line guidance. The force output of a tape loop can
be tailored by varying the geometry or material properties. A linearly decreasing
profile of the cross-section creates a near constant force profile. Because such a
mechanism can be scaled down, it can be used as a constant force catheter tip. The
objective of this paper is to present the novel concept of a tapered tape loop used
to generate a constant force, applicable to the tip of an ablation catheter. To do
so, a finite element analysis will be performed to validate the design and a scaled
prototype will be constructed and evaluated. The paper is structured as follows. The
method section presents the design context and the requirements derived from it,
an elaboration on the conceptual design and the dimensioning of the design based
on a simplified mechanical model. Subsequently, the finite element analysis and its
results are shown. Then the physical realization of the scaled prototype is dicussed
and next the experimental setup and the results is described. The paper ends with
the discussion and the conclusion.

6.2. Method
There are several requirements on the tape loop for it to be used as a constant force
catheter tip.

Passive constant force mechanism The passive mechanism must apply a constant
force for the desired range of motion at high speed beating heart movements.
The amount of constant contact force is set to 0.20 N with a tolerance of
10%. Studies have shown major improvements in the outcomes of ablation
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of atrial fibrillation procedures when a mean contact force of 0.20 N could be
maintained [4].

Biocompatible materials The mechanism must consist of biocompatible materials,
typically used in catheter systems, to ensure a safe biological response of the
cardiovascular environment. Typical materials included in the catheter tip
comprise metals and metallic alloys such as stainless steel and nitinol, as well
as polymeric materials such as polyurethanes and polyethylene.

Dimensions To make it suitable for use in an ablation catheter, the constant
force mechanism must be designed with a diameter that can ultimately be
downsized to 2 mm to 3 mm. The length of the constant force mechanism is
preferably short enough to allow additional tip length for other functions such
as steerable joints. Additionally, the mechanism must fit inside or atop of a
catheter. To generate a first experimental prototype and evaluating the working
principle, the dimensions of the manufactured prototype are set larger but
must be down-sizable.

Relative movement The mechanism must allow the possibility for relative
movement within the catheter to function along with an ablation catheter.
This requires that the mechanism must be integrated inside or on top of a
catheter, while leaving space for ablation electrodes, irrigation channels, and
other typical components.

Simplicity To not complicate regular catheters and their control, the added constant
force mechanism must be as simple as possible. The simplicity is expressed
in the number of parts and by keeping those low, it is expected that the
manufacturability as well as control of the mechanism are simpler.

There are two types of constant force devices: devices in which the elastic potential
energy remains constant and devices in which the elastic potential energy increases
linearly. In the first case the force is zero, in the second the force is non-zero. In
both cases the second derivative of the potential energy function will be zero; the
result is a mechanism with zero stiffness.

The principle of constant potential energy is seen in tape loops with a constant
cross-section. A specific length of tape spring is folded twice, and the two ends
are connected, see fig. 7.1. Tape springs are defined by a length L, a radius R, a
thickness t and a subtended angle α, see fig. 7.3.

A basic two-fold tape loop has constant geometric and material properties along its
length. This tape loop consists of four parts: two folds and two mostly undeformed
tape spring segments. The two segments contain so-called transition-zones. In
these zones a tape spring transitions from solely transverse curvature to the solely
longitudinal curvature of the fold. The length of these zones is dependent on the
properties of the tape spring [21].

Potential energy in a tape loop is stored in the folds and in the transition zones.
The energy in a fold is linear with the angle of the fold. As the fold has a constant
radius R∗, the strain state is the same everywhere in the fold. Therefore, the strain
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Figure 6.1.: A tape-loop is obtained by connecting two ends of a tape spring. In
the obtained closed loop the distance between the straight segments is
constant and rolling can be done without changing the potential energy
of the system thus requiring zero elastic force. Pictures are modified
from [20, 21].

energy density is the same at any part of the fold. Material moves in and out of the
fold during motion of the tape loop.

Motion is created by rolling the tape loop; it has one degree of freedom. In this
rolling movement, segments of the tape spring move from the un-deformed sections
into the fold and vice versa. The shape of the tape loop remains unchanged. The
tape loop acts as a linear guidance. As the same amount of material moves into
the fold as out of the fold, the obtained loop is in a state of neutral equilibrium,
since the position of the folds has no influence on the total potential energy of the
system. As a result, a rolling movement can be performed without elastic resistance,
even though the material is continuously deforming elastically.

When the cross-section of the tape spring is not constant along its length, a
non-zero force is generated. After connecting the two ends the system is not in
a state of neutral equilibrium anymore, but rather moves the folds towards the
most narrow part of the tape spring. The amount and gradient of the force can
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Figure 6.2.: Geometry of a piece of tape spring with a length L, a radius R, a
thickness t and a subtended angle α. Pictures are used from [21].

be regulated by the cross-section of the tape spring. This gives the possibility to
design different force-displacement characteristics, of which a constant force is a
particularly interesting one. The result is a minimalistic, monolithic, scalable design
of a rectilinear, self-constrained, constant force mechanism. How the tapered tape
loop can be integrated in a catheter tip design is shown in fig. 6.3.

catheter sheath

taper

Fconstant

ablation electrode

transverse
curvature

Figure 6.3.: The proposed solution consists of a two-fold tapered tape-loop. The
tapering of subtended angle of the spring is responsible for the constant
force. The transverse curvature of the tape makes it possible to maintain
the radius of curvature, thus the overall diameter, constant without
additional constraints [22].

The proposed tape loop is constructed from two tapered tape springs that work in
parallel. The requirements of the tape loop can be seen in table 6.1.

The range of motion is defined by the length of the tape spring segment. The
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Table 6.1.: Requirements on the design of the tape loop
Property Symbol Value Unit
Range of motion ∆ x 20.0 ·10−3 m
Required force Fr eq 1.00 ·10−1 N
Radius of tape loop R 1.75 ·10−1 m

length of the tape spring consists of one piece in the fold of the tape loop, l f old in
fig. 8.5, and two relatively undeformed lengths of the tape spring, ltop and lbot tom in
fig. 8.5. The location of the end-effector is shown as x.

The right end of the bottom segment is considered ground and at x = 0. The
location of the end-effector is as follows.

x =−lbot tom + ltop (6.1)

The length of the fold remains constant during motion and does not contribute
directly to the x-location of the end-effector. The total length of the tape spring is
the sum of all segments [21].

L = ltop + lbot tom + l f old = ltop + lbot tom +πR (6.2)

The point on the tape spring where the folds starts is defined as l ; as such, l is
equal to lbot tom . The relation between l and the position of the end-effector, x, is
obtained by rewriting eq. (6.2) into eq. (6.1) and substituting l for lbot tom .

x(l ) = L−πR −2l (6.3)

The range of motion is determined by the difference between the smallest and
largest possible values of l . The smallest possible length of the bottom segment
is the length of the transition zone, ltr ans . At this point, the deformation in the
transition zone is hindered by the clamps, which increases stiffness. The same is also
true for the largest possible value, which is when the top segment is at is smallest.
This gives the following minimum and maximum values.

lmi n = ltr ans ; lmax = L−πR − ltr ans (6.4)

The range of motion is the determined by the minimum and maximum locations
of the end-effector.

∆x = x(lmi n)−x(lmax ) = 2lmax −2lmi n = 2L−2πR −4ltr ans (6.5)

This is rewritten to obtain the needed length of the tape spring segment.
Considering the radius of the tape loop, it is chosen that the total length of the
transition zones is about 1.5 times the length of the fold. This value was estimated
after several FE simulations.

L = ∆x

2
+πR +2ltr ans = ∆x

2
+3.5πR = 2.92 ·10−2m (6.6)
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Figure 6.4.: Schematic overview of one half of the tape loop. (a) It consists of 3 parts:
2 relatively un-deformed segments ltop and lbot tom and the fold, here
denoted by l f old which has a radius R∗. The tape spring is connected
to ground at the bottom segment and the end-effector is chosen to be
the right end of the top segment.(b) The largest value of l , where the top
segment is the length of the transition zone, ltr ans . (c) The smallest value
of l , where the bottom segment is the length of the transition, ltr ans .

The energy of a tape spring fold is as

U = D(1−ν)θα (6.7)

where D = Et 3/12(1−ν2), E is the Young’s modulus, t is the thickness and ν the
Poisson’s ratio. The fold angle is θ, and the subtended angle is α. This formula
is derived from the work of Seffen [23]; this work uses a description of energy
for a tape spring based on plate theory. In this derivation it is assumed that the
longitudinal radius of the tape spring does not change. For simplicity, it is assumed
that nearly all energy is stored in the fold and almost no energy in the transition
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zones. In this instance we fold the tape spring to πrad and we vary the subtended
angle. The energy stored in the fold will vary as the tape loop moves. The required
force can be obtained by determining the change in this energy over the required
range of motion. Quasi-static behaviour is assumed in this derivation.

Fr eq = ∆U

∆x
→∆U = Fr eq∆x = D(1−ν)π∆α (6.8)

We can solve this equation for ∆α. This difference between the start subtended
angle and the end subtended angle must be 0.51πrad, which is 92◦. The maximum
value of the subtended angle is in theory limited to πrad or 180◦; any value higher
could cause the tape loop to self-intersect. The maximum value is set to 3rad to be
safe. Table 6.2 lists all material and geometric properties of the tape spring.

Table 6.2.: Material and geometric properties of the design
Property Symbol Value Unit
Young’s Modulus E 210 GPa
Poisson’s Ratio ν 0.3 -
thickness t 35 ·10−6 m
length L 2.92 ·10−2 m
radius R 1.75 ·10−3 m
maximum subtended angle αmax 0.95π rad
minimum subtended angle αmi n 0.44π rad

6.3. Numerical Validation
A finite element analysis was carried out to verify the behavior and performance of
the design with higher fidelity. The requirements of table 6.1 were used to obtain the
variables of table 6.2. These variables were used in the simulation. An isogeometric
analysis formulation [24] was used for this purpose. The tape loop was modelled
with Kirchhoff-Love shell elements with an isotropic, linear elastic material. In
the transverse direction 15 elements are used; lengthwise 130 elements are used.
An initially straight portion of a tapered tape loop was bent into a single fold by
applying a 180◦ rotation on one end and fixing the other end. Subsequently, a
displacement in the longitudinal direction was applied while maintaining the applied
rotation as a constraint, thereby avoiding the need to simulate the other half of
the system with the other fold, see fig. 6.5. The curved edges at the two extremes
of the tape are stiff and have a stiff connection to a point at which the rotation
and displacement boundary conditions were applied. This was done to avoid very
local deformation of the shell near the edges to simulate clamping conditions. In
the physical implementation this would approach the effect of a rigid clamping of
the ends. The force-displacement characteristic resulting from the finite element
analysis is shown in fig. 6.6. The force-displacement diagram shows an initial ramp
up of the force followed by a smooth transition to a fairly constant force region,
and followed by a smooth transition to a steep force increase again. This region
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of fairly constant force has an average value of 0.078 N. This value is obtained by
determining the average force of segments of the force-displacement graph that are
as long as the desired range of motion (20 mm). The segment that has the best least
squares fit to that average is selected as the constant force region. The outermost
points of the range of motion in the simulation data differ about 10% from the
average. The average is 0.078 N, which is below the required 0.1 N for a tape loop
half. Figure 6.7 shows the von Mises strains on the tape loop at the last load-step.
This is the situation wherein the portion with the largest subtended angle enters the
fold region, thus with the highest potential energy state.

Figure 6.5.: A numerical model of a single fold of the tapered tape loop is simulated
using an isogeometric analysis method. The bend is introduced by
applying a 180◦ rotation to one end of the tape while constraining the
other end. Subsequently, the rotated point is displaced in longitudinal
direction, causing the rolling motion. The edges at the extremes of the
loop have a stiff connection to the points of application of the boundary
conditions. These connections are represented by the blue lines.

Prototype
A prototype was manufactured to validate the concept. While the intended
design could not be manufactured due to limitations, the behavior of this type of
mechanism could be validated. The dimensions used for the prototype were based
on the current manufacturing possibilities; the dimensions are within one order of
magnitude of the intended design. First the flat geometry was cut out of a 100 mm
wide and 50 µm thick sheet of stainless steel (1.4310). The flat geometry, see fig. 6.8,
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Figure 6.6.: The result of the displacement-controlled simulation of the single fold
of the tape. The average value of the fairly constant force region is
denoted by the dotted line. The markers denote the outermost positions
of the range of motion. The number describes the average value and
the deviation of the outermost points from that average. The output
force of the entire design, i.e. with a double fold, yields the same
force-displacement diagram with double magnitude.

was cut with a manual plate cutting machine and then rolled to a constant radius
across its surface. The steel that is used is known for springback. The final radius of
the tape spring is therefore not equal to the radius to which it is rolled. The ratio
between the rolled radius and the radius after springback was obtained after rolling
several tape springs. The steel was rolled to a radius of 2 mm; the actual radius after
springback was measured to be 5 mm.

Given this ratio, the flat geometry was determined to have at least a subtended
angle of 100◦ (1.75 rad). This is done to ensure a constant radius of the tape loop
fold in motion [21].

The largest subtended angle should be as close to 180◦ (πrad) as possible, but
not exceed it. The width was therefore chosen to not exceed a subtended angle of
170◦ (2.97 rad). Given the intended radius of the tape springs, the subtended angles
were converted to circumferences to create the flat geometry. The tape spring was
measured after rolling to obtain the actual radius and subtended angle. After rolling,
two equal tape springs were clamped into 3D-printed blocks, which closed the loop,
see fig. 6.9. The material is the polymer PLA (Polylactic acid) and it assumed to be
rigid enough as to not influence the behavior of the tape loop. The tape spring was
clamped along a length of 5 mm at each end. This length was subtracted from the
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Figure 6.7.: This figure shows the distribution of the von Mises strains on the
simulated tape loop in its end position. At the edges of the transition
zones the strain concentrations are the highest.

100 mm
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Figure 6.8.: The geometry of the strips that are cut from a sheet of spring steel.

initial length. This also influenced the start and end subtended angles. Table 6.3
contains the values that were obtained for the tape springs.

Table 6.3.: Material and geometric properties of the prototype
Property Symbol Value Unit
Young’s Modulus E 210 GPa
Poisson’s Ratio ν 0.3 -
thickness t 50 ·10−6 m
length L 9 ·10−2 m
radius R 5 ·10−3 m
maximum subtended angle αmax 0.93π rad
minimum subtended angle αmi n 0.59π rad
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Figure 6.9.: A prototype of the concept was fabricated from a 50 µm. thick
stainless-steel sheet, with a diameter of 10 mm. Figures b, c and d show
the prototype in three stances within the range of motion.

Experimental Validation
The prototype was validated through an experiment in which the force-displacement
was measured. The measurement setup is shown in fig. 6.10. The tape springs and
clamps are denoted as D and E in fig. 6.10.

One clamp was rigidly connected to ground. The other was connected to a 1
degree of freedom (DOF) force sensor (C in fig. 6.10) (Futek LSB200, 10 lb) and via a
rigid rod (B in fig. 6.10) to a 1 DOF platform (A in fig. 6.10). This platform actuated
the tape loop in its degree of freedom.

The rod was aligned as much as possible with the motion direction of the tape
loop. The platform pulled the tape loop via the rod. This was done at a speed
so that quasi-static behaviour was ensured. The measurement was ended when
the force started to increase rapidly. The measurement was additionally conducted
backwards, relaxing the tape loop. The force and displacement data was logged in
Labview; after which post-processing was carried out in Matlab.

The result of the measurement can be seen in fig. 6.11. The displacement is
70 mm and was divided in 1000 steps. The force measurement was measured at
every step with a resolution of 0.024 N. The data was smoothed with a moving



6

140 6. Design and evaluation of a passive constant force mechanism for a cardiac ablation catheter

A

B C

E

D

Figure 6.10.: The experimental setup consists of linear motion stage and a force
sensor. The motion is transferred to the prototype through a rigid rod.

average filter of 50 samples. The graph shows the measured force for the forward
and backward motion, shown in blue in fig. 6.11 respectively. The experimental
data was compared to a simulation (orange in fig. 6.11) which used the geometric
and material properties outlined in the prototype section. As the simulation only
provided the force output of half the tape loop, the amount was doubled.

Again, the averages are obtained by determining the average force of segments of
the force-displacement graph that are as long as the range of motion. The segment
that has the best least squares fit to that average is selected as the constant force
region. The range of motion is obtained using the values in table 6.3 and eq. (6.5);
here, the range of motion is 35mm. The thicker tape spring influences the length of
the transition zones, which influences the range of motion. In the simulation, the
length of the transition zones was chosen to be 1.8 times the length of the bend
zone. This value results in a constant force region that is similar in shape as the one
obtained in section 6.3. The same range of motion was used for the values obtained
in the experiment.

The outermost points of the range of motion in the simulation data differ about
12% from the average. For the experimental data this is 25% and 28% for the
forward and backward motion respectively. Furthermore, due to hysteresis the
averages of the experimental data exceed the deviations in the simulation data; the
area enclosed in the hysteresis loop is wider than the 12% band.

6.4. Discussion
A concept for a constant force catheter tip for use in cardiac ablation tools has
been proposed and its working principle has been presented and validated through
numerical simulations and experiments. This concept of a constant force mechanism
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Figure 6.11.: The force-displacement graph shows the measured force in the forward
and backward motion (blue) together with the numerical simulation
results (orange) of a geometry with matching dimensions. The average
values of the fairly constant force regions are denoted by the dotted
lines. The markers denote the outermost positions of the range of
motion. The deviation of these points to average is listed. This is done
for the simulation, the forward and backward motions seperately.

is promising, because of its simplicity and the integrated mechanical functions, i.e.
motion guiding and force generation. However, the development is at its initial stage
and a number of questions and challenges, both technical as well as clinical, still
remain.

Technically, one of the main challenges remaining is the fabrication of the
mechanism at real scale. Although the produced prototypes are already unique
achievements in terms of the thickness to curvature ratio at the current small scale,
the scale required for the application has not yet been achieved. The stresses in the
folds of the tape loop are also too high for steel. At the desired scale, these stresses
will be even higher. Material choice must be taken into account in future designs.
In addition, the design is currently focusing on the mechanical behavior only, while
an ablation catheter requires multiple other design features including the electronics
and an irrigation system.

Regarding the clinical application, it is unclear whether a constant force mechanism
with rectilinear guidance as presented in this study is preferable with respect to a
more compliant guidance. In such an alternative concept the constant force could
be produced in a given range of motion, allowing sideways deviations from the
rectilinear motion. The trade off is the controllability of the surgeon’s actions versus
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self-adaptivity of the tip with respect to its moving environment.

Finally, even though the developed mechanism has been proposed for an ablation
catheter tip, the mechanism could be beneficial in other application domains too.
This mainly accounts for circumstances in which a constant force is required but
in which the conditions do not permit the use of a complex mechanism. In the
medical domain this could be the case in, e.g., instruments for laparoscopy.

The constant force mechanism was realized based on the analytical model of the
potential energy in tape loops, considering the energy in the folds while excluding
the energy in the transition zone and in the straight zone. This simplification was
justified because of the dominant contribution of the folds to the total energy of the
system. In addition, in the simplified model the effect of the boundary conditions of
the tape loop, i.e. the clamping at both ends, was not taken into account and this
served as a second simplification.

These simplifications also cause a lower average force than set by the requirements;
the desired force is 0.10 N, whereas the simulation only showed an average force
of 0.08 N. It was also noticed that the finite element simulations did not yield a
perfectly constant force. This was presumably caused by the first simplification.
The second simplification led to a main effect in which the constant force effect
was disturbed when the fold was close to one of the clamping zones. In the
force-displacement characteristic this resulted in the gradual transition from a steep
to a constant slope, and further on from a constant to a steep slope.

From the perspective of the application, these deviations with respect to the
desired constant force are not significant because of the large margins on the
tolerance of the admissible force. However, from a scientific perspective it is desirable
to gain more insight into these phenomena. Once the phenomena are understood
and quantified, the design can be adapted to compensate for the observed errors.
For example, the subtended angle could be varied non-linearly instead of linearly, in
order to get the desired force-displacement.

The measurements and the simulation of the prototype showed good resemblance,
both qualitatively as quantitatively. On the one hand this validates the simulation
model, while on the other hand it shows that the production of the bended sheet
has limited effects that compromise the mechanical functioning. Imperfections
originated during or after fabrication, like e.g. small kinks in the sheet, and can be
felt when actuating the mechanism by hand, but are not large enough to compromise
the mechanism behavior. It is questionable whether these imperfections will still be
negligible in the harsh circumstances of a catheter fed through the vessels to reach
the heart.

Finally, noteworthy is the amount of hysteresis visible in the measurement result,
i.e. the difference in force between forward and backward motion. This indicates the
presence of energy losses which are predominantly caused by friction under normal
circumstances. Since there are no sliding contacts in this design, it is unclear where
the losses originate from. Possible explanations are the internal material hysteresis,
i.e. damping, the contribution of which increases at high strains, or (micro)slip in
the clamped areas.
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6.5. Conclusion
A constant force mechanism for the tip of a cardiac ablation catheter has been
presented by showing its working principle numerically and experimentally. This tip,
potentially small enough, was designed to provide a more stable contact with the
moving heart wall for an improved efficacy of future ablation interventions. The
concept consists of a double folded tape loop with a linearly tapered subtended
angle. The double folded tape loop provides an inherent rectilinear guidance. The
tapered angle realizes a linear variation of the elastic potential energy of the system
with respect to the rectilinear motion, thus realizing a constant force mechanism.
This design is unique in its simplicity, its range of motion with respect to its
occupied volume and the absence of sliding parts and joints. This makes the design
a good candidate for the proposed cardiac ablation procedure and potentially other
applications with similar requirements.

A design of a tape loop was made based on requirements needed for its use
as a constant force catheter tip. In simulation, this design has a constant force
region of 20mm with an average force of 7.8×10−2 N±8×10−3 N. The concept
of a constant force catheter tip was validated with a prototype that was within
one order of magnitude of the dimensions of the intended medical device. In
simulation this device has a range of motion of 35mm where it provides a force
of 1.3×10−1 N±1.6×10−2 N. The experiment shows the same trend, but has larger
deviations due to hystereris and boundary conditions.
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7
Synthesis of force deflection

behaviour of tape loops using
system identification with a

convolution system model

Werner W.P.J. van de Sande, Just L.Herder

A tape spring is a flexure element that has zero curvature in the longitudinal direction
and a constant radius in the transverse direction. A two fold tape loops consists
of a tape spring folded twice and the ends connected. This creates a zero stiffness
straight-line guidance. Other force-deflection behaviour can be achieved by varying
the cross-section of the tape spring. Precisely designing this behaviour is difficult due
to the strain energy distribution in the tape loop. As the tape loop rolls, material is
continuously moving into and out of the folds. This type of deformation has analogies
with the system concept of convolution. As such, this deformation can be seen as a
system with the strain energy as input and geometry as input.

In this work, we introduce a method to synthesize geometries to achieve specific
force-deflection behaviour. We use a system identification approach to obtain a model
for the deformation of a tape loop. This estimator is then used to generate geometry
in concert with a desired energy profile. A geometry that generates a constant force is
synthesized to illustrate the method.

This chapter is submitted to Mechanism and Machine Theory as: W.W.P.J. van de Sande and
J.L. Herder.,“Synthesis of force deflection behaviour of tape loops using system identification with a
convolution system model“.
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Introduction
Compliant mechanisms have become more prevalent due to their advantages
over their rigid link counterparts; these include lack of friction and play, their
deterministic behaviour and their simplicity. They are used in multiple fields, such
as the precision, aerospace and medical industries [1].

Compliant mechanisms achieve motion by elastic deformation of their constituent
parts. As such, it requires force and energy to actuate these mechanisms [1]. Efforts
have been made to overcome this inherent stiffness. Reducing the stiffness of a
compliant mechanism reduces the energy to operate them or to better transfer the
force from the output to the input and vice versa [2, 3]. One solution to lower
stiffness is by adding negative stiffness; this strategy has been extensively explored
in literature. Designing for a specific stiffness is relatively straightforward with this
strategy; both the positive and negative stiffness can be computed using a limited
number of formulas [4–7]. The range of motion where this synthesis method is valid
is limited.

With these small motions stiffness is considered linear; with larger motions
stiffness is often non-linear. Recently, efforts have been made to use this non-linear
behaviour to realise other desired force-deflection paths. For instance, constant force
mechanisms that have applications in gravity balancers [8, 9]. The synthesis of these
mechanisms cannot easily be replicated for other mechanisms of the same type.

A relatively new area in the field of compliant mechanisms with tailored
force-displacement behaviour is that of shell mechanisms. These are thin-walled
(doubly) curved stuctures that also derive their kinetic behaviour from their
deformation [10–14]. Their complex shapes allow for wider options regarding
kinematics and force-deflection behaviour compared to their flat counterparts. Their
complexity also makes synthesis quite difficult and design strategies often cannot
easily be replicated for other mechanisms. In some cases shape optimization is used
to obtain geometries that result in the desired behaviour, which is easier to replicate
for other mechanisms [15].

The most basic shell element is a tape spring: a thin-walled open cylindrical
structure with zero longitudinal and constant transverse curvature. When a tape
spring is buckled, the created fold will act as a constant moment hinge with a
constant radius [16–18]. This property has been used in many applications, such as
extendible booms and strategies to fold out solar panels of satellites [19–27] .

A tape loop is a number of folded tape springs with their ends connected to each
other, creating a loop. Vehar et al. [28] examined different setups with a different
number of folds. The simplest configuration of a tape loop is a two-fold tape loop,
which acts as a zero force and zero stiffness linear guide, see fig. 7.1 [28–30].

A two-fold tape loop is the monolithic equivalent of a rolamite, which has the
same working principle [31, 32]. Rolamite consists of two rollers, a frame and a
band to constrain the rollers, see fig. 7.2. The rollers can only move in a straight
line and are constrained with high stiffness in all other directions. The band is
pre-tensioned so that is always in contact with the rollers. The deformation of the
band is completely determined by the radius of the rollers. As such, the geometry
and deformation are completely decoupled. A rolamite can act as force generator
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x

R*

Figure 7.1.: A tape loop is created by folding a tape spring twice and connecting
the ends. This creates a straight line mechanism when one undeformed
region is connected to the world. The folds have a constant radius R∗
[30].

by changing the geometry of the band [33]; in this case, the amount of material
deformed by the rollers differs during the range of motion. A whole array of
force-deflection behaviours can be synthesised using this strategy.

Figure 7.2.: Rolamite consisting of a frame (horizontal lines) and two rollers that
rotate in opposite directions; The rollers are constrained by a band (in
green) the rollers are pressed against the frame and can only move in a
horizontal direction.

A two-fold tape loop can also be turned into a force generator by changing the
cross section of the tape spring. A linearly changing subtended angle was suggested
to create a constant force mechanism [30]. The strain energy state was simplified to
only contain the energy in the fold. This caused an offset from the desired constant
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force behaviour in both the magnitude of the force and the stiffness.
In this article we introduce a method to create tape loops with custom

force-displacement behaviour. This method uses a more complete representation of
the strain energy state to synthesise the desired behaviour. Here we assume that a
tape loop acts completely analogous to a rolamite. This implies that the deformation
is completely independent of the geometry. This allows us to consider the energy
behaviour of a tape loop as a convolution of the geometry and the deformation. This
assumption vastly decreases the complexity of generating geometries that match
certain force-deflection behaviour. We use discrete convolution as a candidate
system model in a system identification scheme. To this end, we perform several
simulations that are used as input and outputs in this scheme. The obtained model
candidate is then used to generate a constant force profile.

This article first explains the basics of tape springs and tape loops. Next, the
analogy with a convolution is discussed and elaborated upon. This analogy is used
to propose a synthesis method. This method is then explained and validated by
some examples. The manuscript ends with a discussion and a conclusion of the
results.

Method
A tape spring is a monoclastically curved structure; its geometry can be defined by
its length, radius, thickness and subtended angle, see fig. 7.3.

α
R

t

L

Figure 7.3.: A tape spring and its defining parameters: length L, radius R, thickness t
and subtended angle α.

When a moment in the transverse direction is applied to both ends of the tape
spring, the tape spring will buckle and a fold will form. There are two distinct
buckling moments of a tape spring depending on the polarity of the applied
moment, see fig. 7.4.
When folded, a tape spring consists of three separate regions: the fold region, the
undeformed region and the transition or ploy region in between, see fig. 7.5 [29, 35,
36]. In the fold region, the tape spring is fully deformed and has a constant radius
R∗ in the longitudinal direction; there is no curvature in transverse direction. In the
undeformed region the opposite is true; the tape spring has its original geometry
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Figure 7.4.: The moment angle curve for tape spring bending. In equal sense bending
(bottom left) the moment increases first in relation to the angle, at point
(F) the tape spring buckles and the moment decreases to a constant
value (G). The reverse displays the same behaviour. In opposite sense
bending (top right) the moment also increases linearly with the angle at
first (E). It buckles when loaded to a moment (A) and it rapidly snaps
(B) to constant moment (C). In the reverse direction the snap back (D)
to linear behaviour is at a lower angle than in the forward direction[34].

with a radius R in the transverse direction. These two radii are approximately equal
[17]. The transition region is where the curvature changes from completely transverse
to completely longitudinal. The shape of the transition region can be approximated
analytically [35, 36]; however, this has not been done for varying subtended angles.

123

Figure 7.5.: A folded tape spring consists of three distinct deformation zones:, the
fold with a constant radius R∗ (1), the transition zone (2) and the
undeformed regions of the tape spring (3).

When the two ends of a tape loop are connected they create a tape loop. The
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simplest tape loop is a two-fold tape loop; it consists of two folds, two undeformed
regions and four transition regions (see fig. 7.1). When the bottom undeformed
region is clamped and the top is moved, it creates a compliant straight-line guidance
[28]. In a tape loop with a constant cross section the energy state of the tape loop
does not change. This creates a zero stiffness zero force mechanism [29].

The energy state of a two-fold tape loop can be varied by varying the cross-section.
In this article we change the subtended angle, α. The aim of this is to create tape
loops with specific force-displacement behaviour. As such the force-displacement
behaviour is then related to the change in subtended angle; this creates a connection
between the energy state of the tape loop and its geometry.

As a tape loop rolls, material is deformed and undeformed depending on where
that material is. This can also be seen as geometry moving in and out of the
deformed regions when the tape loop moves (fig. 7.6). This type of behaviour is
analogous to a moving weighting function. Mathematically this can be expressed by
the convolution of geometry and deformation.

Figure 7.6.: When a tape spring with a single fold is rolled, the deformation moves
along the geometry. This is analogous to a moving weighting function or
a convolution of the geometry and the deformation.

The energy contained within the fold has already been studied extensively [16,
17, 34]. The energy in a fold of a tape spring with constant cross section can be
simplified as follows [29]:

U = D(1−ν)θα (7.1)

in which U is the energy in the fold and D is the flexural constant given by
D = Et 3/(1−ν2). The Young’s modulus is given by E and the Poisson’s ratio of the
material is given by ν. Finally, θ is the angle of the fold and the subtended angle
is given by α. This energy equation only works for the energy in tape loop folds
and assumes a constant subtended angle. Equation (7.1) can be used to derive
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a simplified equation for the force produced by a linear tapered tape loop [30] as
follows:

F = D(1−ν)π
∆α

∆x
(7.2)

in which the fold angle is set to π. All variables in this equation remain constant,
except the subtended angle. As such, the force produced by the tape loop is
determined by how the subtended angle varies over the range of motion, here
denoted by x. This equation already accommodates for a changing subtended angle.
However, it still assumes all the energy is in the fold, not in the transition zone. As
such this equation is not sufficient to capture the complete energy distribution in a
tape loop.

The energy is contained in all deformed regions, not only in the fold. There have
been studies into the strain energy content of the transition zones [35, 36]. However,
this has not been done for varying subtended angles and the method is relatively
complex.

Geometry moves in and out of these deformed regions when the tape loop moves
(fig. 7.3). This is analogous to convolution, with geometry as the input, the deformed
regions as the system and the energy state as the output.

First we will prove that the energy state is the convolution of the geometry of the
tape spring and the deformed shape of the resulting tape loop. More specifically we
express the energy state as the convolution of the geometry of the tape spring and a
single fold of a tape loop. Here we assume that we can express the energy in the fold
and transition zones by a linear operation on the deformation and the geometry.

A function for the potential strain energy of bending per unit surface area of a
tape spring is as follows [34]:

Us = D

2
[κ2

l +κ2
t +2νκlκt ] (7.3)

in which U is the strain energy, D the flexural rigidity and κl and κt are the
longitudinal and transverse curvature respectively. Integrated over a tape spring of
infinite length and a perimeter of Rα the total strain energy becomes

U =
∫ Rα/2

−Rα/2

∫ ∞

−∞
D

2
[κ2

l +κ2
t +2νκlκt ]d xd y (7.4)

the equation can be simplified by solving the integral over y and placing the
constants outside of the remaining integral,

U = DR

2

∫ ∞

−∞
[κ2

l +κ2
t +2νκlκt ]αd x (7.5)

The equation can be shortened by defining the curvature terms as a deformation
function:

g (x) = [κ2
l +κ2

t +2νκlκt ] (7.6)
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This function describes the deformation of the tape spring with a single fold. This
function is centred around g (0). This fold can move along the length of the tape
spring. In order to express this mathematically, the subtended angle, α, also needs
to be a function of x. The integral is then as follows:

U = DR

2

∫ ∞

−∞
g (x)α(x)d x (7.7)

The above equation expresses a stationary situation where the fold stays at a certain
location of the tape spring. We introduce the variable l to be able to shift the
subtended profile a distance l with respect to the deformation function as follows:

U (l ) = DR

2

∫ ∞

∞
g (x)α(x + l )d x (7.8)

This is the definition of the cross-correlation [37]. As g (x) is a real-valued function,
the integral can be rewritten as

U (l ) = DR

2

∫ ∞

∞
g (x − l )α(x)d x (7.9)

The deformation function is considered an even function as the deformation of the
tape spring is mirrored around the middle of the fold. As such the integral can be
written as

U (l ) = DR

2

∫ ∞

−∞
g (l −x)α(x)d x (7.10)

This is the definition of convolution [37]:

U (l ) = g (l )∗α(l ) (7.11)

The function g (x) is based on the strain energy formulation [34]. It is dependent
on the curvature of the tape spring. This curvature is not independent from the
subtended angle, which would make the convolution non-linear. However, in this
article we will assume that this is linear to ease computation. We also assume we
do not know the exact shape of the curvature and the deformation profile. We will
obtain this through system identification [38].

The convolution is used here analogously to how it is used in control engineering:
we have an input and an output. The input, subtended angle, is transformed by the
system, the deformation function, to the output, energy. System identification is
used to obtain information about the system with given inputs and outputs.

In order to identify a system, three things are needed [38]:

1. A data set.

2. A candidate model

3. A rule by which candidate models can be assessed using the data
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A data set can be obtained through simulations or experiments. In this specific
case we can take the subtended angle profile as input and the resulting energy
profile as output.

Any candidate model has to conform to the convolution structure in order to
match the mechanics.

In the case of the input and output as a sequence of points, the convolution can
be written as a discrete convolution:

U (n) =
∞∑

j=−∞
g [n −m]α[m] (7.12)

This can also be written in matrix form as follows.

Ui =
m∑

j=1
Gi , jα j (7.13)

or

U = Gα (7.14)

The matrix G is a model candidate and U the output energy and α the input
subtended angle profile written as a column vector.

Multiple column vectors of subtended angle profiles can be described as a matrix,
A. The corresponding output energy can be put into a similar shape, U.

In the case of an invertible subtended angle matrix the estimated deformation
matrix Ḡ is obtained as follows:

Ĝ = UA−1 (7.15)

However, when A is not invertible, the pseudo-inverse, A†, can be used [38].

Ĝ = UA† (7.16)

The estimator, Ĝ, and a desired energy profile, Udesi r ed , can be used to generate
the corresponding subtended angle profile, αdesi r ed . When the estimator is not
invertible, the pseudo-inverse should be used as follows:

αdesi r ed = Ĝ†Udesi r ed (7.17)

The last step in identifying a system is to assess the validity of the estimator. First
the usefulness and validity of the inputs should be assesed. When the inputs are not
a good representation of expected inputs, a good estimator cannot be determined
using eq. (7.15). An insufficiently conditioned problem is represented by a subtended
angle matrix, A, with a low column rank. A singular value decomposition of this
matrix can be used to ascertain if this is the case [38].

The singular value decomposition of the subtended angle values, A, can be written
as

A =UAΣAV T
A (7.18)
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in which ΣA is the sparse matrix with the same size as A with the singular values on
the diagonal. These singular values are usually sorted; when these singular values
contain zero entries, the matrix A is rank deficient and singular. Near-singularity
corresponds to near-zero entries in the singular value matrix. An expression for
the singularity of these matrices is the condition number where the largest singular
value, σ1, is divided by the smallest singular value, σd :

c(A) = σ1

σd
(7.19)

This number is a metric for the validity of the inputs; a large condition number
points to a badly conditioned input matrix.

In addition, the actual output can be compared to a result obtained via the
estimator. The residuals S, from a least square estimate will be used to asses to
validity of the estimator.

S =
N∑

n=1

1

N
∥U−AĜ∥2

2 (7.20)

This function is already minimised by obtaining the estimation system matrix Ĝ, see
eq. (7.16) [38]. The actual value serves as a metric of how well the actual system is
estimated.

Results
Simulations are done to generate inputs and outputs. An isogeometric analysis
software was used for this purpose [39]. The tape loop was modelled with
Kirchhoff-Love shell elements with an isotropic, linear elastic material. In the
longitudinal direction 100 elements were used and in the transverse direction 15
elements were used. The undeformed and straight tape spring was bent into a single
fold by applying a 180◦ rotation on one end and fixing the other end. This creates
one half of a tape loop, see fig. 7.7. Subsequently, a translation of 1.1 m in the
longitudinal direction over 99 steps is applied while maintaining the applied rotation
as a constraint. The two ends of the tape spring are modelled to be significantly
stiffer than the tape spring itself and also have a very stiff connection to the points
where the boundary conditions are applied. This was done to simulate clamping
conditions.

The subtended angle profiles are the inputs for the system identification and thus
heavily influence the energy profiles. Several subtended angle profiles are selected.
The folding of a tape spring is synonymous with buckling the tape spring. This
makes the simulation highly susceptible to singularities and as such not every profile
will lead to a converged simulation.

The consequence is that only monotonically increasing subtended angle profiles
could be used as inputs. All other geometric parameters were kept constant (see
table 7.1).
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Figure 7.7.: A single fold of a tape spring is modeled using an isogeometric analysis
method. The tape spring is folded 180◦. Subsequently, the end point is
translated in the longitudinal (y) direction.

Table 7.1.: Constant tape spring parameters used in the simulations, with radius R,
thickness t , length L, Young’s modulus E and Poisson’s ratio ν

R t L E ν

mm mm m GPa
50 0.5 1 210 0.3

The subtended angle profiles are then generated by three parameters, the minimal
subtended angle (αmi n), the difference between the maximum and minimum
subtended angle (∆α) and the polynomial order of the profile (p) (see table 7.2).

For a tape spring of length L, the subtended angle profile as a function of the
longitudinal coordinate l along the tape spring is then expressed as follows.

α(l ) =∆α
(

l

L

)p

+αmi n (7.21)

All generated subtended profiles that are generated can be seen in fig. 7.8.
A subtended angle profile is evaluated at 99 points, creating a subtended angle
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Table 7.2.: The subtended angle profiles used in the simulations, with the difference
between the maximum and minimum subtended angle (∆α), the minimal
subtended angle (αmi n), the polynomial order of the profile (p) and
the sum of the squared residuals of the estimated energy profiles when
compared to the output of the simulations.

∆α αmi n p residual
rad rad J
0.15 0.55 0.5 5.0 ·10−3

0.40 0.55 0.5 7.0 ·10−4

0.20 0.55 0.7 5.0 ·10−3

0.40 0.55 0.7 1.3 ·10−3

0.20 0.55 0.8 1.7 ·10−3

0.40 0.55 0.8 4.0 ·10−4

0.20 0.55 0.9 5.0 ·10−4

0.40 0.55 0.9 1.0 ·10−4

0.15 0.55 1.0 4.3 ·10−3

0.40 0.55 1.0 2.2 ·10−2

0.36 0.55 1.0 2.0 ·10−2

0.23 0.55 2.0 9.4 ·10−3

0.38 0.55 2.0 3.5 ·10−3

column vector. The total strain energy from the simulations is evaluated at every
step of the translation; this results in energy column vector containing 99 points. The
subtended angle is matched in size so that the deformation matrix G is square. This
is purely a choice, the system can be solved regardless of the size of a subtended
angle vector.

All the subtended angle profiles and the energy profiles are concatenated
column-wise to create the subtended angle matrix, A, and the energy matrix, U,
respectively. The estimated deformation matrix Ĝ is obtained using eq. (7.15). The
validity of this estimation was determined by analysing the singular values of this
matrix. The matrix has six singular values that are significantly larger than zero,
whereas the column size of the matrix is 18. This means that the subtended angle
matrix is rank deficient, which would indicate the inputs could be better designed.
We will also assess the validity of the estimation by computing the least square error
as stated in eq. (7.20). The residuals for all simulations are shown in table 7.2,
fig. 7.9 shows a direct comparison between an energy profile of a simulation and the
resulting energy obtained with the estimator, Ĝ, and the original subtended angle
profile. This specific estimated profile has the largest residual (10th row in table 7.2),
but still matches the actual energy curve in the center of the range of motion. This
is the region where the behaviour of the tape loop is not influenced by the clamping.

The goal of this specific synthesis is to generate a subtended angle profile that
results in constant force behaviour. In order to generate a subtended angle profile
that results in desired mechanical behaviour, we apply the convolution scheme in
reverse. In essence we deconvolve the energy with the deformation. For this we
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Figure 7.8.: Plot of all subtended angle profile used as inputs in the simulations, the
parameters that generated the profiles can be found in table 7.2 and the
profiles are generated by eq. (7.21)

first need a desired energy profile from which we can derive the corresponding
subtended angle profile.

We take one of the output energy profiles and its subtended angle profile as
a base. This subtended angle profile is a linear function with 0.55π rad as αmi n

0.4π rad as ∆α and a polynomial order p of 1, see table 7.2. The actual energy
profile obtained through simulation is not linearly increasing (black line in fig. 7.10)
and is also rapidly increasing and both ends of the range of motion. This is due
to the fact that both edges of the tape spring are modelled with high stiffness to
approximate clamping conditions.

The estimator, Ĝ, was conditioned with simulations that had increased strain
energy at the edges of the range of motion due to the clamping boundary conditions.
We have to consider these effects when constructing a desired energy profile.

A previously simulated energy profile near to linearly increasing strain energy was
chosen; this profile was then linearised in the relevant range of motion (blue line in
fig. 7.10). This profile was also scaled so that the values and clamping conditions
match relatively well with the energy profile resulting from a linearly increasing
subtended angle (black line infig. 7.10). An energy profile without clamping effects
was also added to show the difference in the behaviour (red line in fig. 7.10). This
profile matches the slope of the other linear energy profile in the relevant range
of motion. After obtaining the energy profiles, we use eq. (7.17) to generate the
subtended angle profiles. We do this for all energy profiles in fig. 7.10.
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Figure 7.9.: Comparison of the actual energy (black) and estimated force(red) of the
estimation with the largest sum of squared residuals

Figure 7.11 shows several subtended angle profiles. There are two sets. The first
set contains the actual input of the simulation that was chosen to linearise its energy
profile. The other profile in the set is the subtended angle profile derived from the
corresponding original energy profile using the estimator. Figure 7.11 shows that
the two profiles in the set overlap. The original energy profile was only obtained
through simulation. The fact that the generated subtended angle profile matches to
the degree it does, indicates that the estimation scheme works well for this type of
energy profile. The second set contains the two resulting subtended angle profiles
derived from the linear energy profiles. One with clamping effects and one without
(fig. 7.11). The estimated subtended angle profile obtained from the purely linear
energy profile has values larger than the linear subtended angle profile. In contrast
the energy profile with clamping effects is lower than the linear subtended angle
profile.

These subtended angle profiles are used in a simulation similar to show the input
and output data was obtained. First a polynomial with fitted to the obtained profile;
this polynomial has the same parameters as the original subtended angle profiles:
the minimal subtended angle (αmi n), the difference between the maximum and
minimum subtended angle (∆α) and the polynomial order of the profile (p), see
table 7.3.

The resulting energy, force and stiffness profiles for these specific subtended angle
profiles can be seen fig. 7.12, fig. 7.13 and fig. 7.14 respectively. The energies
do not match the desired energy profiles perfectly. Especially the energy profiles
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Figure 7.10.: Suggested energy profiles, with original energy profile in black, the
linear profile in red and the energy profile with estimated clamping
conditions in blue

Table 7.3.: The parameters of the subtended angle profiles; these were fitted to the
column vectors of the subtended angle profiles obtained with a desired
energy profile and the estimator.

∆α αmi n p
rad rad

clamping effects 0.37 0.53 0.77
no clamping effects 0.44 0.54 0.77

interpolation 0.4 0.54 0.78

without clamping effects (red lines in fig. 7.12) differ in magnitude. The energy
profiles with clamping effects match quite closely; however, the slope of the energy
profile obtained from the estimated subtended angle profile (blue line in fig. 7.12) is
visibly flatter than the desired energy profile with clamping effects (blue dashed line
infig. 7.12).

The slope in fig. 7.13 determines the actual constant force behaviour and here we
see that three force profiles are significantly flatter, but are not quite constant. They
are also a significant improvement over the original linear subtended angle profile
(black line in fig. 7.13). The force profile obtained considering clamping effects (blue
line in fig. 7.13) is lower than the desired force (black dashed line in fig. 7.13). In
contrast the force profile obtained without considering clamping effects (red line in
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linear subtended angle input
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subtended angle profile[0.77 0.44  0.54 ]

estimated subtended angle of energy output

estimated subtended angle of linear energy with clamping effects
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Figure 7.11.: Subtended angle profiles, with the original linear input (black), estimated
input base on the original energy profile (black, dashed), the estimated
profile of the clamped scenario (blue, dashed) and the estimated profile
of the purely linear energy (red, dashed). Simulations were run with two
subtended angle profiles that converged and are close to the estimated
subtended angle profiles. The parameters are in the same order as
table 7.2.

fig. 7.13) overshoots the desired force. To remedy this, a third force profile was
introduced and simulated that is an interpolation of the other two profiles. The
parameters can be seen in table 7.3. The force profile (purple line in fig. 7.13)
matches the desired force quite closely; the energy profile is quite a bit higher.

The stiffness of all profiles is significantly lower than the stiffness of the original
profile and remain low over a range of approximately 0.3m, see fig. 7.14. The slope
in this range is negative, indicating a softening stiffness. The profile with the largest
change in subtended angle (red line in (fig. 7.14) has the lowest stiffness and the
smallest plateau of low stiffness. The reverse is true for the profile with the smallest
subtended angle profile, which is the profile obtained considering clamping effects.
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Figure 7.12.: Comparison of energy profiles using the subtended angle profiles shown
in fig. 7.11, with the original energy profile (black,dashed), the two
desired energy profiles: with clamping (blue, dashed) and purely linear
(red, dashed). The red and blue energy profiles results from the
subtended angle profiles of the same color in fig. 7.11. The purple
profile results from an interpolation of the two subtended angle profiles.
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Figure 7.13.: Comparison of force profiles using the subtended angle profiles shown
in fig. 7.11, with the original force profile (black) and the desired
constant force (black,dashed) . The red and blue force profiles results
from the subtended angle profiles of the same color in fig. 7.11. The
purple profile results from an interpolation of the two subtended angle
profiles.
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Figure 7.14.: Comparison of stiffness using the subtended angle profiles shown
in fig. 7.11, with the desired zero stiffness (black,dashed bold) and
the maximum stiffness in the relevant range of motion of the new
geometries (black, dashed). The red and blue profiles results from the
subtended angle profiles of the same color in fig. 7.11. The purple
profile results from an interpolation of the two subtended angle profiles.
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Discussion
The deformation of the transition zones is not completely decoupled from the
geometry [29]. As such, the convolution model does not accurately describe reality.
Nonetheless, the method is able to improve upon previous results [30]. Incorporating
these non-linearities in the method will improve the results, but also adds a lot of
complexity. It is more feasible that the fidelity of the results can be improved by
better conditioning the input geometries. The number of non-zero singular values
is significantly below the number of inputs, which indicates that the problem is not
conditioned properly. Good results could still be gained from this limited set of
inputs. The inputs were all monotonically increasing functions, which also reduces
the possible variety of the inputs. This was done in order to get the simulations
to converge. Other profiles were attempted, but these simulations did not solve
over the entire range of motion. Non-monotonic profiles can result in multi-stable
behaviours, which might cause the simulations to fail.

In addition, most profiles had a polynomial order lower than one. The goal was
to create a constant force profile; in previous research a order of one resulted in a
positive stiffness of the tape loop [30]. As such, the solution was expected to have
an order lower than one. The simulations are computationally expensive, so most
simulations were done around this polynomial order. This also limited the variety of
the inputs.

The minimum angle is 0.5π to ensure tape loop behaviour [29]; the maximum
subtended angle is π to avoid self collision. Therefore the difference between the
maximum and minimum subtended angle was at most 0.5π. The energy content
of the transition zones increases with increasing subtended angles [29]. So a large
subtended angle difference between the ends exacerbates the non-linearities in the
energy content. The linear assumption works better with small subtended angle
differences as the changing energy content of the transition zones can be neglected
more easily.

One of the biggest unknowns in this method is how to model the clamping
conditions. Not modelling the clamping conditions led to an overestimation of
the subtended angle gradient, ∆α, whereas the estimated clamping conditions led
to an underestimation of the profile gradient. The actual profile that yielded the
proper behaviour had the same order, but had a subtended angle change that was
somewhere in the middle. It remains an open question how to properly model these
clamping conditions. A better conditioned input matrix can perhaps improve this.
Another option is to use only the parts that are not influenced by the clamping in
the system identification. In allowing more complex polynomials the effects of the
clamps can be negated altogether. The subtended angle can be purposefully reduced
near the edges to compensate for the added stiffness of the clamps; this could
increase the effective range of motion.

The actual profiles that were used to validate the results differ slightly from
predicted subtended angle profiles. The exact matches did not converge for the
entire range of motion. This happens for certain inputs. The mesh, geometric
and material properties were kept the same, only the subtended angle profile was
changed. Usually the simulation would solve the buckling problem, i.e. the folding,
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only to fail in the rolling motion. This might be due to the fact that this rolling
motion is has a very low stiffness, causing the stiffness matrix to be near singular.
This rolling motion was displacement controlled, which should be possible. In the
end we chose profiles that converged and were close to the proposed solutions.

The biggest benefit of this method is that it can provide a probable solution within
seconds based on an existing database of simulation results. As this database grows,
this method will become the more powerful.

The convolution system model is a useful model to describe the behaviour when
the geometry and deformation are sufficiently decoupled. There might be other
classes of mechanisms where synthesis can be achieved in this manner; certainly
rolamite is one of these mechanisms. Further exploration to find other suitable
classes of mechanisms is could be a promising research avenue.

Conclusion
In this work we introduce a method to synthesize force displacement behaviour
of tape loops. This is done by treating the rolling motion of a tape loop as a
convolution of its geometry and deformation; this is possible since the geometry
and deformation are largely uncoupled.

A discrete convolution model is a valid system model of tape loop kinetics.
The geometry, specifically the subtended angle profile, is treated as input and the
resulting strain energy is seen as the output. The input and outputs are then used
to perform system identification to obtain an estimator for the convolution system
model. With the estimator and a desired energy profile, candidate subtended angle
profiles are then synthesized.

We obtained several geometries that result in constant force profiles using this
method. These profiles can be generated using a simple matrix multiplication
and do not require any computationally intensive simulations. The profiles were
validated using a simulation. The geometry and deformation are not completely
decoupled; however, the linear convolution model is still able to generate adequate
candidate geometries. Clamping conditions influenced the results significantly and
these could not be modelled reliably. Even so, the resulting constant force profiles
had a stiffness of 0.6Nm−1 at most over a range of 0.3metre minimum, which is
27% of the actuated distance. The original stiffness (black in fig. 7.14 of the linear
subtended angle profile has a similar range of low stiffness; however the stiffness of
the estimated profiles are lower by at least a factor 3.

The method can be used for any continuous energy profile, given that the system
identification problem is sufficiently conditioned.

7.1. Author Contributions
W.W.P.J.S. proposed and designed the research, performed the numerical calculations
and wrote the paper. J.L.H. supervised the project and reviewed the paper.
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A general method for the creation

of dilational surfaces

Freek G.J. Broeren, Werner W.P.J. van de Sande, Volkert
van der Wijk, Just L.Herder

Dilational structures can change in size without changing their shape. Current
dilational designs are only suitable for specific shapes or curvatures and often
require parts of the structure to move perpendicular to the dilational surface, thereby
occupying part of the enclosed volume. We present a general method for creating
dilational structures with arbitrary shape, where all motions are tangent to the
described surface. This method consists of triangulating the target curved surface
and replacing each of the triangular faces by pantograph mechanisms according to a
tiling algorithm that avoids collisions between neighboring pantographs. Following
this algorithm, any curved surface can be made to mechanically dilate and could,
theoretically, scale from the fully expanded configuration down to a single point.
We illustrate the method with three examples of increasing complexity and varying
Gaussian curvature.

This chapter originally appeared as F. G. J. Broeren, W. W. P. J. van de Sande, V. van der Wijk, and
J. L. Herder. “A general method for the creation of dilational surfaces”. In: Nature Communications
10.1 (2019)[1]
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8.1. Introduction
Expandable structures are of significant relevance in nature and engineering and
come in a variety of forms. Natural examples include the stowing of the precious
wings of beetles[2] or the fitting of young leaves into buds[3]. Numerous engineering
examples can be found as well, including satellite antennas and solar panels that
need to be compact for launch and expand for operation[4–7], and medical stents
that need to be moved through arteries[8] or the esophagus[9] in compacted form
and deploy at the target position.

Most expandable structures rely on an underlying mechanism to allow them to be
reversibly compacted. One well-known example of an expandable structure in which
the mechanism is clearly visible is the Hoberman Sphere[10, 11]. This mechanism
dilates, i.e. its envelope changes in size without changing its shape[12, 13]. We
define dilational structures as structures composed of mechanisms whose only
degree of freedom corresponds to dilation. Other examples of dilational structures
are dilational polyhedral linkages [14, 15].

Dilational structures have also been studied in the field of mechanical
metamaterials[16, 17], particularly for auxetic behavior where the Poisson’s ratio is
negative[18–20]. A Poisson’s ratio of exactly -1 corresponds to dilation.

Currently, several limitations in dilational structures exist. Firstly, most dilational
structures have been designed for a specific shape or curvature, making these
mechanisms applicable to a very limited set of shapes; for example, the buckliball[21],
which is based on a polyhedral linkage that resembles a sphere. Secondly, linkages
such as the Hoberman Sphere use mechanisms that move perpendicular to the
described surface, making them protrude into the enclosed volume, which, for
instance, could be a problem in stent design. Thirdly, to the authors knowledge,
no examples of spatial mechanical metamaterials exist that can be sculpted to
thin, curved surfaces. The unit cell that governs the behavior of such structures
inherently has a finite volume, making the construction of thin dilational surfaces
with only motion tangent to the plane impossible. Also, the current planar auxetic
metamaterials can not, in general, be used, since the underlying kinematics are not
valid for arbitrarily curved surfaces.

In this paper, we present a general method to create mechanism-based dilational
structures fitting to any spatially curved surface, by which we mean 2-manifolds with
or without boundary. Our method improves on existing work on two key points.
Firstly, the resulting mechanism structure is placed on the surface, with no parts
of the mechanism moving into the enclosed volume and normal to the surface,
unlike for instance the Hoberman mechanism. Secondly, the method is applicable
to surfaces with any curvature and can even be applied to non-closed surfaces, i.e.
surfaces containing holes or cuts. Enabling these properties in dilational structures
makes them of use in, for instance, structures that grow with a person such as
medical braces for children and expandable furniture, medical devices that require
stowability or compression but need to be stiff otherwise, or implants that need to
accommodate some motion but maintain their shape, such as aortic stents.

In the following, we will describe the method, where we first triangulate the surface
and then place pantograph mechanisms on each of the faces of the triangulation.
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We will prove that this method can be used for any spatially curved surface and
comment on the maximum scaling factor possible for these structures. Then,
we apply our method to three surfaces of increasing complexity, illustrating its
versatility.

8.2. Design Strategy
8.2.1. Dilation
Dilation is a homothetic transformation that relates two similar shapes with respect
to a homothetic center[22]. Any two figures related by a dilation are similar and
have the same orientation (see fig. 8.1). This transformation preserves the shape
and orientation of the figure, but changes the size of each of the elements of the
structure by the same factor. In a dilational structure the distances between a
representative set of points on the structure, typically corner joints, all scale by the
same factor during actuation.

8.2.2. Triangulation
The first step of the presented design method is to triangulate the curved surface
from which we want to create a dilational structure. Triangulation is a common
strategy to approximate curved surfaces by a mesh of triangular faces and lies at the
basis of the STL file format used in 3D printing[23, 24]. Triangulation is illustrated in
fig. 8.2 for a sphere. It is observed that the accuracy of the approximation increases

Figure 8.1.: Under dilation, a structure scales with respect to a homothetic center
(point H in this figure), preserving its size and orientation.
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Figure 8.2.: Any curved surface, in this case a sphere, can be approximated by
a mesh of triangles in a process called triangulation. A larger mesh
of triangular faces gives a better approximation of the original surface.
Shown are polyhedral triangulations of a sphere with n triangular faces.

with the number of triangular faces in the resulting mesh.
The triangulation results in a polyhedral surface with only triangular faces. It

can be shown that every surface (by which we mean a 2-manifold with or without
boundary) can be triangulated such that at most two triangular faces share an edge
[25]. If the resulting polyhedron undergoes dilation, the number of triangles, their
shapes and their respective relations must stay constant. Only the size of the
triangles is allowed to change, their aspect ratio and orientation are preserved.

8.2.3. Pantograph linkage
To transform the polyhedral surface into a movable linkage with dilational motion,
we employ the skew, or Sylvester’s, pantograph mechanism [26–28].

Figure 8.3.: The skew pantograph is a one-degree-of-freedom mechanism that scales
the spanned triangle (i.e. the red-striped area) determined by three of
its joints; the similarity points, indicated A,B and C . The pantographs
has revolute joints at p, q , C and r . For the neutral position, shown
in the middle, the spanned triangle equals the triangular shape of the
pantograph, this is a useful pose for constructing dilational surfaces.
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The skew pantograph is a four-bar mechanism of which two adjacent links are
extended into triangles. The mechanism has revolute joints at p, q , C and r , as
illustrated in fig. 8.3. The link C q is equal in length to side r p, as are Cr and qp,
which makes pqCr a parallelogram. Also, the triangles Apq and pBr are similar.
A resulting feature from these properties is that in any pose of the mechanism the
triangle ABC is similar to triangles Apq and pBr . The proof can be found in Hall
(1961)[29]. When the mechanism moves, the distances AC , AB and BC become
smaller as the parallelogram decreases in area. As a result, the mechanism has a
single degree of freedom and during motion the striped red triangle described by its
three similarity points (indicated A,B and C ) changes in size but remains similar of
shape, as is illustrated for three poses. These three joints will be referred to as the
similarity points of the pantograph linkage.

The maximum scaling that can be achieved with a skew pantograph depends on
the placement of the joints on the edges of the spanned triangle in the neutral
position. We place the joint in the middle of the sides of the spanned triangle in the
neutral position, such that Aq = qC . In this way, the rigid triangles are sized down
by a factor 2 relative to the spanned triangle, which allows the spanned triangle to
scale down to a single point.

8.2.4. Coupling the pantographs
Each of the faces obtained by triangulating the curved surface is replaced by a skew
pantograph mechanism. In this way, we ensure that each individual face can only
deform by scaling, keeping its original shape.

The pantograph mechanisms ensures the proper scaling of each individual face.
However, in order for the whole structure to dilate, it is also required that each
face simultaneously scales by the same factor and that the faces do not rotate
with respect to each other. We achieve this by connecting neighboring pantograph
mechanisms by means of compound universal joints, whose description follows.

Two adjacent faces of the triangulated surface share a single edge and two vertices.
In order to maintain the mobility of the neighboring pantograph mechanisms, they
can only be connected at the vertices. At these points, we connect the pantograph
mechanisms with universal joints (two consecutive revolute pairs), of which the
axes are parallel to the normals of the respective faces, as is illustrated in fig. 8.4.
This configuration constrains the rotation about the shared edge of the faces and
therefore preserves the relative orientation of the two faces.

Because the two neighboring pantograph mechanisms are now connected along
the shared edge, their degrees of freedom are also coupled. When one of the
pantograph mechanisms moves, the length of the shared edge will change, causing a
movement in the other pantograph. In this way, it is ensured that both pantographs
are scaled simultaneously by the same factor and maintain their relative orientation.

Each set of neighboring pantograph mechanisms is connected in this way, creating
compound universal joints at the corners of the faces. This preserves the relative
angles of all faces and ensures the same scale factor for each of the faces. Therefore,
the total resulting motion will be dilation.
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Figure 8.4.: The relative orientation of adjacent pantograph mechanisms is maintained
by compound universal joints. This figure shows part of a dilational
surface, the triangular faces are shown in grey, and the rigid parts of the
pantograph mechanisms are shown in blue. At each of the corners of
the pantographs, they are coupled to their neighbors by universal joints,
indicated in the figure by a chain of two revolute joints (white cylinders
in the figure).A compound universal joint is created at an intersection
when three (or more) triangular faces meet.

8.3. Implementation
Kinematically, a structure constructed from the proposed pantograph mechanisms
can scale down to a point. In reality, the range of motion of the planar pantographs
is limited because of collisions among the rigid bodies that make up the pantographs.
In this section, we highlight the factors limiting the range of motion of the dilational
mechanisms constructed from pantographs and discuss how to minimize their
effects.

8.3.1. Range of Motion of the pantograph
We have described the pantograph mechanism used to make the triangular faces of
the polygons dilational. The motion of the mechanism can be described by a single
parameter θ and the sides of the spanned triangle are scaled by a factor λ= cosθ
when the mechanism is actuated [30]. The area of the spanned triangle is then
scaled by a factor of λ2 = cos2θ, see fig. 8.5.

Starting at the neutral position, where θ = 0, the mechanism can move in two
directions: θ can increase or decrease, corresponding to a counter-clockwise or
clockwise rotation of the lower left rigid triangle. In both cases, the effect on the
scaling of the spanned triangle will be the same, since cosθ is symmetric around



8.3. Implementation

8

179

θ = 0.
In the case where θ increases, the mechanism will protrude out of the spanned

triangle at two edges, while it will open up free space at the third edge. Conversely,
when θ decreases, the mechanism protrudes out of the spanned triangle at one
edge, and opens up space at the other two edges.

When the rigid bodies of the pantograph mechanism are allowed to overlap and
cross each other, the minimum area of the spanned triangle is obtained at θ =±π

2
for the two different cases, both resulting in a scaling factor λ= 0. When collisions
are considered, these values of θ can no longer be reached and often, the scaling
factor λ differs between the two motion directions.

Internal Collisions

If the pantographs are designed to be planar and therefore move within a single
plane, the range of motion is limited by internal collisions of the links. All pantograph
mechanisms in the dilational surface are linked to have a single degree of freedom.
Therefore, when one pantograph is actuated such that, for that mechanism, we
obtain a rotation θ in its triangular faces, all other pantograph mechanisms in the
dilational surface will have a rotation of ±θ. This causes the complete mechanism to
reach the end of its motion as soon as self-collision occurs in any pantograph of the
structure. Therefore, this is the main limiting factor on the maximum scaling factor
of the assembled dilational mechanism.

Figure 8.5.: The limits of scaling of a skew pantograph. The area of the spanned
triangle (the red-striped area) scales with cos2θ. The red dots illustrate
the value of θ in each of the drawings. The end of motion is reached
when the bars of the linkage become collinear (left and right drawings).
Between these states, the rotation angle of θ is always π

2 . The distribution
of this range over the left and right motion directions depends on the
top angle α.
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Looking at fig. 8.5, we can see that the pantograph mechanism reaches the end of
its range of motion when θ =−α

2 for one direction of motion, or when θ = π−α
2 for

the other direction, where α is the top angle of the spanned triangle. At these points,
the binary links of the pantograph mechanism become collinear. In this calculation,
we have considered the links as lines of zero width. In reality, the links and joints
from which the pantograph mechanisms are constructed will have finite width. This
will cause collisions to happen earlier and limits the range of motion further.

The total range of θ is π
2 radians, because the internal angles between the links at

two adjacent corners of a parallelogram four-bar linkage always add up to π. For
the case where the links have zero width, the optimal scaling factor would be found
when α= 0 or when α=π, allowing only for motion in one direction.

However, in both of these cases, the pantograph degenerates to a line, in which
case no feasible mechanism would be possible. For simplicity and ease of tiling, it
is beneficial when both motions directions have the same range from the neutral
position. This is the case for α = π

2 ; i.e. when the pantograph mechanisms are

right-angled. In this case, the maximal scaling factor is λ= cos
(
π
4

)= p
2

2 ≈ 0.71. So,
when self-collisions are considered, the distances between points on the dilational
surface can be scaled down by at most 29% relative to the neutral position.

8.3.2. Placement of the pantographs
When the pantograph mechanism moves, some parts of the mechanism protrude
out of the spanned triangle, while other parts move into the spanned triangle. When
all the faces of a triangulated surface are replaced by pantograph mechanisms, two
neighboring pantographs could have parts moving out of the respective spanned
triangles at their shared edge. This will cause neighboring pantographs to collide,
locking the motion of the structure and thereby no longer allowing the scaling of the
structure. To remedy this, we have created an algorithm that places the pantographs
on a triangulated surface such that neighboring pantographs move along with each
other, i.e. when one side of a pantograph has parts that move out of the spanned
triangle, the corresponding side of the neighboring pantographs will have parts
moving inwards. The algorithm consists of the following procedure.

We first construct the dual graph to the triangulated surface. In this graph,
there is one node for each triangular face and two nodes are connected if the two
corresponding faces share an edge. Note that, as was mentioned in section 8.2.2, at
most two faces share an edge since the original surface is a 2-manifold. The dual
graph to an octahedron is shown in fig. 8.6a. For closed surfaces, this creates a
simple, connected, 3-regular graph. We assign a direction to each of the edges in
the graph to represent the motions of the pantograph mechanisms placed on the
triangulated surface. A directed dual graph for an octahedron is shown in fig. 8.6b.
Since each edge in the dual graph can only have a single direction, the sides of the
triangles are enforced to move along with each other.

The movement of the pantograph mechanisms is such that either the links on
two sides move out of the spanned triangle and the links on the other into it or
vice-versa, as shown in fig. 8.3. Therefore, we require for each vertex of the graph
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(a) (b)

(c) (d)

Figure 8.6.: Steps in obtaining a correct tiling pattern of pantographs: (a) dual graph
of the net where the vertices are the faces of the triangulated surface, (b)
directed dual graph with correct orientation, (c) correct tiling pattern, (d)
correct tiling pattern with θ = 20◦

that its indegree and outdegree are larger than zero. In Supplementary Note 1†

of the full paper [1], we show that for each simple connected graph where every
node has a degree of at least 2, it is always possible to find an orientation of the
graph such that both the indegree and outdegree of every node are larger than zero.
The dual graph to every feasible triangulated surface always has nodes of degree
at least 3; nodes with degree larger than three correspond to holes in the surface.
Therefore, there must exist an orientation of the pantographs on each surface such
that movement without collisions between the pantograph mechanisms is possible.

To find a suitable orientation, we use an algorithm that searches for flows through
the representing graphs. A flow through a vertex ensures that the difference
between the indegree and outdegree is one. This algorithm is further discussed in
Supplementary Note 2† of the full paper [1]. Once this orientation is found, the
pantographs can be placed accordingly, see fig. 8.6c for an example.

†The supplementary materials can be found at https://www.nature.com/articles/s41467-019-13134-0.
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8.4. Examples
In this section, we will show the application of our method to three surfaces: an
octahedron as a simple example[30], a cardioid with both positive and negative
Gaussian curvature, and the Stanford Bunny as an advanced example. For all
three examples, the reported maximum scaling is based on the pantographs in
the resulting structure with the largest and smallest top angle, as described in
section 8.3.1.

8.4.1. Octahedron
The octahedron can be viewed as a very rough triangulation of a sphere, comprised of
only 8 triangular faces. The eight faces of the octahedron are replaced by pantograph
mechanisms, see fig. 8.7. In this way, a dilational surface with only equilateral faces
is obtained (α= 60◦);hlthis gives them a range of [−30◦,60◦]. Any placement of the
pantograph linkages will include pantographs with opposite motion directions, the
maximum scaling can therefore be calculated to be λ= cos(30◦) = 0.866.

8.4.2. Cardioid
The cardioid is a planar curve obtained by tracing a point on a circle, which is
rolled around a second circle with equal radius. This curve can be parameterized as
follows:

x(t ) = a(2cos(t )−cos(2t )) (8.1)

y(t ) = a(2sin(t )− sin(2t )). (8.2)

By revolving this curve around the x-axis, we obtain a spatial surface, as is shown
in fig. 8.8.

(a) (b) (c)

Figure 8.7.: Eight pantograph linkages are placed on the octahedron. (a) shows the
wireframe of an octahedron. (b) shows the dilational structure in the
neutral position, (θ = 0) and (c) shows a compacted position (θ = 25◦).
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(a) (b)

Figure 8.8.: The cardioid surface is constructed by revolving the planar cardoid curve.
(a) shows the curve, (b) shows the complete revolved cardioid.

We have triangulated this shape by taking a planar map of the surface and
performing a Delaunay triangulation [31, 32] on this map. The points of the
triangulation have been chosen to minimize the number of sharp angles in the
triangulation. This triangulation is shown in fig. 8.9a .

(a) (b)

Figure 8.9.: The surface of the cardioid is first triangulated (a), after which each
triangular face is replaced by a skew pantograph (b) to obtain a
dilational surface. A movie of the final mechanism is included in the
supplementary material †.

†The supplementary materials can be found at https://www.nature.com/articles/s41467-019-13134-0.
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On this triangulated surface, we apply our method. First, the dual graph of
this surface is determined and we apply the placement algorihm on that graph
to determine a suitable placement of the pantograph mechanisms. When the
mechanisms are placed on the surface according to this placement, we obtain the
shape shown in fig. 8.9b.

For the cardoid we have constructed here, the rotation angle θ can lie in the range
[−20.5◦,20.3◦], resulting in a maximum scaling factor of λ= 0.937. A movie of the
resulting dilational surface moving between its extremal points is included in the
supplementary materials †.

8.4.3. Stanford Bunny
As a final example, we have taken the Stanford Bunny[33], shown in fig. 8.10a.

For the bunny, we took an available triangulation[34], and edited the triangulation
manually to remove the triangles with the sharpest angles in order to increase the
maximum scaling factor. The resulting model is shown in fig. 8.10b. This mesh
was then fed into our algorithm, which computed a suitable placement of the
pantograph mechanisms. The resulting dilational mechanism is shown in fig. 8.10c.

For this mechanism, the rotation angle θ can lie in the range [−15.0◦,13.1◦],
resulting in a maximum scaling factor λ= 0.966. This scaling factor is not limited
by the shape of the Stanford Bunny, but rather by the specific triangulation used
to approximate it and the placement of the pantographs on the triangulation. The
maximum scaling factor could be increased further by triangulating the Stanford
bunny such that the triangles are close to equilateral, thereby removing even more
sharp angles from the polyhedron. Even so, the linear scaling of 3.4% obtained here

(a) (b) (c)

Figure 8.10.: (a) shows the original Stanford bunny[33]. (b) shows our adaptation
of the triangulated version by Thingiverse user johnny6[34], which was
used to create the dilational surface shown in (c) by replacing each
triangular face with skew pantograph mechanisms. The resulting surface
has a scaling factor of λ= 0.966. A movie of the final mechanism is
included in the supplementary material †.

†The supplementary materials can be found at https://www.nature.com/articles/s41467-019-13134-0.
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is already similar to the diametric expansion of human arteries during the cardiac
cycle [35].

8.5. Discussion and Conclusion
In this work we introduce a comprehensive strategy to achieve dilation of any
surface. We do this by triangulating the surface and replacing the triangular faces
with Sylvester’s pantographs. The similarity points of this pantograph always span a
similar triangle. We constrain these triangles in such a way that their orientation is
preserved, this preserves the shape of the triangulated surface while allowing it to
scale.

Kinematically, a structure constructed using this strategy can be scaled to a single
point from its original size. In practice, however, the range of motion of the
pantographs is limited by both collisions between links within a pantograph, and
collisions between neighboring pantograph mechanisms.

Collisions within the pantograph linkage cause the pantograph with the smallest
range of motion to limit the motion of the whole structure, since all pantographs
share a single degree of freedom. This could be improved by changing the
triangulation strategy and optimizing the placement of the pantographs such that the
top-angle of the triangles comes out more favorable (possibly favoring one motion
direction over the other). Better pantograph placements might be found, since
our pantograph placement algorithm yields non-unique solutions to the pantograph
placement problem.

We avoid collisons between neighboring pantograph mechanisms by tiling them
in a specific manner. We used a graph-based approach to generate suitable
placemements of mechanisms and showed that this approach works for any
triangulated surface.

We have illustrated our method with three examples: an octahedron, a cardioid
and the Stanford bunny. These surfaces increase in complexity and have varying
Gaussian curvature. For the octahedron, the maximal scaling and suitable tiling
can be determined by hand. For the cardioid and the Stanford bunny, there are
many more triangular faces and the faces are more irregular, for which we present
computational methods to generate dilational structures for these surfaces.

The planar kinematics of the pantographs ensure that the resulting dilational
mechanism stays close to the described surface throughout the range of motion.
This leaves the encompassed interior entirely empty.

A interesting side-effect is that our implementation of the method is directly
compatible with the often used STL file format for 3D objects. As such, our strategy
could be implemented as a one-click solution to create dilational models.

8.6. Author Contributions
F.G.J.B. and W.W.P.J.S. proposed and designed the research, performed the numerical
calculations and wrote the paper. F.G.J.B. wrote the algorithm. J.L.H. proposed the
cardioid example. V.W. and J.L.H. supervised the project and reviewed the paper.



Bibliography

[1] F. G. J. Broeren, W. W. P. J. van de Sande, V. van der Wijk, and J. L.
Herder. “A general method for the creation of dilational surfaces”. In: Nature
Communications 10.1 (2019).

[2] J. H. Brackenbury. “Wing Folding in Beetles”. In: IUTAM-IASS Symp. Deployable
Struct. Theory Appl. Springer, Dordrecht, 2000, pp. 37–44.

[3] D. De Focatiis and S. Guest. “Deployable membranes designed from folding
tree leaves”. In: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 360.1791
(2002).

[4] J. M. Fernandez, M. Schenk, G. Prassinos, V. J. Lappas, and S. O. Erb.
“Deployment Mechanisms of a Gossamer Satellite Deorbiter”. In: 15th Eur. Sp.
Mech. Tribol. Symp. Noordwijk, The Netherlands, 2013.

[5] M. Schenk, S. G. Kerr, A. M. Smyth, and S. D. Guest. “Inflatable Cylinders for
Deployable Space Structures”. In: Proc. First Conf. Transform. Ed. by F. Escrig
and J. Sanchez. Seville, 2013.

[6] H. Petroski. “Engineering: Deployable Structures”. In: Am. Sci. 92.2 (2004),
pp. 122–126.

[7] Z. You and S. Pellegrino. “Foldable bar structures”. In: Int. J. Solids Struct.
34.15 (May 1997), pp. 1825–1847.

[8] K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and
M. Sasaki. “Self-deployable origami stent grafts as a biomedical application
of Ni-rich TiNi shape memory alloy foil”. In: Mater. Sci. Eng. A 419.1-2 (Mar.
2006), pp. 131–137.

[9] M. N. Ali, J. J. C. Busfield, and I. U. Rehman. “Auxetic oesophageal stents:
structure and mechanical properties”. In: J. Mater. Sci. Mater. Med. 25.2 (Feb.
2014), pp. 527–553.

[10] C. Hoberman. Reversibly Expandable Doubly-curved Truss Structure. New York,
NY, 1990.

[11] C. Hoberman. Retractable structures comprised of interlinked panels. Aug. 2002.

[12] G. W. Milton. “Composite materials with poisson’s ratios close to — 1”. In: J.
Mech. Phys. Solids 40.5 (July 1992), pp. 1105–1137.

[13] G. W. Milton. “New examples of three-dimensional dilational materials”. en.
In: Phys. status solidi 252.7 (July 2015), pp. 1426–1430.

[14] G. Kiper and E. Söylemez. “Polyhedral linkages obtained as assemblies of
planar link groups”. In: Front. Mech. Eng. 8.1 (Mar. 2013), pp. 3–9.

186



Bibliography

8

187

[15] C. M. Gosselin and D. Gagnon-Lachance. “Expandable Polyhedral Mechanisms
Based on Polygonal One-Degree-of-Freedom Faces”. In: Proc. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci. 220.7 (2006), pp. 1011–1018.

[16] K. Bertoldi. “Harnessing Instabilities to Design Tunable Architected Cellular
Materials”. In: Annu. Rev. Mater. Res. 47.1 (July 2017), pp. 51–61.

[17] A. A. Zadpoor. “Mechanical meta-materials”. en. In: Mater. Horizons 3.5 (Apr.
2016), pp. 371–381.

[18] K. E. Evans. “Auxetic polymers: a new range of materials”. In: Endeavour 15.4
(Jan. 1991), pp. 170–174.

[19] K. E. Evans and A. Alderson. “Auxetic Materials: Functional Materials and
Structures from Lateral Thinking!” en. In: Adv. Mater. 12.9 (May 2000),
pp. 617–628.

[20] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel. “Poisson’s ratio and
modern materials”. en. In: Nat. Mater. 10.11 (Nov. 2011), pp. 823–837.

[21] Shim, C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. “Buckling-induced
encapsulation of structured elastic shells under pressure”. In: Proc. Natl. Acad.
Sci. United States Am. 109 (2012).

[22] B. Meserve. Fundamental concepts of geometry. Cambridge (Mass.): Addison-
Wesley, 1955.

[23] N. J. Lennes. “Theorems on the Simple Finite Polygon and Polyhedron”. In:
Am. J. Math. 33.1/4 (Jan. 1911), p. 37.

[24] T. Grimm. “The Rapid Prototyping Process”. In: User’s Guid. to Rapid
Prototyping. Society of Manufacturing Engineers (SME), 2004. Chap. 3, pp. 49–
84.

[25] E. E. Moise. “Geometric topology in dimensions 2 and 3”. In: vol. 47. Graduate
Texts in Mathematics. Lemma 4. New York: Springer-Verlag, 1977. Chap. 4,
p. 38.

[26] J. J. Sylvester. “On the Plagiograph aliter the Skew Pantigraph”. In: Nature 12
(July 1875), p. 168.

[27] J. J. Sylvester. “History of the Plagiograph”. In: Nature 12 (July 1875),
pp. 214–216.

[28] E. Dijksman. Motion geometry of mechanisms. English. Cambridge, UK :
Cambridge University Press, 1976.

[29] A. S. Hall. Prentice-Hall Engineering Science Series. Prentice-Hall, 1961, p. 162.

[30] F. G. J. Broeren, W. W. P. J. van de Sandel, V. van der Wijk, and J. L. Herder.
“Dilational Triangulated Shells Using Pantographs”. In: 2018 International
Conference on Reconfigurable Mechanisms and Robots (ReMAR). June 2018,
pp. 1–6.

[31] B. Delaunay. “Sur la Sphère Vide”. In: Bull. Acad. Sci. USSR 12.6 (1934),
pp. 793–800.



8

188 Bibliography

[32] D. T. Lee and B. J. Schachter. “Two algorithms for constructing a Delaunay
triangulation”. In: Int. J. Comput. Inf. Sci. 9.3 (June 1980), pp. 219–242.

[33] S. U. C. G. Laboratory. Stanford Bunny. http://graphics.stanford.edu/data/3Dscanrep/.
1994.

[34] johnny6. Low Poly Stanford Bunny. https://www.thingiverse.com/thing:151081.
licensed under CC Attribution - Non-Commercial. September 13, 2013.

[35] N. J. Weissman, I. F. Palacios, and A. E. Weyman. “Dynamic expansion of the
coronary arteries: Implications for intravascular ultrasound measurements”. In:
Am. Heart J. 130.1 (July 1995), pp. 46–51.



IV
Conclusion and back matter





9
Conclusion

This chapter provides a discussion of the chapters present in this thesis, states their
main contributions and provide some recommendations for further exploration.

Overview
As stated in the introduction of this thesis, shells are structures that can have many
shapes and geometries. An in-depth exploration of all shells is too extensive for
a single thesis. Rather than exploring the full range of topics concerning shell
mechanisms, this thesis aims to a lay a foundation for the analysis of all shell
mechanisms. It does this by first introducing the eigenscrew decomposition as the
basis of analysis for shell mechanisms. Secondly, the thesis explores the behaviour
and capabilities of a buckled tape spring. The tape spring is the simplest shell and
is therefore the most logical candidate for an extensive analysis. The third part of
the thesis discusses curved metamaterials. This part discusses a completely different
type of shell mechanism; it illustrates how varied shell mechanisms can be. The
third part also lays a foundation of sorts by providing a method to apply a lattice on
a curved surface.

As the thesis itself, this discussion is split into several parts, starting with a
discussion on the eigenscrew decomposition, followed by commentary of the tape
spring flexure. Subsequently, curved metamaterials are discussed after which a
conclusion reiterates the contributions of this thesis.

Part I, Eigenscrew decomposition and its uses in compliant
mechanism design
The power of the eigenscrew decomposition lies in the fact that geometric kinetic
insight can be gained from the numerical values of the stiffness matrix. The stiffness
matrix is usually only valid at a single pose of a elastic structure or mechanism.
In order to evaluate the kinetics of a structure, the stiffness matrix needs to be
obtained at several poses in a path. This can be computationally expensive; existing
metrics need to do this as well or only evaluate the kinetics for small deflections.
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Eigenscrew decomposition can also be done for large deformations and does not
have this limitation.

The eigenscrew decomposition is useful for shells, as it gives insight into the
kinetics of complex non-intuitive structures. The decomposition can also be
immensely useful for other compliant mechanisms. The examples given in chapter 4
show that behaviour such as parasitic motions can be adequately expressed by the
eigenscrew decomposition. In addition, attributes such as support stiffness can also
be analysed more thoroughly. A load bearing stiffness is highly dependent on the
location of the load. This load can be seen as a wrench, which can be expressed as a
linear combination of eigenwrenches. The presence of induced wrenches represents
increased compliance of the wrench, reducing support stiffness. This can be helpful
in analysing and designing compliant mechanisms in high precision applications.

Degrees of freedom are not obtained from reciprocal relations as it is done
normally in screw theory. After the decomposition, all six eigenstiffnesses are
immediately known. It does not require extra steps. At the same time the
eigenstiffnesses are only numbers. Without prior knowledge or insight it is not
immediately clear whether an eigenstiffness constitutes a degree of freedom or a
constraint. Even a significant difference in the magnitude of the stiffnesses does
not necessarily indicate the split between DoFs and constraints. For instance, in a
leaf spring both the axial stiffness and the lateral bending stiffness are high enough
to consider them constraints. However, the axial stiffness is often still orders of
magnitude higher than the lateral stiffness. Only when a degree of freedom and a
constraint are known, the complete spectrum of stiffnesses becomes clear and the
character of the other eigenstiffnesses can be interpolated.

A similar problem arises with comparing rotational stiffnesses with translational
stiffnesses. Here the unified stiffness model can be used to cast all stiffnesses in
the same unit. This cannot be done without some insight. If a free eigentwist is
located at the point of interest it will not show up as a DoF. As the unified length
is equal to zero, the stiffness will be infinite. Similarly when a free eigenwrench is
located at the point of interest, the unified length is also zero. This leads to unified
rotational compliance of zero. As such the unified stiffness method can be of use,
but must be used with care. Often times, prior knowledge of degrees of freedom
and constraints works best. This can be seen in the example of the buckled tape
spring in chapter 4. From intuition is clear that a straight tape spring is stiff in
the axial direction, while it is compliant is torsion. The rotational stiffness in the
transverse direction is also high at first. When the tape spring buckles it will reach
zero stiffness, which constitutes a second degree of freedom. As a result we have
a constraint and a degree of freedom in the rotational domain and as such the
entire range of behaviour is known. With this spectrum the character of the other
rotational stiffness can be interpolated. The nature of the translations is less certain,
leading to ambiguity in the number of degrees of freedom. Further investigation to
resolve this ambiguity is needed to use the eigenscrew decomposition to full effect.

The eigenscrew decomposition is also able to show zero and negative stiffness
behaviour. The usage of the decomposition with singular stiffness matrices was
already discussed in the founding articles by Lipkin et al. [1, 2]. However, the
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implications were not investigated thoroughly in these papers nor in this thesis. As
such, more research is required to rigorously explore the effects of zero stiffness on
the decomposition.

The design aspect of the eigenscrew decomposition was highlighted in chapter 3.
In this work the attributes of eigenscrews were used in two distinct ways. The
desired path of the degree of freedom was obtained through optimisation. The
objective function of this optimization was the location of a free eigentwist. This
has some similarity to Burmester’s approach for linkage synthesis [3, 4]. More
interestingly perhaps is how the scoliosis brace was created. It used the eigenscrew
decomposition of a helical shell [5] and core principles of serial and parallel
mechanisms. A serial chain only has constraints that are shared by all its constituent
parts; similarly a parallel mechanism only has degrees of freedom that are shared by
all its constituent chains. This was used to cut the helix into smaller segments until
a desired number of degrees of freedom was obtained. Two of these helix segments
were then connected such that the helices shared a free eigentwist. As a result, the
parallel structure also had this free eigentwist, whereas all other degrees of freedom
of a single helix were constrained by the other helix. This approach is discussed in
detail in the work of Kim [6]. This showcases a powerful method of synthesizing
compliant parallel mechanisms consisting of (shell) flexures using the eigenscrew
decomposition. Further research on both the mathematics and application of this
synthesis tool is required to fully leverage its power.

Part II, Analysis and Synthesis of Two-Fold Tape Loops
Chapter 4 in part I serves as a bridge to part II. Chapter 4 discusses the behaviour
of a buckled tape spring from an eigenscrew perspective and gives insight into its
degrees of freedom and kinetic behaviour. Table 9.1 shows all six eigenstiffnesses for
a straight and buckled tape spring (at 90 degrees) and a straight leaf spring of the
same dimensions. The length of the cross-sectional arc of the tape spring is taken
as the width of the leaf spring. The degrees of freedom are underlined in table 9.1.
The fact that a leaf spring flexure has three degrees of freedom is well-known.
The stiffnesses of the pre-buckled tape spring indicate it has only one degree of
freedom: the torsional rotation. This can be empirically validated by taking a piece
of tape spring and testing the possible motions. A straight tape spring can create a
compliant revolute joint with a single flexure.

When we take the degrees of freedom of a straight tape spring as a benchmark,
the buckled tape spring appears to have three degrees of freedom: the rotations, see
table 9.1.

These results do not line up with what we know of buckled tape springs. The zero
stiffness of the rotation is observed, but the zero stiffness of the rolling motion is
absent. The reason for this result in chapter 4 is not entirely clear; it might be an
error that is introduced due to the fact that the stiffness matrix is near singular.
From literature we know that there should be two planar degrees of freedom: the
rolling translation and the rotation [7]. This discrepancy should be investigated
further. Regardless of the exact configuration of freedoms of the buckled tape spring,
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Table 9.1.: The eigenstiffnesses of eigenwrenches (kWi ) and eigentwists (kTi ) of a
straight tape spring, buckled tape spring and a leaf spring flexure. The
degrees of freedom are underlined

eigenstiffness straight tape spring buckled tape spring straight leaf spring flexure
kW1 3.7×103 Nm−1 7.2×102 Nm−1 5.1×103 Nm−1

kW2 8.2×105 Nm−1 2.8×103 Nm−1 8.3×105 Nm−1

kW3 3.8×102 Nm−1 1.2×102 Nm−1 9.2×10−2 Nm−1

kT1 7.2×10−1 Nmrad−1 1.5×10−3 Nmrad−1 1.7×10−4 Nmrad−1

kT2 8.3×10−4 Nmrad−1 3.9×10−4 Nmrad−1 2.6×10−4 Nmrad−1

kT3 7.1 Nmrad−1 9.7×10−3 Nmrad−1 9.5 Nmrad−1

it will be a unique set of degrees of freedom that is not seen in another single
flexure. This also makes it a interesting addition the collection of flexures.

The zero stiffness behaviour is one of the defining features of a buckled tape
spring. Part II investigates this feature in depth and analyses and synthesizes tape
loop behaviour. It considers the two-fold tape loop, but the methods discussed in
part II also work for tape loop with three or more folds.

Part II moves from analysis of tape loops to the synthesis of tape loop behaviour.
The knowledge gained from chapter 5 and chapter 6 is used in chapter 7 to
synthesize specific tape loop behaviour. Each chapter highlights some limitations
and interesting avenues for research.

In chapter 5 only the effect of the subtended angle is investigated; other geometric
parameters could also be changed. However, by changing the radius the flexure
would not longer be a tape spring. Varying the thickness is certainly a possibility,
but shells with varying thickness is a whole new category on its own.

In chapter 6 the aim was to create a constant force device for use in minimally
invasive surgery. This research highlights the continuing struggle to pack as much
energy into a shell while the stresses should not reach the fatigue or yield limit. As
the shape of a tape spring is set, the material is dominant in this consideration.
One question that remains open is how to increase the energy density of these
shells through the usage of new materials. Another aspect of tape loop mechanism
that was highlighted in chapter 6 was the fabrication of tape springs. In literature
only tape springs with a constant transverse radius are discussed. Off-the-shelf tape
springs usually do not have this constant radius. External parties were also not
able to create such a tape spring without defects. Consequently, we had to make
our own. Perhaps befittingly of research into tape loops, the rolamite mechanism
proved inspirational. In the original rolamite mechanism the two rollers are of the
same radius. This radius is such that the band only deforms elastically as it is bent
around the rollers. In our version, one roller was intentionally made so small so that
it deforms a piece of spring steel plastically, see fig. 9.1. The deformation is constant
across the spring steel; a tape spring with a constant transverse radius is then made
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from this spring steel sheet. There is springback in the steel, but this appears also
to be constant. This mechanism for fabrication proved helpful to create the tapered
tape loops that can be seen in chapter 6 .

Figure 9.1.: A rolamite mechanism to fabricate tape springs; the smaller roller B
deforms spring steel plastically and uniformly. This creates a tape spring
with a constant radius.

The approach introduced in chapter 7 is novel in many ways. The use of
system identification in mechanism synthesis is a new way to approach mechanism
design. Especially with the advent of machine learning this could be a powerful
tool to analyse mechanisms and use that data to design new ones. For this an
adequate candidate model of the mechanism is needed. For tape loops this was the
convolution model. This link was rather straightforward as the tape loop actually
rolls. There are other mechanism classes where relevant design parameters are
decoupled enough so that synthesis becomes easier; rolamite is the perfect example
of this. It does not have to be convolution, however. Another example is the design
of zero-stiffness stages; here negative stiffness element is added to a compliant
mechanism with a positive stiffness. Here the deformation of the negative stiffness
element is relatively independent of the geometry. The geometry is responsible
for the amount of negative stiffness, whereas the deformation controls the range
of motion [8, 9]. These two relatively uncoupled effects simplifies the synthesis of
compliant mechanism with a specific stiffness. These examples could be only a few
of many; further research might lead to finding new classes where this is possible.

Tape springs and tape loops are extensively covered in literature. Part II deepened
some of that knowledge and provided design strategies for tape loops.

In the introduction of this thesis tape springs were introduced as the simplest
shell. The amount of possible shapes extends much further. A next step would be to
do this for the other classes of shells, such as double or hyperbolic parabolic shapes.
The body of literature for these shapes is not as extensive as it is for tape springs,
but some work has been done [5, 10]. Further research could continue and fill in
the gaps in the collection of shell flexure.
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Part III, Curved Metamaterials

Chapter 8 is different from the other chapters. The dilational surfaces discussed in
this chapter are not smooth shells and the dilational behaviour cannot be captured
by the eigenscrew decomposition. It is not a continuous shell either as it has holes
in it. However, it is able to transfer loads and displacements and the surface does
have a curvature. As such, it meets the criteria of a shell, which were posited by
Calladine and were discussed in chapter 1. It is a structurally continuous shell that
can derive its motions from elastic deformation; as such, it does fit within the
category of compliant shell mechanisms.

The novelty of this type of shell is that it has kinematics within the surface of the
membrane of the shell as opposed to other shell mechanisms that work primarily
through the bending of the membrane. These deformations within the membrane
lead to more complex deformation patterns and provides new design freedom and a
new avenue of research.

An unexplored effect in this thesis is the connection between the Poisson ratio of
the lattice and the type of bending behaviour. Dilational materials, i.e. materials
with a Poisson ratio of -1, display synclastic behaviour when bended. In other
words, the direction perpendicular to the line of bending displays the same type
of curvature as the applied curvature through bending. Materials with a positive
Poisson ratio display anticlastic behaviour or curvature in the opposite direction
than the applied curvature [11]. This effect could lead to interesting new designs of
shells. An examle of this is the work by La Magna et al. [12] which creates a toroidal
shape with an initially flat lattice. The toroidal shape emerges when the lattice is
bent properly. This work and chapter 8 are but the first steps into this new research
area and illustrates what can be done with lattices and shells.

Although it was not the main contribution of chapter 8, quite a bit of time was
spent trying to get dilational shells fabricated. The aim was to exactly get the one
degree of freedom that is typical of dilational materials. Through different fabrication
techniques such as 3D-printing or rigid link models, the structures were either
heavily underconstrained or heavily overconstrained, respectively. With 3D-printing,
the structure can be monolithic but printing perfect revolute joints proved too
difficult, as the geometry and the material caused the joint to have multiple degrees
of freedom. This resulted in the structure having more deformation modes than only
the dilational mode. Creating revolute joints was possible with a rigid link model;
however, using only revolute joints creates many overconstraints in the structure.
Since the structure is a lattice of connected joints, small misalignments in one of
the overconstrained joints causes a complete loss of mobility of the entire structure.
These effects are also seen in literature, where metamaterials are kept in place with
specific boundary conditions to ensure proper kinematics [13–15] or have limited
range of motions due to the overconstraints present in the lattices. This is something
that needs to be addressed before these latticed structures can be implemented in
practise.
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Conclusion
In this dissertation we have shown the usefulness of the eigenscrew decomposition
in the analysis and design of compliant and compliant shell mechanisms. Although
this decomposition is not new, the application to compliant and compliant shell
mechanisms is. The resulting eigenscrews informs us about the kinematics and
kinetics of any compliant mechanism. This is especially useful for shell mechanisms
where the kinetics typically cannot be intuitively understood because of the complex
shapes. The strength of this approach is that it can be applied to the end-effector of
any mechanism that has a stiffness matrix, which makes it more widely applicable
that other metrics. It can also be used for compliant mechanisms with near-zero
stiffness behaviour. Moreover, this method can be used in design; this thesis
provided an example of this in chapter 3. A parallel shell mechanism was synthesized
using a free eigentwist. This eigentwist was then used as a objective function in an
optimisation scheme.

In addition, this thesis presents an in-depth investigation into the properties
of buckled tape springs in three dimensions. Their geometry provides benefits
over regular flat flexures, such as: compact shape with respect to their range of
motion, inherent pre-stress, and wide range of designable behaviour. The analysis of
chapter 5 and the design of chapter 6 lead to the introduction of a synthesis method
in chapter 7, which can be used to design tape loops with an extensive range of
force-deflection behaviour.

Chapter 8 presents a curved lattice structure that is able to dilate; the innovation
in this type of structures is that the kinematics are within the surface of a shell,
while other shell mechanisms derive their motion from the bending of the shell
membrane. The key contribution of this method is that any surface can be made to
dilate.

In this thesis progress has been made towards better analysis and design strategies
for compliant shell mechanisms. The field of compliant shell mechanisms is
relatively new and the contributions of this thesis will help further study and
development of these mechanisms.
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