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Simplicial Trend Filtering
(Invited Paper)

Maosheng Yang and Elvin Isufi
Dept. of Intelligent Systems

Delft University of Technology

Abstract—Reconstructing simplicial signals, e.g., signals de-
fined on nodes, edges, triangles, etc., of a network, from (partial)
noisy observation is of interest in water/traffic flow estimation
or currency exchange markets. Typically, this concerns solving a
regularised problem w.r.t. the ℓ2 norm of the divergence or the
curl of the signal, i.e., the netflows at nodes and in triangles. Real-
world simplicial signals are intrinsically divergence- or curl-free,
which makes ℓ2 regularizers inapplicable. To overcome this, we
develop a simplicial trend filter (STF) by regularising the total
divergence and the curl via their ℓ1 norm. By tuning two scalars,
the STF can reduce independently the divergence and curl much
more than smooth filtering, leading to a better reconstructed
signal. The SFT is a convex problem and can be solved by
fast iterative algorithms. We apply the SFT to interpolation and
denoising tasks in forex and music/artist transition recordings
and show its superior performance to alternatives.

I. INTRODUCTION

Nonparametric signal reconstruction has a long-lasting his-
tory in discrete signal [1], image [2], and more recently in
graph signal processing (GSP) [3], [4]. This is typically an
ill-posed problem and requires regularizing it with a term that
induces particular biases into the solution. For instance, in
GSP we use the Tikhonov regularizer as a way to recover
smooth graph signals from noisy partial observations. The
latter penalizes large node signal variations in adjacent nodes
and can be represented via the ℓ2 norm of signal differences
in adjacent nodes. When the smoothness bias is invalid for the
data at hand, other regularizes are needed such as diffusion [5]
or bandlimitedness [6]. In other cases, the signals exhibit sharp
transitions only at a few nodes, which is the case of e.g., a
clustered opinion networks where nodes within a cluster share
similar opinions but can have arbitrarily different opinions in
different clusters [7]. In these cases, regularizers promoting
sparsity in signal differences are more appropriate. The latter
are known as graph trend filters and penalize the ℓ1 norm of
signal differences in adjacent nodes [8], [9].

The above regularizers work for signals defined on the nodes
of a graph. But in practice, we often have signals defined on
higher-order network structures such as edges, triangles, and so
on [10], [11]. This is of interest for modeling flow type data
e.g., flows in water, communication or traffic networks, ex-
change rates of foreign currency (forex), pairwise comparisons
in statistical ranking, and so on [12]. The topological structure
of these data can be represented through simplicial complexes

Emails: m.yang-2, e.isufi-1@tudelft.nl. This work is supported by the TU
Delft AI Labs Programme.

and algebraically via their the Hodge Laplacian matrices; a
direct extension of the graph Laplacian to the simplex [13].
Hodge Laplacians encode two types of simplicial adjacency:
lower adjacency e.g., two edges are adjacent if they have
a common node; and upper adjacency e.g., two edges are
adjacent if they belong to the same triangle. This algebraic
representation has given rise to a series of new techniques to
analyze and process simplicial signals, e.g., simplicial Fourier
transform [10], filtering [14]–[16] and neural networks [17].

Nonparametric simplicial signal reconstruction is the equiv-
alent problem discussed in GSP but now extended to the
simplex. The Tikhonov regularizer has been extended in [18]
for edge flow denoising and in [19] for interpolating missing
values. Both works penalize the fitting part with a term
based on the ℓ2 norm of signal smoothness. But since in
the simplex we have two types of adjacency, we penalize the
smoothness on both the lower-connectivity – the ℓ2 norm of
the divergence of the flow, i.e., the netflow at the nodes –
and the upper-connectivity – the ℓ2 norm of the curl, i.e., the
netflow circulating in triangles. The ℓ2 regularizers only reduce
the divergence or curl of the input but cannot preserve the
divergence- or curl-free nature of the real-world edge flows,
which is the case of arbitrage-free forex markets [12] where
we want the divergence or the curl of the edge flow to be zero.

Motivated by the above setting, in this paper we extend
the trend filtering concept to the simplex. The simplicial trend
filtering (STF) has the following properties.

• Sparse divergence/curl. The STF penalizes the recon-
struction problem with the ℓ1 norm of the divergence
and/or the curl when concerning edge flows. It naturally
extends to account for higher-order simplicial structures
(e.g., triangles and so on) but also multi-resolution infor-
mation (neighboring edges that are non adjacent).

• Controled sparsity. By tuning two regularization weights
we can independently control the sparsity w.r.t. the lower-
(e.g., divergence sparsity) or upper-connections (e.g., curl
sparsity). This is in contrast to the ℓ2 regularizers which
lead only to a global smooth behavior.

• Convex problem. The STF problem is a convex regu-
larized least-squares problem that can be solved with of-
the-shelf iterative methods such as ADMM [R11].

We corroborate the performance of SFT with real data from
currency exchange and music transition recording.
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(a) A simplicial complex.
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(b) A random edge flow.
Fig. 1. (a): an SC of order 2 containing seven nodes, ten edges and three
triangles (the shaded areas). The reference orientation of a node is trivial, that
of an edge is indicated by the arrow on the edge and that of a triangle by
the arc arrow. (b): A random edge flow, where a negative flow indicates that
the actual flow direction is opposite to the reference edge orientation and the
magnitude is denoted by the edge width.

II. BACKGROUD

Simplicial complexes. Given a finite set of vertices V , a k-
simplex Sk is a subset of V with cardinality k+1. For example,
nodes, edges and triangles are 0-, 1- and 2-simplices. A face
of Sk is a subset with cardinality k and thus a k-simplex
has k + 1 faces. A coface of Sk is a (k + 1)-simplex that
includes Sk. A simplicial complex (SC) XK of order K, is a
collection of k-simplices Sk, k = 0, . . . ,K, with an inclusion
property–for any Sk ∈ XK , then Sk−1 ∈ XK if Sk−1 ⊂
Sk. We denote the number of k-simplices in XK by Nk. For
computation, we fix an orientation for each simplex according
to the lexicographical ordering of its vertices, e.g., a triangle
{i, j, k} is oriented as [i, j, k] with i < j < k. See an SC
example in Fig. 1a.

For the simplex Sk
i , we define its lower (upper) neigh-

bourhood N k
i,ℓ (N k

i,u) as the set of k-simplices which share
a common face (coface) with it. Moreover, we have that
N k

i,ℓ = N k+
i,ℓ ∪N k−

i,ℓ with the positive (negative) neighborhood
N k+

i,ℓ (N k−
i,ℓ ) containing the simplices that have a same (an

opposite) orientation as Sk
i w.r.t. the common face; likewise,

N k
i,u = N k+

i,u ∪ N k−
i,u . For the ith edge [5, 6] in Fig. 1a, we

have that N 1+
i,ℓ = {[3, 6], [6, 7]}, N 1−

i,ℓ = {[4, 5], [6, 7]} and
N 1+

i,u = {[6, 7]}, N 1−
i,u = {[5, 7]}.

Hodge Laplacians. We can describe the relationships between
(k−1)-simplices and k-simplices by the kth incidence matrix
Bk ∈ RNk−1×Nk , which maps each k-simplex to its faces,
(k − 1)-simplices. By definition, we have that BkBk+1 = 0
[13]. Specifically, B1 is the node-edge incidence matrix, and
B2 is the edge-triangle incidence matrix.

We can also represent an SC X of order K via the Hodge
Laplacians Lk = B⊤

k Bk + Bk+1B
⊤
k+1, k = 1, . . . ,K − 1

with the graph Laplacian L0 = B1B
⊤
1 and LK = B⊤

KBK .
The lower Laplacian Lk,ℓ ≜ B⊤

k Bk and the upper Laplacian
Lk,u ≜ Bk+1B

⊤
k+1 encode the lower and upper adjacency

relationships between simplices through faces and cofaces,
respectively. In particular, L1,ℓ and L1,u encode the edge

adjacencies through their incident nodes and the common
triangles that they form, respectively. They have entries

[L1,ℓ]i,j =


2, for i = j,

1, for j ∈ N 1+
i,ℓ ,

−1, for j ∈ N 1−
i,ℓ ,

(1)

where the diagonal entry 2 of L1,ℓ indicates that each edge
has two incident nodes, and

[L1,u]i,j =


di,u, for i = j,

1, for j ∈ N 1+
i,u ,

−1, for j ∈ N 1−
i,u ,

(2)

where the upper degree di,u is the number of triangles that
edge i participates in.

Simplicial signals. By attributing value ski to the ith k-simplex
Sk
i , we define a k-simplicial signal sk = [sk1 , . . . , s

k
Nk

]⊤ ∈
RNk . If the signal value ski is positive, then the corresponding
signal is along the reference orientation; otherwise, opposite.
In this paper, we work with node signal v = [v1, . . . , vN0

]⊤ ∈
RN0 , edge flow by f = [f1, . . . , fN1 ]

⊤ ∈ RN1 , e.g., Fig.
1b, and triangle flow t = [t1, . . . , tN2 ]

⊤ ∈ RN2 . We could
apply incidence matrices on simplicial signals to achieve some
physical operations. Specifically, we discuss the following.

Divergence. By applying matrix B1 to an edge flow f , we
compute its netflow at node i as

[B1f ]i =
∑

j<i f[j,i] −
∑

i<k f[i,k], (3)

which is the inflow minus the outflow at node i. In Fig. 1b,
[B1f ]6 = f[5,6] + f[3,6] − f[6,7] = −0.38 + 0.72 + 0.86 = 1.2

Gradient. By applying B⊤
1 to a node signal v, we induce a

gradient flow fG = B⊤
1 v via a gradient operation [fG][i,j] =

vj − vi, which is a differentiation operation along the edge.
Curl. By applying B⊤

2 to an edge flow f , we compute its
netflow circulating in a triangle t = [i, j, k] as

[B⊤
2 f ]t = f[i,j] + f[j,k] − f[i,k], (4)

which is the curl operation. In Fig. 1b, [B⊤
2 f ][5,6,7] = f[5,6] +

f[6,7] − f[5,7] = −0.38 − 0.86 − 0.69 = −1.93. By applying
B2 to a triangle flow t, we induce a curl flow fC = B2t.

The Hodge Laplacian admits a Hodge decomposition, which
is, for k = 1, RN1 = im(B⊤

1 ) ⊕ im(B2) ⊕ ker(L1) [10],
[13]. That is, any edge flow can be decomposed into three
orthogonal components. The gradient space im(B⊤

1 ) consists
of all the flows induced by a node signal, which are curl-free,
while the curl space im(B2) comprises the flows induced from
a triangle flow, which are divergence-free. If an edge flow is
both divergence- and curl-free, it is a harmonic flow in the
harmonic space ker(L1).

In this paper, we study the reconstruction of a simplicial
signal from its noisy and partial observation, i.e., simplicial
signal denoising and interpolation. For the ease of exposition,
we focus primarily on the edge flow case. We consider the
settings where the underlying signal is approximately either
divergence-free or curl-free. Thus, we propose a regularized
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filtering that penalizes the ℓ1 norm of the divergence and the
curl. We show how this filter relates to the conventional and
graph trend filtering [8], [20], thus, we refer to it as a simplicial
trend filtering (STF).

III. SIMPLICIAL TREND FILTERING

Consider a noisy edge flow observation y = f∗ + n with
the additive noise n. The 0-order SFT seeks for the estimate
f̂ by solving

f̂ = argmin
f∈RN1

∥y − f∥22+α∥B1f∥1+β∥B⊤
2 f∥1, (5)

where parameters α ≥ 0 and β ≥ 0 control the trade-off
between the data fidelity and the ℓ1 norm of the divergence
and the curl. When α = 0 or β = 0, the SFT only accounts for
the regularization on the curl or the divergence, respectively.

In optimization theory, the ℓ1 norm is often regarded as a
closet relaxation of the ℓ0 norm which is the sparsity measure.
Thus, the regularizer ∥B1f∥1 seeks for a solution that has as
many as possible zero divergence at nodes so to promote its
sparsity; likewise for the regularizer ∥B⊤

2 f∥1 aims to obtain an
estimate that has as many as possible zero curls in trignales.
To solve the 0-STF, which is convex, we can use off-the-shelf
algorithms, e.g., ADMM or Newton method [20].

Moreover, the Hodge Laplacian acts as a shift operator for
simplicial signals, also used in Fourier analysis and as building
blocks for filtering [11], [14]–[16]. By applying L1,ℓ or L1,u

to a flow f , we obtain a shifted edge flow L1,ℓf or L1,uf ,
which accounts for the one-hop lower or upper neighbouring
information, as in (1) and (2); likewise for a general shifting
Lp
1,ℓf or Lq

1,uf , we account for p-hop lower neighbours and q-
hop upper neighbours [14], [15]. Thus, we consider a general
(p, q)-order SFT to account for the information from multi-hop
neighbours as

f̂ = argmin
f∈RN1

∥y − f∥22+α∥∆(p)
ℓ f∥1+β∥∆(q)

u f∥1, (6)

where the operators ∆
(p)
ℓ and ∆

(q)
u have the forms

∆
(p)
ℓ =

{
B⊤

1 ∆
(p−1)
ℓ = L

p+1
2

1,l , for odd p,

B1∆
(p−1)
ℓ = B1L

p
2

1,l, for even p,
(7)

with ∆
(0)
ℓ = B1 and

∆(q)
u =

{
B2∆

(q−1)
u = L

q+1
2

1,u , for odd q,

B⊤
2 ∆

(q−1)
u = B⊤

2 L
q
2
1,u, for even q,

(8)

with ∆
(0)
u = B⊤

2 . When p = 0 and q = 0, this gives the 0-STF
(5). When p = 1, we have the regularizer L1,ℓf which is a
one-step lower shifting. At an edge i, this can be detailed as

[L1,ℓf ]i = 2fi +
∑

j∈N 1+
i,ℓ

fj −
∑

k∈N 1−
i,ℓ

fk, (9)

where edges j and k are the positive and negative lower
neighbours. In Fig. 1b, [L1,ℓf ][5,6] = 2f[5,6]+(f[3,6]+ f[5,7])−
(f[4,5] + f[6,7]). When q = 1, the regularizer L1,uf has its ith
entry as

[L1,uf ]i = di,ufi +
∑

j∈N 1+
i,u

fj −
∑

k∈N 1−
i,u

fk (10)

which is a linear operation with in the upper neighbourhood.
In Fig. 1b, [L1,uf ][5,6] = f[5,6]+ f[6,7]− f[5,7]. The regularizers
∥∆ℓf∥1 and ∥∆uf∥1 can also promote the divergence- and
curl-free property because if L1,ℓf = 0, then B1f = 0 from
the definition of L1,ℓ; likewise for L1,u. For larger orders p
or q, the STF seeks for the edge flows which are divergence-
or curl-free after shifting.

The proposed STF can be easily adapted to the interpolation
task by replacing the data fitting term ∥y− f∥22 by ∥y−Cf∥22
where y ∈ RM and C ∈ {0, 1}M×N1 is the selection matrix.
In the case of node signals, operator ∆ℓ does not exist and
the STF gives the form of graph trend filtering [8].

IV. TREND FILTERING VERSUS ℓ2 REGRESSION

In this section, we study the ℓ2 regularizer from the fre-
quency domain, showing that it aims to generate a globally
smooth edge flow. The ℓ2 regularization has the form [11],
[18]

min
f∈RN1

∥y − f∥22+α∥B1f∥22+β∥B⊤
2 f∥22, (11)

where the regularizers ∥B1f∥22 and ∥B⊤
2 f∥22 are the edge flow

variation measures [14], [15]. It has the closed-form solution

f̂ = (I+ αB⊤
1 B1 + βB2B

⊤
2 )

−1y. (12)

The operator H := (I+ αB⊤
1 B1 + βB2B

⊤
2 )

−1 is a low-pass
simplicial filter.

By performing the eigendecomposition L1 = U1ΛU⊤
1 , one

could define the simplicial Fourier bases as the eigenvectors
U1 = [u1, . . . ,uN1

] and the simplicial frequency as the
eigenvalues Λ = diag(λ1, . . . , λN1) [10]. Furthermore, it is
shown that there exist three set of Fourier bases in U1 which
span the three orthogonal subspaces given by the Hodge de-
composition. More specifically, we have U1 =

[
UH UG UC

]
where (i) the eigenvectors UH of L1 associated to zero
eigenvalues (collected in set QH) span the harmonic space
ker(L1), (ii) the eigenvectors UG of L1,ℓ associated to nonzero
eigenvalues (collected in set QG) span the gradient space
im(B⊤

1 ), and (iii) the eigenvectors UC of L1,u associated
to nonzero eigenvalues (collected in set QC) span the curl
space im(B2). The frequency in QG and QC measure the
total ℓ2 norm of the divergence and the curl, i.e., the edge
flow variations [14], [15].

Based on this finer simplicial Fourier transform, at fre-
quency λ, we have the frequency response H̃(λ) of H as

H̃(λ) =


1, for λ = 0 ∈ QH,

(1 + αλ)−1, for λ ∈ QG,

(1 + βλ)−1, for λ ∈ QC,

(13)

where QH,QG,QC are the harmonic, gradient and curl
frequency sets. From (13), we see that the ℓ2 regularizer
smoothens the gradient and curl components of the input flow
by multiplying factors (1+αλ)−1 and (1+βλ)−1 respectively
in the frequency domain, leading to a suppressed divergence
and curl of the output. Different from the STF that promotes
an output with zero divergence and curl, it seeks for a globally
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Fig. 2. Reconstruction performance for forex. Top left: denoising NRMSE
performance. Middle left: total curl measure, ∥B⊤

2 f̂∥2. Bottom left: the
curl vector B⊤

2 f̂ when SNR is 3dB. Top right: interpolation correlation
performance. Middle right: total curl measure. Bottom right: the curl vector
B⊤

2 f̂ when ratio is 50%.

smooth output but not necessarily with zero divergences and
curls. This in turn may be problematic in applications where
the underlying edge flow is required to be divergence- or
curl-free, e.g., in a water network it is expected for flows to
have zero netflow at junction points, and in forex problem the
arbitrage-free condition is necessary for a fair market.

V. EXPERIMENTS

In this section, we compare the performance of the STF
and the ℓ2 regularization (11) in edge flow denoising and
interpolation tasks. Specifically, for the ℓ2 based interpolation,
we compare with the least-squares solution in [19, eq. 7]. To
average the performance, 100 realizations were conducted. For
evaluation, we used the NRMSE for denoising task and the
Pearson correlation for interpolation. We also computed the
ℓ2 norm of the divergence (∥B1f̂∥2) or the curl (∥B1f̂∥2)
of the reconstructed edge flow as the real-world flows are
intrinsically divergence-free or curl-free, and showed instances
of the divergence and the curl.

A. Foreign currency exchange

We first considered a forex problem consisting of 25 dif-
ferent currencies collected from [21] and every two currencies
can be exchanged. Thus, it forms a currency SC with 25 nodes,
300 edges and 2300 triangles. For any currencies i, j, k ∈ V ,
the arbitrary-free condition requires that ri/jrj/k = ri/k with
the exchange rate ri/j between i and j. This implies that
it provides no gain or loss with a successive trading path
i → j → k over a direct trading i → k. If we represent the
exchange rates as edge flows f[i,j] = log(ri/j), the arbitrage
condition can be translated into that f is curl-free [12]. The
curl of the collected data is shown in Fig. 2 (bottom left,
black circles) with an ℓ2 norm 0.0017. It is not exactly curl-
free and we expect to remove these nonzero curls. We added
artificial noise with SNRs ranging from [−6dB, 12dB] in the
denoising task and randomly sampled the edge flows with
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Fig. 3. Reconstruction performance for forex. Top left: Denoising NRMSE
performance. Top right: total divergence measure, B⊤

2 f̂ . Bottom left: Inter-
polation correlation performance. Bottom right: total curl measure.

ratios of [0.05, 1]. For both approaches, we set α = 0 so to
only penalize the curl and chose β = 2 for the best denoising
performance of the ℓ2 regularizer when SNR is 3dB. We
considered STF of orders from 0 to 4.

Since STF of different orders perform very similar for this
dataset, we only plotted the first three cases. The results
are reported in Fig. 2. For denoising, we observe that both
regularizers perform very similarly in reducing the noise in
terms of the NRMSE. However, the STF (of different orders)
reconstructed exchange rates have a much smaller total curl
than the ℓ2 based one (middle and bottom left). That is, the
former is able to reconstruct the exchange rates following the
arbitrage-free condition while the latter fails so. Moreover, the
STF can remove the intrinsic curls from the underlying data
which is desired in forex for the arbitrage-free condition.

Similar observations can be made in the interpolation task.
The STF performs much better in both interpolating the miss-
ing exchange rates and preserving the arbitrage-free property,
though the intrinsic curls are not fully removed by the STF.

B. Lastfm dataset

We then considered the transitions among music artists in a
user’s play recordings on Lastfm1. We represented each unique
artist as a node and any adjacent artists in the recordings
as edges. Following [19], we constructed the edge flow as
follows: every time the user listened to artist A followed
by artist B, add one unit to the flow from A to B. The
constructed flow is everywhere divergence-free as the user
always transitioned to another artist after one, except two
nodes have a nonzero divergence where the user started and
stopped as shown in the bottom of Fig. 3. The ℓ2 norm of the
underlying divergence is 1.14.

For both approaches, we set β = 0 to only penalize the
divergence and α = 0.5 for a best denoising performance
based on ℓ2 regularizer when SNR is 3dB. We considered the
STF of orders from 0 to 4, but only made plots of orders 0, 3

1This dataset is from https://www.last.fm/.
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and 4 for illustration. For denoising with SNRs ranging from
[−12dB, 6dB], we observe that the STF performs comparably
with than the ℓ2 regularizer in terms of the NRMSE. To
preserve a small total divergence, the 0-STF performs the best
with α = 0.5 while the ℓ2 regularizer output a much larger
total divergence, as except at two nodes, the 0-STF basically
fully removed the nonzero divergence (bottom left). Both are
similar in the interpolation task in terms of the correlation,
and, again, the STF preserves the divergence much better than
the ℓ2 regularizer.

VI. CONCLUSION

Edge flows arising from the real-world tend to be either
divergence- or curl-free, e.g.,water flows are expected to have
zero netflow at junction points, in a fair forex market, it is
required to not have circulating flows in any three pairs of
exchanging currencies. Reconstructing such edge flows from
noisy and partial observations is paramount in applications
where we cannot have access to all information. In these
cases, regularization-based techniques are of interest to impose
particular prior about the underlying signal and its coupling
with the topology. The typical ℓ2 based regularization recon-
structs a globally smooth flow, as shown via its frequency
analysis, not necessarily exactly zero divergence or curl. This
paper proposed the simplicial trend filtering by leveraging an
ℓ1 norm regularization on the divergence and the curl of the
reconstructed signal, ultimately, promoting sparsity. Experi-
mental results support the necessity of the STF especially
when the simplicial signals are divergence- or curl-free. All
in all, the STF contributes to the emerging signal processing
on simplicial complexes as an alternative for reconstruction.
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“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[5] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Learning theory and kernel machines. Springer, 2003, pp. 144–158.

[6] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction
of graph signals,” IEEE Transactions on Signal Processing, vol. 65,
no. 3, pp. 764–778, 2016.

[7] M. O. Jackson, “Social and economic networks,” in Social and Economic
Networks. Princeton university press, 2010.

[8] Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend filtering
on graphs,” in Artificial Intelligence and Statistics. PMLR, 2015, pp.
1042–1050.
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