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SUMMARY

The security of electronic devices holds the greatest importance in the modern digital
era, with one of the emerging challenges being the widespread occurrence of hardware
attacks. The aforementioned attacks present a substantial risk to hardware devices, and
it is of utmost importance to comprehend the potential detrimental effects they may
cause. Side-channel attacks are a class of hardware attacks that exploit information un-
intentionally leaked by a device during its operation. These leaks manifest in various
forms, including power consumption, time variations, and thermal dissipation. The
fundamental danger posed by side-channel attacks is their ability to infer sensitive in-
formation from these unintended emissions. To address the heightened risks associated
with side-channel attacks, this thesis focuses on three main research topics.

Side Channel Analysis: Side-channel attacks can manifest in various forms, depend-
ing on the specific leakage channels employed. The present study primarily focused on
the investigation of three distinct categories of leakage, as it is hypothesized that these
specific forms of leakage present the greatest potential risks. The aim of the analysis is to
identify the optimal channels for creating an assessment framework. The selected leak-
ages for analysis cover power consumption, temporal variations, and thermal attacks.
Power consumption measurements provide valuable insights into the behavior and exe-
cution patterns of algorithmic operations, facilitating the identification of specific oper-
ations that are particularly vulnerable to attacks. There are other types of leakages that
are similar, such as electromagnetic emissions. However, it is important to note that
power consumption demonstrates considerably lower levels of noise. The use of time
variations in evaluating operations is subject to certain limitations due to the need to
wait for a response. Nevertheless, one notable advantage of these systems is their ability
to offer convenient remote access, facilitated by their software-based calculation capa-
bilities. Despite its inherent noise, thermal monitoring is employed in nearly all devices
as a means to prevent overheating. The ability to remotely access this monitoring system
is facilitated through software. Consequently, a meticulous examination is necessary to
identify potential modes of assault.

Countermeasures: Cryptographic algorithms and other security primitives are the ba-
sic components of any cryptosystem. In their most optimized versions, these algorithms
are frequently thought to be prone to side-channel attacks (SCAs), which necessitates the
development of countermeasures. In this thesis, four countermeasures that have been
developed are thoroughly analyzed. The countermeasures that were devised covered a
wide range of algorithms, such as GIFT, RSA, and AES, and they were suitable for a vari-
ety of applications, including lightweight ones. The first countermeasure that has been
developed makes use of an Advanced Encryption Standard (AES) implementation that
is based on neural networks. This countermeasure’s principal goal is to confuse the at-
tacker by causing random fluctuations in power consumption. The second countermea-
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sure is developed for asymmetric algorithms. This countermeasure’s goal is to balance
the leakage by making power consumption similar among all its executions. The goal of
developing the third algorithm was to provide a countermeasure that is lightweight and
tailored to symmetric algorithms. This countermeasure is based on the integration of
balancing and randomization techniques. To ensure that the results of these two oper-
ations show balanced power behaviors in a random way, two instances of the SBOX op-
eration are generated to complement each other. The fourth countermeasure involves
the optimization of a widely known countermeasure named Domain-Oriented Mask-
ing (DOM) to adapt to lightweight applications. The countermeasure used in this re-
search combines optimization techniques like resource sharing, module optimizations,
and key-expansion bypassing.

Pre-silicon Leakage Assessment: After recognizing the importance of mitigating side-
channel leakages and developing various countermeasures, the subsequent phase en-
tails establishing a framework for evaluating these vulnerabilities. In contrast to soft-
ware vulnerabilities, which can be addressed through patching at any given time, the
mitigation of hardware vulnerabilities necessitates expensive modifications to the phys-
ical hardware. Hence, it is essential to develop a leakage assessment framework that
can effectively evaluate the system during the design phase. In this thesis, we present
an innovative and pioneering methodology that relies on the application of Generative
Neural Networks (GANs). The methodology described herein signifies a substantial ad-
vancement in the pursuit of enhanced security in the field of chip design. This frame-
work demonstrates outstanding ability to rapidly produce traces that closely correspond
to those obtained from computer-aided design (CAD) processes. As a result, it enables
the efficient validation of numerous countermeasures within a realistic timeframe.



SAMENVATTING

De beveiliging van elektronica heeft de grootste urgentie in het moderne digitale tijd-
perk. Een van de opkomende uitdagingen is de wijdverbreide opkomst van hardware-
aanvallen. De eerder genoemde aanvallen vormen een aanzienlijk risico voor hardware,
en het is van het grootste belang om de potentiële schadelijke effecten die ze kunnen
veroorzaken, te begrijpen. Side-channel aanvallen vormen een categorie aanvallen die
informatie benutten die onbedoeld door een apparaat wordt gelekt tijdens zijn wer-
king. Deze lekken manifesteren zich in verschillende vormen, waaronder stroomver-
bruik, tijdsvariaties en thermische dissipatie. Het fundamentele gevaar dat side-channel
aanvallen vormen, is hun vermogen om gevoelige informatie af te leiden uit deze onbe-
doelde manifestaties. Dit proefschrift richt zich op drie onderzoeksthema’s om de ver-
hoogde risico’s van side-channel aanvallen aan te pakken.

Analyse van side-channels: side-channel aanvallen kunnen zich manifesteren in ver-
schillende vormen, afhankelijk van de specifieke lekkanalen die worden gebruikt. Dit
proefschrift richt zich voornamelijk op het onderzoek van drie verschillende catego-
rieën lekken, aangezien wordt verondersteld dat deze specifieke vormen van lekken het
grootste potentieel aan risico’s met zich meebrengen. De geselecteerde lekken omvatten
stroomverbruik, tijdsvariaties en thermische aanvallen. Metingen van het stroomver-
bruik bieden waardevolle inzichten in het gedrag en de uitvoeringspatronen van algo-
ritmische bewerkingen. Dit maakt de identificatie van specifieke bewerkingen die bij-
zonder vatbaar zijn voor aanvallen makkelijker. Er zijn andere soorten lekken die verge-
lijkbaar zijn, zoals elektromagnetische emissies. Het is echter belangrijk op te merken
dat het stroomverbruik aanzienlijk lagere niveaus van ruis vertoont. Het gebruik van
tijdsvariaties bij het evalueren van bewerkingen is beperkt vanwege de noodzaak om te
wachten op een respons. Desalniettemin geven deze systemen eenvoudig externe toe-
gang door hun op software gebaseerde berekeningsmogelijkheden. Ondanks de inhe-
rente ruis wordt thermische monitoring bijna in alle apparaten gebruikt als middel om
oververhitting te voorkomen. De mogelijkheid om op afstand toegang te krijgen tot dit
monitorsysteem wordt vergemakkelijkt door software. Bijgevolg is een grondig onder-
zoek noodzakelijk om mogelijke aanvalsmodi te identificeren.

Tegenmaatregelen: Cryptografische algoritmen en andere beveiligingsmaatregelen
vormen de basiscomponenten van elk cryptosysteem. In hun meest geoptimaliseerde
versies worden deze algoritmen vaak als vatbaar voor side-channel aanvallen (SCA’s) be-
schouwd, wat de ontwikkeling van tegenmaatregelen noodzakelijk maakt. In dit proef-
schrift worden vier tegenmaatregelen die zijn ontwikkeld grondig geanalyseerd. De be-
dachte tegenmaatregelen bestrijken een breed scala aan algoritmen, zoals GIFT, RSA en
AES, en zijn geschikt voor verschillende toepassingen, waaronder eenvoudige toepassin-
gen. De eerste tegenmaatregel die is ontwikkeld, maakt gebruik van een implementatie
van de Advanced Encryption Standaard (AES) die is gebaseerd op neurale netwerken.
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Het voornaamste doel van deze tegenmaatregel is om de aanvaller in verwarring te bren-
gen door willekeurige schommelingen in het stroomverbruik te veroorzaken. De tweede
tegenmaatregel is ontwikkeld voor asymmetrische algoritmen. Het doel van deze tegen-
maatregel is om het lekken in evenwicht te brengen door het stroomverbruik vergelijk-
baar te maken voor alle operaties. Het doel van de ontwikkeling van het derde algoritme
was het bieden van een eenvoudige tegenmaatregel die is afgestemd op symmetrische
algoritmen. Deze tegenmaatregel is gebaseerd op de integratie van balancerings- en ran-
domisatietechnieken. Om ervoor te zorgen dat de resultaten van deze twee bewerkin-
gen evenwichtig vermogensverbruik op een willekeurige manier laten zien, worden twee
exemplaren van de SBOX-operatie gegenereerd om elkaar aan te vullen. De vierde tegen-
maatregel omvat de optimalisatie van een bekende tegenmaatregel genaamd Domain-
Oriented Masking (DOM) om zich aan te passen aan eenvoudige toepassingen. De in
deze studie gebruikte tegenmaatregel combineert optimalisatietechnieken zoals het de-
len van middelen, module-optimalisaties en het omzeilen van sleuteluitbreiding.

Beoordeling van de pre-silicon lekstroom: Na het identificeren van het belang om
side-channel lekken te verminderen en het ontwikkelen van verschillende tegenmaatre-
gelen, omvat de volgende fase het opzetten van een kader om deze kwetsbaarheden te
beoordelen. In tegenstelling tot softwarekwetsbaarheden, die op elk moment kunnen
worden opgelost door patches, vereist het verminderen van hardwarekwetsbaarheden
kostbare wijzigingen aan de fysieke hardware. Het is daarom essentieel om een lekbe-
oordelingskader te ontwikkelen dat het systeem effectief kan evalueren tijdens de ont-
werpfase. In dit proefschrift presenteren we een innovatieve en baanbrekende metho-
dologie die berust op het gebruik van Generative Neural Networks (GANs). De hier be-
schreven methodologie betekent een aanzienlijke verbetering van de beveiliging op het
gebied van chipontwerp. Dit kader toont een opmerkelijk vermogen om snel signalen
te produceren die nauw overeenkomen met die verkregen uit computerondersteunde
ontwerpprocessen. Hierdoor maakt het een efficiënte validatie mogelijk van talrijke te-
genmaatregelen binnen een realistisch tijdsbestek.
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1
INTRODUCTION

This chapter presents a brief overview of the core topic explored in this thesis, as well as
an explanation of its importance, an evaluation of relevant literature, a discussion of ex-
isting challenges and opportunities, and a description of the primary research topics and
contributions that have been covered in this dissertation. Section 1.1 discusses the mo-
tivation behind and importance of cybersecurity, the rising interest of attackers towards
hardware attacks, and sheds light on the rising prominence of power-based side channel
attacks. Section 1.2 reviews the opportunities and challenges related to the side channel
analysis domain. Section 1.3 outlines the research areas that are addressed within the con-
text of this thesis. Section 1.4 covers the contributions presented in this thesis. Section 1.5
provides an overview of the thesis outline.

1
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1.1. MOTIVATION
The ever-increasing complexity of today’s technology results in vulnerabilities in hard-
ware components, in addition to those in software, that pose a growing risk to the secu-
rity infrastructure of electronic devices. This section provides an overview of the severity
of hardware-level attacks, with a particular emphasis on the analysis of side-channel at-
tacks. The aim is to highlight the need for further progress in hardware security in order
to thwart the evolving sophistication of attack mechanisms.

1.1.1. THE THREAT OF HARDWARE LEVEL VULNERABILITIES

The inception of cybercrime in the digital era can be traced back to 1955 [1], when Allen
Scherr exploited the MIT computer network system, unveiling an early vulnerability in
computing networks. His actions underscored a moment in digital security, laying bare
the relative ease with which individuals could compromise digital systems using simple
means of the time, such as punch cards, setting an upsetting precedent for the future.
This incident presented new cybersecurity issues, illustrating that as technology evolves,
so will the means for using it for evil.

Figure 1.1: Cybercrime records from 2017 to 2021 based on FBI report [2]

Over the following five decades, the landscape of cybercrime has not only broadened
but also intensified markedly. According to a report from the FBI [2], the number of
cybercrime occurrences in the United States has reached an astounding 2.76 million in-
stances, with financial losses equal to $18.7 billion in just five years (Figure 1.1 shows
the complins and losses from year 2017 to 2021). Globally, the cybercrime economy is
expected to reach $10.5 trillion by the year 2025 [3], making it among the third-largest
economies in the world, along with the United States and China. The continual advance-
ment in technology today leads to the emergence of vulnerabilities not just in software,
but also in hardware components, thereby escalating the risks to the security framework
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of electronic devices. The nature of hardware vulnerabilities is distinct from that of soft-
ware due to the inability to update the physical hardware components. Therefore, upon
discovering a bug, a simple patch cannot rectify the issue; instead, the physical hard-
ware must be replaced. A 2019 report by Dell [4] elucidates the gravity of hardware se-
curity challenges, revealing that 63% of organizations reported experiencing at least one
data breach in the preceding year attributable to hardware security vulnerabilities. This
statistic underscores the pressing need for a more robust and proactive approach to-
wards hardware security. Unlike software which can leverage community-driven vulner-
abilities assessment programs such as bug bounty [5], addressing hardware vulnerabili-
ties often requires the employment of specialized security engineers. The engagement of
security experts, coupled with the potential necessity for design revisions, typically leads
to a reduction in design efficiency and an extended time-to-market, hence increasing fi-
nancial costs. In essence, addressing hardware vulnerabilities presents a more complex,
time-consuming, and costly endeavor when compared to managing software vulnera-
bilities. This illustrates the various problems involved in protecting the security infras-
tructure in the face of the constantly changing technological landscape.

1.1.2. SIDE CHANNELS: THE UNDERESTIMATED HARDWARE ATTACKS

In recent years, the field of cybersecurity has seen an increase in the prevalence of hard-
ware attacks. Examples of this type of attack include Intellectual Property (IP) Piracy [6],
in which malicious entities copy and distribute hardware designs without authorization;
Hardware Trojans [7], which are malicious alterations to the hardware that can cause
unauthorized behavior or data leakage; and Side Channel Attacks (SCAs) [8], which ex-
ploit the physical characteristics of hardware implementations to gather sensitive infor-
mation. Unlike other hardware attacks, SCAs are well-known for being undetectable and
can be executed using relatively inexpensive equipment. In order to get insight into the
ease of SCAs, one can consider the Simple Power Analysis (SPA) [9]. SPA is an example
of a specific subset of SCAs that analyze the power consumption patterns exhibited by
devices with the ultimate objective of uncovering confidential information. This attack
allows the attacker to infer the power consumption patterns through simple observa-
tion, revealing the secret information of the cryptographic algorithm, such as RSA, by
analyzing a single trace (i.e. one run). The implementation of RSA relies on the use of
Multiply and Square operations. Because Multiply consumes more power, the attacker
can identify the executed operations and subsequently obtain the key value, as depicted
in the Figure.1.2.

Furthermore, physical access is no longer required for side channel attacks to be effec-
tive in many cases.. To understand the severity of this, we can examine the Spectre and
Meltdown vulnerabilities that surfaced in 2018 [10]. These vulnerabilities belong to a
category of side-channel attacks called microarchitectural attacks. In this type of attack,
the adversary makes use of the microarchitectural properties of modern CPUs in order
to obtain sensitive information and leak it. As shown in Figure 1.3, upon discovery, ap-
proximately 2.7 billion devices were found to be susceptible to these vulnerabilities [11].
Spectre and Meltdown epitomized the idea that side channel attacks have evolved be-
yond the need for physical access to the hardware, presenting a significant advance-
ment in the capabilities of attackers. These illustrations emphasize the urgent need to
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Figure 1.2: Simple Power Analysis [9]

develop effective defenses in order to reduce the growing risks posed by such attacks.
The comprehensive comprehension and subsequent mitigation of potential hardware
vulnerabilities play a crucial role in establishing a robust cybersecurity framework that
can effectively withstand the ever-changing landscape of attacks.

Figure 1.3: Global vulnerable devices by Meltdown and Spectre [11]

1.2. OPPORTUNITIES AND CHALLENGES
The domain of power attacks within the cybersecurity landscape presents both signif-
icant challenges and opportunities for organizations and individuals. With the ongo-
ing development of technology, there is an ever-increasing demand for fresh techniques
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and methods of defense against attacks. In this section, we will examine three essen-
tial domains of defending against side channel attacks’ threats. Firstly, we shall delve
into countermeasures, which act as a shield against potential exploitation. Secondly,
the spotlight will shift to pre-silicon leakage assessment, serving as both a detection
and preventive methods. Lastly, post-silicon leakage assessment will be discussed as a
validation and evaluation tool, acting as a subsequent layer of assurance.

1.2.1. COUNTERMEASURES

Security primitives, including cryptographic algorithms, form the fundamental building
blocks of any cryptosystem. In their most optimized forms, these algorithms are often
seen as vulnerable to Side Channel Attacks (SCAs), necessitating the need for customized
countermeasures. The demand for such countermeasures amplifies with the broaden-
ing spectrum of cryptographic algorithms and the varying application needs, which span
from lightweight to highly sensitive applications.

• Algorithms Variance: Cryptographic algorithms such as symmetric encryption
(AES [12], DES, GIFT [13]), asymmetric encryption (RSA [14], ECC [15]), and hash-
ing algorithms (SHA-256 [16], MD5 [17]) manifest disparate levels of vulnerability
to SCAs [9]. For instance, asymmetric algorithms like RSA are notably susceptible
to timing attacks [18], while symmetric algorithms like AES [9] may be more prone
to power analysis attacks. The structural and operational differences across these
algorithms necessitate algorithm-specific countermeasures.

• Implementations Levels: The implementation of cryptographic algorithms can
be achieved through either software or hardware, each presenting its own set of
advantages and challenges. The effectiveness of software countermeasures [19] is
frequently constrained by the hardware that lies behind them, particularly the in-
structions and architecture of the Central Process Unit (CPU). If a CPU has a cache
that leaks information through timing or power channels, for example, it may be
exceedingly difficult to mitigate this issue using software by itself. Hardware coun-
termeasures [20], on the other hand, offer a solution that is both more efficient and
more robust. However, it has a higher overhead area and is less flexible to update
in response to new threats.

• Applications Scope In lightweight applications like IoT devices, the trade-off be-
tween security and computational resources is highly skewed towards minimizing
resource utilization. Countermeasures against SCAs in such settings often focus
on simple, resource-efficient strategies like balanced power consumption and ba-
sic masking techniques, which attempt to obfuscate the correlation between phys-
ical emanations and secret information. Conversely, in high-sensitivity applica-
tions like financial systems or military communications, the emphasis drastically
shifts towards maximizing security. Advanced countermeasures like higher-order
differential power analysis (DPA) [21] resistance, employing algorithmic transfor-
mations, and hardware-software co-design approaches are adopted. Additionally,
proactive measures like rigorous testing and validation against known SCAs are
integral in these settings.
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1.2.2. PRE-SILICON LEAKAGE ASSESSMENT:

As stated before, it is important to note that hardware vulnerabilities, namely side chan-
nels, cannot be addressed in the same manner as software vulnerabilities due to the in-
herent inability to patch hardware. Hence, in order to mitigate the risk of side channel
attacks, it is imperative to do an analysis of the electronic chip during the design phase.
To accomplish this objective, it is imperative to devise methodologies for assessing leak-
age. However, these advancements present challenges and opportunities, as the existing
design tools lack a leakage assessment feature. The challenges and opportunities can be
observed in three distinct ways, namely Simulation Accuracy, Modeling Complexity, and
Analyzing Time. These three aspects will now be examined in further depth.

Simulation Accuracy: In the pre-silicon stage, the quality of the simulation is of the
utmost importance in order to provide a realistic portrayal of the behavior of the hard-
ware and its interaction with the environment. The stage at which the design is being
simulated determines the accuracy of the outcome. It is known that simulation at lower
levels, such as transistor-level, provides a better realization of the design behavior. An-
other factor that can affect the simulation’s accuracy is the sampling rate. The higher
the sampling rate, the higher the accuracy of the results. Accurate simulation models are
useful in identifying potential side-channel vulnerabilities that power analysis attacks
might exploit. These vulnerabilities could be exploited in a variety of ways. On the other
hand, reaching a high level of precision is filled with difficulties. One major issue is the
speed of the simulation. Simulating at a lower level of the design and the increase in the
sample rate affect the performance negatively. The possibility lies in the development of
balanced simulation tools and methods that are able to model switching activities with
high precision and reasonable speed, which can therefore provide a valid foundation for
leakage evaluation.

Modeling Complexity: It is impossible to overstate how difficult it is to simulate all
of the many operational states that can be present in a semiconductor device. In order
to determine whether or not a system is vulnerable to power attacks, each operational
state may display a different set of power consumption patterns. These patterns have to
be represented appropriately. The currently available design tools are not designed for
power analysis. Hence, it could not have the level of sophistication required to manage
such a high level of modeling complexity, which could result in certain vulnerabilities
going undiscovered. Nevertheless, this obstacle presents an opportunity for creativity
in the form of the development of fresh modeling approaches and tools. It is possible
to establish new frameworks that provide a more nuanced and comprehensive under-
standing of the power consumption model. This will result in an improvement in the
quality and effectiveness of leakage evaluations.

Analyzing Time: The amount of time needed to carry out comprehensive leakage
analyses is a considerable obstacle, particularly when considering the pressure that ex-
ists to reduce the amount of time it takes to bring a product to market. Extensive simu-
lations and analyses may cause the design phase to take a much longer amount of time,
which may compromise the hardware product’s ability to compete effectively. In-depth
leakage evaluations also need a significant amount of resources, which may drive up
expenses even more. The flip side of this coin is that there is a great opportunity to
build analysis tools and procedures that are faster and more efficient. It is possible that
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the amount of time spent analyzing can be greatly cut down by utilizing developments
in computational capabilities and parallel processing. However, this would have to be
done without sacrificing the comprehensiveness of the leakage evaluation. In addition,
the use of machine learning and artificial intelligence might be exploited to automate
and speed up certain portions of the study, thereby rendering pre-silicon leakage assess-
ment more useful and cost-effective.

1.2.3. POST-SILICON LEAKAGE ASSESSMENT

The assessment of the resilience of chip design against side channel vulnerabilities in-
volves the examination of side channel leakage using commonly accessible security tech-
niques and equipment, such as those offered by Rambus [5] or Riscure [6]. Nevertheless,
these methodologies are confronted with a myriad of challenges, including, but not lim-
ited to, leakage trace misalignment, noise accumulation, etc. The underlying cause of
these issues can be attributed to the chip’s design, which does not adequately accom-
modate side channel testing processes. This field of study, also referred to as post-silicon
leakage assessment, is still in its early stages of development. Therefore, this has created
several chances for the implementation of various techniques in the fields of noise can-
cellation, leakage augmentation, trace alignment, and other related areas.

1.3. RESEARCH TOPICS
The primary objective of this thesis is to provide an answer to the essential question
"Which strategies are the most effective at protecting against side channel attacks?" In
order to provide a full response to this important question, it is essential to investigate a
range of characteristics that fall under the umbrella of the vulnerability category known
as side channels. These aspects are summarized in the following sub-questions: Iden-
tifying the most suitable side channel for conducting leakage assessment that can ef-
fectively detect the majority of vulnerabilities.; developing strategies to strengthen the
countermeasures; and locating the method that is the most efficient to assesses these
countermeasures at the design stage.

1.3.1. SIDE CHANNELS ANALYSIS

Researchers and individuals have been investigating different types of side channel at-
tacks in order to determine which approach demonstrates the highest rate of success.
One of the forms of attacks is Photonic Emission Attacks, which encompass the analy-
sis of light generated by hardware components during their operational state in order
to deduce critical information. Scan-Based Attacks refer to a type of security threat that
involves the analysis of hardware responses to specified scan patterns. The primary ob-
jective of these attacks is to find weaknesses inside a system or extract sensitive infor-
mation. Timing Attacks involve the measurement of the system’s response time during
specific operations in order to infer valuable information. Power Analysis Attacks entail
the measurement of a device’s power consumption to gain insights into its internal pro-
cesses and potentially uncover sensitive data. Electromagnetic Field Attacks exploit the
electromagnetic emissions emitted by a device. Acoustic Attacks involve the analysis of
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sounds emitted by a device, such as the noise produced by a CPU or keyboard, to gather
sensitive information. The aim of this research is to examine various forms of attacks,
namely Power attacks, Time attacks, and Thermal attacks, in order to identify one ap-
proach for implementing a leakage assessment technique that can effectively detect the
majority of vulnerabilities.

1.3.2. COUNTERMEASURES

In the previous section, we explored the intrinsic variability of countermeasures, which
is determined by their specific algorithms, levels of implementation, and applications.
The presence of variability emphasizes the need for a comprehensive strategy for im-
plementing countermeasures, ensuring that they are effectively customized to address
the unique challenges presented by various applications. In the context of this research,
we undertook a comprehensive examination and implementation of a variety of strate-
gies to address the issue at hand. The purpose of these countermeasures is to establish
a robust protective barrier that spans across a range of algorithms, levels of implemen-
tation, and fields of application. Our research primarily centered on several algorithms
aligned with NIST standardization, such as AES and GIFT, which are based on symmet-
ric cryptography. Additionally, we also explored RSA, which operates on the principles of
asymmetric cryptography. In terms of scope, our study encompassed both software and
hardware implementations, exploring the intricate dynamics associated with each. Re-
garding the applications, our development encompassed both the lightweight and high-
sensitivity domains, in addition to the normal range of applications. Our objective is
not simply to provide a variety of solutions, but rather to offer a systematic approach
that can be utilized for various algorithms, levels of implementation, and applications to
strengthen defenses against side channel attacks.

1.3.3. ASSESSMENT FRAMEWORK

Earlier, in the opportunities and challenges section, it was mentioned that there is a re-
quirement for researching both pre- and post-silicon leakage assessment. Because it
is of the utmost importance, the pre-silicon leakage assessment will be the primary fo-
cus of this study. While post-silicon assessment can be conducted through standard
methodologies yielding comparable results, the pre-silicon stage necessitates substan-
tial enhancements to ensure the fabrication of a robust chip resilient to side channel
attacks. The numerous facets, such as speed and precision, are going to be the primary
focus of our attention. The purpose of this project is to develop a high-speed leakage
analysis tool that can evaluate the security primitives component of the chip with the
best feasible degree of precision. To get to the conclusion that we are going to look into
some methods, such as artificial intelligence. The focus of our investigation will be di-
rected towards examining several aspects, particularly the factors of speed and accuracy,
in order to design an advanced tool for analyzing leaks at high speeds. The purpose of
this tool is to thoroughly examine the security primitives component of the chip with
a high level of accuracy. This will help strengthen the protection against vulnerabilities
related to side channel attacks during the early phases of chip development. The use of
a proactive strategy plays a crucial role in mitigating potential security concerns, as it es-
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tablishes a strong architectural basis that is essential in preventing side channel attacks.

1.4. THESIS CONTRIBUTIONS

This section covers the significant contributions made by the present thesis based on the
previously stated research topics

Investigating and Analysis of pre-processing technique on Power Side Channels [22]:
This study presents a detailed investigation of information leakage that occurs due to the
power behavior of the cryptographic algorithm. The discussion offers an analysis of sev-
eral pre-processing techniques, including three pre-processing techniques that have not
been studied yet for DL-based SCAs. Hence, five different methods are explored: i) Data
augmentation [23, 24], ii) data transformation [25, 26], iii) data concatenation [27], iv)
stacked auto-encoder [28]; and v) stacked auto-encoder with encoder only [29]. Note
that data augmentation and stacked auto-encoder are already applied in the literature.
Data transformation has been explored in some power attacks like CPA [25] and MLP-
based [26], but not yet in DL-based attacks. The other two techniques come from the
image processing field due to their outstanding results. To our best knowledge, these
three methods are being applied for the first time in DL-based SCAs.

Investigating and Analysis of Time Side Channel Attacks [30]: This study centers on
the vulnerbilities arising from disparities in the processing time of electronic devices
when executing various operations. The presence of small temporal disparities can un-
intentionally reveal significant details regarding the functioning or algorithms employed
by a particular device. In the study, we propose GRINCH, the first cache-time base attack
on GIFT. Caches are usually shared memories that are used to speed up the execution
of cryptographic algorithms. However, they become a security threat when mutually
accessed by multiple processes. A malicious process may gather information to reveal
the secret key by: observing the execution time (time-driven attack) [31], exploiting the
access pattern (access-driven attack) [32], or inferring the sequence of hits and misses
(trace-driven attack) [33]. GRINCH crafts specific inputs to the cipher to extract sensitive
data by observing its cache accesses. Hence, it is a cache time attack.

Investigating and Analysis of Thermal Side Channels [34]: In this study, we perform a
comprehensive investigation on the practicality of performing thermal SCAs. We target
asymmetric cryptographic algorithms as they are typically more computationally inten-
sive than symmetric ones, which in theory means that they generate more heat. Since
temperature has a slow response compared to power, intensive computational tasks pro-
vide better quality traces, as shown in [35]. Hence, we show how known SCA techniques
like Simple Power Analysis (SPA), Correlation Power Analysis (CPA) and Deep-Learning
Power Analysis (DL-SCA) can be adapted for thermal attacks. Additionally, we propose a
novel thermal attack by modifying the CPA attack; it achieves a successful and complete
key recovery. We refer to this attack as Progressive Correlation Thermal Analysis (PCTA).
All these attacks have been evaluated on unprotected and protected versions of an RSA
software implementation. Finally, we present a comparison of all these SCAs techniques
using both thermal and power leakage to clarify how powerful temperature-based at-
tacks can be.

Development of Symmetric based Countermeasures [19]: This study proposes a rad-
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ical new countermeasure type that aims to break the linear correlation between the
power consumption and the leakage model. We realize this by substituting the SBOX op-
eration of AES with a neural network which we call S-NET (short for substitution neural
network). Due to the chaotic nature of S-NET and removal of the linear power-leakage
relation, we classify this countermeasure as confusion. The main contributions of this
paper can be summarized as follow: First we explained the Proposed of S-NET: a new
countermeasure based on confusion. It nullifies power attacks by invalidating the ex-
isting power-leakage models. Followed by Implementation of S-NET. This includes de-
signing, training, and testing of an appropriate neural network. Finally Validating S-NET
security using conformance testing by applying signal-to-noise ratio analysis as a leak-
age assessment and evaluation style testing by applying key ranking analysis based on
the most popular power attacks.

Development of Asymmetric Based Countermeasure [36]: This paper proposes a
new countermeasure for asymmetric algorithms that maintains a constant execution
pattern regardless of the key without adding extra cost. It achieves this by considering
multiple bits simultaneously and the reordering of operations (e.g., square and multipli-
cation in RSA, and double and add in ECC). We refer to this countermeasure as multi-
bit blinding. The proposed method can be applied to both RSA and ECC. However, in
this paper, we focus only on the RSA as a low cost solution has a greater impact when
larger key sizes are used. The main contributions of this paper are: First, Proposal of a
new countermeasure (i.e., multi-bit blinding) for asymmetric algorithms against power-
based side channel attacks. Folllowed by Demonstration of the proposed method using
two different implementations of the RSA algorithms: one based on naive square and
multiplication operations and the other based on Montgomery multiplication [37]. Fi-
nally Validation of the proposed method using two types of side channel attacks tech-
niques: profiled [38] and non-profiled attacks [39].

Development of lightweight based Countermeasures [40, 41]: Two studies are con-
sidered to be lightweight countermeasures. The initial study examines the vulnerabili-
ties present in software implementations of GIFT [41], a lightweight block cipher. The
analysis is conducted utilizing both non-profiled attacks, such as CPA, and profiled at-
tacks, such as deep learning attacks. A novel set of countermeasures is subsequently
proposed. The countermeasure presented in this study is formulated through an analy-
sis of two widely utilized techniques in countermeasure development, namely balancing
and masking. By merging these two approaches, a novel variation called balanced dual-
mask is proposed. The seconed study, presents a novel low-area, low-power and low-
latency AES hardware accelerator [40]. Our method takes advantage of the fact that the
key remains unchanged throughout a communication session, eliminating the need for
repeated execution of the key expansion module. Additionally, we integrate an improved
version of the Domain-Oriented Masking (DOM) which is one of the most advanced
countermeasures against side channel attacks (SCAs). Our DOM-based AES design is
more area-efficient in comparison to the original DOM design.

Development of a leakage assessment technique based on Artificial Intelligence [42]:
This study presents a novel method to speed up the CAD based assessment by generat-
ing reliable power traces at design. We first train a Generative Adversarial Network (GAN)
based on CAD-based power traces and their corresponding switching activity. Subse-
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quently, the GAN is used to generate new power traces using the switching activity as
input only.

1.5. THESIS ORGANIZATION
The remaining parts of this report are broken up into the aforementioned five chapters.
The second chapter of this thesis presents background information and an outline of
the subjects that are relevant to the area of research that is being conducted here. In the
third chapter, we will discuss the technique and implementation of our proposed atacks.
In the fourth chapter, the defenses created against power attacks are broken down and
explained. The leakage assessment that was designed to evaluate the proposed counter-
measures is explained in detail in chapter five. The last chapter concludes and summa-
rizes this thesis. The following list offers a more in-depth explanation of the subjects that
are covered in each chapter.

Chapter 2: This chapter presents the essential contextual information pertaining to
the subject matter addressed in this thesis. start with an examination of fundamental
cryptographic algorithms such as AES, RSA, and GIFT. The subsequent discussion delves
into the elucidation of side-channel attacks, including a description of both profiled and
non-profiled attack methodologies. Subsequently, a classification of countermeasures
employed to mitigate side channel threats is presented. In conclusion, elucidate the
techniques employed for conducting leakage assessments.

Chapter 3: This chapter is dedicated to examining three distinct channels, namely
power, time, and thermal. The selection of these channels has been undertaken with the
aim of developing evaluation methodologies for a singular channel.

Chapter 4: This chapter outlines the four countermeasures that were developed dur-
ing the course of the present study. First, it introduces a neural network-driven version
of the Advanced Encryption Standard (AES) algorithm with the objective of obfuscating
the adversary. Then a description of a countermeasure approach for addressing the issue
of balancing the power consumption in asymmetric algorithms such as RSA and ECC Af-
ter that, a countermeasure that integrates randomization and balancing techniques in a
lightweight manner Finally, an optimized implementation of the DOM-based Advanced
Encryption Standard (AES).

Chapter 5: This chapter centers on the investigation of pre-silicon leakage assessment
methodologies and proposes a mechanism for analyzing micro-electronic chips against
power attacks in the design phase.

Chapter 6: it provides a summary of this thesis and discusses potential future work.





2
BACKGROUND

This chapter provides the necessary background on the topic covered in this thesis. Sec-
tion 2.1commences with an examination of fundamental cryptographic algorithms such
as AES, RSA, and GIFT. Subsequently, Section 2.2 delves into the illustration of side-channel
attacks, including an explanation of both profiled and non-profiled attacks. Following
this, Section 2.3 provides a classification of countermeasures implemented to mitigate side
channel threats, classifying them according to their behavior into balancing and obfuscat-
ing techniques. Finally, in Section 2.4, explain the leakage assessment methods.

This chapter is partially based on survey published on 16th International Conference on Design & Technol-
ogy of Integrated Systems in Nanoscale Era, DTIS 2021 [43].
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2.1. CRYPTOGRAPHIC ALGORITHMS OVERVIEW
In a digital world that is filled with adversarial risks, cryptographic algorithms have be-
come an essential component in the process of protecting communication, information,
and systems. These algorithms make it possible to encrypt data, which protects not only
its privacy but also its integrity and, in some instances, its authenticity. There are a num-
ber of cryptographic algorithms, but only a few of them, such as the Advanced Encryp-
tion Standard (AES) [12], Rivest-Shamir-Adleman (RSA) [14], and the lightweight cipher
GIFT [13], have gained popularity due to the powerful security features and efficient op-
eration that they offer. Next, each of these three algorithms will be explained in further
detail.

2.1.1. ADVANCED ENCRYPTION STANDARD (AES)
AES [12] is a symmetric cryptographic algorithm that is used in the cyber world for the
purpose of encrypting and decrypting data in order to protect them from cyberattacks.
It has a fixed data block size of 128 bits, and key lengths of 128, 192, or 256 bits. The key
length determines the number of rounds required: 10 rounds for 128-bit keys, 12 rounds
for 192-bit keys, and 14 rounds for 256-bit keys. The 128-bit data block is divided into 16
bytes, which are mapped to a 4 × 4 array referred to as the State array. The diagram of
AES encryption and decryption flow is presented in Figure 2.1. Each round of encryption
includes four primary modules: SubBytes, ShiftRows, MixColumns, and AddRoundKey,
except round 0 and last round (see Figure 2.1).

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Plaintext

Ciphertext

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

InvMixColumns

InvSubBytes

InvShiftRows

AddRoundKey

Plaintext

Ciphertext

Round 0

Round 1 to N-1

Round N

Round 0

Round 1 to N-1

Round N

Figure 2.1: AES Encryption & Decryption Flow Diagram

AddRoundKey module involves bit-wise XOR operations of the round key and State ar-
ray. SubBytes module is the only nonlinear module in the AES and plays a crucial role
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in defending against linear crypt-analysis[21]. When performing SubBytes module, each
byte in the state array is substituted with another byte using 16-byte SBOX. The SBOX
is generated using a combination of a multiplicative inverse in Galois Field GF(28) and
an affine transformation [44]. ShiftRows module is a transformation that cyclically shifts
the second, third, and fourth rows of the State array by one, two, and three bytes to the
left, respectively, while leaving the first row unchanged. The InvShiftRows module is
computed by performing the corresponding rotations to the right. MixColumns mod-
ule and InvMixColumns module perform a modular polynomial multiplication in Galois
Field GF(28) on each column of the State array. Equation 2.1 represent the MixColumns
module transformation, and equation 2.2 represent the InvMixColumns module trans-
formation, where 0 ≤ j ≤ 3.

b0, j

b1, j

b2, j

b3, j

=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




a0, j

a1, j
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 (2.1)
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b0, j

b1, j

b2, j

b3, j

 (2.2)

2.1.2. RSA AN ASYMMETRIC ALGORITHM

The concept of asymmetric cryptography (i.e. public-key cryptosystems) was introduced
by Whitfield Diffie and Martin Hellman in 1976 [45]. Their goal was to have a solution for
the secret key distribution problem of symmetric algorithms, especially when an unse-
cured communication channel is used. Asymmetric cryptography works as follows: each
entity has two keys, namely a public and private key. As the name implies, the public key
is publicly available to everyone and is mainly used for encrypting the messages. The
secret key is only known by the receiver and is used to decrypt the messages. A special
mathematical relation exists between the secret and public key that allows such compu-
tations to take place in a secure manner. Anyone can encrypt a message using the public
key. However, only the possessor of the private key belonging to that public key can
decrypt the message. Similarly, the concept can be used to sign documents where the
owner can sign the document using his secret key. The signature can be verified publicly
using the public key.

Examples of public-key cryptosystems are RSA [14], named after the initials of its in-
ventors and ECC [15] (an abbreviation of Elliptic Curve Cryptography). RSA’s security is
inherited from the hardness of the integer factorization problem [46], while the security
of ECC comes from the elliptic curve discrete logarithm problem [46]. With respect to the
implementation, the RSA algorithm is based on modular exponentiation, which is per-
formed by square and multiply operations (see Algorithm 1). The algorithm can be used
both to encrypt a message and decrypt a ciphertext. As mentioned before, in this paper
we analyze the proposed countermeasure only for RSA implementations. while the im-
plementation of ECC is based on scalar multiplication, which is realized by double and
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addition operations (see Algorithm 2).

Algorithm 1 Square-Multiply

1: INPUT (M ,k,n); where M presents the text, k the key which can be represented by its binary represenation
as k0 · · ·kl−1 where k j ϵ{0,1}, and n the modulus.

2: OUTPUT(R0); where R0 = Mk mod(n)
3: R0 = 1
4: R1 = M
5: for j = 0 ≤ l −1 do
6: R0 = R2

0 mod(n)
7: if k j = 1 then
8: R0 = R0R1mod(n)
9: end if

10: end for
11: return R0

Algorithm 2 Double-Addition

1: INPUT (P, d); where P is a point on an elliptic curve and d a scalar which can be represented by
2: its binary represenation as d0 · · ·dt−1, where d j ϵ{0,1}
3: OUTPUT (T); where T = d ·P
4: T = P
5: for j = 0; j ≤ t −1 do
6: T = doubl e(T )
7: if d j = 1 then
8: T = add(T,P )
9: end if

10: end for
11: return T

2.1.3. GIFT A LIGHTWEIGHT CRYPTOGRAPHY

GIFT is a lightweight block cipher designed by Banik et al [13] as an improved to PRESENT.
For performance reasons, GIFT substitution blocks are smaller than PRESENT and use
less number of rounds. This makes the GIFT design very compact with a high through-
put. There are two versions of GIFT, namely GIFT-64 and GIFT-128. The GIFT-64 uses
28 rounds with a 64-bit block size, while the GIFT-128 40 rounds with a 128-bit block
size. The key size is the same in both versions (i.e., 128 bits). As shown in Figure 2.2, each
round of the GIFT cipher consists of four functions [13]: SubCells, PermuBits, AddRound-
Key, and Round Constant. Each function will be described briefly next.After each round
the key is updated and hence each round uses a different key. Next, each function will
be described briefly for the GIFT-128 version as it is the focus of this paper. For further
details we refer the reader to [13].

SubCells: This function processes the 128-bit round input based on 4-bit data seg-
ments. Each 4-bit segment is replaced using a substitution box (SBox). The inputs and
outputs of the SBox have a non-linear relation.

PermBits: This function processes its input state at bit-level. The SubCells’ outputs
are shuffled based on a fixed reordering scheme.
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0 1 2 127
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0 1 2 31 32 33 63 64 65 95 97 98 127
Round key

0 1 2 3 4 5 6 7 124 125 126 127

AddRoundkey & Round Constant

PermBits 
output

Round Constant

Figure 2.2: Round Operations of GIFT-128 Cipher

AddRoundKey: This function processes its input state in a 4-bit segment based fash-
ion. Only the middle two bits of each segment are XORed with specific bits of the key
as illustrated in Figure 2.2. Note that in each round only 64 bits of the key are used. For
round 0 these are bits 0-31 and 64-95 as indicated in the figure. A key scheduler is used
to update the round key.

Round Constant: After the XOR operation with the key, a selected number of bits (i.e.,
3,7,11, 15,19, 23, and 127) are XORed with the round constant. The two least significant
bits (LSB) of each segment are XORed (i.e., exclusive-or operation) with specific bits of
the key. Figure 2.2 shows that the two LSB bits of the first segment are XORed with key-
bit 0 and key-bit 16 (see purple blocks in the Sub-Key Adding part of the figure). For the
following segment, the key-bit 1 and key-bit 17 are used. This interleaved AddRoundKey
process uses 32 bits of the key per round. Additionally, in this step, the most significant
bit of each segment (MSB) is XORed with a specific round constant (see yellow blocks in
the Constant Adding part).

Key Schedule After each round, the key is updated based on two steps as illustrated
in Figure 2.3. In the first step, the key is circularly rotated by 32 bits to the right. In the
second step, the last eight segments (i.e., bits 64-95) are updated as follows (see also the
bottom part of the figure): (1) the first four segments are reversed, i.e., bits 64-67 are
moved to bits 76-79, bits 68-71 to bits 72-75, bits 72-75 to 68-71, and bits 76-79 to 64-67;
(2) the last four segments (i.e. bits 80-95) are updated by circular shifting a segment to
the left by two and XORing it with the next segment that is circularly shifted by two to the
right (see Figure 4.15c). Note that the last segment (i.e., bits 91 to 95) uses the segment
with bits 80-83 as its neighbour.

This step updates the key for the next round. First, the entire key is 32-bits circularly
rotated to the right, thus replacing the used key-bits by the next 32 bits. Thereafter, the
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32 used key bits (now located in the most significant part of the key) go through a local
circular rotate operations, where the 2 MSB bytes are rotated by 2, and the following 2
bytes by 12, as shown in the bottom part of Fig. 2.2.

2.2. SIDE CHANNEL ATTACKS

Power based side channel attacks are attacks where a malicious adversary takes advan-
tage of the power consumption to deduce secret information. These attacks can be clas-
sified in non-profiled and profiled attacks as shown in Figure 2.4. Each class is briefly
explained next.

2.2.1. NON-PROFILED ATTACKS TECHNIQUES

In these attacks, an attacker gets access to a target electronic device that runs a crypto-
graphic algorithm. Thereafter, the attacker tries to perform a key recovery by correlating
a leakage model with obtained power traces during the execution of the cryptographic
algorithm. Famous examples of these types of attacks are Simple Power Attack(SPA) [9],
Differential Power Attack (DPA) [9], Correlation Power Attack (CPA) [47], Collision Power
Attack [48], Zero Value Attack [49], and Machine learning Attack [50]. Each one of these
attacks will be explained briefly next.

SIMPLE POWER ATTACK (SPA)

An SPA attack can be carried out by merely observing changes in power usage through-
out the execution of the target operation (e.g., RSA encryption). It’s worth noting that in
this attack no particular mathematical computations are required. The attack on the un-
protected RSA implementation based on the multiply-square algorithm is a well-known
example [9]. Observing the peak power values of the square and multiply operations
during encryption and decryption allows the attacker to retrieve the key [9].

DIFFERENTIAL POWER ATTACK (DPA)

In DPA attacks [9], the attacker selects a small portion of the key (i.e., 8-bits for AES),
divides the traces in two sets for 256 hypothetical key values based on a single bit at the
output of the SBOX and selects the key belonging to the two sets where the mean differ-
ence between them is the highest. This process is repeated until the full key is recovered.

CORRELATION POWER ATTACK (CPA)

Correlation power side channel attacks [47] work as follows. The attack on AES starts
similarly as DPA, but instead of creating two sets based on single bit at the output of the
SBOX, the used key is estimated using the Pearson coefficient correlation, which is com-
puted using Equation 2.3. In the equation, hk,i represents the hamming weight/distance
of the i th intermediate operation (e.g., SBOX in AES, square and multiply in RSA), k the
subkey value of the encryption/decryption execution, tk, j the sample point j within the
sub-trace k, and n the number of traces. In asymmetric algorithms, the key is recovered
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Figure 2.4: Classification of Power Attacks

in a bit-by-bit, in contrast to symmetric algorithms where this is determined by the width
of the SBOX output (which equals 8 for AES).

ri , j =
∑n(hk,i −µhi )(̇tk, j −µt j )√∑n (hk,i −µhi )2∑̇k

(tk, j −µt j )2
(2.3)

COLLISION POWER ATTACK

Collision attacks [48] aim at situations where two encryptions with different inputs and
an unknown key will produce the same intermediate values (e.g. hamming weight/distance).
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If an adversary can identify from the power consumption two encryption operations that
contain this occurrence, the collision can be exploited. Since a collision only exists for a
subset of the potential key space, each successful collision allows the attacker to narrow
the key search space.

ZERO VALUE ATTACK

Zero value attacks [49] take advantage of the fact that known plaintext (e.g. setting it
to zero) will lead to the leakage of information that exposes the secret key. These type of
attacks mainly target implementations that contain countermeasures and aim to remove
the randomization generated by those countermeasures. An example of such an attack
can be found in multiplicative masking where zero input values cannot be randomized
using multiplicative mask [51].

MACHINE LEARNING ATTACK

Machine learning attacks [50] use the leakage model to distinguish between traces and
derive the key from them. These attacks mainly target asymmetric algorithms such as
RSA and ECC. For example, k-means is a clustering algorithm [50] that is commonly used
to apply such attacks. Starting with an initial guess/prediction, it splits the training set
into k distinct clusters. For each collected trace, it iteratively detects the nearest cluster
center (centroid) and updates the centroids based on the mean of all training instances
assigned to it until no changes occur anymore. To put it another way, the aim is to dis-
cover a partitioning that minimizes the total cluster variance. To determine the distance
between two traces, the squared Euclidean distance can be used. Once the clusters are
created, the partial traces that belong to the two clusters represent either a square or
multiplication operation. Once these operations have been defined, the key can be re-
covered in a bit-by-bit fashion [50].

2.2.2. PROFILED ATTACKS

In contrast to non-profiled attacks, in a profiled attack an adversary uses a similar or
identical device under his control to create a leaking template known as the profiling
phase. After that, the attacker correlates the power traces of the target device and com-
pares them with the template to recover the key; this phase is also known as extraction
phase. Both phases are explained next.

• PROFILING PHASE

In this step, the adversary uses a similar or identical device that he or she com-
pletely controls to develop a behavioral model of the targeted device. This phase
consists of the following steps:

Step 1: In this step, the adversary looks for a device that behaves in a similar way
as the target device.

Step 2: In this step, the adversary selects and defines the point of attack (e.g., the
output of SubByte operation in AES algorithm or square and multiply functions in
RSA).
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Step 3: In this step, the adversary measures several power traces of the chosen
target point of attack.

Step 4: In this step, the adversary assigns a label to each trace acquired in Step 3.
Depending on the cryptographic methodology employed, the label can be com-
puted in a variety of ways. The hamming weight/distance of the SBOX output is
the most commonly used label in AES algorithm [52]. Asymmetric algorithms, on
the other hand, often use the main operations as labels, e.g., square and multiply
in RSA [53].

Step 5: Finally, The adversary designs/builds a template to characterize the traces.
The model is build from the traces and labels collected in Steps 3 and 4, respec-
tively.

• EXTRACTION PHASE

During this phase, the adversary attempts to extract the secret information from
the target device by applying the steps below:

Step 1: in this step, the adversary locates the device of attack.

Step 2: in this step, the adversary identifies the point of attack, i.e., the operation
used to extract the labels during the profiling phase. For instance, the output of
SBOX function in AES.

Step 3: in this step, the adversary measures several power traces that contain the
point of attack. This step requires the traces to be sliced when asymmetric algo-
rithms are used (e.g., slicing square and multiply operations in RSA). Slicing is not
required for symmetric algorithms; there each power trace is represented with a
single label.

Step 4: in this step, the adversary guesses the label value of each measured trace
of Step 3. For AES algorithm, the labels can be seen as the results of the hamming
weight/distance, while for asymmetric algorithm the labels represent the executed
function (e,g., square and multiply in RSA).

Step 5: Finally, the adversary derives the secret key from the obtained labels. The
key is retrieved in a bit-by-bit fashion when asymmetric algorithms from the iden-
tified operations of the previous step. The returned bits must be concatenated
from left to right or right to left, depending on the methodology employed to re-
cover the whole key. Symmetric algorithms need an additional steps, as the leak-
age model results (e.g., hamming weight) must be converted to a sub-key value.
This additional step is depicted in Algorithm 4. The subkey is obtained after cal-
culating the likelihood of key values. To predict a subke y value, the likelihood of
all potential subkey scenarios from subke y = 0 to 255 are evaluated by computing
the leakage model results for each plaintext/ciphertext.

There are many examples of profiled attacks both for symmetric and asymmet-
ric algorithms. In this section we selected the most famous ones (i.e., template
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Algorithm 3 Symetric Algorithms: Key Extraction

1: procedure KEY_EXTRACT(Pr edi ct i onset , ptar r ay )
2: Pk [0,255] = key probability
3: Pr edi ct i on = the results of the trained model on the attack traces
4: pt = is the plaintext used in the encryption process.
5: for each sub-key do
6: Pk [0,255] = 0
7: for j in trace-set do
8: X0,255 = pr edi ct (tr ace)
9: for k=0 to 255 do

10: HWk = HW (SBOX [pt [ j ]
⊕

k])
11: Pk [k] = Pk [k]+ log (Pr edi ct i on j [HWk ])
12: end for
13: end for
14: g uesssubke y = max(Pk )
15: end for
16: end procedure

based attacks (TBA) [52], machine learning Attacks(ML-SCA) [54], and deep learn-
ing based side channel attacks (DL-SCA) [52]). Note that there are many variations
proposed. Next each of them will be briefly described.

TEMPLATE-BASED ATTACK

In this attack, the multivariate normal distribution is used to create a profile. The profile
consists of multiple covariance matrices C and mean vectors m of the points of inter-
est of the collected power traces. First, the measured traces are grouped based on their
Hamming weight/distance (HW/HD) value. Next the covariance and mean are com-
puted for selected samples (i.e., the points of interest) within the traces for every HW/HD
group. They are identified by Ch mh for HW/HD with value h.

During the attack phase, the adversary uses the probability distance to correlate mea-
sured power traces with the profile. This is shown in Equation 2.4. In the equation, h
denotes the template number (i.e., the corresponding HW/HD set) and t an attack trace.
The value of the leaking model is determined by the template that produces the high-
est results. Note that the traces used for attack must be aligned with the traces used for
profiling.

f (t ) = 1p
(2π)n×det (Ch )

×exp(− 1
2 × (t −mh)

′ ×C−1
h × (t −mh)) (2.4)

MACHINE LEARNING ATTACK

In machine learning (ML) attacks [54], the multivariate normal distribution is replaced
by ML techniques such as Support Vector Machine (SVM). SVM is a binary classifier.
First a feature selection method is used to reduce the dimension (i.e., trace length) of
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the power trace. Thereafter a classifier is used to learn the features. During the profiling
phase, the classifier creates two hyperplanes in a high-dimensional space with the goal
of classifying the data. The data separation takes place in such a way that the hyper-
planes are furthest away from each other. During the extraction phase, the classifier is
used to classify the attack traces based on the distance to both planes. The percentage of
correct classifications among the power traces from the test sets are used to determine
the success rates. Note that SVMs are designed to perform a binary classification and
hence can be used in three ways to perform an attack on symmetric algorithms [55]: (1)
separate the results of hamming weight/distance to two groups (i.e., less than or greater
than 4), (2) separate the results of the hamming weight/distance based on even or odd,
and (3) separate the results of hamming weight/distance based on the value of the fourth
least significant bit.

DEEP LEARNING

During the profiling phase, the attacker builds and trains a neural network. The attacker
must first specify the neural network’s structural parameters (such as depth, width, and
activation function). After that, training is performed on traces that have labels attached
to them. The attacker separates the dataset (i.e., traces and their labels) into a training
set (usually 80 percent to 90 percent of the total dataset) and a validation set. The at-
tacker ends the training when the training and validation accuracy is high enough. In
extraction phase, the attacker applies the traces collected from the target device to the
trained neural network. The results obtained from the neural network are subsequently
used to extract the key.

2.3. SIDE CHANNEL COUNTERMEASURES
Several countermeasures to power attacks have been suggested over the last two decades.
As shown in Figure 2.5, these countermeasures can be classified based on two met-
rics: technique (i.e,. obfuscation and balancing) and implementation level (i.e., soft-
ware, hardware architecture, circuit/implementation, and technology). Next, the differ-
ent countermeasures will be discussed based on their technique.

2.3.1. OBFUSCATION

Countermeasures based on obfuscation attempt to randomize the power behaviour ir-
respective of the performed operation. There are many examples of such techniques
at different implementation levels available in the literature. At software level, one of
the famous examples of obfuscating the power consumption for mainly symmetric al-
gorithms is using masking [56]. Masking works by splitting the algorithm calculations’
sensitive intermediate operations into d + 1 random shares in such a way that analyz-
ing d shares reveals no information about the secret value. Other examples of soft-
ware level obfuscating are random order execution [57], random delay insertion [58],
message and/or exponent blinding [53] and SBOX confusion [19]. In [57], random in-
structions with random register accesses are inserted between the original instructions
sequence of the encryption/decryption process, which changes the power behaviour
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Figure 2.5: Classification of Countermeasures

each time. In [58], the power behaviour is altered by inserting random NOP instruc-
tions which causes misalignment in the power traces. In [53], the key and/or the mes-
sage of asymmetric algorithms are randomized in each execution. In [19], the SBOX of
AES algorithm is implemented using a neural network which confuses the power be-
haviour of the leakage model. Note that this countermeasure, unlike the others, targets
the leakage model. In hardware, similar to software, masking [59] is the most popu-
lar countermeasure. Another example of a hardware based countermeasure is random
delay insertion [60], where the delay is inserted by logic gates. Note that the other soft-
ware level techniques can be also implemented in hardware. At circuit level, the power
consumption can be obfuscated by modifying the logic cells as is the case for masked
dual-rail pre-charged logic [61] or by having an additional source in the system to in-
jected noise [62]. At technology level, emerging devices such as memristors can be used
for obfuscation by exploiting cycle-to-cycle variation.

2.3.2. BALANCING

The goal of balancing techniques is to keep the power usage as stable as possible during
sensitive operations. Similarly to obfuscation techniques, there are many examples of
such techniques studied in the literature at every implementation level (i.e., software,
hardware architecture, circuit, and technology). One of the famous countermeasures in
software is Montgomery multiplication [63] where both operations of asymmetric algo-
rithms (e.g., square and multiply in RSA and double and addition in ECC) are executed
in the Montgomery domain. This results in a similar power behaviour for both opera-
tions. Hence, it is harder for an attacker to distinguish between them. Another example
of a balancing technique at software level for asymmetric algorithms is multi-bit blind-
ing [36]. This technique always executes the same sequence of operations regardless of
the key bit values, by considering two bits at a time and re-order their operations. For
symmetric algorithms, a multi-core can be used [64] where two encryptions are executed
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on different cores simultaneously. One with original message while the other one with
its complementary message. At the hardware level, the same techniques used in soft-
ware can be implemented. A clear example can be seen in the duplicate design [65],
where instead of having two software encryptions, two actual hardware implementa-
tions are used to run the message and its complementary at the same time. At circuit
level many techniques were proposed such as power equalizer [66], dual-rail logic [67],
and Adiabatic Logic [68]. In power equalizer [66], the power is balanced using the on-
chip power supply. In dual-rail logic [67], the power is balanced by redesigning logic
cells such that they take both the input and their complement values as inputs. In adi-
abatic logic [68], the power is balanced by designing CMOS cells in such a way tha they
both charge and discharge at the same time to disguise power irregularities. At tech-
nology level, researchers are exploring emerging technologies such as Memristor [69]
to minimize the power leakage, which increases the attack difficulty. Note that circuit
and technology level techniques can be applied to both symmetric and asymmetric al-
gorithms.

2.4. LEAKAGE ASSESSMENT STYLES
There are currently several options to evaluate countermeasure implementations. They
can be grouped into three categories based on their style: evaluation-style, conformance-
style, and formal style. Each style is briefly explained next.

2.4.1. EVALUATION STYLE

In evaluation-style testing, power traces are tested using actual side channel attack sce-
narios, such as those described in Section 2.2. They show whether the implementations
are resistant to such attacks or not. The attacks can be performed in a profiled or unpro-
filed manner as discussed in Section 2.2. The attacks can be performed after the chip is
manufactured using off-the-shelf security tools and equipment (e.g., equipment of Ram-
bus [70] and Riscure [71]) or during the design process using CAD-based solutions [72].

2.4.2. CONFORMANCE STYLE

On the other hand, conformance-style testing examines whether traces are compliant
with specific leakage criteria without taking actual attacks into account. Test Vector
Leakage Assessment (TVLA) [73] and signal-to-noise ratio (SNR) analysis [74] are two
examples of this form of analysis. Due to space limitations, we focus only on TVLA.

TVLA is based on Welch’s t-test, which examines whether two populations have simi-
lar distribution. Welch’s t-test is used in to identify whether power traces of an encryp-
tion/decryption algorithm execution leak information about the secret key. The leakage
is measured using two sets of power traces, one with fixed plaintext/ciphertext and the
other with random plaintext/ciphertext. Note that the key value is the same in both
sets. Equation 2.5 shows the equation used to perform this test. In the equation, X̄1,
S2

1, and N1 represents the mean, the variance, and the total number of used fixed plain-
text/ciphertext traces, respectively, while X̄2, S2

2, and N2 represents the mean, the vari-
ance, and the total number of used random plaintext/ciphertext traces, respectively.
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t = X̄1 − X̄2√
S2

1
N1

+ S2
2

N2

(2.5)

2.4.3. FORMAL STYLE

The aim of formal verification-based testing is to analyze the leakage of an implementa-
tion mathematically. Formal verification examples can be found in [75, 76]. In [75] the
authors use formal verification to verify hardware masking countermeasures. In [76],
the authors present a satisfiability modulo theories (SMT) solver to evaluate software
masking countermeasures.



3
SIDE CHANNELS ANALYSIS

Depending on the leakage channels that are used, side channel attacks can take a vari-
ety of different forms. Variations in time, power consumption, and electromagnetic emis-
sions are just a few examples. For the intent of this chapter, we narrow our focus to three
specific channels: power, time, and thermal. These channels have been chosen with the
objective of formulating assessment methodologies for a single channel. Section 3.1 intro-
duces and investigates side channels in general and provides justifications for the chosen
channels under study. Section 3.2 provides a detailed examination of attacks that exploit
power consumption. Section 3.3 presents an analysis of time-based side channel attacks.
Section 3.4 focuses on thermal-based side channel attacks. Finally, Section 3.5 provides an
explanation why power side channel is chosen for leakage assessment.

This chapter is partially published on [22] [30] [34].
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3.1. INTRODUCTION

Figure 3.1: Leakages Sources of Side Channel Attack

Microelectronic systems, particularly those employed in secure computing applica-
tions, are vulnerable to a range of leakage channels that have the potential to inadver-
tently disclose confidential data. These are:

• Variations in Time [18]: Differences in the amount of time it takes to complete a
task can be examined and used to deduce information such as cryptographic keys.

• Power Consumption [9]: Different operations typically call for a different amount
of electrical power. Attackers are able to determine what operations are being con-
ducted and perhaps what data is being processed by monitoring these variances,
which is a technique known as power analysis.

• Electromagnetic(EM) Radiation [77]: While they are functioning, electronic equip-
ment give off electromagnetic radiation. It is feasible to deduce the actions being
performed and even the data that is being processed by capturing and analyzing
this electromagnetic radiation.

• Scan-chain [78]: Attackers are able to manipulate scan chains, which are generally
used for testing reasons in chips, to either read or modify the internal state of a
chip. Scan chains are utilized in chips.

• Thermal [79]: The amount of heat that electronic components are able to dissi-
pate might change depending on how they are used. Keeping an eye on this ther-
mal output can provide useful information about the computations and the data.

• Acoustic [80]: The sound or vibration created by electronic components can be
utilized to infer the kind of processes that are being carried out, despite the fact
that these sounds and vibrations are frequently quite slight.

This study primarily examined three specific types of leakage, as we believe these
particular forms of leakage pose the highest potential hazards. The leakages that
have been chosen for analysis are power consumption, temporal variations, and
thermal attacks. Power consumptions offer access to the behavior and execution
patterns of all of the algorithm’s operations, which makes it much simpler to zero
in on those that are most vulnerable to attack. Similar leakages exist, such as
electromagnetic emissions; nevertheless, the power consumption exhibits signif-
icantly lower levels of noise. Time variations have limitations in terms of evaluat-
ing all operations as they require waiting for a response. However, they do have



3.2. POWER BASED ATTACKS

3

29

the advantage of providing easy remote access, as they can be calculated from the
software side. Thermal, despite the fact that it is a very noisy leakage channel,
is monitoring practically every device to prevent it from overheating. This moni-
toring can also be accessed remotely by software. As a result, it requires cautious
investigation for possible forms of attack.

3.2. POWER BASED ATTACKS

(a) Dynamic Power (b) Static Power

Figure 3.2: Power Consumption Of CMOS Inverter Gate

In microelectronic circuit, power is consumed either when the transistor is changing
its logical state or when the power is used to charge the load capacitance as can be seen
in Figure 3.2. The total dynamic power can be calculate using the Equation 3.1, where
CL is the load capacitance, C is the internal capacitance of the chip, f is the frequency of
operation, and N is the number of bits that are switching.

Pd ynami c = Pcapi cat ance +Ptr ansi ent = (CL +C )×V 2
dd × f ×N 3 (3.1)

A power analysis attack is a kind of side-channel attack in which an adversary attempts
to compromise a system by recording and analyzing the patterns of power consumption
that the system exhibits (see Figure 3.3). When a piece of hardware such as a micro-
processor or cryptographic hardware performs operations, the amount of power that it
consumes can change depending on the data that it is processing as well as the activities
that it is carrying out at the same time. Attackers can acquire insights into the nature
of the calculations that are being performed by precisely measuring the oscillations in
the amount of power that is being consumed. This could potentially allow them to ex-
tract sensitive information such as cryptographic keys. This paper provides a compar-
ison analysis of several pre-procesing techniques, including three pre-processing tech-
niques which have not been studied yet for DL-based SCAs. Hence, five different meth-
ods are explored: i) Data augmentation [23, 24], ii) data transformation [25, 26], iii) data
concatenation [27], iv) stacked auto-encoder [28]; and v) stacked auto-encoder with en-
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coder only [29]. Note that data augmentation and stacked auto-encoder are already ap-
plied in the literature. Data transformation has been explored in some power attacks
like CPA [25] and MLP-based [26], but not yet in DL-based attacks. The other two tech-
niques come from the image processing field due to their outstanding results. To our
best knowledge, this three methods are for the first time applied in DL-based SCAs. The
main contributions of this work are:

• Proposal of data transformation using wavelet transform to improve DL-based
SCAs.

• Proposal of data concatenation by augmenting the original trace with its fast Fourier
transformation (FFT) to improve DL-based SCAs.

• Proposal of stacked auto-encoder using the encoder only to improve DL-based
SCAs.

• Comparison of the proposed techniques with the state-of-the-art for both sym-
metric and asymmetric ciphers.

This section is organized as follows. Subsection 3.2.1 provides a state-of-the-art regards
power side channels. Subsections 3.2.2 and 3.2.3 explain the deep learning attack model.
Subsections 3.2.4 and 3.2.5 describes the pre-processing techniques. Subsection 3.2.6
provides the experiments setup. Subsections 3.2.7 and 3.2.8 discuss the results.

Figure 3.3: Power Side Channel Attack

3.2.1. STATE OF THE ART

Paul Kocher [9] introduced the concept of Simple Power Attack (SPA) and Differential
Power Attack (DPA). These methods observe the relation of the performed operation in
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the power traces. In a further work, a statistical method was proposed to correlate hypo-
thetical power estimations with the real consumption. This attack is called Correlation
Power Attack (CPA) [47]. In CPA, leakage models like hamming weight and hamming
distance are used to correlate guessed keys with the power traces. Both models can be
used to estimate the power behavior of a specific operation, for instance, the result of
the first round of the popular AES cipher. On the other hand, countermeasures have
been proposed to make DPA and CPA attacks less effective [81–83]. In 2002, the con-
cept of profiled attacks was proposed by Chari et al. [52]. Their attack is referred to as
Template Based Attack (TBA). TBA builds a customized power model of a device simi-
lar to the target device, and correlates the power measurements of the target device of
the victim with the customized power model. TBA uses the multivariate gaussian dis-
tribution function to build the power profile. However, its mathematical complexity
limits the attack accuracy [38]. To overcome this drawback, Martinasek et al. [84] pro-
posed in 2013 the usage of machine learning to enhance the profiling attacks on AES.
They used a multilayer perceptron (MLP) neural network. Initially, they obtained an
80% accuracy only, but after further optimizations reached a 100% accuracy [23] using
a pre-processing technique consisting of averaging of power traces. Thereafter, Gilmore
et al. [85] presented a profiled attack using MLP model that focused on symmetric cryp-
tographic algorithms. In 2016, Maghrebi et al. [38] proposed the usage of Deep Learning
in profiled Side-Channel Attacks. They successfully attacked different symmetric en-
cryption implementations using a Convolution Neural Network (CNN). DL-based SCA
improved the amount of traces required to accomplish the attack on both protected and
unprotected symmetric cryptographic algorithms. In 2017, Cagli et al. [24] used data
augmentation (i.e., generating new input samples to the neural network from the exist-
ing power traces) to further improve the accuracy of DL-based SCAs. They proposed two
strategies to perform data augmentation, one by using random re-alignment of existing
traces and the other by adding random noise. Note that profiled based side-channel at-
tacks are less powerful when countermeasures like power obfuscation and randomized
keys are used [86]. Some of the above deep learning based attacks used pre-processing
techniques to enhance the accuracy. However, a systematic approach that compares the
pre-processing techniques for both symmetric and asymmetric algorithms is missing,
and hence it is not clear under which circumstances they are useful.

3.2.2. DEEP LEARNING BASED POWER ATTACKS

DL-based SCAs follow the same steps used in the conventional profiled-based attacks [52],
i.e., they consist of a profiling and extraction phase [38]. Both phases are explained next.

PROFILING PHASE

In this phase, the attacker creates a behavioral model of the selected target device using
a similar or identical device that he/she fully controls. This phase works as follows:
Step 1: In this step, the attacker searches for a sample device that is similar to the target
device.
Step 2: The attacker chooses and locates an intermediate point of attack (e.g., SubByte
operation in AES or exponent operations in RSA).
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Step 3: The attacker records multiple power traces of the selected target operation.
Step 4: The attacker designs a deep learning neural network and trains it to characterize
the traces. To be able to train the deep learning neural network, the attacker needs to
associate each collected trace during Step 3 with a label. The label can be calculated
differently based on the used cryptographic algorithm. For example, the common label
for AES is the hamming weight of the SubByte operation’s output [38], while RSA typically
uses the main operations as labels, namely square and multiply [87].
Step 5: Finally, the attacker constructs a neural network and trains it. The attacker first
needs to define the structural parameters (e.g., depth, width, activation function) of the
neural network. Thereafter, training is performed on the traces collected during Step 3
with the associated labels calculated in Step 4. To train the neural network, the attacker
divides the dataset (i.e., traces and their labels) into a training set (normally 80% to 90%
of the complete dataset) and a validation set. The training and validation phases are
completed when the attacker achieves an acceptable accuracy level.

EXTRACTION PHASE

The attacker aims to recover the secret information from the target device during this
phase using the following steps:
Step 1: The attacker identifies the target device. This device has to be similar to the
profiled one.
Step 2: The attacker locates the intermediate operation, i.e., the operation used to train
the neural network during the profiling phase. For instance, the SubByte of AES algo-
rithm.
Step 3: The attacker generates a new set of traces on the target device for the inter-
mediate operation. Note that in asymmetric algorithms, traces are divided based on
their main operations (i.e., square and multiply for RSA), while such a partitioning is not
needed for symmetric algorithms.
Step 4: The attacker predicts the key of the newly generated traces using the previously
trained neural network. The result of this step is the label of the intermediate opera-
tion. This label is a binary value for the RSA algorithm or the leakage model value (i.e.,
hamming weight) for AES algorithm.
Step 5: Finally, the attacker reveals the secret key information. In asymmetric algo-
rithms, the key is recovered bit by bit based on the predicted operations. In order to
recover the full key, the retrieved bits have to be concatenated either from left to right
or right to left based on the algorithm used. Symmetric algorithms require more steps,
as the predicted leakage model value has to be converted from the hamming weight to a
sub-key value. This extra task is shown in Algorithm 4. After calculating the probability
of the target traces and knowing the plaintext/ciphertext used in the algorithm encryp-
tion/decryption process, the subkey is retrieved next. To guess a subke y value, for every
plaintext/ciphertext in pt array we loop over all possible subkey scenario subke y = 0 to
255 and calculate the leakage model results of that subkey. Based on the output of the
leakage model, we select the corresponding probability from the prediction array and
add it to the probability array. The key probability results are accumulated for each ele-
ment in the pt and Pr edi ct i on arrays. The subkey with highest probability is selected
as subkey. The previous process is repeated for each subkey.
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Algorithm 4 Symmetric Extract Key bytes

1: procedure KEY_EXTRACT(Pr edi ct i onset , ptar r ay )
2: Pk [0,255] = key probability
3: Pr edi ct i on = the results of the trained model on the attack traces
4: pt = is the plaintext used in the encryption process.
5: for each sub-key do
6: Pk [0,255] = 0
7: for j in trace-set do
8: X0,255 = pr edi ct (tr ace)
9: for k=0 to 255 do

10: HWk = HW (SBOX [pt [ j ]
⊕

k])
11: Pk [k] = Pk [k]+ l og (Pr edi ct i on j [HWk ])
12: end for
13: end for
14: g uesssubke y = max(Pk )
15: end for
16: end procedure

Figure 3.4: Baseline CNN with its hyper-parameters

3.2.3. BASELINE CNN
The baseline CNN is the reference neural network used for comparison when the pre-
processing techniques are applied. The baseline itself does not use any pre-processing
technique, which means that its inputs are the raw data values obtained from the col-
lected power traces. As observed in Figure 3.4, the baseline CNN consists of 9 layers in
total. The number of neurons in the first layer matches the trace length. Thereafter, it
contains six convolutional layers, ReLU activation functions, and pooling layers. Note
that for simplicity that several layers are presented together in the figure. Each of these
layers contains a filter whose size is depicted on the top of the respective layer. For exam-
ple, the first layer presents 64 filters. In the sequence, the pooling layer reduces the data
width by a factor of 3. Note that the minimum layer width is equal to or greater than one.
As the data goes through the network, more filters are added. Although the 7th layer in
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the figure comprises much more filters than the first layer, its width is much less due to
the pooling layers involved in the process. The last part of the CNN consists of a flatten
and a Softmax layer. The flatten layer converts the tensor representation (i.e., multi-
dimensional matrix) of the data used in the previous layers to a single dimension vector
representation. The Softmax layer is the final layer of the neural network and consists of
9 output neurons used to distinguish between the 9 classes for AES. These 9 classes rep-
resent the prediction probabilities of different hamming weights or hamming distances.
A similar neural network is constructed for RSA that contains 2 output neurons.

The training parameters are shown in Table 3.1. Glorot [88] is the first parameter. Glo-
rot is a sophisticated technique (as compared to e.g., random initialization) that initial-
izes weights based on the width of its preceding and successive layers. Thereafter, the
loss function is defined by the categorical entropy technique to compute the error func-
tion. The third parameter applies Adam optimization [89], which is a special technique
that uses adaptive learning rates for each parameter and typically gives good results.
Lastly, dropout is used to regularize the neural network; a dropout ratio of 50% is se-
lected. Note that other dropout ratio values may be used. However, 50% typically pro-
vides good results [90].

3.2.4. TRADITIONAL PRE-PROCESSING TECHNIQUES

Three traditional pre-processing techniques are described in this subsection. They are
data augmentation, data transformation and data concatenation.

DATA AUGMENTATION

This technique was already proposed by the authors in [23, 24]. It uses the average of
traces to improve the extraction of the most meaningful features. All traces belonging to
the same group, i.e., with the same hamming weight, are averaged to remove noise and
misalignment between them and hence a cleaner version can be obtained. The traces
that contain the average values for each hamming weight are replicated in such a way
that they form half of the total number of traces for each hamming weight. Subsequently,
random noise is added to those clean traces. Finally, the baseline CNN is trained using
both the original traces (50% of the total traces) and the newly generated traces (the
other 50% of the total traces). Note that the newly generated traces have the same label
classifier (i.e. the same hamming weight) as the traces they were based on. The training
phase is stopped when the accuracy of the model does not increase anymore.

DATA TRANSFORMATION

This technique aims to provide the CNN with a different data representation of the train-
ing set [91]. Our method applies a wavelet transformation for each power trace. The
neural network is subsequently trained with only the wavelet samples with its associ-
ated labels calculated from their original counterparts. The model is trained until the
accuracy saturates.
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Table 3.1: Training Related Hyper-parameters Used for Classification

Training hyper-parameters Baseline CNN SdAE + CNN SdAE v2 + CNN
Initialization Glorot Glorot Glorot
Loss Function categorical binary and binary and

categorical categorical
Optimization Adam Adam Adam
Regularization Dropout (0.5) Dropout (0.5) Dropout (0.5)

DATA CONCATENATION

This technique aims to expand the data provided to the CNN [27]. By mixing different
data representations of the same training set, improvements in prediction accuracy are
expected. Our technique combines the FFT representation and the original trace to be
represented as a single input. The model is trained until no further improvements are
observed with respect to the accuracy.

3.2.5. HYBRID NEURAL NETWORKS

In this subsection, two hybrid neural networks are presented. Each contains the base-
line CNN preceded with another neural network; they are referred to as the SdAE + CNN
and SdAE v2 + CNN. SdAE refers to the Stacked Denoising Autoencoder [92], while the
SdAE v2 to the same SdAE but with the encoder part only. The Stacked Denoising Au-
toencoder consists of an encoder and decoder and one of its main purpose is to filter
input samples to enhance the quality. For example, SdAE has been used successfully to
solve problems related to image colorization and noise reduction [92]. Another benefit
of SdAE is that the encoding results in a lower dimension data, i.e., a compressed format
of the input sample with a smaller number of points. On the other hand, the decoding
part reconstruct the information to its original dimensions. This method has two main
benefits. First, the encoding part compresses the data and extracts the most meaningful
points in the trace. Note that the decoder decompress the compressed features to the
full trace. Second, the SdAE can constructed in such a way that it restores missing parts
or remove noise of traces. Next, we describe both hybrid networks in more detail.

SDAE + CNN

: In this strategy, the goal is to remove noise and misalignment of the input samples
by training the SdAE. Two steps are required to achieve such results. First, the data-set is
divided into groups (i.e., classes) based on their hamming weight. Second, the average of
the traces is taken for the all input samples within the same group. The assumption here
is that these average traces are much cleaner. Subsequently, the SdAE is trained with the
normal input samples, but the error at the output is calculated using the average trace
values. Once the training is completed, the result of the SdAE is classified using the CNN
model. The overall training procedure of this approach consists of the following two
phases:
Phase 1 - Training the SdAE model: In this phase, the SdAE is trained to reconstruct



3

36 3. SIDE CHANNELS ANALYSIS

the power trace without noise and misalignment issues. This is achieved by using the
data (i.e., recorded power traces) as input data-set to the train model, while using the
average trace to calculate the loss function. After this training step reaches an acceptable
accuracy, the next phase can start.
Phase 2 - Training the CNN model: In this phase, the output of the trained SdAE is con-
nected as an input to the CNN model. Subsequently, the training mode of the weights
and biases is switched off for the SdAE part of the hybrid network. Finally, the hybrid
model (SdAE + CNN) is trained (i.e., only the CNN part) using the recorded power traces
as input, while their hamming weights are used as the labels to calculate the error. The
training stops when the accuracy saturates.

SDAE V2 + CNN:

This approach aims at exploring the usefulness of the encoded version of SdAE; note that
this encoded version holds the most important characteristics of the input trace. In this
phase, the pre-processing based on trace averaging is not needed. Instead, the SdAE is
trained based on the original data. After the training is completed, only the encoder part
of the SdAE is connected to the CNN as shown in Figure 3.6. The training process is also
performed using two phases:
Phase 1 - Training the SdAE model: In this phase, the SdAE is trained similarly to the
previous approach. However, the input data (i.e., the power traces) is used to compute
the error at the output during training. After the training reaches an acceptable accuracy,
the encoder part is removed from the SdAE.
Phase 2 - Training the CNN model: In this phase, the trained encoder part is connected
to the input layer of the CNN. Subsequently, the training for the SdAE encoder is switched
off, i.e., their weights and biases are fixed to make sure that they are not adjusted during
the training process of the hybrid model. After that, the hybrid model is trained (i.e., only
the CNN part is being updated).

The structural related hyper-parameters of both approaches SdAE + CNN and SdAE
v2 + CNN are illustrated in Figure 3.5 and Figure 3.6, respectively. Note that the CNN
in Figure 3.5 is exactly the same as the one used in Figure 3.4, as the output layer in the
SdAE has the same width as its input layer. The CNN in the hybrid neural network of
Figure 3.6 is based on the same concept as the one in Figure 3.4, but its input width is
smaller as the encoder of the SdAE compressed the data. More properties of both hybrid
neural networks can be found in Table 3.1.

Figure 3.5: SdAE + CNN and their hyper-parameters
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Figure 3.6: SdAE v2 + CNN and their hyper-parameters

3.2.6. EXPERIMENTAL SETUP

The experiments are conducted in two parts. In the first part, we evaluate the pre-
processing techniques based on the mathematical approaches described in Subsection 3.2.4.
In the second part, we test the accuracy of the hybrid neural networks described in Sub-
section 3.2.5. Both parts are evaluated using four different power traces; two are from
AES cryptographic algorithms and two from RSA cryptographic algorithm. Their key
characteristics are summarized in Table 3.2 and explained next:

1. DPA Contest V2 [93]: The traces in this training set are based on AES using a
128-bit key size. These traces are provided by DPA Contest V2; an open source
framework that allows developers to compare their implementation attacks using
a common benchmark. The traces represent a hardware implementation of the
decryption process. In these traces, no countermeasures against side channel at-
tacks have been used. Each trace consists of 3250 data points.

2. ChipWhisperer 1 [94]: Similar to the previous data set, the traces here are also
based on a non-protected AES encryption implementation with a 128-bit key size.
However, here a software implementation is used instead. The data has been
recorded using ChiphWhisperer tool which is an open-source tool for side-channel
power analysis and glitching attacks. ChipWhisperer-Lite kit-board is used to mea-
sure the traces. The length of each recorded trace equals 3000 points.

3. ChipWhisperer 2: Unlike the first two types of traces, the traces in this training set
are based on an asymmetric algorithm. Here traces are used of a 512-bit key soft-
ware implementation of the asymmetric cryptographic algorithm RSA. The traces
are collected on the same platform used for the ChipWhisperer 1 data set. The
trace length is 3000 points.

4. Pinata [95]: A similar RSA software implementation has been used for this data
set as ChipWhisperer 2. The difference is that the Pinata board from Riscure [96]
is used for collecting the traces. Each trace contains 8000 sample points.
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Table 3.2: Utilized Power Traces and Their Characteristics

Traces Crypto (key size) Platform Trace length
DPA Contest V2 Unprotected AES (128) Hardware 3250 points
ChipWhisperer 1 Unprotected AES (128) Software 3000 points
ChipWhisperer 2 Protected RSA (512) Software 3000 points
Pinata Protected RSA (512) Software 8000 points

The ChipWhisperer data sets are measured in a controlled environment and hence
provides cleaner traces. The other two data sets have been gathered from an uncon-
trolled environment which might come with certain restrictions.
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Figure 3.7: AES key rank analysis for pre-processing techniques

3.2.7. RESULTS OF TRADITIONAL PRE-PROCESSING TECHNIQUES

Table 3.3 provides the accuracy analysis results of the traditional based pre-processing
techniques. The techniques are applied on both symmetric and asymmetric data sets.

For the symmetric data sets, the table shows the training accuracy, validation accuracy,
and the maximum rank. The rank specifies how close the guessed key is to the correct
key. A key rank of 0 means that the correct key has been guessed, while a key rank of
255 means that the correct key has the lowest guess probability. The lower the key rank,
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Table 3.3: Pre-processing techniques comparison and results.

Evaluated
Technique

Step
AES Evaluation (15 byte) RSA Evaluation
DPA Contest v2 CW 1 Pinata CW 2

Baseline
CNN

Training 33.7% 98.62% 99.9% 100%
Validation 23.5% 80% 75% 100%
Final Rank 17 Rank 0 80% 100%

Data
Augmentation

Training 41.14% 98.78% 98.9% 100%
Validation 27.5% 60% 75% 100%
Final Rank 5 Rank 0 70% 100%

Data
Transformation

Training 40.17% 99.3% 99% 100%
Validation 26.02% 85% 95% 100%
Final Rank 2 Rank 0 94% 100%

Data
Concatenation

Training 30.1% 98.12% 33% 100%
Validation 25.7% 70% 34% 100%
Final Rank 32 Rank 0 33% 100%

SdAE
Training 37% 90% 99.8% 100%
Validation 29.5% 80% 95% 100%
Final Rank 80 Rank 0 90.1% 100%

SdAE v2
Training 28.1% 90% 98.6% 100%
Validation 24.6% 70% 94.3% 100%
Final Rank 58 Rank 0 92.3% 100%

the more successful the attack is. From the table it can be observed that for DPA con-
test V2 the pre-processing techniques significantly improve the results. The data trans-
formation technique (i.e., wavelet transformation) does not only improve the training
and validation accuracy but more importantly, reduces the key rank from 17 to 2. The
data augmentation also improved the neural network accuracy but ended up in a slightly
higher rank (i.e., 5). The third pre-processing technique, i.e., data concatenation, actu-
ally worsened the results.The rank analysis results of the four techniques on DPA contest
V2 data set are shown in Figure 3.7. The figure shows clearly that the data transformation
has a strong positive impact on the accuracy of the attack. Note that it was difficult to
see the effect of the pre-processing techniques on the ChipWhisperer 1 data-set, as the
results of the baseline was already good.

For the asymmetric data set, instead of the key rank, the percentage of the key re-
covery is used. We refer to it as success rates. The results are similar to the symmetric
data-set; the data transformation technique showed a significant improvement as com-
pared to the baseline results, i.e., a success rate improvement from 75% to 95% for the
Pinata traces. Here, the data augmentation has a marginal impact on the results, and the
data concatenation technique again impacted the results negatively. Note that again no
differences have been observed for the ChipWhisperer 2 traces.
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3.2.8. RESULTS OF HYBRID NEURAL NETWORKS PRE-PROCESSING

TECHNIQUES

Table 3.3 also provides the results analysis of the SdAE and SdAE v2 pre-processing tech-
niques. Similarly to the traditional techniques, the results of both AES and RSA for the
chipWhisperer platform did not provide distinguishable results as the traces were al-
ready clean to start with. However, for the DPA contest V2 and Pinata traces, both hybrid
networks were able to improve the validation accuracy. Despite this improvement, the
rank analysis shows that these techniques did not improve the attack. In case the hyper-
parameters of these hybrid neural networks are changed they will most likely perform
better.

3.3. TIME BASED ATTACKS

A timing side-channel attack (T-SCA) is a specific type of side-channel attack that lever-
ages the timing variations of a cryptographic device in order to extract confidential in-
formation. The timing attack, as depicted in Figure 3.8, is predicated upon the duration
required for the execution of an algorithm. An illustration of this concept can be ob-
served in the context of a password checker, where the verification process is conducted
on a character-by-character basis. If the checking procedure terminates prematurely
upon reaching the initial faulty character, the duration required can be significantly re-
duced in comparison to cases when the incorrect character is located further along the
string. The variance in processing time can be leveraged by an attacker to deduce the ac-
curacy of individual characters inside a password, hence reducing the number of possi-
ble password combinations. The seemingly slight variations in execution time can yield
vital information to malevolent individuals, thereby undermining the security of pass-
word verification devices. T-SCAs have the capability to be deployed on various devices,
encompassing smart cards, microcontrollers, FPGAs, and even cloud-based computing
platforms. Time-based side channel attacks (T-SCAs) operate by quantifying the dura-
tion required to execute a cryptographic transaction. Subsequently, the assailant lever-
ages the aforementioned data to illicitly obtain confidential information pertaining to
the device, including the secret key. In this paper we propose GRINCH, the first cache
attack on GIFT. Caches are usually shared memories that are used to speedup the exe-
cution of the cryptographic algorithms. However, they become a security threat when
mutually accessed by multiple processes. A malicious process may gather information
to reveal the secret key by: observing the execution time (time-driven attack) [97], ex-
ploiting the access pattern (access-driven attack) [32], or inferring the sequence of hits
and misses (trace-driven attack) [33]. GRINCH crafts specific inputs to the cipher to ex-
tract sensitive data by observing its cache accesses. Hence, it is an access-driven cache
attack. In summary, the contributions of the paper are:

• Analysis of GIFT vulnerabilities

• Implementation of the GRINCH attack

• Evaluation of the impact of the cache configuration on the attack efficiency
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• Practical demonstration of the attack with two hardware platforms (SoC and MP-
SoC) in an FPGA

• Proposal of two countermeasures to protect GIFT

The rest of the section is organized as follows. Subsection 3.3.1 provides state of the art
regarding time side channel. Subsections 3.3.2, 3.3.3, 3.3.4, and 3.3.5 present the threat
model and GRINCH attack. Subsection 3.3.7 presents the validation results. Finally, Sub-
section 3.3.8 provides potential countermeasures.

Figure 3.8: Time Side Channel Attack

3.3.1. STATE OF THE ART

The first recorded T-SCA was published in 1996 [18] by Paul Kocher. In his paper, Kocher
described an attack against the RSA digital signature algorithm that exploited the tim-
ing variations of the algorithm to extract the secret exponent. Since Kocher’s paper was
published, there has been a significant amount of research on T-SCAs. In 1998 [98], J.F.
Dhem demonstrated the feasibility of timing attacks by attacking a smartcard that stored
a private RSA key. Schindler [99] also presented timing attacks on RSA implementations
that use the Chinese Remainder Theorem (CRT). In recent years, researchers have de-
veloped timing attacks against a wider range of cryptographic algorithms and systems.
For example, in 2003 [100], Brumley and Boneh demonstrated that timing attacks can be
used to reveal RSA private keys from an OpenSSL-based web server over a local network.
In 2005 [101], Acimez and Schindler proposed an efficient attack on RSA implementa-
tions that use CRT with Montgomery’s multiplication algorithm. The importance of se-
curing these environments became abundantly clear with the unveiling of microarchi-
tectural vulnerabilities, notably the Spectre [102] and Meltdown [103] vulnerabilities in
2018, which highlighted the potential for timing attacks even on modern CPUs. Further-
more, in the past few years, the academic community has paid significant attention to
machine learning-driven timing attacks. In 2017, researchers developed a deep learning-
based timing attack against the AES encryption algorithm. The attack was shown to be
effective against a variety of AES implementations, including those that were protected
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with countermeasures. In 2020, researchers developed A Novel Timing Attack on ECC
Cryptography using Deep Learning [104]. It is important to note that T-SCAs are a con-
stantly evolving threat, and new attack techniques are being developed all the time. It is
important for the designers and implementers of cryptographic systems to stay up-to-
date on the latest T-SCA research and to take appropriate countermeasures.

3.3.2. CACHE VLUNERBILITY ON GIFT CIPHER

Similarly as in many SPN-based ciphers, GIFT includes a non-linear substitution opera-
tion (i.e., SubCells or S-Box) that substitutes each 4-bit segment with another 4-bit num-
ber. A commonly used software implementation of GIFT is based on transformation
tables, where the SubCells operation is implemented with a lookup table whose entries
are the input rounds. In such implementation, a single lookup table is used in such a
way that it is accessed by each segment. Our attack focuses on the first four rounds by
monitoring the key-dependant S-Box cache accesses.

The input of the S-Box (also called index) is the result of XORing the previous round
state (round input) with the secret key. In the first round, the plaintext is used as the
state and no key operation is involved. From the second round onwards, the index is
computed from the previous state and the secret key. Therefore, when the round input
and the index of the substitution table are known, it is possible to retrieve the key by
calculating K e y ← Index ⊕ Input .

Fortunately, GIFT cipher uses an S-Box of 16 values, which is considered very tiny
when compared with the 256 values S-Box used in the AES. As a result, the probabil-
ity that an encryption uses all S-Box addresses in the first rounds is very high. Hence,
an attacker that is looking for the used cache addresses after the end of the encryption
process would not be able to extract useful information. Nevertheless, today’s systems
employ task scheduling, where tasks are pre-empted to run multiple tasks concurrently.
Therefore, it is possible to access the cache while the cipher is still in its intermediate
state.

GRINCH strategy is based on running multiple encryptions with different messages,
each carefully crafted in order to activate the same index of the S-Box (in a certain seg-
ment of a certain round). The attacker can eliminate key candidates from the encryp-
tion based on the selected S-Box address until a single index remains, which the attacker
subsequently can use to retrieve part of the key (see Subsection 2.1.3). Finally, the same
process is repeated by targeting different segments until the full key is recovered.

3.3.3. THREAT MODEL

IoT devices contain System-on-Chips (SoCs) that include single or multiple heteroge-
neous processing units, memories, peripherals, hardware accelerators and other IP hard-
ware cores [105]. SoCs may include memory hierarchies comprising several levels of
cache (e.g., L1 to L3) and DRAMs. When a cache miss occurs, data is searched through-
out the cache levels and eventually looked up in the DRAM when needed.

GIFT cipher is designed to be used in such IoT devices. They use an operating system
to manage and schedule multiple applications. Note that trusted cryptographic applica-
tions (e.g., GIFT cipher) share the hardware platform together with potential malicious
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or untrusted third-party software that could gather, process and communicate data. Tak-
ing all of this into consideration, we can assume that trusted and non-trusted applica-
tions can run on the same hardware platform, sharing resources like on-chip commu-
nication structures (e.g., bus or Networks-on-Chip), interfaces and cache memories. In
this work, we define two main processes named victim and attacker. The victim process
encrypts/decrypts messages using GIFT cipher. The attacker process runs external mal-
ware that manipulates the data to be encrypted and accesses the shared cache memory.
In summary, the considered threat model has teh following characteristics:

• The cache used by the victim is accessible by the attacker.

• Attacker can measure the cache access time (to differentiate cache miss and hit).

• Attacker can create/manipulate plaintexts.

• Optionally, the attacker can flush the cache.

3.3.4. METHODOLOGY

The GRINCH attack focuses on identifying the index of one single S-Box access (i.e., one
segment) of the second round. Note that in the second round the key is used for the
first time. If such an index is identified, two bits of the key can be retrieved (see Fig-
ure 2.2). However, an attacker only can control the plaintext and not the state of the
second round. Hence, to control a single access of the S-Box in the second round, the
attacker has to carefully select four segments of the plaintext (i.e., input of first round).
These four input segments determine the value of one segment of the second round due
to the S-Box and permutation operation of the first round. As the key is unknown to
the attacker, it is not possible to know upfront which S-Box index will be used. To solve
that issue, an attacker can perform many encryptions while crafting the input in such
a way that the targeted segment is kept active and stimulates the same target key bits
(i.e., the two bits involved in the AddRoundKey). These plaintext manipulations create
a condition where only one index will be accessed in the cache during all performed
encryptions. When more encryptions are performed, more key candidates can be elim-
inated until a single candidate remains. In such cases, it is possible to reverse engineer
the two bits of the key using the index and the state of the involved segment. This pro-
cess is repeated 15 times for the other segments to recover the complete 32 bits of the
key. Once the attacker knows 32 bits of the key, the process can be repeated in order to
attack the next round by computing the input state of the following round. Note that the
key is shifted 32 bits to the right after each round (see also Figure 2.2). By changing the
plaintext to match the targeted segments in the third round again 32 key bits can be re-
covered. After applying the same trick four times, the entire 128-bit key can be retrieved.

The methodology of GRINCH consists of five steps as shown in Figure 3.9 and de-
scribed next.
Step 1 - Generate Plaintext + Encrypt: The goal is of the Step 1 is to craft the plaintext so
to force the same S-Box accesses for certain key-bits. The methodology starts by defining
the target key-bits, as shown in Algorithm 12. The first part of the algorithm identifies
the offset of the key-bits Ki ,K j in the AddRoundKey (e.g., the offset of key bit 0 is 0 and
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Figure 3.9: GRINCH attack methodology

the offset of key bit 16 is one (see AddRoundKey in Fig. 2.2. This is realized through
the St atusBi t X or K e y(K ) function (lines 2 and 3). Thereafter, these bits are inversely
permuted (lines 4 and 5) to obtain their indexes (bi tA) and (bi tB ) before the PermBits
function, which is equal to the output of the S-Box layer. For the attack to succeed, the
bits bi tA and bi tB should always keep the same value so that the target key bits of the
S-Box in the next round remain unchanged. In this attack we set these bits to 1. Hence,
the inputs of the S-Boxes for these two bits must be careful chose and always lead to a 1
at the output (loop on lines 5-12). As a result, for each bit, a list of valid inputs and that
will always force the same XOR operation with the target key-bits Ki ,K j is generated.
Thereafter, all the plaintexts are generated based on these lists, as in Algorithm 6. For
each plaintext segment, a random value is applied when it is not part of a segment where
bi tA or bi tB is located, and an arbitrary index from the list is used when it is in order to
make sure that the value at bi tA and bi tB is always 1 after the S-Box. At the end of this
procedure, a single plaintext is generated and used for the attack.
Step 2 - Probe the Cache: To obtain the information of accessed addresses of the S-Box,
the attacker can perform classical cache attacks such as Prime+Probe and Flush+Reload.
The former method accesses an address of the cache that evicts the victim’s informa-
tion. During or after the victim’s operation, the attacker accesses the same address and
observe if it has been used. If the victim used that address, the attacker experiences a
cache miss. Flush+Reload uses the same principle, but the first part is performed with a
specific command to erase (parts of) the cache (i.e., flush operation). For the GRINCH
attack, the Flush+Reload method is better choice. As a flush operation is faster, the at-
tacker can probe the cache earlier. The earlier the attacker is able to probe the cache, the
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Algorithm 5 Set target bits algorithm

1: procedure SET_TARGET_BITS(Ki ,K j )
2: a ← St atusBi t X or K e y(Ki )
3: b ← St atusBi t X or K e y(K j )
4: bi tA = Inv_Per mut ati on(a)
5: bi tB = Inv_Per mut ati on(b)
6: for each element X inside SBOX do
7: if X [bi tA] == 1 then
8: l i stA .append(Inv_SBOX [X ])
9: end if

10: if X [bi tB ] == X then
11: l i stB .append(Inv_SBOX [X ])
12: end if
13: end for
14: return Li stA ,Li stB

15: end procedure

Algorithm 6 Plaintext generation algorithm

1: procedure GENERATE(Li stA ,Li stB )
2: for i ← 0; i < 16; inc i do
3: if i == seg ment (bi tA) then
4: Pl ai ntext [i ] ← l i stA[r andom()]
5: else
6: if i == seg ment (bi tB ) then
7: Pl ai ntext [i ] ← l i stB [r andom()]
8: else
9: Pl ai ntext [i ] ← r andom()

10: end if
11: end if
12: end for
13: return Pl ai ntext
14: end procedure

easier it is to monitor individual rounds.

Step 3 - Eliminate Candidates: The goal of the Step 3 is to identify the unique index that
is accessed in many different encryptions. Since the target bits involved in the add round
key are fixed, one of the S-Box indexes will be present in all performed encryptions. Af-
ter some iterations, it is possible to identify the index related to the target key-bits by
eliminating the indexes that do not appear in all cases.

Step 4 - Reverse Engineer Key-Bits: Since the attack methodology always forces the tar-
get key-bits to be XOR-ed with ones (i.e., bi tA=bi tB =1), the attacker can simply reverse
engineer these key-bits by inverting the related bits of the obtained index. This can be
expressed by K e y[i ] ← Index[a]⊕1 and K e y[ j ] ← Index[b]⊕1; or K e y[i ] ←¬Index[a]
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and K e y[ j ] ←¬Index[b].
Step 5 - Update Plaintext Generation: After attacking the first round, the attacker needs
to repeat the process targeting the following rounds. The complete key can be retrieved
after four iterations. However, each time the target round changes, the plaintext genera-
tion algorithm has to be updated. The revealed 32 key-bits (from Step 4) need to be used
to generate new plaintexts that can be used to attack the next round, i.e., the attacker can
compute the intermediate round values to generate the plaintexts that force the values
on the target bits in the round under attack.

3.3.5. CHALLENGES

By analyzing the GRINCH attack methodology, the Step 2 (Probe the Cache) might be
challenging due to the required timing precision in accesses the cache during the vic-
tim’s operation, and due to the configuration of the cache memory. Some strategies to
overcome such issues are discussed next.
Cache Probing Precision: Depending on the system configuration, the task to access
the cache during the first rounds of GIFT cipher might be not feasible. Nevertheless, the
attacker can still try other approaches. An interesting option is to apply power analy-
sis to observe the cache accesses. The work in [106] has demonstrated that the power
consumption may clearly reveal when cache misses and hits happens.
Cache Configuration: The configuration of the cache memory affects the attack. An im-
portant parameter is the size of the cache line. Since the GIFT S-Box only contains 16
bytes, a cache line could contain multiple elements. As a result, the accessed index is
obfuscated. Nevertheless, the attack is still possible as long as the whole S-Box fits in a
single cache line. Note that only the two least significant bits of the index are not con-
trolled by the attacker, as they depend on the key-bits. This means that independently
of the cache line size, the maximum number of candidates is 4. As a result of this, the
attacker can continue to the next round and assume all possibilities.

3.3.6. EXPERIMENTAL SETUP

The GIFT software implementation was obtained from the public repository in [107]. It
has the SubCells and PermBits operations implemented through look-up tables. GIFT
was deployed into two SoC platforms: i) single processor SoC, comprised by a processor,
a shared cache L1, I/O peripherals (i.e., UART serial) and a bus as communication struc-
ture; and ii) multi-processor SoC (MPSoC), a tile-based structure comprising seven pro-
cessors, a shared cache L1 and I/O peripherals. All these components are interconnected
through a mesh-based Network-on-chip (NoC) that uses XY deterministic routing. Both
SoC platforms use the RISCY core as the processing unit. RISCY is a RISC-V architecture
from the Pulpino project [108]. The shared L1 cache used in both platforms is a 16-way
set-associative memory with 1024 cache lines where each cache line contains in the de-
fault case a single word consisting of 8 bits. GRINCH was executed on both platforms
while performing encryptions with GIFT. Three different experiments are performed in
this work:

1. Attack Effort versus Attack Efficiency: This experiment analyzes the amount of
encryptions that are required by GRINCH to perform a full recovery of the GIFT
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key. This amount depends on the cache probing efficiency. We evaluate the im-
pact of different probing moments and the impact of a flush operation during the
attack. This scenario uses the cache line size of 1 word.

2. Attack Effort versus Cache Configurations: This experiment evaluates the impact
of the cache line size on the attack. The effort is measured in terms of the amount
of encryptions required to perform a full key recovery. Cache line sizes of 1, 2, 4
and 8 words per cache line are analyzed.

3. Practical Attack Analysis: This experiment runs the attack on the two hardware
platforms (i.e., single processor SoC and MPSoC) on an FPGA. This evaluation
provides practical attack efficiency results for different clock frequencies. For the
single processor SoC, a task scheduler was used to emulate the RTOS operating
system [109]. RTOS is a popular OS for embedded and IoT systems, which uses a
quantum time (i.e., the timing slot that a process gets assigned to the processor) of
10 milliseconds.

For the first two experiments, RTL simulations were used to collect clean data. The
third experiment, the attack was executed in an FPGA platform. The target FPGA is the
Genesys 2 board which contains a Xilinx Kintex 7 device [110]. In all experiments, the
pre/post-processing analysis (i.e., plaintext generation and reverse-engineering of the
keys) were performed in Python.

3.3.7. RESULTS

The results of the three set of experiments are presented next.

ATTACK EFFORT VERSUS ATTACK EFFICIENCY

Figure 3.10 shows the required amount of encryptions to perform a full key recovery of
the GIFT cipher when the first round is attacked; hence, only 32 bits of the key. The
horizontal axis shows the moment in time (in rounds) in which the attacker can probe
the cache status. The earlier this moment, the better the attacker’s efficiency. In case
the attacker is able to probe the cache in the first round, approximately 100 encryptions
are needed to recover 32-bit keys (as can be seen in the figure). To recover the whole
key, 400 encryptions would be required. The later you probe the cache, the more con-
taminated the results are. The efficiency of the attack depends on the amount of noise
(e.g., multiple processes disputing the processor) and the operating system configura-
tion (i.e., defined quantum time). Considering the first round attack (i.e., the first round
can be probed), only the cache sets accesses of the second round contain useful infor-
mation for the attacker. The cache sets accessed in the subsequent rounds are addi-
tional sources of noise, which is reflected in the results as extra effort. Additionally, as
the S-Box lookup table is small, late cache probing results in that most likely all S-Box
content is present in the cache, which makes it extremely hard for the attacker to elim-
inate candidates (see exponential increase in complexity vs cache probing time in the
figure). Moreover, the experiment also evaluated the effect of the flush operation. The
absence of the flush operation increases the attack effort since it adds noise (includes
"dirty" accesses from the first round) to the information gathered by the attacker. Note
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that the first round depends only on the input and it is not useful for the attacker. Hence,
it only increases the effort to succeed. Our experiment does not evaluate the efficiency
of rounds higher than 10, as the amount of encryption required for retrieving the key at
round 10 is already too high to be considered practical in an IoT environment. Results
show that the attack is practical if the adversary probes the cache before the fifth round
when the flush operation is used, and before the forth round, otherwise.

ATTACK EFFORT VERSUS CACHE CONFIGURATIONS

Table 3.4 shows the attack efficiency for different cache configurations. Results show
that the increase of the cache line size decreases significantly the efficiency of the attack;
this is measured by the amount of encryptions required to perform a full key recovery.
Note that the experiments with more than 1 million encryptions were drop-out before
finishing as they are not considered practical. However, the attack is still practical when
the attacker probes the cache within the first or second rounds. Therefore, the success
of GRINCH depends both on the precision and ability of the attacker to probe the cache
in the correct moment of time and on the cache memory configuration.

PRACTICAL ATTACK ANALYSIS

Table 3.5 shows the practical implementation of GRINCH. The results show the round
number which was successfully probed by the GRINCH. For the single processor SoC,
the GRINCH was able to probe the cache during the second round when operating at the
lowest frequency (10 MHz). This result is interesting as many IoT devices are expected
to operate at this frequency. In contrast, when the SoC is operating at higher frequen-
cies, the GRINCH was only able to probe the cache at the fourth and eighth rounds for
25 MHz and 50 MHz, respectively. For the multi-processor SoC, the GRINCH was very
efficient and probed the cache during the first round. Since the malware runs on its
own dedicated processor, the attacker can write content to the shared cache as desired.
As observed during experiments, in the fastest scenario (i.e., encryption running at 50
MHz), the time between different rounds was about 1.2 milliseconds. This time is much
higher than accessing the shared memory on a different tile, which took approximately
400 nanoseconds consisting of the processor delay, Network-on-Chip latency and cache
memory response time.

3.3.8. POTENTIAL COUNTERMEASURES

From the analysis of the GIFT cipher and the observed results it is possible to create
two protection strategies. The first countermeasure is to eliminate the look-up table
vulnerability. For the S-Box, the proposed method is to set the cache line to 8 bytes and
reshape the S-Box from 16 rows of 4 bits to 8 rows of 8 bits. As an overhead, you have
to select the right 4 bits at the output. The second countermeasure is to modify the
UpdateKey operation of the GIFT cipher. Currently, the first four rounds uses directly
the bits of the key, which makes GRINCH attack possible. If the UpdateKey of the first
round prepare the sub-key to be used in the next round by applying some computation
with bits that were not used yet, the key retrieval would not be possible. This requires
however cryptanalysis that goes beyond the scope of this paper.
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Figure 3.10: Required encryptions to break 1st GIFT Round.

Table 3.4: Required encryptions to attack the first round.
Attack Efficiency - Probing Round

Cache Line Size 1 2 3 4 5
1 Word 96 312 840 2,448 5,864
2 Words 136 1112 11440 188536 >1M
4 Words 136 123848 >1M >1M >1M
8 Words 113000 >1M >1M >1M >1M

Table 3.5: Attack efficiency (rounds) of performed attacks.
Clock Frequency

Platform 10 MHz 25 MHz 50 MHz
Single-processing SoC 2 4 8
Multi-processing SoC 1 1 1

3.4. THERMAL BASED ATTACKS
A thermal side-channel assault (TSCA) is a form of side-channel attack that leverages
the thermal disspations produced by electronic devices in order to retrieve confidential
data, such as cryptographic keys (see Figure 3.11). Electronic devices produce thermal
heat due to the power consumed by the circuit during the execution of an operation. The
amount of heat produced is dependent upon several variables, including the device’s
technology, the magnitude of the task being executed, and the surrounding atmospheric
temperature. TSCAs exploit the fact that different operations generate different amounts
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of heat. As an illustration, the execution of a multiplication operation results in a greater
amount of heat generation compared to the execution of an addition operation. The uti-
lization of a thermal sensor by an attacker enables the quantification of the heat emitted
by a device during the execution of a task of high sensitivity. Through the examination
and interpretation of thermal data, the attacker possesses the capability to get pertinent
insights into the ongoing operational activities.

Figure 3.11: Thermal Side channel Attacks

In this study, we perform a comprehensive investigation on the practicality of per-
forming thermal SCAs. We target asymmetric cryptographic algorithms as they typically
are more computationally intensive than symmetric ones, which in theory means that
they generate more heat. Since temperature has a slow response compared to power,
intensive computational tasks provide better quality traces as shown in [35]. Hence, we
show how known SCA techniques like Simple Power Analysis (SPA), Correlation Power
Analysis (CPA) and Deep-Learning Power Analysis (DL-SCA) can be adapted for thermal
attacks. Additionally, we propose a novel thermal attack by modifying the CPA attack; it
achieves a successful and complete key recovery. We refer to this attack as Progressive
Correlation Thermal Analysis (PCTA). All these attacks have been evaluated on unpro-
tected and protected versions of an RSA software implementation. Finally, we present a
comparison of all these SCAs techniques using both thermal and power leakage to clarify
how powerful temperature based attacks can be. The main contributions of the paper
can be summarized as follows:

• Evaluation and adaptation of simple power analysis (SPA), correlation power anal-
ysis (CPA) and deep learning based power analysis (DL-SCA) for thermal analysis.

• Proposal of a novel attack called progressive correlation thermal attack (PCTA) and
its variant for power (PCPA) as a side channel.

• Evaluation and comparison of thermal side channel attacks on unprotected and
protected RSA crypto-system implementations.

• Comparison between the attack accuracy of thermal and power attacks.
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3.4.1. STATE OF THE ART

The authors in [111] used specific programs to heat the processor and encode informa-
tion through the cooling fan behavior; no fan activity represents a binary zero, while the
opposite a binary 1. The authors successfully demonstrate that the heat can be manipu-
lated by an attacker and exploited externally by simply observing the system’s behavior,
i.e., the cooling system. In [35], the authors showed that processors inside a multi-core
system can leak or exchange information through temperature side-channel. They fo-
cused in the paper mostly on a methodology to calibrate and perform inter-processor
communication using temperature as a covert channel. They even showed that iso-
lated cores are vulnerable to such a covert channel. In the last part of the paper, the
authors also presented an attack to identify running applications on the processor by
correlating thermal traces. They use a profiled based methodology, where the attacker
has access to previous application traces. Despite their success, this attack is considered
a coarse-grain side channel which is not as critical as a fine-grain side channel attack
(e.g., the ones that are needed to target cryptographic keys). The authors mentioned
that they were not able to perform a fine-grain SCA due to a low resolution and a low
available sampling rate in most temperature sensors, and conclude that fine-grained at-
tacks might not be practical. In [112], the authors also proposed a methodology to create
covert channels through thermal leakage on multi-core systems. Their threat model con-
siders a spy process inside an isolated core leaking sensitive data. One of their most in-
teresting contributions is the design of a transfer function that models the thermal leak-
age behavior. The objective was to estimate the maximum data capacity of the channel;
this defines an upper bound on the amount of data that can be leaked through the covert
channel. As a result, the authors improved the transmission rate by a factor of 20 as com-
pared to previous work, achieving a rate of 27 bps with an 11% error rate. In summary,
all these papers have presented interesting contributions on how thermal leakage can be
exploited to transmit hidden messages. Their successful results indicate that meaningful
data can be leaked through such channels, which motivates the scientific community to
do more research on thermal side channel attacks.

3.4.2. CHALLENGES OF THERMAL SCA
Similarly, as is the case for power attacks, the Hamming weight (HW) and Hamming dis-
tance (HD) can be used to model the thermal activity of a processor [113]. If an operand
with a large HW value is used in a serial multiplier, it will produce more heat with respect
to the case where the HW is low. Consequently, the temperature will rise. However, there
are a few differences compared to the power consumption that cannot be modeled by
HW or HD such as the accumulative effect of temperature over time. Therefore, a model
closer to the physical behavior is needed to help us to understand the thermal leakage.

One way of modeling the physical behavior of the thermal leakage is by analyzing the
system as an RC-network [114]. This network behaves like a low pass filter with a cut-
off frequency somewhere in the kilo Hz range. This frequency response could pose a
problem since most computers tend to run in the GHz range. With a low pass filter (even
if it is first order), it is very hard to measure any useful data when a system is running at
800 MHz. Luckily, it is not required to capture every clock cycle for side channel analysis,
as long as multiply and square operations can be differentiated. If these operations take
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long enough, differences should be visible in the thermal traces.
Another issue with thermal leakage is that they have an integrative behavior, i.e., the

temperature accumulates when a task is executed (e.g., RSA decryption). The contribu-
tion of thermal leakage from a previous operation is still present in its following opera-
tion. Hence, it is likely that the same operation (e.g. a multiplication) at a different time
moment will have a different starting temperature. To overcome this, two approaches
are possible. In the first approach, pauses can be inserted between the operations. This
can be achieved by periodically stopping the clock or by introducing pauses after each
operation (e.g., periodically forcing an interruption in the processor). The second ap-
proach consists of rapidly cooling the system after each operation. This can be realized
by adding external cooling such as a high-speed fan.

The last issue thermal traces suffer from is the variation of temperature offset with
time. While the power is regulated by a voltage controller, the temperature of the envi-
ronment and the processor are not directly controlled. As a result, the offset varies mul-
tiple times during execution. Today, most systems employ dynamic clock and voltage
scaling to keep the temperature in a certain safe range [115]. Consequently, the thermal
leakage also presents drifts in the offset during execution, but in a much regular behav-
ior. Therefore, thermal side channel analysis requires a mechanism to filter out such
drifts, as they most likely will not able to work on traces with varying offsets.

3.4.3. THREAT MODEL

Our threat model for thermal SCAs consists of the following assumptions:

• The attacker has direct access to the target device in order to record the thermal
traces of the executed decryptions.

• The attacker has access to the ciphertext.

• The attacker can acquire a similar device. We target devices using off-the-shelf
parts such as ARM, AVR, etc.

• The attacker has the ability to slow down the target operation (i.e., RSA encryp-
tion/decryption). It can be achieved by manipulating the external crystal, by forc-
ing the target device to compute many tasks in parallel, or by provoking interrup-
tions calls.

3.4.4. SIMPLE THERMAL ATTACK (STA)
Similarly as for SPA, STA aims to distinguish the operations by visually inspecting the
thermal traces. In order to investigate how difficult it is to make visual inspections on
thermal traces, we performed a small experiment. Under an ARM-based System-on-
Chip inside the PYNQ-Z1 board [116], we run a test application and record its thermal
traces. The temperature was measured by the internal analog-to-digital converter con-
nected to an embedded temperature sensor which is integrated into the target board [116].
The application consisted of two loops without any code inside, as shown in Algorithm 7.
After each loop, a pause was inserted. Such a pause makes the visual analysis better as
both operations will show isolated behavior in the traces.
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Algorithm 7 Simple Thermal Side Channel Analysis test.

for i := 0 ⇒ N do
i++

end for
pause
for i := 0 ⇒ 2N do

i++
end for
pause

The differences in temperature from executing different operations can clearly be iden-
tified (as seen in Figure 3.12). Figure 3.12a shows the thermal trace when no cooling is
applied. As can be seen from the figure, after some time the temperature starts to in-
crease. This impacts the quality of the traces negatively. In order to minimize this, a
cooling fan was installed on top of the processor chip. Consequently, the overall temper-
ature reduced by almost 10 degrees Celsius with no temperature drifts as shown in Figure
3.12b; this clearly improves the quality of the traces. In both figures, there are two distin-
guishable shapes visible, a shorter and a longer one corresponding to the different loop
sizes. Another interesting observation is that the peak temperature differs slightly for
both loops; the system reaches a temperature that is approximately 0.5 degrees higher
when the longer loop is executed.
Methodology: STA can be described by the following sequence of steps:

1. Setup target device with a cooling system

2. Collect thermal traces when running the target operation

3. Find Points-of-Interest (optional)

4. Use visual inspection to retrieve the key

STA requires the same setup used in the test experiment, which uses a cooling sys-
tem in the target device. STA focus on an unprotected RSA decryption, where periodic
interruptions are placed between square and multiply operations when collecting the
traces. Hence, the attacker can evaluate each operation independently using visual in-
spection. For example, Figure 3.13 shows the thermal trace of both operations. Note
that the raw temperature on the y-axis can be transformed to degree Celsius using Equa-
tion 3.2. However, for simplicity and since the relation between them is linear, we used
the raw data generated by the XADC [117] for our security analysis.

T = Raw Temper atur e ·503.975

4096
−273.15 (3.2)

As observed in the figure, each operation has a different behavior. However, visual
inspection is very challenging since the differences can only be identified by some spe-
cific points instead of by the entire shape of the traces. Additionally, note that the tem-
perature offset varies over time. This is known as the temperature drift effect, which is
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Figure 3.12: Simple Thermal Trace Analysis.
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Figure 3.13: Comparison of square and multiply operations of RSA.

caused by the system regulating the voltage (and indirectly temperature) over time. For
STA, temperature drift does not affect the analysis much. Therefore, STA is practical. Ad-
ditionally, STA can be improved if some extra processing steps are used to identify the
most important points that can be used to distinguish between the operations. This step
is defined in our methodology as Find the Point-of-Interest (POI), and several techniques
can be applied such as the sum of pairwise differences or the sum of squared pairwise
T-differences (SOST) [118].

3.4.5. CORRELATION THERMAL ATTACK

As shown in STA, the thermal traces contain a temperature drift. As a result, the thermal
traces have to be pre-processed before Correlation Thermal Attack (CTA) can be applied.
Figure 3.14 shows the temperature drifting behavior again but for multiple operations.
Each point represents the average temperature of 1600 thermal traces.

One way of solving this temperature drift is by subtracting the average of each oper-
ation of each trace. This is a method used to remove noise [119]. However, this is not
suitable here as the average of each trace is relevant for the correlation process with the
Hamming weights (HW). Another way of removing the drift offset is by subtracting the
first value of each operation in their partial traces. However, this can be tricky due to the
presence of noise. To make this more robust, it is better to take the average of the first
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Figure 3.14: Thermal Traces for Multiple Operations

m-samples and subtract that value from the trace. This reduces the effect of noise in cal-
culations. This technique is based on the auto-zero amplifier [120] and can be observed
in Equation 3.3. Instead of charging a capacitor in the sampling phase, the first values
are accumulated and normalized.

Tfiltered offset =
1

m

m∑
i=0

ti −T (3.3)

Figure 3.14b shows the same information as 3.14a but compensated for the tempera-
ture drift. As can be seen, the drift is almost completely removed. To understand how
this approach works, let’s revisit Figure 3.13b. In the figure, the orange line indicates
when the processor is active (i.e., approximately the first 18000 samples). The tempera-
ture offset only starts to rise somewhere between 10000 and 15000 samples (due to the
integrator effect of the thermal behavior). This means that the first 10000 samples can
be used to reduce the drift effect. In Figure 3.14b, the drifting effect was removed by sub-
tracting the average of the first 12000 samples (i.e., m equals 12000 in this case). Note
that the average of each trace is unequal to zero; therefore, they can be used for correla-
tion.
Methodology: The Correlation Thermal Analysis can be described by the following se-
quence of steps:

1. Setup target device with a cooling system

2. Collect thermal traces when running the target operation

3. Remove temperature drift

4. Estimate Hamming weight of the target operations (i.e., square and multiply)

5. Correlate thermal trace with hypothetical guesses

6. Classify key bits as "1" or "0" according correlation results
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After solving the temperature drift issue, the Hamming weight (HW) values have to
be computed. Since there are only two possible operations (i.e., square or multiply),
it makes sense to calculate the HW of the result of the square and multiply operations
to use for the correlation process. Since it is not possible to compute all possible HW
due to RSA key sizes, an estimation is derived from the average of a random simulation
process. To make a proper estimation of these values, a simulator was created. After se-
lecting ten different key pairs, which were generated randomly with the OpenSLL python
library [121] (with key length 2048), the average HW of the results of the square opera-
tions was 922, while 461 for the multiply operations. Depending on the implementation,
the actual HW might differ. However, as long as the ratio between square and multiply
HW is around 2:1, the attack will work. After the Hamming weights are created for both
scenarios (i.e., square and multiply) and the thermal traces are collected and processed,
it is possible to calculate the correlation matrix r . Like CPA, we use Equation 2.3 to com-
pute r . For each trace, there are two possible values defined as rsquare and rmultiply. If
rsquare ≥ rmultiply the key-bit guess is 1, else the key-bit guess is 0. The pseudo code is
provided in Algorithm 8.

Algorithm 8 Correlation Thermal Analysis for a Naive Implementation of RSA

for i := 0 ⇒ length(trace) do
rmultiply ← correlation(hmultiply, trace[i])
rsquare ← correlation(hsquare, trace[i])
if rsquare ≥ rmultiply then

key_guess[i] ← 1
else

key_guess[i] ← 0
end if

end for

3.4.6. DL-BASED THERMAL ATTACK

The goal of a side channel attack is to classify parts of a trace in such a way that they lead
to the key. Machine learning (ML) and deep learning (DL) are very suitable methodolo-
gies to realize this. The most effective solutions use supervised learning (i.e., when the
attacker has a similar device to train the network) and Convolutional Neural Networks
(CNNs) [122]. CNN is a popular and effective way of (image) classification and recog-
nition [123]. Although CNNs can be very complex, they have one advantage over the
techniques like CPA/CTA as they can learn the leakage behavior.

A representative example of our target CNN is presented in Figure 3.15. The input is a
1-dimensional thermal trace followed by convolutional layers interleaved with pooling
layers. Each convolutional layer contains a Rectified Linear Unit (ReLU) activation func-
tion [124], batch normalization and gaussian noise insertion. Batch normalization and
gaussian noise are used to avoid overfitting. Our first attempts used drop-out; however,
after many trials the combination of batch normalization and gaussian noise provided
the best results (about 90% accuracy during the training phase). The last part of the CNN
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consists of the classification, which contains flattened, fully connected and SoftMax lay-
ers. The SoftMax layer maps the output values between 0 and 1.
Methodology: The DL-based Thermal Attack can be described by the following sequence
of steps:

1. Setup template device with a cooling system.

2. Collect thermal traces when running the target operation with known key.

3. Remove temperature drift.

4. Slice and label the traces.

5. Separate part of the traces into a training and validation set.

6. Train the CNN using the training set.

7. Validate the CNN using the validation set.

8. Setup target device with a cooling system.

9. Collect thermal traces when running target operation.

10. Remove temperature drift. (create evaluation set)

11. Apply the evaluation set to the trained CNN.

12. Collect more traces to perform a vertical attack

The attack starts by recording traces from the template device, where the input and
key applied are known. Subsequently, pre-processing is applied to remove the tem-
perature drift. For this purpose the same technique as described in Section 3.4.5 (see
Equation 3.3) is used. Thereafter, the traces are divided into two sets, i.e., a training and
validation set.

The next step in the process is to determine the labels to perform the training. In the
unprotected RSA implementation, it makes sense to look at two possible label structures:

• Labels method A: square and multiply

• Labels method B: square square, square multiply and multiply square

Method A has as advantage that it is the most simple approach. It just requires having
traces with a single square or multiply operation. In case a certain operation is wrongly
predicted, it might be that two multiply operations follow each other up; this is however
not possible and hence should be corrected. This is not possible in method B, which au-
tomatically eliminates/ignores incoherent results. However, method B requires a larger
and more complex CNN. In this work, we used method A for labeling.

The next step is to train the neural network. The training parameters are the following:

• Initialization: Glorot [88] is used to initialize the weights and biases. Glorot is an
advanced technique (as compared to e.g. random initialization), where the initial-
ization values are computed based on the width of its preceding and successive
layers.
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Figure 3.15: Convolution Neural Network.

• Loss Function: The loss function is defined by the categorical entropy technique
to compute the error function.

• Optimization: For optimization, Adam [89] is used; it is a special technique that
uses adaptive learning rates for each parameter which typically gives good results.

• Regularization: Both batch normalization and gaussian noise are applied. Batch
normalization originally was introduced to reduce the random effects of initializa-
tion parameters and input data [125]. However, it has been successfully applied to
improve generalization [126]. The gaussian layer adds noise to the data before it
enters a neuron. As a consequence, instead of only being able to classify the used
image, the neural network is also able to classify small changes on that image [127].

After the training achieves sufficient accuracy results (i.e., around 90%), we validate
the trained CNN using the validation traces. Thereafter, the attacker can collect the ther-
mal traces from the target device. The attacker has to remove the temperature drift from
the collected traces. This trace set is defined as an evaluation set. Subsequently, the
attacker applies the evaluation set to the CNN. Finally, more traces of different execu-
tions are collected and fed into the CNN. As more traces are used to determine the key,
the higher is the chance of a successful attack. This strategy is defined as a vertical at-
tack [128].

3.4.7. PROGRESSIVE CORRELATION THERMAL ATTACK (PCTA)
In the PCTA attack, a fixed amount of key-bits are processed sequentially. As a conse-
quence, when a sub-key of 10 bits is guessed incorrect, the following sub-keys will also
be incorrect since they depend on each other. Therefore, it is essential to come up with
a proper estimation. To do this, we increase the differences in HW values by using a spe-
cific message (i.e., ciphertext since we attack RSA decryption). This specific messages is
crafted in the form of m = N −1 [129]. An example of this can be seen in Algorithm 9.

Analyzing the values of R0 and R1 in Algorithm 9, it looks that each round computes
exactly the same values. The answers are always N −1 = 76 and 1. However, the multi-
plications to compute such results are slightly different, which can be:
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Algorithm 9 An Example of Calculating RSA With a Specific Message

Variables Declaration:
d = 43;(b101011) ▷ Private Key d
N = 77; ▷ Public Key N
c = 76; ▷ Ciphertext c
R0 = 1;
R1 = c = 76;

Decryption:

e[0] = 1

{
R0 = (R0 ∗R1) mod N ⇒ (1∗76) mod 77 = 76 {M2}
R1 = (R1 ∗R1) mod N ⇒ (76∗76) mod 77 = 1 {M3}

e[1] = 1

{
R0 = (R0 ∗R1) mod N ⇒ (76∗1) mod 77 = 76 {M2}
R1 = (R1 ∗R1) mod N ⇒ (1∗1) mod 77 = 1 {M1}

e[2] = 0

{
R1 = (R0 ∗R1) mod N ⇒ (76∗1) mod 77 = 76 {M2}
R0 = (R0 ∗R0) mod N ⇒ (76∗76) mod 77 = 1 {M3}

e[3] = 1

{
R0 = (R0 ∗R1) mod N ⇒ (1∗76) mod 77 = 76 {M2}
R1 = (R1 ∗R1) mod N ⇒ (76∗76) mod 77 = 1 {M3}

e[4] = 0

{
R1 = (R0 ∗R1) mod N ⇒ (76∗1) mod 77 = 76 {M2}
R0 = (R0 ∗R0) mod N ⇒ (76∗76) mod 77 = 1 {M3}

e[5] = 1

{
R0 = (R0 ∗R1) mod N ⇒ (1∗76) mod 77 = 76 {M2}
R1 = (R1 ∗R1) mod N ⇒ (76∗76) mod 77 = 1 {M3}

• M1: 1 ·1 mod N ≡ 1 mod N
• M2: 1 · (N −1) mod N ≡ (N −1) ·1 mod N ≡ N -1 mod N
• M3: (N −1) · (N −1) mod N ≡ 1 mod N

This means that there are only three different HW values possible when we look at
the output of the multiplication (without the modulo operation). Note that depending
on the previous key bit, there are only two possible combinations of operations, either
M2 followed by M1 or M2 followed by M3. This behavior is shown in Table 3.6. Conse-
quently, when multiplications M1 and M3 are identified the current key bit can be re-
trieved. Luckily, M1 and M3 have a very different HW value which improves the chance
of a successful key correlation.

Note that this approach can be extended by considering 10 bits of the key simulta-
neously instead of 1 bit. However, this requires that 210 different HW values have to be
computed.
Methodology: The Progressive Correlation Thermal Analysis can be described by the
following sequence of steps:

1. Setup template device with a cooling system.

2. Prepare the input message of the target operation.
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Table 3.6: Operations according to current key-bit e[i] and previous key-bit e[i-1].
e[i-1]

0 1

e[i]
0

M2 M2
M1 M3

1
M2 M2
M3 M1

3. Collect thermal traces when running the target operation.

4. Remove temperature drift.

5. Define sub-key size.

6. Perform CTA on the sub-key.

7. Use the resulting guessed sub-key to perform CTA in the next sub-key.

8. Repeat step 7 until the end of the trace.

9. Collect more traces to perform a vertical attack.

The PCTA attack is very similar to the CTA attack but attacks only part of the key at a
time using a specific message. To successfully retrieve the key, a vertical attack is pre-
ferred where the sub-key is evaluated using multiple traces simultaneously. The sub-key
that is the most common among the different traces is most likely the correct sub-key.
Note that it is theoretically possible to compare the sub-keys of multiple traces on a bit
level instead of a sub-key level. However, this will not improve the results as the derived
sub-key could end up not being a result of any of the traces. Therefore comparing each
sub-key of all the gathered traces is the preferred method. Finally, the strategy that is
used to craft the input message adds a new requirement to the threat model. It does not
necessarily make the attack unpractical but might limit its application in the field.

3.4.8. MEASUREMENT SETUP AND PERFORMED EXPERIMENTS

All experiments were performed on the PYNQ-Z1 development board [116]. The PYNQ
board runs bare metal C(++) code on one of the two available ARM-A9 cores. We used the
board to run both the unprotected RSA (i.e., square and multiply) and the protected RSA
(i.e., Montgomery Ladder) implementations using a 1024-bit key. PYNQ-Z1 has an em-
bedded analog-to-digital converter XADC [117], which is connected to power and tem-
perature sensors. It has a resolution of 12 bits and a sampling rate up to 1 mega samples
per second (MSPS). In order to read out the data from XADC with minimal noise effects,
the Zeroplus Logic Cube (LAP-C 16032) digital logic analyzer is used [130]. The collection
of traces, the steps to process them and the attacks have been coded in Python scripts.
The measurement setup can be seen in Figure 3.16. Note that the experiment was con-
ducted at room temperature using a clock frequency of the system equals 650MHz and
a supply voltage of 1 Volt.

Using this setup, the following experiments were conducted:
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Figure 3.16: The Measurement Setup With Logic Analyzer

• Correlation Thermal Attack: In this experiment, CTA is used to attack the unpro-
tected RSA implementation. Nine traces were used.

• DL-based Thermal Attack: In this experiment, the unprotected RSA implementa-
tion is attacked using deep learning. Two different sets of traces were used, one
with a known key and one with an unknown key. The former set was used for
training and validation, while the latter set was used for evaluation. This experi-
ment uses five traces for training and validation and nine traces for evaluation.

• Progressive Correlation Thermal Attack: This experiment use PCTA to attack the
Montgomery Ladder RSA implementation. Five traces were used.

• Comparison between Power and Thermal attacks: In this experiment, the results
of all evaluated thermal attacks (i.e., the experiments above) are compared with
their equivalent power attacks, and hence we also collected power traces.

To evaluate these experiments, the following two metrics are used:

• Performance: The performance is defined as the attack accuracy, i.e., the percent-
age of key bits that are guessed correctly. A successful attack requires a 100% ac-
curacy for the RSA cryptosystem. Due to the usage of very large key sizes in RSA,
even when 95% to 98% of the key-bits have been guessed correctly, it is still hard
to brute-force the wrongly predicted key bits when their locations are not known.

• Error histogram: This histogram shows the occurrences of wrong guesses for the
trace samples. It provides evidence that vertical attacks are practical, as long as the
errors are more or less random (i.e., have a uniform distribution).

3.4.9. CORRELATION THERMAL ATTACK RESULTS

The results of the CTA experiment are presented in Table 3.7. Among the nine attacked
traces, the performance varies between 92 and 95 percent. In case the traces are attacked
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isolated, such results are insufficient for a successful attack. However, when analyzing
the error histogram depicted in Figure 3.17, we observe that the errors of these traces are
distributed uniformly along the key-bits. Consequently, this means that the key can be
reconstructed using a vertical attack with majority voting. Note that the histogram also
shows that the first two bits are wrongly guessed in most traces. This makes sense as the
input of the square and multiply is not limited by the modulo yet. However, this does not
prohibit the reconstruction of the key, as the location of such faulty bits is fixed; hence
they can be easily brute-forced. Therefore, our CTA attack achieves a 100% accuracy with
only nine traces when a vertical attack is used, as shown in the last column of the table.

3.4.10. DL-BASED THERMAL ATTACK RESULTS

The DL-based thermal attack has two phases. The training and attack phases.
Training phase: In order to train the network, these traces had to be separated in two
groups. The first group consisting of 90% of the total traces for training and 10% for val-
idation. To make sure that the validation group was uniform, all the traces were first
randomly shuffled and afterward split. This makes sure that the CNN is able to handle
all kinds of offset. After shuffling, we calculated the percentage of ones and zeros at each
dataset. The training of the CNN is considered successful when at least 90% accuracy is
achieved. Figure 3.18 shows the accuracy results of the training phase; it shows the re-
sults for both the training and validation sets. Both cases achieved a maximum accuracy
above 90% which indicates that the attack can be successful.
Attack phase: In this phase, the evaluation set consisting of nine traces is used to re-
trieve the key. Table 3.8 shows that the results of the individual traces have a 91% to 95%
accuracy. We also applied error analysis to understand the error distribution behavior.
The combined error histogram of all the traces can be seen in Figure 3.19. It shows again
a uniform distribution of the errors except for the first bits. Hence, a vertical attack is
possible. Since the key in all executions is fixed, the CNN was able to completely retrieve
the key when a vertical attack was applied on these nine traces.

3.4.11. PROGRESSIVE CORRELATION THERMAL ATTACK RESULTS

PCTA is highly dependent on the correct key guesses during the iterations over the sub-
keys. This means that one incorrect guess makes the attack unsuccessful. Table 3.9
shows for five different traces the number of key-bits that have been predicted correctly
until the first faulty prediction occurred. Note that in the best case, only 25% of the key-
bits have been predicted correctly.

To increase the accuracy, also here information from multiple traces could be com-
bined. The first method would consist of simply adding traces together [131]. This in-
creases the differences between low-intensity and high-intensity operations. However, it
requires all traces to be perfectly aligned in time, and more importantly, they must have
the same offset. The last requirement is a problem in the case of temperature because
our pre-processing does not completely remove the temperature drift effect. Therefore,
instead of adding all the traces together, we applied a vertical attack with majority voting
during every intermediate step (i.e., at each sub-key correlation).

In this setting, it was possible to retrieve the full 1024-bit key with 5 traces only. The
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Table 3.7: Results of CTA on the unprotected implementation of RSA

1 2 3 4 5 6 7 8 9 Vertical
93.1% 92.8% 92.8% 93.0% 94.4% 92.8% 94.3 93.6% 92.9% 100%
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Figure 3.17: Error Histogram of Correlation Thermal Attack

Table 3.8: Results of cnn on the unprotected implementation of RSA

1 2 3 4 5 6 7 8 9 Vertical
93.7% 93.9% 93% 93.6% 95.1% 91% 94.1% 94.2% 92.7% 100%

Table 3.9: Results of PCTA on the (Montgommery implementation of RSA with c = N −1)

1 2 3 4 5 Vertical
257 97 96 47 108 1024
25% 9.4% 9.3% 4.5% 10.5% 100%

frequency of correctly predicted intermediate sub-key values can be seen in Figure 3.20.
Due to the usage of five traces, the maximum frequency is five. The figure shows that
the confidence of the attack was very high in most cases, and that with only 5 traces the
whole key could be recovered. We recommend to use PCTA with more traces to increase
the predicted key’s confidence level.
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Figure 3.18: Training and Validation Curves of the CNN
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Figure 3.19: Error Histogram of DL-based Thermal Attack
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Figure 3.20: Frequency of Intermediate Results With Five Traces

3.5. DISCUSSION AND CONCLUSION

In the field of cybersecurity, a great deal of experimentation has been carried out with a
wide variety of side channel attacks in order to determine which ones are the most effec-
tive. A wide variety of techniques, including thermal emission and time variation, as well
as power consumption, have been investigated. Power-based attacks stand out among
these because of the effectiveness they possess. They are distinguished from thermal
methods by the fact that they do not require expensive equipment or specialized knowl-
edge, and they also demonstrate a lower sensitivity to noise. Additionally, power attacks
make it easier to zero in on the target of the attack, which is a task that is significantly
more difficult to accomplish when dealing with timing side channels. The straightfor-
ward nature of power attacks, which only require the measurement of power, contributes
to the fact that they are feasible and appealing to potential attackers.

Furthermore, the versatility of power side channel attacks extends to their capacity to
compromise other channels, such as timing and electromagnetic, which broadens the
potential impact of these attacks. Due to the fact that they possess this capability, they
are especially pertinent in the process of developing techniques for assessing side chan-
nels. By concentrating on power as the primary mode of leakage, researchers have the
potential to discover a greater variety of vulnerabilities while simultaneously reducing
the complexity of their work. Through the utilization of this all-encompassing approach,
our comprehension of side channel vulnerabilities is improved, thereby paving the way
for the implementation of more robust security measures and mitigation strategies in
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response to the ever-evolving cyber threats.



4
COUNTERMEASURES

This outlines the four countermeasures that were developed during the course of the
present study. Section 4.1 introduces a neural network-driven version of the Advanced
Encryption Standard (AES) algorithm with the objective of obfuscating the adversary. Sec-
tion 4.2 introduces a countermeasure approach for addressing the issue of balancing the
power consumption in asymmetric algorithms such as RSA and ECC. Section 4.3 intro-
duces a set of algorithms that integrate randomization and balancing techniques in a
lightweight manner. Section 4.4 introduces a lightweight implementation of the DOM-
based Advanced Encryption Standard (AES).

This chapter is partially published on [19] [36] [41] [40] and also partially submitted to Cryptography an
international, scientific, peer-reviewed, open access journal on cryptography.
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4.1. S-NET: A COUNTERMEASURE BASED ON CONFUSION

This section explains the confusion countermeasure, the idea behind S-NET and finally,
the methodology to design it.

4.1.1. CONFUSION: INVALIDATING THE LEAKAGE MODEL

In side channel analysis (SCA), an attacker correlates the power consumption with a
leakage model assuming a linear relation between them. In other words, a higher power
consumption results in a larger hamming weight/distance as illustrated in the left part of
Figure 4.1. Hence, the different hamming weights/distances are traceable in the power
traces. Note that the countermeasures based on randomization and blinding try to make
this harder, but are typically not able to completely hide this linear relation when sta-
tistical analysis are performed. The reason for this is that these countermeasures only
try to modify the power consumption, as shown in the left part of Figure 4.2. On the
other hand, it would be much more difficult for attackers to analyze power traces when
the relation between the hamming weight/distance is nonlinear with the actual power
consumption as the right part of Figure 4.1 shows. In such a scenario, based on the
message-key combination, different hamming weights/distances might have the same
power consumption and message-key combinations with the same hamming weights
and/or distance might have a different power consumption; hence, attacks based on
hamming weight and/or distance are confusing and not effective. The reason for this is
that such a countermeasure confuses the leakage in relation to the power consumption.
Therefore, this countermeasure targets the leakage model as illustrated in the right part
of Figure 4.2.

Note that the implementation of S-NET inherits the non-linearity from the stochastic
properties of neural networks. Generally any mathematical function that tries to break
the linear power-leakage behaviour can be categorized as a countermeasure based on
confusion.

4.1.2. MOTIVATION BEHIND S-NET
Besides their stochastic properties, neural networks also have other benefits. Neural net-
works can be considered to a certain degree as black boxes as it is unclear how their
internals precisely work. This property makes neural network based implementations
difficult to be characterized. Hence, finding a good leakage model against it is extremely
hard.

4.1.3. DESIGN METHODOLOGY

Figure 4.3 shows the concept of S-NET. S-NET implements the SBOX operation using a
neural network without affecting the remaining AES operations. The size and weights of
the neural network can be achieved by iterating over three steps, namely design, training,
and optimization until a satisfying solution is reached. Thereafter, in the final and fourth
step, the neural network is integrated with the other parts of AES. Each step is described
in detail next.
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Figure 4.1: Linear power-leakage correlation (modified from [132]).

Figure 4.2: Visual explanation of the confusion concept.

Figure 4.3: SBOX representation in S-NET

1. DESIGNING S-NET:

This step describes the methodology used to define the sizes of the input, output and
hidden layers of S-NET.

The SBOX is typically represented by the look-up-table (LUT) shown in left side of Fig-
ure 4.3. The LUT contains 256 elements arranged in a table with 16 rows and 16 columns.
The row index is specified by the first 4 input bits and the column index by the latter 4
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input bits. Since a neural network is not a table, S-NET is designed differently. The input
layer of S-NET is fixed to 8 neurons, each representing a single bit of the input, respec-
tively. To improve the resilience against attacks, only a single neuron in the output layer
has been used that generates the output byte of the SBOX. The size of the hidden layer,
i.e., its width and depth, depends on how easy it is for the neural network to learn the
content of the LUT. We have tried different widths and depths to find the optimal so-
lution in term of computation and memory efficiency. We observed that the cheapest
solution from a computational and memory point of view consists of using a single hid-
den layer for two reasons: 1) as the inputs are binary, no multiplications are required
in the hidden layer, and 2) by reducing the depth to a single layer, data can be repre-
sented using less number of bits. Note that the range of intermediate values increases
for a larger depth.

2. TRAINING S-NET:

This step describes the training process and how the weights and biases of S-NET are
determined. Usually the data set consists of three subsets during the training of a neural
network. One subset is used for the training of the network, one for the validation of
the network, and one for evaluating the performance after the training is completed.
However, in case of S-NET, only a single data set is used for training. The validation
and evaluation are not needed as S-NET must be 100% functional, i.e., it must generate
correct outputs for all 256 SBOX inputs.

3. OPTIMIZING S-NET:

This step describes the optimization techniques used to increase the performance and
reduce the overhead of S-NET.

The computational complexity and memory overhead of neural networks make them
undesirable solutions for both hardware and software applications. Therefore, to reduce
the cost of the proposed solution, multiple optimization techniques are applied before,
during, and after the training process. These techniques are highlighted next.
Integer weights: It is well understood that integer operations have a significant perfor-
mance benefit in comparison with floating point operations. Therefore, the weights of
the neural network are rounded to the nearest integers after the training phase. After this
step, all the inputs of the SBOX are reevaluated to guarantee correct operation.
Constrain weights: The neural network typically produces a wide range of values for the
weight set and hence floating point numbers are used by default during training. An
implementation of a neural network in hardware and software would be more optimal if
the weight set is restricted to a limited number of bits. In S-NET, we fixed the sizes of the
weights to 16 bit integers, thereby speeding up the operations and lowering the memory
overhead, especially when customized hardware operations are used.
Reduce multiplications: Multiplications are one of the most expensive operations in the
neural network. For this reason, S-NET is designed to have a single hidden layer where
no multiplications are needed as the input neurons are represented by a single bit. In
the output layer, the number of multiplication is reduced by setting a threshold for the
weight. Any weight value below this threshold is skipped. Hence, it results in a lower
computational overhead.
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Use simple activation functions: Each neuron contains an activation function. The in-
put to this activation is equal to the sum of the product of the inputs and weights of
the neuron plus the bias. Many functions have been used as activation function such as
tanh, sigmoid, Rectified Linear Unit (ReLU), etc. The computational complexity of these
functions varies. In our design we intentionally chose Relu for the hidden layer and no
activation function in the final layer to achieve simplicity in both software and hardware
implementations.

4. INTEGRATING S-NET

in this final step, the designed S-NET component is integrated into the AES implemen-
tation by replacing the conventional SBOX.

4.1.4. EXPERIMENT SETUP

To validate the proposed concept of the countermeasure, we compare the security of
an unprotected and protected software implementation of AES128, where the protected
implementation uses S-NET. The software implementations run on the Chipwhisperer
board from NewAE Technology Inc [94]. It is a development board that comes with the
Atmel XMEGA microcontroller as target device. We used the unprotected open source
AES128 implementation that comes with the board as our reference for the unprotected
AES128 implementation. The power consumption is measured with an ADC that is in-
tegrated in the development board. Finally, the development board is connected to a
computer to control the execution and storage of the power traces.

4.1.5. RESULTS ANALYSIS

To analyze the security of both the unprotected and protected AES implementations,
two analysis methods are applied. They are referred to in literature as evaluation-style
and conformance-style testing.

First, in evaluation-style testing traces are examined based on real attacks scenarios,
preferably by advanced state-of-the-art attacks. They reveal whether the implementa-
tions are resilient against these attacks or not. Here, we limit ourselves to the most fa-
mous power attacks; they are: differential power analysis (DPA), and correlation power
analysis (CPA). Second, in conformance-style testing the traces are checked to meet cer-
tain leakage requirements, without considering attacks. Examples of such analysis are
TVLA [73] and signal-to-noise ratio (SNR) analysis [74]. Due to space limitations, we
only limit ourselves to SNR analysis. The results of both analysis methods are provided
next.

Evaluation-style testing: Two popular attacks (i.e. DPA and CPA) are performed on the
recorded traces of the unprotected and protected implementations.The traces are gen-
erated based on fixed keys. For each attack, we evaluate the rank of the correct sub-
key values (i.e., 8 bits of the 128-bit key). A rank of zero means that the attacker is able
to retrieve the correct sub-key, while a rank of 255 represents the lowest confidence of
guessing the right sub-key.
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(a) DPA (b) CPA

Figure 4.4: Ranking analysis results of unprotected SBOX implementation

(a) DPA (b) CPA

Figure 4.5: Ranking analysis results of S-NET implementation

Figure 4.4 shows the rank analysis of the first 6 bytes for both attacks for the unpro-
tected implementation. The figure clearly shows, as expected, that the sub-key can be
retrieved successfully when approximately 400 traces are used; this applies for both at-
tacks. In contrast, the two attacks were unsuccessful for the protected S-NET implemen-
tation as shown in Figure 4.5. The rank of the correct key behaves chaotically and never
reaches zero and hence the correct sub-key could not be retrieved. The analysis have
been done using only a single weight set for S-NET.

Conformance-style testing: Figures 4.6a and 4.6b show the SNR analysis of the unpro-
tected and protected implementation, respectively. The traces for the analysis are gen-
erated based on random keys. The maximum SNR value of both figures differs. For the
unprotected case, a high SNR value of 37.6 is observed around sample 3000 which is
higher than the considered threshold value (which equals 25 [133]); hence, information
leakes. However, for the protected case, the highest observed SNR value is 21.5 around
sample 14000, which is below the minimum threshold value. Hence, it is hard to extract
the secret key.

The results based on both evaluation-style and conformance-style testing clearly show
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(a) Unprotected SBOX implementation (b) S-NET implementation

Figure 4.6: SNR analysis results

Table 4.1: Number of correctly predicted sub-keys
Unprotected Protected (S-NET)

Leakage Model & Attack DPA CPA DPA CPA
HW(AddRoundKey) 0 0 0 0
HW/HD(SubByte) 16 16 0 0
HW/HD(LastRound) 16 16 0 0

that S-NET is secure against CPA and DPA power attacks. This can also be seen in Ta-
ble 4.1. In the protected case, we were not able to recover any of the sub-key values.
However, for the unprotected case, all the 16 sub-keys were successfully retrieved for
attacks based on SubByte and LastRound, for both DPA and CPA using both hamming
distance (HD) and hamming weight (HW).

4.2. MULTI-BIT BLINDING: AN ASYMMETRIC

COUNTERMEASURE
This section presents the proposed countermeasure method. First, we motivate the rea-
son behind the countermeasure and thereafter detail its design and implementation.

4.2.1. MOTIVATION

There are four main leakage sources from the code that give attackers the ability to
retrieve the secret key of software implementations of asymmetric crypto-algorithms
like RSA. They are (i) distinguishable operations [9], (ii) branch prediction [134], (iii)
operands manipulations [53] and (iv) address manipulations [53]. With respect to dis-
tinguishable operations, it is easy to recover the key once the main operations are iden-
tified in Algorithm 1. When a square operation is followed by a multiplication the secret
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Figure 4.7: Motivation Behind Mulit-Bit Blinding

is bit one otherwise the secret bit is zero. To break this correlation, many countermea-
sures focused on hiding the operation itself (e.g., using Montgomery multiplication [37])
or adding extra dummy operation such as square and multiply always [135]. However,
both such techniques have been broken already [39, 135]. Branch prediction leaks infor-
mation as the branch target buffer is only updated when a branch is taken. An attacker
could e.g. use this information to identify whether the if-statement in Algorithm 1 was
taken or not and hence whether the key bit is one or not. In order to prevent this, some
implementations used a dummy variable to store the discarded values [53]. Although the
usage of Montgomery multiplication, dummy operations and dummy variables solved
the leakage problems due to distinguishable operations and branch prediction, they in-
troduced a new vulnerability related to the operands and/or address manipulation [53].
In case for example a dummy variable is used to store the output of a dummy multiplica-
tion when the key bit is zero, the following square operation will share the same operand
and since both are executed using Montgomery multiplication, an attacker can compare
the power behaviour of both operations to identify the dummy operations. This type
of vulnerability is known as operands manipulation. Similarly, when the key bit is zero
the address of the dummy variable will be accessed, which differs from the original vari-
able address which results in a different power consumption that can be exploited by an
attacker. This vulnerability is known as address manipulation.

One way to address the issues of distinguishable operations and operands manipula-
tion is by always executing the same operations independent of the key bit without intro-
ducing dummy operations. This concept is illustrated in Figure 4.7. The top part shows a
naive implementation for two random keys; when the key bit is zero only a square opera-
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tion is performed and when the key bit is one a square and multiplication are performed.
This results in different patterns which can be identified in the traces by the attacker. In-
stead, in the lower part of Figure 4.7 two bits are exploited simultaneously, and indepen-
dent of their value always perform two square operations followed by a multiplication.
Hence, all keys end up in the same constant sequence of performed operations. We call
this strategy Multi-bit Blinding and Equations 1-4 shows how the operands are derived
from the four possible two-bit key values.

00 ⇒ (R2
0 )2 ⇒ R2

0 ×R2
0 (4.1)

01 ⇒ (R2
0 )2 ×R1 ⇒ (R2

0 )2 ×R1 (4.2)

10 ⇒ (R2
0 ×R1)2 ⇒ (R2

0 )2 ×R2
1 (4.3)

11 ⇒ (R2
0 ×R1)2 ×R1 ⇒ (R2

0 )2 ×R3
1 (4.4)

In the equations, R0 represent the running state variable and R1 the ciphertext mes-
sage as can be also seen in Algorithm 1. For example, Equation 4.4 describes the case
where the two-bit key equals 11. Normally, the operation sequence would be square,
multiply, square, multiply. The sequence can be rewritten to the sequence contain-
ing square, square, and multiply. In all four cases the first square operation uses the
same operand R0 while the second square and the multiplication thereafter use dif-
ferent operands. Note that R2

1 and R3
1 can be pre-computed once at the beginning of

the algorithm and hence are seen as static variables. This approach has several advan-
tages in making attacks less successful. The constant repeating sequence of operations
(i.e., square, square, multiplication) independent from the key requires that the attacker
needs to understand which values (i.e., operands) are used during the operations. As
the value of R0 is constantly changing, it is difficult to identify what the two-bit value of
the key is based on analyses of power traces. Note that no dummy operations are used,
which means that the result of the multiplication operation is used as operand in the
following square operation. Hence, it avoids operand manipulation vulnerability.

To cope with branch prediction and address manipulation, a second strategy is ap-
plied referred to as variable assignment optimization. In this strategy we replace the
conditional statement with a variable assignment using logic operations. However, to
avoid address manipulations, instead of using a dummy variable, the variable size was
doubled. Depending on the value of the two key bits, an operand is either stored in the
original or extended part of the variable. This guarantees that the same memory loca-
tions are accessed in both cases (i.e., when bit is zero or one). Hence, it avoids address
manipulation vulnerability. Next we provide more information on multi-bit blinding and
variable assignment optimization.

4.2.2. MULTI-BIT BLINDING

One of the advantages of the proposed method is its simplicity as shown in Algorithm 10.
The first part of the algorithm pre-computes the values of R2

1 and R3
1 . The second part

consists of the for loop which is used to walk over the key bits. Note that a step size of
two is used as two bits of the key are simultaneously used. Step 1 computes the square
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Algorithm 10 RSA with Multi-bit Blinding

INPUT (c,d ,n,r1) where c presents the ciphertext, d the private key which can be represented by its binary
represenation as d0 · · ·dl−1 where k j ϵ{0,1}, n the modulus, and r1 the random mask.

OUTPUT(R0); where R0 = cd mod(n)
d = d + r1(n −1)
R0 = 1
R1 = c
R2 = R2

1
R3 = R1 ×R2
for j ← n to 0 ; j ← j −2 do

Step 1 - Square

t1 ← R0
R0 ← R2

0 mod (n)
t2 ← R0

Step 2 - Select operands (Switch)

switch k[ j , j −1] do
case 00 : t1 = t1; t2 = t2
case 01 : t1 = R0; t2 = R1
case 10 : t1 = R0; t2 = R2
case 11 : t1 = R0; t2 = R3
end switch

Step 3 - Square

t1 ← t 2
1 mod (n)

Step 4 - Multiply

R0 ← t1 × t2 mod (n)
end for
return R0

operation and initializes the lower halves of t1 and t2 with R0 and R2
0 , respectively. It

assumes by default that the key bit values are 00 which are updated based on the actual
key. Step 2 inspects the two key bits using a switch statement that contains the four cases
of eqs. (4.1) to (4.4). The variables t1 and t2 are used to specify which operands are going
to be selected for the square and multiply operation of Step 3-4.

4.2.3. VARIABLE ASSIGNMENT OPTIMIZATION

In this optimization, we changed the switch statement (see Algorithm 10 Step 2) and
created variable assignments using logic statements without the need of branches. To
realize this, we doubled the size of the variables t1 and t2 and applied the steps described
in Algorithm 11. In order for this to work with Steps 1, 3 and 4, only the lower halves of t1

and t2 are used there.
The algorithm use the two key bit values k[j] and k[j-1] to create the following logical

assignments: e1 = 0 if the second key bit is one, e2 = 0 if the first key bit is one, and e3 = 0
if both key bits are one. These e variables will be used next to update the values of t1 and
t2. If the particular values of e are one, the variables are assigned to the upper halves,
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Algorithm 11 Variables Assignments (Optimized Step 2)

procedure
e1 ← 1−k[ j −1]
e2 ← 1−k[ j ]
e3 ← 1− (k[ j ] & k[ j −1])
t1[(0+e2 × si ze) : (si ze +e2 × si ze)] ← R0
t2[(0+e2 × si ze) : (si ze +e2 × si ze)] ← R2
t1[(0+e1 × si ze) : (si ze +e1 × si ze)] ← R0
t2[(0+e1 × si ze) : (si ze +e1 × si ze)] ← R1
t1[(0+e3 × si ze) : (si ze +e3 × si ze)] ← R0
t2[(0+e3 × si ze) : (si ze +e3 × si ze)] ← R3

end procedure

which means that they will not be used later.

4.2.4. EXPERIMENT SETUP

To validate the proposed countermeasure, we implemented two RSA multi-bit blinding
software implementations: one with naive square & multiply operations and one using
Montgomery multiplication in C language. In both implementations we added the blind-
ing scheme suggested by Paul Kocher [18] as an additional security layer against verti-
cal attacks; this blinding scheme derives a random key from the base key. Power traces
have been collected for both implementations by running the implementations on the
Chipwhisperer board from NewAE Technology Inc [94]. Chipwhisperer is a development
board comes with an Atmel XMEGA micro-controller that is used as target device. The
open source RSA implementation that comes with the board has been used as a baseline
and modified to suite the proposed countermeasure. The power consumption on the
board is measured with an integrated ADC which is controlled from a computer for the
purpose of collecting power traces. Our experiments consider a threat model where the
attacker has access to the power traces and ciphertext of the RSA decryptions. Addition-
ally the attacker has access to a similar device in a profiled attack scenario.

4.2.5. SECURITY ANALYSIS

Figure 4.8 shows as an example of a power trace of one loop iteration of the code con-
sisting of four steps presented in Algorithm 10 using the optimization of Algorithm 11.
The four steps are identified in the power trace by the numbers with circles on top of
the figure and their associated operations. For the security analysis, we ignored the first
step as it is identical for all possibilities (i.e., any two-bit key value). Consequently, our
profiled and non-profiled attacks are only applied on the remaining three steps.

The result of the non-profiled clustering attack on the naive implementation of the
countermeasure, which is depicted in Figure 4.9, shows that the maximum accuracy
that can be reached is slightly above 50%. This means that an attacker can only guess
50% of the two bit key values correctly, thus not possible to attack in this manner. We
repeated the same experiment using the Montgomery multiplication version of the pro-
posed countermeasure. Similar results were obtained (see Figure 4.10) as the previous
implementation and also here it can be concluded that the attack was unsuccessful.
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Figure 4.8: Execution Behaviour of 2-Bits of Multi-Bit Blinding
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(a) Step 2: Assignment of
Variables
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(b) Step 3: Naive Square
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(c) Step 4: Naive Multiplica-
tion

Figure 4.9: Non-Profiled Accuracy Analysis Using Naive Square and multiply Operations
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(b) Step 3: Montgomery
Square
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(c) Step 4: Montgomery Mul-
tiplication

Figure 4.10: Non-Profiled Accuracy Analysis Using Montgomery multiplication

Figure 4.9a shows a slight increase on the attack accuracy between samples 17500 and
20000 in the variables assignment operation. To ensure that these samples cannot be
exploited by an attack we also performed a profiled attack using a convolutional neural
network (CNN) [38]. Such attacks are more powerful as they can deal with misalignment
in traces. We used 70% of the collected traces for training the CNN and the remaining
30% for validating the network. The attack accuracy results of both implementations
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(i.e., naive square & multiply and the Montgomery ones) were similar, as shown in Fig-
ure 4.11. In both scenarios, we were able to achieve a 98% accuracy for the training but
failed however to achieve a reasonable accuracy in the validating phase. The attack ac-
curacy is similar to the non-profiled case and hence too low for a successful attack.

Our last security evaluation consists of a normalized inter-class variance test (NICV)
[136] to ensure that there was no leakage as a result of correlation between executed
operations. Due to the limited space this was only applied to the Montgomery based
implementation as it is the most secure solution. The results do not show any spikes
along the whole trace which clearly indicates the absence of leakage (see Figure 4.12).

4.2.6. PERFORMANCE ANALYSIS

Equation 4.5 is used to estimates the execution time (E) of each implementation. In the
equation, N represents the total number of used keys, ni

1 and ni
0 the number of ones and

zeros in key i , respectively. Op1 and Op0 represent the execution time to process a one
and zero key bit, respectively.

E = 1

N

N∑
i=1

ni
1 ×Op1 +ni

0 ×Op0 (4.5)

The execution time is evaluated for 5 different implementations as can be seen in Ta-
ble 4.2. They are: naive Square & Multiply of Algorithm 1, the same implementation us-
ing Montgomery multiplication, Square & Multiply Always, Multi-bit blinding based on
naive Square & Multiply, and Multi-bit blinding based on Montgomery Multiplication. All
implementations use the blinding countermeasure proposed by Paul [18]. In the table,
S, M , and MM , represents Square, Multiplication, and Montgomery multiplication, re-
spectively. The performance analysis are performed based on a single key generated by
the OpenSLL python library [121] which has been used to derive 100 keys (i.e., N = 100))
using the blinding method proposed by Paul [18]. The performance results of each im-
plementation is summarized in Table 4.2. To calculate the overhead (O) of the different
implementations, the equation O = (Ei−Ebase )

Ebase
×100 is used. The execution time Ei of a

particular implementation is compared to the baseline Ebase implementation; as base-
line we selected Square & Multiply. The table also show the execution time needed to
complete the involved operations when a key bit is zero and one (3rd and 5th column in
the table). From the table we conclude that the Proposed Square & Multiply and Proposed
Montgomery Multiplication perform better in terms of performance.

4.3. BALANCED DUAL-MASK COUNTERMEASURE
This section discusses the proposed countermeasure approach. First, we motivate the
rationale behind it and then discuss its design and implementation.

4.3.1. MOTIVATION

When it comes to securing crypto algorithms from power attacks, most countermea-
sures revolve around one of two techniques: 1) randomizing the power behavior or 2)
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Figure 4.12: Normalized Inter-Class Variance (NICV) Results

balancing the power behavior for every key and plaintext/ciphertext pair. In our study,
we considered one popular approach from each technique. For the power randomiza-
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Table 4.2: Performance analysis of different implementations scheme
Bit Zero Bit One

Implementation Operations Time Operations Time Execution time (E) Overhead (%)
Square & Multiply S 330000 (S + M) 724000 1090373200 0%

Montgomery Multiplication MM 372150 2(MM) 744300 1156471011 6%
Square & Multiply Always (S + M) 724000 (S + M) 724000 1499563280 37.5%

Proposed Square & Multiply 1/2(S + S + M) 527000 1/2(S + S + M) 527000 1091480240 0.1%
Proposed Montgomery Multiplication 3/2 (MM) 558225 3/2(MM) 558225 1156245860 6%

tion approach, we use masking. Masking [137] introduces multiple randomized shares
called the mask. For the power-balance approach, we apply the method in [138] where
the output of the sensitive function that leaks the most (i.e., SBox) always results in the
same number of ones. Hence, the leakage model will always be the same. Unfortunately,
neither method was successful in securing the SubCell function as we will see in the up
coming sections. Therefore, a new more robust countermeasure is needed.

Figure 4.13: Balanced Dual Masks Scheme

4.3.2. DESIGN AND IMPLEMENTATION

Both power-balancing and masking countermeasures failed to protect the SubCells func-
tion (see Section 4.3.4). To overcome their limitations, we propose a balanced dual-
masks scheme. In this technique, as illustrated in Figure 4.13, we apply two masks to
each SubCells index; both masks together contain 4-bits of actual data and 4-bits of
dummy data. This dummy data can reside (partly) in either of the masks. On top of
that, instead of using a single set of dual masks we can integrate n different sets. There-
fore, in the figure, Ma and Mb of dual mask 1 are not equal to Ma and Mb of dual masks
2. During run-time, only one of the outputs related to the n sets will be used and the
dummy bits will be filtered out.
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(c) CPA on AddRoundKey

Figure 4.14: Accuracy Analysis of Non-profiled Attacks

4.3.3. EXPERIMENT SETUP

To validate the proposed attack scheme, the publicly available open-source software im-
plementation of the GIFT 128-bit cipher [107] was used. The GIFT 128-bit program is
written in C code. The power traces have been collected by running the implementa-
tion on the Chipwhisperer board from NewAE Technology Inc [94]. Chipwhisperer is a
development board that comes with an Atmel XMEGA micro-controller that is used as
a target device. It has been used in many attacks such as ECC [139]. The power traces
were captured by an Analogue-to-Digital Converter with a sample rate of 105 MS/s. Both
the target chip and the measurements setup are connected to the computer using a USB
interface, to execute the program and transfer the recorded traces. The proposed attack
was implemented in Python using the Keras library. This is an open-source software
library that can be used to create, train, and run artificial neural networks.

4.3.4. SECURITY ANALYSIS OF NAIVE IMPLEMENTATION

To validate the GIFT cipher against power attacks, three functions were selected as tar-
gets: 1) the SubCells function during second and third rounds; 2) the PermBits of the
second round; and 3) the AddRoundKey in first round. They have been used in both
non-profiled (i.e., CPA) and profiled attacks(i.e., deep learning power attack). Their re-
sults are discussed next.

NON-PROFILED ATTACKS

The attacks were evaluated initially with a single trace and iteratively reevaluated by
adding each time a single trace until 100 traces have been used. Figure 4.14 show the
accuracy analysis of CPA attacks for the three attacked functions, respectively. A higher
accuracy value means that more sub-keys were correctly guessed; e.g., a 100% accuracy
means that all sub-keys were correctly guessed. We observe that CPA attack was suc-
cessful in recovering the majority of sub-keys values for SubCells while targeting other
functions was unsuccessful. The more traces are used, the closer the guessed sub-key is
from the correct sub-key. The results indicate that the software implementation of GIFT
is attackable using non-profiled techniques. Although a few sub-keys have not been at-
tacked successfully, it could be possible to attack the entire key when more traces are
added.
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Algorithm 12 Extract Key bits

1: procedure KET_EXTRACT(Tr acesset , ptar r ay )
2: pt = output of Permutation XORed with constant
3: Pk [0,15] = key probability
4: pr edi ct = is the trained model the sub-key
5: for each sub-key do
6: Pk [0,15] = 0
7: for each trace in trace-set do
8: X0,15 = pr edi ct (tr ace)
9: for k=0 to 15 do

10: y = lk f (SBOX [pt [sub −ke y]
⊕

k])
11: Pk [k] = Pk [k]+X [y]
12: end for
13: end for
14: g uesssub−ke y = max(Pk )
15: end for
16: end procedure
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Figure 4.15: Rank Analysis of Profiled Attacks
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Figure 4.16: Countermeasures Analysis using Non-profiled Attacks

PROFILED ATTACKS

The performed profile attacks are described in Section 2.2. The results for SubCells in
terms of rank analysis is shown in Figure 4.15a; the lower the rank, the better the guessed
sub-key.. All sub-keys reached a rank of 1 (i.e., they were fully recovered) using only 50
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traces. Similarly, the results for PermuBits and AddRoundKey are shown in Figures 4.15b
and 4.15c. The key ranking results show random behaviour which means that it is diffi-
cult to retrieve the correct sub-key value.

4.3.5. SECURITY ANALYSIS OF PROPOSED IMPLEMENTATION

First, we separately evaluated the balancing and masking countermeasures presented
in [138] and [137], respectively. Using CPA, we were able to achieve a high accuracy
with only a few traces for both countermeasures as shown in Figures 4.16a and 4.16b.
Next, we evaluated the security analysis using one single dual mask only (i.e., only Dual
mask 1) to validate the minimum security level of the proposed approach. Note that only
the SubCells function was targeted as both AddRoundKey and PermBits functions were
unattackable in the naive implementation. In the non-profiled attack (i.e., CPA) the ap-
proach was secure as the maximum accuracy the attack could reach was 25% as shown
in Figure 4.16c. However, using the profiled attack (i.e., deep learning) the attack was
not fully secure as some of the sub-keys were recovered as can be seen in Figure 4.17.
To solve this issue, we increased the number of dual masks to two, i.e., we used different
masks for profiling and attack phases where n=2 in both cases. The results shows that
the sub-keys are secure as shown in Figure 4.18. In order for an attacker to create a suc-
cessful template, he needs to consider all 16n combinations for the different masks. This
becomes quickly infeasible for n=8.
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Figure 4.17: Single Dual Masks Analysis

4.3.6. AREA OVERHEAD AND PERFORMANCE ANALYSIS

Our proposed technique only increases the width of the SBox table. Therefore, there is no
area overhead unless the number of dual masks exceeds the word size (i.e., 4 dual masks
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Figure 4.18: Double Dual Masks Analysis

in 32-bit wide memories and 8 dual masks in 64-bit wide memories). The performance
overhead is measured by the additional number of instructions added to the baseline
execution. Since these extra instructions are only required to multiplex the dual masks
and select one of them. Hence, the increase in execution time is negligible.

4.4. LIGHTWEIGHT AES AND DOM EXTENSION
This section presents our proposed implementation approach for AES and its protected
version using DOM. We start by motivating our approach, followed by a detailed expla-
nation of its design and implementation.

4.4.1. MOTIVATION

Previous research primarily focused on implementing AES on either an 8-bit [140–146]
or 32-bit [147, 148] data-path to reduce area and energy consumption. However, these
studies only report the area of the encryption module and neglect the decryption part. In
reality, the eleven 128-bit registers required for the key expansion in the decryption mod-
ule contribute significantly to the overall core area. In the decryption module, all round
keys must be computed first before the decryption can start. Shortening the data-path
from 128-bit to a lower-bit width has a much lower improvement on the area when the
decryption module is not ignored. Therefore, in our design we focus on different data-
paths in the presence of the decryption unit and compare their performance in terms
of throughput, area, and power. Secondly, in actual applications, keys do not change
frequently. Hence, we perform the key expansion once and store the results in the regis-
ters. As long as the key remains the same, we can skip the key expansion step, resulting
in a significant power and latency reduction. In addition, we reorder the sequences of
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Addroundkey and MixColumns in the round function which results in further area and
performance improvements.

4.4.2. DESIGN AND IMPLEMENTATION OF PROPOSED LIGHTWEIGHT AES
Our proposed AES designs verify whether the key changes at the start of every encryp-
tion/decryption execution. In case a key change is detected, we perform the key expan-
sion module and leave the keys inside the key registers. Otherwise, we directly execute
the round modules (i.e., AddRoundKey, SubBytes, MixColumns, and ShiftRows). This re-
duces the execution time of the decryption part by eleven cycles. To further optimize the
design area, resource sharing is employed. Initially, we limit the number of registers to
store the state to a single 128-bit register that is shared in all the round modules of both
encryption and decryption. Next, we combine the encryption and decryption modules
to decrease the overall area. The proposed scheme is depicted in Fig. 4.19, where cnt
represents the round index and key[cnt] denotes the key that needs to be XORed with
the State array. The boxes containing the word “shared" represent blocks that are shared
between the encryption and decryption. An in-depth explanations of the shared mod-
ules will be provided next, including Shared SBOX, Shared ShiftRows, and Shared Mix-
Columns.

SHARED SBOX

Akashi et al. [149] proposed a new composite field to optimize the structure of the SBOX,
resulting in a significant reduction of the area compared to using a Look-up table (LUT).
Thereafter, several researchers [44, 150, 151] optimized the SBOX based on the structure
provided in [149]. These papers used an SBOX which is shared by both the encryption
and decryption modules to reduce area. To the best of our knowledge, the SBOX design
described in [151] has the lowest area. Compared with previous designs, they shared
resources in three modules: preprocess, postprocess, and scalar square. The prepro-
cess module performs the isomorphic mapping and inverse affine transformation for
the decryption and the isomorphic mapping only for the encryption. The postprocess
module executes the affine transformation and the inverse isomorphic mapping for the
encryption and inverse isomorphic mapping only for the decryption. The scalar square
performs a square and multiplication with constant λ = {1,1,0,0}, which leads to three
XOR reductions [44]. Our new SBOX is based on the SBOX proposed in [151]; it is shown
in Fig. 4.20. It contains an optimized multiplier and a modified inverter. In addition, it
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AddRoundKey
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Shared

MixColumns

 key registerKey[cnt]
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0
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Enc/Dec Enc/Dec
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Output
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Figure 4.19: Proposed Round Function for AES Encryption and Decryption
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combines the operations of the last two multipliers proposed in [149]. Each optimization
is described next into more details.
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Output
8 bit

postprocess

GF(2  )
Optimized
Multiplier

GF(2  )
Combined
Multiplier

a7-a4

a3-a0

x3-x0

b3-b0
c3-c0

c7-c4

b3-b0

o7-o0d3-d0

4 

4
4

GF(2  )
Inverter

GF(2  )
 Scalar Square

4

Enc/Dec

10

Input

preprocess

Enc/Dec
a7-a4

a7-a0

8 bit

Figure 4.20: Proposed Shared SBOX

• GF (24) Optimized multiplier: Our optimized GF (24) multiplier is based on the
work in [151]. That multiplier consists of 18 XOR and 12 AND gates and its crit-
ical path consists of 4 XOR and 1 AND gate. We simplified the GF (24) multiplier
based on Equation (4.6), where {a3, a2, a1, a0} and {b3,b2,b1,b0} denote the two
4-bit inputs (see also left bottom of Fig. 4.20), {c3,c2,c1,c0} denote the 4-bit out-
put, and {m4,m3,m2,m1,m0} are intermediate variables defined as: m4 = m0⊕m1,
m3 = a0⊕a1, m2 = a3⊕a2, m1 = a2⊕a0, and m0 = a3⊕a1. Although our GF (24) op-
timized multiplier utilizes 4 more AND gates compared to [151], it requires 1 XOR
gate less and more importantly has a shorter critical path (1 AND gate and 3 XOR
gates). Surprisingly, after synthesis it turns out that the area of this implementa-
tion is also better after synthesis. We believe that compiler is able to extract more
common resources with this implementation.
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c3 = [(a3⊕a1)&(b3⊕b1)⊕(a3 ⊕a1)&(b2 ⊕b0)⊕ (a2⊕
a0)&(b3 ⊕b1)]⊕ [(a1&b1)⊕ (a1&b0)⊕ (a0&b1)]

= (b0&a3)⊕ (b1&(a2 ⊕a3))⊕ (b2&(a1 ⊕a3))⊕
(b3&(a0 ⊕a1 ⊕a2 ⊕a3))

= (b0&a3)⊕ (b1&m2)⊕ (b2&m0)⊕ (b3&m4);

c2 = [(a3⊕a1)&(b3⊕b1)⊕(a2⊕a0)&(b2⊕b0)]⊕(a1&b1)

⊕ (a0&b0)

= (b0&a2)⊕(b1&a3)⊕(b2&(a0⊕a2))⊕(b3&(a1⊕a3))

= (b0&a2)⊕(b1&a3)⊕(b2&m1)⊕(b3&m0);

c1 = [(a3&b3)⊕(a3&b2)⊕(a2&b3)]⊕[(a3&b3)⊕(a2&b2)]

⊕ [(a1&b1)⊕ (a1&b0)⊕ (a0&b1)]

= (b0&a1)⊕(b1&(a0⊕a1))⊕(b2&(a2⊕a3))⊕(b3&a2)

= (b0&a1)⊕ (b1&m3)⊕ (b2&m2)⊕ (b3&a2);

c0 = [(a3&b3)⊕(a3&b2)⊕(a2&b3)]⊕[(a1&b1)⊕(a0&b0)]

= (b0&a0)⊕ (b1&a1)⊕ (b2&a3)⊕ (b3&(a2 ⊕a3))

= (b0&a0)⊕ (b1&a1)⊕ (b2&a3)⊕ (b3&m2).

(4.6)

• GF (24) Inverter: To decrease the area of the inverter and make the design easier
to secure (by performing less non-linear operations), we further optimized the in-
verter based on the structure that proposed in [44]. The improved design is shown
in Fig. 4.21. The GF (22) Scalar Square performs a GF (22) square operation and
a scalar multiplication with the constant ϕ = {1,0}. Equation (4.7) illustrates the
Scalar Square calculation of [44] (left) and our combined design (right), where
d3,d2 are the inputs of Square module, e3,e2 denote intermediate results between
Square and Scalar module, and f3, f2 represent the outputs of Scalar module (see
Fig. 4.21). As can be seen, our design requires 2 XOR operations less.

[20]


e3 = d3
e2 = d3 ⊕d2
f3 = e3 ⊕e2
f2 = e3

Combi ned

{
f3 = d2
f2 = d3

(4.7)

The last step of the inverter consist of two GF (22) multipliers. Equation (4.8) shows
the design proposed in [44]. Our optimizations are provided after the second “="
sign by factoring out X = h1 ⊕h0 commonly between both multiplications. Our
combined GF (22) multiplier achieves a reduction of 1 XOR gate and 2 AND gates,
compared with the design in [44].

x3=(d3&h1)⊕(d3&h0)⊕(d2&h1)=(d3&X )⊕(d2&h1);

x2=(d3&h1)⊕(d2&h0);

x1=(e1&h1)⊕(e1&h0)⊕( f0&h1)=(e1&X )⊕( f0&h1);

x0=(e1&h1)⊕(e0&h0).

(4.8)
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Figure 4.21: Proposed GF (24) Inverter

• GF (24) Combined Multiplier: The last two multipliers used in the SBOX presented
in [151] were treated as two separate multipliers. However, Ahmad [152] proposed
that these two multipliers can be merged together, resulting a significant reduction
in area as can be seen at the most right part in Fig. 4.20. However, it is not clear
from the paper how this shared multiplier works. For clarity, we combined the
multipliers ourselves and provided a detailed structure of it in Fig. 4.22.

SHARED SHIFTROWS

Davis and John observed that the first and third shift operations in ShiftRows and In-
vShiftRows can be shared [148], as both produce the same results for the decryption and
encryption. This can be seen in Fig. 4.23. However, the other two rows (i.e., row two and
four) have different behavior and multiplexers are needed to select between them.
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(a) ShiftRows (b) InvShiftRows

Figure 4.23: Shift Transformation of ShiftRows and InvShiftRows

SHARED MIXCOLUMNS

We optimize the Shared MixColumns based on the proposed design in paper [44], which
shares resources between MixColumns and InvMixColumns. The design in [44] however
requires an additional InvMixColumns calculation to rectify the roundkey (see Fig. 4.24a).
In contrast, Fig. 4.24b shows that our proposed Shared MixColumns combines MixColumns
and InvMixColumns, and reorganizes the sequence of Addroundkey and Shared Mix-
Columns to avoid performing this additional InvMixColumns calculation. This lead to
further area improvements.

4.4.3. DESIGN AND IMPLEMENTATION OF PROPOSED LIGHTWEIGHT

DOM
DOM was proposed in [21] to protect AES implementations against SCAs. The authors
introduced two types of SBOXes: a five-stage SBOX and an eight-stage SBOX. The five-
stage SBOX represents an optimized version of the eight-stage SBOX, resulting in a sav-
ings of three cycles per round. Hence, overall it is 33 cycles (3 cycles × 11 rounds) faster,
which is a significant performance improvement. This improvement comes with only a
minor increase in the overall area, from 2.6k Gates to 2.8k Gates, as documented in [21].
Therefore, we chose to start from the five-stage SBOX and integrate it into our optimized
design. Note that a 1st -order DOM can be easily scaled into a higher order DOM with-
out redesigning components [21]. Therefore, without loss of generality, we focus on the
optimization of the 1st -order DOM. As our proposed low-area design considers both en-
cryption and decryption with shared resources (see Fig. 4.19), the lightweight DOM AES
was implemented in the same manner, diverging from the original design that concen-
trated only on encryption [21]. Fig. 4.25 shows the main part of our lightweight DOM
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Figure 4.24: Diagram of MixColumns [44] and Proposed Shared Mixcolumns
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design, where Ai n , Bi n represent the input shares, and Aout , Bout correspond to the out-
put shares.

As discussed in the background, the independence of d+1 shares within linear mod-
ules can be ensured by employing d+1 identical modules. However, the non-linear SBOX
module requires to be carefully designed. Our design is based on the lightweight DOM
SBOX proposed in [21]. In comparison to that design, our approach shares the resources
between encryption and decryption parts using the preprocess and postprocess func-
tions. In addition, we optimize the DOM-indep and DOM-dep multipliers based on our
simplified and shared multipliers to further reduce the area. Fig. 4.26 depicts our design
of the 1st -order five stages lightweight DOM SBOX, where Asi n and Bsi n denote the in-
put shares, and Asout and Bsout denote the output shares. In the figure, Z0, Z1, ..., Z6 and
Az0,Bz0, ..., Az3,Bz3 are fresh random values of the simplified DOM-indep and DOM-dep
multipliers, respectively. The flip-flops with dotted boxes are optional registers that are
only necessary in pipelining scenarios. For example, when the data-path is less than 128
bits, the SBOX needs to be reused multiple times within one round, causing the input to
change before the round is completed. In this case, the dotted flip-flops are necessary to
ensure the design’s functional correctness.

Fig. 4.26 also highlights the parts that we improved in red, i.e., the DOM multipliers.
Compared to the original DOM multipliers (see [21]), we replaced the normal multipliers
with our simplified multipliers (see (4.6)) and shared multipliers (see Fig. 4.22), resulting
in a reduction in power and area. In addition, multiplexers are used to select between
inputs for the encryption and decryption units.

Fig. 4.27 illustrates our changes made to the 1st -order Dom-dep multiplier [21]; we re-
fer to it as simplified DOM-dep multiplier. In the figure, Aa , Ba , Ab , Bb are the inputs,
while Aq and Bq correspond to the outputs. Az , Bz , and Z0 are random numbers that
used to ensure the independence of shares. In contrast to the design proposed in [21],
our proposed simplified DOM-dep multiplier utilizes a simplified version of the DOM-
indep multiplier and merges the right two multipliers, resulting in significant area reduc-
tion. The simplified DOM-indep multiplier is based on the simplified multiplier shown
in Equation (4.6). Equation (4.9) illustrates the expression of our DOM-dep multiplier,
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where M=(Ab ⊕ Bb) ⊕ (Az ⊕ Bz ). We denote that a= Aa ⊕ Ba , b= Ab ⊕ Bb , z= Az ⊕ Bz ,
and q= Aq ⊕Bq . In the equation, Aqi and Bqi are the outputs of simplified DOM-indep
multipliers. The combined multiplier (see Fig. 4.22) is utilized for the calculation of
(Aa ∗M ⊕Ba ∗M) to further reduce area.
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a ∗b

= a ∗ (b ⊕ z)⊕a ∗ z

= (Aa ⊕Ba )
(

Ab ⊕Bb ⊕ Az ⊕Bz
)⊕ (Aa ⊕Ba ) (Az ⊕Bz )

= (Aa ∗M ⊕Ba ∗M)⊕ (Aqi ⊕Bqi )

= (Aa ∗M ⊕ Aqi )⊕ (Ba ∗M ⊕Bqi )

= Aq ⊕Bq = q

(4.9)

The shared DOM-indep/DOM-dep multiplier modules in Fig. 4.26 are implemented
with the simpilified DOM-indep/DOM-dep multipliers (see Fig. 4.27b). We share the
common resources between these two multipliers to further reduce the area.

4.4.4. SETUP

For the majority of IoT applications, the maximum payload size for each packet is be-
tween 1600 bytes (e.g., NarrowBand-IoT [153]) and 256 megabytes (e.g., Message Queue
Telemetry Transport(MQTT) [154]). Taking the lower limit into consideration, we as-
sume that the key will stay the same during the communication session of at least one
hundred encrypting/decrypting operations. For that reason, we assumed a fixed key for
100 encryption and decryption operations.

To compare with the start-of-the-art, we reimplemented the state-of-the-art AES de-
sign proposed by Davis and Jones [148] and compared it with ours. All designs are syn-
thesized using TSMC CMOS 180 nm technology. The total area and power consumption
of each design are evaluated Using Synopsys Design and Power Compiler. We took the
same approach with respect to the DOM design originally proposed in [21].

4.4.5. AES PERFORMANCE EVALUATION

In this section we compare our AES SBOX design proposed in Section III.B with the SBOX
proposed in [151]. Note that this paper limited itself to only an SBOX implementation.
The synthesis results show that the area of our proposed SBOX design is 8.2% lower than
the design in [151]. The actual area numbers are 2558 vs 2788 µm2, respectively.

We compare our complete non-DOM AES design proposed in Section III.B with the
design proposed in [148].Tables 4.3 and 4.4 show the results for both designs synthe-
sized at 50 MHz and maximum frequency, respectively. . From the first table, we can see
that our 32-bit data-path implementation needs 20% less area than the design proposed
in in [148]. Actually, our 128-bit data-path design is comparable in size to their 32-bit
data-path design, while being 5x faster. When we look at Table 4.4 we see similar trends.
Comparing both 32-bit data-path designs, our design has 14% less area, needs 26% less
cycles and can run at 18% higher frequency.

Figs. 4.28a and 4.28b depict the performance per area and performance per power of
our proposed AES design and the state-of-the-art design in [148]. The figures show that
among our proposed designs, the 128-bit design achieves the highest score in terms of
performance per area and performance per power. Our proposed 128-bit, 64-bit, and 32-
bit designs surpass the state-of-the-art [148] in terms of performance per area by a factor
of 4.90x, 3.02x, and 1.69x, respectively, when operating at 50MHz and by a factor of 4.55x,
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Table 4.3: AES Performance Analysis at 50MHz

Design
Data-
path

Freq.
(MHz)

Area
(µm2)

Area
Ratio

Cycle
Cycle
Ratio

[148] 32 50 174156 1 11100 1

Proposed
AES

32 50 139415 0.8 8211 0.74
64 50 151677 0.87 4211 0.38

128 50 178674 1.03 2211 0.2

Table 4.4: AES Performance Analysis at the Maximum Frequency

Design
Data-
path

Freq.
(MHz)

Freq.
Ratio

Area
(µm2)

Area
Ratio

Cycle
Cycle
Ratio

[148] 32 103.1 1 196857 1 11100 1

Proposed
AES

32 121.9 1.18 169794 0.86 8211 0.74
64 117.6 1.14 195355 0.99 4211 0.38

128 112.4 1.09 236553 1.2 2211 0.2

3.03x, and 1.85x, respectively, when operating at the maximum frequency. They also
outperform the state-of-the-art design in terms of performance per power by a factor of
2.68x, 1.70x, and 1.27x, respectively. Note that in Fig. 4.28b, only the performance per
power for the 50 MHz implementation is displayed, as there were minimal differences
observed when compared to the designs operating at their maximum frequencies.

12.7

7.83

4.37

2.59

21.48

14.3

8.75

4.72

Proposed AES [18] Proposed AES [18]

128-bit 64-bit 32-bit  32-bit 128-bit 64-bit 32-bit  32-bit

50MHz Max_Frequency

0

10

20

P
er

fo
rm

a
nc

e 
p

er
 a

re
a

 (

 128-bit 
 64-bit
 32-bit
  32-bit

(a) Performance per Area

4.53

2.88

2.15

1.69

128-bit 64-bit 32-bit  32-bit

Proposed AES [20]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
er

fo
rm

an
ce

 p
e

r 
po

w
er

(

 128-bit 
 64-bit
 32-bit
  32-bit

(b) Performance per Power

Figure 4.28: Comparison vs AES Design in [148]

4.4.6. DOM PERFORMANCE EVALUATION

Table 4.5 shows a comparison of the area between our proposed 1st -order DOM SBOX
and the original 1st -order SBOX proposed in [21]. Compared to their design, our eight-
stage and five-stage 1st -order DOM SBOX designs achieve an area reduction of 9.9% and
6.9%, respectively.
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Table 4.5: Area comparison of DOM SBOX

Design SBOX Type Area (µm2) Area Ratio
[21]

DOM SBOX
eight-stage 19682 1
five-stage 21196 1.077

Proposed
DOM SBOX

eight-stage 17735 0.901
five-stage 19741 1.003

Although the 128-bit data-path design has the best performance, we have implemented
also 64-bit and 32-bit data-path versions. Unfortunately, the authors in [21] focused
only on the SBOX and have not evaluated the complete AES design. Nevertheless, to
comprehensively assess the influence of these designs on overall performance, our pro-
posed DOM SBOX has been incorporated into all AES configurations, encompassing the
128-bit, 64-bit, and 32-bit versions. Tables 4.6 and 4.7 present their area and latency re-
sults for an operating frequency of 50 MHz and their maximum operating frequency,
respectively. As we mentioned in the Section 4.4.3, we chose the five-stage SBOX in
our designs because it offers a substantial performance improvement with only minor
sacrifices in terms of area when compared to the eight-stage SBOX. Consequently, the
key expansion process takes 51 (5*10+1) cycles, while the encryption and decryption
operations in the 128-bit, 64-bit, and 32-bit data-path designs require 51 (5*10+1), 61
(6*10+1), and 81 (8*10+1) cycles, respectively. As a result, it takes 10251 (51*2*100+51),
12251 (61*2*100+51), and 16251 (81*2*100+51) cycles for these designs to perform 100
encryption/decryption operations. Tables 4.6 and 4.7 demonstrate that the 32-bit de-
sign exhibits a better area, whereas the 128-bit design has a higher performance.

Table 4.6: DOM Performance Analysis at 50Mhz

Data-path
Frequency

(MHz)
Area

(µm2)
Area
Ratio

Cycle
Cycle
Ratio

128-bit 50 615172 1 10251 1
64-bit 50 445269 0.72 12251 1.2
32-bit 50 361582 0.59 16251 1.59

Table 4.7: DOM Performance Analysis at the Maximum Frequency

Data-path
Frequency

(MHz)
Frequency

ratio
Area

(µm2)
Area
Ratio

Cycle
Cycle
Ratio

128-bit 188.7 1.79 698780 1 10251 1
64-bit 190.8 1.81 522844 0.75 12251 1.2
32-bit 192.3 1.83 446528 0.64 16251 1.59

The DOM SBOX contains a great number of registers and operation, resulting in a high
power consumption and area. However, lower data-path designs can significantly re-
duce area and power consumption by utilizing fewer DOM SBOXes. Fig. 4.29a shows
the performance per area comparison of our proposed DOM designs. According to the
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figure, the 64-bit design performs better at both 50 MHz and the maximum frequency.
Fig. 4.29b illustrates a comparison of the performance per power for our proposed DOM
designs, where the 32-bit design outperforms the others.
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Figure 4.29: Analysis of our 1st -Order DOM AES Designs



5
PRE-SILICON ASSESSMENT

METHODS

This chapter focuses on the examination of the pre-silicon leakage assessment approaches.
Aiming to specifically develop a mechanism that analyzes and enhances micro-electronic
chips against power attacks during the design phase. The exploration begins with a thor-
ough examination of the current landscape of pre-silicon leakage evaluation method-
ologies, offering a complete survey of the prevailing state-of-the-art approaches. Subse-
quently, we proceed to Section 5.2, wherein we present a pioneering and inventive method-
ology that is based on the utilization of Generative Neural Networks (GAN). This method
provides an advancement in the pursuit of enhanced security in chip design, and we will
explore its mechanics and ramifications. In the concluding section, Section 5.3, we provide
a reflective conclusion that summarizes our investigation and emphasizes the possible im-
plications and developments that this technique offers for the field of pre-silicon leakage
evaluation in the context of power attacks.

This chapter is partially published on 2023 26th Euromicro Conference on Digital System Design (DSD)[42].
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5.1. STATE OF THE ART

The idea of Pre-silicon leakage assessment is not a novel one. There are currently multi-
ple options to evaluate countermeasure designs prior to manufacturing. These options
can be divided into three categories: formal verification [75], CAD tools [72] and func-
tional simulation tools [155]. The aim of formal verification-based solutions is to math-
ematically analyze the leakage of an implementation. Formal verification examples can
be found in [75, 76]. In [75] the authors use formal verification to verify hardware mask-
ing countermeasures. In [76], the authors present an SMT-solver (SMT stands for satisfi-
ability modulo theories) for software masking countermeasures. Unfortunately, such so-
lutions focus on analyzing randomness created by masks. As a result, they only operate
on one type of countermeasure, i.e., masking countermeasures. CAD-based solutions,
on the other hand, tend to produce the power behavior of the targeted implementation.
An example of a CAD-based solution is provided by Sadhukhan et al. [156] where they
examine the leakage using both simulated and hypothetical power traces. Another ex-
ample suggested by Nahiyan et al [157] is that they reduce the number of power traces
needed to evaluate the leakage by improving the signal-to-noise ratio (SNR) algorithm.
Unfortunately, creating simulated power traces is a time-consuming operation, and re-
ducing the number of simulated traces cannot validate the protection against real at-
tacks such as CPA, which typically require a large number of traces. Additionally, we see
in industry that secure IPs are evaluated with a minimal of 10 million power traces [158].
Therefore, a CAD-based assessment solution would be an interesting solution only if it
can generate millions of power traces in a timely manner. Unfortunately, the CAD-based
tools are known to be extremely slow and generating as many as 10 million power traces
using them is not viable. For example, the solution proposed by Sadhukhan et al. [156]
takes 5.47 seconds to generate a single trace. Generating as many as 10 million power
traces using this technique will take around 633 days. This, of course, is not practical.

To obviate the need of using CAD-based tools for power trace generation, functional
simulation tools like RTL-PSC [155] have been introduced. Wherein, the functional sim-
ulation of a design is used to carry out pre-silicon leakage assessment. This technique
does not generate power trace as it is solely dependent on the switching activity file. This
dependence on the switching activity makes this methodology not fit for modelling the
design’s technological behaviour(e.g., CMOS), which is useful for various countermea-
sures and is not visible using simply the switching activity. The switching activity also
gives a rather ideal picture about the power consumption since it does not model any
non-idealities like timing violation. Hence, there is need for a tool that can not only
carry out pre-silicon leakage assessment in a reasonable amount of time, but can also
accommodate the device’s technological behaviour and non-idealities correctly so as to
model its leakage robustly.

5.2. GAN-BASED LEAKAGE ASSESSMENT APPROACH

This section provides a description of the proposed approach that is based on Generative
Adversarial Networks (GANs). To begin, some background information about GAN is
presented. Next, the work that is associated with the several applications that GAN helps
enhance is presented here. Finally, the framework that was proposed is broken down,
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and the validation results are shown.

5.2.1. GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs are used to generate new data sets with similar characteristics as the training set,
i.e., to approximate the training set’s distribution. They consist of two main components,
i.e., the generator G and discriminator D (see Figure 5.1. The generator’s objective is
to generate samples with a similar distribution to the actual dataset distribution. The
discriminator’s objective is to differentiate between real and fake traces, namely x and
G(z). Hence, the training process of a GAN takes place in an adversarial setting wherein
the discriminator and the generator play a minimax game. The loss function L can be
expressed as follows:

min
G

max
D

L(G ,D) = Ex∼p(x)[logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))] (5.1)

This loss function corresponds to the original GAN architecture as proposed by Good-
fellow et al. [159]. However, as we want to condition the GAN on a categorical label
corresponding to each encryption, the label y (which for example can correspond to the
hamming weight/distance of the SBOX output) is also a part of the loss function. This
conditional GAN loss function was originally proposed by Mirza and Osindero [160] and
can be expressed as:

min
G

max
D

L(D,G) = Ex∼pdata(x)[logD(x | y)]

+ Ez∼pz (z)[log(1−D(G(z | y)))]
(5.2)

The non-cooperative game is what makes training GANs hard and unstable. To ad-
dress this problem, a lot of research has been performed to find better loss functions
and normalization techniques. In this work, in addition to the loss function presented
in Equation 5.2, we experimented with the Least Squares GAN (LSGAN) [161] and the
Wasserstein GAN Gradient penalty (WGAN-GP) loss function [162]. The LSGAN aims at
increasing the quality of the generated samples by improving the discriminator’s output
by not only looking at the binary output decision but also the quality of the generated
traces. Note that in the GAN proposed by Mirza and Osindero, the discriminator’s pur-
pose is to distinguish between the real and fake samples as shown in Equation 5.2, which
is realized using a binary cross entropy loss. In LSGAN, however, we are not only con-
cerned with the binary classification but also with how close or how far the fake traces
are from the real ones. This can be seen in the loss function presented in Equation 5.3.
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Figure 5.1: Generative Adversarial Network

min
D

LLSGAN(D) = 1

2
Ex∼pdota(x)

[
(D(x)−b)2]

+ 1

2
Ez∼px (z)

[
(D(G(z))−a)2]

min
G

LLSGAN(G) = 1

2
Ez∼px (z)

[
(D(G(z))− c)2]

(5.3)

During the training of the discriminator, we choose the value of b as 1 to signify real
traces and a as 0 to signify generated traces. As the objective of the generator is to create
fake traces that look real, we set the value of c during the training of the generator to 1 in
order to attempt to fool the discriminator.

The WGAN-GP comes from the family of Wasserstein GANs (WGAN). The objective of
WGANs is to minimize the earth mover (EM) distance. The EM distance represents the
level of dissimilarity between the distributions of the generated and real traces. Mini-
mizing the EM distance leads to smoother gradients even when the generator outputs
unsatisfactory traces. The WGAN’s discriminator tries to model a function that approx-
imates the EM distance and not just distinguishing the real samples from the generated
ones.

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original critic loss

+λ E
x̂∼Px̂

[(∥∇x̂ D(x̂)∥2 −1
)2

]
︸ ︷︷ ︸

gradient penalty

(5.4)

Calculating the EM distance is an intractable problem and the Kantorovich-Rubinstein
duality [163] can be used to make the problem simpler. The Kantorovich-Rubinstein du-
ality is used to transform the EM distance minimization problem in order to find a least
upper bound. The transformed loss function is required to satisfy K-Lipschitz continu-
ity. This continuity limits how fast a function can change. In the original WGAN pa-
per [164], the Lipschitz constraint is enforced by weight clipping. However, the weight
clipping method is extremely sensitive to the clipping value hyperparameter and quite
often reduces the network’s ability to model complex functions. Instead, WGAN-GP adds
a gradient penalty term to enforce the K-Lipschitz continuity as shown in Equation 5.4.

5.2.2. RELATED WORK

Generative deep models have already been applied to numerous applications like im-
ages [165], audio [166], video [167] and medical data like ECG [168]. In addition to the
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Figure 5.2: Framework Methodology

Generative Adversarial Networks, there are also other methods that could be used to
generate fake traces such as Flow [169] and Auto-regressive [170] based models. Flow
models use a sequence of invertible transformations to learn the exact data distribu-
tion. As exciting as the possibility of exact likelihood computation might seem, Flow
models usually have manifold times more trainable parameters and require an order of
magnitude more processing (in GPU-based platforms) for the training as compared to
progressive GAN models [171]. On the other hand, Auto-regressive models decompose
the likelihood into a product of conditional distributions. However, since the prediction
at every timestamp is dependent on all previous predictions, these models are implicitly
slow. Hence, for this work, we prefer GANs over other deep generative models as GANs
can be trained relatively faster, have a reasonable number of trainable parameters, and
have been empirically proven to produce really good quality results. Additionally, taking
the power leakage behavior into account, a GAN-based model is ideal since it is quick
at inference time and thus can produce power traces swiftly. The existing Electronic
Design Automation(EDA) tool-based approaches to generate artificial power traces are
extremely slow to generate a large amount of traces. Hence, employing GANs for this
task can potentially lead to an immense speed-up.

Generative adversarial networks have recently been introduced in the side channel
analysis domain. In 2020, Wang et al. [172] proposed the usage of conditional GANs to
enlarge the size of the profiling dataset for carrying out profiled side channel attacks.
They use a traditional CGAN architecture with dense layers and train it using the Jensen-
Shannon Divergence approach as proposed by Mirza and Osindero [160]. In the author’s
own words, their study was aimed as a proof of concept and not a robust methodology.
Hence their proposed methodology has a few limitations. First, dense layers are best
suited for shorter trace lengths, as the number of trainable parameters grows substan-
tially as the input/output size of the GAN’s layers increases. Second, they condition the
GAN on only a few labels, namely the least significant bit and Hamming weight of the
SBOX output. Finally, they only use the Jenson-Shannon Divergence loss and do not
experiment with other loss functions. Since the inception of GANs, many architectural
changes and loss functions have been proposed that help in alleviating this problem as
well as enhancing training stability.
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5.2.3. PROPOSED FRAMEWORK

This section presents our proposed framework. We introduce the methodology and sub-
sequently explain each step in detail.

METHODOLOGY

Our proposed framework can be used to evaluate the efficacy and efficiency of counter-
measures against side-channel attacks without the need to procure actual power traces
for an ASIC design. The methodology to create this framework consists of two major
phases as shown in Figure 5.2. In the first phase, the Training Phase, the generative ad-
versial neural network is being trained for the targeted circuit using the switching activ-
ity from simulation and their corresponding CAD-based power traces. Once the GAN
model reaches a desired accuracy, the second phase begins. In this phase, the Generat-
ing Phase, the trained neural network is used to generate the desired number of power
traces to evaluate the security of the design. Here the GAN generates power traces solely
from switching activity. In the following subsections, we describe each phase in more
detail.

TRAINING PHASE

The first step in training the neural network to generate reliable power traces is to define
the GAN’s input and classification labels. As input data, we use the switching activity of
the targeted circuit. One of the most common representations of the switching activity
is the value change dump (VCD) file. VCD files can be generated during RTL or netlist
simulations. To quantify the training accuracy, we need labels that represent the actual
power traces. Hence, we use gate-level power simulations generated from a CAD tool.
The CAD tool uses the switching activity and technology library to generate gate-level
power traces. Next we configure the GAN network to be able to generate accurate power
traces. Unfortunately, using the switching activity for the labels prevents us from using
embedding layers in the GAN’s architecture, as embedding layers expect integer num-
bers as input. The reason for this is that they are implemented as simple look-up tables.
Hence, we remove the embedding layer as well as the noise vector and instead just use
the VCD transition as a directed input to the GAN (see also Figure 5.1). A similar architec-
tural choice was made by Kumar et al. in their MelGAN architecture [173], wherein they
observe little perceptual difference in the generated waveforms when additional noise is
fed to the generator. Mathieu et al. [174] and Isola et al. [175] demonstrated the capabil-
ity of the noise vector’s redundancy when using highly informative conditioning. Finally,
we train the structured GAN until we reach a desired accuracy level.

GENERATING PHASE

During this phase, the generator component of the trained GAN model (see Figure 5.1)
is utilized to generate the power traces that can be used to evaluate the design or coun-
termeasure. It generates these traces using the switching activity which can be obtained
from RTL or gate-level simulations. Note that the amount of power traces that need to
be generated can be significantly higher than those used in the training phase. Gener-
ally, more than 100k traces could be required for the evaluation. Several data sets can be



5.2. GAN-BASED LEAKAGE ASSESSMENT APPROACH

5

103

constructed based on the evaluation method; examples are data sets with a random key
and random plaintext, fixed key and fixed plaintext, and fixed key and random plaintext.

EVALUATE FRAMEWORK

The evaluation of the framework is performed through a generalization test. We evaluate
if our model can provide reliable power traces. In this step, not only the plaintext varies
but also the key value. In each scenario, the quality of the generated power traces is ver-
ified through leakage assessment techniques known as evaluation-test (i.e., Correlation
Power Attack). Finally, both CAD-based and generated power traces are compared. In
addition, for various different implementations, traces can also be generated and evalu-
ated. In this context, the framework can be used to perform a design space exploration
to find the most secure solution for a certain algorithm by quickly generating and eval-
uating traces for VCD files belonging to a different design. We limit our tests to three
implementations only, which are: unprotected AES implementation, AES implementa-
tion with masking and AES implementation with blinding.

When the framework is completed, designers can generate as many traces as needed.
For example, security components used in the industry (i.e., Intellectual Property blocks)
require for their vulnerability assessment 10 million, 100 million or 1 billion power traces [158].

FRAMEWORK OPTIMIZATION

Each time the design changes, the generator model must be retrained to be able to gen-
erate reliable power traces. Training the generator is the most time-consuming phase of
the proposed framework. Luckily, transfer learning can be used to reduce the training
time. Transfer learning enables retraining of the neural network with much less effort,
including the amount of training data required to achieve high accuracy [176]. There are
two methods of applying transfer learning, namely feature extraction and fine tuning. In
feature extraction, some of the layers in the trained networks are frozen and used for fea-
ture extraction, while others are retrained based on the new training data. In fine tuning,
the weights of the trained network are used as initialization for the new network. Using
the fine tuning technique in our framework, we were able to reduce the required number
of traces from 10000 to 1000 to train the GAN for each newly developed countermeasure.

5.2.4. EXPERIMENTAL RESULTS

This section presents the experiments setup, performed experiments and evaluates the
obtained results.

SETUP

The different AES designs are simulated in Questasim [177], which is additionally used
to generate the VCD files that contain the switching activity. Their corresponding power
traces are generated by Synopsys SpyGlass; using the RTL-code of the design and the
technology library for the target ASIC design, SpyGlass can generate power traces at gate-
level. The VCD files and power traces are used to train the GAN model. The GAN model
is implemented with the PyTorch [178] deep learning library and the remaining analysis
are performed in Python as well. All the experiments including the training of the GAN
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are performed on an Intel i7-10750H CPU running at 2.60GHz and the Nvidia GeForce
RTX 2070 GPU.

To verify the accuracy of the framework, we test our findings using three implemen-
tations with different keys/plaintext combinations to ensure that our approach works
regardless of the input to the target design. As weight initialization (known as transfer
learning) for both the Generator and Discriminator, a data set is used containing 20k
traces of the unprotected AES implementation based on random keys and plaintext val-
ues. Note this is only done once per technology library. Next for the evaluation of the
target design, we start by training the generator with only 1k traces. Subsequently, the
Generator is used to generate traces based on a VCD belonging to the trained target (e.g.,
unprotected AES, protected masked SBOX implementation or protected AES implemen-
tation based on balancing). The traces are validated against corresponding traces ob-
tained from SpyGlass. Note that the GAN is only trained with random inputs (i.e., for
both plaintext and keys).

EVALUATION METRICS AND PERFORMED EXPERIMENTS

In this subsection, we first present the metrics used to evaluate our results. Thereafter
we describe to which experiments these metrics have been applied.
Evaluation-style Metric: In evaluation-style testing, power traces are tested using actual
side-channel attack scenarios. They show whether the implementations are resistant to
these attacks or not. The attacks can be performed in a profiled or unprofiled manner.
Examples of profiled side-channel attacks are template-based [52] and deep learning
attacks [38]. Examples of unprofiled side-channel attacks are Differential power analy-
sis [9] and correlation power analysis [47]. In this paper, we limit our analysis to CPA as it
is one of the most popular unprofiled techniques. Subkeys with highest correlation are
most likely the correct key guesses. The results are represented using rank analysis of the
correct, also referred to as partial guessing entropy.
Trace equivalency: To compare the similarity between the SpyGlass (referred to as CAD
traces) and the GAN traces (referred to as generated traces), certain signal processing
metrics like dynamic time warping and power spectral density can be used. Dynamic
time warping (DTW) [179] finds an optimal alignment between two unmatched tempo-
ral sequences. This optimal alignment or the ‘warping path’ maps the two sequences
such that the distance between them is minimized. The minimum distance can be used
as a measure for the similarity between any such two sequences. Similarly, even the
Power spectral density (PSD) of two signals can be used as a measure for the similarity
between them. Power spectral density (PSD) is the measure of power distributed across
different frequency components that compose a signal [180]. For measured and gener-
ated traces to be visually similar, the DTW distance should be low in value (the lowest it
can be is zero) and the PSD should be very similar.

FRAMEWORK EVALUATION

As described previously, we compare the attackability of the generated traces with the
CAD-based power traces. To make the comparison fair, we test the Generator’s gener-
alization ability on VCD files corresponding to the same AES implementation but with
a different key. In addition, different AES implementations with masking and blinding
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countermeasures are tested as well. Note that the experiment was performed using the
GAN architecture shown in Figure 5.3. Hyperparameter tuning for GANs is much more
complex than hyperparameter tuning for other machine learning models since the two-
model architecture of GANs does not easily fit into the popular hyperparameter search
APIs. Our initial architecture was inspired by a popular GAN implementation [181] and
then we randomly searched for optimal hyperparameters. For this work: the batch-size
is 100, and the kernel size for the convolutional layers is 8. The idea of using a slightly
larger kernel size was inspired from [182], where the author demonstrates that deep
learning based power side-channel attacks using a convolutional neural network (CNN)
with larger kernel sizes perform much better than CNNs with small kernel sizes. As for
the loss function, the visual appearance of the traces as well as the leakage behavior
showed minor variations for different loss functions. This minor impact of loss functions
on the generated traces is in line with [183], where the authors state that the quality of
the GAN generated samples are not substantially dependent on the loss functions.

Figure 5.3: GAN architecture

Evaluation-style Metric: The generated traces behave similarly to the measured traces
when we look at CPA ranking analysis. For example, in the case of the unprotected im-
plementation, the number of attackable bytes was 16, which equals the 16 attackable
bytes when CAD traces were used. Similarly, in the mask-protected implementation, the
number of the attackable bytes was zero for the GAN generated traces, which matches
the results obtained from the CAD traces. The same results have been observed for the
balance-protected implementation. We further go into the depths of the ranking analysis
by examining the rank behavior of the correct key for each of the three implementations
as shown in Figures 5.4, 5.5, and 5.6. The figures show that for different implementa-
tions the rank analysis trends are similar both for generated and CAD traces. This shows
that the generative model can be used with a wide range of VCD inputs. We believe that
the GAN model is able to extract the relevant signals for the leakage effectively from the
VCD and filter out the unneeded signals. As a result, the generated traces can be used for
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evaluating countermeasures.
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Figure 5.4: CPA Results of Unprotected AES Implementation
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Figure 5.5: CPA Results of Masked AES Implementation

Trace equivalency: The distance between GAN and CAD traces was calculated using
FastDTW [184] and we used Euclidean distance as the distance measure for DTW. We
obtained values around 0.5 and noticed that the GAN provide good results when the
DTW value is between 2.0 and 0.3 . Both these scores test to the similarity of the CAD
and generated traces. The Power spectral density (PSD) of CAD and generated traces
were also almost identical, as shown in Figure 5.7a. Note however that the distance be-
tween the PSD of CAD and VCD traces is much larger (see Figure 5.7b). This shows that
using traces obtained from VCD only is not as accurate as generated from the GAN, even
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Figure 5.6: CPA Results of Balanced AES Implementation

though the GAN uses the VCD as input.
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5.2.5. COMPARISON TO STATE OF THE ART

Because we are only interested in hardware implementations, we have excluded from
the comparison any trace generation methods that are based on formal verification, any
methods that target software implementations at the instruction level, and any analytical-
based approaches such as [185]. Methods that did not provide a discussion of the amount
of time necessary to gather the traces were also excluded [186]. Instead, we compare our
method solely to state-of-the-art pre-silicon techniques. We compare our approach to
one method that is based on the layout level and three other methods that are based on
the gate level, one of which is an approach based on artificial intelligence. For the pur-
pose of this comparison, two criteria were used: first, the quality of the traces, which was
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evaluated depending on the level at which the traces were created (i.e., the layout, gate,
or RTL level), and second, the speed at which those traces were generated. We presumed
that traces produced at lower levels had a higher quality; nevertheless, they require more
time to generate [187]. In terms of quality, we were successful in generating traces at the
gate level, which is better than the RTL level and allowed us to obtain comparable results
in terms of attackability. When it comes to speed, our proposed approach exceeded the
state-of-the-art by 120 times as shown in Table 5.1.

We are under the impression that our approach is likewise capable of generating layout-
based traces at a quicker rate than the conventional way. However, because we need to
train the GAN using several thousands of layout-based traces and because the genera-
tion of those traces takes a significant amount of time, this may be considered a short-
coming of the present technique. Still has the potential to be quicker than the standard
approach (i.e., CAD tool) when the number of traces needed is in the hundreds of thou-
sands or more.

Table 5.1: Comparison with State of the Art
Pre-silicon Prepartion/Training time Time (10k traces) Trace Type
Gate-level (GAN) 35 minutes ∼ 30second s GAN generated
Gate-level (Transfer-learning) 15 minutes ∼ 30second s GAN generated
Gate-level PRIMAL [188] 3 hours - CNN generated
RTL-Level (RTL-PSC) [155] N/A 1 hours Simulated
Gate-Level (PATCH) [189] N/A 10 hours Simulated
Layout (RTL-PSC) [155] N/A days Simulated

5.3. CONCLUSION
This study proposes a framework that is able to quickly generate traces that are very
comparable to CAD-based traces. Our generative models were not only able to generate
visually indistinguishable power traces from the training set but were also able to learn
the characteristics of the VCD transition array. According to our experiments, only a few
thousand CAD traces are required to train GAN models using transfer learning in or-
der to produce high-quality power traces by simply generating them from the switching
activity. As a result, we significantly improved the performance. The evaluation study
was carried out on various hardware implementations of the AES algorithm. However,
our framework is designed so that it can be extended to other cryptographic algorithms.
However, since the trace length increases significantly for asymmetric algorithms like
RSA or even software implementation of AES, a progressively growing convolutional ar-
chitecture [190] like that proposed by Harrold et al. [191] must be used.



6
CONCLUSION

This chapter provides a comprehensive review that outlines the successes and milestones
achieved throughout the course of this dissertation. Additionally, we shine a light on
potential areas for future research. In Section 6.1, the essential results gained from the
substantial research given in this thesis are encapsulated. In the subsequent section, Sec-
tion 6.2, an in-depth analysis is conducted to provide potential avenues for future re-
search. These suggestions highlight possible advancements and areas of investigation that
can further expand upon the groundwork established in this study.
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6.1. SUMMARY
• Chapter 1: Introduction This chapter presents an exposition on the imperative na-

ture of security and secure solutions in countering side channel attacks. It begins with
identifying the hazard or risk of hardware vulnerabilities, which is evident from the
2019 DELL report indicating that 63% of organizations have experienced data breaches
as a result of hardware vulnerabilities. Additionally, the chapter elaborated on how
side channels, which are undetectable, could potentially be the silent end of all hard-
ware attacks and how much simpler they will become as technology develops. Follow-
ing a discussion of hardware vulnerabilities, the chapter delineated the opportunities
and challenges within the domain of side channel analysis. It restricted its discus-
sion to three specific areas: protection measures utilizing countermeasures, validation
measures employing post-silicon techniques, and prevention measures utilizing pre-
silicon techniques. The chapter then addressed the research topics, which center on
the response to the central question, "Which side channel attack protection strategies
are the most effective?" In order to address this inquiry, the chapter primarily concen-
trated on three facets: identifying the side channel that attracts attackers the most;
devising strategies to fortify the countermeasures; and determining the most effective
method for validating these countermeasures during the design phase. The chapter
then elaborated on the principal contributions: 1) Analysis and Investigation of Pro-
cessing Techniques on Power Side Channels; 2) Analysis and Investigation of Thermal
Side Channels; 3) Analysis and Investigation of Time Side Channel Attacks; 4) Devel-
opment of Symmetric and Asymmetric Based Countermeasures; 5) Development of
Lightweight Based Countermeasures; and 7) An Artificial Intelligence-Based Leakage
Assessment Technique.

• Chapter 2: Background In this chapter, we will discuss the essential background in-
formation required for this thesis. The chapter begins by providing an explanation of
the cryptographic algorithms that were researched for the thesis. These algorithms in-
clude Advanced Encryption Standard (AES), which is an asymmetric algorithm; RSA,
which is a method that is lightweight; and GIFT. Next, the chapter discusses side chan-
nel attacks, which it organizes into two categories: class profile attacks, which enable
an adversary to analyze the device target prior to the attack, and class non-profile at-
tacks, which are attacks that are carried out without an earlier analysis of the device
target. Both categories are explained in detail. Following that, the chapter presents a
classification and literature review of several countermeasures that can protect against
power attacks. Finally, the chapter illustrates the present leakage assessment’s styles.

• Chapter 3: Side Channel Analysis This chapter presents a comprehensive analysis
of three distinct side channel attacks that exploit various forms of information leak-
age, specifically power usage, temporal variations, and thermal emissions. The ini-
tial section provides an explanation for the specific selection of these three leakages.
The selection is determined by factors such as powerfulness, simplicity, and remote
accessibility. Power-based attacks are often regarded as the most powerful and sim-
ple method; however, they typically necessitate physical access to the targeted de-
vice. Time-based attacks come next in terms of powerfulness and ease of use, while
they surpass them in terms of accessibility. Thermal emission attacks are ultimately
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selected due to their recognition as a potential hazard, as the monitored equipment
utilizes this channel to prevent overheating. The subsequent chapter provides a com-
prehensive explanation of the attack methodologies employed in every type of attack.
Power attacks encompassed a range of attack techniques, including both profiled and
non-profiled methods. These attacks were executed against various implementations,
covering both symmetric and asymmetric systems. The time-based attacks were con-
ducted utilizing a profiled technique and targeted a lightweight implementation. The
thermal attacks were ultimately executed using non-profiled methods and targeted
asymmetric entities.

• Chapter 4: Countermeasures This chapter presents a comprehensive analysis of four
countermeasures that have been developed. The countermeasures implemented cover
a diverse array of algorithms, including AES, RSA, and GIFT, and were applicable to
various sorts of applications, including lightweight ones. The initial countermeasure
devised involves the utilization of a neural network-based Advanced Encryption Stan-
dard (AES) implementation. The primary objective of this countermeasure is to ob-
fuscate the attacker by introducing unpredictable variations in power consumption.
The second countermeasure that has been devised for asymmetric algorithms. The
objective of this countermeasure is to mitigate the leakage by equitably distributing
power consumption across all operations. The development of the third algorithm
was undertaken with the purpose of providing a lightweight countermeasure specifi-
cally designed for symmetric algorithms. The concept behind these countermeasures
is the integration of both randomization and balancing techniques. This is achieved
by replicating two different instances of the operation, such as the SBOX, with the pur-
pose of ensuring that the outcomes of these two operations exhibit balanced power
behaviors. The fourth countermeasure entails the utilization of an efficient imple-
mentation of a state-of-the-art countermeasure known as DOM. The countermeasure
employed in this study incorporates optimization approaches such as key expansion
bypassing, resource sharing, and meticulous module optimizations.

• Chapter 5: Pre-silicon Leakage Assessment Methods The third and last application
domain that we studied is Bioinformatics. The knowledge of bioinformatics is used
in a wide range of applications. Food industries are leveraging this knowledge for
food profiling which is an essential step in any food monitoring system. Food pro-
filers work on massive data structures and incur considerable data movement for a
real-time monitoring system. We translated the problem of food profiling into hyper-
dimensional computing representation, which makes it easy to be implemented using
CIM. Based on that, we proposed our accelerator. We synthesized the required hard-
ware for our accelerator using UMC’s 65nm library by considering an accurate PCM
model. Our evaluations demonstrate that our CIM-based implementation achieves a
(1) throughput improvement of 192× and 724× and (2) memory reduction of 36× and
33× compared to two state-of-the-art profilers (and ).



6

112 6. CONCLUSION

6.2. OUTLOOK
In this section, we offer a number of insightful recommendations with the goal of en-
hancing and expanding upon the topics that were discussed in this thesis. In the fol-
lowing discussion, we will give these proposals, which were derived from our in-depth
examination and comprehension of the topic.

• Post quantum Countermeasures development and assessment: Traditional cryptog-
raphy, which is still in use today, is based on the difficulty of solving mathematical
problems such as the integer factorization issue and the discrete logarithm problem.
Both of these difficulties are examples of challenges that can be used to encrypt and
decrypt messages. However, these problems are believed to be solvable by quantum
computers in polynomial time. Post-quantum cryptography is a field of cryptography
that aims to develop algorithms that are resistant to attacks by quantum computers.
Lattice problems, code-based problems, and multivariate problems are some exam-
ples of the kinds of mathematical problems that form the foundation of post-quantum
algorithms. Similar to classical cryptography, post-quantum cryptography can also be
vulnerable to power-side channel attacks. The HQC code-based KEM implementa-
tion was the target of one of the first power side-channel attacks on a post-quantum
algorithm [3]. Power attacks have also successfully attacked the implementation of
other algorithms, including multivariate-based [4] and lattice-based [5] algorithms. In
the course of our research, we did not incorporate post-quntum as a component of
the analysis. Therefore, it is necessary to build a model for assessing leakage of post-
quantum countermeasure implementation in a way that is both more quick, efficient,
and accurate to prevent possible attacks.

• Leakage assessment for other channels: In Chapter 4, our research delved into the
exploration of three distinct side channels. We identified these leakage channels as
having significant implications for the security of micro-electronic devices. Despite
this, our subsequent chapters predominantly concentrated on a solitary leakage chan-
nel, primarily due to its elevated potential for posing hardware-level vulnerabilities.
Nevertheless, it remains our conviction that the examination of other such channels
should be pursued with equal diligence. Therefore, as part of our future work, we in-
tend to extend our evaluation to these additional channels, aiming to develop pre-
silicon assessment techniques specifically tailored to them. This comprehensive ap-
proach will further enhance our understanding of the security landscape in the realm
of micro-electronic devices.

• Post-silicon leakage assessment method In the realm of semiconductor device devel-
opment, the examination of pre-silicon and post-silicon leakage is a crucial and ever-
evolving area of study. Its overall goal is to establish strong defenses against power-
based assaults, so assuring the integrity and safety of these vital components of mod-
ern technology. Although considerable progress has been made in understanding and
correcting pre-silicon leakage, there is still a discernible attention gap between pre-
silicon and post-silicon assessment methodologies.

A significant obstacle is presented by the limited amount of research that has been
done to investigate the development of post-silicon techniques. Because of this short-
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coming, the sector must continue to rely on conventional techniques of assessment,
which frequently appear to be prohibitively expensive and time-consuming. As a con-
sequence of this, several chip manufacturers are contemplating skipping or signifi-
cantly reducing the amount of post-silicon leakage evaluation they perform in an ef-
fort to cut production costs and speed up time-to-market. This development, on the
other hand, is certainly risky because it may result in the existence of vulnerabilities
that were not previously present in semiconductor devices.

Individuals who rely on these chips in a variety of applications, ranging from critical
infrastructure to mobile devices like smartphones and tablets, could have their pri-
vacy and security compromised as a result of these hidden flaws. The protection of
users’ data privacy and security has become of the utmost importance as the spread
of technology continues to touch every facet of our life.

Because of this, our dedication to finding a solution to this problem should be unyield-
ing. It is imperative that we spend not only in research and development but also in
the process of making post-silicon leakage evaluation tools more readily available and
competitively priced for chip makers. Doing so will allow us to lay a firm foundation
for a future in which chip devices will be better protected from power-based threats,
which will eventually ensure that the privacy and security of users will remain uncom-
promised and unaltered. This coordinated effort will spur innovation, boost trust, and
move us into a future in which technology can flourish without putting the very people
it serves in risk.





BIBLIOGRAPHY

[1] A. Shinde. Introduction to Cyber Security: Guide to the World of Cyber Security.
Notion Press, 2021. ISBN: 9781637816431. URL: https://books.google.nl/
books?id=VLEcEAAAQBAJ.

[2] F. B. of Investigation (FBI). Internet Crime Report 2021. 2021. URL: https : / /
www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf (visited
on 10/02/2023).

[3] W. E. Forum. Why we need global rules to crack down on cybercrime. 2023. URL:
https://www.weforum.org/agenda/2023/01/global- rules- crack-
down-cybercrime/ (visited on 10/02/2023).

[4] D. Technologies. The Reality of Hardware-level Security: Companies Need It and
They Need It Now. 2019. URL: https://www.dell.com/en-us/blog/reality-
of - hardware - level - security - companies - need - it - now/ (visited on
10/02/2023).

[5] S. Atefi, A. Sivagnanam, A. Ayman, J. Grossklags, and A. Laszka. “The Benefits of
Vulnerability Discovery and Bug Bounty Programs: Case Studies of Chromium
and Firefox”. In: Proceedings of the ACM Web Conference 2023, WWW 2023, Austin,
TX, USA, 30 April 2023 - 4 May 2023. Ed. by Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo,
C. Castillo, and G. Houben. ACM, 2023, pp. 2209–2219. DOI: 10.1145/3543507.
3583352. URL: https://doi.org/10.1145/3543507.3583352.

[6] M. Potkonjak, G. Qu, F. Koushanfar, and C. Chang. “20 Years of research on intel-
lectual property protection”. In: IEEE International Symposium on Circuits and
Systems, ISCAS 2017, Baltimore, MD, USA, May 28-31, 2017. IEEE, 2017, pp. 1–4.
DOI: 10.1109/ISCAS.2017.8050602. URL: https://doi.org/10.1109/
ISCAS.2017.8050602.

[7] J. Francq and F. Frick. “Introduction to hardware trojan detection methods”. In:
Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhi-
bition, DATE 2015, Grenoble, France, March 9-13, 2015. Ed. by W. Nebel and D.
Atienza. ACM, 2015, pp. 770–775. URL: http://dl.acm.org/citation.cfm?
id=2755929.

[8] Y. Zhou and D. Feng. “Side-Channel Attacks: Ten Years After Its Publication and
the Impacts on Cryptographic Module Security Testing”. In: IACR Cryptol. ePrint
Arch. (2005), p. 388. URL: http://eprint.iacr.org/2005/388.

115

https://books.google.nl/books?id=VLEcEAAAQBAJ
https://books.google.nl/books?id=VLEcEAAAQBAJ
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://www.weforum.org/agenda/2023/01/global-rules-crack-down-cybercrime/
https://www.weforum.org/agenda/2023/01/global-rules-crack-down-cybercrime/
https://www.dell.com/en-us/blog/reality-of-hardware-level-security-companies-need-it-now/
https://www.dell.com/en-us/blog/reality-of-hardware-level-security-companies-need-it-now/
https://doi.org/10.1145/3543507.3583352
https://doi.org/10.1145/3543507.3583352
https://doi.org/10.1145/3543507.3583352
https://doi.org/10.1109/ISCAS.2017.8050602
https://doi.org/10.1109/ISCAS.2017.8050602
https://doi.org/10.1109/ISCAS.2017.8050602
http://dl.acm.org/citation.cfm?id=2755929
http://dl.acm.org/citation.cfm?id=2755929
http://eprint.iacr.org/2005/388


6

116 BIBLIOGRAPHY

[9] P. C. Kocher, J. Jaffe, and B. Jun. “Differential Power Analysis”. In: Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by M. J. Wiener.
Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 388–397. DOI:
10.1007/3-540-48405-1\_25. URL: https://doi.org/10.1007/3-540-
48405-1%5C_25.

[10] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Houle, M.
Hubbell, M. Jones, A. Klein, P. Michaleas, L. Milechin, J. Mullen, A. Rosa, S. Samsi,
C. Yee, A. Reuther, and J. Kepner. “Measuring the Impact of Spectre and Melt-
down”. In: CoRR abs/1807.08703 (2018). arXiv: 1807.08703. URL: http://arxiv.
org/abs/1807.08703.

[11] Satista. Global vulnerable devices due to Meltdown and Spectre 2018. 2018. URL:
https://www.statista.com/statistics/800230/worldwide-meltdown-
spectre-vulnerable-devices-by-type/ (visited on 10/02/2023).

[12] J. Daemen and V. Rijmen. “The Block Cipher Rijndael”. In: Smart Card Research
and Applications, This International Conference, CARDIS ’98, Louvain-la-Neuve,
Belgium, September 14-16, 1998, Proceedings. Ed. by J. Quisquater and B. Schneier.
Vol. 1820. Lecture Notes in Computer Science. Springer, 1998, pp. 277–284. DOI:
10.1007/10721064\_26. URL: https://doi.org/10.1007/10721064%5C_26.

[13] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo. “GIFT: A Small
Present - Towards Reaching the Limit of Lightweight Encryption”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Ed. by W. Fischer
and N. Homma. Vol. 10529. Lecture Notes in Computer Science. Springer, 2017,
pp. 321–345. DOI: 10.1007/978-3-319-66787-4\_16. URL: https://doi.
org/10.1007/978-3-319-66787-4%5C_16.

[14] R. L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (1978), pp. 120–
126. DOI: 10 . 1145 / 359340 . 359342. URL: https : / / doi . org / 10 . 1145 /
359340.359342.

[15] V. S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances in Cryptology -
CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings. Ed.
by H. C. Williams. Vol. 218. Lecture Notes in Computer Science. Springer, 1985,
pp. 417–426. DOI: 10.1007/3-540-39799-X\_31. URL: https://doi.org/10.
1007/3-540-39799-X%5C_31.

[16] Z. A. Al-Odat, A. Abbas, and S. U. Khan. “Randomness Analyses of the Secure
Hash Algorithms, SHA-1, SHA-2 and Modified SHA”. In: International Conference
on Frontiers of Information Technology, FIT 2019, Islamabad, Pakistan, December
16-18, 2019. IEEE, 2019, pp. 316–321. DOI: 10.1109/FIT47737.2019.00066.
URL: https://doi.org/10.1109/FIT47737.2019.00066.

https://doi.org/10.1007/3-540-48405-1\_25
https://doi.org/10.1007/3-540-48405-1%5C_25
https://doi.org/10.1007/3-540-48405-1%5C_25
https://arxiv.org/abs/1807.08703
http://arxiv.org/abs/1807.08703
http://arxiv.org/abs/1807.08703
https://www.statista.com/statistics/800230/worldwide-meltdown-spectre-vulnerable-devices-by-type/
https://www.statista.com/statistics/800230/worldwide-meltdown-spectre-vulnerable-devices-by-type/
https://doi.org/10.1007/10721064\_26
https://doi.org/10.1007/10721064%5C_26
https://doi.org/10.1007/978-3-319-66787-4\_16
https://doi.org/10.1007/978-3-319-66787-4%5C_16
https://doi.org/10.1007/978-3-319-66787-4%5C_16
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-39799-X\_31
https://doi.org/10.1007/3-540-39799-X%5C_31
https://doi.org/10.1007/3-540-39799-X%5C_31
https://doi.org/10.1109/FIT47737.2019.00066
https://doi.org/10.1109/FIT47737.2019.00066


BIBLIOGRAPHY

6

117

[17] “MD5 Hash Function”. In: Encyclopedia of Cryptography and Security, 2nd Ed. Ed.
by H. C. A. van Tilborg and S. Jajodia. Springer, 2011, p. 771. DOI: 10.1007/978-
1-4419-5906-5\_1197. URL: https://doi.org/10.1007/978-1-4419-
5906-5%5C_1197.

[18] P. C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings. Ed. by N. Koblitz. Vol. 1109. Lecture Notes in Computer Sci-
ence. Springer, 1996, pp. 104–113. DOI: 10.1007/3- 540- 68697- 5\_9. URL:
https://doi.org/10.1007/3-540-68697-5%5C_9.

[19] A. Aljuffri, P. Venkatachalam, C. Reinbrecht, S. Hamdioui, and M. Taouil. “S-NET:
A Confusion Based Countermeasure Against Power Attacks for SBOX”. In: Em-
bedded Computer Systems: Architectures, Modeling, and Simulation - 20th Inter-
national Conference, SAMOS 2020, Samos, Greece, July 5-9, 2020, Proceedings. Ed.
by A. Orailoglu, M. Jung, and M. Reichenbach. Vol. 12471. Lecture Notes in Com-
puter Science. Springer, 2020, pp. 295–307. DOI: 10.1007/978-3-030-60939-
9\_20. URL: https://doi.org/10.1007/978-3-030-60939-9%5C_20.

[20] A. Gornik, A. Moradi, J. Oehm, and C. Paar. “A Hardware-Based Countermeasure
to Reduce Side-Channel Leakage: Design, Implementation, and Evaluation”. In:
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34.8 (2015), pp. 1308–1319.
DOI: 10.1109/TCAD.2015.2423274. URL: https://doi.org/10.1109/TCAD.
2015.2423274.

[21] H. Groß, S. Mangard, and T. Korak. “Domain-Oriented Masking: Compact Masked
Hardware Implementations with Arbitrary Protection Order”. In: IACR Cryptol.
ePrint Arch. (2016), p. 486. URL: http://eprint.iacr.org/2016/486.

[22] A. Aljuffri, C. Reinbrecht, S. Hamdioui, and M. Taouil. “Impact of Data Pre-Processing
Techniques on Deep Learning Based Power Attacks”. In: 16th International Con-
ference on Design & Technology of Integrated Systems in Nanoscale Era, DTIS 2021,
Montpellier, France, June 28-30, 2021. IEEE, 2021, pp. 1–6. DOI: 10.1109/DTIS53253.
2021.9505051. URL: https://doi.org/10.1109/DTIS53253.2021.9505051.

[23] Z. Martinasek, J. Hajny, and L. Malina. “Optimization of Power Analysis Using
Neural Network”. In: Smart Card Research and Advanced Applications - 12th In-
ternational Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013.
Revised Selected Papers. Ed. by A. Francillon and P. Rohatgi. Vol. 8419. Lecture
Notes in Computer Science. Springer, 2013, pp. 94–107. DOI: 10.1007/978-3-
319-08302-5\_7. URL: https://doi.org/10.1007/978-3-319-08302-
5%5C_7.

[24] E. Cagli, C. Dumas, and E. Prouff. “Convolutional Neural Networks with Data
Augmentation Against Jitter-Based Countermeasures - Profiling Attacks Without
Pre-processing”. In: Cryptographic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. Ed. by W. Fischer and N. Homma. Vol. 10529. Lecture Notes in Computer

https://doi.org/10.1007/978-1-4419-5906-5\_1197
https://doi.org/10.1007/978-1-4419-5906-5\_1197
https://doi.org/10.1007/978-1-4419-5906-5%5C_1197
https://doi.org/10.1007/978-1-4419-5906-5%5C_1197
https://doi.org/10.1007/3-540-68697-5\_9
https://doi.org/10.1007/3-540-68697-5%5C_9
https://doi.org/10.1007/978-3-030-60939-9\_20
https://doi.org/10.1007/978-3-030-60939-9\_20
https://doi.org/10.1007/978-3-030-60939-9%5C_20
https://doi.org/10.1109/TCAD.2015.2423274
https://doi.org/10.1109/TCAD.2015.2423274
https://doi.org/10.1109/TCAD.2015.2423274
http://eprint.iacr.org/2016/486
https://doi.org/10.1109/DTIS53253.2021.9505051
https://doi.org/10.1109/DTIS53253.2021.9505051
https://doi.org/10.1109/DTIS53253.2021.9505051
https://doi.org/10.1007/978-3-319-08302-5\_7
https://doi.org/10.1007/978-3-319-08302-5\_7
https://doi.org/10.1007/978-3-319-08302-5%5C_7
https://doi.org/10.1007/978-3-319-08302-5%5C_7


6

118 BIBLIOGRAPHY

Science. Springer, 2017, pp. 45–68. DOI: 10.1007/978-3-319-66787-4\_3.
URL: https://doi.org/10.1007/978-3-319-66787-4%5C_3.

[25] N. Debande, Y. Souissi, M. A. Elaabid, S. Guilley, and J. Danger. “Wavelet trans-
form based pre-processing for side channel analysis”. In: 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2012, Workshops Proceed-
ings, Vancouver, BC, Canada, December 1-5, 2012. IEEE Computer Society, 2012,
pp. 32–38. DOI: 10.1109/MICROW.2012.15. URL: https://doi.org/10.1109/
MICROW.2012.15.

[26] P. Saravanan, P. Kalpana, V. Prcethisri, and V. Sneha. “Power analysis attack using
neural networks with wavelet transform as pre-processor”. In: 18th International
Symposium on VLSI Design and Test, VDAT 2014, Coimbatore, India, July 16-18,
2014. IEEE, 2014, pp. 1–6. DOI: 10.1109/ISVDAT.2014.6881059. URL: https:
//doi.org/10.1109/ISVDAT.2014.6881059.

[27] N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, M. Imran, and M. Shoaib. “A
Deep Learning Model Based on Concatenation Approach for the Diagnosis of
Brain Tumor”. In: IEEE Access 8 (2020), pp. 55135–55144. DOI: 10.1109/ACCESS.
2020.2978629. URL: https://doi.org/10.1109/ACCESS.2020.2978629.

[28] L. Wu and S. Picek. “Remove Some Noise: On Pre-processing of Side-channel
Measurements with Autoencoders”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020.4 (2020), pp. 389–415. DOI: 10.13154/tches.v2020.i4.389-415. URL:
https://doi.org/10.13154/tches.v2020.i4.389-415.

[29] L. Macıas-Garcıa, J. M. Luna-Romera, J. Garcıa-Gutiérrez, M. Martınez-Ballesteros,
J. C. R. Santos, and R. González-Cámpora. “A study of the suitability of autoen-
coders for preprocessing data in breast cancer experimentation”. In: J. Biomed.
Informatics 72 (2017), pp. 33–44. DOI: 10.1016/j.jbi.2017.06.020. URL:
https://doi.org/10.1016/j.jbi.2017.06.020.

[30] C. Reinbrecht, A. Aljuffri, S. Hamdioui, M. Taouil, and J. Sepúlveda. “GRINCH:
A Cache Attack against GIFT Lightweight Cipher”. In: Design, Automation & Test
in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5,
2021. IEEE, 2021, pp. 549–554. DOI: 10.23919/DATE51398.2021.9474201. URL:
https://doi.org/10.23919/DATE51398.2021.9474201.

[31] D. J. Bernstein. Cache Timing Attacks on AES. Apr. 2005. URL: https://cr.yp.
to/antiforgery/cachetiming-20050414.pdf (visited on 12/31/2016).

[32] D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermeasures: The
Case of AES”. In: Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track
at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006, Proceedings.
Ed. by D. Pointcheval. Vol. 3860. Lecture Notes in Computer Science. Springer,
2006, pp. 1–20. DOI: 10.1007/11605805\_1. URL: https://doi.org/10.
1007/11605805%5C_1.

https://doi.org/10.1007/978-3-319-66787-4\_3
https://doi.org/10.1007/978-3-319-66787-4%5C_3
https://doi.org/10.1109/MICROW.2012.15
https://doi.org/10.1109/MICROW.2012.15
https://doi.org/10.1109/MICROW.2012.15
https://doi.org/10.1109/ISVDAT.2014.6881059
https://doi.org/10.1109/ISVDAT.2014.6881059
https://doi.org/10.1109/ISVDAT.2014.6881059
https://doi.org/10.1109/ACCESS.2020.2978629
https://doi.org/10.1109/ACCESS.2020.2978629
https://doi.org/10.1109/ACCESS.2020.2978629
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.13154/tches.v2020.i4.389-415
https://doi.org/10.1016/j.jbi.2017.06.020
https://doi.org/10.1016/j.jbi.2017.06.020
https://doi.org/10.23919/DATE51398.2021.9474201
https://doi.org/10.23919/DATE51398.2021.9474201
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/11605805\_1
https://doi.org/10.1007/11605805%5C_1
https://doi.org/10.1007/11605805%5C_1


BIBLIOGRAPHY

6

119

[33] O. Aciiçmez and Ç. K. Koç. “Trace-Driven Cache Attacks on AES (Short Paper)”. In:
Information and Communications Security, 8th International Conference, ICICS
2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings. Ed. by P. Ning, S. Qing,
and N. Li. Vol. 4307. Lecture Notes in Computer Science. Springer, 2006, pp. 112–
121. DOI: 10.1007/11935308\_9. URL: https://doi.org/10.1007/11935308%
5C_9.

[34] A. Aljuffri, M. Zwalua, C. R. W. Reinbrecht, S. Hamdioui, and M. Taouil. “Apply-
ing Thermal Side-Channel Attacks on Asymmetric Cryptography”. In: IEEE Trans.
Very Large Scale Integr. Syst. 29.11 (2021), pp. 1930–1942. DOI: 10.1109/TVLSI.
2021.3111407. URL: https://doi.org/10.1109/TVLSI.2021.3111407.

[35] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun. “Thermal
Covert Channels on Multi-core Platforms”. In: 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015. Ed. by J. Jung and
T. Holz. USENIX Association, 2015, pp. 865–880. URL: https://www.usenix.
org/conference/usenixsecurity15/technical-sessions/presentation/
masti.

[36] A. Aljuffri, C. Reinbrecht, S. Hamdioui, and M. Taouil. “Multi-Bit Blinding: A Coun-
termeasure for RSA Against Side Channel Attacks”. In: 39th IEEE VLSI Test Sym-
posium, VTS 2021, San Diego, CA, USA, April 25-28, 2021. IEEE, 2021, pp. 1–6.
DOI: 10.1109/VTS50974.2021.9441035. URL: https://doi.org/10.1109/
VTS50974.2021.9441035.

[37] M. Joye and S. Yen. “The Montgomery Powering Ladder”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by B. S. K. Jr., Ç. K. Koç,
and C. Paar. Vol. 2523. Lecture Notes in Computer Science. Springer, 2002, pp. 291–
302. DOI: 10.1007/3-540-36400-5\_22. URL: https://doi.org/10.1007/
3-540-36400-5%5C_22.

[38] H. Maghrebi, T. Portigliatti, and E. Prouff. “Breaking Cryptographic Implementa-
tions Using Deep Learning Techniques”. In: Security, Privacy, and Applied Cryp-
tography Engineering - 6th International Conference, SPACE 2016, Hyderabad, In-
dia, December 14-18, 2016, Proceedings. Ed. by C. Carlet, M. A. Hasan, and V.
Saraswat. Vol. 10076. Lecture Notes in Computer Science. Springer, 2016, pp. 3–
26. DOI: 10.1007/978-3- 319-49445- 6\_1. URL: https://doi.org/10.
1007/978-3-319-49445-6%5C_1.

[39] G. Perin and L. Chmielewski. “A Semi-Parametric Approach for Side-Channel
Attacks on Protected RSA Implementations”. In: Smart Card Research and Ad-
vanced Applications - 14th International Conference, CARDIS 2015, Bochum, Ger-
many, November 4-6, 2015. Revised Selected Papers. Ed. by N. Homma and M.
Medwed. Vol. 9514. Lecture Notes in Computer Science. Springer, 2015, pp. 34–
53. DOI: 10.1007/978-3- 319-31271- 2\_3. URL: https://doi.org/10.
1007/978-3-319-31271-2%5C_3.

https://doi.org/10.1007/11935308\_9
https://doi.org/10.1007/11935308%5C_9
https://doi.org/10.1007/11935308%5C_9
https://doi.org/10.1109/TVLSI.2021.3111407
https://doi.org/10.1109/TVLSI.2021.3111407
https://doi.org/10.1109/TVLSI.2021.3111407
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://doi.org/10.1109/VTS50974.2021.9441035
https://doi.org/10.1109/VTS50974.2021.9441035
https://doi.org/10.1109/VTS50974.2021.9441035
https://doi.org/10.1007/3-540-36400-5\_22
https://doi.org/10.1007/3-540-36400-5%5C_22
https://doi.org/10.1007/3-540-36400-5%5C_22
https://doi.org/10.1007/978-3-319-49445-6\_1
https://doi.org/10.1007/978-3-319-49445-6%5C_1
https://doi.org/10.1007/978-3-319-49445-6%5C_1
https://doi.org/10.1007/978-3-319-31271-2\_3
https://doi.org/10.1007/978-3-319-31271-2%5C_3
https://doi.org/10.1007/978-3-319-31271-2%5C_3


6

120 BIBLIOGRAPHY

[40] A. Aljuffri, R. Huang, S. Hamdioui, K. Ma, and M. Taouil. “Securing an Efficient
Lightweight AES Accelerator”. In: 2023 IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom). 2023.

[41] A. Aljuffri, C. Reinbrecht, S. Hamdioui, M. Taouil, and J. Sepúlveda. “Balanced
Dual-Mask Protection Scheme for GIFT Cipher Against Power Attacks”. In: 2022
IEEE 40th VLSI Test Symposium (VTS). 2022, pp. 1–6. DOI: 10.1109/VTS52500.
2021.9794230.

[42] A. Aljuffri, M. Saxena, C. R. W. Reinbrecht, S. Hamdioui, and M. Taouil. “A Pre-
Silicon Power Leakage Assessment Based on Generative Adversarial Networks”.
In: 2023 26th Euromicro Conference on Digital System Design (DSD). 2023.

[43] M. Taouil, A. Aljuffri, and S. Hamdioui. “Power Side Channel Attacks: Where Are
We Standing?” In: 16th International Conference on Design & Technology of Inte-
grated Systems in Nanoscale Era, DTIS 2021, Montpellier, France, June 28-30, 2021.
IEEE, 2021, pp. 1–6. DOI: 10.1109/DTIS53253.2021.9505075. URL: https:
//doi.org/10.1109/DTIS53253.2021.9505075.

[44] X. Zhang and K. K. Parhi. “High-speed VLSI architectures for the AES algorithm”.
In: IEEE Trans. Very Large Scale Integr. Syst. 12.9 (2004), pp. 957–967. DOI: 10.
1109/TVLSI.2004.832943. URL: https://doi.org/10.1109/TVLSI.2004.
832943.

[45] W. Diffie and M. E. Hellman. “New directions in cryptography”. In: IEEE Trans.
Inf. Theory 22.6 (1976), pp. 644–654. DOI: 10.1109/TIT.1976.1055638. URL:
https://doi.org/10.1109/TIT.1976.1055638.

[46] Collectif. “Integer factorization and discrete logarithm problems”. en. In: Les cours
du CIRM 1 (2014). talk:2. DOI: 10.5802/ccirm.21. URL: http://www.numdam.
org/articles/10.5802/ccirm.21/.

[47] E. Brier, C. Clavier, and F. Olivier. “Correlation Power Analysis with a Leakage
Model”. In: Cryptographic Hardware and Embedded Systems - CHES 2004: 6th
International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings.
Ed. by M. Joye and J. Quisquater. Vol. 3156. Lecture Notes in Computer Science.
Springer, 2004, pp. 16–29. DOI: 10.1007/978-3-540-28632-5\_2. URL: https:
//doi.org/10.1007/978-3-540-28632-5%5C_2.

[48] K. Schramm, G. Leander, P. Felke, and C. Paar. “A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack”. In: Cryptographic Hardware and
Embedded Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings. Ed. by M. Joye and J. Quisquater. Vol. 3156. Lec-
ture Notes in Computer Science. Springer, 2004, pp. 163–175. DOI: 10.1007/
978-3-540-28632-5\_12. URL: https://doi.org/10.1007/978-3-540-
28632-5%5C_12.

[49] T. Akishita and T. Takagi. “Zero-Value Point Attacks on Elliptic Curve Cryptosys-
tem”. In: Information Security, 6th International Conference, ISC 2003, Bristol,
UK, October 1-3, 2003, Proceedings. Ed. by C. Boyd and W. Mao. Vol. 2851. Lec-
ture Notes in Computer Science. Springer, 2003, pp. 218–233. DOI: 10.1007/
10958513\_17. URL: https://doi.org/10.1007/10958513%5C_17.

https://doi.org/10.1109/VTS52500.2021.9794230
https://doi.org/10.1109/VTS52500.2021.9794230
https://doi.org/10.1109/DTIS53253.2021.9505075
https://doi.org/10.1109/DTIS53253.2021.9505075
https://doi.org/10.1109/DTIS53253.2021.9505075
https://doi.org/10.1109/TVLSI.2004.832943
https://doi.org/10.1109/TVLSI.2004.832943
https://doi.org/10.1109/TVLSI.2004.832943
https://doi.org/10.1109/TVLSI.2004.832943
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.5802/ccirm.21
http://www.numdam.org/articles/10.5802/ccirm.21/
http://www.numdam.org/articles/10.5802/ccirm.21/
https://doi.org/10.1007/978-3-540-28632-5\_2
https://doi.org/10.1007/978-3-540-28632-5%5C_2
https://doi.org/10.1007/978-3-540-28632-5%5C_2
https://doi.org/10.1007/978-3-540-28632-5\_12
https://doi.org/10.1007/978-3-540-28632-5\_12
https://doi.org/10.1007/978-3-540-28632-5%5C_12
https://doi.org/10.1007/978-3-540-28632-5%5C_12
https://doi.org/10.1007/10958513\_17
https://doi.org/10.1007/10958513\_17
https://doi.org/10.1007/10958513%5C_17


BIBLIOGRAPHY

6

121

[50] J. Heyszl, A. Ibing, S. Mangard, F. D. Santis, and G. Sigl. “Clustering Algorithms for
Non-profiled Single-Execution Attacks on Exponentiations”. In: Smart Card Re-
search and Advanced Applications - 12th International Conference, CARDIS 2013,
Berlin, Germany, November 27-29, 2013. Revised Selected Papers. Ed. by A. Francil-
lon and P. Rohatgi. Vol. 8419. Lecture Notes in Computer Science. Springer, 2013,
pp. 79–93. DOI: 10.1007/978-3-319-08302-5\_6. URL: https://doi.org/
10.1007/978-3-319-08302-5%5C_6.

[51] J. D. Golic and C. Tymen. “Multiplicative Masking and Power Analysis of AES”. In:
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by
B. S. K. Jr., Ç. K. Koç, and C. Paar. Vol. 2523. Lecture Notes in Computer Science.
Springer, 2002, pp. 198–212. DOI: 10.1007/3-540-36400-5\_16. URL: https:
//doi.org/10.1007/3-540-36400-5%5C_16.

[52] S. Chari, J. R. Rao, and P. Rohatgi. “Template Attacks”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers. Ed. by B. S. K. Jr., Ç. K. Koç,
and C. Paar. Vol. 2523. Lecture Notes in Computer Science. Springer, 2002, pp. 13–
28. DOI: 10.1007/3-540-36400-5\_3. URL: https://doi.org/10.1007/3-
540-36400-5%5C_3.

[53] M. Carbone, V. Conin, M. Cornelie, F. Dassance, G. Dufresne, C. Dumas, E. Prouff,
and A. Venelli. “Deep Learning to Evaluate Secure RSA Implementations”. In:
IACR Cryptol. ePrint Arch. (2019), p. 54. URL: https : / / eprint . iacr . org /
2019/054.

[54] L. Lerman, G. Bontempi, and O. Markowitch. “Power analysis attack: an approach
based on machine learning”. In: Int. J. Appl. Cryptogr. 3.2 (2014), pp. 97–115. DOI:
10.1504/IJACT.2014.062722. URL: https://doi.org/10.1504/IJACT.
2014.062722.

[55] G. Hospodar, B. Gierlichs, E. D. Mulder, I. Verbauwhede, and J. Vandewalle. “Ma-
chine learning in side-channel analysis: a first study”. In: J. Cryptogr. Eng. 1.4
(2011), pp. 293–302. DOI: 10.1007/s13389-011-0023-x. URL: https://doi.
org/10.1007/s13389-011-0023-x.

[56] M. Masoumi, P. Habibi, and M. Jadidi. “Efficient implementation of masked AES
on Side-Channel Attack Standard Evaluation Board”. In: 2015 International Con-
ference on Information Society (i-Society). 2015, pp. 151–156. DOI: 10.1109/i-
Society.2015.7366878.

[57] J. A. Ambrose, R. G. Ragel, and S. Parameswaran. “A smart random code injection
to mask power analysis based side channel attacks”. In: Proceedings of the 5th
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2007, Salzburg, Austria, September 30 - October 3, 2007. Ed. by S. Ha,
K. Choi, N. D. Dutt, and J. Teich. ACM, 2007, pp. 51–56. DOI: 10.1145/1289816.
1289832. URL: https://doi.org/10.1145/1289816.1289832.

https://doi.org/10.1007/978-3-319-08302-5\_6
https://doi.org/10.1007/978-3-319-08302-5%5C_6
https://doi.org/10.1007/978-3-319-08302-5%5C_6
https://doi.org/10.1007/3-540-36400-5\_16
https://doi.org/10.1007/3-540-36400-5%5C_16
https://doi.org/10.1007/3-540-36400-5%5C_16
https://doi.org/10.1007/3-540-36400-5\_3
https://doi.org/10.1007/3-540-36400-5%5C_3
https://doi.org/10.1007/3-540-36400-5%5C_3
https://eprint.iacr.org/2019/054
https://eprint.iacr.org/2019/054
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1504/IJACT.2014.062722
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1109/i-Society.2015.7366878
https://doi.org/10.1109/i-Society.2015.7366878
https://doi.org/10.1145/1289816.1289832
https://doi.org/10.1145/1289816.1289832
https://doi.org/10.1145/1289816.1289832


6

122 BIBLIOGRAPHY

[58] J. Coron and I. Kizhvatov. “Analysis and Improvement of the Random Delay Coun-
termeasure of CHES 2009”. In: Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings. Ed. by S. Mangard and F. Standaert. Vol. 6225. Lecture Notes
in Computer Science. Springer, 2010, pp. 95–109. DOI: 10.1007/978-3-642-
15031-9\_7. URL: https://doi.org/10.1007/978-3-642-15031-9%5C_7.

[59] H. Maghrebi, E. Prouff, S. Guilley, and J. Danger. “A First-Order Leak-Free Mask-
ing Countermeasure”. In: Topics in Cryptology - CT-RSA 2012 - The Cryptogra-
phers’ Track at the RSA Conference 2012, San Francisco, CA, USA, February 27 -
March 2, 2012. Proceedings. Ed. by O. Dunkelman. Vol. 7178. Lecture Notes in
Computer Science. Springer, 2012, pp. 156–170. DOI: 10.1007/978- 3- 642-
27954 - 6 \ _10. URL: https : / / doi . org / 10 . 1007 / 978 - 3 - 642 - 27954 -
6%5C_10.

[60] Y. Lu, M. O’Neill, and J. V. McCanny. “Evaluation of Random Delay Insertion against
DPA on FPGAs”. In: ACM Trans. Reconfigurable Technol. Syst. 4.1 (2010), 11:1–
11:20. DOI: 10.1145/1857927.1857938. URL: https://doi.org/10.1145/
1857927.1857938.

[61] T. Popp and S. Mangard. “Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints”. In: Cryptographic Hardware and Embedded Sys-
tems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - Septem-
ber 1, 2005, Proceedings. Ed. by J. R. Rao and B. Sunar. Vol. 3659. Lecture Notes in
Computer Science. Springer, 2005, pp. 172–186. DOI: 10.1007/11545262\_13.
URL: https://doi.org/10.1007/11545262%5C_13.

[62] L. Zhang, L. Vega, and M. B. Taylor. “Power Side Channels in Security ICs: Hard-
ware Countermeasures”. In: CoRR abs/1605.00681 (2016). arXiv: 1605.00681.
URL: http://arxiv.org/abs/1605.00681.

[63] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. “Implementation of RSA
Algorithm Based on RNS Montgomery Multiplication”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings. Ed. by Ç. K. Koç, D. Naccache, and C. Paar.
Vol. 2162. Lecture Notes in Computer Science. Springer, 2001, pp. 364–376. DOI:
10.1007/3-540-44709-1\_30. URL: https://doi.org/10.1007/3-540-
44709-1%5C_30.

[64] Z. Chen and P. Schaumont. “Virtual Secure Circuit: Porting Dual-Rail Pre-charge
Technique into Software on Multicore”. In: IACR Cryptol. ePrint Arch. (2010), p. 272.
URL: http://eprint.iacr.org/2010/272.

[65] M. Doulcier-Verdier, J. Dutertre, J. J. A. Fournier, J. Rigaud, B. Robisson, and A.
Tria. “A side-channel and fault-attack resistant AES circuit working on dupli-
cated complemented values”. In: IEEE International Solid-State Circuits Confer-
ence, ISSCC 2011, Digest of Technical Papers, San Francisco, CA, USA, 20-24 Febru-
ary, 2011. IEEE, 2011, pp. 274–276. DOI: 10.1109/ISSCC.2011.5746316. URL:
https://doi.org/10.1109/ISSCC.2011.5746316.

https://doi.org/10.1007/978-3-642-15031-9\_7
https://doi.org/10.1007/978-3-642-15031-9\_7
https://doi.org/10.1007/978-3-642-15031-9%5C_7
https://doi.org/10.1007/978-3-642-27954-6\_10
https://doi.org/10.1007/978-3-642-27954-6\_10
https://doi.org/10.1007/978-3-642-27954-6%5C_10
https://doi.org/10.1007/978-3-642-27954-6%5C_10
https://doi.org/10.1145/1857927.1857938
https://doi.org/10.1145/1857927.1857938
https://doi.org/10.1145/1857927.1857938
https://doi.org/10.1007/11545262\_13
https://doi.org/10.1007/11545262%5C_13
https://arxiv.org/abs/1605.00681
http://arxiv.org/abs/1605.00681
https://doi.org/10.1007/3-540-44709-1\_30
https://doi.org/10.1007/3-540-44709-1%5C_30
https://doi.org/10.1007/3-540-44709-1%5C_30
http://eprint.iacr.org/2010/272
https://doi.org/10.1109/ISSCC.2011.5746316
https://doi.org/10.1109/ISSCC.2011.5746316


BIBLIOGRAPHY

6

123

[66] C. Wang, M. Yan, Y. Cai, Q. Zhou, and J. Yang. “Power Profile Equalizer: A Lightweight
Countermeasure against Side-Channel Attack”. In: 2017 IEEE International Con-
ference on Computer Design, ICCD 2017, Boston, MA, USA, November 5-8, 2017.
IEEE Computer Society, 2017, pp. 305–312. DOI: 10.1109/ICCD.2017.54. URL:
https://doi.org/10.1109/ICCD.2017.54.

[67] J.-L. Danger, S. Guilley, S. Bhasin, and M. Nassar. “Overview of Dual rail with
Precharge logic styles to thwart implementation-level attacks on hardware cryp-
toprocessors”. In: 2009 3rd International Conference on Signals, Circuits and Sys-
tems (SCS). 2009, pp. 1–8. DOI: 10.1109/ICSCS.2009.5412599.

[68] H. Thapliyal, T. S. S. Varun, and S. D. Kumar. “Adiabatic Computing Based Low-
Power and DPA-Resistant Lightweight Cryptography for IoT Devices”. In: 2017
IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017, Bochum, Ger-
many, July 3-5, 2017. IEEE Computer Society, 2017, pp. 621–626. DOI: 10.1109/
ISVLSI.2017.115. URL: https://doi.org/10.1109/ISVLSI.2017.115.

[69] M. Masoumi. “Novel Hybrid CMOS/Memristor Implementation of the AES Algo-
rithm Robust Against Differential Power Analysis Attack”. In: IEEE Trans. Circuits
Syst. II Express Briefs 67-II.7 (2020), pp. 1314–1318. DOI: 10.1109/TCSII.2019.
2932337. URL: https://doi.org/10.1109/TCSII.2019.2932337.

[70] Rambus. DPA Workstation Platform. URL: https://www.rambus.com/security/
dpa-countermeasures/dpa-workstation-platform/ (visited on 05/08/2021).

[71] Riscure. Inspector Side Channel Analysis. URL: https://www.riscure.com/
security-tools/inspector-sca (visited on 05/08/2021).

[72] A. Nahiyan, M. (Tony) He, J. Park, and M. Tehranipoor. “CAD for Side-Channel
Leakage Assessment”. In: Emerging Topics in Hardware Security. Ed. by M. Tehra-
nipoor. Cham: Springer International Publishing, 2021, pp. 171–197. ISBN: 978-3-
030-64448-2. DOI: 10.1007/978-3-030-64448-2_7. URL: https://doi.org/
10.1007/978-3-030-64448-2_7.

[73] G. Becker et al. Test Vector Leakage Assessment ( TVLA ) methodology in practice.
2011. URL: https://pdfs.semanticscholar.org/ (visited on 09/23/2019).

[74] S. Mangard. “Hardware Countermeasures against DPA ? A Statistical Analysis of
Their Effectiveness”. In: Topics in Cryptology - CT-RSA 2004, The Cryptographers’
Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27, 2004,
Proceedings. Ed. by T. Okamoto. Vol. 2964. Lecture Notes in Computer Science.
Springer, 2004, pp. 222–235. DOI: 10.1007/978-3-540-24660-2\_18. URL:
https://doi.org/10.1007/978-3-540-24660-2%5C_18.

[75] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. “Formal
Verification of Masked Hardware Implementations in the Presence of Glitches”.
In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part II. Ed. by J. B. Nielsen and V. Rijmen.
Vol. 10821. Lecture Notes in Computer Science. Springer, 2018, pp. 321–353. DOI:
10.1007/978-3-319-78375-8\_11. URL: https://doi.org/10.1007/978-
3-319-78375-8%5C_11.

https://doi.org/10.1109/ICCD.2017.54
https://doi.org/10.1109/ICCD.2017.54
https://doi.org/10.1109/ICSCS.2009.5412599
https://doi.org/10.1109/ISVLSI.2017.115
https://doi.org/10.1109/ISVLSI.2017.115
https://doi.org/10.1109/ISVLSI.2017.115
https://doi.org/10.1109/TCSII.2019.2932337
https://doi.org/10.1109/TCSII.2019.2932337
https://doi.org/10.1109/TCSII.2019.2932337
https://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
https://www.rambus.com/security/dpa-countermeasures/dpa-workstation-platform/
https://www.riscure.com/security-tools/inspector-sca
https://www.riscure.com/security-tools/inspector-sca
https://doi.org/10.1007/978-3-030-64448-2_7
https://doi.org/10.1007/978-3-030-64448-2_7
https://doi.org/10.1007/978-3-030-64448-2_7
https://pdfs.semanticscholar.org/
https://doi.org/10.1007/978-3-540-24660-2\_18
https://doi.org/10.1007/978-3-540-24660-2%5C_18
https://doi.org/10.1007/978-3-319-78375-8\_11
https://doi.org/10.1007/978-3-319-78375-8%5C_11
https://doi.org/10.1007/978-3-319-78375-8%5C_11


6

124 BIBLIOGRAPHY

[76] H. Eldib, C. Wang, and P. Schaumont. “Formal Verification of Software Counter-
measures against Side-Channel Attacks”. In: ACM Trans. Softw. Eng. Methodol.
24.2 (2014), 11:1–11:24. DOI: 10.1145/2685616. URL: https://doi.org/10.
1145/2685616.

[77] K. Gandolfi, C. Mourtel, and F. Olivier. “Electromagnetic Analysis: Concrete Re-
sults”. In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings. Ed. by Ç. K.
Koç, D. Naccache, and C. Paar. Vol. 2162. Lecture Notes in Computer Science.
Springer, 2001, pp. 251–261. DOI: 10.1007/3-540-44709-1\_21. URL: https:
//doi.org/10.1007/3-540-44709-1%5C_21.

[78] J. DaRolt, A. Das, G. D. Natale, M. Flottes, B. Rouzeyre, and I. Verbauwhede. “A
New Scan Attack on RSA in Presence of Industrial Countermeasures”. In: Con-
structive Side-Channel Analysis and Secure Design - Third International Work-
shop, COSADE 2012, Darmstadt, Germany, May 3-4, 2012. Proceedings. Ed. by W.
Schindler and S. A. Huss. Vol. 7275. Lecture Notes in Computer Science. Springer,
2012, pp. 89–104. DOI: 10.1007/978-3-642-29912-4\_8. URL: https://doi.
org/10.1007/978-3-642-29912-4%5C_8.

[79] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J. Seifert. “Simple photonic
emission analysis of AES”. In: J. Cryptogr. Eng. 3.1 (2013), pp. 3–15. DOI: 10.1007/
S13389-013-0053-7. URL: https://doi.org/10.1007/s13389-013-0053-
7.

[80] D. Genkin, A. Shamir, and E. Tromer. “RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis”. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I. Ed. by J. A. Garay and R. Gennaro. Vol. 8616. Lecture Notes in Computer
Science. Springer, 2014, pp. 444–461. DOI: 10.1007/978-3-662-44371-2\_25.
URL: https://doi.org/10.1007/978-3-662-44371-2%5C_25.

[81] J. Coron, E. Prouff, M. Rivain, and T. Roche. “Higher-Order Side Channel Security
and Mask Refreshing”. In: IACR Cryptol. ePrint Arch. (2015), p. 359. URL: http:
//eprint.iacr.org/2015/359.

[82] K. Tiri and I. Verbauwhede. “A Dynamic and Differential CMOS Logic Style to
Resist Power and Timing Attacks on Security IC’s”. In: IACR Cryptol. ePrint Arch.
(2004), p. 66. URL: http://eprint.iacr.org/2004/066.

[83] F. Durvaux, M. Renauld, F. Standaert, L. van Oldeneel tot Oldenzeel, and N. Veyrat-
Charvillon. “Efficient Removal of Random Delays from Embedded Software Im-
plementations Using Hidden Markov Models”. In: Smart Card Research and Ad-
vanced Applications - 11th International Conference, CARDIS 2012, Graz, Austria,
November 28-30, 2012, Revised Selected Papers. Ed. by S. Mangard. Vol. 7771. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 123–140. DOI: 10.1007/
978-3-642-37288-9\_9. URL: https://doi.org/10.1007/978-3-642-
37288-9%5C_9.

https://doi.org/10.1145/2685616
https://doi.org/10.1145/2685616
https://doi.org/10.1145/2685616
https://doi.org/10.1007/3-540-44709-1\_21
https://doi.org/10.1007/3-540-44709-1%5C_21
https://doi.org/10.1007/3-540-44709-1%5C_21
https://doi.org/10.1007/978-3-642-29912-4\_8
https://doi.org/10.1007/978-3-642-29912-4%5C_8
https://doi.org/10.1007/978-3-642-29912-4%5C_8
https://doi.org/10.1007/S13389-013-0053-7
https://doi.org/10.1007/S13389-013-0053-7
https://doi.org/10.1007/s13389-013-0053-7
https://doi.org/10.1007/s13389-013-0053-7
https://doi.org/10.1007/978-3-662-44371-2\_25
https://doi.org/10.1007/978-3-662-44371-2%5C_25
http://eprint.iacr.org/2015/359
http://eprint.iacr.org/2015/359
http://eprint.iacr.org/2004/066
https://doi.org/10.1007/978-3-642-37288-9\_9
https://doi.org/10.1007/978-3-642-37288-9\_9
https://doi.org/10.1007/978-3-642-37288-9%5C_9
https://doi.org/10.1007/978-3-642-37288-9%5C_9


BIBLIOGRAPHY

6

125

[84] V. Zeman and Z. Martinasek. “Innovative Method of the Power Analysis”. In: Ra-
dioengineering 22 (2013), pp. 586–594. URL: https://api.semanticscholar.
org/CorpusID:54614105.

[85] R. Gilmore, N. Hanley, and M. O’Neill. “Neural network based attack on a masked
implementation of AES”. In: IEEE International Symposium on Hardware Ori-
ented Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015. IEEE
Computer Society, 2015, pp. 106–111. DOI: 10.1109/HST.2015.7140247. URL:
https://doi.org/10.1109/HST.2015.7140247.

[86] H. Maghrebi. “Deep Learning based Side Channel Attacks in Practice”. In: IACR
Cryptol. ePrint Arch. (2019), p. 578. URL: https://eprint.iacr.org/2019/
578.

[87] M. Carbone, V. Conin, M. Cornelie, F. Dassance, G. Dufresne, C. Dumas, E. Prouff,
and A. Venelli. “Deep Learning to Evaluate Secure RSA Implementations”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019.2 (2019), pp. 132–161. DOI: 10.
13154/tches.v2019.i2.132- 161. URL: https://doi.org/10.13154/
tches.v2019.i2.132-161.

[88] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedfor-
ward neural networks”. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010. Ed. by Y. W. Teh and D. M. Titterington. Vol. 9.
JMLR Proceedings. JMLR.org, 2010, pp. 249–256. URL: http://proceedings.
mlr.press/v9/glorot10a.html.

[89] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.
2015. URL: http://arxiv.org/abs/1412.6980.

[90] P. Baldi and P. J. Sadowski. “Understanding Dropout”. In: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States. Ed. by C. J. C. Burges, L. Bottou, Z. Ghahra-
mani, and K. Q. Weinberger. 2013, pp. 2814–2822. URL: https://proceedings.
neurips . cc / paper / 2013 / hash / 71f6278d140af599e06ad9bf1ba03cb0 -
Abstract.html.

[91] F. Xiao, T. Lu, M. Wu, and Q. Ai. “Maximal overlap discrete wavelet transform
and deep learning for robust denoising and detection of power quality distur-
bance”. In: IET Generation, Transmission & Distribution 14.1 (2020), pp. 140–147.
DOI: https : / /doi . org / 10 . 1049/ iet - gtd . 2019. 1121. eprint: https :
/ / ietresearch . onlinelibrary . wiley . com / doi / pdf / 10 . 1049 / iet -
gtd.2019.1121. URL: https://ietresearch.onlinelibrary.wiley.com/
doi/abs/10.1049/iet-gtd.2019.1121.

https://api.semanticscholar.org/CorpusID:54614105
https://api.semanticscholar.org/CorpusID:54614105
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
https://eprint.iacr.org/2019/578
https://eprint.iacr.org/2019/578
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.13154/tches.v2019.i2.132-161
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://doi.org/https://doi.org/10.1049/iet-gtd.2019.1121
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-gtd.2019.1121
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-gtd.2019.1121
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-gtd.2019.1121
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-gtd.2019.1121
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-gtd.2019.1121


6

126 BIBLIOGRAPHY

[92] S. A. Bigdeli and M. Zwicker. “Image Restoration using Autoencoding Priors”. In:
Proceedings of the 13th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications (VISIGRAPP 2018) - Volume
5: VISAPP, Funchal, Madeira, Portugal, January 27-29, 2018. Ed. by F. H. Imai, A.
Trémeau, and J. Braz. SciTePress, 2018, pp. 33–44. DOI: 10.5220/0006532100330044.
URL: https://doi.org/10.5220/0006532100330044.

[93] VLSI Research Group – COMELEC Department of the Telecom ParisTech. DPA
Contest v2. URL: http://www.dpacontest.org/v2/index.php (visited on
09/23/2019).

[94] NewAE Technology Inc. Chipwhisperer-Lite two part board. URL: http://store.
newae.com/chipwhisperer-lite-cw1173-two-part-version/ (visited on
01/31/2020).

[95] Riscure. The CHES 2018 Challenge. URL: https://chesctf.riscure.com/
2018/news (visited on 02/15/2020).

[96] Riscure. Pinata board. URL: https://www.riscure.com/product/pinata-
training-target/ (visited on 01/31/2020).

[97] H. Aly and M. ElGayyar. “Attacking AES Using Bernstein’s Attack on Modern Pro-
cessors”. In: Progress in Cryptology - AFRICACRYPT 2013, 6th International Con-
ference on Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings. Ed. by
A. M. Youssef, A. Nitaj, and A. E. Hassanien. Vol. 7918. Lecture Notes in Computer
Science. Springer, 2013, pp. 127–139. DOI: 10.1007/978-3-642-38553-7\_7.
URL: https://doi.org/10.1007/978-3-642-38553-7%5C_7.

[98] J. Dhem and J. Quisquater. “Recent Results on Modular Multiplications for Smart
Cards”. In: Smart Card Research and Applications, This International Conference,
CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-16, 1998, Proceedings. Ed.
by J. Quisquater and B. Schneier. Vol. 1820. Lecture Notes in Computer Science.
Springer, 1998, pp. 336–352. DOI: 10.1007/10721064\_31. URL: https://doi.
org/10.1007/10721064%5C_31.

[99] W. Schindler. “A Timing Attack against RSA with the Chinese Remainder The-
orem”. In: Cryptographic Hardware and Embedded Systems - CHES 2000, Second
International Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings. Ed.
by Ç. K. Koç and C. Paar. Vol. 1965. Lecture Notes in Computer Science. Springer,
2000, pp. 109–124. DOI: 10.1007/3-540-44499-8\_8. URL: https://doi.
org/10.1007/3-540-44499-8%5C_8.

[100] D. Brumley and D. Boneh. “Remote Timing Attacks Are Practical”. In: Proceed-
ings of the 12th USENIX Security Symposium, Washington, D.C., USA, August 4-8,
2003. USENIX Association, 2003. URL: https://www.usenix.org/conference/
12th-usenix-security-symposium/remote-timing-attacks-are-practical.

[101] Y. Tomoeda, H. Miyake, A. Shimbo, and S. Kawamura. “An SPA-Based Exten-
sion of Schindler’s Timing Attack against RSA Using CRT”. In: IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 88-A.1 (2005), pp. 147–153. URL: http:
//search.ieice.org/bin/summary.php?id=e88-a%5C_1%5C_147%5C&
category=D%5C&year=2005%5C&lang=E%5C&abst=.

https://doi.org/10.5220/0006532100330044
https://doi.org/10.5220/0006532100330044
http://www.dpacontest.org/v2/index.php
http://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/
http://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/
https://chesctf.riscure.com/2018/news
https://chesctf.riscure.com/2018/news
https://www.riscure.com/product/pinata-training-target/
https://www.riscure.com/product/pinata-training-target/
https://doi.org/10.1007/978-3-642-38553-7\_7
https://doi.org/10.1007/978-3-642-38553-7%5C_7
https://doi.org/10.1007/10721064\_31
https://doi.org/10.1007/10721064%5C_31
https://doi.org/10.1007/10721064%5C_31
https://doi.org/10.1007/3-540-44499-8\_8
https://doi.org/10.1007/3-540-44499-8%5C_8
https://doi.org/10.1007/3-540-44499-8%5C_8
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
http://search.ieice.org/bin/summary.php?id=e88-a%5C_1%5C_147%5C&category=D%5C&year=2005%5C&lang=E%5C&abst=
http://search.ieice.org/bin/summary.php?id=e88-a%5C_1%5C_147%5C&category=D%5C&year=2005%5C&lang=E%5C&abst=
http://search.ieice.org/bin/summary.php?id=e88-a%5C_1%5C_147%5C&category=D%5C&year=2005%5C&lang=E%5C&abst=


BIBLIOGRAPHY

6

127

[102] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.
Prescher, M. Schwarz, and Y. Yarom. “Spectre Attacks: Exploiting Speculative Ex-
ecution”. In: meltdownattack.com (2018). URL: https://spectreattack.com/
spectre.pdf.

[103] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. “Meltdown: Reading Ker-
nel Memory from User Space”. In: 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by W. Enck and A. P.
Felt. USENIX Association, 2018, pp. 973–990. URL: https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp.

[104] A. Loiseau, M. Lecomte, and J. J. A. Fournier. “Template Attacks against ECC:
practical implementation against Curve25519”. In: 2020 IEEE International Sym-
posium on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA, USA,
December 7-11, 2020. IEEE, 2020, pp. 13–22. DOI: 10.1109/HOST45689.2020.
9300261. URL: https://doi.org/10.1109/HOST45689.2020.9300261.

[105] A. Vajda. “Multi-core and Many-core Processor Architectures”. In: Programming
Many-Core Chips. Boston, MA: Springer US, 2011, pp. 9–43. ISBN: 978-1-4419-
9739-5. DOI: 10.1007/978-1-4419-9739-5_2. URL: https://doi.org/10.
1007/978-1-4419-9739-5_2.

[106] O. Aciiçmez and Ç. K. Koç. “Trace-Driven Cache Attacks on AES”. In: IACR Cryp-
tol. ePrint Arch. (2006), p. 138. URL: http://eprint.iacr.org/2006/138.

[107] T. Peyrin. GIFT Block CIpher. https://github.com/giftcipher/gift. 2019.

[108] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K.
Gürkaynak, and L. Benini. “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices”. In: IEEE Trans. Very Large Scale Integr. Syst.
25.10 (2017), pp. 2700–2713. DOI: 10.1109/TVLSI.2017.2654506. URL: https:
//doi.org/10.1109/TVLSI.2017.2654506.

[109] C. V. Penumuchu. Simple Real-Time Operating System: A Kernel Inside View for a
Beginner. Trafford Publishing, 2007.

[110] Xilinx. kintex-7. Online. https:// www.xilinx.com/products/ silicon-
devices/fpga/kintex-7.html. 2020.

[111] J. Brouchier, T. Kean, C. Marsh, and D. Naccache. “Temperature Attacks”. In: IEEE
Secur. Priv. 7.2 (2009), pp. 79–82. DOI: 10.1109/MSP.2009.54. URL: https:
//doi.org/10.1109/MSP.2009.54.

[112] D. B. Bartolini, P. Miedl, and L. Thiele. “On the capacity of thermal covert chan-
nels in multicores”. In: Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys 2016, London, United Kingdom, April 18-21, 2016. Ed. by
C. Cadar, P. R. Pietzuch, K. Keeton, and R. Rodrigues. ACM, 2016, 24:1–24:16. DOI:
10.1145/2901318.2901322. URL: https://doi.org/10.1145/2901318.
2901322.

https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/HOST45689.2020.9300261
https://doi.org/10.1109/HOST45689.2020.9300261
https://doi.org/10.1109/HOST45689.2020.9300261
https://doi.org/10.1007/978-1-4419-9739-5_2
https://doi.org/10.1007/978-1-4419-9739-5_2
https://doi.org/10.1007/978-1-4419-9739-5_2
http://eprint.iacr.org/2006/138
https://github.com/giftcipher/gift
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-7.html
https://doi.org/10.1109/MSP.2009.54
https://doi.org/10.1109/MSP.2009.54
https://doi.org/10.1109/MSP.2009.54
https://doi.org/10.1145/2901318.2901322
https://doi.org/10.1145/2901318.2901322
https://doi.org/10.1145/2901318.2901322


6

128 BIBLIOGRAPHY

[113] M. Hutter and J. Schmidt. “The Temperature Side Channel and Heating Fault At-
tacks”. In: IACR Cryptol. ePrint Arch. (2014), p. 190. URL: http://eprint.iacr.
org/2014/190.

[114] M. Happe, A. Agne, and C. Plessl. “Measuring and Predicting Temperature Dis-
tributions on FPGAs at Run-Time”. In: 2011 International Conference on Recon-
figurable Computing and FPGAs, ReConFig 2011, Cancun, Mexico, November 30 -
December 2, 2011. Ed. by P. M. Athanas, J. Becker, and R. Cumplido. IEEE Com-
puter Society, 2011, pp. 55–60. DOI: 10.1109/ReConFig.2011.59. URL: https:
//doi.org/10.1109/ReConFig.2011.59.

[115] J. S. Lee, K. Skadron, and S. W. Chung. “Predictive Temperature-Aware DVFS”. In:
IEEE Trans. Computers 59.1 (2010), pp. 127–133. DOI: 10.1109/TC.2009.136.
URL: https://doi.org/10.1109/TC.2009.136.

[116] Digilent. PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA SoC. 2020. URL:
https://store.digilentinc.com/pynq-z1-python-productivity-for-
zynq-7000-arm-fpga-soc/ (visited on 11/13/2020).

[117] Xilinx. 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-to-
Digital Converter. 2018. URL: https://docs.xilinx.com/r/en-US/ug480_
7Series_XADC (visited on 11/13/2020).

[118] B. Gierlichs, K. Lemke-Rust, and C. Paar. “Templates vs. Stochastic Methods”. In:
Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International
Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings. Ed. by L. Goubin
and M. Matsui. Vol. 4249. Lecture Notes in Computer Science. Springer, 2006,
pp. 15–29. DOI: 10.1007/11894063\_2. URL: https://doi.org/10.1007/
11894063%5C_2.

[119] R. Kaiser and W. Knight. “Digital signal averaging”. In: Journal of Magnetic Reso-
nance (1969) 36.2 (1979), pp. 215–220. ISSN: 0022-2364. DOI: https://doi.org/
10.1016/0022-2364(79)90096-9. URL: https://www.sciencedirect.com/
science/article/pii/0022236479900969.

[120] C. C. Enz and G. C. Temes. “Circuit techniques for reducing the effects of op-amp
imperfections: autozeroing, correlated double sampling, and chopper stabiliza-
tion”. In: Proc. IEEE 84.11 (1996), pp. 1584–1614. DOI: 10.1109/5.542410. URL:
https://doi.org/10.1109/5.542410.

[121] pyca. cryptography package for python developer. 2020. URL: https://cryptography.
io/en/latest/hazmat/primitives/asymmetric/rsa/ (visited on 09/21/2020).

[122] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas. “Study of Deep Learning
Techniques for Side-Channel Analysis and Introduction to ASCAD Database”. In:
IACR Cryptol. ePrint Arch. (2018), p. 53. URL: http://eprint.iacr.org/2018/
053.

[123] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive com-
putation and machine learning. MIT Press, 2016. ISBN: 978-0-262-03561-3. URL:
http://www.deeplearningbook.org/.

http://eprint.iacr.org/2014/190
http://eprint.iacr.org/2014/190
https://doi.org/10.1109/ReConFig.2011.59
https://doi.org/10.1109/ReConFig.2011.59
https://doi.org/10.1109/ReConFig.2011.59
https://doi.org/10.1109/TC.2009.136
https://doi.org/10.1109/TC.2009.136
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://docs.xilinx.com/r/en-US/ug480_7Series_XADC
https://docs.xilinx.com/r/en-US/ug480_7Series_XADC
https://doi.org/10.1007/11894063\_2
https://doi.org/10.1007/11894063%5C_2
https://doi.org/10.1007/11894063%5C_2
https://doi.org/https://doi.org/10.1016/0022-2364(79)90096-9
https://doi.org/https://doi.org/10.1016/0022-2364(79)90096-9
https://www.sciencedirect.com/science/article/pii/0022236479900969
https://www.sciencedirect.com/science/article/pii/0022236479900969
https://doi.org/10.1109/5.542410
https://doi.org/10.1109/5.542410
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/
http://eprint.iacr.org/2018/053
http://eprint.iacr.org/2018/053
http://www.deeplearningbook.org/


BIBLIOGRAPHY

6

129

[124] A. F. Agarap. “Deep Learning using Rectified Linear Units (ReLU)”. In: CoRR abs/1803.08375
(2018). arXiv: 1803.08375. URL: http://arxiv.org/abs/1803.08375.

[125] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift”. In: Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015.
Ed. by F. R. Bach and D. M. Blei. Vol. 37. JMLR Workshop and Conference Proceed-
ings. JMLR.org, 2015, pp. 448–456. URL: http://proceedings.mlr.press/
v37/ioffe15.html.

[126] S. Liu and W. Deng. “Very deep convolutional neural network based image clas-
sification using small training sample size”. In: 3rd IAPR Asian Conference on
Pattern Recognition, ACPR 2015, Kuala Lumpur, Malaysia, November 3-6, 2015.
IEEE, 2015, pp. 730–734. DOI: 10 . 1109 / ACPR . 2015 . 7486599. URL: https :
//doi.org/10.1109/ACPR.2015.7486599.

[127] A. Camuto, M. Willetts, U. Simsekli, S. J. Roberts, and C. C. Holmes. “Explicit
Regularisation in Gaussian Noise Injections”. In: Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M. Balcan, and H. Lin. 2020. URL: https://proceedings.
neurips . cc / paper / 2020 / hash / c16a5320fa475530d9583c34fd356ef5 -
Abstract.html.

[128] A. Bauer, É. Jaulmes, E. Prouff, and J. Wild. “Horizontal and Vertical Side-Channel
Attacks against Secure RSA Implementations”. In: Topics in Cryptology - CT-RSA
2013 - The Cryptographers’ Track at the RSA Conference 2013, San Francisco,CA,
USA, February 25-March 1, 2013. Proceedings. Ed. by E. Dawson. Vol. 7779. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 1–17. DOI: 10.1007/978-
3-642-36095-4\_1. URL: https://doi.org/10.1007/978-3-642-36095-
4%5C_1.

[129] Z. Ding, W. Guo, L. Su, J. Wei, and H. Gu. “Further Research on N-1 Attack against
Exponentiation Algorithms”. In: Information Security and Privacy - 19th Australasian
Conference, ACISP 2014, Wollongong, NSW, Australia, July 7-9, 2014. Proceedings.
Ed. by W. Susilo and Y. Mu. Vol. 8544. Lecture Notes in Computer Science. Springer,
2014, pp. 162–175. DOI: 10.1007/978- 3- 319- 08344- 5\_11. URL: https:
//doi.org/10.1007/978-3-319-08344-5%5C_11.

[130] Zeroplus. Zeroplus - Logic Analyzer LAP-C 16032. 2021. URL: http://www.zeroplus.
com.tw/logic-analyzer%5C_en/products.php?pdn=1%5C&product%5C_
id=253.

[131] C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, and V. Verneuil. “Improved Collision-
Correlation Power Analysis on First Order Protected AES”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2011 - 13th International Workshop, Nara,
Japan, September 28 - October 1, 2011. Proceedings. Ed. by B. Preneel and T. Tak-
agi. Vol. 6917. Lecture Notes in Computer Science. Springer, 2011, pp. 49–62. DOI:
10.1007/978-3-642-23951-9\_4. URL: https://doi.org/10.1007/978-
3-642-23951-9%5C_4.

https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://proceedings.neurips.cc/paper/2020/hash/c16a5320fa475530d9583c34fd356ef5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c16a5320fa475530d9583c34fd356ef5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c16a5320fa475530d9583c34fd356ef5-Abstract.html
https://doi.org/10.1007/978-3-642-36095-4\_1
https://doi.org/10.1007/978-3-642-36095-4\_1
https://doi.org/10.1007/978-3-642-36095-4%5C_1
https://doi.org/10.1007/978-3-642-36095-4%5C_1
https://doi.org/10.1007/978-3-319-08344-5\_11
https://doi.org/10.1007/978-3-319-08344-5%5C_11
https://doi.org/10.1007/978-3-319-08344-5%5C_11
http://www.zeroplus.com.tw/logic-analyzer%5C_en/products.php?pdn=1%5C&product%5C_id=253
http://www.zeroplus.com.tw/logic-analyzer%5C_en/products.php?pdn=1%5C&product%5C_id=253
http://www.zeroplus.com.tw/logic-analyzer%5C_en/products.php?pdn=1%5C&product%5C_id=253
https://doi.org/10.1007/978-3-642-23951-9\_4
https://doi.org/10.1007/978-3-642-23951-9%5C_4
https://doi.org/10.1007/978-3-642-23951-9%5C_4


6

130 BIBLIOGRAPHY

[132] F. Standaert. “Introduction to Side-Channel Attacks”. In: Secure Integrated Cir-
cuits and Systems. Ed. by I. M. R. Verbauwhede. Integrated Circuits and Systems.
Springer, 2010, pp. 27–42. DOI: 10.1007/978-0-387-71829-3\_2. URL: https:
//doi.org/10.1007/978-0-387-71829-3%5C_2.

[133] N. technology inc. Measuring SNR of Target. URL: https://chipwhisperer.
readthedocs.io/en/latest/tutorials/pa_intro_3-openadc-cwlitearm.
html/ (visited on 05/13/2020).

[134] O. Aciiçmez, Ç. K. Koç, and J. Seifert. “On the Power of Simple Branch Prediction
Analysis”. In: IACR Cryptol. ePrint Arch. (2006), p. 351. URL: http://eprint.
iacr.org/2006/351.

[135] M. F. Witteman, J. G. J. van Woudenberg, and F. Menarini. “Defeating RSA Multiply-
Always and Message Blinding Countermeasures”. In: Topics in Cryptology - CT-
RSA 2011 - The Cryptographers’ Track at the RSA Conference 2011, San Francisco,
CA, USA, February 14-18, 2011. Proceedings. Ed. by A. Kiayias. Vol. 6558. Lecture
Notes in Computer Science. Springer, 2011, pp. 77–88. DOI: 10.1007/978-3-
642-19074-2\_6. URL: https://doi.org/10.1007/978-3-642-19074-
2%5C_6.

[136] S. Bhasin, J. Danger, S. Guilley, and Z. Najm. “NICV: Normalized Inter-Class Vari-
ance for Detection of Side-Channel Leakage”. In: IACR Cryptol. ePrint Arch. (2013),
p. 717. URL: http://eprint.iacr.org/2013/717.

[137] H. S. Kim and S. Hong. “New Type of Collision Attack on First-Order Masked
AESs”. In: ETRI Journal 38.2 (2016), pp. 387–396. DOI: https://doi.org/10.
4218/etrij.16.0114.0854. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.4218/etrij.16.0114.0854. URL: https://onlinelibrary.
wiley.com/doi/abs/10.4218/etrij.16.0114.0854.

[138] Y. Won, P. Hodgers, M. O’Neill, and D. Han. “On the Security of Balanced Encod-
ing Countermeasures”. In: Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015.
Revised Selected Papers. Ed. by N. Homma and M. Medwed. Vol. 9514. Lecture
Notes in Computer Science. Springer, 2015, pp. 242–256. DOI: 10.1007/978-3-
319-31271-2\_15. URL: https://doi.org/10.1007/978-3-319-31271-
2%5C_15.

[139] S. P. Karthikeyan and H. El-Razouk. “Horizontal Correlation Analysis of Elliptic
Curve Diffie Hellman”. In: 3rd International Conference on Information and Com-
puter Technologies, ICICT 2020, San Jose, CA, USA, March 9-12, 2020. IEEE, 2020,
pp. 511–519. DOI: 10.1109/ICICT50521.2020.00087. URL: https://doi.
org/10.1109/ICICT50521.2020.00087.

[140] M. Lu, A. Fan, J. Xu, and W. Shan. “A Compact, Lightweight and Low-Cost 8-Bit
Datapath AES Circuit for IoT Applications in 28nm CMOS”. In: 17th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And Commu-
nications / 12th IEEE International Conference On Big Data Science And Engineer-
ing, TrustCom/BigDataSE 2018, New York, NY, USA, August 1-3, 2018. IEEE, 2018,

https://doi.org/10.1007/978-0-387-71829-3\_2
https://doi.org/10.1007/978-0-387-71829-3%5C_2
https://doi.org/10.1007/978-0-387-71829-3%5C_2
https://chipwhisperer.readthedocs.io/en/latest/tutorials/pa_intro_3-openadc-cwlitearm.html/
https://chipwhisperer.readthedocs.io/en/latest/tutorials/pa_intro_3-openadc-cwlitearm.html/
https://chipwhisperer.readthedocs.io/en/latest/tutorials/pa_intro_3-openadc-cwlitearm.html/
http://eprint.iacr.org/2006/351
http://eprint.iacr.org/2006/351
https://doi.org/10.1007/978-3-642-19074-2\_6
https://doi.org/10.1007/978-3-642-19074-2\_6
https://doi.org/10.1007/978-3-642-19074-2%5C_6
https://doi.org/10.1007/978-3-642-19074-2%5C_6
http://eprint.iacr.org/2013/717
https://doi.org/https://doi.org/10.4218/etrij.16.0114.0854
https://doi.org/https://doi.org/10.4218/etrij.16.0114.0854
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.16.0114.0854
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.16.0114.0854
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.16.0114.0854
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.16.0114.0854
https://doi.org/10.1007/978-3-319-31271-2\_15
https://doi.org/10.1007/978-3-319-31271-2\_15
https://doi.org/10.1007/978-3-319-31271-2%5C_15
https://doi.org/10.1007/978-3-319-31271-2%5C_15
https://doi.org/10.1109/ICICT50521.2020.00087
https://doi.org/10.1109/ICICT50521.2020.00087
https://doi.org/10.1109/ICICT50521.2020.00087


BIBLIOGRAPHY

6

131

pp. 1464–1469. DOI: 10.1109/TrustCom/BigDataSE.2018.00204. URL: https:
//doi.org/10.1109/TrustCom/BigDataSE.2018.00204.

[141] S. N. Dhanuskodi, S. Allen, and D. E. Holcomb. “Efficient Register Renaming Ar-
chitectures for 8-bit AES Datapath at 0.55 pJ/bit in 16-nm FinFET”. In: IEEE Trans.
Very Large Scale Integr. Syst. 28.8 (2020), pp. 1807–1820. DOI: 10.1109/TVLSI.
2020.2999593. URL: https://doi.org/10.1109/TVLSI.2020.2999593.

[142] M. S. Wamser and G. Sigl. “Pushing the limits further: Sub-atomic AES”. In: 2017
IFIP/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2017,
Abu Dhabi, United Arab Emirates, October 23-25, 2017. IEEE, 2017, pp. 1–6. DOI:
10.1109/VLSI-SoC.2017.8203470. URL: https://doi.org/10.1109/VLSI-
SoC.2017.8203470.

[143] S. Banik, A. Bogdanov, and F. Regazzoni. “Atomic-AES: A Compact Implemen-
tation of the AES Encryption/Decryption Core”. In: Progress in Cryptology - IN-
DOCRYPT 2016 - 17th International Conference on Cryptology in India, Kolkata,
India, December 11-14, 2016, Proceedings. Ed. by O. Dunkelman and S. K. Sanad-
hya. Vol. 10095. Lecture Notes in Computer Science. 2016, pp. 173–190. DOI: 10.
1007/978-3-319-49890-4\_10. URL: https://doi.org/10.1007/978-3-
319-49890-4%5C_10.

[144] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. “Pushing the Limits: A
Very Compact and a Threshold Implementation of AES”. In: Advances in Cryp-
tology - EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings. Ed. by K. G. Paterson. Vol. 6632. Lecture Notes in Computer Science.
Springer, 2011, pp. 69–88. DOI: 10.1007/978-3-642-20465-4\_6. URL: https:
//doi.org/10.1007/978-3-642-20465-4%5C_6.

[145] S. Mathew, S. Satpathy, V. B. Suresh, M. A. Anders, H. Kaul, A. Agarwal, S. Hsu,
G. K. Chen, and R. Krishnamurthy. “340 mV-1.1 V, 289 Gbps/W, 2090-Gate NanoAES
Hardware Accelerator With Area-Optimized Encrypt/Decrypt GF(2 4 ) 2 Poly-
nomials in 22 nm Tri-Gate CMOS”. In: IEEE J. Solid State Circuits 50.4 (2015),
pp. 1048–1058. DOI: 10.1109/JSSC.2014.2384039. URL: https://doi.org/
10.1109/JSSC.2014.2384039.

[146] J. Yu and M. Aagaard. “Benchmarking and Optimizing AES for Lightweight Cryp-
tography on ASICs,” in: Proceedings of the Lightweight Cryptography Workshop,
Gaithersburg, MD, USA. 4–6 November, 2019.

[147] M.-H. Dao, V.-P. Hoang, V.-L. Dao, and X.-T. Tran. “An Energy Efficient AES En-
cryption Core for Hardware Security Implementation in IoT Systems”. In: 2018
International Conference on ATC. 2018, pp. 301–304. DOI: 10.1109/ATC.2018.
8587500.

[148] C. Davis and E. John. “Shared Round Core Architecture: A Novel AES Implemen-
tation for Implantable Cardiac Devices”. In: 65th IEEE International Midwest Sym-
posium on Circuits and Systems, MWSCAS 2022, Fukuoka, Japan, August 7-10,
2022. IEEE, 2022, pp. 1–4. DOI: 10.1109/MWSCAS54063.2022.9859276. URL:
https://doi.org/10.1109/MWSCAS54063.2022.9859276.

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204
https://doi.org/10.1109/TVLSI.2020.2999593
https://doi.org/10.1109/TVLSI.2020.2999593
https://doi.org/10.1109/TVLSI.2020.2999593
https://doi.org/10.1109/VLSI-SoC.2017.8203470
https://doi.org/10.1109/VLSI-SoC.2017.8203470
https://doi.org/10.1109/VLSI-SoC.2017.8203470
https://doi.org/10.1007/978-3-319-49890-4\_10
https://doi.org/10.1007/978-3-319-49890-4\_10
https://doi.org/10.1007/978-3-319-49890-4%5C_10
https://doi.org/10.1007/978-3-319-49890-4%5C_10
https://doi.org/10.1007/978-3-642-20465-4\_6
https://doi.org/10.1007/978-3-642-20465-4%5C_6
https://doi.org/10.1007/978-3-642-20465-4%5C_6
https://doi.org/10.1109/JSSC.2014.2384039
https://doi.org/10.1109/JSSC.2014.2384039
https://doi.org/10.1109/JSSC.2014.2384039
https://doi.org/10.1109/ATC.2018.8587500
https://doi.org/10.1109/ATC.2018.8587500
https://doi.org/10.1109/MWSCAS54063.2022.9859276
https://doi.org/10.1109/MWSCAS54063.2022.9859276


6

132 BIBLIOGRAPHY

[149] A. Satoh, S. Morioka, K. Takano, and S. Munetoh. “A Compact Rijndael Hardware
Architecture with S-Box Optimization”. In: Advances in Cryptology - ASIACRYPT
2001, 7th International Conference on the Theory and Application of Cryptology
and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceed-
ings. Ed. by C. Boyd. Vol. 2248. Lecture Notes in Computer Science. Springer,
2001, pp. 239–254. DOI: 10.1007/3-540-45682-1\_15. URL: https://doi.
org/10.1007/3-540-45682-1%5C_15.

[150] N. Ahmad and S. M. R. Hasan. “Low-power compact composite field AES S-Box/Inv
S-Box design in 65 nm CMOS using Novel XOR Gate”. In: Integr. 46.4 (2013), pp. 333–
344. DOI: 10.1016/j.vlsi.2012.06.002. URL: https://doi.org/10.1016/
j.vlsi.2012.06.002.

[151] Y. Teng, W. Chin, D. Chang, P. Chen, and P. Chen. “VLSI Architecture of S-Box
With High Area Efficiency Based on Composite Field Arithmetic”. In: IEEE Access
10 (2022), pp. 2721–2728. DOI: 10.1109/ACCESS.2021.3139040. URL: https:
//doi.org/10.1109/ACCESS.2021.3139040.

[152] N. Ahmad. “NEW ARCHITECTURE OF LOW AREA AES S-BOX/ INV S-BOX USING
VLSI IMPLEMENTATION”. In: Jurnal Teknologi 78.5-9 (May 2016).

[153] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. “A comparative study of LPWAN tech-
nologies for large-scale IoT deployment”. In: ICT Express 5.1 (2019), pp. 1–7. DOI:
10.1016/j.icte.2017.12.005. URL: https://doi.org/10.1016/j.icte.
2017.12.005.

[154] D. Thavamani. “MQTT Messages-An Overview”. In: International Journal of Math-
ematics and Computer Research 09 (Apr. 2021). DOI: 10.47191/ijmcr/v9i4.07.

[155] M. T. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. M. Tehranipoor. “RTL-PSC:
Automated Power Side-Channel Leakage Assessment at Register-Transfer Level”.
In: 37th IEEE VLSI Test Symposium, VTS 2019, Monterey, CA, USA, April 23-25,
2019. IEEE, 2019, pp. 1–6. DOI: 10 . 1109 / VTS . 2019 . 8758600. URL: https :
//doi.org/10.1109/VTS.2019.8758600.

[156] R. Sadhukhan, P. Mathew, D. B. Roy, and D. Mukhopadhyay. “Count Your Toggles:
a New Leakage Model for Pre-Silicon Power Analysis of Crypto Designs”. In: J.
Electron. Test. 35.5 (2019), pp. 605–619. DOI: 10.1007/s10836-019-05826-8.
URL: https://doi.org/10.1007/s10836-019-05826-8.

[157] A. Nahiyan, J. Park, M. T. He, Y. Iskander, F. Farahmandi, D. Forte, and M. M.
Tehranipoor. “SCRIPT: A CAD Framework for Power Side-channel Vulnerability
Assessment Using Information Flow Tracking and Pattern Generation”. In: ACM
Trans. Design Autom. Electr. Syst. 25.3 (2020), 26:1–26:27. DOI: 10.1145/3383445.
URL: https://doi.org/10.1145/3383445.

[158] RAMBUS. DPA Resistant Core - Rambus. URL: https : / / www . rambus . com /
security/dpa-countermeasures/dpa-resistant-core/.

[159] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. “Generative Adversarial Networks”. In: CoRR abs/1406.2661
(2014). arXiv: 1406.2661. URL: http://arxiv.org/abs/1406.2661.

https://doi.org/10.1007/3-540-45682-1\_15
https://doi.org/10.1007/3-540-45682-1%5C_15
https://doi.org/10.1007/3-540-45682-1%5C_15
https://doi.org/10.1016/j.vlsi.2012.06.002
https://doi.org/10.1016/j.vlsi.2012.06.002
https://doi.org/10.1016/j.vlsi.2012.06.002
https://doi.org/10.1109/ACCESS.2021.3139040
https://doi.org/10.1109/ACCESS.2021.3139040
https://doi.org/10.1109/ACCESS.2021.3139040
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.47191/ijmcr/v9i4.07
https://doi.org/10.1109/VTS.2019.8758600
https://doi.org/10.1109/VTS.2019.8758600
https://doi.org/10.1109/VTS.2019.8758600
https://doi.org/10.1007/s10836-019-05826-8
https://doi.org/10.1007/s10836-019-05826-8
https://doi.org/10.1145/3383445
https://doi.org/10.1145/3383445
https://www.rambus.com/security/dpa-countermeasures/dpa-resistant-core/
https://www.rambus.com/security/dpa-countermeasures/dpa-resistant-core/
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661


BIBLIOGRAPHY

6

133

[160] M. Mirza and S. Osindero. “Conditional Generative Adversarial Nets”. In: CoRR
abs/1411.1784 (2014). arXiv: 1411.1784. URL: http://arxiv.org/abs/1411.
1784.

[161] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. “Least Squares Gen-
erative Adversarial Networks”. In: IEEE International Conference on Computer Vi-
sion, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017,
pp. 2813–2821. DOI: 10.1109/ICCV.2017.304. URL: https://doi.org/10.
1109/ICCV.2017.304.

[162] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. “Improved
Training of Wasserstein GANs”. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Ed. by I. Guyon, U. von Luxburg, S.
Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett. 2017,
pp. 5767–5777. URL: https://proceedings.neurips.cc/paper/2017/hash/
892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html.

[163] G. Basso. A Hitchhikers guide to Wasserstein distances. June 2015. URL: https:
//bit.ly/3lFixDe.

[164] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN”. In: CoRR abs/1701.07875
(2017). arXiv: 1701.07875. URL: http://arxiv.org/abs/1701.07875.

[165] A. Brock, J. Donahue, and K. Simonyan. “Large Scale GAN Training for High Fi-
delity Natural Image Synthesis”. In: 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL: https://openreview.net/forum?id=B1xsqj09Fm.

[166] J. H. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts.
“GANSynth: Adversarial Neural Audio Synthesis”. In: 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL: https : / / openreview . net / forum ? id =
H1xQVn09FX.

[167] “HRVGAN: High Resolution Video Generation using Spatio-Temporal GAN”. In:
CoRR abs/2008.09646 (2020). Withdrawn. arXiv: 2008.09646. URL: https://
arxiv.org/abs/2008.09646.

[168] K. Antczak. “A Generative Adversarial Approach To ECG Synthesis And Denois-
ing”. In: CoRR abs/2009.02700 (2020). arXiv: 2009.02700. URL: https://arxiv.
org/abs/2009.02700.

[169] R. Prenger, R. Valle, and B. Catanzaro. “Waveglow: A Flow-based Generative Net-
work for Speech Synthesis”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2019, Brighton, United Kingdom, May 12-17, 2019.
IEEE, 2019, pp. 3617–3621. DOI: 10.1109/ICASSP.2019.8683143. URL: https:
//doi.org/10.1109/ICASSP.2019.8683143.

https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/ICCV.2017.304
https://doi.org/10.1109/ICCV.2017.304
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html
https://bit.ly/3lFixDe
https://bit.ly/3lFixDe
https://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=H1xQVn09FX
https://openreview.net/forum?id=H1xQVn09FX
https://arxiv.org/abs/2008.09646
https://arxiv.org/abs/2008.09646
https://arxiv.org/abs/2008.09646
https://arxiv.org/abs/2009.02700
https://arxiv.org/abs/2009.02700
https://arxiv.org/abs/2009.02700
https://doi.org/10.1109/ICASSP.2019.8683143
https://doi.org/10.1109/ICASSP.2019.8683143
https://doi.org/10.1109/ICASSP.2019.8683143


6

134 BIBLIOGRAPHY

[170] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. “WaveNet: A Generative Model
for Raw Audio”. In: The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA,
13-15 September 2016. ISCA, 2016, p. 125. URL: http://www.isca- speech.
org/archive/SSW%5C_2016/abstracts/ssw9%5C_DS-4%5C_van%5C_den%
5C_Oord.html.

[171] A. Odena. “Open Questions about Generative Adversarial Networks”. In: Distill
(2019). https://distill.pub/2019/gan-open-problems. DOI: 10.23915/distill.
00018.

[172] P. Wang, P. Chen, Z. Luo, G. Dong, M. Zheng, N. Yu, and H. Hu. “Enhancing the
Performance of Practical Profiling Side-Channel Attacks Using Conditional Gen-
erative Adversarial Networks”. In: CoRR abs/2007.05285 (2020). arXiv: 2007.05285.
URL: https://arxiv.org/abs/2007.05285.

[173] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo, A. de Brébis-
son, Y. Bengio, and A. C. Courville. “MelGAN: Generative Adversarial Networks
for Conditional Waveform Synthesis”. In: Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett.
2019, pp. 14881–14892. URL: https://proceedings.neurips.cc/paper/
2019/hash/6804c9bca0a615bdb9374d00a9fcba59-Abstract.html.

[174] M. Mathieu, C. Couprie, and Y. LeCun. “Deep multi-scale video prediction be-
yond mean square error”. In: 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings. Ed. by Y. Bengio and Y. LeCun. 2016. URL: http://arxiv.org/abs/
1511.05440.

[175] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. “Image-to-Image Translation with Condi-
tional Adversarial Networks”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Com-
puter Society, 2017, pp. 5967–5976. DOI: 10.1109/CVPR.2017.632. URL: https:
//doi.org/10.1109/CVPR.2017.632.

[176] Y. Wang et al. “Transferring GANs: generating images from limited data”. In: CoRR
abs/1805.01677 (2018). arXiv: 1805.01677. URL: http://arxiv.org/abs/
1805.01677.

[177] Siemens. Questa Advanced Simulato. URL: https://eda.sw.siemens.com/en-
US/ic/questa/simulation/advanced-simulator/ (visited on 05/08/2021).

[178] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch:
An Imperative Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. Ed. by H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,

http://www.isca-speech.org/archive/SSW%5C_2016/abstracts/ssw9%5C_DS-4%5C_van%5C_den%5C_Oord.html
http://www.isca-speech.org/archive/SSW%5C_2016/abstracts/ssw9%5C_DS-4%5C_van%5C_den%5C_Oord.html
http://www.isca-speech.org/archive/SSW%5C_2016/abstracts/ssw9%5C_DS-4%5C_van%5C_den%5C_Oord.html
https://doi.org/10.23915/distill.00018
https://doi.org/10.23915/distill.00018
https://arxiv.org/abs/2007.05285
https://arxiv.org/abs/2007.05285
https://proceedings.neurips.cc/paper/2019/hash/6804c9bca0a615bdb9374d00a9fcba59-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6804c9bca0a615bdb9374d00a9fcba59-Abstract.html
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.05440
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR.2017.632
https://arxiv.org/abs/1805.01677
http://arxiv.org/abs/1805.01677
http://arxiv.org/abs/1805.01677
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/


BIBLIOGRAPHY

6

135

E. B. Fox, and R. Garnett. 2019, pp. 8024–8035. URL: https://proceedings.
neurips . cc / paper / 2019 / hash / bdbca288fee7f92f2bfa9f7012727740 -
Abstract.html.

[179] M. Müller. Information retrieval for music and motion. Springer, 2007. DOI: 10.
1007/978-3-540-74048-3. URL: https://doi.org/10.1007/978-3-540-
74048-3.

[180] K. D. Rao and M. Swamy. “Spectral Analysis of Signals”. In: Digital Signal Pro-
cessing: Theory and Practice. Singapore: Springer Singapore, 2018, pp. 721–751.
ISBN: 978-981-10-8081-4. DOI: 10.1007/978-981-10-8081-4_12. URL: https:
//doi.org/10.1007/978-981-10-8081-4_12.

[181] A. Radford, L. Metz, and S. Chintala. “Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks”. In: 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2016. URL:
http://arxiv.org/abs/1511.06434.

[182] R. Tubbing. “An Analysis of Deep Learning Based Profiled Side-channel Attacks”.
MA thesis. the Netherlands: Delft University of Technology, 2019.

[183] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. “Are GANs Cre-
ated Equal? A Large-Scale Study”. In: Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. 2018, pp. 698–
707. URL: https://proceedings.neurips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-
Abstract.html.

[184] S. Salvador and P. Chan. “Toward accurate dynamic time warping in linear time
and space”. In: Intell. Data Anal. 11.5 (2007), pp. 561–580. URL: http://content.
iospress.com/articles/intelligent-data-analysis/ida00303.

[185] A. V. Lakshmy, C. Rebeiro, and S. Bhunia. “FORTIFY: Analytical Pre-Silicon Side-
Channel Characterization of Digital Designs”. In: 27th Asia and South Pacific De-
sign Automation Conference, ASP-DAC 2022, Taipei, Taiwan, January 17-20, 2022.
IEEE, 2022, pp. 660–665. DOI: 10.1109/ASP-DAC52403.2022.9712551. URL:
https://doi.org/10.1109/ASP-DAC52403.2022.9712551.

[186] P. SLPSK, P. K. Vairam, C. Rebeiro, and V. Kamakoti. “Karna: A Gate-Sizing based
Security Aware EDA Flow for Improved Power Side-Channel Attack Protection”.
In: Proceedings of the International Conference on Computer-Aided Design, IC-
CAD 2019, Westminster, CO, USA, November 4-7, 2019. Ed. by D. Z. Pan. ACM,
2019, pp. 1–8. DOI: 10.1109/ICCAD45719.2019.8942173. URL: https://doi.
org/10.1109/ICCAD45719.2019.8942173.

[187] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont. “SoK: Design Tools for Side-
Channel-Aware Implementations”. In: ASIA CCS ’22. 2022. DOI: 10.1145/3488932.
3517415. URL: https://doi.org/10.1145/3488932.3517415.

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1007/978-981-10-8081-4_12
https://doi.org/10.1007/978-981-10-8081-4_12
https://doi.org/10.1007/978-981-10-8081-4_12
http://arxiv.org/abs/1511.06434
https://proceedings.neurips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e46de7e1bcaaced9a54f1e9d0d2f800d-Abstract.html
http://content.iospress.com/articles/intelligent-data-analysis/ida00303
http://content.iospress.com/articles/intelligent-data-analysis/ida00303
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ASP-DAC52403.2022.9712551
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://doi.org/10.1109/ICCAD45719.2019.8942173
https://doi.org/10.1145/3488932.3517415
https://doi.org/10.1145/3488932.3517415
https://doi.org/10.1145/3488932.3517415


136 BIBLIOGRAPHY

[188] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang. “PRIMAL: Power
Inference using Machine Learning”. In: Proceedings of the 56th Annual Design
Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019.
ACM, 2019, p. 39. DOI: 10.1145/3316781.3317884. URL: https://doi.org/
10.1145/3316781.3317884.

[189] V. S. Bokharaie and A. Jahanian. “Power side-channel leakage assessment and
locating the exact sources of leakage at the early stages of ASIC design process”.
In: (2022). DOI: 10.1007/s11227-021-03927-w. URL: https://doi.org/10.
1007/s11227-021-03927-w.

[190] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive Growing of GANs for
Improved Quality, Stability, and Variation”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018. URL: https://openreview.
net/forum?id=Hk99zCeAb.

[191] A. Harell, R. Jones, S. Makonin, and I. V. Bajic. “PowerGAN: Synthesizing Appli-
ance Power Signatures Using Generative Adversarial Networks”. In: CoRR abs/2007.13645
(2020). arXiv: 2007.13645. URL: https://arxiv.org/abs/2007.13645.

https://doi.org/10.1145/3316781.3317884
https://doi.org/10.1145/3316781.3317884
https://doi.org/10.1145/3316781.3317884
https://doi.org/10.1007/s11227-021-03927-w
https://doi.org/10.1007/s11227-021-03927-w
https://doi.org/10.1007/s11227-021-03927-w
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://arxiv.org/abs/2007.13645
https://arxiv.org/abs/2007.13645


CURRICULUM VITÆ

Abdullah Alawi M. ALJUFFRI

03-08-1985 Born in Jeddah, Saudi Arabia.

EDUCATION

2018-2024 PhD. degree in Computer Engineering
Delft University of Technology

Thesis: Securing Power Side Channels by Design
Promotors: Prof. dr. ir. Said Hamdioui, Dr. ir. Mottaqiallah Taouil

2015-2018 M.Sc. degree in Computer Engineering
Delft University of Technology

Thesis: Exploring Deep Learning For Side Channels Analysis
Supervisors: Prof. Said Hamdioui

2004-2010 B.Sc. degree in Computer Engineering
King Abdulaziz University

137





LIST OF PUBLICATIONS

12. A. Aljuffri, R. Huang, L. Muntenaar, G. Gaydadjiev, S. Hamdioui, K. Ma and M. Taouil: Secu-
rity Evaluation of an Efficient Lightweight AES Accelerator. submitted to Cryptogr. (2024)

11. A. Aljuffri, R. Huang, S. Hamdioui, K. Ma and M. Taouil, "Securing an Efficient Lightweight
AES Accelerator," 2023 IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Exter, UK, 2023, pp. xxx, doi: xxxx

10. A. Aljuffri, M. Saxena, C. R. W. Reinbrecht, S. Hamdioui and M. Taouil," A Pre-Silicon Power
Leakage Assessment Based on Generative Adversarial Networks," 2023 26th Euromicro Con-
ference on Digital System Design (DSD), Durres, Albainia, 2023, pp. xxx-xxx, doi: xxxxxx

9. A. Aljuffri, C. Reinbrecht, S. Hamdioui, M. Taouil and J. Sepúlveda, "Balanced Dual-Mask
Protection Scheme for GIFT Cipher Against Power Attacks," 2022 IEEE 40th VLSI Test Sym-
posium (VTS), San Diego, CA, USA, 2022, pp. 1-6, doi: 10.1109/VTS52500.2021.9794230.

8. A. Aljuffri, M. Zwalua, C. R. W. Reinbrecht, S. Hamdioui and M. Taouil, "Applying Thermal
Side-Channel Attacks on Asymmetric Cryptography," in IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 11,
pp. 1930-1942, Nov. 2021, doi: 10.1109/TVLSI.2021.3111407.

7. M. Taouil, A. Aljuffri and S. Hamdioui, "Power Side Channel Attacks: Where Are We Stand-
ing?," 2021 16th International Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS), Montpellier, France, 2021,
pp. 1-6, doi: 10.1109/DTIS53253.2021.9505075.

6. L. C. Garaffa, A. Aljuffri, C. Reinbrecht, S. Hamdioui, M. Taouil and J. Sepulveda, "Reveal-
ing the Secrets of Spiking Neural Networks: The Case of Izhikevich Neuron," 2021 24th Eu-
romicro Conference on Digital System Design (DSD), Palermo, Italy, 2021, pp. 514-518, doi:
10.1109/DSD53832.2021.00083.

5. A. Aljuffri, C. Reinbrecht, S. Hamdioui and M. Taouil, "Multi-Bit Blinding: A Countermea-
sure for RSA Against Side Channel Attacks," 2021 IEEE 39th VLSI Test Symposium (VTS),
San Diego, CA, USA, 2021, pp. 1-6, doi: 10.1109/VTS50974.2021.9441035.

4. A. Aljuffri, C. Reinbrecht, S. Hamdioui and M. Taouil, "Impact of Data Pre-Processing Tech-
niques on Deep Learning Based Power Attacks," 2021 16th International Conference on De-
sign & Technology of Integrated Systems in Nanoscale Era (DTIS), Montpellier, France, 2021,
pp. 1-6, doi: 10.1109/DTIS53253.2021.9505051.

3. C. Reinbrecht, A. Aljuffri, S. Hamdioui, M. Taouil and J. Sepúlveda, "GRINCH: A Cache At-
tack against GIFT Lightweight Cipher," 2021 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), Grenoble, France, 2021,
pp. 549-554, doi: 10.23919/DATE51398.2021.9474201.

139



140 BIBLIOGRAPHY

2. C. Reinbrecht, A. Aljuffri, S. Hamdioui, M. Taouil, B. Forlin and J. Sepulveda, "Guard-NoC: A
Protection Against Side-Channel Attacks for MPSoCs," 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Limassol, Cyprus, 2020,
pp. 536-541, doi: 10.1109/ISVLSI49217.2020.000-1.

1. Aljuffri, A., Venkatachalam, P., Reinbrecht, C., Hamdioui, S., Taouil, M. (2020). S-NET: A
Confusion Based Countermeasure Against Power Attacks for SBOX. In: Orailoglu, A., Jung,
M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and
Simulation. SAMOS 2020. Lecture Notes in Computer Science, vol 12471. Springer, Cham.
https:doi.org/10.1007/978-3-030-60939-9_20


	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Motivation
	The Threat of Hardware Level Vulnerabilities
	Side Channels: The Underestimated Hardware Attacks

	Opportunities and Challenges
	Countermeasures
	Pre-silicon Leakage Assessment:
	Post-silicon Leakage Assessment

	Research Topics
	Side Channels Analysis
	Countermeasures
	Assessment Framework

	Thesis Contributions
	Thesis Organization

	Background
	Cryptographic Algorithms Overview
	Advanced Encryption Standard (AES)
	RSA an Asymmetric Algorithm
	GIFT a Lightweight Cryptography

	Side Channel Attacks
	Non-profiled attacks techniques
	Profiled Attacks

	Side Channel countermeasures
	Obfuscation
	Balancing

	Leakage Assessment Styles
	Evaluation Style
	Conformance Style
	Formal Style


	Side Channels Analysis
	Introduction
	Power based Attacks
	State of the Art
	Deep Learning Based Power Attacks
	Baseline CNN
	Traditional Pre-Processing Techniques
	Hybrid Neural Networks
	Experimental Setup
	Results of Traditional Pre-Processing Techniques
	Results of Hybrid Neural Networks Pre-Processing Techniques

	Time based Attacks
	State of the Art
	Cache Vlunerbility on GIFT Cipher
	Threat Model
	Methodology
	Challenges
	Experimental Setup
	Results
	Potential Countermeasures

	Thermal Based Attacks
	State of the art
	Challenges of Thermal SCA
	Threat Model
	Simple Thermal Attack (STA)
	Correlation Thermal Attack
	DL-based Thermal Attack
	Progressive Correlation Thermal Attack (PCTA)
	Measurement Setup and Performed Experiments
	Correlation Thermal Attack Results
	DL-based Thermal Attack Results
	Progressive Correlation Thermal Attack Results

	Discussion and Conclusion

	Countermeasures
	S-NET: A Countermeasure Based on Confusion
	Confusion: Invalidating the Leakage Model
	Motivation behind S-NET
	Design Methodology
	Experiment Setup
	Results Analysis

	Multi-Bit Blinding: An Asymmetric Countermeasure
	Motivation
	Multi-bit Blinding
	Variable Assignment Optimization
	Experiment Setup
	Security Analysis
	Performance Analysis

	Balanced Dual-Mask Countermeasure
	Motivation
	Design and Implementation
	Experiment Setup
	Security Analysis of Naive Implementation
	Security Analysis of Proposed Implementation
	Area overhead and Performance Analysis

	Lightweight AES and DOM Extension
	Motivation
	Design and Implementation of Proposed Lightweight AES
	Design and Implementation of Proposed Lightweight DOM
	Setup
	AES Performance Evaluation
	DOM Performance Evaluation


	Pre-Silicon Assessment Methods
	State of the Art
	GAN-based leakage assessment Approach
	Generative Adversarial Networks (GANs)
	Related Work
	Proposed Framework
	Experimental Results
	Comparison to State of the Art

	Conclusion

	Conclusion
	Summary
	Outlook

	Curriculum Vitæ
	List of Publications

