<]
TUDelft

Delft University of Technology

Deep Reinforcement Learning for Orchestrating Cost-Aware Reconfigurations of VRANs

Murti, Fahri Wisnu; Ali, Samad; losifidis, George; Latva-aho, Matti

DOI
10.1109/TNSM.2023.3292713

Publication date
2024

Document Version
Final published version

Published in
IEEE Transactions on Network and Service Management

Citation (APA)

Murti, F. W., Ali, S., losifidis, G., & Latva-aho, M. (2024). Deep Reinforcement Learning for Orchestrating
Cost-Aware Reconfigurations of vVRANs. IEEE Transactions on Network and Service Management, 21(1),
200-216. https://doi.org/10.1109/TNSM.2023.3292713

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TNSM.2023.3292713
https://doi.org/10.1109/TNSM.2023.3292713

200 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

Deep Reinforcement Learning for Orchestrating
Cost-Aware Reconfigurations of vVRANSs

Fahri Wisnu Murti

Abstract—Virtualized Radio Access Networks (vVRANs) are
fully configurable and can be implemented at a low cost over
commodity platforms to enable network management flexibility.
In this paper, a novel VRAN reconfiguration problem is for-
mulated to jointly reconfigure the functional splits of the base
stations (BSs), locations of the virtualized central units (vCUs)
and distributed units (vDUs), their resources, and the routing for
each BS data flow. The objective is to minimize the long-term
total network operation cost while adapting to the varying traf-
fic demands and resource availability. In the first step, testbed
measurements are performed to study the relationship between
the traffic demands and computing resources, which reveals high
variance and depends on the platform and its load. Consequently,
finding the perfect model of the underlying system is non-trivial.
Therefore, to solve the proposed problem, a deep reinforcement
learning (RL)-based framework is proposed and developed using
model-free RL approaches. Moreover, the problem consists of
multiple BSs sharing the same resources, which results in a
multi-dimensional discrete action space and leads to a combi-
natorial number of possible actions. To overcome this curse of
dimensionality, action branching architecture, which is an action
decomposition method with a shared decision module followed
by neural network is combined with Dueling Double Deep Q-
network (D3QN) algorithm. Simulations are carried out using
an O-RAN compliant model and real traces of the testbed. Our
numerical results show that the proposed framework successfully
learns the optimal policy that adaptively selects the vVRAN config-
urations, where its learning convergence can be further expedited
through transfer learning even in different vVRAN systems. It also
offers significant cost savings by up to 59% of a static benchmark,
35% of Deep Deterministic Policy Gradient with discretization,
and 76% of non-branching D3QN.

Index Terms—Radio access networks (RANSs), network vir-
tualization, O-RAN, orchestration, deep reinforcement learning,
D3QN, action branching.

I. INTRODUCTION
A. Motivation

V IRTUALIZATION has become one of the most promis-
ing technologies for accommodating the increased ser-
vice demands with diverse requirements at a reasonable cost

Manuscript received 1 December 2022; revised 1 May 2023; accepted
29 June 2023. Date of publication 5 July 2023; date of current version
7 February 2024. This research has been supported by the Academy of
Finland, 6G Flagship program under Grant 346208. Fahri Wisnu Murti also
would like to acknowledge the support of Nokia Foundation. The associate
editor coordinating the review of this article and approving it for publication
was R. Riggio. (Corresponding author: Fahri Wisnu Murti.)

Fahri Wisnu Murti, Samad Ali, and Matti Latva-aho are with the Centre
for Wireless Communications, University of Oulu, 90570 Oulu, Finland
(e-mail: fahri.murti @oulu.fi).

George losifidis is with the Software Technology, Delft University of
Technology, 2600 AA Delft, The Netherlands.

Digital Object Identifier 10.1109/TNSM.2023.3292713

, Samad Ali"™, George losifidis

, and Matti Latva-aho™, Senior Member, IEEE

in cellular networks [1]. The latest effort of this idea is
virtualizing the radio access networks (VRANs) by replacing
the hardware-based legacy RANs with softwarized RANs [2],
[3], [4]. Incorporated with Open RAN, vRANs can be fully
configurable and deployed across heterogeneous platforms
such as commodity servers and small embedded devices.
Another exciting feature of VRANs is that it enables the
baseband functions (BBU) of each base station (BS) to be dis-
aggregated, hosted at the virtualized distributed units (vDUs)
and central units (vCUs), and executed as virtual machine
(VM) instances or light-weight containers over geo-distributed
locations. This paradigm shift brings unprecedented flexibil-
ity to RAN operations, mitigates vendor lock-in, offers fast
deployment and potentially reduces operational expenses [4].
Therefore, it is not surprising that many standardization bod-
ies envision the virtualization for their future RANSs, such as
O-RAN [5] and 5G+ RAN [6].

Nevertheless, the expansive deployment of VRANSs is still
hindered by complex configuration options, which intro-
duce new network management challenges in deploying
cost-efficient VRAN configurations while serving the traffic
demands. In particular, the operators need to decide the func-
tional splits of the BSs to determine which BS functions are
deployed at the vDUs and which are at the vCUs. Each choice
of these splits has a different delay requirement, consumes
different computing resources for the vDUs/vCUs, and gener-
ates a different data load over the xHaul links.! Moreover, the
vDUs/vCUs are executed on top of commodity platforms as
VM instances or containers; hence, the operators need to allo-
cate the virtualized resources (e.g., CPUs, memory) for them.
There are also several candidate deployment locations for each
vDU/vCU, possibly with different hosting machines, and this
creates the placement problem in determining their optimal
locations and platforms. At the same time, each placement
location is associated with different eligible routing paths to
transfer the data flow of the BSs, which incur particular delays
and costs. Consequently, these issues create a challenging cou-
pling among the BS splits, placement and allocated resources
for the vDUs/vCUs, and routing for each BS data flow.

Meanwhile, the suitability of the VRAN configurations is
highly affected by the network properties such as traffic
demands and resource availability (e.g., computing and xHaul
link capacity) [7], which might change over time, often in

I'The paths connecting a core network (EPC) to vCUs, vCUs to vDUs,
and vDUs to radio units (RUs) are defined as backhaul (BH), midhaul (MH),
fronthaul (FH), respectively, and the integration of these elements is called
Crosshaul/xHaul transport network.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4451-0905
https://orcid.org/0000-0002-1171-8435
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0002-6261-0969

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 201

an unpredictable fashion.> Thus, deploying static configura-
tions for a long time might result in resource overprovisioning
or even declined traffic demands. Resource overprovisioning
occurs when the allocated resources are higher than the actual
resource utilization. The declined demands can be triggered by
insufficient allocated resources (underprovisioning) and con-
straint violation. And these can render substantial performance
degradation and high operating expenditures. Therefore, it is
essential to dynamically select the vVRAN configurations to
adapt to varying traffic demands and resource availability.

On the other hand, orchestrating the dynamic configurations
of vVRANS is a non-trivial endeavor. The reconfiguration deci-
sions must be enforced before the actual traffic demands of the
BSs are observed. Albeit reconfiguring the VRAN system at
runtime is practically possible [9], it might also induce addi-
tional costs and disrupt network operations during the live
migration of the VM instances. Consequently, any reconfigu-
ration activity needs to be performed prudently to ensure that it
is beneficial both in terms of cost and performance. However,
designing such an intelligent approach also has technical issues
since the software-based VRAN system substantially differs
from hardware-based legacy RANs. The takeaway from our
testbed measurements (details in Section V) and prior exper-
imental studies (cf., [10], [11]) is that, unlike legacy RANS,
the underlying system of vVRANSs is complex, poly-parametric
and has platform-dependent performance. Hence, adopting tra-
ditional control policies, which needs perfect knowledge of
the underlying system to model and solve the problems, is
unrealistic in practice.

Motivated by the challenges above and our measurement
insights (details in Section V), we propose and study a fresh
VRAN reconfiguration problem, where it jointly reconfigures
the splits of the BSs, resources and locations of the vDUs
and vCUs, and the routing of each BS data flow to mini-
mize the long-term total network operation cost. The key idea
is to model this problem as reinforcement learning (RL) and
develop a learning-based framework, namely Learning-based
Automated Reconfiguration for vVRANs (LARV), to solve the
problem with minimal assumptions about the system.

B. Contributions and Methodology

We firstly build a prototype implementing the centralized-
RAN (C-RAN) system using software-based srsRAN [12]
in two different platforms to collect measurements regarding
the relations between traffic demands and resource utiliza-
tion. The findings reveal that the relations vary with the
demands and, importantly, have high variance and depen-
dence on the platform, platform load,® and many latent factors.
These inhibit adopting general assumptions of the underlying
system (e.g., linear) and traditional mathematical tool-based
policies. Then, we propose a new cost model accounting for
resource overprovisioning, instantiation and reconfiguration,

2This is particularly common for resource availability/costs in shared
infrastructures or traffic and channel conditions in small cell networks [8].

3The relations heavily rely on the types of platforms that host the BBU. It
also depends on platform load (e.g., when VRAN workload shares the same
platform with other applications or workloads such as edge computing, data
analytics, etc.); see Section V and [10], [13], [14] for details.

and the declined traffic demands, representing the virtualized
resource management in VRANs. This model also considers
different computing and routing costs for each split and plat-
form location. Further, we model our vRAN system following
the latest proposal of O-RAN architecture [5]. We consider a
VvRAN system with multiple BSs and define its operation as
a time-slotted system, where each slot has arbitrary incom-
ing traffic demands and resource availability. At each time
slot, LARV takes an action that selects the VRAN configu-
rations, then reconfigures the system when the selected are
different from the last configurations or preserves them if the
selected configurations are the same. LARV expects to receive
a reward signal from the system that assesses the quality of
each selected action. This sequential decision-making is for-
mulated as Markov decision process (MDP), which is also an
RL problem.

In our solution, LARV is developed using model-free RL
with deep neural network architecture. LARV considers the
VRAN system as a black-box environment and does not make
any particular assumptions about the underlying system state
and state transition probability distribution. Since the for-
mulated RL problem has a semi-continuous state space and
discrete action space, we propose a Dueling Double Deep Q-
network (D3QN)-based approach [15], in which the learning
step is based on Double Q-learning [16]. However, the system
has multiple BSs that share the same resources with highly
coupled configuration decisions. As a result, the RL formula-
tion renders a multi-dimensional action space, which exhibits
combinatorial growth of the number of possible actions. In
order to overcome the curse dimensionality, the proposed
D3QN is incorporated with action branching [17], an action
decomposition method that decomposes the multi-dimension
action into sub-actions and utilizes shared decision module fol-
lowed by neural network branches. However, the initial action
branching proposed in [17] focused on sub-actions with the
same dimensional size, which can not be directly applied to
our problem. Here, we adapt it; hence each sub-action dimen-
sion can vary but still exhibits a linear growth of the total
neural network outputs (estimated actions) with the increase of
action dimensionality while maintaining the shared decision.

We conduct a battery of tests using an O-RAN compli-
ant model and real traces collected from the testbed. We
evaluate the training behavior and long-term total network
cost during online operation under various scenarios. Our
numerical results reveal that LARV successfully learns the
optimal policy to select an action that controls the VRAN
configurations, where its learning convergence can be accel-
erated via transfer learning even in different VRAN systems.
Moreover, LARV offers considerable cost savings by up to
59% of a static benchmark, 35% of Deep Deterministic Policy
Gradient (DDPG) with discretization, and 76% of distributed
non-branching D3QN. Our contributions can be summarized:

e We propose and study a new VRAN reconfiguration

problem, where it jointly reconfigures splits of the BSs,
resources and locations of the vDUs/vCUs, routing for
each BS flow.

e We carefully model our VRAN system based on the

latest proposals of O-RAN architecture and propose a

202 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

comprehensive cost model. The model takes resource
overprovisioning, instantiation and reconfiguration and
the declined demands costs into account. It also captures
platform/split-dependent computing and routing costs.

e We develop a learning-based framework to solve the
proposed VRAN reconfiguration problem. It is tailored
from D3QN and an action branching architecture to tackle
the multi-dimensional and large action space inherited
from our RL problem with linear growth of the neural
network outputs.

e We conduct extensive trace-driven simulations and ana-
lyze the performance of LARV under various scenarios
during the training process and online operation.

The rest of this paper is organized as follows. Section II
discusses our contributions with respect to prior works. In
Section III, the architecture background and model used for
our VRAN system are presented. The reconfiguration problem
is also formulated in this section, including the raised trade-
offs. In Section IV, we discuss how to design the proposed
learning algorithm. The detailed experiment setups, testbed
measurement insights, and simulation results are presented in
Section V. Finally, our paper is concluded in Section VI.

II. RELATED WORK

Recent works have studied various VRAN orchestration
problems, and we can classify them into i) those that rely
on models to optimize the configurations and ii) model-free
approaches that utilize offline training data and iii) RL meth-
ods. The examples of the first point include [18], [19] that
optimize the VRAN functional splits with multi-access edge
computing (MEC) services, [7] that considers the functional
split problem with multiple servers for hosting the vCUs,
and [20] that further expands it to several candidate servers
to place the vCUs/vDUs. Albeit they have optimized vari-
ous configurations in VRANSs, they aimed for offline network
designs, and the implication of varying conditions from traf-
fic demands and resource availability is still not examined.
The studies of model-based approaches that consider varying
conditions include altering the functional splits at runtime to
maximize the users’ throughput [21] and revenue [22] and
to minimize inter-cell interference and FH utilization [23].
Another example in [24] aimed to control radio/computing
scheduling to maximize the served traffic subject to a BS
computing capacity. However, they [21], [22], [23], [24] still
did not study where to place and how much the allocated
resources are for the vDUs/vCUs, although these configura-
tions play crucial role in a VRAN system. Moreover, such
model-based approaches can be impractical as they heavily
rely on fine-tuning models for specific scenarios and under-
lying system assumptions. And a VRAN system is network
and platform-dependent, where the models can be unknown
in practice.

On the other hand, model-free approaches employ-
ing machine learning (ML) have been increasingly pop-
ular in tackling complex problems in mobile networks.
Particularly, approaches that employ function approxima-
tion of performance metrics, e.g., via neural networks, can

offer satisfactory performance amidst many unknown system
parameters [25]. For instance, the authors in [26] have
developed a deep supervised learning framework for allocat-
ing radio resources and functional split for each user. Such
supervised learning can deliver well-achieved performance as
long as there are high-quality labeled datasets, e.g., optimal
labels. However, the optimal labels are often not be avail-
able in VRAN problems. Hence, those that do not require
labeled datasets, such as contextual bandit and full RL formu-
lations, can be leveraged. The authors in [10] have tailored a
deep learning-based framework to solve the contextual ban-
dit problem of managing the interplay between computing
and radio resources. The other contextual bandits in [11]
and [27] utilize a data-efficient algorithm, Bayesian online
learning for an energy-aware BS in a VRAN system. These
approaches offer remarkable performance with the condition
that the current context observation must not be affected
by the previous actions, i.e., it only includes exogenous
parameters.

Otherwise, a full RL formulation is required when the cur-
rent observation, e.g., state, is influenced by the previous
actions. Recent work in [28] has brought the importance
of a model-free RL formulation by utilizing Q-learning and
SARSA algorithms to optimize the functional split selections
for an energy-efficient O-RAN. However, when the state-
action space of the RL problem is large, such approaches
become inefficient. Therefore, a deep RL paradigm can be
utilized to tackle such issue by using neural network architec-
ture to approximate the state-action function. Some interesting
examples are [29] and [30] that have developed xApps for
controlling RAN slicing, scheduling and online model train-
ing using the Proximal Policy Optimization algorithm. In [31],
the authors also have solved the functional split problem by
proposing a chain rule-based stochastic policy and approxi-
mate it with sequence-to-sequence model. Our recent work
in [32] has proposed an RL-based framework using a com-
bination of Deep Q-Network (DQN) and a regressor to
dynamically reconfigure the functional split and its required
computing resources. However, it was still limited to a single
BS and did not include computing and link resource sharing
among the BSs.

Although the mentioned works have solved various adap-
tive VRAN orchestration problems, they mainly focused on
controlling functional splits (e.g., [21], [22], [23], [24], [28]),
RAN slicing (e.g., [29], [30]) and radio/computing schedul-
ing (e.g., [10], [11], [26], [27], [28], [29], [30]). On the other
hand, the joint reconfiguration between functional splits of the
BSs, the virtualized resource allocation and placement for the
vCUs/vDUs over geo-distributed cloud platforms, and the rout-
ing, along with the impacts of altering such configurations
at runtime, are hitherto unexplored. Here, we aim to fill a
gap by tackling this reconfiguration problem using model-free
RL that makes minimal assumptions about the system. Since
the problem also consists of multiple BSs with highly cou-
pled configurations, the RL formulation renders a dimensional
explosion in the state space and action space, making the avail-
able VRAN orchestration frameworks unsuitable. To solve this
challenging dimensionality issue, we develop LARYV, a novel

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 203

----------- Lt SEEE A
" 1-10s > < 10ms-1s D

| [Ol | |
Non-RT Near-RT vCU |MH| vDU RUs
Rl(i ©) E}IC vCU vDU
LARV |__|[aPaa s | ||
Learning Al Monitor B2 FH
Agent
& | Policy vCU [MH| vDU
A1-D enforcer — ‘
- vCU vDU
Central/1
Regi B
cffﬁna Rg Olggal Edge Cloud Ecosystem Cell site
vCU VM/Container Cloud Infra
WU Workload (Server) rApps XApps

Fig. 1. O-RAN compliant system architecture adopted in our model.
VRAN orchestration framework based on deep RL, from the
incorporation of action branching with D3QN.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Background and Model

We model our VRAN system following the latest proposals
of O-RAN architecture [5], where the high-level architecture is
illustrated in Fig. 1. The model adopts O-RAN key principles
that include disaggregation, virtualization, open interfaces, and
intelligent control [33]. The protocol stacks (or functions) of
each BS can be disaggregated through the functional split
and, further, virtualized as the vCU and vDU (connected
to an RU). Hence, a BS corresponds to 4G eNodeB or 5G
gNodeB comprising a vCU, vDU, and RU. The vCU and
vDU can be executed as VM instances or containers across
geo-distributed edge cloud infrastructures, which may share
with other workloads. Then, the intelligent control is real-
ized through RAN Intelligent Controllers (RICs), which can
run routine optimization and orchestration through closed-loop
control. O-RAN has specified two RICs: i) Non-Real-Time
(Non-RT) RIC and ii) Near-Real-Time (Near-RT) RIC. The
Non-RT RIC, which integrates with the network orchestrator,
operates on a time scale longer than 1 s, while the Near-
RT RIC operates with a time scale between 10 ms and ls.
The Non-RT RIC supports applications, called rApps, that
support RAN optimization and operations such as policy guid-
ance, configuration management, etc. While the Near-RT RIC
includes applications called xApps that can be used to perform
radio resource management. Then, LARYV is to be implemented
in the learning agent as an rApp in the Non-RT RIC in the
system orchestrator of O-RAN and enforces a policy at every
period of n = 1,..., N to control the reconfigurations of
BSs. The optimal policy at every time n depends on the input
observation (state), which is provided at the beginning of each
period by the BSs via the O1 interface.

Next, we illustrate the functional split options used in our
model in Fig. 2 and present their requirements in Table 1. As
suggested by O-RAN [5], we consider Option 7.x (O7) and
Option 8 (O8) for the Low Layer Split (LLS) between the vDU
and RU. The High Layer Split (HLS) between the vCU and
vDU can use Option 2 (O2), which is currently the most fea-
sible split to be implemented. We also consider Option 4 (04)
and Option 6 (06), which have been well standardized [5], [6]

vCU i [RC]i [RC]: [RC]: i[RC]iveU+ RC-RRC
[pD]ii[PD]: [PD]: {[PD]'VDU PD - PDCP
HLs —— o2 [HR] [HR] [HRJ(C-RAN) | HR -High RLC
—— i | LR JI[LR | [LR | LR - Low RLC
VDU LHRE ™, (M :[0M] HM - High MAC
% e M) (L] LM - Low MAC
[HM]:: [HM] TP | HP - High PHY
[LM] [Lm] - 9° % LP- Low PHY
L HP |i: [HP | - RF - Radio Freq.
—— 07 § 07 {07 {i08 i——LLS
[LP]:i[LP] {LP]
KU RE]: [RE] [RE]
S1_i 82 1183 iisd

Fig. 2. The functional splits applied in our VRAN model. S1, S2 and S3 are
envisioned in O-RAN architecture proposals, while S4 are legacy C-RAN.

TABLE I
THE FUNCTIONAL SPLIT OPTIONS AND THEIR REQUIREMENTS BASED
ON 3GPP NOMENCLATURE WHEN THE TRAFFIC DEMAND Is XA GBPS.
THE REQUIREMENTS ARE TAILORED BY FOLLOWING SETTINGS:
100 MHZ BANDWIDTH, 256 QAM, 32 ANTENNA PORTS AND 8§ MIMO
LAYERS. THE ACHIEVABLE DATA RATE Is UP TO 4 GBPS

Split Point Load Max Delay Req.

0Ol RRC - PDCP A 4 10 ms

02" PDCP - High RLC A 4 10 ms

03 High RLC - Low RLC A 4 10 ms

04" Low RLC - High MAC X 4 1 ms

05 High MAC - Low MAC A 4 1 ms

06 Low MAC - High PHY 1.02A\+0.5 4.13 0.25 ms
o7f High PHY - Low PHY 10.1 10.1 0.25 ms
os8f Low PHY - RF 157.3 157.3 0.25 ms

Note: * is applied options for HLS and T is applied options for LLS.
The data load is in Gbps.

and experimentally validated [21], to encourage further RAN
flexibility. Therefore, following HLS and LLS, we denote four
choices of functional splits: Split 1 (S1) implements O2 for the
HLS and O7 for the LLS; Split 2 (S2) uses O4 for the HLS
and O7 for the LLS; Split 3 (S3) adopts O6 for the HLS and
O7 for the LLS; and Split 4 (S4) is the legacy C-RAN system,
which implements Option 8 (O8), i.e., all the BS functions
are executed as an integrated vDU/vCU except RF functions
(at the RU). We define a set of these four possible splits as
7 ={S1,82,53,54}.

We consider a VRAN system with K BSs, where the func-
tions of each BS-k can be disaggregated and hosted at vCU-k,
vDU-k and RU-k. The vDUs are executed at far-edge cloud
servers (FSs) while the vCUs are at edge cloud servers (ESs).#
We model a packet-based VRAN as a graph of G = (V,€),
where the set of physical nodes V includes the subsets: K =
{1,...,K}of RUs, L ={1,...,L} of FSs, M = {1,..., M}
of ESs, EPC (index 0), and routers. These nodes are connected
through a set of links £, where each link (4,j) € £ has a data
transfer capacity c;; (Gbps). We denote Pj, as a set of paths
connecting EPC to RU-k and consider the data flow for each
BS is unsplittable. We focus on the downlink, but it is not

4FSs are the candidate platforms and locations to execute VM instances
of the vDUs. Similarly, ESs are the candidate platforms and locations for the
vCUs. We also consider ESs for the candidate platforms to host an integrated
vDU/vCU in C-RAN. ESs are typically located at more centralized locations,
while FSs are co-located or near the RUs.

204 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

TABLE II
KEY VARIABLES AND PARAMETERS USED IN OUR MODEL

Descriptions Notations

The traffic demand (split) of BS-k AL (@)

Allocated flavors (actual resource utilization) for vDU-k/vCU-k xn /ye (&% /91)
Locations of vDU-k and vCU-k 2 Cp

Maximum computing capacity of FS-/ and ES-m H, H,,

A connecting path of EPC—ES-m, ES-m—FS-I[, ES-m—RU-k, FS-I—-RU-k pom, Pmi> Pmk, Dik
Incurred delay of path pom, Pmis Dmk» Pik oo > Ay D> Aoy
HLS and LLS delay requirement for split ¢ df, dF

The routing for BS-k p € Pk

Data flow with split ¢ via routing p € Pj, (FH, MH , BH) (oo e B

EPC
RU,
ES, \
ws [0Us] [veu, | Uy
' vDU, =} veu, | Ll
ES,
vDUs
vDUs
(—‘ vDUS,1
lFsz FS, RU;
RU, RU, RU, RUs
=—— BS-1 Flow BS-2 Flow = BS-3 Flow

VM/Container D Server

Fig. 3. The functions of each BS can be split between the vCU, vDU and
RU. For BS-1, vDU-1 and vCU-1 are executed at FS-1 and ES-1, respectively.
However, BS-2 implements C-RAN (S4); hence, the integrated vDU/vCU are
executed only at ES-1 (e.g., links to and instances at FSs are not activated).
Then, vDU-3 and vCU-3 of BS-3 are hosted at FS-2 and ES-2, respectively.

limited and can easily be extended for uplink. The data flow for
each BS will be transferred from EPC to RU-k through a path
p = {(0,401), (i1, %2),..., (i, k) : (i,7) € E} € Py. Since
this path might pass through FSs and ESs before reaching each
RU, let us denote poy, Pmi> Pmk, and py. as a path connect-
ing EPC—ES-m, ES-m—FS-I, ES-m—RU-k, and FS-I—-RU-%,
respectively. Based on the selected split, the data flow of each
BS-k passes through p = pgp, UpyUpy € Pr (EPC — ES-m
— FS-I — RU-k) if activating S1, S2 and S3. Otherwise (e.g.,
S4/C-RAN), the flow passes through p = pom U i € Pi
(EPC — ES-m — RU-k without using FSs). Each path has a
total delay defined as d, dp,,,,, dp,,;» dp,,, and dp, ; and they
must respect the delay requirements of the split as described
in Table I. We compute each pgy,, Pmi> Pmi and py. with the
shortest path method. Fig. 3 shows an example of our model.

We use the term flavor’ to define the available choices
for allocating the virtualized computing resources. Let us

SThis term is carried out from OpenStack (https://www.openstack.org/) to
reserve the amount of virtual CPU, memory, and storage capacity for a VM
instance. This term is typically used to calculate the billing units to charge the
amount of monetary cost. Similar terms are also used in other cloud services
such as AWS and Azure. Here, we focus on the CPU resources as they are
the most affected performance by the traffic demands.

introduce X as a set of available flavors for the vDUs and
vCUs. Then, we select a flavor z, € X and y, € X that
determine the reserved resources for each vDU-k (in FSs) and
vCU-k (in ESs). Each FS-/ has physical computing capacity
Hj, respectively H,, for ES-m, which bound the aggre-
gate allocated resources (accordingly, the flavors that can be
selected) of the vDUs and vCUs for each location. The key
notations used in our model are summarized in Table II.

B. Problem Formulation

We model the VRAN operation as a time-slotted system.
Given an incoming sequence of possibly-different traffic
demands and resource availability, we aim to design a policy
(strategy) of an agent that controls the VRAN configurations
at each time slot, which includes the splits of the BSs, flavors
and locations of vDUs and vCUs, and the routing for each
BS data flow, to minimize the long-term total network oper-
ation cost. This sequential decision problem is formulated as
MDP, specified by a tuple {S,.A, P, r}. At every time slot n,
the agent observes a state from the state space s™ € S, then
takes an action that selects the VRAN configurations from the
action space a” € A. Following each enforced action, the
agent expects to receive a reward signal r(s™,a™) as feed-
back from the environment (VRAN system). Since the state
may not be stationary, we define P(s"t1|s™, a™) as the state
transition probability that maps a state-action pair at time step
n into the distribution of next states. And we take no assump-
tion about it. The formulated problem is also naturally an RL
problem, and we describe it as follow.

1) Action: We introduce " = {i' € Z : k € K} as con-
trol variables to select the functional splits that decide which
functions of the BSs to be placed at the vDUs and vCUs.
The selection of the flavors that allocates the resources for
the vDUs and vCUs is determined using control variables
e = {gf € X 1 k€ K} and y" = {y € X : k € £},
respectively. We can determine the locations of vDUs over
FSs and vCUs over ESs by 2" := {z' € L : k € K} and
(" = {¢y € M :k € K}. The routing paths to trans-
ferred the data flow of each BS is selected through variables
p™ = {p"™ € Py : k € K}. Since routing variable p" € P,
depends on the placement of the vDU and vCU, we can
determine p = {pom U Pt U Dk U i} € Py directly
from 4,z and (. For instance, if BS-5 with 75" = S1
decides sz =1 and (gb := 2, then the selected path becomes

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 205

p = {po,2Up2,1UUp1 5} € Ps with the transferred data flow
EPC—ES-2—FS-1—RU-5. Therefore, we can treat p”™ € Py,
as part of the environment. Then, we formalize the action at
time slot n as:

a'n = {Z'TL7$TL’ ynazn7<n} € A7 A
{ 2 “C‘
=T x X ><£></\/l} , (D

where this action is taken from the action space A of a
finite set that includes all possible pairs of the reconfiguration
control decisions from all the BSs.

2) State: The state observation at each time slot n of the
RL problem consists of (i) The incoming traffic demands
of the BSs A" = {\} € Ri:k € K} (Gbps); (ii) the
previous deployed splits i" 1 = {i,?_l €Z:k ek}
(iii) the previous allocated resources (flavors) for the vDUs
el = {7} L e x:keKk}and (iv) vCUs y* 1 =
{y,?_1 € X : k € K}; and (v) the previous deployed loca-
tions of each vDU-k over FS z"~1 = {z,?_l eL:kek}
and (v) each vCU-k over ES ("1 := {Q,?*l eEMkeK} It
provides time dynamic of our variable interests: (i) the demand
that needs to be served by each BS; (ii) the current active splits
of the BSs; (iii) the availability of resources for each vDU and
(iv) vCU; and (v) the availability to execute each vDU at FS
and (vi) each vCU at ES. Then, the state observation at time
slot n can be denoted:

s = {)\n7 Z'n—l’xn—l7 yn—l’ Zn—l,cn—l} c 8,
K
S:{RxIwﬁxﬁxA@'y ?)

The state space S is semi-continuous because it contains
continuous parameters Ay € Ry ,Vk € K from the traffic
demands. It is exogenous parameter, i.e., it is not affected
by the action, but it provides contextual information about the
users’ needs. The other points are discrete parameters and pro-
vide the network state information, which are highly affected
by the deployed configurations from the last action. This state
information is provided as input to the learning agent through
the Ol interface. The state can be extended to other relevant
key performance measurements; however, the state space of
the RL problem also expands.

3) Reward & Policy: Our reward function is calculated
from the incurred total network operating cost. The source
of monetary costs comes from the computing cost to execute
the BS functions, the virtualized resource management costs
and the routing cost.

The needs of computing cost of each BS-k to host its func-
tions at the RU-k, vDU-k (in the FS) and vCU-k (in the ES)
are denoted as:

fRU(ﬁ]]?)afFS('%n% and fES(@]?)) 3

where fru(-), frs(:) and fgg(-) are the cost functions to
charge the utilized computing processing at the RU,® FS and
ES, respectively. These cost functions translate the actual

ORUs are the radio hardware units; hence we do not allocate resources for
RU. Instead, the computing cost of the RUs is incurred from processing the
LP/RF functions, where their processing cost is demand/split dependent.

Virtualized resource management for vDU-k D Overprovisioning

Iﬂ Reconfiguration

A

| Underprovisioning

SL‘Z Instantiation

n
_xk

an ~
Ty — gn
kn‘ k
Ll

Fig. 4. An example of virtualized resource management model for vDU-k.

computing resource utilization of the RUs @™ = {@)' €
R : %k € K}, vDUs 2" := {3’ € R : k € K} and vCUs
" = {y € R: k € K} into monetary units ($). The
actual resource utilization of each RU, vDU and vCU is highly
affected by the split and demand at the BS. Hence, we define
Y (AR, df) = (@, %, §7) as a function to map inputs of
the split and traffic demand of the BS into the actual resource
utilization at the RU, vDU and vCU. This function repre-
sents the actual computing behavior in the VRAN system,
and we characterize it through traces from the testbed mea-
surements. Further, we consider that cost functions fry(-),
frs(+) and frs(-) to be proportional with their input, e.g.,
frs(v) = kruv, frs(v) = kpsv and frs(v) = KEsY,
where kry ($/unit), kg ($/unit) and xkrg($/unit) are the esti-
mated computing processing fees per core unit capacity at the
RUs, FSs and ESs, respectively.

In VRANSs, the vDUs and vCUs are virtualized on the FSs
and ESs, respectively. Therefore, the virtualized resources of
the vDUs and vCUs can be dynamically allocated to obtain
cost-efficient network operations. However, reconfiguring such
resources might lead to additional costs. Meanwhile, the allo-
cated resources z;’ and y;* might differ to the actual resource
utilization of igl and g},?, which can create unwanted resource
overprovisioning or declined demands. Motivated by resource
management in network slicing [34], we propose a cost model
capturing such behaviors in VRANS. This model is illustrated
in Fig. 4 and described as follows.

(i) Overprovisioning: If the allocated resources are higher
than their actual utilization, the operators pay more expenses
and miss the opportunity to share their unused resources for
other workloads. Such resources are instantiated and reserved
for no purpose, which can be more profitable to be allocated
for other workloads (e.g., video analytics) to increase the
global system efficiency. This overprovisioning cost at time
slot n for BS-k is defined as:

fo(max(0, 7" — &) + max(0, y* — §1)),)

where fo(-) is a cost function for resource overprovisioning.
This function is proportional with the input, e.g., fo(v) =
kov, where kg is the estimated fee for one unit capacity
($/unit).

(ii) Declined service demands: The declined demands can
occur when there exists an insufficient resource allocation or
constraint violation, which triggers service level agreement
(SLA) violation and monetary compensation. For instance,
the constraint violation can happen when the total allocated

206 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

resources of the vDUs exceed FS capacity:

fo|max|0,> afl_)(z0)—H | |, YI€L, (5)

kel

the total allocated resources of the vCUs exceed ES capacity:

fo | max| 0, Z Y= (C) — Hp
kel

, Ym e M, (6)

and the incurred delay does not meet the requirement:

Jo (max (0, dp,,, — df dyy, — dF, dy,,, ~0.25)),
VYm e M,Vl e L, (7

where d,L»H and diL are the delay requirement of split i for the
HLS and LLS, respectively, as defined in Table I. In addition
to the constraint violation, an insufficient allocation for each
vDU and vCU can cause declined service demands, and we
define this as:

fD(maX(Oa '%]? - $]?7 ZA/,I? - y]?)) (8)

The function fp(-) captures the monetary compensation that
the operators have to pay for violating the SLA. This
function is assumed to be proportional with the input, e.g.,
fo(v) = kpv, where kp is the estimated fee for declined
demands in one unit capacity ($/unit).

(iii) Instantiation and Reconfiguration: The operators may
decide to instantiate new resources or reconfigure their
network settings to reduce resource overprovisioning and
declined demands and adapt to the varying traffic demands
and resource availability. However, instantiating and reconfig-
uring such resources (e.g., VMs) induce capital expenses, and
we define it as:

fi (max(O,x,? - x]?*l) + max(()7 yp — ylgfl)), 9)
(It = op =M+ Iy =)
(g G + L (@), 00

where fi(-) and fg (-) are the cost functions for resource instan-
tiation and reconfiguration. Eq. (9) captures the amount of
instantiating additional resources for the vDU and vCU, which
might arise due to migrating additional resources to serve
the VRAN workload, and this results in indirect overhead
expenses such as the increase of power consumption [34].
Then, the first term in (10) captures the reconfiguration cost
initiated from migration activities for altering the splits and fla-
vors (resizing resources). Such activities raise overhead costs
from the migrated resources, measured from the difference
between the current and the previous resources [9], [34]. For
instance, altering the splits requires creating new BS func-
tions while maintaining the old migrated functions to keep
active [9]. Resizing the VMs’ resources also initiates a price
of management delay [35] as it needs time for migrating (and
bootstrapping) the computing resources, load balancing and

steering the network load.” The second term in (10) cap-
tures the reconfiguration cost for migrating the vDU and vCU
instances to other FS and ES locations. In this case, the whole
resources of vDU and vCU instances are affected, and the
attached routing paths need to be recomputed with the new FS
and ES locations. In our evaluation, fj(-) and fg(-) are pro-
portional to the input, e.g., fi(v) == kv and fr(v) = KR,
where k1 ($/unit) is the estimated cost for resource instantia-
tion and kg ($/unit) is for reconfiguration. If reconfiguring the
system does not incur any overhead cost, we can set kg = 0,
otherwise kg > 0.

O-RAN has encouraged adopting an open interface between
the vCUs, vDUs and RUs [5], resulting in sharing the xHaul
links among the BSs. In addition, S1, S2, S3 and S4 generate
different data loads depending on the selected split as seen in
Table 1. Hence, the cost for reserving bandwidth and routing
the data flow through the xHaul links are also different. The
routing cost for each BS-k can be denoted as:

FH,n
fu Z "p,i I—zp (1)
pEPL leL
MH,n BH,n
t T Z Lcp(m) +ry; » (D
meM
where piHm pMEn - BHR oo the incurred data loads over

FH, MHﬂand BpH’l at tirffel slot n from using path p, serving
traffic demand A, and deploying split-i. The indicator 1_,» (1)
activates if vDU-k is placed at FS-/ and 1_cn(m) activates if
vCU-k is hosted at ES-m. Then, fy(-) is the cost function for
bandwidth reservation to transfer data load through the xHaul
links, and this cost function is proportional with the input, e.g.,
fu(v) = /g%v, where m% ($/Gbps/Km) is the estimated fee
for reserving bandwidth for path p per Gbps/Km.

Let suppose J™(a™, s™) == 3 e fro () +fis ()Hfis ()+
o)+)+ iE)+/RE)+ fa(-) is the total operation cost
for all the BSs accounted from (3)-(11). Then, we define the
reward®:

r(a™, s") = —=J"(a",s").

Then, our aim is to design an optimal policy that maps the
input state observation into action 7*(s) : S — A, which
minimizes the long-term total operation cost over period of
time. Such a policy can be formulated through maximizing
the long-term reward:

(12)

N
Ty = arg max E Z ATl
T7=0

(13)

where E[Zivzo ATrT+"] is the expected long-term accumu-
lated reward starting at time slot 7. The discount factor + is

TWe have calculated the incurred time for resizing a VM instance in CSC
cPouta (https://www.csc.fi/) cloud computing platform, and it takes around
25 seconds. Modern software architecture such as Kubernetes also requires
several seconds to executing new pods [34].

80ur study focuses on network operation cost minimization, but our frame-
work can be extended to other or multiple objectives, such as maximizing
the VRAN performance (e.g., centralization degree). In this case, we can
use weighting parameters that determine the relative importance between the
objectives (e.g., cost and performance).

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 207

strictly set to v = 1 during the online operation, correspond-
ing to a non-discounted reward that represents the actual cost;
otherwise, v € (0, 1].

C. Trade-Offs

The above problem is intricate for many reasons. We discuss
the trade-offs and non-triviality that arise as follow.

(i) From S1 to S4, the operators can gain a lower computa-
tional cost and high-performance operations through function
centralization. However, it also has a tighter constraint require-
ment and induces a higher transferred data load through the
xHaul links. A higher data load means a more expensive rout-
ing cost. In addition to the splits, the required resources for
the vDUs and vCUs are highly affected by traffic demands
and resource availability, which might change absurdly. These
also affect the placement of the vDUs and vCUs over FSs and
ESs. The association and routing paths are also different for
each placement location.

(ii) Using a static policy and finding the best configurations
by foreseeing the future peak traffic may reduce the over-
head costs due to reconfiguration activities. However, it might
produce significant resource overprovisioning. Such unused
resources can be profitable if the operators can efficiently man-
age and share with other workloads. Predicting the future peak
traffic might also be inaccurate, which might not result in the
best configurations.

(iii) By dynamically reconfiguring the VRAN settings at
every time slot, the operators can obtain the best configura-
tions at a time; hence, the risks of resource overprovision-
ing and declined demands can be reduced. However, every
reconfiguration activity produces overhead costs, which may
lead to costly long-term network operations. Moreover, the
reconfiguration decisions are made before the actual traffic
demand is observed; therefore, finding the optimal decisions
at every time slot is challenging and might be unfeasible in
practice.

(iv) The reconfiguration decisions in our VRAN system
are highly affected by the traffic demands and resource uti-
lization. However, their relations are complex, depending on
many factors such as traffic demand, computing platform,
radio scheduler, etc, which also hinder general assumptions
(e.g., linear) to model the computing resource’s behavior, ren-
dering traditional control policies inefficient for our vVRAN
reconfiguration problem.

(v) Points (i)-(iv) emphasize the need for intelligent recon-
figuration decisions with minimal assumptions about the
underlying system. A deep RL paradigm can be suitable to
handle such challenges. However, the formulated RL problem
has a huge state space and multi-dimensional action space
because the VRAN system consists of multiple BSs sharing
the same network resources with highly coupled configura-
tion decisions. These challenges make conventional deep RL
discrete action space algorithms such as deep Q learning
inefficient.

Given the formulated RL problem and trade-offs above, we
present how to design the solution that solves the problem
efficiently in the next section.

IV. LARV LEARNING ALGORITHM

LARV leverages a model-free RL paradigm, which consid-
ers the VRAN system as a black-box environment and does not
take any assumption about the system state and state transition
probability distribution. However, finding the optimal policy of
the agent is non-trivial as the formulated RL problem has the
semi-continuous state space and the multi-dimensional action
space, which make the state-action space extremely large. The
large state space can be addressed using D3QN [15], where
this approach is also naturally designed for discrete action.
However, we need to tackle the issue of the multi-dimensional
action space, which makes the number of estimated actions
grow combinatorially with the number of BSs and configura-
tion decisions. In order to address this curse dimensionality,
we incorporate action branching [17] with D3QN to compress
the number of estimated actions. Through this approach, the
multi-dimensions of the action can be distributed across indi-
vidual network branches while maintaining a shared decision
module among them to encode a latent representation of the
input state and enable coordination among the branches. In
contrast to traditional discrete-action deep RL algorithms, this
action decomposition method exhibits a linear growth of the
total network outputs with increasing action dimensionality.

A. D30QON to Address the Large State Space

The objective of our RL agent is to learn the optimal policy
7« defined in (13). As the problem has a large state space
and the expected output is a discrete action, we can utilize an
off-policy RL algorithm by using D3QN to approximate the
action-value function (Q-function) and Double Q-learning for
the learning step.

We define the optimal action-value function Q*(s, a) as the
maximum expected reward for observing certain sequences s
after following some policies 7 and taking some actions a
as: Q*(s,a) = max;zE[Y°yrTt"s" = 5,a" = a]. If
we know the optimal value Q*(s’, a’) of the sequence at the
next time slot s’ for all possible actions a’, we can identify
the optimal policy 7*, which is to select action a’ that max-
imizes the expected value 7 + yQ*(s’,a’) : Q*(s,a) =
Eswglr + ymax, Q*(s’,d’)|s’,a’]. In the value iteration
method, the action-value function can converge to the optimal-
ity when the iteration number reaches near infinity; however,
it is impractical. Therefore, a function approximator such as
a neural network can be applied to estimate the action-value
function. The estimated action-value function parameterized
by a neural network (Q-network) with weights 6 is denoted
as: Q(s,a;0) ~ Q(s,a). Then, the Q-network is trained by
minimization of a loss function:

L(9) = Es,a,r,s’ND [u - Q(s, 4 9)}1 (14)

where the transition {s, a,r, s’} is collected through random
sampling (minibatches) from stored experience data D, and u
is the Temporal Difference (TD) target. In DQN [36], the TD
target is computed by:

uPQN — Egos [r—f—’ymax Q(s/,a/;é)}, (15)

208 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

where Q(s',a’;0) is the target network parameterized by
weights 6. The design of TD-target in (15) often causes an
overestimate to the actual action-value. Thus, we apply Double
DQN (DDQN) [16] to overcome this issue by modifying the
TD target into:

uPPON — |, NS[TJr’yQ(s argmaxQ(s a’;0); 0>}
" (16)

When the RL problem has a large action space, such as
in our VRAN problem, it might not require estimating the
value for certain states, i.e., avoiding unnecessary estimation of
redundant and low-value actions. Thus, we apply the Dueling
architecture [15] to DDQN (called D3QN) by separating the
Q-network into two streams of state-value and advantage,
which are then combined through an aggregating layer to pro-
duce an estimate of the action-value function. Lets denote
V(s;0) and A(s, a;60) as the estimated state-value function
and advantage function, respectively; then, the action-value
function at the output layer can be computed as:

Q(s, a;0) = V(s;6) + A(s, a;6) — ﬁZA(S,a’;G).

a7

By explicitly separating the Q network into two estimators,
D3QN can learn which states are valuable without requiring
to learn the impact of every action for each state. Hence, it
can effectively achieve a high-quality policy for a large state
space. However, in addition to a large state space, our VRAN
problem produces a multi-dimensional discrete action space. It
drives the number of estimated Q values in (17) to grow com-
binatorially with the number of configuration decisions and
BSs. Next, we present how we incorporate an action branching
architecture with D3QN to compress the number of estimated
Q values in our vVRAN problem.

B. Action Compression Using Action Branching

Let us define Cj, == {ig, 21, Yk, 2k, Cx } as a set that includes
all the reconfiguration control variables of BS-k. Then, we
denote the sub-action ag.,Ve € C,Vk € K, to represent
the c-th reconfiguration control variables of BS-k, i.e., a1 :=
i, a2 = T1,...,axc, = Ck; and Cp = [Ck|,Vk € K.
Hence, we can rewrite the action in (1) by a == {az. : ¢ €
Ci,k € K}. Each of sub-actions also takes values from a
finite set of the sub-action space Ajp. C A that describes
the c-th reconfiguration control space of BS-k, i.e., Ay =
I, Ay = X,..., Apcx, = M,Vk € K. As the RL agent
controls K BSs and each BS has (Y}, sub-actions; then the
number of Q-values to be estimated turn to [el H * 1 Akel-
By incorporating action branching, the number of Q-values to
be estimated can be compressed to Zk 1 Zc 1 [Ake|- The
initial action branching in [17] has successfully tackled prob-
lems with the discretized continuous action space. However,
its performance is still not validated in the problem where
the action space is naturally multi-dimensional. Moreover, it
assumes that all of the sub-action spaces have the same dimen-
sional size, i.e., |A11| = |A12] = --- = | Ak, |- Hence, we

can not directly utilize it as the size of the sub-action space
of the reconfiguration control variables in our VRAN problem
varies. We adopt the action branching paradigm suited to our
problem and describe it as follows.

We use the common state s defined in (2) and common state-
value V(s). The value of sub-action a,. at common state s with
the corresponding sub-action advantage Ay, (s, ag.) becomes:

ch(57 akc) = V(S) + Akc(sa akc)

Z Akc s, akc)

akCEA/m

(18)

Then, the TD target is set similar to (16) to avoid maximization
bias, except it uses an average of all the dimensions of the
sub-actions as follows:

u = r+’y* Z Z Qre (s arg max Qg (s, %))

c=1 akC/GAk(‘
(19)

where Q. is the target network. Then, the loss function can
be computed as:

1 &1 &
L(H) = Es,a,r,s’N'D K Z ?k Z[ukc — Qe (5, age; 3)]
k=1 c=1

(20)

The action a to be taken for all the BSs is selected based
on e-greedy, where the agent chooses a random action with
probability € or compute:

,argmax Qe (s, aKC%)

!
Ri:¢e]

argmax Qg1(s, ag1/), - - -
a4y

a =

21

with probability 1 — e.

C. Neural Network Architecture and Learning Algorithm

Fig. 5 illustrates the Q-network architecture of branching
D3QN (g, parameterized by weights 6 and applied in LARV.
This network is constructed from an input layer, a shared rep-
resentation segment comprising hidden layers, a state value
network, and neural network branches. The input layer (Linear
layer with ReLU activation) receives the common state obser-
vation s and has the size of Isl. The shared representation
segment is built from two fully connected Linear layers with
ReLU activation, connected to neural network branches and
state value function network. We use a Linear layer for
the common state value network. Then, the neural network
branches have a total of Zle C}, branches corresponding to
the number of control decision variables (sub-actions). Each
branch aims to produce the sub-action value Qp.(s, ar.) by
taking consideration of the common state value V(s) and
sub-action advantages Ay (s, ag.) as described in (18). Each

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 209

Shared Representation Branches
S2 _ Branch 7,/
<. 256 - ‘Advantages Q-values
Common AR -I 1,1 /' 11
Input .~ I 8 A (s, ane) Qre(s, ake) K
X W , kelS, Qe kel S, Qe K2,
State \\\\\\ , . U
AN
N : &
S|~ < N
AN FAR . Branch K, Cy S0 = (e c € Cuk € K}
N B U AR Advantages Q-values
N Peant NN J riat |~—> e
\ _-
o Vo128 Ape(s, are) Qure(s, are)
| \
128 [
‘D V(s)
Common State Value

Fig. 5.

Algorithm 1: LARV Learning Algorithm

1 Initialize: Replay memory D with a fixed buffer size,
Q-network)y (Fig. 5) with random or pretraining
weights 6.

2 Clone Q-network @)y to target network Qé with weights
6« 0.

3 for Each episode e = 1.., F do

4 Reset state of all the BSs
sl = (AL,i0,20,40, 50, 0},

5 for Each time slot n =1..., N do

6 Select an action a™: = {a}’ :c € Cy, k € K}
randomly with probability €, otherwise compute
a™ by using (21).

7 Determine the routing p € Py, Vk € K using
1", 2™ and (™ obtained from a™.

8 Enforce ™ and p € Py, Vk € K to all the BSs
and compute the total cost J".

9 Collect the reward r™ based on (12).

10 Set s « s™ with the current observation.

11 Store the experience D <+ {s”, a™,r", Sn+1}.

12 Sample minibatch of experiences from D.

13 Compute TD target v using (19) if not done,
otherwise u: = r".

14 Perform a gradient descent method to the loss
function L(0) in (20) w.r.t 6.

15 Update target network Qé — @y every 7 steps.

16 end

17 end

branch has an output layer (an aggregation layer from the state
value and sub-action advantages) with the size of | A.|.
Further, we summarize the learning process of LARV in
Algorithm 1. Firstly, the replay buffer memory D and the
Q-network @y (Fig. 5) are initialized, where the Q-network
initialization can be from random or pretrained weights
(Step 1). Then, the weights of the Q-network (Jy are copied
to the target network Qé (Step 2). At the beginning of
each episode (or trial during the training), the state obser-
vation sl is reset with initial values, where these values are
assigned from A == {\l € Ry : k € K}, i¥ = {i) =

The Q-network architecture built following D3QN with action branching.

S1:kek}, = {3:]? = max(X):k € K}, y° = {yg =
max(X) : k € K}, 2¥ = {z) = random(X) : k € K}
and (¥ := {¢¥ = random(X) : k € K} (Step 4). Then, at
every time slot n, given the state observation s™, an action
a” = {a} : c €Cy,k € K} is selected randomly with prob-
ability e, otherwise it is computed using (21) (Step 6). Then,
the routing p = pom U pry Ui € Pr = k € K can be
selected through ¢", 2", and (" obtained from the selected
action since these variables determine the hosting servers for
the vDUs and vCUs, and hence the destination server for
each data flow (Step 7). After all the control variables are
determined, they are enforced to all the BSs as the VRAN
configurations at time slot n. As a result of the deployed con-
figurations, LARV expects to receive the total operation cost
J(a™,s™) (Step 8). Based on this cost, the reward r(a”, s™)
signal at time n can be computed by (12) (Step 9). The
state is updated with the current observation s"t1 « "
(Step 10). Then, the agent’s experience is stored in replay
memory D « {s™, a", r" s"t1} (Step 11) and the memory
D is sampled randomly (Step 12). Further, the TD target of
branching D3QN is computed with (19). Once the TD-target
is obtained, we can proceed to calculate the loss function L(#)
using (20) (Step 13). The goal of this learning process is to
minimize this loss function with regards to weights 6, and we
rely on Adam optimizer [37] to perform stochastic gradient
descent. Mostly, the target network is frozen, but it is updated
every 7 by using the Q-network weights (Step 15).

V. RESULTS AND DISCUSSION

In this section, we perform trace-driven simulations using
real traces collected from our testbed to evaluate the
performance of LARV under various scenarios during the
training process and online operation.

A. Experimental Setup

We built a bespoke testbed to collect measurements used
to evaluate LARV under realistic conditions. We utilize the
software-based srsSRAN [12], where each entity is virtualized
using container-based virtualization from Docker. The radio
interfaces of the BS (e.g., RU) and user are emulated via ZMQ.
The srsENB acts as a BBU of the BS. To deal with func-
tional split, we use prior studies that divide the computing

210 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

(a) (b)

Fig. 6. The network graph representation for (a) N1 and (b) N2. The green,
blue, red, and black dots represent the RUs, FSs, ESs and EPC, respectively.

consumptions of LP, HP, LM, HM, LR, HR, and PD func-
tions to yield 48%, 17%, 7%, 7%, 0.5%, 0.5%, 10%, 10%
of the total BBU, respectively, cf. [18], [20]. We deploy the
virtualized entities in Platform A (CSC cPouta hpc.5.16core
with max. 16 vCPU) and Platform B (PC AMD Ryzen 7 PRO
4750U with max. 16 CPU threads). We use these computing
specifications for Reference Core (RC), i.e., 1 RC translates to
1 CPU thread and 1 vCPU. The virtualized resource of each
container can be controlled through —cpus, which allows us to
set a capacity limit and isolate each container resource. We
set an initial resource reservation for srsENB with 10 RCs.
In our measurements, the traffic demand follows a Poisson-
generated user datagram protocol with a peak data rate is
36.6 Mbps (SISO 10 MHz LTE).

In our simulations, the traffic demands follow the Milan
network datasets from Telecom Italia [38], where each time
slot has 10 minutes time interval. This interval is also aligned
with the capabilities of current Virtual Infrastructure Managers
(VIMs). Moreover, LARYV selects an action from the incom-
ing state information (e.g., by passing forward through the Q
network) at each time slot, and it can be performed within a
second in our test, which is suitable for real-time operation.
The Milan datasets consist of mixed traffic, including calls,
sms, and the Internet. We filtered the datasets and utilized
Internet traffic (mobile broadband). Although it was recorded
in 2013 (dominated by 4G traffic), it is still relevant for 5G
network evaluation since it captures users’ demand behavior
comprehensively (e.g., the day, night, weekend, city center,
etc.). Considering the limitations of our testbed and the diffi-
culty in capturing the computing behavior of the Milan traffic
in a tractable model, we utilize a deep neural network® to map
the Milan traffic demands into the actual resource utilization,
trained using our collected measurements.

We consider a realistic MEC-based Milan topology
(N1) [39] and a synthetic topology (N2) generated using the
Waxman algorithm [40], and their graph representation is illus-
trated in Fig. 6. N2 has parameters of link probability (0.5)
and edge length control (0.1). A VRAN system in N1 and
N2 consists of 1 EPC, 4 ESs, 8 FSs and 8 RUs (default),

91t is constructed from an input, an output and three hidden layers with
the sizes of 128, 64 and 16. We use Adam optimizer [37] with learning rate
is set to 5 X 10*5, mini-batch with the size of 128 and MSE loss function,
then train it with 200 epochs.

where the routers are co-located with each node.!” Per link’s
latency, capacity, and weights of N1 and N2 vary from 0
to 0.1 ms, 30 Gbps to 160 Gbps, and O to 0.1. We have
H; = 20RCs,VI € £ and H,, = 100RCs,Vm € M. We
set the available flavors with |X| = 16 for Platform A and
Platform B, which translate to {0,1,...,14,15} RCs of the
computing resources. Then, we define two VRAN systems in
which we utilize Platform A with N1 (VR1) and Platform B
with N2 (VR2).

We set the computing processing fee (per CPU usage) at the
RU with kry = 1RC™! [18]. A single ES can serve up to 8
FSs, and a single FS can handle as high as 8 RUs. Therefore,
we set kpg = 0.5kRpy and kgg = 0.5kpg (c.f. [41, Fig. 6a]
with ~ 10 BSs) by taking into account the processing gain
from centralization (i.e., computational processing cost is less
by centralizing more functions and executing them in a higher
computing platform). Then, with regards to prior study in [34],
we set the coefficient fee for resource overprovisioning with
ko = IRC™! and declined demands with kp = S5RC!.
It is common that the penalty due to the declined demands
incurs a higher cost. We also set the default coefficient for the
reconfiguration fee lower with kg = 0.1RC™! to account for
the typically relatively lower cost per unit of resource recon-
figuration [34]. Then, we set k] := xR (see Section III) and
KH = leps_l/Km (e.g., the fee for reserving 1 Gbps/Km
routing bandwidth is the same as a processing fee at RU).

The Q-network of branching D3QN has an input layer with
size of Isl, hidden layers (the architecture and size are provided
in Fig. 5), and Zszl (), branches. Each branch has an output
with size of | Ay.|. The target network is updated every 500
time slots. The batch size is set with 128 and the replay buffer
has a capacity of 10%. Our exploration and exploitation strategy
is based on e-greedy, where we set epax = 1 at the beginning
of episode, then it exponentially decays to €,;, = 0.015. We
use Adam optimizer [37] with learning rate is set to 0.0001
and (20) for the loss function. The time horizon for a sin-
gle episodic training is one day (N = 144 time slots) and the
online operation starts on the second day with a default dura-
tion of two days (N = 288 time slots). Table III summarizes
the default experimental setups used in our evaluation. The
datasets in this work will be released online.'!

Further, we compare LARV with several benchmarks as
follows.

o The best static with 100% provisioning (BSP): It knows
exactly the peak future traffic demand of each BS and
utilizes them to find the best static joint action via
an exhaustive search. It can be defined as: mggp =
argming Zf J,i(a), where i = argmaxy A}}. Further,
it is used to normalized the monetary costs in the online
operation evaluations.

e DDPG with discretization: Since the state space and
action space of the RL problem are extremely large, the
traditional discrete RL algorithm may not perform effi-
ciently. A continuous RL algorithms such as DDPG [42]

10The datasets for N1 and N2 initially do not specify which nodes are for
EPC, ESs, FSs, and RUs. We followed an intuitive approach by selecting them
from the highest network degree.

11 https://github.com/fahriwm/larv_datasets

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 211

_.3.50 7
1750 3 305 g
< 1500 S €6
< §3.007 v & =
g 1250 %275 25
Z 1000! 92% 89% S~ S
) = =
> 5 2.50 =
o 750 P 24
£ 82.25 9
< = =
& 30 22.00 23
[}
250 & 1.75 &,
0 50 100 150 200 250 300 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time slot Downlink Data Rate (Mbps) Downlink Data Rate (Mbps)
(@) (b) (©)

Fig. 7.

a) Traffic variation within two days from Milan datasets [38] and b) collected measurement results over Platform A and ¢) Platform B. The resource

utilization is presented in a reference core (RC), which translates to 1 virtual CPU/thread.

TABLE IIT
EXPERIMENTAL SETUP; SEE SECTION V-A FOR DESCRIPTION

Parameters Default value
Number of ESs (M) 4

Number of FSs (L) 8

Number of RUs (K) 8

FS computing capacity (H;) 20 RCs

ES computing capacity (Hy) 100 RCs

The set of flavors (X) {0,1,2,...,15} RCs
Overprovisioning fee (ko) 1RC™!
Declined demand fee (kp) 5 RC™1
Reconfiguration fee (kr) 0.1 RC~!
Instantiation fee (kp) 0.1 RC7!
Processing fee at ES (kgs) 0.25 RC!
Processing fee at FS (kgs) 0.5 RC™!
Processing fee at RU (xru) 1 RC!
Bandwidth (routing) fee (ku) 1 Gbps’lle
Time horizon (V) for 1 episode 144 time slots
Epsilon start and end (€max, €min) (1, 0.015)
Learning rate 0.0001

Batch size 128

can address extremely large state-action space, but they
are not designed for a discrete action. Hence, we relax the
discrete action (1) into a continuous action. Then, when
the output of DDPG is determined, we estimate it to the
nearest discrete value. We also modify the output acti-
vation function with a Sigmoid function as each action
needs to be a positive value.

o Multi-agent of D3QON (MDQ): It is a non-branching
D3QN. To deal with multi-dimensional action space, in
every BS, each reconfiguration control works as a sepa-
rate agent, i.e., the decision of each split, resource, and
location is controlled by a different agent, that works col-
laboratively to maximize the common reward in (12). In
total, MDQ has Zszl Cj, agents. The agents that rep-
resent control variables in the same BS share a common
state observation.

B. Measurement Insight

Fig. 7(a) illustrates an example of the traffic demand of a
BS in the Milan datasets [38]. It shows a significant difference
between the peak and lowest traffic demand by up to 92% in

a single day. Moreover, the traffic variation might vary from
day to day (e.g., weekdays, weekends). Figs. 7(b) and 7(c)
show that the traffic demand highly affects the resource utiliza-
tion of the BBU. These findings motivate us to implement the
dynamic configurations to adapt such traffic and resource vari-
ations to achieve cost-effective operations. Figs. 7(b) and 7(c)
also demonstrate that the relations between traffic demand
and resource utilization have high variance, where we found
a significant degree of spread on the resource utilization.
Moreover, these relations are platform-dependent performance
(e.g., hanging on the hosting platforms and platform load).
For example, although they indicate not strongly linear in
Platform A and B, the resulting Pearson coefficient is different
with 0.513 and 0.654, respectively. Also, albeit the BBU has
been reserved with the same resources, Fig. 7(c) shows that
the BBU utilization of Platform B is higher than Platform A.
Such platform-dependent performance is also found in [10] for
uplink, where the computing behavior of VRANs is identified
depending on many latent factors.

C. Performance During Training Process

1) Training Convergence: Fig. 8 illustrates the conver-
gence behavior of LARV over various reconfiguration coef-
ficient fees in VR1 and VR2. At the beginning of episodes,
LARV has a higher probability of utilizing a random policy
for exploration. As a result, LARV produces a high long-term
total operation cost over all the reconfiguration fees in VR1
and VR2. However, after some episodes, LARV successfully
learns the optimal policy, starts to act greedily with a high
probability, and convergences to the best policy the agent can
learn. Moreover, we found a similar trend in LARV’s behavior,
where it manages to converge to some cost values after 400
episodes, albeit it learns over different reconfiguration fees and
VvRAN systems.

Fig. 8 also shows that using a random policy in VRAN
reconfiguration problem must be avoided as it yields in costly
long-term cost. In VRI1, our findings reveal that LARV can
save the costs by up to 78.14%, 79.0%, 80.76% and 83.2%
over kg = 0.05, kg = 0.1, kg = 0.5 and kg = 1, respec-
tively, compared to a random policy. Such significant cost
savings by LARV also appear in VR2, where LARV can save
the cost as high as 75.79%. The cost savings of LARV also

212 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

————

=27 —— =005
=4l 78.14%
= 0 100 200 300 400 500
] PE————
8 2 — k=01
e RS 79.0%
3 0 100 200 300 400 500
kel L
2 20— me=0s 80.76%
© —501 7 i i - ”‘
B 0 100 200 300 400 500
<
= i e——
g 25 ko= 1
g 500 - 83.2%
< 0 100 200 300 400 500

Episodes
(a)

Fig. 8.

20+ —— Kp=5(VRI])
2
n
e 10 The incurred cost
g is diminishing
5, =
§ 0 100 200 300 400 500
8
% —— Kp=5(VR2) The incurred cost
§ 20 is diminishing
5
: M«WM
)
[}
g
8 0
A 0 100 200 300 400 500
Episodes

Fig. 9. The incurred cost from declined service demands (average per BS) in
VRI1 and VR2. The cost is diminishing as the training goes, and it eventually
reaches to near zero (e.g., after 400 episodes).

increase when the reconfiguration fee is more expensive (e.g.,
kR = 0.05 to kKR = 1).

2) Declined Demands: Fig. 9 shows that LARV can reduce
the incurred cost due to declined demands after several train-
ing episodes both in VR1 and VR2. The declined demand cost
appears in almost every episode at the beginning of training
episodes. The main reason is that LARV mostly chooses ran-
dom actions for exploration, rendering a very high number of
declined service demands and, at the same time, producing
a very expensive cost. Note that the declined demands con-
tribute a significantly more expensive cost as its coefficient fee
is much higher than others. As the training continues, LARV
optimizes its weights based on the reward feedback and suc-
cessfully diminishes the declined demand cost. After around
400 episodes, the incurred cost at each episode becomes
smaller and less frequent, eventually reaching almost zero (or
zero). Following the decrease of this cost, at the same time,
the accumulated total operation cost (see Fig. 8) is also greatly
diminished.

_25 —__/_,_,_,.,.——.—-————-—-

5.0 | — KR=0.05 71.48%
z SO~ |
= 0 100 200 300 400 500
m =
R 25 e
& 50 Ke=0.1 72.84%
z 0 100 200 300 400 500
o -
S — 4. /-/_‘_’_,_.,——-—————-———
5 720 Kr=0.5
£ 5.0 r=0. 75.79%
& 750"
B 0 100 200 300 400 500
=S 25 _
=
E 50 — xe=1 73.27%
3 —7151 o~
< 0 100 200 300 400 500

Episodes
(b)

The convergence of LARV under various reconfiguration fees in a) VR1 and b) VR2.

= -2
xn
/M
5
a —4 .
ob Converges faster with
Z well-achieved performance
";g _6 —— w/ transfer (from VR1)
2 —— w/o transfer
~
) 0 100 200 300 400 500
<
Episodes

Fig. 10. Training convergence in VR2. Using transfer learning paradigm (“w/
transfer”), which is leveraged from pretraining weights in VR1, can achieve
similar performance and faster convergence compared to without transfer
learning (“w/o transfer”).

3) Transfer Learning: To assess the generalization of
LARYV over heterogeneous VRAN systems, we study the ben-
efits of utilizing a transfer learning paradigm (“w/ transfer”)
compared to learning from scratch (“w/o transfer”). In par-
ticular, we leverage our pre-trained neural network weights
(trained in VR1) for initializing the other neural network
weights in different VRAN systems (e.g., in VR2). It is worth
noting that the system parameters and platforms in VRI1
and VR2 are different. Hence, this evaluation aims to study
the possibility of reusing the existing models for the other
VRAN systems, which might expedite the convergence and
widespread deployment of LARV. We use the same default
hyperparameter (defined in Section V-A), except we encour-
age less exploration for “w/ transfer” by modifying epax = 1
to €max = 0.1.

Fig. 10 depicts that LARV “w/ transfer” successfully con-
verges to the similar value with “w/o transfer” in VR2, albeit
the pre-trained weights are leveraged from a different VRAN
system (VR1). Moreover, “w/ transfer” can speed up the train-
ing convergence with similar performance as “w/o transfer”
even though the pre-training is conducted not in the same plat-
form, where it starts to converge after around 150 episodes.

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs 213

Total reconfiguration (kg =0.05): 133x

X

y

<

WA —~DWEA O—=NDWA O—=MNDWA

0 50 100 150
Time slot

200 250 300

(a) kr = 0.05

Fig. 11.

In transfer learning, a pre-trained model is utilized. And when
a pre-trained model is available, the gained knowledge of this
already trained model can be transferred among different but
similar (e.g., correlated) environments and contexts, which
in our case are VR1 and VR2. Such a transfer knowledge
paradigm can expedite the learning convergence and allow
the reuse of existing pre-trained models across different but
related VRAN systems (i.e., have correlations with the training
environment/context).

4) Action Space Compression: Following the simulation
setup, each BS has sub-action sizes with |Z| = 4, |X| = 16,
|£] = 8 and |M| = 4, and we have || = 8. Hence,
the number of Q values to be estimated is originally around
1.32 x 1036, LARV turns such a combinatorial explosion into
a linear increase; hence, the number of estimated Q values
becomes 384.

D. Performance During Online Operation

1) Selected Actions: Fig. 11 illustrates how LARV success-
fully controls the configurations of BS-1 reacting to the traffic
variations and resource availability over different reconfigu-
ration fees. Instead of minimizing the incurred cost at each
slot, LARV’s objective is to minimize the cost in the long
run. As shown in Fig. 11(b), LARV performs 133x recon-
figuration activities when kg = 0.05. However, this activity
becomes less frequent with the increase of reconfiguration fee,
where there are only 33X reconfiguration activities. For the
functional split (i), LARV mostly selects S1 (more decentral-
ized functions) when the traffic of BS-1 is low, and it adjusts
the split decision to S3 (more centralized functions) as the
traffic increases. In S3, the transferred data flow over HLS

Total reconfiguration (kg =1): 37x

X

y

Z

=W EAR =N WR O=NDWE O—=MNDWA

0 50 100 150
Time slot

200 250 300

(b) kg = 1

The selected actions over different reconfiguration fees and traffic demand variations at BS-1 during online operation (2 days).

is equal to the traffic demand with 500 Mbps of additional
signaling overhead (A + 0.5 Gbps); hence, LARV does not
suggest implementing it in low traffic for such high overhead.
However, when the traffic is elevated, i.e., the signaling does
not significantly contribute to the data flow and routing cost,
LARYV tends to choose S3, considering the benefits of function
centralization. This behavior appears in both kg = 0.05 and
kR = 1, though the number of reconfigurations differs, where
the reconfiguration is more often for kg = 0.05. Further,
the other results suggest that the allocated resources and the
placement locations for vDUs and vCUs vary for different
reconfiguration fees. For instance, the allocated resource of
the vDU (x) in kg = 1 is larger than in kg = 0.05, even
during the traffic is low, as LARV needs to accommodate the
less frequent reconfigurations and more decentralized func-
tions (it mostly implements S1). LARV also directly allocates
a higher resource of the vCU (y) to avoid numerous recon-
figurations when kg = 1. Moreover, LARV decides to rarely
reconfigure the vDU (z) and vCU (¢) locations or even does
not reconfigure them when the fee is costly (kg = 1), as alter-
ing such configurations requires migrating all the resources
to the new places, which can trigger significantly expensive
reconfiguration cost.

2) The Number of BSs: We evaluate LARV over a differ-
ent number of the BSs in the VRAN system and present it
in Fig. 12(a). The number of BSs significantly influences the
size of the state space and action space of the RL problem. In
general, all the RL approaches outperform BSP when K = 1,
where LARV becomes the most cost-effective by saving the
cost up to 59%. However, when the number of BSs in the
VvRAN system becomes more prominent, the size of the action

214 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024
2.5 2.5
s ARV s LARV
3 DDPG | 3 DDPG
£.20 £.20
cF MDQ | £z MDQ
EZ BSP E° BSP
= =
3 § L5 < 51 gLs = x = %
s B = S g [~ %) S
EE N 35 N N a N
S ELO = S E1.0
S o % q = % S o x % x %
£ 3 s S S | ks E R R S
5 x = - 5 -
!m S Is < & © I\o. I~q
A = S (= =) =] =
=]
0-0 1 4 8 0-0 7 14 21 28
The number of BSs (K) Days
(@) (b)
mmE LARV 3.0 B ARV
2.5
B DDPG T 25 DDPG
T = T =
2 %20 MDQ | =% MDQ
£ > BSP ESa0 ¢ BSP
S| 2 x I 88 pod
8215 5 & % g s IS
[5] o » = o5 5]
= = = B ¢ = £1.5 <
o o = B3 N (o=} [
NE i NE [X &
551'0 = = X % B §81~0 % N>< Sx §><
5 gS _pgi= S gis | S Z 8 g g SE
0.5 = % 2 = 0.5 2 = B = B <
S S 2 lfr\l\
0.0 0.0 S
0.05 0.1 0.5 1 0.5 1 1.5 2
K7 = Kg ($/unit) Ko
(© (d)
Fig. 12. Performance during the online operation in VRI. The presented monetary costs are normalized to BSP.

space, state space, and the number of possible actions grow
combinatorially. By adopting action branching, LARV suc-
cessfully deals with such a combinatorial growth with a linear
increase, rendering well-achieved performance, as shown in
Fig. 12(a). And it brings LARV to be the least degraded
performance, where the cost savings of LARV is more than
39% of BSP. In contrast to LARV, MDQ utilizes a distributed
multi-agent system. When the number of BSs increases, the
number of agents of MDQ also increases, and this makes
the performance of MDQ deteriorate compared to the cen-
tralized learning approaches. Moreover, albeit DDPG can deal
with discrete action space through discretization of continuous
action, the performance is still far from LARV. Unlike LARYV,
which is naturally designed for large discrete action space,
DDPG can lose its learning effectiveness due to discretization.

3) Time Horizon Setting: Fig. 12(b) visualizes the
performance of LARV compared to the benchmarks over
various time horizon settings, ranging from 7 days to 28
days. We found that LARV becomes the most cost-effective
approach by having the cheapest long-term total cost. The
performance of LARV also remains stable, albeit in varying
conditions (demands and resource availability). Compared to
BSP, the cost-savings of LARV can be as high as 39%. LARV
updates the VRAN configurations prudently, adapting to the
varying conditions and considering the long-term cost, while
BSP follows static policy by using future traffic information.
This finding clearly emphasizes the importance of dynamic
reconfiguration in VRANs. Moreover, LARV also outperforms
RL benchmarks, where it saves the long-term total cost by up

to 10% of DDPG and 75% MDQ. Compared to continuous
space and non-branching state-of-the-art deep RL approaches,
this gain shows the effectiveness of LARV through branching
of D3QN in solving a large state space and multi-dimensional
action space of the VRAN reconfiguration problem.

4) Reconfiguration Fees: We analyze the impact of various
reconfiguration fees (kg) on the cost savings that LARV can
achieve. Fig. 12(c) shows that LARV can successfully pro-
vide well-achieve performance in both cheap and expensive
reconfiguration fees. It also shows that the increase in recon-
figuration fee slightly affects the performance of LARV while
it significantly degrades DDPG. DDPG is proposed for con-
tinuous action, and the performance can be deteriorated due to
discretization when the problem has discrete action space, such
as arising in our problem. In general, compared to DDPG, the
cost savings of LARV increase as the fee gets more expensive,
where the gains of LARV rise from 10% to as high as 35%
(kg = 1). Moreover, the cost savings of LARV remain stable
compared to BSP and MDQ at around 35-39% and 62-76%,
respectively. These findings emphasize that reconfiguring the
VvRAN system is beneficial, but we need to carefully design
the RL algorithm suited to the VRAN problem.

5) Overprovisioning Fees: We study the effect of differ-
ent overprovisioning coefficient fees to the performance of
LARV. As seen from Fig. 12(d), when the overprovisioning
fee gets costly, all the RL approaches’ performance increases
correspond to the static policy, where LARV becomes the
best approach among them. LARV can save the costs from
23% (ko = 0.05) to 49% compared to BSP (kg = 1).

MURTI et al.: DEEP RL FOR ORCHESTRATING COST-AWARE RECONFIGURATIONS OF vRANs

These results highlight the need for reconfiguring prudently
the VRAN system at runtime, particularly when the resources
are valuable and the price of wasting such resources is high,
making the static policy economically unviable for long-term
operations.

VI. CONCLUSION

In this paper, we have proposed LARV that jointly recon-
figures the functional splits of the BSs, the resources and
placements of vDUs and vCUs, and the routing for each BS
flow. The objective of LARYV is to minimize the long-term total
operation cost while adapting to the possibly-varying traffic
demands and resource availability. In particular, we have ana-
lyzed the relations between the traffic demands and resource
utilization in the VRAN system, which renders their relations
have high variance and dependence on platform and platform
load. We also have formulated a comprehensive cost model
capturing the impacts of resource overprovisioning, instantia-
tion and reconfiguration and the declined demands. We have
developed LARV using a model-free deep RL paradigm to
solve the sequential decision-making problem. The agent’s
neural network is developed using a combination of D3QN
and action branching to tackle the large state space and multi-
dimensional action space. We also have conducted a series
of trace-driven evaluations during the training process and
online operation. The numerical results have shown that LARV
successfully learns the optimal policy, where its learning con-
vergence can be expedited through transfer learning even in
different VRAN systems. Moreover, LARV offers consider-
able cost savings by up to 59% of the static benchmark,
35% of DDPG with discretization, and 76% of a distributed
non-branching D3QN solution.

The proposed framework in this paper has been evalu-
ated in a realistic simulated VRAN system based on collected
testbed traces and network datasets. However, it has not been
implemented in a real live network due to the limitation of
the current testbed setup, i.e., it could not support several
functional splits and the geographical location of the servers.
In the future, implementing the framework and evaluating
its performance in a real live network setup would be an
interesting study.

REFERENCES

[1] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5G networks: State-of-the-art and the
road ahead,” Comput. Netw., vol. 182, Dec. 2020, Art. no. 107516.

[2] “5G immersive service opportunities with edge cloud and cloud RAN,”
Nokia, Espoo, Finland, White Paper, 2019.

[3] “Nokia mobile anyhaul,” Nokia, Espoo, Finland, White Paper, 2017.

[4] “Open and virtualized—The future radio access network,” NEC, Tokyo,
Japan, 2020.

[S] O-RAN-WGI-O-RAN Architecture
Alliance, Alfter, Germany, 2023.

[6] Architecture Description (Release 16), Version 16.1.0, 3GPP Standard
(NG-RAN) 38.401, 2020.

[71 F. W. Murti, J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez,
and G. losifidis, “An optimal deployment framework for multi-cloud vir-
tualized radio access networks,” IEEE Trans. Wireless Commun., vol. 20,
no. 4, pp. 2251-2265, Apr. 2021.

[8] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: Technical misconceptions and business barriers,” [EEE
Commun. Mag., vol. 54, no. 8, pp. 16-22, Aug. 2016.

Description V08.00, O-RAN

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

[31]

215

A. M. Alba, J. H. G. Veldsquez, and W. Kellerer, “An adaptive functional
split in 5G networks,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), 2019, pp. 410-416.

J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Pérez,
A. Banchs, and J. J. Alcaraz, “vrAln: Deep learning based orchestra-
tion for computing and radio resources in VRANSs,” IEEE Trans. Mobile
Comput., vol. 21, no. 7, pp. 2652-2670, Jul. 2022.

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and
G. Josifidis, “Orchestrating energy-efficient VRANs: Bayesian learning
and experimental results,” IEEE Trans. Mobile Comput., vol. 22, no. 5,
pp- 2910-2924, May 2023.

I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “SrsLTE: An open-source platform for
LTE evolution and experimentation,” in Proc. 10th ACM Int. Workshop
Wireless Netw. Testbeds, Exp. Eval. Characterization, 2016, pp. 25-32.
J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and
G. Iosifidis, “EdgeBOL: Automating energy-savings for mobile edge
Al in Proc. 17th Int. Conf. Emerg. Netw. Exp. Technol., 2021,
pp. 397-410. [Online]. Available: https://doi.org/10.1145/3485983.
3494849

X. Foukas and B. Radunovic, “Concordia: Teaching the 5G VRAN to
share compute,” in Proc. ACM SIGCOMM Conf., 2021, pp. 580-596.
[Online]. Available: https://doi.org/10.1145/3452296.3472894

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proc. ICML, 2016, pp. 1-9.

H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, 2016, pp. 2094-2100.

A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architec-
tures for deep reinforcement learning,” in Proc. AAAI Conf. Artif. Intell.,
2018, pp. 4131-4138.

A. Garcia-Saavedra, G. Iosifidis, X. Costa-Perez, and D. J. Leith,,
“Joint optimization of edge computing architectures and radio access
networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp. 2433-2443,
Nov. 2018.

B. Ojaghi, F. Adelantado, and C. Verikoukis, “SO-RAN: Dynamic RAN
slicing via joint functional splitting and MEC placement,” IEEE Trans.
Veh. Technol., vol. 72, no. 2, pp. 1925-1939, Feb. 2023.

F. Z. Morais et al, “PlaceRAN: Optimal placement of virtu-
alized network functions in beyond 5G radio access networks,”
IEEE Trans. Mobile Comput., early access, Apr. 29, 2022,
doi: 10.1109/TMC.2022.3171525.

A. M. Alba, S. Janardhanan, and W. Kellerer, “Enabling dynamically
centralized RAN architectures in 5G and beyond,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 3, pp. 3509-3526, Sep. 2021.

A. M. Alba and W. Kellerer, “Dynamic functional split adaptation
in next-generation radio access networks,” IEEE Trans. Netw. Service
Manag., vol. 19, no. 3, pp. 3239-3263, Sep. 2022.

D. Harutyunyan and R. Riggio, “Flex5G: Flexible functional split in
5G networks,” IEEE Trans. Netw. Service Manag., vol. 15, no. 3,
pp. 961-975, Sep. 2018.

D. Bega, A. Banchs, M. Gramaglia, X. Costa-Pérez, and
P. Rost, “CARES: Computation-aware scheduling in virtualized
radio access networks,” IEEE Trans. Wireless Commun., vol. 17, no. 12,
pp. 7993-8006, Dec. 2018.

S. Ali et al., “6G white paper on machine learning in wireless
communication networks,” 2020, arXiv:2004.13875.

S. Matoussi, I. Fajjari, N. Aitsaadi, and R. Langar, “Deep learning based
user slice allocation in 5G radio access networks,” in Proc. IEEE 45th
Conf. Local Comput. Netw. (LCN), 2020, pp. 286-296.

M. Kalntis and G. losifidis, “Energy-aware scheduling of virtualized
base stations in O-RAN with online learning,” in Proc. IEEE Global
Commun. Conf., 2022, pp. 1-7.

T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement learning
based dynamic function splitting in disaggregated green open RANs,”
in Proc. EEE Int. Conf. Commun., 2021, pp. 1-6.

L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in O-RAN for data-driven NextG cellular
networks,” IEEE Commun. Mag., vol. 59, no. 10, pp. 21-27, Oct. 2021.
M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia,
“ColO-RAN: Developing machine learning-based xApps for open
RAN closed-loop control on programmable experimental plat-
forms,” IEEE Trans. Mobile Comput., early access, Jul. 4, 2022,
doi: 10.1109/TMC.2022.3188013.

F. W. Murti, S. Ali, and M. Latva-aho, “Constrained deep reinforcement
based functional split optimization in virtualized RANs,” IEEE Trans.
Wireless Commun., vol. 21, no. 11, pp. 9850-9864, Nov. 2022.

http://dx.doi.org/10.1109/TMC.2022.3171525
http://dx.doi.org/10.1109/TMC.2022.3188013

216

[32]

[33]

[34]

(351

[36]
[37]
[38]

[39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

F. W. Murti, S. Ali, G. losifidis, and M. Latva-Aho, “Learning-
based orchestration for dynamic functional split and resource allocation
in VRANS,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit
(EuCNC/6G Summit), 2022, pp. 243-248.

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia,
“Understanding O-RAN: Architecture, interfaces, algorithms, security,
and research challenges,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 1376-1411, 2nd Quart., 2023.

D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“AZTEC: Anticipatory capacity allocation for zero-touch network slic-
ing,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 794-803.
5G-CORAL: Refined Design of 5G-CORAL Orchestration and Control
System and Future Directions, Public Deliverable D3.2, Eur.
Commission, Brussels, Belgium, May 2019.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529-533, Feb. 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent., 2015, pp. 1-15.

T. Italia, “Telecommunications—SMS, Call, Internet—MIL.” 2015.
[Online]. Available: https://doi.org/10.7910/DVN/EGZHFV

B. Xiang, J. Elias, F. Martignon, and E. Di Nitto, “A dataset for mobile
edge computing network topologies,” Data Brief, vol. 39, Dec. 2021,
Art. no. 107557.

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

P. Rost, S. Talarico, and M. C. Valenti, “The complexity—rate tradeoff
of centralized radio access networks,” IEEE Trans. Wireless Commun.,
vol. 14, no. 11, pp. 6164-6176, Nov. 2015.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. 4th Int. Conf. Learn. Represent., 2016, pp. 1-14.

Fahri Wisnu Murti received the B.S. degree from
Telkom University, Indonesia, and the master’s
degree from the Department of IT Convergence
Engineering, Kumoh National Institute of
Technology, South Korea. He is currently pursuing
the Ph.D. degree with the Centre for Wireless
Communications, University of Oulu, Finland. Prior
to his doctoral study, he has worked as a Research
Assistant with the Department Computer Science,
Trinity College Dublin, Ireland. His current research
interests lie in the development of machine learning

and optimization techniques for intelligent wireless networks.

Samad Ali received the B.S. degree in electrical
engineering from the University of Tabriz, Tabriz,
Iran, and the M.S. and Ph.D. degrees in wireless
communications engineering from the University of
Oulu, Oulu, Finland. He is currently a Postdoctoral
Researcher with the University of Oulu and a
Senior Research Specialist with Nokia Standards.
His research interest is the applications of AI/ML
in wireless communication systems.

George Iosifidis received the Diploma degree
in electronics and telecommunications engineering
from Greek Air Force Academy, Athens, in 2000,
and the Ph.D. degree from the University of Thessaly
in 2012. He was an Assistant Professor with Trinity
College Dublin from 2016 to 2020 and a Research
Scientist with Yale University from 2015 to 2017. He
is currently an Associate Professor with the Delft
University of Technology. His research interests
lie in the broad area of network optimization
and economics; more information can be found at
www.FutureNetworksLab.net.

Matti Latva-aho (Senior Member, IEEE) received
the M.Sc., Lic.Tech., and Dr.Tech. (Hons.) degrees in
electrical engineering from the University of Oulu,
Finland, in 1992, 1996, and 1998, respectively. From
1992 to 1993, he was a Research Engineer with
Nokia Mobile Phones, Oulu, Finland, after which
he joined the Centre for Wireless Communications
(CWC), University of Oulu. He was the Director
of CWC from 1998 to 2006 and the Head of the
Department for Communication Engineering until
August 2014. He is currently a Professor of Wireless
Communications with the University of Oulu and the Director for National
6G Flagship Programme. He is also a Global Fellow with Tokyo University.
He has published over 600 conference or journal papers in the field of wire-
less communications. He received the Nokia Foundation Award in 2015 for
his achievements in mobile communications research.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

