
 
 

Delft University of Technology

Cross-city spillovers in Chinese housing markets
From a city network perspective
Gong, Yunlong; de Haan, Jan; Boelhouwer, Peter

DOI
10.1111/pirs.12512
Publication date
2020
Document Version
Final published version
Published in
Papers in Regional Science

Citation (APA)
Gong, Y., de Haan, J., & Boelhouwer, P. (2020). Cross-city spillovers in Chinese housing markets: From a
city network perspective. Papers in Regional Science, 99(4), 1065-1085. https://doi.org/10.1111/pirs.12512

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/pirs.12512
https://doi.org/10.1111/pirs.12512


F U L L A R T I C L E

Cross-city spillovers in Chinese housing markets:
From a city network perspective

Yunlong Gong1 | Jan de Haan2 | Peter Boelhouwer3

1Department of Land Resource Management,

China University of Mining and Technology,

Daxue Road 1, 221116, Xuzhou, China

2IT and Methodology Division, Statistics

Netherlands, Henri Faasdreef 312, 2492 JP,

The Hague, The Netherlands

3Faculty of Architecture and the Built

Environment, Delft University of Technology,

Juliannalaan 134, 2628 BL, Delft, The

Netherlands

Correspondence

Yunlong Gong, Department of Land Resource

Management, China University of Mining and

Technology, Daxue Road 1, 221116 Xuzhou,

China.

Email: ylgong@cumt.edu.cn

Funding information

Fundamental Research Funds for the Central

Universities, Grant/Award Number:

2018WB01

Abstract

Cross-city spillovers among housing markets are usually

modelled by the classical spatial autoregressive models,

which usually suffer from identification problems in prac-

tice. This paper investigates the cross-city house price spill-

overs arising from city network externalities wherein a

city's connections with other cities in the urban network

create the external house price premium through productiv-

ity and amenity gains. Using a cross-sectional data set for

an urban system in eastern China, we present significant

evidence for positive network spillovers by the application

of spatial lag of X model and spatial Durbin error model.

Besides, common shocks are also proved to be responsible

for cross-city dependence of house prices.
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1 | INTRODUCTION

In the spatial equilibrium framework of Rosen (1979) and Roback (1982), house prices of cities are determined by

local productivities and amenities (Glaeser et al., 2014). In this regard, the mainstream specification of empirical

house price models usually includes local-specific indicators that reflect such two aspects (e.g., Malpezzi, 1996;

Ozanne & Thibodeau, 1983; Potepan, 1996; Zheng et al., 2010). Nevertheless, the fact that house prices are
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geographically clustered, which is still prevalent after reasonably controlling for local-specific characteristics, sug-

gests that cross-city spillovers might be also important in the formation process of house prices.

The cross-city dependence or spillovers of house prices has been documented in the vast literature. With the

help of recently developed spatial econometric models, such as the spatial autoregressive model (SAR) and some of

its variants, many empirical studies have provided significant evidence of cross-city spillovers in the housing markets

of UK, US, Germany, China and so on (Brady, 2014; Fingleton, 2008; Guo & Qu, 2019; Otto & Schmid, 2018).1 On

the other hand, little is known about the theoretical foundation of the spillovers between housing markets. Previous

studies attribute the house price spillovers either to displacement effects (e.g., Fingleton, 2008) or to yardstick com-

petition (Brady, 2014),2 which directly motivates the SAR-type specification of house price models. However, due to

the inherent identification problems of SAR models, whether cross-city spillovers are truly caused by such mecha-

nisms is difficult to judge even given the significant spatial autoregressive parameters (Gibbons & Overman, 2012).

The present paper, instead, investigates a particular type of house price spillovers that arises from city network

externalities, which have attracted much attention in urban growth literature (Boix & Trullén, 2007; Camagni et al.,

2016). In a city network where cities are linked with each other either hierarchically or horizontally, the close and fre-

quent inter-city connections can create the external productivity benefits analogous to that of agglomeration econo-

mies (Johansson & Quigley, 2004). For example, small cities in the network can improve their productivity without

increasing their own size through borrowing the technological externalities of major urban cores (Phelps et al., 2001).

Similarly, ‘borrowed size’ effect also, to some extent, determines the amenity level of a city within the network

(Meijers & Burger, 2017). With the support of other cities, a city can develop more functions than indicated by its

own size; meanwhile the supporting cities can have access to these functions and thus perform better than they are

isolated. Such network externalities on productivity and amenity will eventually be captitalized into the house prices,

leading to the housing market spillovers between cities. In other words, the house price of a city depends not only

on its own mass concentration, but also on the agglomeration economies of other cities.

The externalities of agglomeration economies are usually modelled by market potential measure, which repre-

sents the aggregated market demand weighted by inverse distance (Harris, 1954). This paper, being different from

the traditional treatment, uses the toolbox of spatial econometrics to investigate the effect of network spillovers on

house prices. As we will show below, the theoretical foundation of city network externalities in housing markets can

motivate the so-called spatial lag of X model (SLX). This “reduced form” model is believed to be more credible in most

application situations, given the identification problems of the SAR-type specifications (Gibbons & Overman, 2012).

Further, Vega and Elhorst (2015) offer a comprehensive examination of the SLX model and prove it to be a much

more powerful approach, owing to not only its strength in identification, but also its flexibility in specifying the spa-

tial weight matrix and in modelling spatial spillovers. In this paper, we will follow the procedure suggested by Vega

and Elhorst (2015) and mainly rely on the SLX model for the examination of network externalities in housing market.

Some other spatial models, such as the spatial Durbin model (SDM) and spatial Durbin error model (SDEM), are then

employed to investigate the other sources of cross-city house price spillovers.

Based on a cross-sectional data set of the Jiang-Zhe-Hu-Wan area in eastern China, which covers the territories

of Jiangsu province (Jiang for abbreviation), Zhejiang province (Zhe), Anhui province (Wan) and Shanghai municipality

(Hu), we find significant evidence for the presence of positive network spillovers. Furthermore, common shocks are

the other sources that can generate house price spillovers, whereas pure price interaction process is not the driver.

These results add to the literature on Chinese interurban housing markets by analysing its cross-city interaction pro-

cess and the underlying mechanisms, which has been absent in most of the studies explaining house price variation

across cities in China (e.g., Li & Chand, 2013; Zheng et al., 2010; Zheng et al., 2014). Besides, this paper also echoes

the advocates of taking the spatial lag of X (SLX) model as point of departure in empirical studies.

1There are also numbers of studies that investigate the interdependence of house price dynamics of different housing markets, which sometimes is also

referred to as “spillovers” though “diffusion” might be a more appropriate term. Most studies of this type are conducted based on the framework of vector

autoregressive models (VAR); some examples are Holly et al. (2011), Cohen et al. (2016) and Yang et al. (2018).
2A detailed explanation can be found in the second (previous literature) section.
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The remainder of the paper is organized as follows. Section 2 briefly reviews the literature focusing on the spa-

tial interaction of house prices. The theoretical foundation of city network externalities on house prices, as well as

the empirical specifications, is presented in Section 3, followed by the data description in Section 4. Section 5 reports

the empirical results, and Section 6 concludes.

2 | PREVIOUS LITERATURE

It is familiar to us that when predicting the price of a specific property the price information of nearby properties can

be very helpful, which is known as adjacency effect or spillover effect. In this regard, the spatial econometric models,

which can deal with various types of spatial effects, have proved to be superior to the traditional hedonic models

and thus become the standard toolbox for hedonic house price analysis (Can, 1990, 1992).3 Among the family of spa-

tial econometric specifications, the spatial autoregressive model (SAR) including spatial lags of dependent variables

(endogenous interaction) and the spatial error model (SEM) incorporating spatial lags of error terms (correlated

effects) are the most popular approaches (Anselin et al., 2010; Kim et al., 2003). Besides, the spatial Durbin model

(SDM) with spatial lags of both dependent and independent variables has also emerged in the hedonic analysis of

housing markets (Osland, 2010).

The spillover of house prices is not unique to properties within an urban market, but also occurs between aggre-

gate markets, such as between the city-level housing markets. Fingleton (2008) investigated the house price process

among 353 unitary authority and local authority districts in England with a SAR model and the significant spatial

autoregressive coefficients provided compelling evidence for house price spillovers among districts. The evidence of

spillovers has not been overturned even after controlling for the spatial interaction structure or random nested struc-

ture in disturbances (Baltagi et al., 2014; Fingleton & Le Gallo, 2008). Other markets outside UK also witness the

cross-market spillovers. Brady (2014), using a spatial impulse response function derived from a single equation spatial

autoregressive panel model, revealed statistically significant and persistent spatial diffusion of house prices across

continental US states for the, 1975–2011 period. Otto and Schmid (2018) examined the spatiotemporal nature of

German real estate prices in 412 administrative districts with spatial dynamic panel data models and the results, with

no doubt, turn out to support the existence of cross-district house price spillovers.

The SAR-type model, which indicates an endogenous interaction structure, has been the mainstream method for

investigating cross-city house price spillovers. Such specification can be motivated by several mechanisms. One of

them is the displaced demand and displaced supply effects whereby a high house price signal in one market will force

demand to be displaced to and attract supply from nearby markets (Fingleton, 2008). As such, the spatial lag of house

prices, which indicates the endogenous interaction, will be present in the reduced form house price equation. The

other is the yardstick competition theory, which states that home buyers and developers take the actions of their

counterparts in neighbouring markets into account when they make their buying and selling strategy (Brady, 2014).

House prices are thus connected with each other. However, the endogenous interaction that derives from such

mechanisms is often difficult to justify, and SAR-type models cannot clearly tell us whether there is truly an endoge-

nous interaction in the house price formation process (Gibbons & Overman, 2012).

Besides endogenous interaction, cross-city spillovers can also arise from exogenous interaction, such as the

agglomeration spillovers. In an urban hierarchy, many studies documented that house prices of hinterland urban

areas are, to some extent, determined by the distance to higher-tier urban cores, which bears the agglomeration spill-

overs of higher-tier concentrations (De Bruyne & Van Hove, 2013; Gong et al., 2016; Partridge et al., 2009). As the

3Spatial econometric models are built based on three different interaction assumptions: endogenous interaction, exogenous interaction and correlated

effects. Endogenous interaction assumes that the outcome of a spatial entity depends directly on the outcomes of other entities, while exogenous

interaction assumes that the outcome of an entity depends on other entities' explanatory characteristics. The assumption of correlated effects is that the

dependence of outcomes across spatial entities stems from omitted variables that are spatially correlated or from common shocks (Elhorst, 2010).
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modern urban system is characterized by a network structure whereby the cities are connected both hierarchically

and horizontally, a more general form of agglomeration spillovers, namely network spillovers, that stem from both

the high-tier cities and the neighbouring cities arise. Several studies have presented evidence for network spillovers

in housing markets. Using the measure of market potential, which aggregates the personal income of surrounding

regions through an inverse distance weighting scheme (Harris, 1954), Partridge et al. (2009) provided strong evi-

dence of spillovers on U.S. county house price. With a similar measure, Camagni et al. (2016) revealed that, among

136 European large urban zones, house prices are significantly affected by the density of external linkages and co-

operation networks.

For a very long time, studies on Chinese regional house prices were largely absent in the literature because of

the lack of housing transactions data. Only in recent years have we witnessed the emergence of studies on the role

of fundamentals in explaining regional house prices (Li & Chand, 2013), especially the influence of urban environ-

mental and climate conditions (Zheng et al., 2010, 2014, 2009). In contrast, the spatial dimension of regional house

prices is less investigated. Hanink et al. (2012) considered the spatial dependence and spatial heterogeneity in Chi-

nese county-level house prices using the spatial error model (SEM) and geographically weighted regression (GWR),

respectively. However, cross-city spillovers cannot be properly investigated by the SEM specification. Guo and Qu

(2019) revealed the presence of spatial interactive effects between Beijing and Shanghai through a multi-level spatial

autoregressive hedonic pricing model, which allows for spatial interactive effects among housing units inside the

same city and from other cities. However, as previously discussed, the model used in the paper is a SAR-type model

and thus is silence about the underlying mechanisms of the spatial interactive effects.

Being different from the previous studies, the present paper links the network externalities hypothesis and the

spatial econometric models based on the exogenous interaction assumption, and takes the SLX model as point of

departure to investigate the underlying mechanisms of cross-city dependence of house prices.

3 | MODELLING CROSS-CITY SPILLOVER OF HOUSE PRICES

3.1 | Theoretical framework

Let us consider an economy that consists of J cities, which are linked by trade and migration. Workers are assumed

to migrate freely between cities, but not to commute between cities for working purposes. In spatial equilibrium

where the marginal worker is indifferent across cities, he must receive a constant utility U everywhere in the econ-

omy. Following Glaeser et al. (2006), utility in city j depends on the wage Ej that can be offered by firms, the level of

amenity Cj that can be consumed by residents, as well as the housing cost Pj. In logarithmic form, the relationship can

be written as:

lnPj = δ1lnEj + δ2lnCj−δ3lnU, ð1Þ

where δ1,δ2,δ3 > 0 represent the responsiveness of house prices to the change in wage, amenity and utility level,

respectively.

Suppose that the production of city j follows a linear production function yj = Ajlj, where yj is the total numeraire

product of city j, lj the work force and Aj the productivity common to all firms in the city. Maximizing the firm's profit

implies that the wage (Ej) equals the marginal product of labour, which is in turn equal to the common productivity

level Aj. The common productivity level of city j is determined by city endowments and two types of external

economies:

lnEj = lnAj = λwFj + γwgj + μwhj, ð2Þ
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where Fj is the unique endowments of city j, such as climate, weather and so forth, gj the local externalities that arise

from agglomeration economies, and hj the network externalities that arise from the connection with other cities.

The local externality gj of city j is directly related to its agglomeration level of economic activities. There are sev-

eral mechanisms that are responsible for that relationship (Duranton & Puga, 2004). First, the many firms and

workers in large cities can improve the quality of each firm-worker match, which benefits the overall productivity of

the city. Second, the close proximity and intense face-to-face contact between workers in large cities can facilitate

the diffusion of knowledges and intellectual ideas, which positively contributes to the productivity of workers. Third,

since there are certain indivisible goods and facilities that include enormous fixed costs, the great number of users in

large cities can share such costs, which consequently improves the production efficiency.

If we switch the focus from a single point to a system of nodes which are closely linked by transportation and

telecommunication, the latter connection can also generate the same external benefits that arise from agglomeration

economies, which is known as network externalities4 (Johansson & Quigley, 2004). One example is the so-called

“borrowed size” effect, which claims that small cities that are readily accessible to large cities can borrow the techno-

logical externalities of those major urban cores and hence improve the productivity without increasing their own size

(Phelps et al., 2001). The other example is the ‘market access’ effect embedded in the new economic geography

(NEG) model—being access to large consumer and supplier markets contributes to the productivity of an area by sav-

ing on transportation costs (Fujita et al., 1999). Many studies have found that the wage level of an area is signifi-

cantly related to its proximity to large markets (Brakman et al., 2004; Hanson, 2005).

It is assumed that consumption amenity in city j is generated in a similar way to the generation of urban

productivity:

lnCj = λcFj + γcgj + μchj: ð3Þ

The positive contribution of agglomeration economy (local externalities) to consumption amenity is already evi-

dent in literature. Glaeser et al. (2001) argues that, despite of sometimes unpleasant interaction, urban density can

generally facilitate enjoyable social contacts, which attracts people to dense urban area. A typical example is that

young single people disproportionately live in the densest cities, where the likelihood for them to find and meet like-

minded peers is much higher. More likely, large urban markets increase the welfare of consumers because of the

facilities which are subject to substantial scale economies. Higher-order amenities, such as opera, Michelin 3-star res-

taurants and Disney parks, all require very large audience to be sustained. Therefore, it is necessary for those who

want to enjoy such amenities regularly to live in large cities.

In a system of cities, network externalities can also occur along the amenity dimension. It is highly related to the

concept of “borrowed size” as claimed by Alonso (1973, p. 200): “a small city or a metropolitan area exhibits some of

the characteristics of a larger one if it is near other population concentrations … people can use the shopping and

entertainment facilities of other cities to complement their own.” In its original meaning, “borrowed size” stressed

the benefits to small cities thanks to its proximity to large cities. In contemporary city network paradigm where cities

interact with others both hierarchically and horizontally (Boix & Trullén, 2007; Capello, 2000), Meijers and Burger

(2017) has stretched this concept to incorporate both “borrowed performance” and “borrowed functions,” which

allows a mutual influence. A city needs other cities' support to maintain a higher level of functionality than indicated

by its own size (borrowed function); meanwhile the supporting cities can have access to these functions and other

agglomeration benefits, and thus perform better than they are isolated (borrowed performance). Empirical evidence

for the effect of city network externality on presence of higher-order amenities has recently emerged. For instance,

in an analysis of the distribution of metropolitan functions across Western European countries, Meijers et al. (2016)

noted that network connectivity positively contributes to the presence of those higher functions.

4According to Camagni et al. (2016), network externalities include the benefits not only from the geographical proximity to other cities, but also from the

horizontal and non-hierarchical links among cities of similar size, even ones located far from each other. In this paper, the network externality mainly refers

to the former benefits.
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Incorporating Equations (2) and (3) into (1), we obtain the house price model under spatial equilibrium:

lnPj = α+ κFj + βgj + θhj, ð4Þ

where κ = δ1λw+δ2λc measures the effect of unique city endowments, β = δ1γw+δ2γc the effect of local externalities

(agglomeration economies), θ = δ1μw+δ2μc the effect of network externalities which generate the spillovers, and

finally α= −δ3lnU is a constant term.

3.2 | The specification of the model

In Equation (4), local externalities (gj) can be measured by the widely used agglomeration indicators: urban size

(sj) and urban density (zj), that is gj = [sj, zj]. A common approach to model network externalities (hj) is the mar-

ket potential function, which produces an aggregation (or weighted by distance) of income or population within

a certain radius of city j (Camagni et al., 2016; Hanson, 2005; Partridge et al., 2009). Recently, the development

of spatial econometrics provides a more flexible way to model network externalities. It is assumed that agglom-

eration economies of a city that generate local externalities can spread out and yield network externalities on

other cities:

h =Wg, ð5Þ

where W is the spatial weight matrix that represents the spatial links between cities. This treatment leads to the so-

called spatial lag of X model (SLX) (Gibbons & Overman, 2012; LeSage & Pace, 2009; Vega & Elhorst, 2015):

P=α+ Fκ+ gβ+Wgθ+ ε, ð6Þ

where P is the vector of house prices (in logarithmic form), F the city-specific characteristics, g the agglomeration

economies, and ε the independently and identically distributed disturbances. This specification, which has been

largely overlooked in applied studies, is superior to SAR-type specifications because of its easiness of identification

and its flexibility in measuring spillover effects (Gibbons & Overman, 2012; Vega & Elhorst, 2015).

It is very likely that the cross-city spillover of house prices is not only driven by network externalities, but also

arises from other mechanisms, such as the yardstick competition whereby the house price formation process of a

city takes into account the price signal of other cities. In this case, the spatial Durbin model (SDM), which has

attracted increasing attention recently, can be estimated:

P= ρMP+α+Fκ+ gβ+Wgθ+ ε, ð7Þ

where the term MP captures the pure spillovers of house prices. The matrix M could be the same as W or not. As a

comparison, we also estimate the more restricted and well-known SAR model (Anselin, 1988):

P= ρMP+α+Fκ+ gβ+ ε: ð8Þ

The interpretation of SAR model is difficult because, without prior knowledge on the true data generating process,

this model is generally impossible to be told apart from the SLX model in practice (e.g.,Gibbons & Overman, 2012).

The significant estimate of parameter ρ can either reflect pure spillovers of house prices, or pick up the information

of omitted variables like the network externalities (Corrado & Fingleton, 2012). However, conditional on the restric-

tion θ = 0 of model (7), model (8) will be more justified. Testing model (7) against (8) can indicate the role that

1070 GONG ET AL.



network externalities play in the generation of house price spillovers and the extent to which the SAR model is

misspecified.

Common shocks is another important source that can cause the spatial dependence of housing markets. In this

case, model (6) can be extended to the spatial Durbin error model (SDEM), which takes the form (LeSage & Pace,

2009):

P=α+ Fκ+ gβ+Wgθ+ ε,
ε= λQε+u,

ð9Þ

where the error terms ε follow a spatial autoregressive process and u denotes the independently and identically

distributed disturbances. The matrix Q, which captures the interaction of error terms, could be the same as W

or not.

3.3 | Measuring cross-city spillovers

Due to the presence of spatial weight matrixes M (or W, Q) in spatial models, one cannot easily use the point esti-

mates of spatial parameters (θ, ρ and λ) to draw conclusions about spillover effect. In this paper, we use the partial

derivative approach proposed by LeSage and Pace (2009) to calculate the direct effect—the effect of changes of the

kth variable in a city on its own house prices—and the indirect effect—the effect of changes of the kth variable in a

city on the house prices of other cities. By definition, the indirect effects represent the cross-city spillovers that we

are interested in.

In the SDM model, the partial derivatives of the expectations of P with respect to the kth agglomeration econ-

omy variable can be expressed as:

∂E Pð Þ
∂x1k

�∂E Pð Þ
∂xnk

� �
= I−ρMð Þ−1 Iβk +Wθk½ �= Sk Wð Þ: ð10Þ

In the case of SLX and SDEM specification, the partial derivative matrix Sk(W) collapses to (Iβk+Wθk), while

(I − ρM)−1(Iβk) is the representation of Sk(W) in the case of SAR specification. The diagonal and non-diagonal

elements of the partial derivative matrix Sk(W) in (10) measure the direct effects and indirect effects, respec-

tively. Since both direct and indirect effects differ across the cities in the sample, LeSage and Pace (2009) sug-

gests to report the direct effect as the average of the diagonal elements and the spillovers as the average of

the row (column) sums of the non-diagonal elements. Note that, in the SAR model, the ratio of spillover effect

to direct effect is constant across variables whereas there are no such restrictions in the SLX, SDEM and SDM

models (Elhorst, 2010).

4 | DATA

4.1 | Study area

The spatial context of our empirical analysis covers the territory of three provinces and one municipality directly

under the central government, namely Jiangsu, Zhejiang, Anhui and Shanghai, respectively (Jiang-Zhe-Hu-Wan in

abbreviation). The spatial units of observation are the urban housing markets of the municipality, the prefecture city,

or the county (county-level city). In total, we have 196 spatial units, including 1 municipality, 40 prefecture cities and

155 counties (Figure 1).5 For simplicity, we term each spatial unit as a ‘city’.
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The Yangtze River runs through the study area from west to east and feeds up one of the most developed

metropolitan region in China, the Yangtze River Delta, which is part of our study area. In the year 2016, the

population size of our study area is about 222.05 million, accounting for 16% of China's total population, of

which 145.11 million living in urban areas, making this area one of the most urbanized area in China. This area

contributes 23% of the nation's total product, which is much higher than the population share. Cities within the

area are connected by well-developed transportation and telecommunication infrastructure. Among the 196 cit-

ies, 186 (95%) cities are linked by motorways network; 138 (70%) cities have direct access to railways, and

77 (39%) cities to high-speed railways.

F IGURE 1 The sketch of study area

5China's spatial administrative system is structured in four levels: provinces (municipalities under the central government)—prefecture cities—counties

(county-level cities) —townships. A prefecture city (or the municipality under the central government) is usually divided into counties and city districts, of

which city districts make up the city proper (‘shiqu’) of the prefecture city (municipality). The urban housing markets of prefecture cities (municipalities)

pertain to the corresponding city proper.
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The current urban system of our study area is characterized by an urban hierarchy. The largest city Shanghai

(SH), which has urban population over 20 million (2016 data), serves as the central city, followed by three cities with

the population size greater than 5 million, namely Nanjing, Hangzhou and Suzhou. The remaining cities are almost

evenly distributed among three population intervals: 1,000,000–5,000,000 (large cities), 500,000–1,000,000

(medium cities) and less than 500,000 (small cities). However, with the rapid development of transportation and tele-

communication system, as well as the great endeavours made by the local governments to promote a regional coop-

eration economy, the horizontal interaction between cities is increasingly prominent within the urban system. In

such an urban structure that is dominated by hierarchy and complemented by parallel connection, we expect the net-

work externalities will play a role in the organization of housing markets, but might be limited to a relatively small

area, which produces local spillovers.

4.2 | Data source

The data set is compiled from various sources. We have no access to property transaction data sets so that it is

impossible for us to build a constant-quality house price measure across cities. Instead we rely on the market of list-

ing properties in the year, 2016, which was obtained from Xitai Real Estate Database (www.creprice.cn). Every month

the data provider collects the information of initially listed properties and cleans the data by deleting the cases that

have unusual listing prices, apparent errors and so on. On average the markup for initial listing price relative to the

selling price is 2.5%; there are very few cases wherein the selling price is higher than initial listing price. Finally, the

data provider provides us with some general statistics of the local housing market, including the number of

initially listed properties (nm), the average listing value (vm) and the average floor area (sm). We then construct

the yearly city-level averagehouse price by dividing the total listing floor area into the total value, that is

P=
P12

m=1vm × nm=
P12

m=1sm × nm:
6

The agglomeration economy of each city that generates local and network externalities is measured by the land

area of a city and the urban population density. The land area is based on the year 2016 and extracted from the

prefecture-level city statistical yearbooks. It is selected as a measure of urban size because we want to test if the

physical expansion of a city can lift up its house prices. This can provide us with insights into the common belief in

China that the economy can be considerably boosted by spatially merging two cities. The urban population density is

calculated by dividing the land area of the city into urban population in the year 2010, which is derived from the

Sixth National Population Census.7 Since, in a spatial equilibrium framework, the housing price and population are

simultaneously determined, it is a common practice to use lagged population for the purpose of avoiding endo-

geneity problem.

The city-specific characteristics include variables on natural and environmental conditions, history and culture,

and supply conditions. The natural condition of a city is approximated by average winter temperature and annual

precipitation during the period spanning from 1981 to 2010, which are collected from National Meteorological Infor-

mation Centre. The key indicator for environmental condition of a city used here is the percentage of urban built-up

area covered by green space (green coverage). History and culture, which is expected to affect house prices because

of its contribution to the living amenity of a city, is measured by the number of cultural heritage sites listed in “Key

Cultural Relics Sites under State Protection”. On the supply side, the area of land that can be used for housing con-

struction is strictly controlled by land use planning (2005–2020) through a quota system. With the aim of protecting

against the massive loss of arable land, it is believed that the city with lower arable land per capita will face a stricter

quota on the conversion of farmland into construction land, and thus reduce the supply of housing. Besides, we

6This price measure is identical to the average listing price weighted by the floor area of the property.
7The administrative border of some cities has changed from the year 2010 to 2016, we recalculate the census population in 2010 according to the 2016

boundary.
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include a bundle of dummy variables to indicate the location of a city and its political rank in the spatial administra-

tive system. Table 1 provides a detailed description of the variables, as well as their summary statistics.

5 | RESULTS

5.1 | Spatial correlation of housing markets

If network spillovers indeed exist among housing markets, the house price of a city will be correlated with the

agglomeration economies of neighbouring cities, and hence with their house prices as well. We simply test this

hypothesis using Moran's I statistics. The spatial weight matrix that captures the linkage structure is defined as a

binary matrix, with elements wij = 1 if two cities are located within a certain distance ranges, and 0 otherwise.8 We

design four matrixes, which connect the markets within 60 km, 60–120 km, 120–180 km and 180–240 km respec-

tively, to test how the distance between housing markets influences the correlation nature.

The global Moran's I statistics inTable 2 clearly show a significantly positive autocorrelation of house prices and a

cross-correlation between a city's house price and the neighbouring cities' urban population density and land area

when the spatial structure is properly specified, providing preliminary evidence for network spillovers. However, a

decreasing pattern of house price autocorrelation and cross-correlation is observed as the neighbouring cities move

away from each other; the two indicators of cross-correlation are almost insignificant when the neighbouring city is

defined in the 180–240 km radius. It is thus reasonable to infer that the network externalities produce local spillovers.

5.2 | Results of non-spatial models

The house price models without cross-city spillovers are first estimated and will serve as the benchmark. The first

two columns of Table 3 report the results estimated by ordinary least squares (OLS), with the model of the second

column controlling for location dummies.

The coefficient estimates of the two non-spatial models have expected signs and are statistically significant at

5% significance level except for the variable arable land per capita which turns insignificant after including location

TABLE 2 Moran's I test of housing markets

Autocorrelation of
house prices

Cross-correlation with
population density

Cross-correlation with
land area

Neighbours within

60 km radius

0.6229*** (0.001) 0.2654*** (0.001) 0.2511*** (0.001)

Neighbours in

60–120 km radius

0.5086*** (0.001) 0.1708*** (0.001) 0.1427*** (0.001)

Neighbours in 120–180
radius

0.4159*** (0.001) 0.0849*** (0.001) 0.0518*** (0.004)

Neighbours in 180–240
radius

0.2663*** (0.001) 0.0150 (0.144) −0.0179 (0.165)

Notes: the p-values drawn from the distribution of 999 simulations of spatially random distributed data are reported in the

parentheses. ***, **, *indicate significance level at 1%, 5%, 10%, respectively.

8The distance measure used in this paper refers to the straightforward geographical distance between the city halls of two cities.
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dummies. However, the magnitudes of the coefficients of location model (2) are relatively smaller than that of the

restricted model (1). In general, a city with a warmer winter, a higher proportion of green coverage and more cultural

sites is likely to enjoy a higher house price premium. On the other hand, the abundant annual rainfall imposes a nega-

tive effect on house prices, ceteris paribus. As expected, the two variables measuring agglomeration economies have

statistically and economically significant effects on house prices in both models. According to model (2), increasing

the urban population density of a city by 100 persons per km2 will drive up the house prices by 3.05%, while an

increase of land area by 100 km2 will result in a 0.91% inflation of house prices.

Overall, the explanatory variables we have chosen lead to a satisfying model specification as the model (2) with

location dummies can explain 83% of the cross-city house price variation. Besides, the inclusion of location dummies

also largely mitigates the spatial dependence in residuals. Using an inverse distance matrix with elements wij =1=d
2
ij ,

we detect a significantly positive spatial dependence of residuals for model (1) where the global Moran's I stands at

0.164. For the model including location dummies, the Moran's I statistic noticeably drops to 0.041; however, it is still

statistically significant according to the Z score, which suggests the existence of cross-city spillovers even after prop-

erly controlling for location factors.

5.3 | Results of spatial models

5.3.1 | The SLX model

The spatial weights matrix W is vital to estimating the SLX model of Equation (6) as W carries the underlying spatial

interaction structure. The nature of spatial interaction can be captured by the inverse distance matrix with:

wij =1=d
r
ij, ð11Þ

where r is the distance decay parameter. In Equation (11), a large value of r indicates some kind of local spillovers

that are confined to very close neighbours. One advantage of the SLX model is that, instead of specifying the dis-

tance decay parameter in advance, it can be estimated by a nonlinear estimation technique.9 When an inverse dis-

tance matrix is employed, the commonly used row-normalization will cause the spatial weights matrix to be

asymmetric and thus lose the economic interpretation in terms of distance decay (Elhorst, 2001). In this regard, we

normalize the spatial weights matrix by D−1/2WD−1/2, where D is a diagonal matrix with diagonal elements equal to

the row sums of W. This operation is proposed by Ord (1975) and produces a symmetric matrix. Besides, the eigen-

values of this transformed matrix are identical to the eigenvalues of a row-normalized matrix.

Before estimating the SLX model with inverse distance matrixes, we first estimate the model using a binary

matrix with wij = 1 if the distance between city i and city j is less than 180 km. Surprisingly, the coefficients of spatial

lags of agglomeration economy indicators reported in the third column of Table 3 are all insignificant and hence fail

to provide evidence for network spillovers, although the Moran's I tests in Table 2 suggest to some extent the exis-

tence of cross-correlation between the house price of a specific city and the agglomeration economies of neigh-

bouring cities at the 120–180 km radius. We then immediately turn to the SLX model with parameterized distance

decay factor and the results are reported in the fourth column of Table 3. In this model, the presence of network

spillovers is supported by the large and statistically significant estimates of spatial lag of urban population density

and the inclusion of such spillovers explains 1.5% more cross-city variation of house prices compared to the non-

spatial model (2). However, it seems that the expansion of urban scale exerts no spillovers on other cities. In terms of

the direct effect of agglomeration economies, the effect of urban population density on its own house prices

9We use the Matlab code developed by Vega and Elhorst (2015) to estimate the parameters. The procedure works as follows: given distance decay

parameter r, the coefficient vectors α,κ,β,θ in Equation (6) can be estimated; given the coefficient vectors α,κ,β,θ, the parameter r can be alternately

estimated. The procedure stops until convergence occurs.
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decreases slightly by about one fifth, compared to the non-spatial model (2), while the direct effect of land area

remains relatively stable. For the variables of local-specific characteristics (excluding population density and land

area), the parameter results are quite similar to that of the non-spatial model (2) except that the variable cultural heri-

tage sites is no longer significant.

The estimated distance decay parameter is 2.7531 and statistically significant, which indicates an interaction

pattern bounded within a small radius. If the effect of a particular city on one of its neighbours located 60 km

away is supposed to 1, it falls to 0.15 at 120 km, and 0.05 at 180 km. Compared with the insignificant results

of SLX model (3) which is based on an interaction structure that can reach neighbours very far away, it can be

concluded that network externalities play an important role in the formation of house prices but the effect falls

very sharply as distance increases, suggesting a nature of local spillovers. A further analysis of the parameter-

ized spatial weight matrix shows that, for most of the cities, the neighbours within 180 km radius contribute at

least 90% of the total spillovers imposed on a particular city. In this regard, we re-estimate the SLX model

(4) using a cutoff distance matrix where the distance decay parameter and the distance cutoff are set to

2.7531 and 180 km, respectively. The results are shown in the fifth column of Table 3 and are almost identical

to that of SLX model (4).

After the inclusion of network spillovers, the degree of spatial dependence of residuals of SLX models is further

mitigated and almost approaches to zero, although it is still statistically significant at 5% significance level. Such weak

spatial dependence might be caused by pure spillovers of house prices or common shocks. Thus it is necessary to

proceed with the estimation of SDM or SDEM models.

5.3.2 | The SDM and SAR model

As previously discussed, if the spatial dependence of house prices after controlling for network spillovers is driven

by pure house price spillovers, the SDM model of Equation (7), which produces both global spillovers and local net-

work spillovers, will be a better specification.

The first column of Table 4 shows the ML estimates of SDM model (6), in which the element of spatial weight

matrix M is specified as mij =1=d
2
ij and normalized by Ord-type transformation. Compared to SLX (5), the SDM model

(6) that includes the variable MY does not improve the explanatory power of the house price equation; the insignifi-

cant coefficient estimate of the variable MY rejects the hypothesis of pure house price spillovers. Using the same

spatial weight matrix M as employed by model (6), we then estimate the SAR model (7) which fails to consider the

network externalities. Overall, the results reported in the second column of Table 4 show that the performance of

SAR model (7) is inferior to the performance of SDM model (6). However, the coefficient estimate of the spatial lag

of house prices turns out to be significant in model (7), which conflicts with the results of SDM model (6). Such dis-

agreement indicates that it is the omission of network externalities but not the pure spillovers that leads to the sig-

nificant coefficient of MY in the SAR model, which is consistent with the finding of Corrado and Fingleton (2012).

Thus, when modeling house prices, one should interpret the results of SAR models with great caution.

One may argue that the process of pure house price spillovers may not be properly modelled by geographical

relationship, as pointed out by Pollakowski and Ray (1997). Fingleton and Le Gallo (2008) also stated that big cities

may be less remote than their distance indicates, while very small cities may in fact be more isolated. This argument

is quite true because, when making a decision, households who come from a large city are more likely to refer to the

price signal of a large, distant city rather than a nearby, small city. Therefore, the pure house price spillovers might be

better captured by spatial weight matrixes defined on the dimension of economic distances. In this paper, an eco-

nomic distance measure that combines geographical distance and economic similarities is constructed. The “eco-

nomic similarity” (es) of two cities, say city i and j, is measured by the difference in their disposable income, esij = |

incomei − incomej|. For the sake of avoiding potential endogeneity of this distance measure, income of the year 2010

is used. The economic distance (edij) between city i and j is then calculated by:

1078 GONG ET AL.



T
A
B
L
E
4

E
st
im

at
io
n
re
su
lt
s
o
f
SD

M
,S

A
R
an

d
SD

E
M

m
o
de

ls

D
ep

en
d
en

t
va

ri
ab

le
=
Ln

(h
o
us
e
pr
ic
es
)

SD
M

(6
)

M
L

M
=
1
/d

2

W
¼1

=
d2

:7
5
3
1

d
≤
1
8
0
km

SA
R
(7
)

M
L

M
=
1
/d

2

SD
M

(8
)

M
L

M
=
1
/e
d2

W
¼1

=
d2

:7
5
3
1

d
≤
1
8
0
km

SD
E
M

(9
)

M
L

Q
=
1
/d

2

W
¼1

=
d2

:7
5
3
1

d
≤
1
8
0
km

SD
E
M

(1
0
)

M
L

Q
=
1
/e
d2

W
¼1

=
d2

:7
5
3
1

d
≤
1
8
0
km

C
o
ns
ta
nt

7
.6
6
9
5
4
2
**
*
(4
4
.3
9
)

7
.5
5
6
8
6
3
**
*
(4
2
.7
2
)

7
.6
2
9
4
4
1
**
*
(4
6
.0
8
)

7
.6
5
0
6
7
3
**
*
(4
8
.7
4
)

7
.6
8
1
2
7
2
**
*
(4
7
.3
8
)

W
in
te
r
te
m
pe

ra
tu
re

0
.0
9
9
5
0
2
**
*
(5
.3
5
)

0
.1
2
2
5
7
8
**
*
(6
.8
8
)

0
.0
9
9
9
1
0
**
*
(5
.4
1
)

0
.0
9
4
7
1
0
**
*
(4
.8
6
)

0
.0
8
5
1
9
9
**
*
(4
.2
3
)

P
re
ci
pi
ta
ti
o
n

−
0
.0
0
0
2
0
6
**

(−
2
.0
0
)

−
0
.0
0
0
3
5
3
**
*
(−
3
.6
0
)

−
0
.0
0
0
2
1
4
**

(−
2
.1
0
)

−
0
.0
0
0
1
7
8
*
(−
1
.7
0
)

−
0
.0
0
0
1
3
3
(−
1
.2
3
)

G
re
en

co
ve

ra
ge

0
.0
0
6
3
4
0
**

(2
.2
8
)

0
.0
0
6
7
9
9
**

(2
.3
6
)

0
.0
0
6
2
6
8
**

(2
.2
6
)

0
.0
0
6
9
7
6
**

(2
.5
3
)

0
.0
0
6
4
5
4
**

(2
.3
6
)

C
ul
tu
ra
lh

er
it
ag
e
si
te
s

0
.0
0
4
5
5
8
(1
.4
6
)

0
.0
0
6
0
4
1
*
(1
.8
9
)

0
.0
0
4
2
7
4
(1
.3
6
)

0
.0
0
5
0
4
8
*
(1
.6
2
)

0
.0
0
5
0
5
0
*
(1
.6
3
)

A
ra
bl
e
la
nd

pe
r
ca
pi
ta

−
0
.0
0
0
0
4
9
(−
1
.0
2
)

−
0
.0
0
0
0
4
4
(−
0
.8
9
)

−
0
.0
0
0
0
5
4
(−
1
.1
1
)

−
0
.0
0
0
0
4
8
(−
0
.9
9
)

−
0
.0
0
0
0
4
4
(−
0
.8
9
)

U
rb
an

po
pu

la
ti
o
n
de

ns
it
y

0
.0
0
0
2
4
0
**
*
(3
.6
7
)

0
.0
0
0
2
7
0
**
*
(4
.0
1
)

0
.0
0
0
2
3
9
**
*
(3
.6
9
)

0
.0
0
0
2
5
0
**
*
(3
.8
9
)

0
.0
0
0
2
2
2
**
*
(3
.3
6
)

La
nd

ar
ea

0
.0
0
0
0
9
9
**
*
(5
.0
5
)

0
.0
0
0
1
0
6
**
*
(5
.1
7
)

0
.0
0
0
1
0
1
**
*
(5
.3
2
)

0
.0
0
0
0
9
7
**
*
(5
.0
7
)

0
.0
0
0
0
9
1
**
*
(4
.7
4
)

W
*u
rb
an

po
pu

la
ti
o
n
de

ns
it
y

0
.0
0
0
2
8
5
**
*
(3
.9
8
)

0
.0
0
0
2
7
6
**
*
(4
.4
0
)

0
.0
0
0
2
7
3
**
*
(4
.4
4
)

0
.0
0
0
2
5
2
**
*
(4
.1
3
)

W
*l
an

d
ar
ea

0
.0
0
0
0
2
9
(0
.7
7
)

0
.0
0
0
0
2
4
(0
.6
7
)

0
.0
0
0
0
1
4
(0
.4
1
)

0
.0
0
0
0
0
9
(0
.2
6
)

M
*L
n
(h
o
us
e
pr
ic
es
)

−
0
.0
0
1
4
5
9
(−
0
.0
8
)

0
.0
3
2
4
6
0
**

(2
.2
6
)

0
.0
0
6
1
2
9
(0
.4
6
)

M
*e
rr
o
r

0
.2
3
5
0
0
0
(1
.4
1
)

0
.4
9
3
0
0
0
**
*
(2
.8
1
)

R
an

k
du

m
m
ie
s

Y
es

Y
es

Y
es

Y
es

Y
es

Lo
ca
ti
o
n
du

m
m
ie
s

Y
es

Y
es

Y
es

Y
es

Y
es

A
dj
.R

2
0
.8
4
1

0
.8
3
0

0
.8
4
1

0
.8
4
3

0
.8
4
6

Lo
g-
lik
el
ih
o
o
d

1
4
2
.5
8

1
3
4
.9
7

1
4
2
.6
9

1
4
3
.2
6

1
4
4
.1
1

N
ot
es
:T

he
sp
at
ia
lw

ei
gh

t
m
at
ri
xe

s
o
f
M
,Q

an
d
W

ar
e
no

rm
al
iz
ed

by
O
rd
-t
yp

e
tr
an

sf
o
rm

at
io
n
D

−
1
/2
W

D
−
1
/2
.*
**
,*
*,
*i
nd

ic
at
e
si
gn

if
ic
an

ce
le
ve

la
t
1
%
,5

%
,1

0
%
,r
es
p
ec
ti
ve

ly
.

GONG ET AL. 1079



edij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
esij

std esð Þ
� �2

+
dij

std dð Þ
� �2

s
, ð12Þ

where std(es) and std(d) denote the standard deviation of economic similarities and geographical distance,

respectively.

We first reproduce the results of Table 2 using the economic distance measure, which are reported in Appendix

Table A1. On the space of economic distance, we detect a stronger degree of spatial autocorrelation of house prices

and cross-correlation between a city's house price and the neighbouring cities' agglomeration economies, suggesting

the superiority of economic distance in measuring the connectivity between cities. The detected decreasing pattern

of house price autocorrelation and cross-correlation, on the other hand, is quite similar to the pattern based on geo-

graphical distance. Using the economic distance measure to specify the spatial weight matrix M, we re-estimate the

SDM model and the results are shown in the third column of Table 4. No matter the point coefficient estimates nor

the model performance, the SDM model (8) are almost identical to the model SDM (6), which indicates that there is

no pure house price spillover even on the economic-distance space.

5.3.3 | The SDEM model

The rejection of the pure house price spillovers leads us to consider the role that common shocks play in the forma-

tion of house prices. We thus estimate the SDEM model specified in Equation (9) by ML techniques. In SDEM model

(9) which defines the spatial weight matrix Q on the space of geographical distance, no evidence of common shocks

is revealed given the insignificant coefficient estimates of spatial lag of residuals. However, when we specify the spa-

tial weight matrix Q using economic distance in SDEM model (10), the point estimate of spatial error term becomes

statistically and economically significant, while the coefficient estimates of other variables are almost in line with that

of SLX (5) except that the effect of precipitation is no longer significant. Furthermore, according to log-likelihood, the

SDEM model (10) performs slightly better than SDEM model (9). It seems that common shocks influence the cities

that are economically connected more than the geographically close cities.

Combining the evidence of SLX, SDM and SDEM models, it can be concluded that the cross-city spillovers of

Chinese house prices are mostly driven by network externalities and common shocks, but not the pure house price

spillovers. However, the spatial interaction structure underlying the network externalities is different from that of

common shocks.

5.4 | Network spillovers

As previously discussed, the point estimates of spatial regressors in spatial models, namely SLX, SAR, SDM and

SDEM, are not exactly equal to the spillovers. The partial derivative approach represented by Equation (10) is hence

employed to calculate the spillover effects, as well as the direct effects of SAR and SDM models.10 Table 5 summa-

rizes the direct and spillovers effects of different models.

The direct effect of urban population density estimated by OLS (2) model is much more pronounced than that

estimated by spatial models, while the direct effect of land area is almost the same among the non-spatial and spatial

models. Given the significant spillovers of population density and the statistically and economically insignificant spill-

overs of land area, it can be concluded that the upward bias of OLS (2) model is very likely caused by the omission of

10Theoretically, the direct effects of SAR and SDM models are greater than the point estimates because of the presence of feedback effects, which are

those impacts passing through the neighbours and back to the unit itself. In this paper, however, the statistically insignificant and economically small

parameter estimate ρ results in a very weak feedback effect and thus the direct effects are consistent with the point estimates.
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spatial interaction effect. Among the four spatial models which consider the spatial interaction, the SAR (7) model

estimates much lower magnitude of spillovers than the SLX, SDM and SDEM models do. Such underestimation of

spillovers is the result of the fact that a pure interaction process is not the source of cross-city spillovers of Chinese

housing markets; the significant spatial parameter in SAR (7) just picks up the effect of network externalities when

the model is not properly specified. The results of SLX, SDM and SDEM models confirm the importance of network

spillovers in the formation of house prices. Since the SDEM (10) model is shown to be the best specification, our fol-

lowing interpretation will be mainly based on the results of this model.

The agglomeration of a city's population is the most important factor that generates the network externali-

ties in the housing markets; the magnitude of spillover effect is even more noticeable than the direct effect on

its own market. According to the results of SDEM (10) model, if a city's population grows by 100 persons per

km2, the total house price increases of neighbouring cities are about 2.39%, whereas its own house price only

rises by 2.22%. Nevertheless, considering that each city on average has 42 neighbours within the radius of

180 km, the network spillover on each neighbouring city is by average around 0.06%, which is much lower than

the magnitude of the direct effect.

6 | CONCLUDING REMARKS

Conventional wisdom suggests that local housing markets are segmented from each other and hence house prices

are locally determined. However, the spatial clustering pattern of house prices cannot be fully explained by local-

specific characteristics, pointing to the importance of spillovers. Spatial econometrics, especially the spatial model

with spatial lag of house prices (known as SAR-type models), has been the standard toolbox for investigating spill-

over effect. Nevertheless, SAR-type models have been heavily criticized because the endogenous interaction is diffi-

cult to justify.

This paper differs from traditional spatial analysis of interurban house prices in that we investigate spillovers

caused by city network externalities. In a city network system, the house price of a city is, to some extent, influenced

by the agglomeration economies of accessible neighbouring cities, because the amenity and productivity advantages

of the specific city, which are the two fundamental components of house prices, can be somewhat “borrowed” from

its neighbours. The network spillovers justify the assumption of exogenous interactions in spatial econometrics

which has been overlooked in applied studies. Hence, we argue that, when analysing house price spillovers, the SLX

and SDEM models are attractive alternatives to SAR-type models.

The empirical results based on a cross-sectional data set of Jiang-Zhe-Hu-Wan area in eastern China strongly

support our assertion. The SLX model, which incorporates exogenous interaction, proves the presence of network

spillovers among geographically adjacent housing markets; the magnitude of spillover effect generated by urban pop-

ulation density is comparable to that of the direct effect on its own house prices. Besides, another important mecha-

nism that causes the interdependence of house price is related to common shocks, which play the role on the

economic space considering both geographical distance and economic similarity. On the other hand, the pure house

price interaction process, which directly motivates SAR-type models and produce global spillovers, is not a source

for cross-city spillovers, as demonstrated by the results of SAR and SDM models. Thus, one should be highly cautious

about applying the SAR-type models to the housing markets.

In conclusion, network spillovers of agglomeration economies are noticeable in the formation of house prices,

which is in line with findings based on the measure of market potential, such as Partridge et al. (2009). This deepens

our understanding about the cross-city variation of house prices: the prosperity of a city's house price should be

attributed not only to its local characteristics, but also to its proximity to prosperous markets. Furthermore, This

paper is also relevant to the increasing studies that focus on “borrowed size,” which is currently used to explain the

faster growth of small and medium-sized cities in Europe (Meijers et al., 2016). We provide new evidence of “bor-

rowing size” effect from the perspective of housing markets in a fast growing country, China. The results also have
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broad implications for the making of regional policies in China. To narrow spatial inequality, the policy for the rise of

laggard, peripheral cities should not only focus on their collaboration and integration with central cities. It is also

important to cultivate a few vibrant, thriving growth poles in the neighbouring peripheral area to enhance the net-

work externalities.
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APPENDIX A.

TABLE A1 Moran's I test of housing markets based on economic distance

Autocorrelation of house
prices

Cross-correlation with
population density

Cross-correlation with
land area

Neighbours within 0.8

radius

0.6338*** (0.001) 0.3310*** (0.001) 0.3081*** (0.001)

Neighbours in 0.8–1.6
radius

0.5454*** (0.001) 0.2246*** (0.001) 0.1992*** (0.001)

Neighbours in 1.6–2.4
radius

0.3434*** (0.001) 0.1408*** (0.001) 0.1287*** (0.004)

Neighbours in 2.4–3.2
radius

−0.0238* (0.082) −0.0086 (0.297) −0.0249** (0.023)

Notes: the p-values drawn from the distribution of 999 simulations of spatially random distributed data are reported in the

parentheses. ***, **, *indicate significance level at 1%, 5%, 10%, respectively.
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Resumen. Los spillovers entre ciudades para los mercados de la vivienda se suelen modelizar mediante los modelos

clásicos de autorregresión espacial, que en la práctica suelen sufrir problemas de identificación. Este artículo investiga

los spillovers del precio de la vivienda entre las ciudades que se derivan de las externalidades de la red de ciudades, en

las que las conexiones de una ciudad con otras ciudades de la red urbana crean la prima externa del precio de la

vivienda mediante el aumento de la productividad y servicios. Utilizando un conjunto de datos transversales para

un sistema urbano en el este de China, se presentan pruebas significativas de los spillovers positivos de la red

mediante la aplicación del desfase espacial del modelo X y el modelo espacial de error de Durbin. Además, se

demuestra que las perturbaciones comunes son también responsables de la dependencia entre ciudades de los

precios de la vivienda.

抄録: 住宅市場間の都市間のスピルオーバーは、通例、古典的な空間的自己回帰モデルでモデル化されるが、大抵

は実用すると同定問題が発生する。都市ネットワークにおける都市と都市のつながりは生産性とアメニティの利

益を介して外部住宅価格プレミアム生み出すが、本稿では、その都市ネットワークの外部性から生じる都市間の
住宅価格スピルオーバーを検討する。中国東部の都市システムから得られた横断的データセットを使用し、Xモ
デルの空間ラグモデルおよび空間ダービン誤差モデルを用いてネットワークの正のスピルオーバー有意に示すエビ
デンスを提示する。さらに、都市間の住宅価格依存性がショックの原因であることが判明した。
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