

Delft University of Technology

If it ain't broke, don't fix it
Optimizing the predictive aircraft maintenance schedule with Remaining Useful Life
prognostics
de Pater, I.I.

DOI
10.4233/uuid:110bc70f-0e08-431d-bd41-00293f04ecee
Publication date
2024

Citation (APA)
de Pater, I. I. (2024). If it ain't broke, don't fix it: Optimizing the predictive aircraft maintenance schedule with
Remaining Useful Life prognostics. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:110bc70f-0e08-431d-bd41-00293f04ecee

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:110bc70f-0e08-431d-bd41-00293f04ecee
https://doi.org/10.4233/uuid:110bc70f-0e08-431d-bd41-00293f04ecee

IF IT AIN’T BROKE, DON’T FIX IT

OPTIMIZING THE PREDICTIVE AIRCRAFT MAINTENANCE
SCHEDULE WITH REMAINING USEFUL LIFE PROGNOSTICS

ingeborgdepate
Line

ingeborgdepate
Line

IF IT AIN’T BROKE, DON’T FIX IT

OPTIMIZING THE PREDICTIVE AIRCRAFT MAINTENANCE
SCHEDULE WITH REMAINING USEFUL LIFE PROGNOSTICS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, Prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on
Thursday 11 April 2024 at 15:00 o’clock

by

Ingeborg Irene DE PATER

Master of Science in Econometrics and Management Science, Erasmus University
Rotterdam, The Netherlands

born in Utrecht, The Netherlands

ingeborgdepate
Line

ingeborgdepate
Line

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. M. Mulder, Delft University of Technology, promotor
Dr. M.A. Mitici, Utrecht University, copromotor

Independent members:

Prof. dr. J. Arts University of Luxembourg, Luxembourg
Prof. dr. D. Huisman Erasmus University Rotterdam
Prof. dr. ir. T. Tinga University of Twente
Prof. dr. ir. J.C.F. de Winter Delft University of Technology
Dr. R.M. Groves Delft University of Technology
Prof. dr. ir. J.M. Hoekstra Delft University of Technology, reserve member

Keywords: Predictive maintenance, Remaining Useful Life prognostics, Aircraft
maintenance, Maintenance scheduling, Optimization

Printed by: Ipskamp Printing

Cover by: Ingeborg de Pater, with the help of deepai.com

Copyright © 2024 by I.I. de Pater

ISBN:

An electronic copy of this dissertation is available at
https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Predicting the future is a very difficult business indeed.

J.K. Rowling,
Harry Potter and the prisoner of Azkaban

CONTENTS

Acknowledgements xiii

Summary xv

1. Introduction 1
1.1. Challenges for predictive aircraft maintenance 3

1.1.1. Challenge 1: Developing accurate RUL prognostics for aircraft systems 3
1.1.2. Challenge 2: Quantifying the uncertainty of the RUL prognostics . . . 6
1.1.3. Challenge 3: Optimizing the aircraft maintenance schedule with RUL

prognostics . 8
1.2. Approach, outline, and scope of this thesis . 10

1.2.1. Approach for Challenge 1: Developing accurate RUL prognostics for
aircraft systems. 10

1.2.2. Approach for Challenge 2: Quantifying the uncertainty of the RUL
prognostics . 11

1.2.3. Approach for Challenge 3: Optimizing the aircraft maintenance sched-
ule with RUL prognostics . 13

2. Health indicators and point RUL prognostics with a LSTM autoencoder 23
2.1. Introduction . 24
2.2. Methodology - health indicators with a LSTM autoencoder 26

2.2.1. LSTM-AE with local Luong attention 27
2.2.2. Constructing a health indicator with the reconstruction errors of the

LSTM-AE . 31
2.3. Case study - aircraft engines . 32

2.3.1. Aircraft engines in the N-CMAPSS data set 32
2.3.2. Data preprocessing . 32
2.3.3. Illustration of N-CMAPSS data set . 34
2.3.4. Metrics to evaluate the health indicators 34

2.4. Results - health indicator for aircraft engines 36
2.4.1. Hyperparameters of LSTM-AE . 36
2.4.2. Sensor selection for constructing a health indicator 36
2.4.3. Health indicators of the test engines . 38
2.4.4. Comparison with other autoencoders 38

2.5. Methodology - Online RUL prognostics using similarity-based matching . . 41
2.5.1. Health state division using Chebyshev’s inequality 41
2.5.2. Similarity-based matching method for RUL prognostics 41

2.6. Results - Online RUL prognostics for aircraft engines 44
2.6.1. Health state division and RUL prognostics 44

VII

VIII CONTENTS

2.6.2. Comparison with the RUL prognostics of other autoencoders 46
2.6.3. Comparison with other, supervised learning methods 47
2.6.4. Impact of the number of available labelled data samples on the RUL

prognostics . 48
2.7. Conclusion . 49

3. An improved weight initialization strategy for neural networks, applied to
point RUL prognostics 55
3.1. Introduction . 56
3.2. Methodology - Weight initialization in the last layer of the neural network . 58

3.2.1. Neural network for a regression problem 58
3.2.2. Constraints on the weights of the last layer of the neural network . . 60
3.2.3. Lagrange relaxation of the constrained linear regression problem . . 63
3.2.4. Procedure for the weight initialization of a neural network 64
3.2.5. Assuming the weights must have zero mean 65

3.3. Case study and results for regression problems 65
3.3.1. Benchmark strategies . 67
3.3.2. Comparison of different weight initialization strategies 67
3.3.3. Initialization of the weights with only a part of the training set 70
3.3.4. Weight initialization with a mean weight of zero 71

3.4. Case study and results for classification problems 72
3.4.1. Case study with the CIFAR-100 dataset 74
3.4.2. Results for the CIFAR-100 dataset with training a neural network

from scratch . 75
3.4.3. Results for the CIFAR-100 dataset with transfer learning 77

3.5. Conclusions . 78
Appendices . 80

4. Model-based probabilistic RUL prognostics with clustering 91
4.1. Introduction . 92
4.2. Methodology - Online model-based RUL prognostics 94

4.2.1. Step 1: Constructing a health indicator and defining the health stage 94
4.2.2. Step 2: Selecting a degradation model for a component 96
4.2.3. Step 3: Online clustering of (non-failed) components 99
4.2.4. Step 4: RUL prognostics . 100

4.3. Case study and results for cooling units (CUs) 103
4.3.1. Health indicator for the CUs . 103
4.3.2. Clusters for the health indicators . 106
4.3.3. Cluster 1 - Linear degradation model 110
4.3.4. Cluster 2 - Exponential degradation model 110
4.3.5. RUL estimation . 111

4.4. Conclusions . 113

5. Novel metrics to evaluate probabilistic RUL prognostics 121
5.1. Introduction . 122

CONTENTS IX

5.2. Probabilistic RUL prognostics for turbofan engines 123
5.2.1. Metrics often used to evaluate point RUL prognostics 126

5.3. Novel metrics to evaluate probabilistic RUL prognostics 127
5.3.1. Continuous Ranked Probability Score (CRPS) 127
5.3.2. Weighted CRPS (CRPSW) . 129
5.3.3. α-Coverage . 129
5.3.4. Reliability Score (RS) . 130

5.4. Results with the novel metrics . 132
5.4.1. RUL prognostics for individual engines 134

5.5. Conclusions . 135

6. Alarm-based maintenance scheduling with imperfect point RUL prognostics 139
6.1. Introduction . 140
6.2. RUL prognostics using a Convolutional Neural Network (CNN) 142

6.2.1. Architecture of the CNN . 142
6.3. Methodology - Maintenance scheduling with imperfect RUL prognostics . . 146

6.3.1. Problem description . 146
6.3.2. Alarm-based maintenance scheduling 148
6.3.3. Optimizing the alarm policy with a genetic algorithm 151

6.4. Case study and results - Engine maintenance scheduling 152
6.4.1. Imperfect RUL prognostics for turbofan engines 152
6.4.2. Alarm-based maintenance scheduling for aircraft engines 154
6.4.3. Maintenance with perfect RUL prognostics vs. imperfect RUL prog-

nostics . 158
6.4.4. Sensitivity analysis - hyperparameters of the genetic algorithm 161

6.5. Conclusions . 161

7. Maintenance scheduling with probabilistic RUL prognostics 167
7.1. Introduction . 168
7.2. Methodology - Probabilistic RUL prognostics for turbofan engines 170

7.2.1. Description of the dataset . 170
7.2.2. Architecture of the Convolutional Neural Network 171
7.2.3. Monte Carlo dropout . 172

7.3. Results - Probabilistic RUL prognostics for aircraft turbofan engines 174
7.3.1. Hyperparameter tuning . 175
7.3.2. Mean estimated RUL . 175
7.3.3. PDF of the RUL prognostics . 176

7.4. Methodology - Maintenance scheduling . 178
7.4.1. Single-component maintenance planning 178
7.4.2. Multi-component maintenance planning 180

7.5. Results - maintenance planning for turbofan engines 183
7.5.1. Probabilistic RUL prognostics for the maintenance planning 184
7.5.2. Single-engine replacement planning 186
7.5.3. Multi-engine replacement planning . 188
7.5.4. Long-term performance of different maintenance strategies 192

7.6. Conclusions . 196

X CONTENTS

8. Maintenance scheduling with probabilistic RUL prognostics and a limited stock
of spares 201
8.1. Introduction . 202
8.2. Problem description . 205

8.2.1. Multi-component aircraft system . 205
8.2.2. Maintenance slots . 205
8.2.3. Repairable components . 206
8.2.4. Probabilistic RUL prognostics . 206
8.2.5. Maintenance scheduling objective . 206
8.2.6. Rolling horizon maintenance scheduling 207

8.3. Probabilistic RUL prognostics for aircraft cooling units 208
8.3.1. Aircraft cooling units (CUs) . 209
8.3.2. Health indicator for CUs . 209
8.3.3. Methodology - RUL prognostics for CUs 210
8.3.4. Results - RUL prognostics for CUs . 213

8.4. Methodology - Predictive maintenance scheduling model 214
8.5. Results - Predictive maintenance scheduling for cooling units 217

8.5.1. k-out-of-N system of CUs . 217
8.5.2. Maintenance scheduling . 218
8.5.3. Computation time vs size of aircraft fleet 222

8.6. Predictive maintenance vs. corrective and preventive maintenance 223
8.7. Conclusion . 226

9. A stochastic program for maintenance scheduling under endogenous uncer-
tainty with probabilistic RUL prognostics 231
9.1. Introduction . 232
9.2. Problem formulation - predictive maintenance scheduling 234

9.2.1. Data-driven RUL prognostics . 234
9.2.2. Constraints for the maintenance scheduling 234
9.2.3. Maintenance costs . 234

9.3. Multi-stage stochastic integer linear program for predictive maintenance
scheduling . 235
9.3.1. Scenario tree . 235
9.3.2. Model formulation . 236
9.3.3. Endogenous uncertainty and non-anticipativity 240
9.3.4. Totally unimodular constraint matrix 241

9.4. Nested Benders decomposition and a novel clustering algorithm 241
9.4.1. Nested Benders decomposition . 242
9.4.2. A dynamic clustering algorithm under endogenous uncertainty . . . 243

9.5. Case study and results - Maintenance scheduling of aircraft engines 247
9.5.1. Probabilistic RUL prognostics for aircraft engines 247
9.5.2. Maintenance scheduling - Description of the parameters 248
9.5.3. Different solution strategies . 249
9.5.4. Numerical results: Single engine maintenance scheduling 251
9.5.5. Numerical Results: Multi-engine maintenance scheduling 252

CONTENTS XI

9.6. Conclusions . 255
Appendices . 257

10.Conclusion 273
10.1.Review of the predictive maintenance challenges 273

10.1.1. Review of Challenge 1 . 273
10.1.2. Review of Challenge 2 . 274
10.1.3. Review of Challenge 3 . 275

10.2.Main conclusions . 276
10.3.Recommendations for future research . 278

10.3.1. Recommendations regarding the RUL prognostics 278
10.3.2. Recommendations regarding the maintenance scheduling 278

Curriculum Vitæ 283

List of Publications 285

ACKNOWLEDGEMENTS

During this PhD, my aim was to predict the future, or, put less poetic, to predict the
future failure times of aircraft systems. As I could have known from the Harry Potter
books, predicting the future is not an easy undertaking, and I did not even have magic to
help me. However, I also learned from the Harry Potter books that I did have something
far more valuable than magic: Colleagues, friends and family. Thank you all for your help
and support, because without you, this thesis would never have seen the light of day.

Above all, I would like to thank my supervisor Mihaela Mitici. Your guidance, enthusi-
asm and patience made my PhD a very enjoyable experience. You taught me everything
on conducting research, from finding new research directions to managing the review
process. Moreover, you taught me all the ins and outs of academic writing by spending
days writing papers with me. I really appreciate all the time and effort you put into mak-
ing my PhD a success. Equally important, I also enjoyed working with you on a personal
level very much. You cared for me and the other PhD students not just as researchers,
but as humans. You always encouraged me with your kind words if a paper was turned
down, if I was stuck in coding, or completely fed up with writing (never my favourite ac-
tivity). I will miss our small, “gezellige” chats during lunch and over coffee. Thank you
very much for all your support over the past four years.

Second, I would like to thank my promotor, Max Mulder. You have the busiest schedule
I have ever seen, where days with meetings from 9 am to 5 pm are no exception. But
despite this, you always made time for me when I needed your guidance. I enjoyed our
friendly chats with the good coffee and tea in your office, and I appreciate your friendly
and always encouraging words. Also for you, my personal well-being came in the first
place, and my research only in the second place. I appreciated that very much. During
the last phase of my PhD, I was very happy with your efficient help with both the writing
of the thesis and with all the bureaucracy.

Even though I enjoyed my PhD in itself very much, it were my colleagues who made it a
truly great experience. I would like to thank all (former) PhD students and postdocs from
ATO. Marie, for learning me how to boulder, Mahdi, for a huge supply of saffron and our
friendly chats, Hao, for brightening my work day with our little chats, Simon, for always
finding new mathematical events to which we could go together, Mike, for all your tips
on hiking and nature, Matt, for sharing your great selection of alcohol with us, Malte, for
all your nice birthday parties, Chengpeng, for sharing your passion for drones, George,
for cheering me up with your fantastic outfits, Ilias, for sharing your enthusiasm about
games, Thomas, for taking over, not entirely voluntarily, my ATO seminars, Iordanis, for
being such a nice person to hang out with, Prashant, for learning me about the Indian
cuisine, Wenhua, for introducing me to the best Chinese restaurant I have ever been to,
and Gulcin, for all your great sweets from Turkey. My special thanks go to Juseong: I re-
ally appreciate all your help during the beginning of my PhD, and I always enjoyed going

XIII

XIV ACKNOWLEDGEMENTS

to conferences together. I would also like to thank all our visiting PhD students and the
(former) staff of ATO: Marta, for our “gezellige” chats, Paul, who taught me nearly every-
thing I know about aircraft, Marcia, Alexei, Elise, Alessandro, Felipe, Henk, Vis, Bruno
and Nathalie.

In Utrecht, I would like to thank Diogo, for being such a fun and relaxed person to
hang around with, and Nishant. I really enjoyed working together with, and learning
from, both of you. I would also like my colleagues Jie and Jiayan; I enjoyed sharing our
office together very much.

Talking to my friends outside my PhD about everything except my PhD, gave me the
energy I needed to continue my research. Thank you Annemarijn, for our wonderful
board year together, Iggy, for being such a great flatmate, Emilie, for celebrating my suc-
cesses and always telling me to be more confident and less modest, Kathelijne, for be-
ing my oldest friend, Joost, for I wish you could have added this thesis to your amazing
book collection, Bernice, Aletta, Eline, Juultje, Marcella, Naomi, Solveig, Dionne, Mia,
Maeve, Simone, Michelle, Olivia, Lisa, David, Joshua, Floris, Laura en Lucas, Susan, Tal-
itha, Laura, Caro, all my other friends from Devi, and everyone I (hopefully none) acci-
dentally forget.

Then, I would like to thank my family. First, I would like to thank my parents, for al-
ways wishing the best for me, for always cooking for me like I have not eaten in days, and
for giving me a wonderful childhood full of books, cooking, playing, exploration, amaz-
ing holidays, juggling, seafood and, most importantly, endless amounts of love. And, of
course, I would like to thank my sister Sophie, for being an amazing play mate and role
model when I grew up, and for being fully confident in my capability to complete a PhD.
It makes me very happy to know that you will always be there for me if I need you.

Last, but not least, I would like to thank Joost. You are always there for me, and by
having so much confidence in me, I also get more confidence in myself. We have great
times together, and do so many fun things, like going on amazing holidays, long walks
and talks, visiting the zoo, cooking and eating with friends, and simply watching our
favourite series on the couch. I predict that in the future, when we are both old and
wrinkled, we will still visit Blijdorp together!

SUMMARY

Predictive aircraft maintenance is a maintenance strategy that aims to reduce the num-
ber of failures, the number of inspections, the number of maintenance tasks and the air-
craft maintenance costs. Aircraft are equipped with health monitoring systems, where
sensors continuously measure the condition of the aircraft components. In predictive
maintenance, these sensor measurements are used to estimate the time left until the
failure of these components, called the Remaining Useful Life (RUL). These RUL prog-
nostics are subsequently used to optimize the aircraft maintenance schedule. There
are several challenges that complicate the implementation of predictive aircraft main-
tenance in practice. In this thesis, the three main challenges are addressed.

Challenge 1: Developing accurate RUL prognostics for aircraft systems.
The first challenge is to accurately estimate the RUL for aircraft systems. This is chal-

lenging because the aircraft are operated under highly-varying operating conditions.
Moreover, since most aircraft systems undergo preventive maintenance, there are only
very few failure instances available. Most data samples are unlabelled, i.e., the sensor
measurements of a flight are available, but the corresponding true RUL is unknown.

In Chapter 2, these unlabelled data samples from non-degraded aircraft systems are
used to train a Long Short-term Memory autoencoder, an unsupervised learning neu-
ral network. The errors of this autoencoder are used to create a health indicator for the
aircraft systems. The RUL is subsequently estimated from the health indicator with a
similarity-based matching method. This approach is used to estimate the RUL of air-
craft engines, for which only six failure instances are available. Accurate RUL prognos-
tics are obtained with a Root Mean Square Error (RMSE) of 2.67 flights only, which is
19% lower than when using a supervised learning neural network. Moreover, integrating
the highly-varying operating conditions of the aircraft in the autoencoder improves the
monotonicity of the health indicators by 97%, which is statistically significant.

Training a neural network to accurately estimate the RUL is very time-consuming. In
Chapter 3, the training time is significantly reduced by developing a new weight initial-
ization method for the weights in the last layer of a neural network. This new initializa-
tion methods minimizes the initial training loss, while constraining the variance of the
weights. This method is applied in a Convolutional Neural Network (CNN), that esti-
mates the RUL of aircraft engines. With the proposed method, the training time is sig-
nificantly reduced: 34% fewer epochs are needed to reach the same validation loss as
the best benchmark initialization strategy (Kaiming initialization). Moreover, the new
method, combined with transfer learning, also accelerates the training of classification
neural networks commonly used in image recognition.

XV

XVI SUMMARY

Challenge 2: Quantifying the uncertainty of the RUL prognostics.
The second challenge is to develop probabilistic RUL prognostics, i.e., RUL prognostics

with quantified uncertainty. In Chapter 4, the Probability Density Function (PDF) of
the RUL of aircraft cooling units is estimated. First, several potential health indicators
for the cooling units are evaluated. With the best health indicator, aircraft components
are identified as healthy or unhealthy with Chebyshev’s inequality. Once a cooling unit
is diagnosed as unhealthy, the degradation model is identified using a dynamic time-
warping clustering approach. Last, the PDF of the RUL is estimated with this degradation
model and particle filtering. All cooling units are diagnosed as unhealthy between 40
and 2 flights before failure, at which point the particle filtering method already provides
accurate RUL prognostics with a RMSE of only 4.04 flights. Last, the inner workings of
the particle filtering method are explainable, and only a few failure instances are needed
to estimate the (hyper)parameters of this method.

There are many metrics to evaluate the accuracy of point RUL prognostics, i.e., RUL
prognostics without quantified uncertainty. However, there is a lack of metrics to eval-
uate probabilistic RUL prognostics. In Chapter 5, four new metrics to evaluate prob-
abilistic RUL prognostics in the form of a PDF are proposed. The Continuous Ranked
Probability Score (CRPS) and the weighted CRPS evaluate the accuracy and sharpness
of a single probabilistic RUL prognostic. The α-Coverage and the Reliability Score eval-
uate the reliability of multiple probabilistic RUL prognostics. These metrics are used to
evaluate the probabilistic RUL prognostics of aircraft engines, which are estimated with
a CNN with Monte Carlo dropout. It is shown that the four proposed metrics together
capture the accuracy, sharpness and reliability of the probabilistic RUL prognostics well.

Challenge 3: Optimizing the aircraft maintenance schedule with RUL prognostics.
The last step, and challenge, in predictive maintenance is to optimize the maintenance

schedule for a fleet of aircraft with the RUL prognostics, while integrating several aspects
of aircraft maintenance: The limited capacity, the limited number of spare components,
the limited maintenance opportunities and the uncertainty of the RUL prognostics.

In Chapter 6, the aircraft maintenance schedule is optimized with imperfect point RUL
prognostics without quantified uncertainty. An alarm is triggered for a system if its RUL
prognostic falls below an alarm threshold several flights in a row. Once an alarm is trig-
gered, a safety factor is used to schedule maintenance, to avoid failures due to errors in
the RUL prognostics. With the alarms, the frequent rescheduling of maintenance tasks is
prevented. The alarm threshold and the safety factor are optimized with a genetic algo-
rithm. This method is applied to plan maintenance for 20 aircraft, each equipped with
2 aircraft engines. The RUL of the engines is estimated with a CNN. Due to the safety
factor, on average only 1.6% of the maintenance tasks take place after the engine failed,
as estimated with a Monte Carlo simulation of the long-term maintenance planning.

Probabilistic RUL prognostics are instead used to optimize the aircraft maintenance
schedule in Chapter 7. The renewal-reward process is used to determine the optimal
maintenance moment for a single aircraft system. The maintenance planning for the
fleet of aircraft is subsequently optimized with a linear program. In the case study, main-
tenance is planned for a fleet of 50 aircraft, each equipped with one aircraft engine. A
CNN with Monte Carlo dropout is used to estimate a PDF of the RUL. The optimal main-

XVII

tenance moment of the engines is usually close to the lower bound of the 99% confidence
interval of the RUL prognostic, i.e., when the probability of failure is still small. There
are therefore on average only 0.003 engines failures per ten years in the Monte Carlo
simulation, while there are on average 61.6 engine failures per ten years in a preventive
maintenance strategy without RUL prognostics.

The problem is extended by considering a limited number of spare components and
a multi-component aircraft system with redundant components in Chapter 8. Specifi-
cally, a linear program is used to optimize the maintenance schedule for aircraft cooling
systems, where each cooling system consists of four cooling units. The PDF of the RUL
of these cooling units is estimated with particle filtering, as in Chapter 4. With the RUL
prognostics, the expected number of maintenance tasks in five years decreases from 135
to 106, making the maintenance more efficient.

Last, the initial aircraft maintenance schedule and all possible future updates of this
schedule are jointly optimized with a multi-stage stochastic program in Chapter 9. This
stochastic program is solved with the nested Benders decomposition method. To ac-
celerate this method, a new clustering algorithm is developed based the endogenous
(decision-dependent) uncertainty in the problem. In the case study, the maintenance
planning for up to five aircraft engines and a planning horizon of four weeks (28 days/
stages) is optimized. With the stochastic program, the expected costs are up to 0.89%
lower compared to the upper bound solution. Moreover, the clustering algorithm signif-
icantly reduces the computational time. For five engines, the same number of iterations
of the nested Benders decomposition is executed 25 times faster with the clustering al-
gorithm, than without the clustering algorithm.

In Chapter 7 and 8, a predictive maintenance strategy (with RUL prognostics) is com-
pared with a preventive maintenance strategy (without RUL prognostics). The costs with
predictive maintenance are 53% (Chapter 7) and 30% (Chapter 8) lower than with pre-
ventive maintenance. In Chapter 6 and 7, a maintenance strategy with the imperfect RUL
prognostics from the RUL prognostic models is compared with a maintenance strategy
with perfect RUL prognostics without any uncertainty. With perfect RUL prognostics,
the costs decrease by 19.5% (Chapter 6) and 14% (Chapter 7). Efforts to further improve
the RUL prognostic models are thus worthwhile.

Conclusions and recommendations for future research.
This thesis provides an overall framework for predictive aircraft maintenance, that de-

scribes i) how to estimate the RUL from the sensor measurements, ii) how to quantify
the uncertainty of the RUL prognostics and iii) how to use these RUL prognostics to op-
timize the maintenance planning. Future work could extend this framework in several
ways. First, the RUL prognostics can be improved by making explainable RUL prognostic
models, that can be trained without any failure instances. Second, the proposed main-
tenance planning models can be extended with the maintenance planning for other air-
craft systems, while jointly optimizing the flight schedule.

1
INTRODUCTION

In the early days of aviation, flying was a dangerous endeavour. Only three days
before the first successful flight in history by Orville Wright, his brother Wilbur
Wright crashed in the dunes in the world’s first powered aircraft accident [1]. Flying
was dangerous for a number of reasons: Untrained pilots, unsafe aircraft designs
and a lack of aircraft maintenance [1, 2]. Following the “if it ain’t broke, don’t fix
it” paradigm, maintenance was usually only performed after parts of the aircraft had
failed [2]. This is called corrective maintenance.

During the two world wars, the safety of flying rapidly improved due to,
amongst others, the mass production of aircraft, research on aircraft safety and
new aircraft designs [1]. New maintenance strategies contributed to this increased
safety. Specifically, aircraft maintenance transitioned from corrective maintenance to
preventive maintenance, where the aim is to maintain a component before it fails
[2]. Aircraft maintenance soon became a mixture of three types of maintenance:
Hard time preventive maintenance, where a component is always replaced after a
fixed amount of time, on condition preventive maintenance, where components are
frequently inspected and only replaced when there is degradation, and condition
monitoring maintenance, where sensors detect degradation/failures [3–5]. These
three maintenance processes have become the dominant maintenance practice.

In current practice, aircraft systems undergo frequent inspections during which
their degradation is assessed [6, 7]. A system is then only preventively maintained if
the degradation exceeds a certain threshold. Other life-limited parts of the aircraft
are preventively replaced after a fixed operating time [6, 7]. Though these frequent
inspections and time-based replacements decrease the number of failures, they also
make aircraft maintenance relatively inefficient. Approximately 70% of the aircraft
inspections do not find any fault [4]. And with the time-based replacements, some
of the remaining life is wasted. For instance, with the time-based replacements of
the life-limited aircraft engine parts, between 3% to 15% of the remaining life is
usually wasted [6]. This makes aircraft maintenance very expensive. In 2021, the
average maintenance cost per flight hour per aircraft was 1,340 dollar, and the total
costs of Maintenance, Repair and Overhaul (MRO) for the aircraft made up for on
average 11.2% of the total airline operational costs [8].

Even with these expensive frequent inspections and time-based replacements,

1

1

2 1. INTRODUCTION

Figure 1.1.: A schematic overview of the predictive aircraft maintenance process.

unexpected failures of aircraft components still occur. These failures usually do not
jeopardize the safety of operating the aircraft, due to the fail-safe design of, and
redundancies in, most aircraft systems [9, 10]. However, aircraft are not allowed to
fly with certain failed components, which results in unscheduled maintenance [10,
11]. Between one third to one fifth of an aircraft’s downtime due to maintenance
comes from unplanned maintenance [4], which may lead to aircraft delays (costs:
10,000 dollar per hour or more [4]), and even flight cancellations, (costs: 100,000
dollar or more [4]) [10]. Not only scheduled maintenance with inspections and
time-based replacements, but also unscheduled maintenance is thus very expensive.

Overall, the current aircraft maintenance practice is expensive and contains
a difficult trade-off: More frequent inspections and earlier replacements make
aircraft maintenance less efficient (which is costly), but fewer inspections and later
replacements cause more unexpected failures (which is also costly) [5]. This trade-off
can be mitigated by a new maintenance process, called predictive maintenance.

Figure 1.2.: An overview of the characteristics of corrective, preventive and predictive
aircraft maintenance.

1.1. CHALLENGES FOR PREDICTIVE AIRCRAFT MAINTENANCE

1

3

Aircraft are equipped with a health monitoring system, where sensors continuously
measure the condition of the aircraft components [4]. The latest generation of
aircraft contain around 300,000 sensors [5]. In predictive maintenance, these
sensor measurements are used to estimate the time left until the failure of an
aircraft component, the Remaining Useful Life (RUL) [4]. These RUL prognostics
are then used to optimize the aircraft maintenance schedule, Figure 1.1. This
approach is efficient since components are maintained just before failure, while only
few inspections are needed. And due to the continuous monitoring, predictive
maintenance reduces the number of failures in an aircraft [4]. Although predictive
aircraft maintenance is very promising, there are still several obstacles that
complicate its implementation in practice. The main challenges are discussed in
more detail below. Figure 1.2 illustrates the characteristics of corrective, preventive
and predictive aircraft maintenance.

1.1. CHALLENGES FOR PREDICTIVE AIRCRAFT

MAINTENANCE

1.1.1. CHALLENGE 1: DEVELOPING ACCURATE RUL PROGNOSTICS FOR

AIRCRAFT SYSTEMS

The first step in predictive maintenance is to estimate the RUL of a system from its
sensor measurements, see Figure 1.1. There are many studies that estimate the RUL
of a variety of systems [12, 13], such as batteries [14–18], bearings [19–24], milling
machines [25, 26] and wind turbines [27, 28]. For instance, the RUL of batteries is
estimated from temperature, voltage, current, capacity and resistance measurements
[14–18], while the RUL of bearings is estimated from vibration measurements [19–24].
Accurately estimating the RUL of aircraft systems, however, is still challenging.

Many studies have successfully used a purely data-driven approach to estimate
the RUL. Within the data-driven approach, the supervised learning models are very
popular. In a supervised learning model, the RUL is directly estimated from the
sensor measurements. For instance, some studies employ random forests to estimate
the RUL directly from the sensor measurements [29, 30]. Even more popular are
supervised learning neural networks, see Figure 1.3a. For instance, in [23, 24, 31–33],
the sensor measurements are used as input in a Convolutional Neural Network,
which directly outputs an estimate of the RUL. Similar, in [34–36], a Long Short-Term
Memory Neural Network is used for directly estimating the RUL, while in [37–39], a
Gated Recurrent Unit Neural Network is employed instead.

However, many labelled data samples are needed to train an accurate supervised
learning model. For aircraft systems, many sensor measurements are available, due
to the modern aircraft health monitoring systems. For instance, an aircraft engine
generates up to one terabyte of data during just a single flight [40–42]. However,
due to preventive maintenance, most aircraft systems are already maintained far
before failure. This is especially the case for safety-critical aircraft systems. For
these systems, the RUL cannot be observed and remains unknown. These systems
therefore have many unlabelled, censored data samples, i.e., samples with the sensor

1

4 1. INTRODUCTION

(a) Supervised learning neural network. (b) Unsupervised learning neural network.

Figure 1.3.: A schematic overview of a supervised learning neural network and an
unsupervised learning neural network for estimating the RUL.

measurements of a flight, but without the corresponding RUL. These unlabelled data
samples cannot be used to train a supervised learning model. For most aircraft
systems, only very few failure instances are available i.e., sensor measurements that
are gathered from the installation of the system until failure. Consequently, labelled
data samples, with the sensor measurements of a flight and the corresponding true
RUL, are sparse. Only these labelled data samples can be used to train a supervised
learning model [43]. Most supervised learning models proposed in literature for
estimating the RUL are therefore not suitable for most aircraft systems.

Instead, for most aircraft systems, data-driven unsupervised learning models are
more suitable to estimate the RUL. An unsupervised learning model is a model that
can be trained with the abundantly available unlabelled data samples. To develop
RUL prognostics, an unsupervised learning model is trained with the unlabelled data
samples from non-degraded systems only. As such, the errors of these models are
large for degraded systems [44]. A well-known unsupervised learning model that is
often employed in predictive maintenance, is the autoencoder, see Figure 1.3b. An
autoencoder is trained to first encode the sensor measurements (i.e., to reduce the
dimension) and then to decode the sensor measurements again (i.e., to reconstruct
the sensor measurements from the reduced dimension). The reconstruction errors
are subsequently used to detect increasing degradation and/or to estimate the RUL
[45–51]. Another unsupervised learning method employed in predictive maintenance
is Principal Component Analysis (PCA), where the unlabelled data samples are used
to estimate the weights of the PCA. The difference between the principal components
of the sensor measurements and the real sensor measurements is subsequently used
to detect and diagnose faults in systems [52–55].

However, it is not straightforward to estimate the RUL of aircraft systems with an
unsupervised learning model. First, the measurements of multiple sensors around
an aircraft system are recorded at a high-frequency during long flights. Each
flight generates a long, multivariate time-series of sensor measurements. Standard
unsupervised learning models, such as PCA or an autoencoder, are not suitable to
analyse long multivariate time-series [56, 57]. Second, aircraft are operated under

1.1. CHALLENGES FOR PREDICTIVE AIRCRAFT MAINTENANCE

1

5

highly-varying operating conditions, such as varying altitude and speed, which affect
the sensor measurements. The variations in the sensor measurements due to
varying operating conditions do not contain any information on the degradation in
a system, and are therefore regarded as “noise” in predictive maintenance [12]. With
an unsupervised learning model, the noise in the measurements due to the varying
operating conditions might lead to a false diagnosis of a healthy system as degraded.
As such, one of the major challenges in predictive maintenance is to develop RUL
prognostics that are robust to varying operating conditions by distinguishing the
degradation signal from the noise caused by the varying operating conditions [43,
58, 59]. Most studies that address this challenge ([60–62]) use a supervised learning
model, which is not suitable for aircraft systems with just a few failure instances.

Alternatively, some studies estimate the RUL using a model-based approach instead
of a data-driven approach [16, 17, 20–22, 26, 63–67]. In a model-based approach,
it is assumed that the evolution of the degradation over time follows a certain
degradation model. For some components, the degradation in a system is directly
measured. With this measured degradation, the parameters of the degradation model
are estimated and the degradation is propagated over time to estimate the RUL. For
instance, for aircraft fuselage panels, the crack size in the panel directly represents
the degradation in the panel [63–65], see Figure 1.4. The growth of the crack size
follows Paris’ law, a physical degradation model [63–65]. For other components,
the degradation cannot be directly measured. Instead, the sensor measurements
are transformed in a health indicator, which represents the degradation in the
component. This health indicator in turn is used to estimate the parameters of the
degradation model and to estimate the RUL. For instance, for bearings, the Root
Mean Square (RMS) of the vibration measurements is often employed as health
indicator, while an exponential degradation model is assumed [20, 21].

Figure 1.4.: Crack size in the fuselage. This picture is from [68].

For a model-based approach, only few failure instances are needed to estimate
the model (hyper)parameters. As such, this approach is very suitable to estimate
the RUL of aircraft systems. However, applying this approach to complex aircraft
systems is not straightforward. First, many health indicators and degradation models
are based on the physics of a system. For complex aircraft systems, however, the
physics can be very complicated. The degradation in such a system can be caused

1

6 1. INTRODUCTION

by different faults in the many different components of the system, and can often
not be measured directly. Moreover, a health indicator with a physical meaning,
such as the RMS, and a physical degradation model, such as Paris’ law, are often
not available for these complex system [60]. The noise in the sensor measurements
due to the varying operating conditions further complicates the creation of a health
indicator [12]. Finding a reliable health indicator and degradation model for complex
aircraft systems therefore remains a formidable challenge.

Last, many studies employ a neural network for estimating the RUL. An
additional challenge with this method is that training an accurate neural network is
time-consuming. Recently, several improvements have accelerated the training of
a neural network. These improvements are both mathematical, such as improved
optimization algorithms [69, 70] and new weight initialization strategies [71, 72], and
in computer science, such as improved GPUs [73] and new parallelization techniques
[74]. However, training deep neural networks (i.e., with many parameters) with large
data sets is still time-consuming and requires a large amount of energy [73, 75, 76].
For instance, it is estimated that training the well-known GPT-3 language model with
1,024 A100 GPUs takes 34 days [74]. Though neural networks for estimating the RUL
are typically much smaller, the computational time is still large. This complicates
the use of neural networks for estimating the RUL.

The first challenge is thus to create an accurate RUL prognostic model for
aircraft systems, addressing all difficulties (few failure instances, varying operating
conditions, time-consuming to train neural networks) described above. In this thesis,
this challenge is addressed in Chapters 2 and 3.

1.1.2. CHALLENGE 2: QUANTIFYING THE UNCERTAINTY OF THE RUL
PROGNOSTICS

(a) Point RUL prognostic. (b) Probabilistic RUL prognostic.

Figure 1.5.: A schematic example of a point and probabilistic RUL prognostic.

Most existing studies estimate point RUL prognostics [14, 19, 23–25, 31–34, 36–39,
45, 47–49, 61, 62], i.e., one point is estimated for the RUL, see Figure 1.5a.
However, there are several sources of uncertainty for the RUL prognostics. First, the
RUL prognostic model itself is often a simplification or approximation of reality.
Second, the parameters of the model are uncertain, especially if few (labelled)

1.1. CHALLENGES FOR PREDICTIVE AIRCRAFT MAINTENANCE

1

7

data samples are available. Uncertainty coming from these two sources is called
epistemic uncertainty [43, 77, 78]. The uncertainty in the model parameters could
be reduced by collecting more (labelled) data samples, but this is often not possible
in practice. Other sources of uncertainty are the measurements noise, the unknown
future operating conditions (such as the weather, the loading, etc.) and the inherent
randomness between the input, the sensor measurements, and the output, the
RUL. The uncertainty of these two sources are called aleatory uncertainty, and this
uncertainty cannot be reduced with more data or more knowledge [43, 77, 78]. RUL
prognostics thus always contain some uncertainty.

Some studies therefore not only estimate the RUL, but also try to quantify the
uncertainty of the RUL prognostics, for instance by estimating a Probability Density
Function (PDF) of the RUL, Figure 1.5b [77]. By quantifying the uncertainty of the
RUL prognostics, maintenance planners can make more informed and explainable
decisions: The trade-off between using an aircraft system for a longer time
(increasing the total lifetime of the system) versus maintaining the aircraft system
soon (reducing the risk of failure) is quantified. In this thesis, the RUL prognostics
with quantified uncertainty are referred to as probabilistic RUL prognostics.

Most studies quantify the uncertainty of the RUL prognostics with a supervised
learning neural network, where the RUL is directly estimated from the sensor
measurements, see Figure 1.3a. For instance, in [78, 79], a Bayesian neural network
is used to estimate a PDF of the RUL directly from the sensor measurements. In [28,
35], a PDF of the RUL is estimated by applying Monte Carlo dropout in a supervised
learning neural network. In [80], it is assumed that the PDF of the RUL follows a
normal distribution, and a deep Gaussian process is used to estimate the mean and
standard deviation of this normal distribution. However, as described in Challenge 1
(Section 1.1.1), supervised learning neural networks are not suitable to estimate the
RUL for most aircraft systems with very few failure instances.

Figure 1.6.: A schematic overview of a model-based approach to estimate probabilistic
RUL prognostics.

Other studies therefore estimate the PDF of the RUL using a model-based
approach instead of a neural network, as described in Challenge 1 (Section 1.1.1).
In a model-based approach, the parameters of a degradation model are estimated

1

8 1. INTRODUCTION

with the measured degradation/health indicator. Most methods to estimate these
parameters, such as filtering methods [15–17, 20, 21, 63, 64], also quantify the
uncertainty of the parameters. With these uncertain parameters, a PDF of the RUL
is estimated by propagating the degradation over time along multiple possible paths,
each with a corresponding probability, see Figure 1.6. A model-based approach is
suitable to develop probabilistic RUL prognostics, as the uncertainty quantification is
inherent to most model-based methods. However, applying a model-based approach
to estimate the RUL of complex aircraft systems is difficult, see Section 1.1.1.

After quantifying the uncertainty of the RUL prognostics, the quality of the
probabilistic RUL prognostics with their quantified uncertainty is assessed. There are
several well-known metrics that evaluate the accuracy of point RUL prognostics, such
as the Root Mean Square Error (RMSE) or the Mean Absolute Error (MAE). There are
also some metrics that evaluate the accuracy of probabilistic RUL prognostics, such
as the prognostics horizon, the cumulative relative accuracy and the convergence
[81–83]. However, not only the accuracy, but also the sharpness and reliability
of the probabilistic RUL prognostics should be assessed. Metrics that measure
the sharpness and reliability are crucial for evaluating the trustworthiness of the
probabilistic RUL prognostics. There are not yet any commonly accepted metrics,
however, for assessing the sharpness and reliability of probabilistic RUL prognostics
in the predictive maintenance community.

The second challenge is therefore to generate probabilistic RUL prognostics for
aircraft systems with quantified uncertainty. An additional aspect of this challenge
is to develop metrics to evaluate these probabilistic RUL prognostics. In this thesis,
this challenge is addressed in Chapters 4 and 5.

1.1.3. CHALLENGE 3: OPTIMIZING THE AIRCRAFT MAINTENANCE

SCHEDULE WITH RUL PROGNOSTICS

The second step in predictive aircraft maintenance is to optimize the aircraft
maintenance schedule with the RUL prognostics, see Figure 1.1. Literature on
predictive maintenance usually focuses only on estimating the RUL. Integrating the
RUL prognostics in the aircraft maintenance planning is still rare [84–86].

Optimization of the aircraft maintenance schedule is complicated since there are
many aspects that need to be integrated in the optimization. Each aircraft contains
multiple systems, which in turn contain multiple components. Each of these
components have their own individual RUL prognostic. These RUL prognostics are
updated over time, as more sensor measurements become available. Due to the
aircraft’s flight schedule, maintenance can only be scheduled during a few specific
moments, called maintenance opportunities, see Figure 1.1. Moreover, maintenance
is planned for a fleet of multiple aircraft. Aircraft are usually maintained in dedicated
maintenance hangars, see Figure 1.7. However, there is only limited space in these
hangars. Only a few aircraft can therefore be maintained at the same time, i.e., there
is limited maintenance capacity. Last, only a limited number of spare components is
available to replace components in the fleet of aircraft.

Existing studies on predictive aircraft maintenance planning take some of these
aspects into account, but not all of them. In [78, 86, 87], the aircraft predictive

1.1. CHALLENGES FOR PREDICTIVE AIRCRAFT MAINTENANCE

1

9

Figure 1.7.: An aircraft in the hangar for maintenance.

maintenance planning is optimized for a single aircraft with one single-component
system. In [88], maintenance is optimized for a multi-component system in a
single aircraft. Last, in [63, 85, 89, 90], the maintenance planning is optimized for
a multi-component system or for multiple systems within a fleet of aircraft, but
without considering the spare parts. The objective of these studies is to minimize
the expected total costs. These consists of, among others, the cost of corrective
maintenance after failure [53, 78, 86, 89, 90], the costs of preventive maintenance
before failure [53, 78, 86, 89, 90], the costs of holding inventory [78, 86, 87], and the
fixed set-up costs for maintaining an aircraft [63, 85].

Additionally, when integrating probabilistic RUL prognostics in the maintenance
schedule, the quantified uncertainty is accordingly included as well. Most studies take
this uncertainty into account by first optimizing the initial maintenance planning,
using linear programming [85, 86], deep reinforcement learning [89, 90], heuristics
[88] or analytical derivations of the optimal maintenance moment [63, 78, 87]. This
initial maintenance planning is subsequently updated over time, for instance with a
rolling horizon approach [78, 85, 86, 89, 90]. With deep reinforcement learning [89,
90], these future updates of the maintenance planning are already considered when
creating the initial maintenance planning. Another method to jointly optimize the
initial maintenance planning and the future updates of this planning is stochastic
programming, but this method has not yet been used to optimize the predictive
aircraft maintenance schedule. In [91, 92], a multi-stage stochastic program is
used to schedule maintenance for a generic multi-component system instead.
Both reinforcement learning and stochastic programming, however, have one major
drawback: The time it takes to find the optimal solution grows exponentially with
the size of the problem, which is called the curse of dimensionality [93–95]. This
makes optimization under uncertainty a notoriously difficult task [93–95].

Consider, for instance, an aircraft with five aircraft systems, where each system
may fail during each flight. After the first flight with these five systems, there are

1

10 1. INTRODUCTION

32 possible outcomes. Here, each outcome represents a different combination of
systems that failed during the first flight. Each outcome after the first flight leads
to different possible outcomes after the second flight, which gives 243 possible
outcomes after flight two. Continuing this gives 59,041 possible outcomes after the
tenth flight, and even 2,476,081 possible outcomes after the twentieth flight. Clearly,
the number of possible outcomes grows exponentially with the number of flights.
When optimizing the initial maintenance planning and the future updates, all these
different possible outcomes should be considered. The computational time therefore
also grows exponentially with the number of considered aircraft systems and flights,
which makes jointly optimizing the initial maintenance schedule and the future
updates of this schedule a fundamental problem.

The last challenge is therefore to optimize the maintenance schedule for a fleet of
aircraft, with limited hangar space, fixed maintenance opportunities and a limited
number of spare parts, while integrating the RUL prognostics and the quantified
uncertainty. In this thesis, this challenge is addressed in Chapters 6, 7, 8 and 9.

1.2. APPROACH, OUTLINE, AND SCOPE OF THIS THESIS
The aim of this thesis is to develop an overarching framework for predictive aircraft
maintenance. It consists of three parts, following the three challenges, Figure 1.8.
First, accurate point RUL prognostics for common aircraft systems are developed
(Challenge 1, Chapters 2 and 3). Second, the uncertainty of these RUL prognostics
is further quantified, yielding probabilistic RUL prognostics (Challenge 2, Chapters 4
and 5). Third, both the point and probabilistic RUL prognostics are used to optimize
the aircraft maintenance planning (Challenge 3, Chapters 6, 7, 8 and 9). In this
overarching framework, the RUL prognostic models from the field of data science
obtained in Challenge 1 and 2, are combined with optimization methods from the
field of operations research in Challenge 3.

Below, the scope of this thesis and each chapter is briefly discussed. All chapters
in this thesis are written as scientific papers and can be read independently.

1.2.1. APPROACH FOR CHALLENGE 1: DEVELOPING ACCURATE RUL
PROGNOSTICS FOR AIRCRAFT SYSTEMS.

The first challenge of this thesis is to develop accurate point RUL prognostics for
common aircraft systems. This challenge is addressed in Chapters 2 and 3.

In Chapter 2, a Long Short-Term Memory (LSTM) autoencoder with local Luong
attention is used to estimate the RUL of aircraft engines. This autoencoder, an
unsupervised learning neural network, is trained with the unlabelled data samples
from non-degraded engines, and is thus suitable when only few failure instances are
available. Due to the local Luong attention, the autoencoder accurately encodes and
decodes the long time-series of sensor measurements of a full flight. Moreover, the
RUL prognostics are robust to the varying operating conditions of the aircraft, since
these operating conditions are integrated in various places in the autoencoder.

A good weight initialization strategy accelerates the convergence of the weights
in a neural network, and thus reduces the training time [71, 72]. In Chapter 3, a

1.2. APPROACH, OUTLINE, AND SCOPE OF THIS THESIS

1

11

Figure 1.8.: Overview of the challenges and related chapters in this thesis.

new weight initialization strategy for the last layer of a neural network is therefore
developed. This new weight initialization strategy accelerates the training of a
regression neural network that estimates the RUL of aircraft engines. Moreover,
combined with transfer learning, it also accelerates the training of common
classification neural networks that are used for image recognition.

1.2.2. APPROACH FOR CHALLENGE 2: QUANTIFYING THE UNCERTAINTY

OF THE RUL PROGNOSTICS

The second challenge is to quantify the uncertainty of the RUL prognostics for the
aircraft systems. This challenge is addressed in Chapters 4 and 5.

In Chapter 4, a model-based approach is combined with a filtering algorithm to
estimate a PDF of the RUL of aircraft cooling units. Since no physical degradation
model is available for these cooling units, several methods to transform the sensor

1

12 1. INTRODUCTION

measurements in a health indicator are first evaluated. Then, two degradation
models for the cooling units are identified. A dynamic time-warping clustering
method identifies to which of the two models the degradation in a single cooling
unit belongs. Last, the RUL of the cooling units is estimated with particle filtering.

In Chapter 5, four new metrics to evaluate the accuracy, sharpness and reliability
of probabilistic RUL prognostics, in the form of a PDF, are introduced. The
Continuously Ranked Probability Score (CRPS) [96] and the weighted CRPS are used
to evaluate the sharpness and accuracy of a single probabilistic RUL prognostic.
The α-Coverage and the Reliability Score are introduced to evaluate the reliability
of multiple probabilistic RUL prognostics. These two metrics are derived from the
reliability diagram [97]. These metrics are used to evaluate the trustworthiness of
probabilistic RUL prognostics for aircraft engines.

SCOPE OF CHALLENGES 1 AND 2

There are multiple possible approaches to develop RUL prognostics, and many open
challenges to address. To limit the scope of this thesis, a few assumptions and
choices regarding the RUL prognostic models were made.

First, only data-driven and model-based approaches are considered for estimating
the RUL in this thesis. Though a physical RUL prognostic approach is very promising
for some systems (such as aircraft fuselage panels and bearings), no detailed physical
degradation model is available for the systems considered in this thesis. Second, the
main focus in this thesis is on developing accurate RUL prognostics with limited
failure data and highly-varying operating conditions. Since this is already very
challenging, some other aspects of RUL prognostic models are not considered, such
as the explainability. However, the RUL prognostic methods proposed in Chapters
2 and 4 can be made more explainable with some simple adjustments, as the
underlying ideas of these methods are already explainable.

In addition, two main assumptions are made in the RUL prognostic models. First,
it is assumed that some data of failure instances are always available. Recently, a
few studies broached the subject of fault detection [44, 98] and even RUL estimation
[99] if failure data are available, but not labelled. In other words, there are data
samples belonging to degraded or failed systems, but these data samples are not
labelled as such. However, for safety-critical aircraft systems, there are sometimes
no data samples belonging to degraded or failed systems available at all, labelled or
unlabelled. Research on estimating the RUL without any failure data, and without
a physical approach, is still a new, open research direction. As such, the focus in
this thesis is on estimating the RUL with the data of at least a few failure instances,
which is already challenging. Second, in this thesis, it is assumed that data samples
(labelled or unlabelled) are available. The challenges in the collection of these data
samples, such as the storage of sensor data, the type of sensors to install, and
privacy issues concerning the sensor data, are not discussed.

1.2. APPROACH, OUTLINE, AND SCOPE OF THIS THESIS

1

13

1.2.3. APPROACH FOR CHALLENGE 3: OPTIMIZING THE AIRCRAFT

MAINTENANCE SCHEDULE WITH RUL PROGNOSTICS

The third and last challenge is to integrate the RUL prognostics in the aircraft
maintenance schedule. This challenge is addressed in Chapters 6, 7, 8 and 9.

First, point RUL prognostics are used to optimize the maintenance schedule for
a fleet of aircraft in Chapter 6. Here, a maintenance task is only scheduled if the
point RUL prognostic falls below an alarm threshold several times in a row, to avoid
rescheduling maintenance tasks. Moreover, a safety factor is applied when scheduling
the maintenance task, to avoid failures due to errors in the RUL prognostics.

The subsequent chapters instead use probabilistic RUL prognostics to optimize
the maintenance schedule. In Chapter 7, the maintenance is scheduled for a single
system per aircraft with a linear program. This linear program contains constraints
on the limited maintenance capacity and on the limited number of maintenance
opportunities. In Chapter 8, this linear program is extended by also considering a
limited number of spare components. Moreover, in this chapter, maintenance is
scheduled for multi-component aircraft systems with redundant components.

Last, the considered problem is formulated as a multi-stage stochastic linear
program with decision-dependent (i.e., endogenous) uncertainty in Chapter 9. By
formulating the problem as a stochastic program, the initial maintenance planning
and all possible future updates are jointly optimized. This stochastic program
is solved to optimality with the Nested Benders decomposition method. A new
clustering algorithm, based on the endogenous uncertainty in the problem, is
proposed to accelerate this solution method.

SCOPE OF CHALLENGE 3

Predictive aircraft maintenance planning is a very broad topic, where many different
aspects related to maintenance can be incorporated. The scope of this thesis is
limited by considering only a few of these aspects.

First, an aircraft consists of many different components and systems, for
which both inspections, maintenance and replacements should be planned. The
maintenance tasks for all these different components and systems are often grouped
together in the same time period. Second, the maintenance planning is intertwined
with other aircraft optimization problems, such as the optimization of the flight
schedule and aircraft routes. However, research on combining RUL prognostic
models with the optimization of the predictive maintenance planning, for aircraft or
other systems, was very limited at the start of this thesis. The focus is therefore on
planning maintenance for a singly type of component/system at the time, without
considering the other aircraft optimization problems.

Last, the scope of this thesis is limited by testing the proposed methods on three
different datasets, two with aircraft engines and one with aircraft cooling units.

REFERENCES

[1] Pigott, P. (2016). Brace for impact: Air crashes and aviation safety. Dundurn.
[2] Weerasekera, S. (2020). Introduction to Maintenance, Repair and Overhaul of

aircraft, engines and components. SAE International.
[3] Ackert, S. P. (2010). Basics of aircraft maintenance programs for financiers

(tech. rep.). Aircraft Monitor.
[4] From aircraft health monitoring to aircraft health management (tech. rep.).

(2022). International Air Transport Association (IATA).
[5] Sprong, J. P., Jiang, X., Polinder, H., et al. (2020). Deployment of prognostics

to optimize aircraft maintenance – A literature review. Journal of International
Business Research and Marketing, 5(4), Pages: 26–37.

[6] Ackert, S. (2011). Engine maintenance concepts for financiers (tech. rep.).
Aircraft Monitor.

[7] Barrera, D. L., Barrera, L., & Barrera, D. L. (2022). Aircraft maintenance
programs. Springer.

[8] Maintenance Cost Technical Group (MCTG). (2022). Airline maintenance cost
executive commentary (FY2021 data), public version (tech. rep.). International
Air Transport Association (IATA).

[9] Aubin, B. R. (2004). Aircraft maintenance: The art and science of keeping aircraft
safe. SAE International.

[10] Gerdes, M., Scholz, D., & Galar, D. (2016). Effects of condition-based
maintenance on costs caused by unscheduled maintenance of aircraft. Journal
of Quality in Maintenance Engineering, 22(4), Pages: 394–417.

[11] Van den Bergh, J., De Bruecker, P., Beliën, J., & Peeters, J. (2013). Aircraft
maintenance operations: State of the art (tech. rep.). KU Leuven.

[12] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[13] Jimenez, J. J. M., Schwartz, S., Vingerhoeds, R., Grabot, B., & Salaün, M. (2020).
Towards multi-model approaches to predictive maintenance: A systematic
literature survey on diagnostics and prognostics. Journal of Manufacturing
Systems, 56, Pages: 539–557.

[14] Wei, Y., & Wu, D. (2023). Prediction of state of health and Remaining Useful Life
of lithium-ion battery using graph convolutional network with dual attention
mechanisms. Reliability Engineering & System Safety, 230, Article number:
108947.

[15] Raghavan, N., & Frey, D. D. (2015, June 22-25). Remaining Useful Life
estimation for systems subject to multiple degradation mechanisms. IEEE

15

1

16 REFERENCES

Conference on Prognostics and Health Management (PHM), Austin, Texas, USA,
Pages: 1–8.

[16] Dong, G., Chen, Z., Wei, J., & Ling, Q. (2018). Battery health prognosis
using Brownian motion modeling and particle filtering. IEEE Transactions on
Industrial Electronics, 65(11), Pages: 8646–8655.

[17] An, D., Choi, J.-H., & Kim, N. H. (2013). Prognostics 101: A tutorial for particle
filter-based prognostics algorithm using MATLAB. Reliability Engineering &
System Safety, 115, Pages: 161–169.

[18] Hu, J., & Chen, P. (2020). Predictive maintenance of systems subject to hard
failure based on proportional hazards model. Reliability Engineering & System
Safety, 196, Article number: 106707.

[19] Hu, T., Guo, Y., Gu, L., Zhou, Y., Zhang, Z., & Zhou, Z. (2022). Remaining Useful
Life estimation of bearings under different working conditions via Wasserstein
distance-based weighted domain adaptation. Reliability Engineering & System
Safety, 224, Article number: 108526.

[20] Cui, L., Wang, X., Xu, Y., Jiang, H., & Zhou, J. (2019). A novel switching
unscented Kalman filter method for Remaining Useful Life prediction of rolling
bearing. Measurement, 135, Pages: 678–684.

[21] Li, N., Lei, Y., Lin, J., & Ding, S. X. (2015). An improved exponential model for
predicting Remaining Useful Life of rolling element bearings. IEEE Transactions
on Industrial Electronics, 62(12), Pages: 7762–7773.

[22] Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005). Residual-life
distributions from component degradation signals: A Bayesian approach. IIE
Transactions, 37(6), Pages: 543–557.

[23] Cao, Y., Ding, Y., Jia, M., & Tian, R. (2021). A novel temporal Convolutional
Network with residual self-attention mechanism for Remaining Useful Life
prediction of rolling bearings. Reliability Engineering & System Safety, 215,
Article number: 107813.

[24] Li, X., Zhang, W., & Ding, Q. (2019). Deep learning-based Remaining Useful
Life estimation of bearings using multi-scale feature extraction. Reliability
Engineering & System Safety, 182, Pages: 208–218.

[25] Zhang, J., Jiang, Y., Wu, S., Li, X., Luo, H., & Yin, S. (2022). Prediction
of Remaining Useful Life based on bidirectional Gated Recurrent Unit with
temporal self-attention mechanism. Reliability Engineering & System Safety,
221, Article number: 108297.

[26] Fan, M., Zeng, Z., Zio, E., Kang, R., & Chen, Y. (2018). A sequential Bayesian
approach for Remaining Useful Life prediction of dependent competing failure
processes. IEEE Transactions on Reliability, 68(1), Pages: 317–329.

[27] Li, X., Teng, W., Peng, D., Ma, T., Wu, X., & Liu, Y. (2023). Feature fusion model
based health indicator construction and self-constraint state-space estimator
for Remaining Useful Life prediction of bearings in wind turbines. Reliability
Engineering & System Safety, 233, Article number: 109124.

[28] Cao, L., Zhang, H., Meng, Z., & Wang, X. (2023). A parallel GRU with dual-
stage attention mechanism model integrating uncertainty quantification for

REFERENCES

1

17

probabilistic RUL prediction of wind turbine bearings. Reliability Engineering
& System Safety, 235, Article number: 109197.

[29] Chen, X., Jin, G., Qiu, S., Lu, M., & Yu, D. (2020, October 16-18).
Direct Remaining Useful Life estimation based on random forest regression.
Global Reliability and Prognostics and Health Management (PHM) Conference,
Shanghai, China, Pages: 1–7.

[30] Patil, S., Patil, A., Handikherkar, V., Desai, S., Phalle, V. M., & Kazi, F. S. (2018,
November 9-15). Remaining Useful Life (RUL) prediction of rolling element
bearing using random forest and gradient boosting technique. Proceedings of
the ASME 2018 International Mechanical Engineering Congress and Exposition,
13, Pittsburgh, Pennsylvania, USA, Pages: 1–7.

[31] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[32] Babu, G. S., Zhao, P., & Li, X.-L. (2016, April 16-19). Deep Convolutional
Neural Network based regression approach for estimation of Remaining Useful
Life. Proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA), Dallas, Texas, USA, Pages: 214–228.

[33] Li, H., Zhao, W., Zhang, Y., & Zio, E. (2020). Remaining Useful Life prediction
using multi-scale deep Convolutional Neural Network. Applied Soft Computing,
89, Article number: 106113.

[34] Xiang, S., Qin, Y., Zhu, C., Wang, Y., & Chen, H. (2020). Long Short-Term
Memory Neural Network with weight amplification and its application into
gear Remaining Useful Life prediction. Engineering Applications of Artificial
Intelligence, 91, Article number: 103587.

[35] Wang, J., Zhang, F., Zhang, J., Liu, W., & Zhou, K. (2023). A flexible RUL
prediction method based on poly-cell LSTM with applications to lithium
battery data. Reliability Engineering & System Safety, 231, Article number:
108976.

[36] Wang, S., Fan, Y., Jin, S., Takyi-Aninakwa, P., & Fernandez, C. (2023). Improved
anti-noise adaptive Long Short-Term Memory Neural Network modeling for
the robust Remaining Useful Life prediction of lithium-ion batteries. Reliability
Engineering & System Safety, 230, Article number: 108920.

[37] Chen, J., Jing, H., Chang, Y., & Liu, Q. (2019). Gated Recurrent Unit based
Recurrent Neural Network for Remaining Useful Life prediction of nonlinear
deterioration process. Reliability Engineering & System Safety, 185, Pages:
372–382.

[38] Li, Y., Chen, Y., Shao, H., & Zhang, H. (2023). A novel dual attention mechanism
combined with knowledge for Remaining Useful Life prediction based on
Gated Recurrent Units. Reliability Engineering & System Safety, 239, Article
number: 109514.

[39] Xiang, S., Li, P., Huang, Y., Luo, J., & Qin, Y. (2023). Single gated RNN with
differential weighted information storage mechanism and its application to
machine RUL prediction. Reliability Engineering & System Safety, 242, Article
number: 109741.

1

18 REFERENCES

[40] Oyekanlu, E. (2017, December 11-14). Predictive edge computing for time series
of industrial iot and large scale critical infrastructure based on open-source
software analytic of big data. IEEE International Conference on Big Data (Big
Data), Boston, Massachusetts, USA, Pages: 1663–1669.

[41] Weiner, M. (2017). Optimized engine maintenance. AEROReport, the aviation
magazine of MTU Aero Engines.

[42] Read, B. (2018). Digital takeover. Royal Aeronautical Society.
[43] Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020).

Potential, challenges and future directions for deep learning in Prognostics
and Health Management applications. Engineering Applications of Artificial
Intelligence, 92, Article number: 103678.

[44] Ulmer, M., Zgraggen, J., & Huber, L. G. (2023). A generic machine learning
framework for fully-unsupervised anomaly detection with contaminated data.
arXiv preprint arXiv:2308.13352.

[45] Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., &
Shroff, G. (2016). Multi-sensor prognostics using an unsupervised health index
based on LSTM encoder-decoder. arXiv preprint arXiv:1608.06154.

[46] Ye, Z., & Yu, J. (2021). Health condition monitoring of machines based on Long
Short-Term Memory convolutional autoencoder. Applied Soft Computing, 107,
Article number: 107379.

[47] Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017).
Predicting Remaining Useful Life using time series embeddings based on
Recurrent Neural Networks. arXiv preprint arXiv:1709.01073.

[48] Yu, W., Kim, I. Y., & Mechefske, C. (2019). Remaining Useful Life estimation
using a bidirectional Recurrent Neural Network based autoencoder scheme.
Mechanical Systems and Signal Processing, 129, Pages: 764–780.

[49] Fu, S., Zhong, S., Lin, L., & Zhao, M. (2021). A novel time-series memory
auto-encoder with sequentially updated reconstructions for Remaining Useful
Life prediction. IEEE Transactions on Neural Networks and Learning Systems,
33, Pages: 7114–7125.

[50] Zhai, S., Gehring, B., & Reinhart, G. (2021). Enabling predictive maintenance
integrated production scheduling by operation-specific health prognostics with
generative deep learning. Journal of Manufacturing Systems, 61, Pages: 830–855.

[51] Liu, C., Sun, J., Liu, H., Lei, S., & Hu, X. (2020). Complex engineered system
health indexes extraction using low frequency raw time-series data based on
deep learning methods. Measurement, 161, Article number: 107890.

[52] Tharrault, Y., Mourot, G., & Ragot, J. (2008, June 25-27). Fault detection
and isolation with robust principal component analysis. 16th Mediterranean
Conference on Control and Automation, Ajaccio, France, Pages: 59–64.

[53] Nguyen, V. H., & Golinval, J.-C. (2010). Fault detection based on kernel
principal component analysis. Engineering Structures, 32(11), Pages: 3683–3691.

[54] Gajjar, S., Kulahci, M., & Palazoglu, A. (2018). Real-time fault detection and
diagnosis using sparse principal component analysis. Journal of Process Control,
67, Pages: 112–128.

REFERENCES

1

19

[55] Sarita, K., Devarapalli, R., Kumar, S., Malik, H., Garcia Marquez, F. P., &
Rai, P. (2022). Principal component analysis technique for early fault detection.
Journal of Intelligent & Fuzzy Systems, 42(2), Pages: 861–872.

[56] Vasilev, I. (2019). Advanced deep learning with Python: Design and implement
advanced next-generation AI solutions using Tensorflow and PyTorch. Packt
Publishing Ltd.

[57] Li, H. (2016). Accurate and efficient classification based on common principal
components analysis for multivariate time series. Neurocomputing, 171, Pages:
744–753.

[58] Ochella, S., Shafiee, M., & Dinmohammadi, F. (2022). Artificial intelligence
in Prognostics and Health Management of engineering systems. Engineering
Applications of Artificial Intelligence, 108, Article number: 104552.

[59] Koutroulis, G., Mutlu, B., & Kern, R. (2022). Constructing robust health
indicators from complex engineered systems via anticausal learning. Engineering
Applications of Artificial Intelligence, 113, Article number: 104926.

[60] Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022). Fusing physics-based
and deep learning models for prognostics. Reliability Engineering & System
Safety, 217, Article number: 107961.

[61] Zhu, J., Chen, N., & Shen, C. (2020). A new data-driven transferable Remaining
Useful Life prediction approach for bearing under different working conditions.
Mechanical Systems and Signal Processing, 139, Article number: 106602.

[62] Cao, Y., Jia, M., Ding, P., & Ding, Y. (2021). Transfer learning for Remaining
Useful Life prediction of multi-conditions bearings based on bidirectional-GRU
network. Measurement, 178, Article number: 109287.

[63] Yiwei, W., Christian, G., Binaud, N., Christian, B., Haftka, R. T., et al. (2017). A
cost driven predictive maintenance policy for structural airframe maintenance.
Chinese Journal of Aeronautics, 30(3), Pages: 1242–1257.

[64] Wang, Y., Gogu, C., Binaud, N., & Bes, C. (2015, September 7-10). Predicting
Remaining Useful Life by fusing SHM data based on extended Kalman filter.
Proceedings of the 25th European Safety and Reliability conference, Zurich,
Switzerland, Pages: 7–10.

[65] Karandikar, J. M., Kim, N. H., & Schmitz, T. L. (2012). Prediction of
Remaining Useful Life for fatigue-damaged structures using Bayesian inference.
Engineering Fracture Mechanics, 96, Pages: 588–605.

[66] Lim, P., Goh, C. K., Tan, K. C., & Dutta, P. (2015). Multimodal degradation
prognostics based on switching Kalman filter ensemble. IEEE Transactions on
Neural Networks and Learning Systems, 28(1), Pages: 136–148.

[67] Li, N., Gebraeel, N., Lei, Y., Fang, X., Cai, X., & Yan, T. (2021). Remaining
Useful Life prediction based on a multi-sensor data fusion model. Reliability
Engineering & System Safety, 208, Article number: 107249.

[68] Li, Y., Han, Z., Xu, H., Liu, L., Li, X., & Zhang, K. (2019). YOLOv3-lite: A
lightweight crack detection network for aircraft structure based on depthwise
separable convolutions. Applied Sciences, 9(18), Article number: 3781.

[69] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

1

20 REFERENCES

[70] Xie, X., Pu, Y.-F., & Wang, J. (2023). A fractional gradient descent algorithm
robust to the initial weights of multilayer perceptron. Neural Networks, 158,
Pages: 154–170.

[71] Glorot, X., & Bengio, Y. (2010, May 13-15). Understanding the difficulty of
training deep feedforward neural networks. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 9, Sardinia,
Italy, Pages: 249–256.

[72] He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 7-13). Delving deep
into rectifiers: Surpassing human-level performance on ImageNet classification.
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, Pages: 1026–1034.

[73] Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The
computational limits of deep learning. arXiv preprint arXiv:2007.05558.

[74] Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti,
V., Vainbrand, D., Kashinkunti, P., Bernauer, J., Catanzaro, B., et al. (2021,
November 14-19). Efficient large-scale language model training on GPU clusters
using megatron-LM. Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, St. Louis, Missouri,
USA, Pages: 1–15.

[75] García-Martín, E., Rodrigues, C. F., Riley, G., & Grahn, H. (2019). Estimation of
energy consumption in machine learning. Journal of Parallel and Distributed
Computing, 134, Pages: 75–88.

[76] Desislavov, R., Martínez-Plumed, F., & Hernández-Orallo, J. (2021). Compute
and energy consumption trends in deep learning inference. arXiv preprint
arXiv:2109.05472.

[77] Nemani, V., Biggio, L., Huan, X., Hu, Z., Fink, O., Tran, A., Wang, Y., Zhang, X., &
Hu, C. (2023). Uncertainty quantification in machine learning for engineering
design and health prognostics: A tutorial. Mechanical Systems and Signal
Processing, 205, Article number: 110796.

[78] Zhuang, L., Xu, A., & Wang, X.-L. (2023). A prognostic driven predictive
maintenance framework based on Bayesian deep learning. Reliability
Engineering & System Safety, 234, Article number: 109181.

[79] Peng, W., Ye, Z.-S., & Chen, N. (2019). Bayesian deep-learning-based health
prognostics toward prognostics uncertainty. IEEE Transactions on Industrial
Electronics, 67(3), Pages: 2283–2293.

[80] Biggio, L., Wieland, A., Chao, M. A., Kastanis, I., & Fink, O. (2021).
Uncertainty-aware prognosis via deep Gaussian process. IEEE Access, 9, Pages:
123517–123527.

[81] Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher,
M. (2008, October 6-9). Metrics for evaluating performance of prognostic
techniques. International Conference on Prognostics and Health Management,
Denver, Colorado, USA, Pages: 1–17.

[82] Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2009, March 7-14).
Evaluating algorithm performance metrics tailored for prognostics. IEEE
Aerospace conference, Big Sky, Montana, USA, Pages: 1–13.

REFERENCES

1

21

[83] Lall, P., Lowe, R., & Goebel, K. (2011, April 18-20). Prognostics and health
monitoring of electronic systems. 12th International Conference on Thermal,
Mechanical & Multi-Physics Simulation and Experiments in Microelectronics
and Microsystems, Linz, Austria, Pages: 1–17.

[84] Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive
maintenance for multiple components using data-driven probabilistic RUL
prognostics: The case of turbofan engines. Reliability Engineering & System
Safety, 234, Article number: 109199.

[85] Zeng, J., & Liang, Z. (2023). A dynamic predictive maintenance approach using
probabilistic deep learning for a fleet of multi-component systems. Reliability
Engineering & System Safety, 238, Article number: 109456.

[86] Shoorkand, H. D., Nourelfath, M., & Hajji, A. (2023). A hybrid CNN-LSTM model
for joint optimization of production and imperfect predictive maintenance
planning. Reliability Engineering & System Safety, 241, Article number: 109707.

[87] Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance
framework using deep learning for failure prognostics. Reliability Engineering
& System Safety, 188, Pages: 251–262.

[88] Zhou, K.-L., Cheng, D.-J., Zhang, H.-B., Hu, Z.-t., & Zhang, C.-Y. (2023).
Deep learning-based intelligent multilevel predictive maintenance framework
considering comprehensive cost. Reliability Engineering & System Safety, 237,
Article number: 109357.

[89] Lee, J., & Mitici, M. (2022). Deep reinforcement learning for predictive aircraft
maintenance using probabilistic Remaining-Useful-Life prognostics. Reliability
Engineering & System Safety, 230, Article number: 108908.

[90] Tseremoglou, I., & Santos, B. F. (2024). Condition-based maintenance scheduling
of an aircraft fleet under partial observability: A deep reinforcement learning
approach. Reliability Engineering & System Safety, 241, Article number: 109582.

[91] Zhu, Z., & Xiang, Y. (2021). Condition-based maintenance for multi-component
systems: Modeling, structural properties, and algorithms. IISE transactions,
53(1), Pages: 88–100.

[92] Zhu, Z., Xiang, Y., & Zeng, B. (2021). Multicomponent maintenance optimization:
A stochastic programming approach. INFORMS Journal on Computing, 33(3),
Pages: 898–914.

[93] Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and
opportunities. Computers & Chemical Engineering, 28(6-7), Pages: 971–983.

[94] Powell, W. B. (2019). A unified framework for stochastic optimization. European
Journal of Operational Research, 275(3), Pages: 795–821.

[95] Wiering, M. A., & Van Otterlo, M. (2012). Reinforcement learning: State-of-the-
art. Springer.

[96] Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of
Statistics and Its Application, 1, Pages: 125–151.

[97] Zadrozny, B., & Elkan, C. (2002, July 23-26). Transforming classifier scores
into accurate multiclass probability estimates. Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 8,
Edmonton, Alberta, Canada, Pages: 694–699.

1

22 REFERENCES

[98] Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2018). DeepAnT: A deep
learning approach for unsupervised anomaly detection in time series. IEEE
Access, 7, Pages: 1991–2005.

[99] Calabrese, F., Regattieri, A., Botti, L., Mora, C., & Galizia, F. G. (2020).
Unsupervised fault detection and prediction of Remaining Useful Life for
online prognostic health management of mechanical systems. Applied Sciences,
10(12), Article number: 4120.

2
HEALTH INDICATORS AND POINT

RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

Most health indicators and Remaining Useful Life (RUL) prognostics are obtained with
supervised learning models. These models must be trained with many labelled data
samples (i.e., the true RUL is known). Aircraft systems, however, are often preventively
replaced before failure, in which case the true RUL remains unknown. There are thus
very few labelled data samples available. Moreover, aircraft fly under highly-varying
operating conditions that influence the sensor measurements.

In this chapter, we therefore introduce a Long Short-Term Memory (LSTM) autoencoder
to develop a health indicator for an aircraft system instead. An autoencoder is an
unsupervised learning model which can be trained with unlabelled data samples (i.e.,
the true RUL is unknown). The operating conditions of the aircraft are integrated in
the autoencoder as well. These health indicators are further used to estimate the RUL
of the aircraft system with a similarity-based matching approach.

We illustrate our approach for turbofan engines. In the case study, we show that the
consideration of the operating conditions leads to robust health indicators. Moreover,
we highlight the benefits of using an unsupervised learning model instead of a
supervised learning model when few labelled data samples are available.

Parts of this chapter have been published in:

de Pater, I., & Mitici, M. (2023). Developing health indicators and RUL prognostics for systems
with few failure instances and varying operating conditions using a LSTM autoencoder. Engineering
Applications of Artificial Intelligence, 117, Article number: 105582

de Pater, I., & Mitici, M. (2023, September 3-7). Constructing health indicators for systems with
few failure instances using unsupervised learning. Proceedings of the 33st European Safety and
Reliability Conference, Southampton, UK, Pages: 3066–3073

23

2

24
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

2.1. INTRODUCTION

Complex technical systems are crucial for the safe and reliable operation of
machines, vehicles, plants, etc. The unexpected failures of such systems lead to
costly unplanned downtime and potential safety risks. To limit the number of
failures, systems are often replaced preventively [3, 4]. However, due to such
preventive, early replacements, the actual failure time of the system is unobserved.
This complicates the estimation of the Remaining Useful Life (RUL).

Especially in aviation, preventive replacement of complex, safety-critical systems is
common. Replacing these systems early is preferred over keeping them running for
a long time and risking a failure. Consequently, the data-monitoring samples from
such systems are often unlabelled, i.e., the corresponding true RUL is unknown.
In the rare case when such a system does fail during operation, the failure time
is observed and the data-monitoring samples coming from this system are labelled
(i.e., the true RUL is known) [5]. This mix of very few labelled data samples, but
many unlabelled data samples is often seen for complex aircraft systems.

Common RUL prognostics models are Convolutional Neural Networks [6–8] and
Long Short-Term Memory (LSTM) neural networks [9], which directly estimate the
RUL. However, such supervised learning methods require the availability of many
labelled data samples to train accurate prognostic models. This makes these
supervised learning approaches unsuitable for safety-critical aircraft systems.

Instead, accurate RUL prognostics can be obtained by first developing a health
indicator using the unlabelled data samples and signal reconstruction, i.e., an
autoencoder learns the normal system behaviour from the unlabelled data samples
[10, 11]. This autoencoder is then used to detect deviations from the normal system
behaviour that emerge due to increasing degradation [10]. This approach has been
considered in, for instance, [11, 12]. In [11], a health indicator is developed using
the reconstruction error of a LSTM autoencoder and a linear regression model.
Similarly, in [12], a health indicator is obtained based on the reconstruction errors
of a LSTM autoencoder and a Gaussian distribution. In contrast, in [13–15] and
in [16], the embeddings of a recurrent autoencoder and a conditional variational
autoencoder, respectively, are used to develop a health indicator. In [17], a health
indicator is developed with both the reconstruction error and the embeddings of a
LSTM autoencoder. With such health indicators, accurate RUL prognostics can be
obtained with just a few labelled data samples.

However, the autoencoders mentioned above cannot be directly applied to develop
health indicators for aircraft systems. First, health-monitoring sensor measurements
are recorded at a high frequency during a flight. Moreover, the flight itself is several
hours long. As such, the time-series of measurements of each flight is long. For the
case study presented in this chapter, the aircraft system performs many flights, each
containing 60-303 time-steps. In contrast, existing studies consider autoencoders
that use fixed-length data samples of 5 [14] to 40 [17] time-steps only.

Also, the conditions under which a system operates are expected to influence the
degradation of the system [18]. This is especially the case for aircraft, where the
operating conditions vary due to weather conditions, flying routes, flying altitudes
etc. [19]. One of the major open challenges for Prognostics and Health Management

2.1. INTRODUCTION

2

25

(PHM), in aviation and in other application domains, is to develop health indicators
and RUL prognostics that are robust to varying operating conditions [3, 4, 10].

When proposing health indicators using an autoencoder, only one study accounts
for the operating regime: A high-level cluster of similar operating conditions [16].
The operating conditions of aircraft, however, are highly-varying during each flight.
For example, the altitude and speed of an aircraft continuously change during a
flight. Considering only a few aggregated clusters of the operating conditions, as in
[16], might lead to a loss of information [10].

Figure 2.1.: Schematic overview of the consider approach.

To develop a health indicator for systems with high-frequency measurements and
highly-varying operating conditions, we propose to use the reconstruction error
of a LSTM autoencoder (LSTM-AE) with i) attention and ii) integrated operating
conditions. LSTM neural networks are well suited to process varying-length
time-series, while avoiding the vanishing gradient problem [20]. However, a standard
recurrent autoencoder cannot reconstruct long time-series of sensor data well: The
final embedding of the autoencoder cannot contain all relevant features of a long
input sample. Moreover, the final embedding contains more information about the
last sensor measurements than about the first sensor measurements of the flight
[20]. In language-related application with long sentences, these problems have been
successfully elevated by implementing attention, giving state-of-the-art results [10].
Inspired by this, we also apply attention in the LSTM-AE.

To develop health indicators robust to the highly-varying operating conditions,
we input the operating conditions in the autoencoder. These operating conditions
are not encoded and then reconstructed, but merely used “informatively”, i.e., the
LSTM-AE is informed on the aircraft operating conditions solely to assist in encoding
and reconstructing the sensor data samples. In contrast with [16], no information
on the operating conditions is thus lost by clustering the operating conditions.

We apply our methodology to develop health indicators and RUL prognostics for

2

26
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

the aircraft turbofan engines of the new N-CMAPSS dataset [21]. An overview of
the considered approach is in Figure 2.1. The obtained health indicators have a
high monotonicity (0.38), trendability (0.95) and prognosability (0.94). We show that
the monotonicity of the health indicators decreases with 97% when the operating
conditions are not considered in the LSTM-AE. Also, the monotonicity decreases by
11% when no attention is applied in the LSTM-AE.

Having the health indicators, we divide the lifetime of each engine in a healthy
and an unhealthy stage. Last, we estimate the RUL of the engines in the unhealthy
stage with a similarity-based matching method, using the health indicators and the
few available labelled data samples [11, 22, 23]. Due to the high monotonicity,
trendability and prognosability of the health indicators, the overall RMSE of these
RUL prognostics in the unhealthy stage is only 2.67 flights.

The main contributions of this chapter are:

1. Safety-critical systems are rarely operated until failure, but are rather replaced
preventively, and thus have very few failures. We propose an unsupervised
learning approach to construct a health indicator and to estimate the RUL for
such systems with very few labelled data samples, i.e., very few failures. We
show that our approach outperforms existing supervised learning methods for
the considered system. Specifically, the RMSE of the RUL prognostics is 19%
lower compared to existing supervised learning methods.

2. We develop a health indicator by integrating the highly-varying operating
conditions of the system in a LSTM autoencoder. This makes the
health indicators robust to these operating conditions and improves their
monotonicity, trendability and prognosability significantly. Moreover, the
obtained health indicators have a high trendability, even when the operating
conditions in the test set and in the training set differ significantly.

3. We use attention in the LSTM autoencoder to handle the high-frequency
measurements gathered during the long flights of the considered system. We
show that using attention improves the monotonicity of the health indicators
by 11%. This is particularly relevant for novel technical systems whose health
is monitored continuously and at a high-frequency.

The remainder of this chapter is organized as follows. We first introduce the
proposed methodology to construct the health indicators in Section 2.2. Then,
we introduce the considered N-CMAPSS dataset in Section 2.3, and present the
resulting health indicators in Section 2.4. Last, we introduce the similarity-based
matching approach to develop RUL prognostics in Section 2.5, and analyse the RUL
prognostics in Section 2.6. The conclusions are provided in Section 2.7.

2.2. METHODOLOGY - HEALTH INDICATORS WITH A LSTM
AUTOENCODER

In Section 2.2.1, we introduce the LSTM autoencoder (LSTM-AE) with attention and
integrated operating conditions. In Section 2.2.2, we use the reconstruction errors

2.2. METHODOLOGY - HEALTH INDICATORS WITH A LSTM AUTOENCODER

2

27

from this autoencoder to construct a health indicator.

2.2.1. LSTM-AE WITH LOCAL LUONG ATTENTION

Figure 2.2.: A schematic overview of the considered LSTM-AE with informative
operating conditions.

In this section, we introduce the Long Short-Term Memory autoencoder (LSTM-AE).

Let Xe, f =
{

Xe, f
t , t ∈ {

1,2, . . . ,ne, f
}}

be the multi-sensor measurements of an aircraft

system e during a flight f , with ne, f the number of multi-sensor measurements of

flight f . Here, Xe, f
t =

[
X e, f ,1

t , X e, f ,2
t , . . . , X e, f ,ms

t

]
is the t th multi-sensor measurement of

this flight f , with ms the number of considered sensors. The LSTM-AE first consists
of an encoder, that maps the multi-sensor measurements Xe, f to an embedding
with a smaller dimension (i.e., encodes), and then a decoder, that reconstructs the
measurements from this embedding. The objective of the LSTM-AE is to minimize
the total absolute reconstruction error L of each flight:

Le, f =
ne, f∑
t=2

∣∣∣X̂e, f
t −Xe, f

t

∣∣∣ , (2.1)

with X̂
e, f
t the reconstructed sensor measurements Xe, f

t at time-step t of system e
during flight f , i.e., the output of the LSTM-AE. We train this LSTM-AE solely with
the unlabelled sensor data samples from a just-installed aircraft system, i.e., when
the system is still considered healthy.

Beside the multi-sensor measurements, also the operating conditions during each

flight are available. Let Oe, f =
{

Oe, f
t , t ∈ {

1,2, . . . ,ne, f
}}

be the operating conditions

during flight f with system e. Here, Oe, f
t =

[
Oe, f ,1

t ,Oe, f ,2
t , . . . ,Oe, f ,mo

t

]
denotes the

operating conditions at time-step t during this flight, and mo is the number of

2

28
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

operating conditions. The operating conditions are used as input for both the
encoder and the decoder. But in contrast with the sensor measurements, the
operating conditions are not encoded and then reconstructed, but merely used
“informatively”: They assist in encoding and decoding the sensor measurements. A
schematic overview of the considered LSTM-AE is in Figure 2.2.

ENCODER

Figure 2.3.: A schematic overview of a LSTM-cell with informative operating
conditions.

At each time step t during a flight f , the encoder encodes the multi-sensor

measurement Xe, f
t to the short-term state ht , which has a smaller dimension. The

encoder consists of ne, f LSTM-cells for this flight f [24, 25]. At time step t , we
consider as input to the LSTM-cell i) the long-term state ct−1 and the short-term

state ht−1 of previous time-step t −1, ii) the multi-sensor measurement Xe, f
t , and iii)

the operating conditions Oe, f
t . Each LSTM-cell consists of 3 gates (see Figure 2.3):

The forget gate in the LSTM-cell determines which part of the long-term state is
(partly) erased [20, 26]:

g t =σ
(
Wg Xe, f

t +Vg Oe, f
t +Ug ht−1 +bg

)
. (2.2)

Here, Wg , Vg and Ug are the weight matrices connecting Xe, f
t ,Oe, f

t and ht−1 to the
output g t , respectively, and bg denotes the bias of this forget gate. Last, σ() denotes
the logistic activation function used in the forget gate.

The input gate first proposes a new candidate long-term state ccan
t [20, 26]:

ccan
t = tanh

(
Wc Xe, f

t +Vc Oe, f
t +Uc ht−1 +bc

)
, (2.3)

where Wc , Vc and Uc are the weight matrices connecting Xe, f
t ,Oe, f

t and ht−1 to the
output ccan

t respectively, and bc is the bias of this input gate. A tanh (hyperbolic

2.2. METHODOLOGY - HEALTH INDICATORS WITH A LSTM AUTOENCODER

2

29

tangent) activation function is considered. Next, the input gate determines which
parts of the candidate long-term state are added to the new long-term state [20, 26]:

it =σ
(
Wi Xe, f

t +Vi Oe, f
t +Ui ht−1 +bi

)
. (2.4)

Again, Wi , Vi and Ui are the weight matrices connecting Xe, f
t ,Oe, f

t and ht−1 to the
output it respectively, and bi is the bias of this gate.

Last, the long-term state, with the output of the forget and input gate, is updated
as follows [20, 26]:

ct =
(
ct−1 ⊗ g t

)⊕ (
it ⊗ ccan

t

)
, (2.5)

where ⊕ denotes the element-wise addition operator and ⊗ denotes the element-wise
multiplication operator.

The output gate constructs the short-term state ht , by first determining which
parts of the long-term state ct are transferred to the short-term state [20, 26]:

pt =σ
(
Wp Xe, f

t +Vp Oe, f
t +Up ht−1 +bp

)
. (2.6)

Here, Wp , Vp and Up are the weight matrices connecting Xe, f
t ,Oe, f

t and ht−1 to the
output pt respectively, and bp is the bias of this layer. The new short-term state ht

is now constructed as [20, 26]:

ht = pt ⊗ tanh(ct). (2.7)

DECODER

The decoder reconstructs the sensor measurements Xe, f
t , t ∈ {2, . . . ,ne, f } using the

short-term states from the encoder. We first obtain at each time-step t of flight
f the short-term state h′

t of the decoder with a LSTM-cell. Next, local Luong
attention is used to update the short-term state h′

t to the augmented short-term
state h̃′

t . Last, we input the augmented short-term state together with the operating
conditions at time-step t to a fully connected neural network. This network outputs

the reconstructed sensor measurements X̂
e, f
t (see Figure 2.2).

Recurrent layer The first layer of the decoder consists of ne, f −1 LSTM-cells. At
time-step t of flight f , we consider the decoder short-term state h′

t−1 and the
decoder long-term state c ′t−1 of time-step t −1 as input to the LSTM-cell. If
t = 2, we consider the last short-term state hne, f and long-term state cne, f of the
encoder as input instead. Moreover, we input the previous reconstructed sensor

measurements X̂
e, f
t−1 during the testing phase. During the training phase, we use

teacher forcing instead [20], i.e., we input the true sensor measurements Xe, f
t−1. If

t = 2, we always input the true sensor measurements from time-step t = 1. Last, we

use the operating conditions Oe, f
t of time-step t as input, to assist in decoding the

sensor measurements. The output of the LSTM-cell is the decoder short-term state
h′

t and the decoder long-term state c ′t .

2

30
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

Figure 2.4.: Schematic overview of the local Luong attention mechanism.

Local Luong attention The dimension of the last encoder short-term state hne, f is
too small to contain all relevant features of a long flight. Moreover, the last encoder
hidden state contains more information about the last sensor measurements than
about the first sensor measurements of the flight [20]. We therefore use local
Luong attention [27] to update the decoder short-term states with all the encoder
short-term states ht , t ∈ {1,2, . . . ,ne, f }. A schematic overview of the local Luong
attention mechanism is in Figure 2.4.

First, we compute how well the initial short-term state h′
t of the decoder aligns

with the encoder short-term states h j , j ∈ {t −D, t −D +1, . . . , t +D}. Here, D is the
window size of the local attention mechanism. The alignment score a j ,t between the
decoder short-term state h′

t and the encoder short-term state h j is [27]:

a j ,t = h′T
t Wah j , j ∈ {t −D, . . . , t +D}. (2.8)

Here, Wa is the weight matrix belonging to the attention mechanism, and T denotes
the transpose. With these alignment scores, the weights ā j ,t are derived with the

2.2. METHODOLOGY - HEALTH INDICATORS WITH A LSTM AUTOENCODER

2

31

softmax function as follows [27]:

ā j ,t = ea j ,t∑t+D
k=t−D eak,t

, j ∈ {t −D, . . . , t +D}. (2.9)

Next, the weights are used to derive the context vector vt [27]:

vt =
t+D∑

j=t−D
ā j ,t h j (2.10)

With this context vector, the decoder short-term state is updated with one fully
connected layer as follows [27]:

h̃′
t = tanh

(
Wh

[
vt ,h′

t

])
, (2.11)

with Wh a weight matrix belonging to this fully connected layer.

Fully connected layers Last, we reconstruct the sensor measurements at time-step
t with l fully connected layers. As input, we use both the augmented short-term

state h̃′
t and the operating conditions Oe, f

t at time-step t . By adding the operating
conditions as input, we ensure that it is not useful for the augmented short-term
states h̃′

t to contain any information on the current operating conditions. We thus
truly aim to encode and decode only the sensor measurements. Here, the first l −1
layers apply the tanh activation function. The last layer has a linear activation
function instead, and contains ms nodes.

2.2.2. CONSTRUCTING A HEALTH INDICATOR WITH THE

RECONSTRUCTION ERRORS OF THE LSTM-AE
We train the LSTM-AE only with the unlabelled sensor data samples of just-installed
aircraft systems, i.e., from systems that are considered healthy. We therefore expect
that the reconstruction errors increase when a system degrades over time [11]. These
reconstruction errors of the trained LSTM-AE are used to derive a health indicator.

Let Le,s
f denote the mean reconstruction loss of a sensor s during flight f

performed by a system e:

Le,s
f = 1

ne, f −1

ne, f∑
t=2

∣∣∣X̂ e, f ,s
t −X e, f ,s

t

∣∣∣ , (2.12)

with X̂ e, f ,s
t the t th reconstructed measurement of sensor s during flight f performed

by system e. Let Le,s = {Le,s
f , f ∈ {1,2, . . . ,F e }} be the time-series of the reconstruction

loss for a sensor s that monitors system e. Then, we define λe = {λe
f , f ∈ {1,2, . . . ,F e }},

the cumulative reconstruction error, as the health indicator of an engine e, with

λe
f =

ms∑
s=1

Le,s
f . (2.13)

2

32
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

2.3. CASE STUDY - AIRCRAFT ENGINES

In this section, we first describe the considered data set in Section 2.3.1. Then, we
describe the preprocessing of the data in Section 2.3.2, while the dataset is illustrated
in Section 2.3.3. Last, we introduce the three metrics that are used to evaluate the
health indicators in Section 2.3.4.

2.3.1. AIRCRAFT ENGINES IN THE N-CMAPSS DATA SET

We consider dataset DS02 of the new N-CMAPSS data set [21]. Here, the
degradation of aircraft turbofan engines is simulated with the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) model of NASA [21]. There are some
key differences between this new data set and the previous C-MAPSS data set [28].

First, dataset DS02 of N-CMAPSS contains a limited number of engines: The
training set contains only 6 engines. The test set contains 3 engines, namely
engine 11, 14 and 15. For each engine e in the training and the test set of DS02,
sensor measurements are available during each flight f from engine installation
until engine failure (i.e., run-to-failure instances). Let F e denote the number of
flights performed by engine e. Besides the sensor measurements, N-CMAPSS also
contains the operating conditions of the flights of the aircraft. A total of mo = 4
operating conditions are available: The altitude of the aircraft (alt), the flight Mach
number (Mach), the throttle-resolver angle (TRA) and the total temperature at the
fan inlet (T2). Last, N-CMAPSS contains high-frequency sensor measurements, with
one measurement per sensor/operating condition per second.

In the beginning of the engine’s lifetime, the N-CMAPSS simulator generates sensor
measurements using a linear, slow degradation model. Afterwards, an exponential,
accelerated degradation model is used to simulate the sensor measurements instead
[21]. The degradation of the engines when the linear, slow degradation model is
used is still small, so we consider these sensor measurements as coming from
“healthy”, just-installed engines. We thus train our LSTM-AE only with the sensor
measurements obtained with this slow degradation model. Let f e

a be the last flight
for which the sensor measurements are generated with the slow degradation model.

2.3.2. DATA PREPROCESSING

The training dataset consists of 6 engines, which together perform 446 flights. With
28 sensors and 4,311 ≤ ne, f ≤ 18,169 measurements per sensor per flight, we have
a total of 147 million data points in the training data set. However, most of the
measurements of the 28 sensors are highly correlated. For example, the flow out
of the low pressure turbine and the flow out of the high pressure turbine have a
correlation of 1.00. To reduce the computational load when training the LSTM-AE,
without comprising the information contained in the sensor measurements, we
select only one of two or more sensors that have a correlation of 0.99 or higher.
This results in the selection of ms = 13 sensors from the available 28 sensors (see
Table 2.1). With this, the number of sensor measurements considered in the training
dataset is reduced to 68 million.

2.3. CASE STUDY - AIRCRAFT ENGINES

2

33

Symbol Description Unit
Wf Fuel flow pps
Nf Physical fan speed rpm

T24 Total temperature at LPC outlet ◦R
T30 Total temperature at HPC outlet ◦R
T48 Total temperature at HPT outlet ◦R
T50 Total temperature at LPT outlet ◦R
P2 Total pressure at fan inlet psia

P50 Total pressure at LPT outlet psia
W21 Fan flow pps
W50 Flow out of LPT lbm/s

SmFan Fan stall margin -
SmLPC LPC stall margin -
SmHPC HPC stall margin -

Table 2.1.: Sensors selected based on the correlation. LPC - Low Pressure Combustor.
HPC - High Pressure Combustor. HPT - High Pressure Turbine. LPT - Low
Pressure Turbine.

To further reduce the computational load for training the LSTM-AE, we aggregate
the sensor measurements and operating conditions per minute. In other words, we
consider the mean measurement and operating condition per minute. This reduces
the number of sensor measurements in the training set to 1.143 million.

Moreover, both the sensor measurements and the operating conditions are
normalized using min-max normalization, to ensure that the measurements have the
same relative scale:

2 · (X e, f ,s
t −X s

min)

X s
max −X s

min

−1, (2.14)

2 · (Oe, f ,o
t −Oo

min)

Oo
max −Oo

min

−1, (2.15)

where X s
min/Oo

min and X s
max/Oo

max are the minimum and maximum measurement of
sensor s/operating condition o in the training set respectively.

Last, there are only 101 flights in the training set where the sensor measurements
are generated with the linear, slow degradation model. We therefore use data
augmentation to increase the number of data samples for training the LSTM-AE [29].
For each flight f ≤ f e

a performed by engine e, we consider time-windows with a size
of 60,70,80, . . . ,ne, f −10,ne, f time-steps. These time-windows are rolled over flight
f of engine e with a step size (i.e., stride) of 5 minutes. In this way, we subtract
for each time-window with a size of 60,70,80, . . . ,ne, f −10,ne, f time-steps, several
time-series of multi-sensor measurements (i.e., data samples) from flight f of engine
e. With this approach, 25,433 data samples are obtained to train the LSTM-AE.

2

34
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

2.3.3. ILLUSTRATION OF N-CMAPSS DATA SET

Figure 2.5.: Heatmap of the correlation between the sensor measurements and
operating conditions - training engines of DS02, N-CMAPSS.

(a) Normalized operating conditions. (b) Normalized sensor measurements.

Figure 2.6.: Normalized operating conditions and normalized sensor measurements -
flight 1, training engine 2 of DS02, N-CMAPSS.

Figure 2.6a shows the normalized operating conditions during the first flight
of engine 2 from the training dataset. Figure 2.6b shows the normalized sensor
measurements of sensors SmHPC, Nf, T48 and P50. These figures and the correlation
heatmap in Figure 2.5 show that the sensor measurements are highly correlated with
the operating conditions. For example, the correlation between the total pressure at
the LPT outlet (P50) and the altitude of the aircraft (alt) is −0.98 (see Figure 2.5).

Figure 2.7 shows the mean normalized sensor measurement per flight, for all
flights performed by engine 2 and for sensors SmHPC, Nf, T48 and P50. These mean
sensor measurements do not exhibit a clear trend towards failure. A more extensive
analysis is thus necessary to obtain a health indicator.

2.3.4. METRICS TO EVALUATE THE HEALTH INDICATORS

We evaluate the health indicators with the monotonicity (M), trendability (T) and
prognosability (P) metrics as follows:

2.3. CASE STUDY - AIRCRAFT ENGINES

2

35

Figure 2.7.: Mean normalized sensor measurement per flight - training engine 2 of
DS02, N-CMAPSS.

Monotonicity We measure the monotonicity M of the health indicator λe of an
engine e as follows [17]:

M= 1

F e −1

∣∣∣∣∣F e−1∑
f =1

I (λe
f +1 −λe

f)

∣∣∣∣∣ , (2.16)

I (x) =
{

1 x > 0

−1 x ≤ 0
.

Trendability We consider the Spearman correlation coefficient between the health
indicator λe and the flights {1, . . . ,F e } to measure the trendability T for engine e [30]:

T =
F e ∑F e

f =1 rλ
e

f f −
(∑F e

f =1 rλ
e

f

)(∑F e

f =1 f
)

√(
F e ∑F e

f =1

(
rλ

e

f

)2
)
−

(∑F e

f =1 rλ
e

f

)2 ·
√(

F e ∑F e

f =1 f 2
)
−

(∑F e

f =1 f
)2

, (2.17)

where rλ
e

f , f ∈ {1,2, . . . ,F e } is the rank sequence of the health indicator λe .

Prognosability We consider the following prognosability metric P , which is also
called the consistency [17, 30]:

P = exp

 −STD(λe
F e ,e ∈ E test)

1
|E test|

∑
e∈E test

∣∣λe
1 −λe

F e

∣∣
 , (2.18)

where STD(λe
F e ,e ∈ E test) is the standard deviation of the last health indicator values

λe
F e ,e ∈ E test (with F e the last flight of engine e), and E test is the set with the

test engines of dataset DS02. The closer this metric is to zero, the better the
prognosability is.

2

36
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

2.4. RESULTS - HEALTH INDICATOR FOR AIRCRAFT ENGINES
In this section, we present the health indicators developed for the engines in DS02,
N-CMAPSS. We first describe the hyperparameters of the LSTM-AE in Section 2.4.1,
and then the sensor selection in Section 2.4.2. Next, we present the health indicators
from the LSTM-AE in Section 2.4.3. Last, we compare our approach with other
methods in Section 2.4.4.

2.4.1. HYPERPARAMETERS OF LSTM-AE
Table 2.2 shows the considered hyperparameters for the LSTM-AE. The architecture
is derived using a grid search. After training, we select the weights that provide
the lowest validation loss. Using a computer with an Intel Core i7 processor (8th
generation), 4 CPU cores and 8GB of RAM memory, it took on average 4.04 minutes
to train the LSTM-AE for one epoch.

Hyperparameter Value
Hyperparameters - architecture

Hidden size ht , ct , h′
t and c ′t 4

Window-size D 5
Number of fully connected layers l 3
Number of nodes first l −1 fully connected layers 128

Hyperparameters - optimization
Optimizer Adam [31]
Number of epochs 100
Training-Validation split 90%-10%
Initial learning rate 0.01
Decrease learning rate when no improvement in
validation loss for ... epochs in a row

10

Decrease learning rate by 1
10

Table 2.2.: Considered hyperparameters of the LSTM-AE.

2.4.2. SENSOR SELECTION FOR CONSTRUCTING A HEALTH INDICATOR

Figure 2.8 shows the reconstructed measurements of sensors T48 and P50 for the
first and the last flight of training engine 2. During the first flight, the reconstructed
measurements are very close to the actual measurements for both sensors. In
contrast, the reconstructed measurements of sensor T48 deviate considerably from
the actual measurements during the last flight of engine 2 (Figure 2.8c). This is
expected, since the engine is severely degraded just before failure, while we train the
LSTM-AE with sensor measurements from non- or slightly-degraded engines only.
This does not hold, however, for all sensors. The reconstructed measurements of
sensor P50 are still very close to the actual sensor measurements (Figure 2.8d).

The different trends towards the time of failure of sensors T48 and P50 are also
shown in Figure 2.9. The reconstruction loss of sensor T48 monotonically increases

2.4. RESULTS - HEALTH INDICATOR FOR AIRCRAFT ENGINES

2

37

(a) First flight - sensor T48. (b) First flight - sensor P50.

(c) Last flight - sensor T48. (d) Last flight - sensor P50.

Figure 2.8.: Actual and reconstructed sensor measurements with the LSTM-AE - first
and last flight, training engine 2 of DS02, N-CMAPSS.

(a) Sensor T48
(
CT48 = 0.95

)
. (b) Sensor P50

(
CP50 = 0.01

)
.

Figure 2.9.: Mean loss Le,s
f per flight with the LSTM-AE - training engine 2 of DS02,

N-CMAPSS.

towards failure, while the reconstruction loss of sensor P50 resembles random
noise. Let Ce,s be the Spearman correlation coefficient (see eq. (2.17)) between
the reconstruction loss Le,s of sensor s monitoring engine e and the flights f , i.e.,

2

38
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

the operating time. Let Cs be the mean over the Spearman correlation coefficients
Ce,s for sensor s, where the mean is taken over all training engines e. This mean
correlation is close to 1 for sensors for which the loss clearly increases towards
failure, while it is close to 0 for sensors for which the loss shows no trend towards
failure. To construct a health indicator, we include in eq. (2.13) only those sensors
for which the mean Spearman correlation Cs between the reconstruction loss and
the flights is 0.5 or larger. In this way, the health indicator is not constructed with
sensors that are very weakly correlated with the time to failure, such as sensor P50.
These sensors add little to no information on the degradation to the health indicator.

2.4.3. HEALTH INDICATORS OF THE TEST ENGINES

(a) Engine 11. (b) Engine 14. (c) Engine 15.

Figure 2.10.: Health indicator with the LSTM-AE - test engines 11, 14 and 15 of DS02,
N-CMAPSS.

Figure 2.10 shows the obtained health indicators, and Table 2.3 shows the sensors
selected to construct the health indicators and the corresponding metrics. The three
test engines fail when the health indicator equals roughly 0.8/0.9, which is reflected
by the high prognosability of 0.94. The increasing trend of the health indicators
towards failure is reflected by the mean trendability of 0.95. Some noise is visible in
the health indicators, which is reflected by a quite low mean monotonicity of 0.38.

The operating conditions for test engine 11 are similar to the operating conditions
of the engines in the training set, while the operating conditions of test engines 14
and 15 are different than in the training set [21]. The monotonicity for engine 14 and
15 is indeed lower than for engine 11. However, the trendability is still high for all
three test engines. Our approach thus achieves a high trendability and prognosability
even when the operating conditions are different than in the training set.

2.4.4. COMPARISON WITH OTHER AUTOENCODERS

We compare the health indicators from the proposed approach with the health
indicators from several other methods. Here, we consider other recurrent and
non-recurrent autoencoders and the LSTM-AE without attention or operating
conditions. The results for these other methods are in Table 2.3 as well.

2.4. RESULTS - HEALTH INDICATOR FOR AIRCRAFT ENGINES

2

39

Engine 11 Engine 14 Engine 15 Mean
Selected sensors M T M T M T M T P

Proposed method
LSTM-AE W50, SmFan,

SmLPC, SmHPC,
Wf, T24, T30,
T48, T50

0.48 0.97 0.31 0.91 0.36 0.97 0.38 0.95 0.94

Proposed method with other recurrent autoencoders
GRU-AE W50, SmFan,

SmLPC, SmHPC,
Wf, T24, T30,
T48, T50

0.21 0.94 0.23 0.79 0.12 0.93 0.18 0.89 0.94

BiGRU-
AE

W50, SmLPC,
SmHPC, T48,
T50

0.24 0.88 0.23 0.84 0.03 0.79 0.17 0.84 0.95

BiLSTM-
AE

W50, SmFan,
SmLPC, SmHPC,
Wf, T24, T30,
T48, T50

0.52 0.97 0.33 0.90 0.30 0.97 0.38 0.94 0.94

Proposed method without operating conditions (no o.c.)
or without attention (no att.)

LSTM-AE
-no o.c.

SmLPC 0.00 0.65 0.01 0.53 0.03 0.39 0.01 0.52 0.67

LSTM-AE
-no att.

W50, SmFan,
SmLPC, SmHPC,
Wf, T24, T30,
T48, T50

0.48 0.97 0.23 0.88 0.30 0.97 0.34 0.94 0.94

Other non-recurrent autoencoders
1D-CAE SmHPC 0.10 0.55 0.01 0.54 0.09 0.28 0.07 0.45 0.77
FAE W21, W50, Sm-

Fan, SmLPC,
SmHPC, Nf, T24,
T30, T48, T50,
P50

0.38 0.77 0.12 0.52 0.18 0.82 0.23 0.70 0.89

Table 2.3.: Evaluation of the health indicators for various autoencoders - test engines
11, 14 and 15 of DS02, N-CMAPSS. M - Monotonicity. T - trendability. P
- prognosability. The best results are denoted in bold.

Other recurrent autoencoders We compare the obtained health indicators with the
health indicators from four other recurrent autoencoders: The Gated Recurrent Unit
autoencoder (GRU-AE), the bidirectional GRU-AE (BiGRU-AE) and the bidirectional
LSTM-AE (BiLSTM-AE). For each recurrent autoencoder, we also implement local
Luong attention and integrate the operating conditions.

2

40
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

For the BiLSTM-AE, we consider a bidirectional LSTM encoder [20, Chapter 8].
However, in the decoder, the reconstructed sensor measurements of time-step t are
used as input in the LSTM-cell at time-step t +1. We therefore cannot consider a
bidirectional decoder as well. For the GRU-AE, we replace each LSTM-cell in the
proposed LSTM-AE by a GRU-cell [20, Chapter 7]. Similar, for the BiGRU-AE, we
replace each LSTM-cell in the BiLSTM-AE with a GRU-cell.

Table 2.3 shows the monotonicity, trendability and prognosability for the health
indicators of the different recurrent autoencoders. With the (Bi)GRU-AE, the
monotonicity and the trendability are considerably lower than with the LSTM-AE.
The prognosability with the BiGRU-AE is 0.95, which is slightly higher than the
prognosability of 0.94 with the LSTM-AE.

The monotonicity and the prognosability are the same with the LSTM-AE and the
BiLSTM-AE. With the LSTM-AE, however, the mean trendability of 0.95 is slightly
higher than the mean trendability of 0.94 for the BiLSTM-AE.

The same subset of sensors is selected to create the health indicators for the
GRU-AE, the LSTM-AE and the BiLSTM-AE. For the BiGRU-AE, however, less sensors
are selected to create the health indicators. For this autoencoder, four sensors,
namely SmFan, Wf, T24, and T30, are not selected.

No operating conditions or no attention We also analyse the health indicators
when the operating conditions are not incorporated in the LSTM-AE, i.e., when the
operating conditions Oe, f are completely removed from the autoencoder. When not
considering the operating conditions, no sensor had a Spearman trendability for the
training engines of 0.5 or higher. Instead, we only include sensor SmLPC, which
has the highest trendability of all sensors. Without incorporating the operating
conditions, the monotonicity, trendability and prognosability of the health indicators
decrease considerably, as shown in Table 2.3.

Table 2.3 also shows the metrics when we do incorporate the operating conditions,
but when no attention is used. The prognosability is the same with and without
attention. The monotonicity, however, is lower when not using attention (0.34
instead of 0.38). Also the trendability is slightly lower (0.94 instead of 0.95).

Other non-recurrent autoencoders Last, we compare our method with two
standard, non-recurrent autoencoders, namely a one-dimensional Convolutional
autoencoder (1D-CAE) and a fully connected autoencoder (FAE). Both the sensor
measurements and the operating conditions are selected as input, though only the
sensor measurements are reconstructed. To construct fixed-length input samples, we
consider a sliding time-window with a fixed size of 16 time-steps and a stride of 1.
To create the health indicator value for a flight f of an engine e, we use the mean
reconstruction loss Le,s

f over all time-windows of size 16 and stride 1 of this flight f .

The one-dimensional convolutional encoder consists of two blocks, each with two
convolutional layers and one max pooling layer with a pooling size of 2. The filters
of the convolutional layer have a size of 4×1 and a stride of 1. The first three
convolutional layers have 8 channels, while the last convolutional layer has only
1 channel. The convolutional decoder consists of the same structure, but instead

2.5. METHODOLOGY - ONLINE RUL PROGNOSTICS USING SIMILARITY-BASED

MATCHING

2

41

of pooling layers we use interpolating layers. We consider zero-padding for all
convolutional layers. Moreover, all layers use the ReLU activation function, except
the last layer of the decoder, which uses the linear activation function.

The encoder of the FAE consists of two fully connected layers. The number of
neurons is halved for each subsequent fully connected layer. The decoder consists
of the same structure, only here the number of neurons is doubled in each fully
connected layer. Each layer applies the ReLU activation function, except the last
layer of the decoder, which uses the linear activation function.

Table 2.3 shows the results for the 1D-CAE and the FAE. For the 1D-CAE, no sensor
had a Spearman trendability for the training engines of 0.5 or higher. Instead, we
only include sensor SmHPC, which has the highest trendability of all sensors. The
trendability and prognosability are considerably higher when considering a recurrent
autoencoder instead of the 1D-CAE or the FAE. This shows the added value of
processing the time-series of sensor measurements with a recurrent autoencoder.

2.5. METHODOLOGY - ONLINE RUL PROGNOSTICS USING

SIMILARITY-BASED MATCHING
In this section, we show how the health indicators developed in Section 2.4 are used
for health state division (Section 2.5.1) and to obtain RUL prognostics (Section 2.5.2).

2.5.1. HEALTH STATE DIVISION USING CHEBYSHEV ’S INEQUALITY

Before we estimate the RUL, we first diagnose an engine as healthy or unhealthy.
This is called health state division or diagnostics [30]. An engine is diagnosed as
unhealthy once its health indicator crosses a threshold η times in a row. This
threshold is determined using Chebyshev’s inequality [32, 33]. For our application,
this inequality states that:

P
(∣∣∣λe

f −µ
∣∣∣≥ kσ

)
≤ 1

k2 , (2.19)

where k > 0, P (·) denotes the probability, and µ is the mean and σ is the standard
deviation of the health indicator values λe

f of the training engines e and flights f

for which the sensor measurements are simulated using the slow, linear degradation
model (i.e., f ≤ f e

a). Thus, an engine is diagnosed as unhealthy as soon as the
threshold µ+kσ is exceeded by the health indicator λe

f η times in a row. The

probability that this occurs while the sensor measurements are generated using the

slow, linear degradation model is less than
(

1
k2

)η
. Let f e

u be the flight during which

an engine e is diagnosed as unhealthy. We estimate the RUL from flight f e
u onwards.

2.5.2. SIMILARITY-BASED MATCHING METHOD FOR RUL PROGNOSTICS

Once an engine is diagnosed as unhealthy, we estimate its RUL after each flight
using a similarity-based health indicator matching approach [11, 22]. These are
online RUL prognostics, since the RUL prognostics are updated every time more
sensor measurements become available.

2

42
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

Figure 2.11.: Illustration of the similarity-based matching method to estimate the
RUL of engine i , with H health-indicators from the training set in the
library.

Let λ̃i =
{
λi

f , f ∈ {
f̃ −M , . . . , f̃

}}
denote a partial health indicator available for

engine i , using the sensor measurements available up to a flight f̃ ≥ f e
u . Here, M

is the fixed length of the partial health indicators. Our aim is to estimate the RUL
of engine i at flight f̃ . For this, we consider a library with for each training engine
e the offline health indicator λe . To estimate the RUL, we match the partial health
indicator λ̃i with all the offline health indicators λe in the library. A schematic
overview of the matching procedure is in Figure 2.11.

When matching, we determine the similarity between the partial health indicator
λ̃i and the offline indicators λe in the library as the average Euclidean distance
between these indices. To maximize the similarity between λ̃i and λe , i.e., to
identify the best matches between λ̃i and λe , λ̃i is shifted along λe in the positive
time-direction for τ flights.

Figure 2.12 shows an example of a matching between the partial health indicator
λ̃i and a health indicator λe from the library. In this example, the partial health
indicator is M = 40 flights long, while the offline health indicator λe is 120 flights
long. When τ= 0, the Euclidean distance is based on the first 40 values of both
health indicators, so between λ̃i and {λe

f , f ∈ {1,2, . . . ,40}}. However, the similarity

between these two health indicators is very small (see Figure 2.12a). In Figure
2.12b, we therefore shift λ̃i forward with τ= 50 flights. Now, the Euclidean distance
between λ̃i and {λe

f , f ∈ {51, . . . ,90}} decreases. Let τi ,e
max (τi ,e

max = |λe | −M flights)

denote the maximum number of flights λ̃i can be shifted forward when matching
with λe , with |λe | the length of the offline health indicator.

2.5. METHODOLOGY - ONLINE RUL PROGNOSTICS USING SIMILARITY-BASED

MATCHING

2

43

(a) Matching procedure with no time-lag τ.

(b) Matching procedure with a time-lag of τ= 50.

Figure 2.12.: The iterative process of matching the partial health indicator λ̃i with
the offline health indicator λe , with different values for the time-lag τ.

Given time-lag τ, the average Euclidean distance d(λ̃i ,λe ,τ) between λe and λ̃i is:

d(λ̃i ,λe ,τ) = 1

M

√√√√ M∑
f =1

(
λe

f +τ− λ̃i
f

)2
, (2.20)

with a corresponding preliminary RUL prognostic of (see also Figure 2.12):�RUL(i ,e,τ) = ∣∣λe ∣∣−M −τ, (2.21)

and a similarity score of [11, 22]:

ρ(i ,e,τ) = exp

(−d(λ̃i ,λe ,τ)

γ

)
, (2.22)

where γ> 0 is a parameter that influences the scaling of the score with respect to the
Euclidean distance. The score ρ(i ,e,τ) is higher when λ̃i and λe are more similar,
given the time-lag τ.

2

44
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

Let ρ̃ denote the highest similarity score of engine i , obtained across all training
engines e in the library and all time-lags τ (see also Figure 2.11), i.e.,:

ρ̃ = max
e ∈ E train,

τ ∈
{

0,1, . . . ,τi ,e
max

}
{
ρ (i ,e,τ)

}
, (2.23)

where E train denotes the set with all training engines. To estimate the RUL of engine
i , we include all preliminary RUL prognostics �RUL(i ,e,τ) for which the score ρ(i ,e,τ)
is high enough, i.e., when [11]:

ρ (i ,e,τ) ≥α · ρ̃, (2.24)

with α ∈ [0,1]. Let Πi be the set of all combinations (e,τ) of training engines e
and time lags τ, such that ρ(i ,e,τ) ≥α · ρ̃. With this, the weight of RUL prognostic�RUL(i ,e,τ), (e,τ) ∈Πi , is computed as:

p(i ,e,τ) = ρ(i ,e,τ)∑
(ϵ,T)∈Πi ρ(i ,ϵ,T)

. (2.25)

Finally, the estimated RUL of engine i after flight f̃ is [22]:

RULi = ∑
(e,τ)∈Πi

p(i ,e,τ) ·�RUL(i ,e,τ). (2.26)

2.6. RESULTS - ONLINE RUL PROGNOSTICS FOR AIRCRAFT

ENGINES
In this section, we present the RUL prognostics for the test engines of dataset DS02.
First, we analyse the health state division and the RUL prognostics in Section 2.6.1.
Then, we compare our results with the results of the other autoencoders in Section
2.6.2. Moreover, we compare our RUL prognostics with the RUL prognostics of
common supervised learning models that directly estimate the RUL in Section 2.6.3.
Last, we analyse the RUL prognostics for a decreasing number of offline health
indicators in the library in Section 2.6.4.

2.6.1. HEALTH STATE DIVISION AND RUL PROGNOSTICS

Table 2.4 shows the flight f e
u during which the test engines of DS02 are diagnosed as

unhealthy. Each test engine is labeled as unhealthy between 29 to 40 flights before
failure (see also Figure 2.10). This is 1 to 12 flights after the last flight f e

a during
which the sensor measurements are generated using the linear degradation model.

Figure 2.13 shows the RUL prognostics for the test engines of DS02. These RUL
prognostics are generated as soon as the engine is diagnosed as unhealthy, and then
updated after each flight. The RUL of engine 11 is slightly overestimated when this
engine is diagnosed as unhealthy, with a prediction error of -6 flights. In contrast,
the RUL for engine 14 is slightly underestimated (a prediction error of 6 flights)
after it is diagnosed as unhealthy. However, the RUL prognostics of all test engines

2.6. RESULTS - ONLINE RUL PROGNOSTICS FOR AIRCRAFT ENGINES

2

45

Engine
Method 11 14 15

Flight f e
a 18 35 23

Proposed method
LSTM-AE f e

u 30 36 32
Proposed method with other recurrent autoencoders

GRU-AE f e
u 44 53 48

BiGRU-AE f e
u 46 66 54

BiLSTM-AE f e
u 30 36 32

Proposed method without attention (no att.)
LSTM-AE- no att. f e

u 30 36 37

Table 2.4.: Health state division: Flight f e
a , after which the sensor measurements are

generated using the exponential degradation model, and flight f e
u , during

which the engine is diagnosed as unhealthy - test engines 11, 14 and 15
of DS02, N-CMAPSS. The best results are denoted in bold.

Figure 2.13.: RUL prognostics with the LSTM-AE - test engines 11, 14 and 15 of
DS02, N-CMAPPS. The first RUL prognostic is made when the engine is
declared unhealthy, and is updated after every flight.

quickly converge to the true RUL as the engines approach their failure time. Table
2.5 shows the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE)
with these RUL prognostics. The results show that RUL is well estimated for all three
engines, with a RMSE between 2.12 and 3.50 flights only.

The hyperparameters of the health state division and the similarity-based matching,
used to obtain these RUL results, are derived using a grid search with leave-one-out
cross validation in the training set [34]. Here, the goal is to minimize the RMSE for
the training engines. For the health state division, we obtain η= 3 and k = 5 (see
Section 2.5.1). For the similarity-based matching method, we obtain M = 10, λ= 0.01
and α= 0.7 (see Section 2.5.2).

2

46
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

Engine 11 Engine 14 Engine 15 All
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Proposed method
LSTM-AE 2.89 3.50 1.89 2.41 1.95 2.12 2.18 2.67

Proposed method with other recurrent autoencoders
GRU-AE 1.06 1.22 3.76 4.27 0.98 1.24 2.12 3.87

BiGRU-AE 1.24 1.72 3.02 3.45 1.73 2.80 1.91 2.36
BiLSTM-AE 2.72 3.41 2.42 3.02 2.77 2.96 2.62 3.12

Proposed method without attention (no att.)
LSTM-AE-no att. 2.76 3.50 2.49 3.31 2.09 2.28 2.45 3.10

Table 2.5.: Evaluation of the RUL prognostics for our proposed approach (LSTM-AE)
versus other approaches - test engines 11, 14 and 15 of DS02, N-CMAPSS.

2.6.2. COMPARISON WITH THE RUL PROGNOSTICS OF OTHER

AUTOENCODERS

We also analyse the health state division and the RUL prognostics with the health
indicators of the best autoencoders of Section 2.4.4: Specifically, we consider the
other recurrent autoencoders, and the LSTM-AE without attention.

The test engines are diagnosed as unhealthy during the same flights for the
BiLSTM-AE and the LSTM-AE (see Table 2.4). Moreover, test engine 11 and 14 are
diagnosed as unhealthy during the same flights for the LSTM-AE with and without
attention. However, test engine 15 is diagnosed as unhealthy 5 flights later when no
attention is used. For the BiGRU-AE and the GRU-AE, the engines are diagnosed as
unhealthy after a later flight: For the GRU-AE, the engines are labelled as unhealthy
15 to 23 flights before failure, while for the BiGRU-AE, the engines are labelled as
unhealthy only 10 to 13 flights before failure. This late diagnosis as unhealthy is
expected, given the relatively low monotonicity and trendability of the (Bi)GRU-AE.
It is, however, preferable if an engine is diagnosed as unhealthy far before failure,
provided that the degradation in the engines is large enough to accurately estimate
the RUL of the engines.

Table 2.5 also shows the MAE and the RMSE of the RUL prognostics for the other
considered autoencoders. For all four considered autoencoders, we find that η= 3,
k = 5 and λ= 0.01. The fixed length equals M = 10 for the GRU-AE, and M = 5 for the
other autoencoders. The parameter α is 0.1 for the BiGRU-AE, 0.2 for the LSTM-AE
without attention, 0.4 for the BiLSTM-AE and 0.5 for the GRU-AE.

The RUL prognostics with the LSTM-AE have a lower overall RMSE and MAE
then the RUL prognostics with the BiLSTM-AE. This is as expected, since the health
indicators of the LSTM-AE have a slightly higher trendability.

We cannot directly compare the RUL prognostics of the (Bi)GRU-AE and the
LSTM-AE, since the engines are diagnosed as unhealthy much closer to failure when
considering the (Bi)GRU-AE. In general, we expect that the RUL prognostics improve
when an engine degrades over time. We thus expect that the RMSE is lower when
an engine is diagnosed as unhealthy later. Nevertheless, the overall RMSE of the

2.6. RESULTS - ONLINE RUL PROGNOSTICS FOR AIRCRAFT ENGINES

2

47

LSTM-AE (2.67 flights) is better than the overall RMSE of the GRU-AE (3.87 flights)
and only slightly worse than the overall RMSE of the BiGRU-AE (2.36 flights).

For each test engine, the RMSE with the LSTM-AE without attention is larger
than or equal to the RMSE with the LSTM-AE with attention. This also holds for
test engine 15, even though engine 15 is diagnosed as unhealthy 5 flights later
when not using attention. Moreover, the overall RMSE equals 3.10 flights without
attention, while it only equals 2.67 flights with attention. This shows the benefits of
incorporating attention in the autoencoder.

2.6.3. COMPARISON WITH OTHER, SUPERVISED LEARNING METHODS

Last, we compare our results with the results of neural networks that directly output
a RUL prognostic, i.e., supervised learning methods. Here, we train two benchmark
neural networks to directly estimate the RUL: The one-dimensional convolutional
neural network (1D-CNN) and the LSTM neural network (LSTM-NN). These two
neural networks are also used as benchmark in [29], and we thus use the same
architecture and hyperparameters as in [29]. However, to allow for a fair comparison,
we use the same sensors that are used as input to our approach (see Table 2.1) as
input to the benchmark neural networks.

There is no straightforward method for health state division when using a
supervised learning method. However, RUL prognostics usually improve when the
true RUL becomes smaller. The comparison of the RUL prognostics would thus
not be fair if we do not use any health state division for the supervised learning
methods. Instead, we apply the health state division of the proposed methodology
also to the benchmark neural networks. For example, engine 11 is diagnosed as
unhealthy at flight 30 with the proposed approach. We thus also estimate the RUL
of engine 11 with the benchmark neural networks from flight 30 onward.

Engine
11 14 15 All

Proposed methodology
LSTM-AE 3.50 2.41 2.12 2.67
Supervised learning neural networks
1D-CNN 4.09 5.07 2.84 4.16

LSTM-NN 4.24 3.32 2.22 3.31

Table 2.6.: RMSE for the test engines 11,14 and 15 of DS02, N-CMAPSS, with various
methodologies. The best results are denoted in bold.

Table 2.6 shows the RMSE of the RUL prognostics with the various methodologies.
The RMSE of the RUL prognostics is lowest for all test engines when considering our
proposed approach. This shows that our approach works well for the considered
data set with limited failure instances, compared to a supervised learning method.

2

48
2. HEALTH INDICATORS AND POINT RUL PROGNOSTICS WITH A LSTM
AUTOENCODER

2.6.4. IMPACT OF THE NUMBER OF AVAILABLE LABELLED DATA SAMPLES

ON THE RUL PROGNOSTICS

Figure 2.14.: Learning curve of the RMSE and MAE for the LSTM-AE - test engines
of DS02, N-CMAPSS.

Due to preventive maintenance, most aircraft systems are replaced before their
failure. There are therefore only limited labelled data samples available. In this
section, we study the impact of the size of the library in the matching approach, i.e.,
the number of offline health indicators in the library, on the accuracy of the RUL
prognostics. The health indicators are constructed using unlabelled data samples
from the beginning of an engine’s lifetime only. In real life, there are enough
unlabelled data samples to train an autoencoder. We thus use the same online and
offline health indicators as in Section 2.4.

Size of # of Set of offline libraries (·)
library libraries

1 6 {(e1) : e1 ∈ E train}
2 15 {(e1,e2) : e1 ∈ E train,e2 ∈ E train \ {e1}}
3 20 {(e1,e2,e3) : e1 ∈ E train,e2 ∈ E train \ {e1},e3 ∈ E train \ {e1,e2}}
4 15 {(e1,e2,e3,e4) : e1 ∈ E train,ei ∈ E train \ {e j , j = 1,2, . . . , i − 1}, i =

2,3,4}
5 6 {(e1,e2,e3,e4,e5) : e1 ∈ E train,ei ∈ E train\{e j , j = 1,2, . . . , i−1}, i =

2,3,4,5}
6 1 E train

Table 2.7.: Overview of the considered libraries. Here, E train is the set with all training
engines.

Figure 2.14 shows the RMSE and the MAE of the RUL prognostics for an increasing
number of available offline health indicators in the library. This is called the learning
curve. We consider for each number of available offline health indicators, all possible
combinations of historical health indicators that give a library of this size. For

2.7. CONCLUSION

2

49

instance, we consider the following 15 libraries if two health indicators are available:

{(1,2) , (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)} .

Here, 1,2, . . . ,6 denotes the offline health indicator from the first, second, ..., sixth
training engine respectively. An overview of all considered libraries is in Table 2.7.
With each library, we estimate the RUL of the test engines.

As expected, the RUL prognostics improve when the size of the library increases.
The decrease in the RMSE and MAE is highest when we consider two offline health
indicators in the library, instead of just one. However, even when a library consists
of just one offline health indicator, the RUL is well estimated with a RMSE of only
3.95 flights, and a MAE of only 3.38 flights. This shows that our approach works well
when only very few labelled data samples are available.

2.7. CONCLUSION
In aviation, safety-critical aircraft systems usually undergo preventive maintenance.
Consequently, only very few labelled sensor data samples, with as label the true RUL,
are available. Many labelled data samples, however, are required to train supervised
learning models that directly estimate the RUL. In this chapter, we therefore instead
propose to construct a health indicator by training a LSTM autoencoder (LSTM-AE)
with unlabelled data samples (i.e., the corresponding true RUL is unknown). The
reconstruction errors of the LSTM-AE increase as the degradation in a system
increases, and are therefore used to construct a health indicator. The sensor
measurements of aircraft systems are generated at a high frequency during flights of
several hours. Each data sample thus consists of a long time-series of multi-sensor
measurements. We apply attention in the LSTM-AE to handle these long time-series.
Moreover, aircraft are operated under highly-varying operating conditions. To create
robust health indicators, we thus integrate the operating conditions in the LSTM-AE.

Next, we divide the lifetime of each engine in a healthy and an unhealthy stage by
applying Chebyshev’s inequality to the health indicators. Then, we use the health
indicators and the few available labelled data samples in a similarity-based matching
approach to estimate the RUL of the engines in the unhealthy stage.

We apply this approach to the aircraft engines in the new N-CMAPSS dataset [21].
The obtained health indicators have a high monotonicity (0.38), prognosability (0.94)
and trendability (0.95). Moreover, the health indicators are indeed robust to the
varying operating conditions. The trendability is also high for engines with operating
conditions deviating from the operating conditions in the training set. Also the
obtained RUL prognostics are accurate, with a RMSE of only 2.67 flights. Moreover,
our approach outperforms supervised learning methods, that directly estimate the
RUL, with a decrease in the RMSE of 19%.

Our proposed methodology is illustrated for aircraft engines. However, the
described methodology is also suitable for applications in other fields, such as
wind turbine gearboxes, bearings in industrial applications or batteries. For future
research, we therefore plan to apply this methodology for other components and
systems in other industries as well.

REFERENCES

[1] de Pater, I., & Mitici, M. (2023). Developing health indicators and RUL
prognostics for systems with few failure instances and varying operating
conditions using a LSTM autoencoder. Engineering Applications of Artificial
Intelligence, 117, Article number: 105582.

[2] de Pater, I., & Mitici, M. (2023, September 3-7). Constructing health indicators
for systems with few failure instances using unsupervised learning. Proceedings
of the 33st European Safety and Reliability Conference, Southampton, UK,
Pages: 3066–3073.

[3] Ochella, S., Shafiee, M., & Dinmohammadi, F. (2022). Artificial intelligence
in Prognostics and Health Management of engineering systems. Engineering
Applications of Artificial Intelligence, 108, Article number: 104552.

[4] Koutroulis, G., Mutlu, B., & Kern, R. (2022). Constructing robust health
indicators from complex engineered systems via anticausal learning. Engineering
Applications of Artificial Intelligence, 113, Article number: 104926.

[5] Berghout, T., Mouss, L.-H., Kadri, O., Saïdi, L., & Benbouzid, M. (2020). Aircraft
engines Remaining Useful Life prediction with an adaptive denoising online
sequential extreme learning machine. Engineering Applications of Artificial
Intelligence, 96, Article number: 103936.

[6] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[7] Shen, S., Lu, H., Sadoughi, M., Hu, C., Nemani, V., Thelen, A., Webster, K.,
Darr, M., Sidon, J., & Kenny, S. (2021). A physics-informed deep learning
approach for bearing fault detection. Engineering Applications of Artificial
Intelligence, 103, Article number: 104295.

[8] de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic
Remaining Useful Life prognostics with applications to turbofan engines.
Proceedings of the 7th European Conference of the Prognostics and Health
Management (PHM) Society, 7, Turin, Italy, Pages: 96–109.

[9] Xiang, S., Qin, Y., Zhu, C., Wang, Y., & Chen, H. (2020). Long Short-Term
Memory Neural Network with weight amplification and its application into
gear Remaining Useful Life prediction. Engineering Applications of Artificial
Intelligence, 91, Article number: 103587.

[10] Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020).
Potential, challenges and future directions for deep learning in Prognostics
and Health Management applications. Engineering Applications of Artificial
Intelligence, 92, Article number: 103678.

51

2

52 REFERENCES

[11] Malhotra, P., TV, V., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., &
Shroff, G. (2016). Multi-sensor prognostics using an unsupervised health index
based on LSTM encoder-decoder. arXiv preprint arXiv:1608.06154.

[12] Ye, Z., & Yu, J. (2021). Health condition monitoring of machines based on Long
Short-Term Memory convolutional autoencoder. Applied Soft Computing, 107,
Article number: 107379.

[13] Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017).
Predicting Remaining Useful Life using time series embeddings based on
Recurrent Neural Networks. arXiv preprint arXiv:1709.01073.

[14] Yu, W., Kim, I. Y., & Mechefske, C. (2019). Remaining Useful Life estimation
using a bidirectional Recurrent Neural Network based autoencoder scheme.
Mechanical Systems and Signal Processing, 129, Pages: 764–780.

[15] Fu, S., Zhong, S., Lin, L., & Zhao, M. (2021). A novel time-series memory
auto-encoder with sequentially updated reconstructions for Remaining Useful
Life prediction. IEEE Transactions on Neural Networks and Learning Systems,
33, Pages: 7114–7125.

[16] Zhai, S., Gehring, B., & Reinhart, G. (2021). Enabling predictive maintenance
integrated production scheduling by operation-specific health prognostics with
generative deep learning. Journal of Manufacturing Systems, 61, Pages: 830–855.

[17] Liu, C., Sun, J., Liu, H., Lei, S., & Hu, X. (2020). Complex engineered system
health indexes extraction using low frequency raw time-series data based on
deep learning methods. Measurement, 161, Article number: 107890.

[18] Wei, Y., Wu, D., & Terpenny, J. (2021). Learning the health index of complex
systems using dynamic conditional variational autoencoders. Reliability
Engineering & System Safety, 216, Article number: 108004.

[19] Wang, J., Zeng, Z., Zhang, H., Barros, A., & Miao, Q. (2022). An hybrid
domain adaptation diagnostic network guided by curriculum pseudo labels
for electro-mechanical actuator. Reliability Engineering & System Safety, 228,
Article number: 108770.

[20] Vasilev, I. (2019). Advanced deep learning with Python: Design and implement
advanced next-generation AI solutions using Tensorflow and PyTorch. Packt
Publishing Ltd.

[21] Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021). Aircraft engine run-
to-failure dataset under real flight conditions for prognostics and diagnostics.
Data, 6(1), Article number: 5.

[22] Yu, W., Kim, I. Y., & Mechefske, C. (2020). An improved similarity-based
prognostic algorithm for RUL estimation using an RNN autoencoder scheme.
Reliability Engineering & System Safety, 199, Article number: 106926.

[23] Lyu, J., Ying, R., Lu, N., & Zhang, B. (2020). Remaining Useful Life estimation
with multiple local similarities. Engineering Applications of Artificial Intelligence,
95, Article number: 103849.

[24] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), Pages: 1735–1780.

[25] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural Computation, 12(10), Pages: 2451–2471.

REFERENCES

2

53

[26] Géron, A. (2018). Neural networks and deep learning. O’Reilly.
[27] Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to

attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
[28] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data

set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[29] Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022). Fusing physics-based
and deep learning models for prognostics. Reliability Engineering & System
Safety, 217, Article number: 107961.

[30] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[31] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[32] Singh, J., Darpe, A., & Singh, S. P. (2020). Bearing Remaining Useful Life
estimation using an adaptive data-driven model based on health state
change point identification and K-means clustering. Measurement Science and
Technology, 31(8), Article number: 085601.

[33] Kong, X., & Yang, J. (2019). Remaining Useful Life prediction of rolling bearings
based on RMS-MAVE and dynamic exponential regression model. IEEE Access,
7, Pages: 169705–169714.

[34] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

3
AN IMPROVED WEIGHT

INITIALIZATION STRATEGY FOR

NEURAL NETWORKS, APPLIED TO

POINT RUL PROGNOSTICS

Throughout this dissertation, we use neural networks to estimate the Remaining Useful
Life (RUL) of aircraft systems. Training these neural networks is time-consuming. A
good weight initialization strategy may accelerate the convergence of the weights in a
neural network and reduce the training time. In this chapter, we therefore propose a
new method to initialize the weights in the last layer of a neural network.

We first derive analytically a constraint on the weights that accelerates the convergence
of the weights during the back-propagation algorithm. We then use constrained linear
regression to analytically derive the initial weights and the initial bias of the last layer
that minimize the initial training loss, given the derived constraint.

We apply our proposed weight initialization approach to a Convolutional Neural
Network that estimates the RUL of aircraft engines. With our weight initialization
strategy, the initial training and validation loss are relatively small, the weights do
not get stuck in a local optimum, and the convergence of the weights is accelerated.
We also apply our approach to two neural networks commonly used in image
classification, combined with transfer learning.

Parts of this chapter have been published in:

de Pater, I., & Mitici, M. (2023). A mathematical framework for improved weight initialization of
neural networks using Lagrange multipliers. Neural Networks, 166, Pages: 579–594

55

3

56
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

3.1. INTRODUCTION

Neural networks have become increasingly popular in the last few decades, with
applications in a wide range of domains [2], such as image classification [3],
time-series prediction [4], object detection [5] and natural language processing [6].
The weights of these neural networks are usually optimized using gradient descent,
until the weights converge such that the loss is close to a minimum [7]. In the last
years, many improvements have been proposed to accelerate the convergence of the
weights such as, for instance, improved optimizers [8, 9], good weight initialization
strategies [10, 11] and the use of specialized hardware such as GPUs. However,
training an accurate neural network is still computationally intensive, consumes a
large amount of energy and takes a long time. This is especially problematic for
deep neural networks trained with large data sets. Methods that accelerate the
convergence of the weights in a neural network are therefore still needed.

One way to speed up the training of a neural network is a good weight initialization
method. Most papers on weight initialization focus on initializing the weights
such that the convergence of the weights during the back-propagation algorithm
is accelerated. Here, the goal is to mitigate the vanishing or exploding gradient
problem, and to prevent that the weights get stuck in a local optimum [12]. This
is also the aim of the most popular approaches for weights initialization, namely
“Xavier” [10] and “Kaiming” initialization [11]. In [10], it is shown that the variance
of both the forward-propagated outputs and the backward-propagated gradients
should be equal for all layers in the neural network after the weight initialization
to prevent the vanishing/exploding gradient problem. From this requirement, the
required variance of the weights is derived for each layer. In [10], this required
variance is derived for a neural network with the sigmoid or tanh activation function,
while in [11], this required variance is derived for a neural network with the ReLU
activation function. In both papers, the weights are then randomly chosen from
a distribution, such as uniform or normal, with a mean of zero and the required
variance. These weight initialization strategies are very successful when training
deep neural networks. In this chapter, we therefore also consider the requirement
that the variance of the outputs and gradients of each layer of the neural network
are equal after the weight initialization.

Other studies on weight initialization use the characteristics of the training data
instead. In [13], the weights are initialized with the orthogonal projection of the
input correlation matrix using the singular value decomposition. In [14], this method
is extended by using layer sequential unit variance: Random weights are first
orthonormalized, and then the variance of the output of each layer is normalized to
one. In [15], the weights are sampled from an interval that is determined based on
the characteristics of the data. In this chapter, we also use the characteristics of the
training data to initialize the weights.

Overall, most existing studies on weight initialization do not consider the initial
loss [10, 11, 13, 14]. Due to the random starting point of the weights, however, many
updating steps and thus many epochs might be necessary to achieve convergence.
In contrast, there are few studies that focus on finding initial weights that minimize
the initial training loss, i.e., on finding weights close to an optimum, instead. For

3.1. INTRODUCTION

3

57

example, in [16, 17] linear regression is used to initialize the weights of the last
layer, the authors of [18] use linear discriminant analysis to initialize the weights
such that the difference between classes is maximized and in [19], the initial training
loss is minimized using the singular value decomposition. However, these studies in
turn do not consider the convergence of the weights when initializing the weights
of the last layer. To address this, we propose a weight initialization strategy that
combines both goals: We initialize the weights and bias of the last layer of a neural
network such that i) the weight convergence during the back-propagation algorithm
is accelerated and ii) given that the weight convergence is accelerated, we initialize
the weights close to an optimum point by minimizing the initial training loss.

Our approach is inspired by techniques from the field of neural networks with
random weights (NNRW), such as extreme learning machines. In NNRW, the weights
are optimized without gradient descent or other iterative methods [20]. Instead, the
weights of the first layers of the neural network are randomly chosen. The weights
of the last layer are then optimized with the objective to minimize the loss function
using, for instance, Ridge regression [20], the matrix inverse [21] or inequality
constrained least-squares [22]. Inspired by NNRW, we optimize the initial weights
and the initial bias of the last layer of the neural network using a regression model.

However, in contrast with NNRWs, we further optimize the weights with the
back-propagation algorithm. To also mitigate the vanishing/exploding gradient
problem, we analytically derive a novel tight constraint on the weights of the last
layer to ensure that the variance of the output/gradients of the last layer is equal
to the variance of the output/gradients of the other layers [10]. This novel tight
constraint holds without assuming that the mean of the weights and bias is zero, as
commonly done in most weight initialization strategies. Given this constraint, we
next derive analytically the optimal initial weights and bias of the last layer, i.e., the
weights and bias that give the lowest initial training loss, using Lagrange. We derive
this constraint, and the corresponding optimal initial weights and bias, for neural
networks that solve a regression problem and that use a specific activation function.

We first apply our proposed approach to estimate the Remaining Useful Life (RUL)
of aircraft engines using a Convolutional Neural Network. This is a regression
problem. Compared to the random Xavier weight initialization method [10], the
weights indeed start at point that gives a relatively small initial training and
validation loss. The initial validation loss is 2.4 times smaller with our approach.
Moreover, the weights quickly converge from this small initial training loss, due to
the novel constraint derived on the weights. Last, the weights do not get stuck in a
local optimum. Overall, the training of the neural network is therefore much faster
when using our approach. The smallest validation loss obtained after 198 epochs
following Xavier [10], is already obtained after 49 epochs with our approach. We
thus need 75% fewer epochs to reach the same result. The best benchmark strategy
is Kaiming weight initialization [11]. Here, the initial validation loss is 2.4 times
smaller with our approach as well. Moreover, the minimum validation loss reached
after 148 epochs using Kaiming initialization, is already reached after 97 epochs with
our approach, i.e., we need 34% fewer epochs to reach the same validation loss. We
also show that with the new initialization technique, we can relax the assumption

3

58
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

that the mean of the weights is zero (as assumed in [10, 11]). Last, we find that only
a small part of the training set can be used to initialize the weights. This makes the
weight initialization 42 times faster, while the weights converge at the same rate.

We next adjust our approach so that it can be applied to neural networks that
solve classification problems as well, with any type of activation function. We then
illustrate our approach using ResNet-18 and ResNet-34 [23] to classify the images in
the CIFAR-100 dataset [24]. When training ResNet-18 and ResNet-34 from scratch,
we achieve a slightly faster convergence of the weights. However, we obtain the best
results when combining our approach with transfer learning. Combined with transfer
learning, the initial accuracy of the validation set after applying our approach is
already 53% and 55% for ResNet-18 and ResNet-34 respectively. This leads to a
faster convergence of the weights. Using ResNet-18 and the best benchmark method
(LeCun initialization [25]), the highest validation accuracy of 81.32% is obtained
after 49 epochs. Using our approach, the same accuracy is already obtained after
just 13 epochs. Similarly, for ResNet-34, the highest validation accuracy of 84.18%
is obtained after 50 epochs using LeCun initialization, while the same accuracy is
already obtained after 14 epochs with our approach.

The remainder of this chapter is structured as follows. We first introduce our
proposed weight initialization methodology for neural networks in Section 3.2. We
apply this methodology to a case study with a regression problem in Section 3.3.
Last, we apply our approach to classification neural networks, namely ResNet-18
and ResNet-34, in Section 3.4. We then discuss the conclusions, the limitations and
future research directions in Section 3.5. The Python code for the proposed weight
initialization method is in [1].

3.2. METHODOLOGY - WEIGHT INITIALIZATION IN THE

LAST LAYER OF THE NEURAL NETWORK
In Section 3.2.1 we discuss the layout of the considered neural network. We derive
the constraints on the weights in the last layer in Section 3.2.2, and we integrate
these constraints in the linear regression problem using the Lagrange multiplier in
Section 3.2.3. We summarize the full weight initialization procedure in Section 3.2.4.

3.2.1. NEURAL NETWORK FOR A REGRESSION PROBLEM

We use a neural network with L layers to solve a regression problem, i.e., the true
label of each sample is one numerical value. Let S be the training set for the
neural network, with N training samples. The true label of a training sample i ∈ S is
denoted by yi , and the vector with all true labels is denoted by y = [y1, y2, . . . , yN].
We assume that the activation function f (·) used throughout the neural network has
a unit derivative at 0, i.e., f ′(0) = 1, and that this derivative exists. For example, this
could be the hyperbolic tangent activation function (tanh). Moreover, we assume
that the last layer L of this neural network is a fully connected layer. This is often
the case for regression neural networks, e.g., [26–28]. Figure 3.1 shows a schematic
overview of this last layer.

3.2. METHODOLOGY - WEIGHT INITIALIZATION IN THE LAST LAYER OF THE

NEURAL NETWORK

3

59

Figure 3.1.: Schematic overview of the last layer of the assumed neural network for a
training sample i ∈ S.

Let yL−1 = [yL−1
1 ,yL−1

2 , . . . ,yL−1
m] be the matrix with the output of the (L −1)th layer,

with m the number of output nodes. Here, yL−1
j = [yL−1

1, j , yL−1
2, j , . . . , yL−1

N , j]T is the vector

with the output of the j th node of the (L −1)th layer for all training samples i ∈ S,
and T denotes the transpose. Then, xL = f (yL−1) = [xL

1 ,xL
2 , . . . ,xL

m] is the matrix with
the activated input of layer L. Here, xL

j = [xL
1, j , xL

2, j , . . . , xL
N , j]T is the vector with the

j th hidden input state of layer L for all training samples i ∈ S. Last, the weights of
layer L are denoted by wL = [wL

1 , wL
2 , . . . , wL

m], while bL denotes the bias. The output
yL

i of layer L for training sample i is then yL
i =∑m

j=1 wL
j xL

i , j +bL .

We assume that the considered neural network applies a linear activation function
to the output, i.e., the output yL

i of the last layer directly is the estimated label ŷi

of training sample i . This linear activation function is also often applied in neural
networks that solve a regression problem, e.g., [26–28]. The vector with estimated
labels for the training set S is denoted by ŷ = yL = [yL

1 , yL
2 , . . . , yL

N]. The objective of
the regression task is to minimize the loss function. As loss function, we use the
squared error of the output:

Loss = ∑
i∈S

(
yi − ŷi

)2 . (3.1)

In this chapter, we randomly initialize the weights of the first L −1 layers from a
normal distribution following [10] (i.e., Xavier initialization). Given these random
weights, the aim of this study is to initialize the weights wL and bias bL of the last
layer such that the loss is minimized. We therefore perform one forward pass with
all training samples in S, and obtain the hidden input states xL of layer L. Now, the
weights wL and bias bL that minimize the loss function can easily be obtained with
the least squares solution of a linear regression of the actual labels y on the hidden

3

60
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

states xL . The objective of this linear regression is:

minbL ,wL

∑
i∈S

(
yi − ŷi

)2 = minbL ,wL
j , j=1,2,...,m

∑
i∈S

(
yi −

(
m∑

j=1
wL

j xL
i , j +bL

))2

. (3.2)

However, initializing the weights in this way might cause the gradients to vanish
or explode during the back-propagation algorithm. This in turn hinders the
convergence of the weights. To avoid the vanishing or exploding gradient problem,
the authors of [10] found that the variance of the outputs and gradients of each
layer in the neural network should be equal after weight initialization. In the next
sections, we rewrite this requirement in a constraint on the weights of the last layer,
and integrate this constraint in the linear regression problem.

3.2.2. CONSTRAINTS ON THE WEIGHTS OF THE LAST LAYER OF THE

NEURAL NETWORK

To avoid the vanishing or the exploding gradient problem, the variance (Var) of i)
the forward-propagated output and ii) the backward-propagated gradients of each
layer should be equal. For the last layer L, this means that [10]:

Var
(
ŷ
)= Var

(
xL)

(3.3)

Var

(
ÇLoss

ÇyL

)
= Var

(
ÇLoss

ÇyL−1

)
, (3.4)

where ŷ , xL , ÇLoss
ÇyL and ÇLoss

ÇyL−1 represent the random variable of any element in ŷ,

xL , ÇLoss
ÇyL and ÇLoss

ÇyL−1 respectively [11]. In [10], these two requirements are used to

derive the desired variance for the weights in each layer. The authors assume in
this derivation that the initial weights are independent and identically distributed
random variables. The weights are then randomly sampled from a distribution,
usually normal or uniform, with mean zero and the desired variance. This strategy
is commonly called “Xavier initialization”.

In this chapter, we cannot directly use the same derivation as in [10], since we do
not assume that the mean of the weights is zero. Moreover, regarding the weights
as independent and identically distributed random variables, as in [10], becomes
problematic for the considered approach. We therefore use the two requirements to
derive a constraint on the weights in the last layer using the rules of the variance of
a linear function instead. An advantage of this method is that fewer assumptions are
made, and that it suits a linear regression approach more naturally. To verify our
approach, we show in Appendix 3.C how the same constraints can be derived using
the same derivation as in [10].

REQUIREMENT 1: VAR
(
ŷ
)= VAR

(
xL

)
As in [10, 11], we assume that the hidden states in xL are independently and
identically distributed. Specifically, the variance of xL

j , representing a random

3.2. METHODOLOGY - WEIGHT INITIALIZATION IN THE LAST LAYER OF THE

NEURAL NETWORK

3

61

variable of any element in xL
j , is equal for all nodes j ∈ {1,2, . . . ,m}. This assumption

from [10] still holds, since these hidden states come from the randomly initialized
weights. In contrast with [10, 11], however, we treat the initialized weights and the
initialized bias of the last layer as constant numbers instead of random variables,
i.e., given the initialized bias and weights, we assume that the variance of ŷ comes
from the variance of xL only. This interpretation fits a linear regression approach
well, since the weights are not sampled from a distribution. Since we impose that
ŷ = yL , it follows that [29]:

Var(ŷ) = Var

(
bL +

m∑
j=1

wL
j xL

j

)
(3.5)

=
m∑

j=1

(
wL

j

)2
Var

(
xL)

The first requirement states that Var
(
ŷ
) = Var

(
xL

)
. This gives the following

constraint on the sum of the squared weights:

m∑
j=1

(
wL

j

)2 = 1 (3.6)

In [10], it is assumed that the expected value of the weights is zero. If we would
also assume that the mean of the weights is zero, then eq. (3.6) states that the

empirical variance of the weights should equal 1
m (i.e., 1

m

∑m
j=1

(
wL

j

)2 = 1
m). This is

then the same as the constraint on the variance of the weights in eq. (10) in [10].
However, we do not use that the mean of the weights is zero in our derivation. In
this chapter, we therefore first consider the case where the mean of the weight is
not restricted. In Section 3.3.4, we instead follow [10, 11] and assume that the mean
of the weights in the last layer is zero.

REQUIREMENT 2: VAR

(
ÇLOSS

ÇyL

)
= VAR

(
ÇLOSS

ÇyL−1

)
The second requirement states that the variance of the gradients is equal throughout
the neural network. To derive a constraint on the weights from this requirement, we
first write out ÇLoss

ÇyL−1
j

of one hidden state j , j ∈ {1,2, . . . ,m}:

ÇLoss

ÇyL−1
j

= ÇLoss

ÇyL

ÇyL

ÇxL

ÇxL

ÇyL−1
j

= ÇLoss

ÇyL
wL

j f ′
(
yL−1

j

)
, (3.7)

with f ′(·) the derivative of the considered activation function. As in [10], we assume
that this activation function has a unit derivative at 0 (see Section 3.2.1). Since the
weight initialization in all layers before layer L is still random, we follow [10] and
assume that yL−1

j ≈ 0, and thus that f ′(yL−1
j) ≈ 1 (Taylor expansions around yL−1

j = 0).

This gives:

ÇLoss

ÇyL−1
j

≈ ÇLoss

ÇyL
wL

j (3.8)

3

62
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

Using this, we derive the variance:

Var

(
ÇLoss

ÇyL−1
j

)
= Var

(
ÇLoss

ÇyL
wL

j

)
=

(
wL

j

)2
Var

(
ÇLoss

ÇyL

)
, (3.9)

where ÇLoss
ÇyL−1

j
represent the random variable of any element in ÇLoss

ÇyL−1
j

. We are, however,

interested in the variance of ÇLoss
ÇyL−1 for the random variable of any element in ÇLoss

ÇyL−1 ,

over all hidden states j . Since wL
j usually does not equal wL

i if i ̸= j , we cannot

assume that the variance of ÇLoss
ÇyL−1

j
is the same for all j ∈ {1,2, . . . ,m}. Instead, we use

that the variance of ÇLoss
ÇyL−1 is the variance of a mixture distribution of all random

variables ÇLoss
ÇyL−1

j
, for j ∈ {1,2, . . . ,m}. The variance of m mixture distributions, where

each distribution has weight 1
m , mean µ j = E[ÇLoss

ÇyL−1
j

] , and variance (wL
j)2Var

(
ÇLoss
ÇyL

)
,

and where the total mean is µ= E[ÇLoss
ÇyL−1], equals [30]:

m∑
j=1

1

m

((
wL

j

)2
Var

(
ÇLoss

ÇyL

)
+µ2

j

)
−µ2

The expected value µ j of ÇLoss
ÇyL−1

j
is:

E

[
ÇLoss

ÇyL−1
j

]
= E

[
ÇLoss

ÇyL
wL

j

]
(3.10)

= E
[
−2(y − ŷ)wL

j

]
=−2wL

j

(
E[y]−E[ŷ]

)
.

Here, y represent the random variable of any element in y. In Section 3.2.3, we show
that the expected value E[ŷ], given the optimal bias and weights in the last layer,
equals 1

N

∑
i∈S yi = E[y]. The expected value µ j of ÇLoss

ÇyL−1
j

is thus zero, and the total

mean µ is zero as well. This gives:

Var

(
ÇLoss

ÇyL−1

)
=

m∑
j=1

1

m
(wL

j)2Var

(
ÇLoss

ÇyL

)
(3.11)

We therefore derive the constraint that:

1

m

m∑
j=1

(
wL

j

)2 = 1. (3.12)

If we would also assume that the mean of the weights is zero, then eq. (3.12) states
that the empirical variance of the weights should equal 1. This is then the same as
the constraint on the variance of the weights in eq. (11) of [10].

3.2. METHODOLOGY - WEIGHT INITIALIZATION IN THE LAST LAYER OF THE

NEURAL NETWORK

3

63

Final constraint As in [10], we derive two different, conflicting constraints on the
weights. As a compromise, we therefore average the two constraints [10]:

m∑
j=1

(
wL

j

)2 = 1+m

2
(3.13)

3.2.3. LAGRANGE RELAXATION OF THE CONSTRAINED LINEAR

REGRESSION PROBLEM

To initialize the weights in the last layer, we thus solve the following constrained
linear regression problem:

minbL ,wL
j , j=1,2,...,m

∑
i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

(3.14)

such that
m∑

j=1

(
wL

j

)2 = 1+m

2
.

This constrained regression problem can be solved exactly using the Lagrange
multiplier. The Lagrange function L(λ,bL , wL

j , j = 1,2, . . . ,m) is:

L
(
λ,bL , wL

j , j = 1,2, . . . ,m
)
= ∑

i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

+λ
(

m∑
j=1

(
wL

j

)2 − 1+m

2

)
. (3.15)

This minimization problem is similar to the minimization problem in Ridge linear
regression [31]. In Ridge regression, however, the value of the Lagrange multiplier λ
is often chosen directly by the user instead.

The derivation of the solution of the Lagrange function in terms of λ, wL and
bL is well-known (see [31]). We therefore only give the final solution here. For
completeness, we give the full derivation of this solution in Appendix 3.A. In
Appendix 3.A, we first use the singular value decomposition of the centered hidden
state to derive the optimal value for λ. Given this value for λ, the optimal value of
the weights is (see Appendix 3.A):

wL =
((

xc)T xc +λI
)−1 (

xc)T yc , (3.16)

with yc a N ×1 vector with the centered true label of all training samples in S, and
xc a N ×m matrix with the centered hidden states for each training sample and each
input node. Here, for one sample i ∈ S, we define the j th centered hidden state as:

xc
i , j = xL

i , j − x̄L
j , , (3.17)

with x̄L
j the mean value of the j th hidden state over all training samples i ∈ S, i.e.,

x̄L
j = 1

N

∑
i∈S xL

i , j . The centered true label of a sample i is:

yc
i = yi − 1

N

∑
i∈S

yi . (3.18)

3

64
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

Last, given these weights, the optimal value of the bias is (see Appendix 3.A):

bL = 1

N

∑
i∈S

yi −
m∑

j=1
wL

j x̄L
j . (3.19)

Note that with this value for bL , the expected value of ÇLoss
ÇyL−1

j
in eq. (3.10) is zero,

since E[ŷ] = E[y], as shown below:

E[ŷ] = E
[

bL +
m∑

j=1
wL

j xL
j

]
(3.20)

= E
[

1

N

∑
i∈S

yi −
m∑

j=1
wL

j x̄L
j +

m∑
j=1

wL
j xL

j

]

= 1

N

∑
i∈S

yi −
m∑

j=1
wL

j x̄L
j +

m∑
j=1

wL
j E[xL

j]

= 1

N

∑
i∈S

yi

= E[y],

where we use that E[xL
j] = 1

N

∑
i∈S xL

i , j = x̄L
j .

3.2.4. PROCEDURE FOR THE WEIGHT INITIALIZATION OF A NEURAL

NETWORK

To initialize the weights of the neural network, we follow the steps below:

1. Randomly initialize the weights of the first L−1 layers using Xavier initialization:
Sample the weights from a uniform or normal distribution with a mean of zero
and the variance as derived in [10].

2. Perform one forward pass to compute the hidden states xL
i , j for all

j ∈ {1,2, . . . ,m} and for all i ∈ S.

3. Solve the constrained minimization problem in eq. (3.14):

a) Center the hidden input states xL
i , j following eq. (3.17) and center the

true labels yi following eq. (3.18).

b) Calculate the optimal value of the Lagrange multiplier λ using the singular
value decomposition of the centered input values xc (see Appendix 3.A).

c) Initialize the weights of the last layer as in eq.(3.16).

d) Initialize the bias of the last layer as in eq. (3.19).

The Python code for the proposed weight initialization procedure is in [1].

3.3. CASE STUDY AND RESULTS FOR REGRESSION PROBLEMS

3

65

3.2.5. ASSUMING THE WEIGHTS MUST HAVE ZERO MEAN

In Xavier initialization [10] and Kaiming initialization [11], it is assumed that the
expected value of the initialized weights is zero. Most studies therefore initialize the
weights from a normal or uniform distribution with a mean of zero. To analyze the
potential benefits of this restriction for our approach, we also impose here that the
mean of the weights is zero. With this assumption, the final constraint on the sum
of the squared weights in eq. (3.13) becomes a constraint on the empirical variance
of the weights instead. This is the same as the constraint on the variance of the
weights in eq. (12) of [10] (Xavier initialization).

With this extra assumption, our constrained linear regression problem becomes:

minbL ,wL
j , j=1,2,...,m

∑
i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

(3.21)

such that
m∑

j=1

(
wL

j

)2 = 1+m

2
,

m∑
j=1

wL
j = 0,

with the Lagrange function, L(λ1,λ2,bL , wL
j , j = 1, . . . ,m):

L
(
λ1,λ2,bL , wL

j , j = 1, . . . ,m
)
= ∑

i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

+ (3.22)

λ1

(
m∑

j=1

(
wL

j

)2 − 1+m

2

)
+λ2

m∑
j=1

wL
j .

We solve this Lagrange function for λ1, λ2, wL and bL in Appendix 3.B. We first
derive the optimal value of λ1 and λ2 using the singular value decomposition of xc .
Given these optimal values, we derive the following optimal value for the weights:

wL =
((

xc)T xc +λ1I
)−1

((
xc)T yc − 1

2
λ21

)
, (3.23)

with xc and yc as defined before in eq. (3.17) and (3.18). Given these weights, the
bias is calculated as in eq. (3.19).

3.3. CASE STUDY AND RESULTS FOR REGRESSION

PROBLEMS
We apply our proposed methodology to estimate the Remaining Useful Life (RUL,
time left until failure) of aircraft engines in the C-MAPSS dataset [32]. This dataset
contains simulated sensor measurements of aircraft turbofan engines. In total,
the measurements of 21 sensors around the engine are considered, such as the
pressure at the High Pressure Combustor or the physical fan speed of an engine.

3

66
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

For each sensor, one measurement per engine per flight is simulated by the NASA
Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) simulator. Over
time, the health of each engine degrades. This degradation is captured by the sensor
measurements. Our goal is to develop a model that uses these sensor measurements
to estimate the RUL of the engines in the C-MAPPS dataset. The C-MAPPS dataset
is widely used in literature to develop RUL prognostic models, with 250 papers
published on this dataset [33–35]. More information on this dataset is in [36].

In this chapter, we consider subset FD001 of the C-MAPSS dataset. The training
set of FD001 contains 100 engines. For each engine, the sensor measurements are
simulated for each flight from the installation of this engine until failure. Subset
FD001 also contains a test set with 100 test engines. For each test engine, the sensor
measurements are terminated somewhere before the failure of the engine. The goal
is to estimate the RUL of the test engine at this point.

Figure 3.2.: A schematic example of a data sample Z that is used as input to the
CNN.

We use a Convolutional Neural Network (CNN) to estimate the RUL. Seven of the
21 sensors in the C-MAPSS dataset have constant measurements over time. We
thus use the remaining M = 14 sensors as input to the CNN. We first normalize
the measurements of these 14 sensors using min-max normalization [37]. After a
flight g of an engine, we then use a data sample Z with these normalized sensor
measurements of the past P flights as input to the CNN, i.e.,:

Z = [zg−P ,zg−P+1, . . . ,zg], (3.24)

where P is the window size, and zk are the normalized sensor measurements
belonging to flight k:

zk = [ẑk1, ẑk2, . . . , ẑkM], (3.25)

with ẑkh the normalized sensor measurement of sensor h and flight k. Figure 3.2
shows an example of such an input sample Z. The true label of this data sample is
the RUL of the considered engine after flight g .

The considered CNN has been proposed in [37, 38]. This CNN consists of 5
convolutional layers. The first 4 convolutional layers each have 10 one-dimensional
kernels of size 10×1. The last convolutional layer has one one-dimensional kernel

3.3. CASE STUDY AND RESULTS FOR REGRESSION PROBLEMS

3

67

of size 3×1. Same padding is applied to all convolutional layers. After the 5
convolutional layers, two fully connected layers are added. The first fully connected
layer has 100 nodes as output, and uses a dropout rate of 0.5. The last connected
layer uses these m = 100 nodes as input, and outputs the RUL prognostic. This CNN
has 45.372 parameters. All layers use the tanh activation function, except the last
layer, which uses a linear activation function. Last, following [37, 38], we use the
common piece-wise linear RUL target function, where we aim to estimate a RUL of
125 flights when the actual RUL is larger than 125 flights.

We split the engines in the training set in 80 engines for training the neural
network, and 20 engines for the validation. Moreover, we use a window size of
P = 30 in eq. (3.24). With this window size, we create N = 13890 data samples for
the training set S, and 3841 data samples for the validation set. The weights are
further optimized using the Adam optimizer [8], with a batch size of 512 samples,
200 epochs and a learning rate of 0.001. The considered loss function is the (Mean)
Squared Error (as in eq. (3.1)). When estimating the RUL of the test engines in the
test set, we use the weights that give the lowest validation loss.

3.3.1. BENCHMARK STRATEGIES

In this section, we compare the convergence of the weights of the neural network
for several weight initialization strategies. We refer to our proposed approach to
initialize the weights of the last layer, that combines linear regression with Lagrange,
as the “Lagrangian LR” strategy. To avoid the vanishing/exploding gradient problem,
we impose a constraint on the weights in the proposed strategy. To evaluate the
effectiveness of this constraint, we also initialize the weights and biases following
our proposed strategy, but without any constraint on the weights of the last layer in
eq. (3.14). Instead, we initialize the weights and bias of the last layer with the least
squares solution of the linear regression of the true label yi on the estimated label
ŷi = bL +∑m

j=1 wL
j xL

i , j (see eq. (3.2)). We refer to this benchmark strategy as “LR”

(Linear Regression). As other benchmark strategies, we use Xavier initialization [10]
in all layers, including the last layer, Kaiming initialization [11], LeCun initialization
[25] and, last, orthogonal initialization [13].

3.3.2. COMPARISON OF DIFFERENT WEIGHT INITIALIZATION STRATEGIES

Figure 3.3 shows the RMSE of the training and validation set after each epoch for
the considered strategies. Table 3.1 shows the corresponding minimum value of
the RMSE of the training and validation set after various number of epochs. We
implement the neural network in Python with PyTorch, and train the neural network
on a computer with 4 Intel Core i7 CPU cores. With this computer, it takes 32
seconds to calculate the singular value decomposition of xc , and it takes less than 1
second to find an optimal value of λ. In total, the weight initialization of the last
layer with the proposed approach takes 35 seconds. Training the neural network
for one epoch takes on average 10 seconds. Thus, initializing the weights with the
proposed approach takes as long as training the neural network for roughly 4 epochs.

After the initialization of the weights using the proposed Lagrangian LR approach,

3

68
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

(a) RMSE of the training set for all epochs.

(b) RMSE of the validation set for all epochs.

Figure 3.3.: RMSE of the training and validation set after each epoch, for the
proposed strategy and the benchmark strategies.

the RMSE of the training set is only 39.0 with and without dropout, while the RMSE
of the validation set is only 38.9. The training data is thus not overfitted when
initializing the weights with the proposed approach. The weights of the neural
network subsequently quickly convergence during the back-propagation algorithm.
The lowest validation RMSE of 11.4 is therefore obtained after 152 epochs, after
which the validation RMSE does not decrease any further, and even slightly increases.
At this point, the weights of the neural network have thus converged. Using the
weights that give the lowest validation loss, the RMSE obtained in the test set is only
12.5. Overall, the weights of the neural network thus start at a good point with
the considered approach, i.e., with a small initial training and validation loss, and
quickly converge during the back-propagation algorithm.

When we initialize the weights of the last layer following the Xavier strategy as

3.3. CASE STUDY AND RESULTS FOR REGRESSION PROBLEMS

3

69

Initialization Min. Number of epochs Test
strategy RMSE 1 10 25 50 75 100 150 200 RMSE

Proposed strategy
Lagrangian Train. 27.2 15.3 14.3 13.3 12.5 11.5 10.6 9.9

12.5
LR (Proposed) Valid. 21.4 14.0 13.2 12.5 12.1 11.7 11.5 11.4

Benchmark strategies
Xavier Train. 82.1 61.4 45.5 41.8 41.8 41.8 23.0 13.0

13.0
[10] Valid. 80.6 61.8 46.0 42.1 42.0 42.0 21.4 12.6

LR - Linear Train. 40.9 18.3 17.0 16.3 15.9 14.8 13.9 13.7
13.2

Regression Valid. 21.3 16.7 15.8 14.8 14.8 14.0 13.4 13.0
Kaiming Train. 82.5 60.5 37.6 19.2 13.7 12.2 11.1 10.4

12.7
[11] Valid. 80.6 60.8 38.0 19.3 13.9 12.1 11.7 11.7

LeCun Train. 86.2 65.0 47.0 41.8 41.8 41.8 41.8 16.9
14.2

[25] Valid. 85.1 65.4 47.6 42.1 42.0 42.0 42.0 15.3
Orthogonal Train. 84.0 63.3 46.3 41.8 41.8 41.8 16.8 12.2

12.6
[13] Valid. 82.9 63.7 46.8 42.0 42.0 42.0 15.8 11.6

Table 3.1.: The minimum (Min.) RMSE obtained after a various number of epochs for
the training (Train.) and validation (Valid.) set, for the proposed strategy
and the benchmark strategies. The RMSE of the test set is calculated
with the weights that give the lowest validation loss. The lowest RMSE is
denoted in bold.

well, the RMSE of the training set is 90.5 with and without dropout, while the RMSE
of the validation set is 92.0. The weights of the neural network thus start at a worse
point compared to the proposed strategy: The initial validation loss is 2.4 times
larger. During the back-propagation algorithm, the weights initially quickly converge,
until the weights of the neural network get stuck in a local optimum at epoch
46, when the RMSE of the training set is 41.8. At epoch 147, the neural network
escapes the local optimum and the weights of the neural network then quickly
further converge, obtaining a minimum validation RMSE of 12.6 after 198 epochs,
with a corresponding test RMSE of 13.0. In contrast, our proposed Lagrangian LR
strategy already obtains a validation RMSE of 12.6 after only 49 epochs. Thus, we
need 75% fewer epochs to reach the same validation loss when using the Lagrangian
LR strategy. Comparing the Xavier initialization [10] to the proposed Lagrangian LR
strategy, we conclude that the Lagrangian LR strategy i) provides an initial starting
point of the weights with a lower training and validation loss, ii) avoids getting stuck
in a local minimum, and iii) obtains a quicker converge of the weights.

With the LR strategy, the RMSE of the training set after the weight initialization
is 48.3 with and 20.8 without dropout, while the RMSE of the validation set is
19.0. Moreover, the weights of the neural network quickly converge during the first
few epochs, leading to a considerable decrease in the RMSE of the training and
validation set. However, this convergence is slow compared to the convergence of
the weights with the proposed strategy: After 200 epochs, the validation RMSE is
11.4 with the proposed strategy, while it still is 13.0 with the LR strategy. The results

3

70
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

with the LR strategy are therefore even worse than with Xavier initialization, where
a lower loss for both the training and the validation set is obtained within 200
epochs. It is thus important to not only focus on initializing the weights close to
an optimum, but also on initializing the weights such that the vanishing/exploding
gradient problem with the weights is mitigated.

The initial loss of the other three benchmark strategies is large, with a validation
RMSE around 90 after the weight initialization. Moreover, just as with the Xavier
initialization strategy, the neural network gets stuck in a local optimum with the
Lecun [25] and orthogonal [13] initialization strategies. However, in the end, the
neural network converges to a similar final training, validation and test accuracy for
all considered benchmark strategies. The best performing benchmark strategy is the
Kaiming weight initialization [11]. For this strategy, the initial RMSE of the training
set is 90.4 with and without dropout, while the initial validation RMSE is 91.8. The
initial validation RMSE is thus 2.4 times larger than with the proposed strategy.
Using Kaiming initialization, however, the weights quickly converge to an optimum
without getting stuck in a local optimum. After 148 epochs, the minimum validation
RMSE of 11.7 is already reached. However, this validation RMSE is already reached
after 97 epochs with the proposed approach, i.e., we need 34% fewer epochs to
reach the same validation loss with the proposed approach.

3.3.3. INITIALIZATION OF THE WEIGHTS WITH ONLY A PART OF THE

TRAINING SET

Calculating the singular value decomposition of large training sets is time-consuming.
For large training sets, it might therefore be beneficial to initialize the weights with
only a part of the training set instead. In this section, we therefore analyze the
convergence of the weights if we only employ 10% of the training set to initialize
the weights of the last layer. Here, we use 10-fold cross validation by splitting the
training set randomly in 10 non-overlapping subsets. For each validation split, we
use one subset to initialize the weights of the neural network. We then subsequently
train the neural network with the full training set.

The singular value decomposition with 10% of the training set takes on average
only 0.41 seconds, while initializing the weights takes on average only 0.83 seconds.
This is 42 times faster than when considering the full dataset (see Section 3.3).
Table 3.2 shows the mean, minimum and maximum value of the minimum RMSE of
the validation and training set after a various number of epochs. Here, the mean,
minimum and maximum are taken over the results of the 10 validation splits. We
also show the minimum RMSE of the validation and training set when considering
the full training set to initialize the weights. The mean training and validation RMSE
from the cross-validation is very close to the training and validation RMSE when
using the full training set for the weight initialization (a maximum of 0.1 difference).
Moreover, after the first 10 epochs, the minimum training and validation RMSE are
close together for all 10 validation splits (a maximum of 0.3 difference after the first
10 epochs). For the considered dataset, the results are therefore very similar when
using only 10% of the training dataset or the full dataset to initialize the weights,
while initializing the weights with only 10% of the training set is 42 times faster.

3.3. CASE STUDY AND RESULTS FOR REGRESSION PROBLEMS

3

71

Number of epochs
1 10 25 50 100 150 200

10% of the training
data set used for
weight initialization
with 10-fold cross
validation

Mean Train. 27.2 15.4 14.3 13.3 11.6 10.5 9.9
RMSE Valid. 21.4 14.0 13.3 12.5 11.7 11.5 11.5
Min. Train. 27.1 15.2 14.1 13.3 11.5 10.5 9.8

RMSE Valid. 21.0 13.9 13.1 12.5 11.6 11.4 11.3
Max. Train. 27.4 15.5 14.4 13.3 11.6 10.6 10.0

RMSE Valid. 21.7 14.3 13.4 12.6 11.8 11.6 11.6
Full training set
used for weight
initialization

RMSE
Train. 27.2 15.3 14.3 13.3 11.5 10.6 9.9
Valid. 21.4 14.0 13.2 12.5 11.7 11.5 11.4

Table 3.2.: The minimum RMSE obtained after various number of epochs for the
training (Train.) and validation (Valid.) set using our proposed strategy.
Here, we report the results when using the full training set to initialize the
weights, and the results of the 10-fold cross validation, where only 10%
of the training set is used for weight initialization in each validation split.
For the 10-fold cross validation, we report the mean, minimum (min)
and maximum (max) value of the minimum RMSE over the 10 performed
validation splits.

3.3.4. WEIGHT INITIALIZATION WITH A MEAN WEIGHT OF ZERO

(a) RMSE of the training set for all epochs (b) RMSE of the validation set for all epochs

Figure 3.4.: The RMSE of the training set after each epoch, for the proposed strategy
with only a restriction on the sum of the squared weights (Lagrangian
LR - Square), and for a Lagrangian regression with a restriction on the
empirical variance and mean of the weights (Lagrangian LR - Mean and
variance).

In this section we analyze the benefits of assuming that the mean of the weights
has to be zero. Figure 3.4 shows the RMSE of the training and validation set
after each epoch for the proposed approach (Lagrangian LR - Square), and for the
proposed approach with the additional restriction that the mean of the weights is

3

72
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

zero (Lagrangian LR - Mean and variance, see Section 3.2.5). The RMSE of the
training and validation set is nearly equal for both strategies. For our approach,
there is thus no additional benefit in assuming that the mean of the weights is
zero for the last layer, in contrast with the Xavier [10] and Kaiming [11] weight
initialization strategies.

3.4. CASE STUDY AND RESULTS FOR CLASSIFICATION

PROBLEMS

Figure 3.5.: Schematic overview of the last layer of assumed neural network for
classification problems for a training sample i ∈ S.

The focus of this chapter is on neural networks that solve a regression problem. For
completeness, we apply in this section a variant of our method to neural networks
for classification problems. Neural networks that solve a classification problem have
a different activation function in the last layer, a different loss function and often
a different activation function throughout the neural network than considered in
the methodology in Section 3.2. Thus, we cannot directly employ the mathematical
derivations from Section 3.2 to these neural networks as well. Instead, we adjust our
methodology for classification neural networks as follows.

We first introduce the notation for the last layer of a classification neural network.
An overview of this notation is in Figure 3.5. Let yi ∈ {1,2, . . . ,n} be the true label
for a sample i ∈ S. Here, n denotes the number of classes. We assume that the last
layer L of a classification neural network still is a fully connected layer. This layer
still has m input nodes, but now has n, instead of one, output nodes. As before,
let xL

i denote the vector with the activated input of layer L for sample i ∈ S. Here,

xL
i = [xL

i ,1, xL
i ,2, . . . , xL

i ,m], with xL
i , j the j th hidden input state of layer L for sample i .

3.4. CASE STUDY AND RESULTS FOR CLASSIFICATION PROBLEMS

3

73

Let WL = [wL
1 ,wL

2 , . . . ,wL
n] denote the matrix with the weights of the last layer L. Here,

wL
h = [wL

1,h , wL
2,h , . . . , wL

m,h] (h ∈ {1,2, . . . ,n}) denotes the weights connecting the hidden

input state xL
i of a sample i to the hth output node of this last layer L. Similarly,

let bL = [bL
1 , . . . ,bL

n] denote the vector with the biases of the last layer L, where bL
h

denotes the bias belonging to the hth output node of layer L. For a sample i , the
value yL

i ,h of this hth output node is calculated as yL
i ,h =∑m

j=1 wL
j ,h xL

i , j +bL
h . The total

output of layer L for a sample i is denoted by yL
i = [yL

i ,1, yL
i ,2, . . . , yL

i ,n].

We use the Softmax activation function to convert the output values yL
i to

probabilities. The estimated probability p̂i ,h that sample i belongs to class h is:

p̂i ,h =
exp

(
yL

i ,h

)
∑n

g=1 exp
(

yL
i ,g

) (3.26)

The loss of these estimated probabilities is calculated by the cross entropy:

Loss =−∑
i∈S

n∑
h=1

I
(
yi = h

)
log

(
p̂i ,h

)
, (3.27)

where I
(
yi = h

)
is 1 if yi = h, and zero otherwise. Last, we assign each sample i to

the class h with the largest estimated probability p̂i ,h . Let ŷi denote the class to
which sample i is assigned. From this, we calculate the accuracy:

Accuracy = 100 ·
∑

i∈S I
(
yi = ŷi

)
N

(3.28)

As before, we initialize the weights of the first L −1 layers of the neural network
randomly, using several weight initialization methods. The aim is now to find the
weights WL and the bias bL of the last layer L such that the cross entropy loss is
minimized. However, we again want to prevent the exploding/vanishing gradient
problem. With a logistic regression, we do not know analytically the optimal value
of the sum of the squared weights. We also do not know how to analytically derive a
value for λ given such a sum. However, we can still apply Ridge logistic regression
with a randomly chosen λ to regularize the weights. In Ridge logistic regression, we
minimize the following function [31]:

min
WL ,bL

=−∑
i∈S

n∑
h=1

I
(
yi = h

)
log(p̂i ,h)+λ

(
n∑

h=1

m∑
j=1

(
wL

j ,h

)2
)

. (3.29)

This is very similar to the Lagrangian function in eq. (3.15). The main difference is
that we now consider another loss function and that we choose λ ourselves. Future
research should be conducted to derive a good value for λ (either empirically or
analytically) in classification problems. To initialize the weights in the last layer L,
we thus perform a forward pass to obtain the hidden input states xL

i for all samples
i ∈ S. We then use the Ridge logistic regression of the actual labels yi on the hidden
states xL

i (for all samples i ∈ S) to find the weights WL and the biases bL that
minimize the loss given λ.

3

74
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

3.4.1. CASE STUDY WITH THE CIFAR-100 DATASET

We test the above approach on the images of the CIFAR-100 dataset [24]. Each image
in this dataset has a size of 32 by 32 pixels, and belongs to one out of a hundred
classes, such as “bicycle” or “camel”. The objective is to correctly classify the images.
The dataset is divided into 10.000 test images, and 50.000 training images. We
further divide the training images into 45.000 images for training, and 5.000 images
for validation. We preprocess the data by scaling the input images using z-score
standardization. Moreover, to prevent overfitting, we apply Random Augmentation
[39] on the 45.000 training images, with 3 operations of a magnitude of 15.

With this training images, we train two well-known neural networks to classify
the images, namely ResNet-18 and ResNet-34 [23]. These neural networks are both
variants on the general ResNet developed in [23]. ResNet-18 is the smallest variant,
with 18 layers and over 11 million parameters, while ResNet-34 is a larger variant
with 34 layers and over 21 million parameters. The last layer of both neural networks
is a single fully connected layer, to which we apply our approach. ResNets are
initially developed for the ImageNet dataset, which has relatively large images. In
[23], all images in this dataset are cropped to have a size of 224 by 224 pixels.
Following this, we therefore resize the images in the CIFAR-100 dataset to a size of
224 to 224 pixels as well, using bilinear interpolation. We train both neural networks
for 100 epochs using stochastic gradient descent with a momentum of 0.9, a batch
size of 256 and weight decay of 1−4, to prevent overfitting. The initial learning rate
is 0.01, and is multiplied by 0.1 after every 25 epochs.

We implement the logistic regression with Ridge using the Scikit-learn package [40],
with the “lbfgs” solver. This solver applies a quasi-Newton method [31] to optimize
the weights of the logistic regression. We select λ from {1,10,100,1000,10000}.
Specifically, we first calculate the sum of the squared weights in the last layer L
when we initialize all weights of the neural network with Xavier initialization. Let
the value of this sum be denoted by α. We then select the smallest value of
λ ∈ {1,10,100,1000,10000} for which the sum of the squared weights in the last layer
is equal to or smaller than this value α. For both ResNet-18 and ResNet-34, this
procedure gives λ= 1000. Last, we perform the logistic regression on all training
images without any random augmentation. With this, it takes between 105 and 143
seconds to initialize the weights in the last layer with Ridge logistic regression for
ResNet-18, and between 135 and 211 seconds for ResNet-34. Training the neural
network for one epoch on 1 NVIDIA Tesla V100S GPU takes between 80 and 90
seconds for ResNet-18, and between 90 and 100 seconds for ResNet-34. The logistic
regression thus takes roughly as long as training the neural network for two epochs.

Since we do not analytically derive the optimal value for λ, we are not restricted to
applying the proposed methodology after Xavier weight initialization only. Instead,
we initialize the weights in the last layer with Ridge logistic regression in combination
with each benchmark weight initialization method. For simplicity, we use the same
value of λ for all weight initialization methods.

3.4. CASE STUDY AND RESULTS FOR CLASSIFICATION PROBLEMS

3

75

3.4.2. RESULTS FOR THE CIFAR-100 DATASET WITH TRAINING A

NEURAL NETWORK FROM SCRATCH

Init.
Weight last Max. Number of epochs Test

initialize layer acc.(%) 0 10 25 50 75 100 acc.(%)
ResNet-18 [23]

Kaiming
[11]

Train 1.01 22.44 45.59 55.38 56.93 57.14
62.20

(original) Valid. 1.00 30.42 49.98 61.30 62.16 62.20
[11]

Prop.
Train 3.72 24.82 46.64 56.92 58.28 58.64

63.47
Valid. 9.34 34.72 52.26 62.46 63.30 63.30

[10]
Train. 1.01 27.73 51.46 63.90 66.13 66.13

67.24
Xavier Valid. 1.00 38.83 54.66 66.10 67.14 67.14

[10]
Prop.

Train. 3.73 31.14 52.84 65.38 66.82 67.36
67.83

Valid. 5.43 39.00 55.58 67.46 68.20 68.32

[25]
Train. 1.01 28.51 51.71 63.83 65.67 66.00

67.06
LeCun Valid. 1.22 37.26 53.44 66.52 67.68 67.84

[25]
Prop.

Train. 3.72 31.06 52.65 65.01 66.75 67.09
67.47

Valid. 9.34 40.26 55.94 67.02 68.08 68.32

[13]
Train. 1.05 28.13 51.87 64.17 66.14 66.42

67.50
Orthogonal Valid. 1.12 34.32 55.44 66.08 67.06 67.08

[13]
Prop.

Train. 4.30 30.82 53.13 65.29 66.94 67.43
67.20

Valid. 5.96 37.30 56.48 67.04 68.04 68.04

Table 3.3.: The maximum accuracy (max. acc.) in percent obtained with ResNet-18
after a various number of epochs for the training (Train.) and validation
(Valid.) set. Here, we consider several weight initialization strategies, with
two different ways to initialize the weights in the last layer (“Init. last
layer”); According to the considered weight initialization strategy, or with
the proposed strategy of Ridge logistic regression (“Prop.”). The accuracy
of the test set is calculated with the weights that give the lowest validation
loss. The highest accuracy per weight initialization strategy is denoted in
bold.

Table 3.3 and Table 3.4 shows the maximum accuracy after training ResNet-18 and
ResNet-34 for several number of epochs, respectively. The accuracy after epoch 0
is the initial accuracy, i.e., the accuracy after the weight initialization without any
training of the neural network. The initial validation accuracy is between 4.12%
and 9.34% for ResNet-18, and between 3.02% and 7.22% for ResNet-34. This initial
accuracy is relatively small compared to the initial loss of the regression problem,
which is already halfway between the loss with random weight initialization and
the final obtained loss after training. This might be because we consider a more
complicated problem, with 100 instead of only one possible output. Moreover,
we consider a more complicated neural network: In the regression problem, the
neural network has 45.372 parameters, while ResNet-18 and ResNet-34 have over 11

3

76
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

Init.
Weight last Max. Number of epochs Test

initialize layer acc.(%) 0 10 25 50 75 100 acc.(%)
ResNet-34 [23]

Kaiming
[11]

Train. 0.94 24.23 51.59 65.04 67.62 67.90
66.04

(original) Valid. 0.86 33.18 54.42 65.00 65.66 65.66
[11]

Prop.
Train. 2.79 28.50 54.00 68.64 70.42 70.90

67.23
Valid. 7.22 38.76 56.24 66.14 67.12 67.26

[10]
Train. 0.94 30.38 56.87 72.77 75.53 76.00

69.52
Xavier Valid. 0.86 37.94 57.70 69.28 70.16 70.16

[10]
Prop.

Train. 2.78 34.37 58.93 75.65 77.88 78.73
69.84

Valid. 7.20 40.96 59.64 69.62 70.38 70.38

[25]
Train. 0.94 31.38 57.45 73.25 75.80 76.09

68.56
LeCun Valid. 0.86 38.38 60.14 69.46 70.22 70.26

[25]
Prop.

Train. 2.79 34.30 58.96 75.53 77.69 78.04
69.86

Valid. 7.22 40.42 60.56 70.16 70.42 70.50

[13]
Train. 1.00 31.23 57.85 74.12 76.71 77.35

69.13
Orthogonal Valid. 1.02 39.08 59.54 69.40 70.06 70.24

[13]
Prop.

Train. 2.37 34.95 59.12 76.19 78.13 78.66
69.99

Valid. 6.84 40.60 58.12 69.42 70.34 70.38

Table 3.4.: The maximum accuracy (max. acc.) in percent obtained with ResNet-34
after a various number of epochs for the training (Train.) and validation
(Valid.) set. Here, we consider several weight initialization strategies,
with two different ways to initialize the weights in the last layer(“Init.
last layer”); According to the considered weight initialization strategy, or
with the proposed strategy of Ridge logistic regression (Proposed). The
accuracy of the test set is calculated with the weights that give the lowest
validation loss. The highest accuracy per weight initialization strategy is
denoted in bold.

million and 21 million parameters respectively. With many more randomly initialized
parameters, the characteristics of the input might have largely disappeared in the
hidden state of the last layer for both ResNets, compared to the hidden state of
the last layer of the regression neural network. This also might be the reason that
ResNet-34 has a lower initial validation accuracy than ResNet-18.

However, for both neural networks, the initial accuracy with the proposed weight
initialization method is still higher than without, for all considered initialization
methods. This leads to a slightly higher training and validation accuracy throughout
the training process: For both ResNet-18 and ResNet-34 and with all initialization
methods, the training and validation accuracy is slightly higher when applying Ridge
logistic regression to initialize the weights of the last layer. The only exception is
the validation accuracy after 25 epochs with orthogonal initialization for ResNet-34,
which is higher when not using Ridge logistic regression in the beginning. However,

3.4. CASE STUDY AND RESULTS FOR CLASSIFICATION PROBLEMS

3

77

also in this case, applying Ridge logistic regression gives a higher validation accuracy
after 0, 10, 50, and 100 epochs. With the proposed methodology, we thus obtain a
slightly faster convergence of the weights.

For all initialization methods, the final training and validation accuracy are slightly
higher with the proposed methodology. The test accuracy is also higher when the
weights are initialized with Ridge logistic regression, except when we use orthogonal
initialization in ResNet-18: In this case, the test accuracy is 67.50% when using
the orthogonal initialization without Ridge logistic regression, while it is 67.20%
when using orthogonal initialization with Ridge logistic regression. The highest test
accuracy of 67.83% for ResNet-18 is obtained when combining Xavier initialization
with our approach, while the highest test accuracy of 69.99% for ResNet-34 is
obtained when combining orthogonal initialization with our approach.

3.4.3. RESULTS FOR THE CIFAR-100 DATASET WITH TRANSFER

LEARNING

Classification neural networks are often trained using transfer learning., i.e., the
weights of the neural network are (partly) initialized with the weights from another
neural network with (partly) the same structure, trained on another dataset (called
the source dataset). The weights are then fine-tuned for the target dataset using a
gradient descent method [7].

In this section, we test how our approach works performs combined with transfer
learning. We therefore initialize all weights, except the weights of the last layer, in
ResNet-18 and ResNet-34 with the pre-trained weights of Torchvision in Pytorch.
These weights are obtained by training the neural networks to classify the images in
the ImageNet-1K dataset [41]. This dataset contains 1000 classes, instead of 100.
Because there are different classes in the ImageNet-1K dataset and in the CIFAR-100
dataset, we cannot initialize the weights of the last layer with the weights from
Torchvision. Instead, we initialize the weights in the last layer with the proposed
methodology (Ridge logistic regression), and with all benchmark methods. For the
Ridge logistic regression, we use the same λ as in Section 3.4.2. We then train the
neural network for 50 epochs using stochastic gradient descent with a momentum
of 0.9, a batch size of 256 and a weight decay of 1−4. The initial learning rate is still
0.01, but we now multiply this learning rate with 0.1 after 10 and 30 epochs.

The results are in Table 3.5. The initial validation accuracy after epoch 0, i.e.,
without training the neural network, is already 53% and 55% for ResNet-18 and
ResNet-34 respectively. Because of this, the weights converge fast to a (local)
optimum: Throughout the training process, both the training and the validation
accuracy are higher with the proposed weight initialization method than with
the benchmark methods. For both ResNets, LeCun initialization [25] is the best
benchmark method. For ResNet-18, LeCun initialization obtains its highest validation
accuracy of 81.32% after 49 epochs, while we already obtain this validation accuracy
in 13 epochs. For ResNet-34, LeCun initialization obtains its highest validation
accuracy of 84.18% after 50 epochs, while we already obtain this validation accuracy
after 14 epochs. Moreover, with the proposed methodology, we obtain a higher final
training, validation and test accuracy within 50 epochs than with all benchmark

3

78
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

Weight initiali- Max Number of epochs Test
zation last layer acc.(%) 0 10 20 30 40 50 acc.(%)

ResNet-18 [23]
Proposed Train. 20.70 73.04 81.59 83.46 84.27 84.76

81.76
Valid. 53.68 78.24 81.86 81.86 81.86 81.86

Kaiming Train. 1.01 70.55 79.34 81.50 82.43 82.93
80.25

[11] Valid. 1.16 75.98 80.84 80.84 81.06 81.06
Xavier Train. 1.02 70.96 79.71 81.92 83.00 83.27

79.97
[10] Valid. 0.98 76.02 80.52 80.74 80.80 80.98

LeCun Train. 0.95 71.38 80.00 82.04 83.14 83.50
80.54

[25] Valid. 1.38 76.48 80.86 81.06 81.24 81.32
Orthogonal Train. 1.06 71.54 80.22 82.09 82.99 83.51

80.92
[13] Valid. 1.20 76.48 80.88 81.28 81.36 81.44

ResNet-34 [23]
Proposed Train. 22.04 78.67 88.07 90.09 90.93 90.96

84.57
Valid. 55.12 80.60 84.86 85.24 85.24 85.28

Kaiming Train. 0.86 71.63 83.81 86.24 87.37 87.76
82.34

[11] Valid. 0.94 76.56 83.04 83.04 83.26 83.26
Xavier Train. 0.86 73.27 85.16 86.99 88.39 88.59

82.91
[10] Valid. 0.94 77.62 82.78 82.78 82.98 82.98

LeCun Train. 0.86 76.51 87.12 88.96 90.13 90.38
83.03

[25] Valid. 0.94 78.14 83.54 84.12 84.12 84.18
Orthogonal Train. 0.90 76.73 87.36 89.03 90.02 90.34

83.10
[13] Valid. 0.88 78.22 83.98 83.98 84.06 84.10

Table 3.5.: The maximum accuracy (max. acc.) in percent obtained after a various
number of epochs for the training (Train.) and validation (Valid.)
set when using transfer learning. For the weights in the last layer,
we consider several benchmark weight initialization strategies and the
proposed strategy of Ridge logistic regression (Proposed). The accuracy of
the test set is calculated with the weights that give the lowest validation
loss. The highest accuracy is denoted in bold.

methods. The convergence of the weights is thus accelerated by combining Ridge
logistic regression with transfer learning.

3.5. CONCLUSIONS
In this chapter, we introduce a new initialization method for the weights in the last
layer of a neural network. We assume that this neural network solves a regression
problem and that it uses an activation function that has a unit derivative of 1 at 0.
Here we focus both on i) accelerating the convergence of the weights during the
back-propagation algorithm by mitigating the vanishing/exploding gradient problem,
and ii) initializing the weights close to an optimum point by minimizing the initial
training loss. To accelerate the convergence of the weights, we impose that the

3.5. CONCLUSIONS

3

79

variance of the outputs and the gradients of each layer in the neural network should
be equal after the weight initialization, following [10]. From this requirement, we
analytically derive a constraint on the weights in the last layer. We then analytically
derive the optimal weights and bias of the last layer, i.e., the weights and bias that
minimize the initial training loss, while fulfilling this derived constraint.

We apply this initialization strategy to a CNN that estimates the RUL of aircraft
engines. Our proposed strategy initializes the weights such that the initial training
and validation loss are relatively small. Moreover, the proposed strategy prevents
that the weights of the CNN get stuck in a local optimum. The weights therefore
converge very fast. The minimum validation loss obtained with Xavier initialization
[10] after 198 epochs is already obtained after only 49 epochs with our approach.
Moreover, compared to the best benchmark strategy (Kaiming initialization [11]), we
need 34% fewer epochs to reach the same validation loss. To further analyse our
proposed methodology, we also show that it is sufficient for the considered data set
to use only a part of the training set for the weight initialization. Moreover, we show
that with our proposed initialization approach, it is not necessary to assume that the
mean of the weights is zero, as in the weight initialization strategies of [10, 11].

Last, we adjust our proposed methodology to apply it to a neural network with
any type of activation function that solves a classification problem, by using logistic
regression with Ridge regularization. We apply this to ResNet-18 and ResNet-34
[23], and classify the images in the CIFAR-100 dataset [24]. When training the
ResNets from scratch, we obtain a slightly higher initial accuracy and a slightly faster
convergence of the weights with our approach. However, our approach works best
when combined with transfer learning. In this case, the initial validation accuracy is
already 53% and 55% for ResNet-18 and ResNet-34 respectively. This leads to a faster
weight convergence and a higher test accuracy than with the benchmark methods.

LIMITATIONS AND FUTURE RESEARCH

In this chapter, we consider a specific type of problem (i.e., regression problem), with
a specific type of neural network (i.e., specific type of activation function). Many
problems in machine learning, however, do not satisfy these assumptions. They
either do not solve a regression problem and/or use other activation functions. For
future research, we therefore plan to extend both the mathematical analysis and the
experiments to other types of problems, neural networks and datasets. Specifically,
we would like to consider other activation functions, and to empirically find a good
value for λ when this is not possible analytically.

Moreover, we have also discussed applying the considered methodology to
classification neural networks with any type of activation function. Here, we choose
the value of the Lagrangian multiplier λ ourselves. Future work could further
develop the approach for these classification neural networks. We find it particularly
interesting to determine a good value for λ, either analytically or empirically.

3

80
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

APPENDIX 3.A. SOLUTION OF THE MINIMIZATION

PROBLEM (EQ. (3.14)) FOR λ
In this appendix, we solve the constrained linear regression problem of eq.
(3.14) to find the optimal value of λ following [31]. The Lagrange function
L(λ,bL , wL

j , j = 1,2, . . . ,m) of the minimization problem is:

L
(
λ,bL , wL

j , j = 1,2, . . . ,m
)
= ∑

i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

+λ
(

m∑
j=1

(
wL

j

)2 − 1+m

2

)
. (3.30)

SCALING OF THE INPUTS

The solution of this constrained minimization problem is not equivalent to scaling
the inputs or the outputs [31]. Following [31], we first normalize the variables:

L
(
λ,bL , wL

j , j = 1,2, . . . ,m
)

(3.31)

= ∑
i∈S

(
yi −bL −

m∑
j=1

wL
j x̄L

j +
m∑

j=1
wL

j x̄L
j −

m∑
j=1

wL
j xL

i , j

)2

+λ
(

m∑
j=1

(
wL

j

)2 − 1+m

2

)

= ∑
i∈S

(
yi −bL −

m∑
j=1

wL
j x̄L

j −
m∑

j=1
wL

j

(
xL

i , j − x̄L
j

))2

+λ
(

m∑
j=1

(
wL

j

)2 − 1+m

2

)
,

with x̄L
j the mean value of the j th hidden state over all training samples i ∈ S, i.e.,

x̄L
j = 1

N

∑
i∈S xL

i , j . We define the centered weight wc
j and the centered bias bc as:

wc
j = wL

j , (3.32)

bc = bL +
m∑

j=1
wL

j x̄L
j . (3.33)

With this, we obtain the following expression for the Lagrange function:

L
(
λ,bL , wL

j , j = 1,2, . . . ,m
)
=L

(
λ,bc , wc

j , j = 1,2, . . . ,m
)

(3.34)

= ∑
i∈S

(
yi −bc −

m∑
j=1

wc
j

(
xL

i , j − x̄L
j

))2

+λ
(

m∑
j=1

(wc
j)2 − 1+m

2

)
.

Following [31], we first analyse the optimal value of bc . The derivative of the
Lagrange function with respect to bc is:

Ç

Çbc L
(
λ,bc , wc

j , j = 1,2, . . . ,m
)
=−2

∑
i∈S

(
yi −bc −

m∑
j=1

wc
j

(
xL

i , j − x̄L
j

))
(3.35)

To find the optimum, we set this derivative equal to zero:

∑
i∈S

(
yi −bc)−∑

i∈S

m∑
j=1

wc
j

(
xL

i , j − x̄L
j

)
= 0 (3.36)

APPENDIX 3.A. SOLUTION OF THE MINIMIZATION PROBLEM (EQ. (3.14)) FOR λ

3

81

First, let us analyse
∑

i∈S
∑m

j=1 wc
j

(
xL

i , j − x̄L
j

)
:

∑
i∈S

m∑
j=1

wc
j

(
xL

i , j − x̄L
j

)
=

m∑
j=1

∑
i∈S

wc
j xL

i , j −
m∑

j=1

∑
i∈S

wc
j x̄L

j (3.37)

=
m∑

j=1
wc

j N x̄L
j −

m∑
j=1

N wc
j x̄L

j

= 0.

Using this in eq. (3.36) gives the optimal value for bc [31]:

bc = 1

N

∑
i∈S

yi . (3.38)

We therefore center the input and output values of the linear regression as:

xc
i , j = xL

i , j − x̄L
j , (3.39)

yc
i = yi − 1

N

∑
i∈S

yi . (3.40)

This gives the following Lagrange function:

L
(
λ,bc , wc

j , j = 1,2, . . . ,m
)
=L

(
λ, wc

j , j = 1,2, . . . ,m
)

(3.41)

= ∑
i∈S

(
yc

i −
m∑

j=1
wc

j xc
i , j

)2

+λ
(

m∑
j=1

(
wc

j

)2 − 1+m

2

)
.

In matrix form, this is:

L
(
λ,wc)= (

yc −xc wc)T (
yc −xc wc)+λ((

wc)T (wc)− 1+m

2

)
, (3.42)

with yc a N ×1 vector with the centered true label of all training samples in S, wc a
m ×1 vector with the centered weights of the last layer L, and xc a N ×m matrix
with the centered hidden states for each training sample and each input node.

SOLUTION OF THE LAGRANGE FUNCTION USING THE SINGULAR VALUE DECOMPOSITION

To solve the Lagrange function, we solve the system of equations:

∇wcL(λ,wc) = 0, (3.43)

∇λL(λ,wc) = 0, (3.44)

where 0 is a m × 1 vector with zeros. Given λ, we solve the first gradient
∇wcL(λ,wc) = 0 with respect to wc . Solving this gradient gives the well-known
solution of Ridge linear regression [31]:

∇wcL(λ,wc) = 0 (3.45)

3

82
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

⇒−2
(
xc)T (

yc −xc wc)+2λwc = 0

⇒wc =
((

xc)T xc +λI
)−1 (

xc)T yc ,

with I a m ×m identity matrix.
We then use the singular value decomposition to solve the gradient with respect

to λ as well. The singular value decomposition of xc is [42]:

xc = UDVT , (3.46)

where U is an orthogonal N ×N matrix (so U−1 = UT) and V is an orthogonal m ×m
matrix (so V−1 = VT). Moreover, D is a N ×m “diagonal” matrix, with the singular
values s of xc on the diagonal [42]. Using this decomposition, the optimal value for
the centered weights wc becomes [31]:

wc =
((

xc)T xc +λI
)−1 (

xc)T yc (3.47)

= (
VDT DVT +λVVT)−1 (

UDVT)T
yc

= (
V

(
DT D+λI

)
VT)−1

VDT UT yc

= V
(
DT D+λI

)−1
DT UT yc

The sum of the centered weights (wc)T wc thus becomes:(
wc)T wc =

(
V

(
DT D+λI

)−1
DT UT yc

)T
V

(
DT D+λI

)−1
DT UT yc (3.48)

= (
yc)T UD

(
DT D+λI

)−2
DT UT yc .

Let b = UT yc , a vector of size N ×1. Let pi denote the i th element of a vector p,
and let si be the i th singular value of xc . Then, it follows that:(

wc)T wc = bT D
(
DT D+λI

)−2
DT b (3.49)

=
m∑

j=1

b2
j s2

j

(s2
j +λ)2

.

We set this equal to the final constraint (eq. (3.13)):

m∑
j=1

b2
j s2

j

(s2
j +λ)2

= 1+m

2
, (3.50)

which can be solved numerically.

APPENDIX 3.B. SOLUTION OF THE MINIMIZATION

PROBLEM WITH A MEAN WEIGHT OF ZERO

(EQ. (3.21)) FOR λ
In this appendix, we solve the constrained linear regression problem of eq. (3.21)
(with a mean weight of zero) to find the optimal value of λ. The Lagrange function

APPENDIX 3.B. SOLUTION OF THE MINIMIZATION PROBLEM WITH A MEAN

WEIGHT OF ZERO (EQ. (3.21)) FOR λ

3

83

L(λ1,λ2,bL , wL
j , j = 1,2, . . . ,m) of this problem is:

L
(
λ1,λ2,bL , wL

j , j = 1, . . . ,m
)
= ∑

i∈S

(
yi −bL −

m∑
j=1

wL
j xL

i , j

)2

+ (3.51)

λ1

(
m∑

j=1

(
wL

j

)2 − 1+m

2

)
+λ2

m∑
j=1

wL
j .

We scale the hidden states and true labels in the same way as in Appendix 3.A, eq.
(3.39) and (3.40):

L
(
λ1,λ2,bL , wL

j , j = 1,2, . . . ,m
)
=L

(
λ1,λ2, wc

j , j = 1,2, . . . ,m
)

(3.52)

= ∑
i∈S

(
yc

i −
m∑

j=1
wc

j xc
i , j

)2

+λ1

(
m∑

j=1

(
wc

j

)2 − 1+m

2

)

+λ2

m∑
j=1

wc
j .

In matrix form, this normalized Lagrange function becomes:

L
(
λ1,λ2,wc)= (

yc −xc wc)T (
yc −xc wc)+λ1

((
wc)T wc − 1+m

2

)
+λ21T wc , (3.53)

with 1 a vector with ones of size m ×1.

SOLUTION OF THE LAGRANGE FUNCTION WITH A MEAN WEIGHT OF ZERO

To solve the Lagrange function, we solve the system of equations:

∇wcL
(
λ1,λ2,wc)= 0, (3.54)

∇λ1L
(
λ1,λ2,wc)= 0 (3.55)

∇λ2L
(
λ1,λ2,wc)= 0 (3.56)

Given λ1 and λ2, we solve the first gradient ∇wcL(λ1,λ2,wc) = 0 with respect to wc :

∇wcL
(
λ1,λ2,wc)= 0 (3.57)

⇒−2
(
xc)T (

yc −xc wc)+2λ1wc +λ21 = 0

⇒wc =
((

xc)T xc +λ1I
)−1

((
xc)T yc − 1

2
λ21

)
.

We again use the singular value decomposition of xc (eq. (3.46)) to solve the
Lagrange function for λ1 and λ2. First, we rewrite the optimal value of wc :

wc = (
VDT DVT +λ1VVT)−1

((
UDVT)T

yc − 1

2
λ21

)
(3.58)

=
(
V

(
DT D+λ1I

)−1
VT

)(
VDT UT yc − 1

2
λ21

)

3

84
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

= V
(
DT D+λ1I

)−1
DT UT yc − 1

2
λ2V

(
DT D+λ1I

)−1
VT 1.

We use this result to analyse ∇λ2L (λ1,λ2,wc) = 1T wc and to find the optimal value
of λ2. Let v s

j be the sum of the j th column of V. It then follows that:

1T wc = 1T
(

V
(
DT D+λ1I

)−1
DT UT yc − 1

2
λ2V

(
DT D+λ1I

)−1
VT 1

)

=
m∑

j=1

s j v s
j b j

s2
j +λ1

− 1

2
λ2

m∑
j=1

(v s
j)2

s2
j +λ1

.

This expression should equal zero (eq. (3.55)):

m∑
j=1

s j v s
j b j

s2
j +λ1

− 1

2
λ2

m∑
j=1

(v s
j)2

s2
j +λ1

= 0

⇒1

2
λ2 =

∑m
j=1

s j v s
j b j

s2
j +λ1∑m

j=1

(v s
j)2

s2
j +λ1

.

With this, we analyse ∇λ1L (λ1,λ2,wc) = (wc)T wc − 1+m
2 . First, we derive that:

(
wc)T ·wc =

((
yc)T UD

(
DT D+λ1I

)−1
VT − 1

2
λ21T V

(
DT D+λ1I

)−1
VT

)
(3.59)(

V
(
DT D+λ1I

)−1
DT UT yc − 1

2
λ2V

(
DT D+λ1I

)−1
VT 1

)
=(

yc)T UD
(
DT D+λ1I

)−2
DT UT yc −λ2

(
yc)T UD

(
DT D+λ1I

)−2
VT 1

+
(

1

2
λ2

)2

1T V
(
DT D+λ1I

)−2
VT 1

=
m∑

j=1

b2
j s2

j(
s2

j +λ1

)2 −λ2

m∑
j=1

b j s j v s
j(

s2
j +λ1

)2 + (
1

2
λ2)2

m∑
j=1

(
v s

j

)2

(
s2

j +λ1

)2

=
m∑

j=1

(1
2λ2v s

j −b j s j

s2
j +λ1

)2

.

This expression should equal 1+m
2 , i.e,:

m∑
j=1

(1
2λ2v s

j −b j s j

s2
j +λ1

)2

= 1+m

2
. (3.60)

Given the optimal value for 1
2λ2 in eq. (3.59), we can solve this numerically to find

the optimal value for λ1. Using this, we can directly calculate the optimal value for
λ2 from eq. (3.59).

APPENDIX 3.C. DERIVATION OF THE CONSTRAINTS ON THE WEIGHTS FOLLOWING

[10]

3

85

APPENDIX 3.C. DERIVATION OF THE CONSTRAINTS ON THE

WEIGHTS FOLLOWING [10]
In this appendix, we derive the same constraints on the weights as in Section 3.2.2.
However, we now follow the same derivation, with the same assumptions, as in [10].

REQUIREMENT 1: VAR
(
ŷ
)= VAR

(
xL

)
We first derive the variance of yL in terms of the variance of xL following [10]. In
contrast with our derivation, where we regarded each weight as a constant number,
we now regard each weight as a random variable. Let wL represent the random
variable of any element in wL . Four key assumptions are made in the derivation
in [10]: i) the hidden states xL are independent and identically distributed, ii) the
weights wL

j , j = 1,2, . . . ,m are independent and identically distributed, iii) the hidden

states xL are independent of the weights wL , and iiii) E[x l] = 0, due to the considered
activation function. Note that only the first assumption is made in our derivation as
well. Then, it holds that:

Var
(
yL)= Var

(
bL +

m∑
j=1

wL
j xL

j

)
(3.61)

= m ·Var
(
wL xL)

= m
(
Var

(
wL)

Var
(
xL)+E[

wL]2
Var

(
xL)+Var

(
wL)

E
[
xL]2

)
= m

((
Var

(
wL)+E[

wL]2
)

Var
(
xL))

= mE
[(

wL)2
]

Var
(
xL)

.

Note that we deviate here from [10], since we do not assume that the expected value
of a weight is zero. Since Var

(
ŷ
)= Var

(
xL

)
should hold, this gives:

mE
[(

wL)2
]
= 1. (3.62)

We similarly derive that the sum of the squared weights equals 1 in Section 3.2.2.

REQUIREMENT 2: VAR

(
ÇLOSS

ÇyL

)
= VAR

(
ÇLOSS

ÇyL−1

)
In Section 3.2.2 we derived that:

ÇLoss

ÇyL−1
j

≈ ÇLoss

ÇyL
wL

j .

We now additionally assume, following [10], that the weights of the last layer and
the gradient ÇLoss

ÇyL are independent of each other, and that the variance of ÇLoss
ÇyL−1

j
is

the same for each node j ∈ {1,2, . . . ,m}. This gives:

Var

(
ÇLoss

ÇyL−1

)
= Var

(
ÇLoss

ÇyL
wL

)
(3.63)

3

86
3. AN IMPROVED WEIGHT INITIALIZATION STRATEGY FOR NEURAL NETWORKS,
APPLIED TO POINT RUL PROGNOSTICS

= Var
(
wL)

Var

(
ÇLoss

ÇyL

)
+E[

wL]2
Var

(
ÇLoss

ÇyL

)
+Var

(
wL)

E

[
ÇLoss

ÇyL

]2

=
(
Var

(
wL)+E[

wL]2
)

Var

(
ÇLoss

ÇyL

)
= E

[(
wL)2

]
Var

(
ÇLoss

ÇyL

)
.

Since Var
(
ÇLoss
ÇyL

)
= Var

(
ÇLoss
ÇyL−1

)
should hold, it thus follows that:

E
[(

wL)2
]
= 1. (3.64)

We similarly derive that the sum of the squared weights is m in Section 3.2.2.

REFERENCES

[1] de Pater, I., & Mitici, M. (2023). A mathematical framework for improved
weight initialization of neural networks using Lagrange multipliers. Neural
Networks, 166, Pages: 579–594.

[2] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A survey of Convolutional
Neural Networks: Analysis, applications, and prospects. IEEE Transactions on
Neural Networks and Learning Systems, 33, Pages: 6999–7019.

[3] Pan, X., Xu, J., Pan, Y., Wen, L., Lin, W., Bai, K., Fu, H., & Xu, Z. (2022).
Afinet: Attentive feature integration networks for image classification. Neural
Networks, 155, Pages: 360–368.

[4] Martínez, F., Charte, F., Frías, M. P., & Martínez-Rodríguez, A. M. (2022).
Strategies for time series forecasting with generalized regression neural
networks. Neurocomputing, 491, Pages: 509–521.

[5] Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with
deep learning: A review. IEEE Transactions on Neural Networks and Learning
Systems, 30(11), Pages: 3212–3232.

[6] Roh, J., Park, S., Kim, B.-K., Oh, S.-H., & Lee, S.-Y. (2021). Unsupervised
multi-sense language models for natural language processing tasks. Neural
Networks, 142, Pages: 397–409.

[7] Vasilev, I. (2019). Advanced deep learning with Python: Design and implement
advanced next-generation AI solutions using Tensorflow and PyTorch. Packt
Publishing Ltd.

[8] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[9] Xie, X., Pu, Y.-F., & Wang, J. (2023). A fractional gradient descent algorithm
robust to the initial weights of multilayer perceptron. Neural Networks, 158,
Pages: 154–170.

[10] Glorot, X., & Bengio, Y. (2010, May 13-15). Understanding the difficulty of
training deep feedforward neural networks. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 9, Sardinia,
Italy, Pages: 249–256.

[11] He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 7-13). Delving deep
into rectifiers: Surpassing human-level performance on ImageNet classification.
Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, Pages: 1026–1034.

[12] Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. (2022). A review on weight
initialization strategies for neural networks. Artificial intelligence review, 55(1),
Pages: 291–322.

87

3

88 REFERENCES

[13] Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120.

[14] Mishkin, D., & Matas, J. (2015). All you need is a good init. arXiv preprint
arXiv:1511.06422.

[15] Adam, S. P., Karras, D. A., Magoulas, G. D., & Vrahatis, M. N. (2014). Solving the
linear interval tolerance problem for weight initialization of neural networks.
Neural Networks, 54, Pages: 17–37.

[16] Aguirre, D., & Fuentes, O. (2019, September 17-19). Improving weight
initialization of ReLU and output layers. Artificial Neural Networks and
Machine Learning – Proceedings of the 28th International Conference on
Artificial Neural Networks, Munich, Germany, Pages: 170–184.

[17] Yam, Y., Chow, T. W., & Leung, C.-T. (1997). A new method in determining
initial weights of feedforward neural networks for training enhancement.
Neurocomputing, 16(1), Pages: 23–32.

[18] Chumachenko, K., Iosifidis, A., & Gabbouj, M. (2022). Feedforward neural
networks initialization based on discriminant learning. Neural Networks, 146,
Pages: 220–229.

[19] Yam, Y.-F., & Chow, T. W. (1995). Determining initial weights of feedforward
neural networks based on least squares method. Neural Processing Letters, 2(2),
Pages: 13–17.

[20] Cao, W., Wang, X., Ming, Z., & Gao, J. (2018). A review on neural networks with
random weights. Neurocomputing, 275, Pages: 278–287.

[21] Kim, M. (2021). The generalized extreme learning machines: Tuning
hyperparameters and limiting approach for the Moore–Penrose generalized
inverse. Neural Networks, 144, Pages: 591–602.

[22] Fernández-Navarro, F., Riccardi, A., & Carloni, S. (2014). Ordinal neural
networks without iterative tuning. IEEE Transactions on Neural Networks and
Learning Systems, 25(11), Pages: 2075–2085.

[23] He, K., Zhang, X., Ren, S., & Sun, J. (2016, June 27-30). Deep residual learning
for image recognition. Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, Pages: 770–778.

[24] Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features
from tiny images (tech. rep.). [Data set]. University of Toronto.

[25] LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient BackProp.
In Neural networks: Tricks of the trade (Pages: 9–48). Springer.

[26] Vural, N. M., Ilhan, F., Yilmaz, S. F., Ergüt, S., & Kozat, S. S. (2021). Achieving
online regression performance of LSTMs with simple RNNs. IEEE Transactions
on Neural Networks and Learning Systems, 33, Pages: 7632–7643.

[27] Yan, W. (2012). Toward automatic time-series forecasting using neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 23(7), Pages:
1028–1039.

[28] Kim, S., Lu, P. Y., Mukherjee, S., Gilbert, M., Jing, L., Čeperić, V., & Soljačić,
M. (2020). Integration of neural network-based symbolic regression in deep

REFERENCES

3

89

learning for scientific discovery. IEEE Transactions on Neural Networks and
Learning Systems, 32(9), Pages: 4166–4177.

[29] Heij, C., Heij, C., de Boer, P., Franses, P. H., Kloek, T., van Dijk, H. K., et al.
(2004). Econometric methods with applications in business and economics.
Oxford University Press.

[30] Frühwirth-Schnatter, S., & Frèuhwirth-Schnatter, S. (2006). Finite mixture and
Markov switching models. Springer.

[31] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The
elements of statistical learning: Data mining, inference, and prediction (2nd ed.).
Springer.

[32] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data
set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[33] Vollert, S., & Theissler, A. (2021, September 7-10). Challenges of machine
learning-based RUL prognosis: A review on NASA’s C-MAPSS data set. 26th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), Vasteras, Sweden, Pages: 1–8.

[34] de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic
Remaining Useful Life prognostics with applications to turbofan engines.
Proceedings of the 7th European Conference of the Prognostics and Health
Management (PHM) Society, 7, Turin, Italy, Pages: 96–109.

[35] Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft
maintenance using probabilistic Remaining-Useful-Life prognostics. Reliability
Engineering & System Safety, 230, Article number: 108908.

[36] Ramasso, E., & Saxena, A. (2014, September 29 - October 2). Review and
analysis of algorithmic approaches developed for prognostics on CMAPSS
dataset. Proceedings of the Annual Conference of the Prognostics and Health
Management (PHM) Society 2014, 6, Fort Worth, Texas, USA, Pages: 1–11.

[37] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[38] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[39] Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020). Randaugment: Practical
automated data augmentation with a reduced search space. Advances in Neural
Information Processing Systems, 33, Pages: 18613–18624.

[40] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, Pages:
2825–2830.

[41] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015).

3

90 REFERENCES

ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3), Pages: 211–252.

[42] Poole, D. (2011). Linear algebra: A modern introduction (3rd ed.).
Brooks/Cole/Thomson Learning.

4
MODEL-BASED PROBABILISTIC

RUL PROGNOSTICS WITH

CLUSTERING

In the previous two chapters, we develop point Remaining Useful Life (RUL)
prognostics, i.e., we estimate one number for the RUL. For maintenance planners, it is
challenging to make maintenance decisions based on point RUL prognostics, as the
uncertainty of the RUL prognostics is not quantified. In this chapter, we therefore
estimate a Probability Density Function (PDF) of the RUL instead.

In contrast with the previous two chapters, we use a model-based approach. We
first cluster the health indicators of several components offline using dynamic
time-warping. Within each cluster, the degradation follows a specific trend. We
therefore propose for each cluster a degradation model and corresponding failure
threshold. Using particle filtering, we subsequently estimate the RUL of a component,
using the degradation model and failure threshold of its corresponding cluster.

In the case study, we apply our approach to estimate the RUL of aircraft cooling
units using leave-one-out cross validation. Only a single cooling unit is assigned to
a different cluster in the cross validation, than in the offline clustering. Using the
assigned clusters, we are able to accurately estimate the RUL.

Parts of this chapter have been published in:

Mitici, M., & de Pater, I. (2021). Online model-based Remaining-Useful-Life prognostics for aircraft
cooling units using time-warping degradation clustering. Aerospace, 8(6), Article number: 168

de Pater, I., & Mitici, M. (2021, June 28 - July 2). Model-based Remaining-Useful-Life prognostics
for aircraft cooling units. Proceedings of the European Conference of the Prognostics and Health
Management (PHM) Society, 6, Virtual, Pages: 1–8

91

4

92 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

4.1. INTRODUCTION

The costs of aircraft maintenance, repair and overhaul (MRO) account for 9% of the
total airline operational costs [3]. Predictive maintenance is a new maintenance
strategy that aims to reduce these maintenance costs and, in particular, to reduce the
costs of unexpected failures. Here, the sensor measurements of aircraft components
are analyzed to estimate the time left until failure (Remaining Useful Life, RUL).

In the past years, several RUL prognostic methods have been developed [4], mainly
using data-driven or model-based approaches. Data-driven RUL prognostic methods
mainly use neural networks to estimate the RUL, such as Feed Forward Neural
Networks [5], Convolutional Neural Networks [6, 7] and Recurrent Neural Networks
[8, 9]. By contrast, in a model-based approach, it is assumed that the degradation
inside a component follows a degradation model, such as a Wiener processes [10,
11] or a physics-based model [12, 13]. The parameters of this model are estimated
with, for instance, a Kalman filter [14] or a particle filter [15].

Some RUL prognostic methods are developed to immediately predict the RUL,
from the moment a component is installed. Other studies, however, divide the
lifetime of a component in several stages, such as “healthy” and “unhealthy”, or
“healthy”, “degradation” and “critical” [4]. The delay time model [16–18] similarly
assumes that a component is healthy (i.e., in a good state) for some time after
installment. After the degradation in a component passes a certain threshold, it is
seen as unhealthy (i.e., there is a defect), at which point the RUL can be predicted.
Also in this study, we first identify when a component becomes unhealthy, and only
then predict the RUL.

In most RUL prognostic methods, it is implicitly assumed that there is only one
degradation mechanism that governs the failure of components [19]. However,
systems are often complex, consisting of multiple components, where each
component is subject to various operational factors and may fail according to various
fault modes. It is therefore expected that the degradation of a system may follow
more than one degradation mechanism, and may thus exhibit multiple degradation
trends [19, 20]. To capture these various degradation trends towards failure, several
degradation models should be integrated in the RUL prognostic method.

Only few studies develop RUL prognostics using multiple degradation trends.
Data-driven approaches with multiple degradation trends are considered in [21,
22]. In [21], a Long Short-Term Memory Neural Network is developed such that
degradation patterns under multiple operational conditions and belonging to several
fault modes are detected. With this approach, the RUL of aircraft engines is
estimated. In [22], a deep learning approach is combined with a genetic algorithm
to estimate the RUL of aircraft engines operating under multiple conditions and
failing under several fault modes. Machine-learning approaches, however, are
“black-box” models, of which the inner workings are hard to explain [23]. This is an
obstacle for the implementation of purely data-driven RUL prognostic methods in
the maintenance practice [24]. In this chapter, we therefore focus on a model-based
prognostic approach that considers multiple degradation trends.

Model-based RUL prognostic approaches that incorporate multiple degradation
models and fault modes are considered in [19, 25–29]. In [25], four physics-based

4.1. INTRODUCTION

4

93

failure models of subsea pipelines are incorporated in one dynamic Bayesian
network. In [19], the authors consider multiple degradation trends for the resistance
in batteries, each with its own degradation model. With these degradation models
and a particle filtering algorithm, the authors estimate the RUL of batteries. A
switching Kalman filter to model multiple degradation trends within the degradation
process of a single component is used in [28, 29] for bearings and in [26] for
engines. In these studies, multiple degradation models are integrated in one
comprehensive degradation process. The degradation trend of a single component
is thus not explicitly identified. In contrast, we first cluster the degradation trends
of components and propose a degradation model for each cluster. A separate RUL
prognostic model is developed for each cluster, based on this degradation model. In
this way, different components are associated with different degradation models.

For model-based RUL prognostic methods, two frequently considered degradation
models are the exponential and the linear degradation model [4, 30]. Linear
degradation models are developed in [31–34]. In [31], a linear model with Brownian
drift and random shocks, together with a particle filtering algorithm, is used to
estimate the RUL of milling machines. A linear degradation model is also used in
[32] for batteries, in [33] for aircraft engines, and in [34] for engine bleed valves.
Exponential degradation models are used in [35–39]. An exponential model is
used together with a particle filtering algorithm to estimate the RUL of bearings
in [35], and to estimate the RUL of batteries in [36]. An exponential model for
the degradation of bearings is also considered in [37], for batteries in [38] and for
railway turnout systems in [39]. Similarly, in this chapter, we consider clusters of
components for which the degradation follows a linear or an exponential model.

In this chapter, we propose an approach to obtain online, model-based RUL
prognostics for aircraft components by exploiting the knowledge obtained from
clusters of component degradation trends. First, using the sensor monitoring data,
we construct a health indicator which is used to diagnose components as healthy
or unhealthy. As soon as a component is diagnosed as unhealthy, a cluster-specific
degradation model is selected for this component based on a dynamic time-warping
clustering of a library of health indicators. These degradation models, together with a
particle filtering algorithm, are further used to obtain RUL prognostics. We illustrate
our approach for the case of several aircraft cooling units, originating from a fleet of
aircraft. We consider operational aircraft data, i.e., the sensor measurements have
been collected during the actual operation of the aircraft. The results show that our
proposed cluster-based RUL prognostic approach provides accurate RUL prognostics
for these cooling units.

The main contributions of this study are as follows:

• We propose an end-to-end methodology that employs the sensor measurement
to first diagnose of a component as healthy or unhealthy, and that subsequently
estimates the PDF of the RUL. Using a health indicator, a component is
diagnosed as healthy or unhealthy. Once a component reaches the unhealthy
stage, a degradation model is selected based on the similarity between the
degradation trend of this component and the degradation trend of the clusters
in a library of health indicators. This approach exploits the potential to learn

4

94 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

from the degradation trends in other components;

• We consider multiple degradation models. A clustering method for the health
indicators of the components is proposed. Each obtained cluster is associated
with one degradation model and a corresponding failure threshold.

• Our proposed approach is illustrated using operational aircraft data, i.e., sensor
measurements that are collected during the actual operation of aircraft. In
general, case studies are conducted with simulated data or data generated in a
laboratory, which may not be as noisy as the aircraft operational data.

The remainder of this chapter is organized as follows. In Section 4.2 we provide a
model-based RUL prognostic method using a dynamic time-warping algorithm and
a particle filtering algorithm. For the time-warping algorithm, we consider several
components which are clustered based on the similarity between their degradation
trends. In Section 4.3 we illustrate our methodology for several aircraft cooling units.
Section 4.4 provides conclusions and recommendations for further research.

4.2. METHODOLOGY - ONLINE MODEL-BASED RUL
PROGNOSTICS

In this section we provide an approach to obtain online RUL prognostics for aircraft
components. We first construct a health indicator from the sensor monitoring data.
Based on this health indicator, we online diagnose a component as healthy or
unhealthy (step 1). Once a component is diagnosed as unhealthy, a degradation
model and corresponding failure threshold is selected for this component using a
dynamic time-warping algorithm that clusters a library of health indicators (step 2
and 3). After selecting a degradation model, the RUL is estimated with a particle
filtering algorithm (step 4). This process is illustrated in Figure 4.1.

Let a stochastic process
{

X i
f , f ∈N

}
characterize the degradation of a component i

over time, where X i
f denotes the actual degradation in component i after flight f .

Let D > 0 denote a failure threshold, i.e., component i has failed if the degradation
exceeds this failure threshold (if X i

f > D). After a flight f i ,cur > 0, the RUL of a

component (in flights) is defined as follows:

RUL = min{ f : X i
f i ,cur+ f

≥ D, f ∈N}. (4.1)

4.2.1. STEP 1: CONSTRUCTING A HEALTH INDICATOR AND DEFINING

THE HEALTH STAGE

Let I i
f denote the health indicator value of component i after flight f , and let y i

f be

the sensor measurements of this component after flight f . We assume that I i
f is a

function h(·) of the sensor measurements y i
f , y i

f −1, . . . , y i
f −N of the past N flights, i.e.,:

I i
f = h

(
y i

f , y i
f −1, . . . , y i

f −N

)
. (4.2)

4.2. METHODOLOGY - ONLINE MODEL-BASED RUL PROGNOSTICS

4

95

Figure 4.1.: A component i is defined as healthy or unhealthy, based on the health
indicator I i

f that is updated every flight f . Once a component is

diagnosed as unhealthy, a degradation model is identified and the RUL
is estimated.

Here, the sensor measurements y f in turn depend on the actual degradation X i
f of

component i after flight f .

We diagnose the component as healthy or unhealthy by analyzing whether I i
f

exceeds an alarm threshold T alarm. This alarm threshold is defined by Chebyshev’s
inequality [40–42], which states that for any probability distribution with a specified
mean µ and standard deviation σ, at most 1

k2 percent of the values from this
distribution fall outside the µ±kσ interval, k > 0. This implies that:

p
(∣∣∣I i

f −µ
∣∣∣≥ kσ

)
≤ 1

k2 , (4.3)

where p(x) denotes the probability of an event x, while µ is the mean and σ is
the standard deviation of the health indicator values while an aircraft component is
healthy. We thus use the following alarm threshold T alarm:

T alarm =µ+kσ. (4.4)

As soon as I i
f > T alarm, a component is diagnosed as unhealthy (see Figure 4.1).

Let f i ,alarm denote the first flight when a component i is diagnosed as unhealthy.
Last, we define f i ,fail as the flight during which the component i fails.

4

96 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

4.2.2. STEP 2: SELECTING A DEGRADATION MODEL FOR A COMPONENT

As soon as a component is diagnosed as unhealthy, we select a degradation model
and a corresponding failure threshold D based on the clusters in a library of health
indicators. As a last step, we use this selected degradation model together with a
particle filtering algorithm to estimate the RUL.

We consider an offline library of n health indicators. This library contains the
health indicators of n aircraft components that have already failed in the past. Each
health indicator is constructed starting m flights before the component is diagnosed
as unhealthy (see Section 4.2.1) until the component has failed.

Let I i denote the health indicator for a component i in the offline library
(1 ≤ i ≤ n). A health indicator is a time-series consisting of the health indicator
values after flight f ∈ [

f i ,alarm −m, f i ,fail
]
:

I i =
{
I i

f , f ∈
[

f i ,alarm −m, f i ,alarm −m +1, . . . , f i ,fail
]}

. (4.5)

We group the health indicators I i , i ∈ {1,2, . . . ,n} in several clusters, where the
underlying degradation of the components in each cluster follows a similar
degradation trend towards failure. For this, we propose i) a Dynamic Time Warping
(DTW) algorithm [43, 44] to determine the minimum distance between any two
health indicators I i and I j of component i and component j , respectively, and, ii)
we cluster the n health indicators based on this minimum distance.

I) DYNAMIC TIME-WARPING [43, 44] TO DETERMINE THE MINIMUM DISTANCE

BETWEEN TWO HEALTH INDICATORS

To define the distance between the health indicators of two components, we first
define a warping path p between the two health indicators I i of component i and
I j of component j . In a warping path p, each health indicator value in I i is
connected to a health indicator value in I j :

Definition 1 (Warping path [44]) A warping path p between I i and I j is a sequence
p = (

p1, p2, . . . , pL
)

with pl =
(

fl , gl
)

(for l ∈ {1,2, . . . ,L}) with

fl ∈
{

f i ,alarm −m, f i ,alarm −m +1, . . . , f i ,fail
}

(4.6)

gl ∈
{

f j ,alarm −m, f j ,alarm −m +1, . . . , f j ,fail
}

. (4.7)

The following four conditions for p have to hold:

a p1 =
(

f i ,alarm −m, f j ,alarm −m
)

b pL = (
f i ,fail, f j ,fail|).

c f1 ≤ f2 ≤ . . . ≤ fL , and g1 ≤ g2 ≤ . . . ≤ gL .

d pl+1 −pl ∈ {(1,0), (0,1), (1,1)} for l ∈ {1,2, . . . ,L−1}.

4.2. METHODOLOGY - ONLINE MODEL-BASED RUL PROGNOSTICS

4

97

Condition a and b in Definition 1 imply that the first and last elements of health
indicators I i and I j are warped (aligned), respectively. Condition c ensures that
the path is monotonically increasing for both health indicators. Last, condition d
ensures that no element of

{
I i

}
and

{
I j

}
can be omitted in the warping path, i.e.,

the elements in the sequence need to be contiguous.

Figure 4.2.: An example of a time-warping path between two health indicators,
{I1

f , f ∈ [1,2,3,4,5,6,7]} and {I2
g , g ∈ [1,2,3,4,5]}.

Figure 4.2 shows an example of a warping path for two health indicators,{
I1

f , f ∈ [1,2,3,4,5,6,7]
}

and
{
I2

g , g ∈ [1,2,3,4,5]
}

. Here, I1 contains 7 health indicator

values, while I2 contains only 5 health indicator values. There are three health
indicator values of the first component, namely I1

2 ,I1
3 and I1

4 , connected to the
health indicator value I2

2 of the second component. The warping path p for these
two health indicators is:

p = ((
I1

1 ,I2
1

)
,
(
I1

2 ,I2
2

)
,
(
I1

3 ,I2
2

)
,
(
I1

4 ,I2
2

)
,
(
I1

5 ,I2
3

)
,
(
I1

6 ,I2
4

)
,
(
I1

7 ,I2
5

))
.

The aim is to find a warping path p between I i and I j that minimizes the
“distance” between the two health indicators. For this, we first define the Euclidean
distance between I i

f (the health indicator value of component i after flight f) and

I j
g (the health indicator value of component j after flight g) as follows:

d
(
I i

f ,I j
g

)
=

(
I i

f −I j
g

)2
. (4.8)

Here, we interpret d
(
I i

f ,I j
g

)
as a metric for the dissimilarity between the health

indicator values I i
f and I j

g , i.e., the larger the distance, the more dissimilar the

health indicator values are. With this, we define D
(
p,I i ,I j

)
as the “distance”

between two health indicators I i and I j , given warping path p:

D
(
p,I i ,I j

)
=

L∑
l=1

d
(
I i

pl [1],I
j
pl [2]

)
, (4.9)

where pl [1] and pl [2] denote the first element fl and the second element gl of pl .

4

98 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

Our aim is to find the warping path p between I i and I j that minimizes this
distance D(p,I i ,I j). We define the minimum distance W

(
I i ,I j

)
between I i and

I j as follows:

W
(
I i ,I j

)
= min

p

{
D

(
p,I i ,I j

)
: p is a warping path between I i and I j

}
. (4.10)

We find the minimum distance W (I i ,I j) with dynamic programming, following

[44]. Let ∆
(

f ′, g ′) = W
(
Ĩ i

f ′ , Ĩ
j
g ′

)
be the minimum distance between a part of the

health indicator I i and a part of the health indicator I j :

Ĩ i
f ′ =

{
I i

f , f ∈
[

f i ,alarm −m, f i ,alarm −m +1, . . . , f ′
]}

(4.11)

Ĩ j
g ′ =

{
I i

g , g ∈
[

f j ,alarm −m, f j ,alarm −m +1, . . . , g ′
]}

. (4.12)

With this, we can easily calculate [44]:

∆(f ′, f j ,alarm −m) =
f ′∑

f =1
d

(
I i

f ,I j

f j ,alarm−m

)
, (4.13)

for all f ′ ∈ {
f i ,alarm −m, f i ,alarm −m +1, . . . , f i ,fail

}
, while [44]

∆(f i ,alarm −m, g ′) =
g ′∑

g=1
d

(
I i

f i ,alarm−m
,I j

g

)
,

for all g ′ ∈ {
f j ,alarm −m, f j ,alarm −m +1, . . . , f j ,fail

}
.

We can now solve the following recursive equation until f ′ = f i ,fail and g ′ = f j ,fail

to find the minimum distance between two health indicators [44]:

∆
(

f ′, g ′)= min
{
∆

(
f ′−1, g ′−1

)
,∆

(
f ′−1, g ′) ,∆

(
f ′, g ′−1

)}+d
(
I i

f ′ ,I j
g ′

)
.

We assume that the minimum distance between two health indicators specifies how
similar the health indicators are, i.e., the smaller the minimum distance, the more
similar the degradation trend in the health indicators are. The dynamic time-warping
algorithm was originally developed to determine the similarity between speech
patterns in the field of automatic speech recognition.

II) CLUSTERING THE HEALTH INDICATORS OF A LIBRARY OF n COMPONENTS

After determining the minimum distance W
(
I i ,I j

)
between the health indicators of

all pairs of components i , j ∈ {1,2, . . . ,n}, i ̸= j in the offline library, we construct a
graph G (V ,E ,δ). Here, each node v i ∈V (where V denotes all nodes in the graph)
corresponds to the health indicator of component i ∈ {1,2, . . . ,n}. There are thus
n nodes, i.e., |V | = n. E denotes all edges in the graph. We construct an edge
between node v i and the closest δ nodes v j , i.e., to the nodes of the δ components
j for which the distance W

(
I i ,I j

)
between the respective health indicators is the

smallest, with j ∈ {1,2, . . . ,n}, i ̸= j . To prevent that all components are connected

4.2. METHODOLOGY - ONLINE MODEL-BASED RUL PROGNOSTICS

4

99

to the components with the “short” health indicators with few values, we divide
the distance W

(
I i ,I j

)
between component i and j with the maximum number of

health indicator values in I i and I j . All components for which the nodes in this
graph are connected, are considered to be in the same cluster.

We assume that all components in the same cluster have a similar degradation
trend with the same functional form, and that all components in the same cluster
have the same failure threshold D . These cluster-specific degradation models and
failure thresholds are ultimately used to estimate the RUL for a component using a
particle filtering algorithm.

4.2.3. STEP 3: ONLINE CLUSTERING OF (NON-FAILED) COMPONENTS

Let component i be an non-failed component for which we receive new sensor
measurements after each flight, i.e., that is online monitored. Let an offline library
consist of n health indicators

{
I j : j ∈ {1,2, . . . ,n} , j ̸= i

}
. These health indicators come

from components that have failed in the past, and for which we have all sensor
measurements until failure. Let C be the set of clusters in the offline library, which
are obtained using dynamic time-warping (see Section 4.2.2). As soon as the health
indicator of the online monitored component i exceeds an alarm threshold T alarm

(i.e., as soon as the component is diagnosed as unhealthy), component i is assigned
to a cluster in the set C using dynamic time-warping (Section 4.2.2).

The partial health indicator Ĩ i of component i consists of the health indicator
values obtained m flights before the threshold T alarm is reached (flight f i ,alarm −m)
until the current, most recently available measurement at flight f i ,cur:

Ĩ i =
{
I i

f , f ∈
[

f i ,alarm −m, f i ,alarm −m +1, . . . , f i ,cur
]}

. (4.14)

Figure 4.3a illustrates Ĩ i corresponding to an online monitored component i . We
calculate the minimum distance W(Ĩ i , Ĩ j) between the partial health indicator Ĩ i

of the online component i and the partial health indicator Ĩ j of each component
j in the offline library (j ∈ {1,2, . . . ,n}). Here, the partial health indicator Ĩ j for
component j from the offline library is defined as:

Ĩ j =
{
I j

g , g ∈
[

f j ,alarm −m, f j ,alarm −m +1. . . ,min
(

f j ,fail, f j ,alarm −m +
∣∣∣Ĩ i

∣∣∣)]} , (4.15)

where
∣∣Ĩ i

∣∣ is the length of the partial health indicator Ĩ i . Figure 4.3b shows an
example for a library with two components j ∈ {1,2}.

Lastly, we assign component i to a cluster c̃ ∈C such that the average minimum
distance W

(
Ĩ i , Ĩ j

)
between the partial health indicator of component i and all

partial health indicators of the components j in cluster c̃ is minimized:

c̃ = argminc∈C

(
1

|c|
∑
j∈c

W
(
Ĩ i , Ĩ j

))
. (4.16)

We assume that component i has the same degradation model and failure threshold
as the degradation model and failure threshold specific to cluster c̃. This degradation
model is further used to estimate the RUL for component i .

4

100 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

(a) Ĩi of component i .

(b) Ĩ j of component j ∈ {1,2}.

Figure 4.3.: Illustration of online clustering for component i . The library consists of
the health indicators for components j ∈ {1,2}.

4.2.4. STEP 4: RUL PROGNOSTICS

Together with the degradation model and the failure threshold D identified in
Section 4.2.3, we use a particle filtering algorithm [45] to estimate the RUL of an
online monitored component i after a current flight f i ,cur. For the ease of notation,
we do not include the dependency of component i in the notation of the particle
filtering algorithm (i.e., X f = X i

f ,I f = I i
f , etc.).

4.2. METHODOLOGY - ONLINE MODEL-BASED RUL PROGNOSTICS

4

101

We consider the following recurrent function r (·) for the degradation X f after flight
f of the online monitored component:

X f = r
(
X f −1,ω f

)
, (4.17)

where X f is the actual degradation level of a component after flight f and ω f

represents the noise of flight f of the online monitored component. We assume that
the noise after all flights is a collection of independent and identically distributed
(i.i.d.) random variables following the normal (Gaussian) distribution. In general,
r has a certain form, which depends on the type of the component and the
degradation in the component. In our case, the function r is the degradation model
from the cluster c̃ to which the online monitored component is assigned. Similar, we
assume that the health indicator value after a flight f is, through the measurements,
a function g (·) of the degradation X f :

I f = g
(
X f ,ν f

)
(4.18)

where ν f represents the measurement noise of flight f of the online monitored
component. We again assume that the measurement noise after all flights is
a collection of independent and identically distributed (i.i.d.) random variables
following the normal (Gaussian) distribution.

We estimate the RUL of the online monitored component using the particle
filtering algorithm [36, 45, 46]. This algorithm has four steps: i) prediction, ii)
updating, iii) approximation and resampling, and iv) estimating the RUL.

i) The prediction step
In the prediction step, we are interested in the prior Probability Density Function

(PDF) of the degradation X f of component i after flight f , given the health indicator
values I f −1, . . . ,I1 of component i from flight 1 up to flight f −1. Here, I1

denotes the first health indicator value of the health indicator of component i , i.e.,
I1 = I i

f i ,alarm−m
. We derive this PDF from the following two conditional probabilities:

pX f |X f −1

(
x f |x f −1

)
(4.19)

pX f −1|I f −1,I f −2,...,I1

(
x f −1|ι f −1, ι f −2, . . . , ι1

)
, (4.20)

Here, eq. (4.19) is the transition PDF to reach the future degradation X f , given the
current degradation X f −1. Eq. (4.20) is the posterior PDF of the degradation X f −1 of
the component after flight f −1, given the past health indicator values I f −1, . . . ,I1.

Using the Chapman-Kolmogorov equation [45], this gives the following prior PDF
for the degradation X f after flight f [46]:

pX f |I f −1,I f −2,...,I1 (x f |ι f −1, ι f −2, . . . , ι1) =
∫

pX f |X f −1 (x f |x f −1) (4.21)

·pX f −1|I f −1,...,I1 (x f −1|ι f −1, . . . , ι1)d x f −1.

4

102 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

ii) The updating step
With the sensor measurements of flight f , we calculate the health indicator value

I f of flight f . With this, using Bayes’ theorem, the posterior PDF of the degradation
X f after flight f becomes [46]:

pX f |I f ,I f −1,...,I1 (x f |ι f , ι f −1, . . . , ι1) =
pI f |X f

(ι f |x f)pX f |I f −1,...,I1 (x f |ι f −1, . . . , ι1)

pI f |I f −1,...,I1 (ι f |ι f −1, . . . , ι1)
. (4.22)

iii) The approximation and resampling step
Since eq. (4.21) and eq. (4.22) are hard to analyse analytically, we instead

approximate the posterior PDF of X f numerically using Importance Sampling [47].
In the beginning of the particle filtering algorithm (flight f = 0), we initialize M

particles, where each particle j has a weight w j
0 = 1

M after flight f = 0, an initial
value of the degradation and a different set of model parameters for the function r
(eq. (4.17)). These model parameters are drawn from a prior distribution for the
model parameters of the recurrence function r .

After flight f , we estimate for each particle j the degradation x j
f after flight f ,

with i) the recurrence function r (·) in eq. (4.17), ii) the model parameters of r (·)
belonging to particle j and iii) the past estimated degradation x j

f −1. Then, eq. (4.22)

with the posterior PDF of the degradation X f of the online monitored component
after flight f is approximated as [46]:

pX f |I f ,...,I1

(
x f |ι f , . . . , ι1

)≈ M∑
j=1

ŵ j
f ·δ

(
x f −x j

f

)
, (4.23)

where δ(·) is the Dirac function, and ŵ j
f is the normalized weight of the j th particle,

j ∈ {1,2, . . . , M } after flight f . The (non-normalized) weight of a particle j is calculated
with the new health indicator value I f as follows [46]:

w j
f = w j

f −1

pI f |X j
f
(ι f |x j

f) ·p
X

j
f |X

j
f −1

(x j
f |x

j
f −1)

p̃
X

j
f |X

j
f −1,I f ,...,I1

(x j
f |x

j
f −1, ι f , . . . , ι1)

, (4.24)

In most studies [36, 45, 46, 48, 49], the importance density function

p̃
X

j
f |X

j
f −1,I f ,...,I1

(x j
f |x

j
f −1, ι f , . . . , ι1) is simply chosen as the prior p

X
j
f |X

j
f −1

(x j
f |x

j
f −1).

Following this, we update the weights with:

w j
f = w j

f −1pI f |X j
f
(ι f |x j

f). (4.25)

The probability pI f |X j
f
(ι f |x j

f) can be calculated from eq. (4.18). The exact calculation

depends on the form of g (·) and the assumed distribution of the measurement noise.
Finally, the weights are normalized as [46]:

ŵ j
f =

w j
f∑M

h=1 wh
f

. (4.26)

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)

4

103

After flight f , these normalized weights are also used to resample the particles. The

probability to resample a particle j equals ŵ j
f . Each new particle receives an equal

weight of 1
M [46, 50]. Then, we estimate the posterior PDF of the degradation X f +1

with these new particles and with the new health indicator value for flight f +1.

iv) Estimating the RUL
After all available measurements of component i (from flight f i ,alarm −m up to the

current flight, at which moment the RUL is estimated, f i ,cur) are used to estimate
the PDF of the degradation X f i ,cur after the most recent flight f i ,cur, we predict
the RUL by propagating the degradation of each particle j over time, using the
recurrence function r (·) (eq. (4.17)) and the model parameters of particle j . With
the failure threshold D , the RUL RUL j as estimated with particle j is:

RUL j = min{ f : x j
f ≥ D}. (4.27)

The RUL estimate of each particle has a probability of 1
M . All particles together give

the PDF of the RUL of component i , as estimated after flight f i ,cur.

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)
To illustrate the approach as introduced in Section 4.2, we consider 8 cooling units
(CUs) originating from a fleet of aircraft operated by a large European airline. For
each CU, a time-series of measurements is recorded during the operation of these
aircraft until the components have failed (run-to-failure data).

The CU consists of a compressor, a condenser, an evaporator and a flash tank (see
Figure 4.4). After many days of operations, the CU becomes clogged with burned
oil, moist and sludge from the compressor. This accelerates the compressor wear.
Long-term exposure to these conditions negatively affects the health of the CU,
which, in time, leads to a failure [51].

Figure 4.4.: Schematic representation of a cooling unit.

4.3.1. HEALTH INDICATOR FOR THE CUS

For each CU, run-to failure measurements (i.e., measurements until the failure of
the component) are available after some initial usage of the component. The

4

104 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

(d) Sensor 4 (e) Sensor 5 (f) Sensor 6

(g) Sensor 7 (h) Sensor 8 (i) Sensor 9

Figure 4.5.: Mean and maximum sensor measurement per flight for one CU for all
nine available sensors. The CU fails at flight 77.

time-series with sensor measurements consists of 50 flights (short time-series) up to
390 flights (long time-series). For each CU, there are nine sensors S = {1,2, . . . ,9},
each generating a measurement every 10 seconds during each flight. For the purpose
of our analysis, the data sets are anonymized, and thus it is unknown what each
sensor measures. The sensor data shows an increasing trend in the mean and
maximum sensor measurements towards failure. As an example, Figure 4.5 shows
the mean and maximum sensor measurement per flight until the moment of failure
for one CU and for each of the nine available sensors.

Let y i ,s
f ,b denote the bth measurement during flight f for CU i generated by sensor

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)

4

105

s. We first normalize the sensor measurements for each sensor s ∈ {1,2, . . . ,9}:

ŷ i ,s
f ,b =

y i ,s
f ,b −mins

maxs − max
b∈1,...,B i

f

(
y i ,s

f ,b

) , (4.28)

where mins and maxs denote the available minimum and maximum measurement
generated by sensor s, respectively, and B i

f denotes the total number of

measurements recorded during flight f of CU i . This normalization enhances the
increase in the mean and maximum measurements towards failure.

With these normalized sensor measurements, we consider several health indicators,
as described in [4, 52]. We construct each health indicator for the measurements of
each sensor, and calculate for each sensor the correlation coefficient (trendability)
between the health indicator and the time to failure for the last 50 flights before
failure (where 50 flights is the length of the shortest time-series of measurements).
Table 4.1 gives an overview of the considered health indicators and the corresponding
correlation coefficients. An extensive description of the health indicators is in [52].

Health indicator Sensors
1 2 3 4 5 6 7 8 9

RMS f =
√

1
B i

f

∑B i
f

b=1

(
ŷ i ,s

f ,b

)2
-0.06 0.12 0.27 0.45 0.46 -0.13 0.44 0.47 0.26

∆RMS f = RMS f −RMS f −1 0.02 0.01 0.02 0.02 0.01 -0.01 0.02 0.01 0.02
Peak-to-peak f = -0.08 0.11 0.24 0.43 0.38 -0.16 0.44 0.38 0.25
max(ŷ) - min(ŷ)

Crest Factor f = max(ŷ)
RMS f

-0.05 0.06 0.08 -0.02 -0.06 0.08 -0.02 -0.06 0.13

Kurtosis f -0.03 -0.11 0.05 -0.11 0.05 0.10 -0.11 0.05 0.05
Skewness f -0.13 0.09 0.05 -0.11 -0.03 -0.00 -0.11 -0.03 0.05

Table 4.1.: Overview of considered health indicators. For each sensor, the correlation
coefficient between the health indicator and the time to failure is given.
The highest absolute correlation coefficient per health indicator is denoted

in bold. Here, max(ŷ) = max
b∈1,...,B i

f

(
ŷ i ,s

f ,b

)
and min(ŷ) = min

b∈1,...,B i
f

(
ŷ i ,s

f ,b

)

The highest correlation coefficients are obtained for the Root Mean Square (RMS)
health indicator. We thus construct a health indicator based on the RMS of the
measurements [15, 52, 53]. A health indicator based on the RMS of measurements is
often employed in literature [4, 52], for example for health monitoring of gearboxes
[54], turbine cutting tools [53] and rolling element bearings [55]. The RMS of sensor
s of CU i during flight f is:

RMSi ,s
f =

√√√√√ 1

B i
f

B i
f∑

b=1

(
ŷ i ,s

f ,b

)2
. (4.29)

4

106 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

Now, a health indicator I i
f for CU i during flight f is obtained as the moving

average of the maximum RMS obtained by the sensors s ∈ S′ during a single flight:

I i
f =

1

N

f∑
l= f −N

max
s∈S′

(
RMSi ,s

l

)
, (4.30)

where N = 10 and where S′ ⊆ S is the set of sensors for which the moving average
of the RMS of the last 50 flights before failure has a correlation coefficient with the
time of failure of at least 0.70. We therefore include sensor 4, 5, 7 and 8 in the
health indicator. This final health indicator enhances the increase in the mean and
the maximum measurements towards failure as observed in Figure 4.5.

Figure 4.6 shows the health indicator and the alarm threshold T alarm when
considering the run-to-failure data of the 8 CUs. For the alarm threshold, we assume
k = 2 (see eq. (4.4)), and we estimate the mean µ and the standard deviation σ of the
health indicators with the measurements of the first five flights of each cooling unit.
With this, we obtain an alarm threshold of T alarm = 11.54. When analyzing all CUs,
the alarm threshold is reached between 2 to 40 flights before the actual failure time.

Figure 4.6 also shows that the degradation trends towards failure differs across the
components. Also, the failure threshold differs among the 8 CUs. In the next section,
we therefore cluster the health indicators to identify the main degradation models
and the corresponding failure thresholds.

4.3.2. CLUSTERS FOR THE HEALTH INDICATORS

We cluster the n = 8 health indicators with dynamic time-warping (see Section 4.2.2)
and identify cluster-specific degradation models for the CUs. For this, we use the
run-to-failure data of the 8 CUs, where we start the health indicator m = 10 flights
before the CU reaches the alarm threshold until failure.

Figure 4.7 shows the minimum distance W
(
I i ,I j

)
, i , j ∈ {1,2, . . . ,8}, between the

health indicators of the 8 CUs, normalized with the maximum length of the
health indicators I i and I j . Here, the minimum distances W

(
I i ,I j

)
for any two

components varies between 0.44 (high similarity between the degradation trends) to
4.24 (large dissimilarities between the degradation trends).

Using the distance W
(
I i ,I j

)
, i , j ∈ {1,2, . . . ,8}, between the 8 health indicators,

we construct the graph G(V ,E), with |V | = 8 nodes. Here, a node v i ∈ V in the
graph corresponds to the health indicator of component i , i ∈ {1,2, . . . ,8}. For each
CU i and a given δ, an edge is constructed between those δ nodes that have the
smallest distance to node v i (CU i). For example, if δ= 2 and CU i = 4, an edge is
constructed between node v4 and node v6 and between node v4 and v8, since the
distances between node v4 and nodes v6 and v8 are the smallest (Figure 4.7).

In Figure 4.8, we set δ= 1. This results in two clusters of CUs, one cluster with
CUs {4,6,8}, and one cluster with CUs {1,2,3,5,7}. The health indicator in Figure 4.6
shows that the CU 4, 6 and 8 fail soon after the health indicator reaches the alarm
threshold, when the health indicator reaches a value of approximately 15. The health
indicator shows a monotonic, very sharp increase in the last flights before failure.
In contrast, CUs 1, 2, 3, 5 and 7 fail when the health indicator reaches a value

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)

4

107

(a) CU 1 (b) CU 2 (c) CU 3

(d) CU 4 (e) CU 5 (f) CU 6

(g) CU 7 (h) CU 8

Figure 4.6.: Health indicator for the aircraft cooling units (CUs).

of approximately 20. The degradation trend, as represented by health indicator, of
these CUs seems to slightly accelerate towards failure.

For δ= 2 (see Figure 4.9), the same two clusters {4,6,8} and {1,2,3,5,7} emerge.
However, the CUs in Figure 4.9 are now connected by multiple edges.

For δ= 3 (see Figure 4.10), one large cluster emerges. Here, the CUs in cluster
{4,6,8} and cluster {1,2,3,5,7} are still grouped together (see Figure 4.8), and
connected to each other through CU 2 and 3 only.

Finally, for δ= 4 (see Figure 4.11), all CUs form one large cluster, which several
edges between CUs 4, 6 and 8, and CU 1, 2, 3, 5 and 7.

Following the clusters for δ= 1 and δ= 2, we define the following two clusters:

Cluster 1 = {4,6,8} (4.31)

Cluster 2 = {1,2,3,5,7} (4.32)

For the two clusters in eq. (4.31) and (4.32), we next define the cluster-specific

4

108 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

Figure 4.7.: Heat map of the minimum Euclidean distance W (I i ,I j) for the
degradation trends of components i , j ∈ {1,2, . . . ,8}.

Figure 4.8.: Clustering graph G(V ,E) for δ= 1.

degradation models and the cluster-specific failure threshold.

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)

4

109

Figure 4.9.: Clustering graph G(V ,E) for δ= 2.

Figure 4.10.: Clustering graph G(V ,E) for δ= 3.

Figure 4.11.: Clustering graph G(V ,E) for δ= 4.

4

110 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

4.3.3. CLUSTER 1 - LINEAR DEGRADATION MODEL

The health indicators of CUs 4, 6 and 8 in Cluster 1 are given in Figures 4.6d,
4.6f and 4.6h. All these CUs fail when their health indicator reaches a value of
approximately 15. Thus, we consider a failure threshold D = 15 for Cluster 1.

Once the health indicators of the CUs in Cluster 1 reach the alarm threshold
T alarm, the indicators have a very sharp, but monotonically increasing trend towards
failure. We thus consider the following linear degradation model for Cluster 1 [11]:

X i
t =αi +βi t +ωi (4.33)

where X i
t is the degradation of component i at time t , αi is the initial degradation,

βi is a model parameter and ωi is the noise in the degradation process. As in [36],
we ignore the degradation noise ωi because it is handled through the uncertainty
in the model parameters and in the measurements [56]. Linear degradation models
are often considered for prognostics [30], for example for milling machines [31],
batteries [32], aircraft engines [33] and engine bleed valves [34].

Following the degradation model in eq. (4.33), we consider the derivative:

d X i
t =βi d t . (4.34)

When re-writing the above equation in the form of equations (4.17) and (4.18) with
d t = 1 flight, we obtain that:

X i
f = X i

f −1 +βi
f (4.35)

I i
f = X i

f +νi
f (4.36)

where νi
f ∼ N (0,σνi

f
) is the measurement noise at flight f . Here, we assume

that the health indicator directly represents the degradation in the CU. The prior
distributions of the model parameters, with which the particles are initialized, are
βi

0 ∼U (0.01,1) and σνi
0
∼U (1,2). The initial degradation of each particle is initialized

with the minimum observed health indicator value of the partial health indicator
(up to the current flight f i ,cur at which moment the RUL is predicted) of component
i . These initial distributions are determined such that sample impoverishment, the
degeneracy problem and the non-convergence of the particle filtering algorithm are
avoided [56].

4.3.4. CLUSTER 2 - EXPONENTIAL DEGRADATION MODEL

The health indicators of CU 1, 2, 3, 5 and 7 in Cluster 2 are given in Figure 4.6.
All these CUs fail when their health indicator reaches a value of approximately 20.
Thus, we consider a failure threshold D = 20 for Cluster 2.

Moreover, the increments of the health indicator are steadily increasing towards
failure for these CUs. We thus consider the following exponential degradation model
for the CUs in Cluster 2:

X i
t =αi +exp(βi t)+ωi (4.37)

4.3. CASE STUDY AND RESULTS FOR COOLING UNITS (CUS)

4

111

where X i
t is the degradation of component i at time t , αi is the initial degradation,

βi is a model parameter and ωi is the noise in the degradation process. As
before, we ignore the degradation noise ωi [36]. Exponential degradation models are
considered in many prognostic studies [30], for bearings [35, 37], batteries [36, 38]
and railway turnout systems [39].

Taking the logarithm of eq. (4.37) gives:

Si
t = ln

(
X i

t −αi

)
=βi t . (4.38)

As in [11], we assume that αi = 0. Following the degradation model in eq. (4.38), we
consider the derivative:

dSi
t =βi d t . (4.39)

Re-writing the above equation in the form of equations (4.17) and (4.2) with d t = 1
flight, we obtain:

Si
f = Si

f −1 +βi
f (4.40)

I i
f = X i

f +νi
f , (4.41)

where νi
f ∼ N (0,σνi

f
) is the measurement noise at flight f . As before, we assume

that the health indicator directly represents the degradation in the CU. The
initial distributions of the model parameters are initialized as βi

0 ∼U (0.01,0.1) and
σνi

0
∼U (1,2), while the initial degradation is again the minimum value of the partial

health indicator. The parameter distributions are again initialized such that sample
impoverishment, the degeneracy problem and the non-convergence of the particle
filtering algorithm are avoided [56].

Lastly, with the degradation models introduced above, we apply the particle
filtering algorithm (see Section 4.2) to estimate the RUL of CUs.

4.3.5. RUL ESTIMATION

In this section, we estimate the RUL of the 8 CUs using leave-one-out cross
validation. Specifically, we select one CU i ∈ {1,2, . . . ,8} for which we predict the RUL.
We consider the partial health indicator of this CU i up to the moment of generating
a RUL prognostic. We determine the minimum distance between this partial health
indicator and the partial health indicators of the CUs in Cluster 1 and Cluster 2
(see eq. (4.31) and (4.32)), which do not include CU i in the leave-one-out cross
validation. We assign CU i to the cluster for which the average distance between the
cluster and CU i is minimum (see Section 4.2.3). We then assume that CU i follows
the degradation model and the failure threshold of this cluster. We estimate the RUL
of CU i using particle filtering with 10,000 particles.

We assume that the clusters remain the same when taking one CU out. When
considering δ = 1, this is indeed the case, except when taking out CU 2. In this
case, the cluster with CU 1, 3, 5 and 7 (and 2 in the offline clustering) splits in two
separate clusters, one cluster with CU 1 and 3, and one cluster with CU 5 and 7.

4

112 4. MODEL-BASED PROBABILISTIC RUL PROGNOSTICS WITH CLUSTERING

RUL prognostic as soon as CU RUL prognostic 10 flights
diagnosed as unhealthy before failure (RUL = 10)

CU Actual Assigned Mean Assigned Mean
i RUL at cluster estimated cluster estimated

f i ,alarm RUL RUL
1 40 2 (Exp.) 36 2 (Exp.) 2
3 20 1 (Lin.) 10 2 (Exp.) 7
7 12 2 (Exp.) 11 2 (Exp.) 6
2 10 2 (Exp.) 9 2 (Exp.) 9
5 10 2 (Exp.) 8 2 (Exp.) 8
4 7 1 (Lin.) 10 - -
6 6 1 (Lin.) 7 - -
8 2 1 (Lin.) 1 - -

RMSE 4.04 4.34

Table 4.2.: The mean RUL prognostics (in flights) for the CUs. The RUL is estimated
once the CU is diagnosed as unhealthy and 10 flights before failure.

Table 4.2 shows for each CU the cluster it is assigned to as soon as T alarm is
reached, i.e., as soon the CU is diagnosed as unhealthy. CU 1 is diagnosed as
unhealthy and an alarm is triggered at an early stage, at 40 flights before the actual
failure time. CUs 2, 3, 4, 5, 6, 7 are diagnosed as unhealthy up to 6 flights before the
actual failure. For CU 8, an alarm is triggered only 2 flights before the actual failure.

When the CU is diagnosed as unhealthy, CUs 1, 2, 5 and 7 are assigned to Cluster
2, which assumes an exponential degradation model, whereas CUs 3, 4, 6 and 8 are
assigned to Cluster 1, which assumes a linear degradation model. Only CU 3 is
assigned to a different cluster (namely cluster 1) than in the offline clustering, which
leads to an underestimation of the RUL.

Table 4.2 also shows the assigned clusters 10 flights before the time of failure. CUs
4, 6, and 8 fail within less than 10 flights as soon as they are diagnosed as unhealthy,
and we thus do not estimate the RUL at 10 flights before failure. 10 flights before
failure, CUs 1, 2, 3, 5 and 7 are all assigned to the same, exponential cluster, as
in the offline clustering. Our approach thus identifies well the underlying linear or
exponential degradation trend of upcoming failures.

Last, Table 4.2 shows that the RUL of the CUs is accurately estimated, with a Root
Mean Square Error (RMSE) with the mean estimated RUL of only 4.04 flights (when
the CUs are diagnosed as unhealthy) and 4.34 flights (10 flights before failure). Figure
4.12 illustrates the estimated PDF of the RUL of CU 1, the moment it is diagnosed
as unhealthy and 10 flights before failure. The largest absolute prediction error with
the mean estimated RUL is made for CU 3 at the moment this CU is diagnosed as
unhealthy at 20 flights before failure, at which moment we estimate that the mean
RUL is 10 flights (i.e., the absolute prediction error is 10 flights). This is also the only
CU that is assigned to the wrong cluster in Table 4.2. The clustering thus seems to
contribute to the accuracy of the RUL prognostics.

4.4. CONCLUSIONS

4

113

(a) The estimated PDF of the RUL of CU
1 the moment CU 1 is diagnosed as
unhealthy (actual RUL is 40 flights),

(b) The estimated PDF of the RUL of CU
1 when the actual RUL is 10 flights.

Figure 4.12.: The estimated PDF of the RUL of CU 1 at two moments in time.

4.4. CONCLUSIONS
In this chapter, we propose an online, model-based RUL prognostic approach for
aircraft components. By clustering the health indicators of the components, we have
determined cluster-specific degradation models and failure thresholds. Together with
a particle filtering algorithm, these degradation models have been used to estimate
the PDF of the RUL of aircraft components. To illustrate the approach, we estimate
the PDF of the RUL and the mean RUL of several aircraft cooling units for which
sensor measurements are recorded during the operation of the aircraft. The results
show that the proposed method is able to identify the degradation models of the
cooling units and to accurately estimate the RUL. From a practical point of view, our
RUL estimation results have the potential to support aircraft maintenance planners
with the maintenance task scheduling.

As future work, we plan to optimize the maintenance schedule with the RUL
prognostics, in order to evaluate the impact of predictive maintenance on the
maintenance costs and the aircraft availability.

REFERENCES

[1] Mitici, M., & de Pater, I. (2021). Online model-based Remaining-Useful-Life
prognostics for aircraft cooling units using time-warping degradation clustering.
Aerospace, 8(6), Article number: 168.

[2] de Pater, I., & Mitici, M. (2021, June 28 - July 2). Model-based Remaining-
Useful-Life prognostics for aircraft cooling units. Proceedings of the European
Conference of the Prognostics and Health Management (PHM) Society, 6, Virtual,
Pages: 1–8.

[3] Maintenance Cost Technical Group (MCTG). (2020). Airline maintenance cost
executive commentary (FY2019 data), public version (tech. rep.). International
Air Transport Association (IATA).

[4] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[5] Khumprom, P., Grewell, D., & Yodo, N. (2020). Deep neural network feature
selection approaches for data-driven prognostic model of aircraft engines.
Aerospace, 7(9), Article number: 132.

[6] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[7] Babu, G. S., Zhao, P., & Li, X.-L. (2016, April 16-19). Deep Convolutional
Neural Network based regression approach for estimation of Remaining Useful
Life. Proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA), Dallas, Texas, USA, Pages: 214–228.

[8] Xiang, S., Qin, Y., Zhu, C., Wang, Y., & Chen, H. (2020). Long Short-Term
Memory Neural Network with weight amplification and its application into
gear Remaining Useful Life prediction. Engineering Applications of Artificial
Intelligence, 91, Article number: 103587.

[9] Chen, J., Jing, H., Chang, Y., & Liu, Q. (2019). Gated Recurrent Unit based
Recurrent Neural Network for Remaining Useful Life prediction of nonlinear
deterioration process. Reliability Engineering & System Safety, 185, Pages:
372–382.

[10] Zhang, Z., Si, X., Hu, C., & Lei, Y. (2018). Degradation data analysis and
Remaining Useful Life estimation: A review on Wiener-process-based methods.
European Journal of Operational Research, 271(3), Pages: 775–796.

[11] Si, X.-S., Wang, W., Chen, M.-Y., Hu, C.-H., & Zhou, D.-H. (2013). A degradation
path-dependent approach for Remaining Useful Life estimation with an exact
and closed-form solution. European Journal of Operational Research, 226(1),
Pages: 53–66.

115

4

116 REFERENCES

[12] Dalla Vedova, M. D., Germanà, A., Berri, P. C., & Maggiore, P. (2019). Model-
based fault detection and identification for prognostics of electromechanical
actuators using genetic algorithms. Aerospace, 6(9), Article number: 94.

[13] Dong, T., & Kim, N. H. (2021). Methods of identifying correlated model
parameters with noise in prognostics. Aerospace, 8(5), Article number: 129.

[14] Al-Mohamad, A., Hoblos, G., & Puig, V. (2020). A hybrid system-level
prognostics approach with online RUL forecasting for electronics-rich systems
with unknown degradation behaviors. Microelectronics Reliability, 111, Article
number: 113676.

[15] Nesci, A., Martin, A. D., Jacazio, G., & Sorli, M. (2020). Detection and prognosis
of propagating faults in flight control actuators for helicopters. Aerospace, 7(3),
Article number: 20.

[16] Arts, J., & Basten, R. (2018). Design of multi-component periodic maintenance
programs with single-component models. IISE transactions, 50(7), 606–615.

[17] Christer, A. (1982). Modelling inspection policies for building maintenance.
Journal of the Operational Research Society, 33, 723–732.

[18] Christer, A., & Waller, W. (1984). Delay time models of industrial inspection
maintenance problems. Journal of the Operational Research Society, 35(5),
401–406.

[19] Raghavan, N., & Frey, D. D. (2015, June 22-25). Remaining Useful Life
estimation for systems subject to multiple degradation mechanisms. IEEE
Conference on Prognostics and Health Management (PHM), Austin, Texas, USA,
Pages: 1–8.

[20] Zhang, Z., Si, X., Hu, C., & Kong, X. (2015). Degradation modeling–based
Remaining Useful Life estimation: A review on approaches for systems with
heterogeneity. Proceedings of the Institution of Mechanical Engineers, Part O:
Journal of Risk and Reliability, 229(4), Pages: 343–355.

[21] Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017, June 19-21). Long
Short-Term Memory network for Remaining Useful Life estimation. IEEE
International Conference on Prognostics and Health Management (ICPHM),
Dallas, Texas, USA, Pages: 88–95.

[22] Ellefsen, A. L., Bjørlykhaug, E., Æsøy, V., Ushakov, S., & Zhang, H. (2019).
Remaining Useful Life predictions for turbofan engine degradation using
semi-supervised deep architecture. Reliability Engineering & System Safety, 183,
Pages: 240–251.

[23] Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency
of aircraft maintenance strategies using agent-based modelling and stochastic
Petri Nets. Reliability Engineering & System Safety, 202, Article number: 107052.

[24] Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S., & Zerhouni, N. (2020).
Industrial data management strategy towards an SME-oriented PHM. Journal
of Manufacturing Systems, 56, Pages: 23–36.

[25] Cai, B., Shao, X., Liu, Y., Kong, X., Wang, H., Xu, H., & Ge, W. (2019). Remaining
Useful Life estimation of structure systems under the influence of multiple
causes: Subsea pipelines as a case study. IEEE Transactions on Industrial
Electronics, 67(7), Pages: 5737–5747.

REFERENCES

4

117

[26] Lim, P., Goh, C. K., Tan, K. C., & Dutta, P. (2015). Multimodal degradation
prognostics based on switching Kalman filter ensemble. IEEE Transactions on
Neural Networks and Learning Systems, 28(1), Pages: 136–148.

[27] Reuben, L. C. K., & Mba, D. (2014). Diagnostics and prognostics using switching
Kalman filters. Structural Health Monitoring, 13(3), Pages: 296–306.

[28] Cui, L., Wang, X., Xu, Y., Jiang, H., & Zhou, J. (2019). A novel switching
unscented Kalman filter method for Remaining Useful Life prediction of rolling
bearing. Measurement, 135, Pages: 678–684.

[29] Lim, C. K. R., & Mba, D. (2015). Switching Kalman filter for failure prognostic.
Mechanical Systems and Signal Processing, 52, Pages: 426–435.

[30] Ye, Z.-S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for
highly reliable products. Applied Stochastic Models in Business and Industry,
31(1), Pages: 16–32.

[31] Fan, M., Zeng, Z., Zio, E., Kang, R., & Chen, Y. (2018). A sequential Bayesian
approach for Remaining Useful Life prediction of dependent competing failure
processes. IEEE Transactions on Reliability, 68(1), Pages: 317–329.

[32] Dong, G., Chen, Z., Wei, J., & Ling, Q. (2018). Battery health prognosis
using Brownian motion modeling and particle filtering. IEEE Transactions on
Industrial Electronics, 65(11), Pages: 8646–8655.

[33] Li, N., Gebraeel, N., Lei, Y., Fang, X., Cai, X., & Yan, T. (2021). Remaining
Useful Life prediction based on a multi-sensor data fusion model. Reliability
Engineering & System Safety, 208, Article number: 107249.

[34] Baptista, M., Henriques, E. M., de Medeiros, I. P., Malere, J. P., Nascimento Jr,
C. L., & Prendinger, H. (2019). Remaining Useful Life estimation in aeronautics:
Combining data-driven and Kalman filtering. Reliability Engineering & System
Safety, 184, Pages: 228–239.

[35] Li, N., Lei, Y., Lin, J., & Ding, S. X. (2015). An improved exponential model for
predicting Remaining Useful Life of rolling element bearings. IEEE Transactions
on Industrial Electronics, 62(12), Pages: 7762–7773.

[36] An, D., Choi, J.-H., & Kim, N. H. (2013). Prognostics 101: A tutorial for particle
filter-based prognostics algorithm using MATLAB. Reliability Engineering &
System Safety, 115, Pages: 161–169.

[37] Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005). Residual-life
distributions from component degradation signals: A Bayesian approach. IIE
Transactions, 37(6), Pages: 543–557.

[38] Saha, B., Goebel, K., & Christophersen, J. (2009). Comparison of prognostic
algorithms for estimating Remaining Useful Life of batteries. Transactions of
the Institute of Measurement and Control, 31(3-4), Pages: 293–308.

[39] Eker, O. F., Camci, F., Guclu, A., Yilboga, H., Sevkli, M., & Baskan, S. (2011).
A simple state-based prognostic model for railway turnout systems. IEEE
Transactions on Industrial Electronics, 58(5), Pages: 1718–1726.

[40] Shakya, P., Kulkarni, M. S., & Darpe, A. K. (2014). A novel methodology for
online detection of bearing health status for naturally progressing defect.
Journal of Sound and Vibration, 333(21), Pages: 5614–5629.

4

118 REFERENCES

[41] Qian, Y., Yan, R., & Hu, S. (2014). Bearing degradation evaluation using
recurrence quantification analysis and Kalman filter. IEEE Transactions on
Instrumentation and Measurement, 63(11), Pages: 2599–2610.

[42] Singh, J., Darpe, A., & Singh, S. P. (2020). Bearing Remaining Useful Life
estimation using an adaptive data-driven model based on health state
change point identification and K-means clustering. Measurement Science and
Technology, 31(8), Article number: 085601.

[43] Rabiner, L. (1993). Fundamentals of speech recognition. PTR Prentice Hall.
[44] Müller, M. (2007). Information retrieval for music and motion. Springer.
[45] Djuric, P. M., Kotecha, J. H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M. F.,

& Miguez, J. (2003). Particle filtering. IEEE Signal Processing Magazine, 20(5),
Pages: 19–38.

[46] Qian, Y., & Yan, R. (2015). Remaining Useful Life prediction of rolling bearings
using an enhanced particle filter. IEEE Transactions on Instrumentation and
Measurement, 64(10), Pages: 2696–2707.

[47] Glynn, P. W., & Iglehart, D. L. (1989). Importance sampling for stochastic
simulations. Management Science, 35(11), Pages: 1367–1392.

[48] Zio, E., & Peloni, G. (2011). Particle filtering prognostic estimation of the
Remaining Useful Life of nonlinear components. Reliability Engineering &
System Safety, 96(3), Pages: 403–409.

[49] Li, N., Lei, Y., Liu, Z., & Lin, J. (2014, June 22-25). A particle filtering-based
approach for Remaining Useful Life predication of rolling element bearings.
International Conference on Prognostics and Health Management, Cheney,
Washington, USA, Pages: 1–8.

[50] Doucet, A., & Johansen, A. M. (2009). A tutorial on particle filtering and
smoothing: Fifteen years later. In D. Crisan & B. Rozovskii (Eds.). Oxford
University Press.

[51] de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component
systems of repairables with Remaining-Useful-Life prognostics and a limited
stock of spare components. Reliability Engineering & System Safety, 214, Article
number: 107761.

[52] Zhu, J., Nostrand, T., Spiegel, C., & Morton, B. (2014, September 29 - October 2).
Survey of condition indicators for condition monitoring systems. Proceedings
of the Annual Conference of the Prognostics and Health Management (PHM)
Society, 6, Fort Worth, Texas, USA, Pages: 1–13.

[53] Liu, Y., Hu, X., & Zhang, W. (2019). Remaining Useful Life prediction based
on health index similarity. Reliability Engineering & System Safety, 185, Pages:
502–510.

[54] Večeř, P., Kreidl, M., & Šmíd, R. (2005). Condition indicators for gearbox
condition monitoring systems. Acta Polytechnica, 45(6).

[55] Hu, L., Hu, N.-q., Fan, B., Gu, F.-s., & Zhang, X.-y. (2015). Modeling
the relationship between vibration features and condition parameters using
relevance vector machines for health monitoring of rolling element bearings
under varying operation conditions. Mathematical Problems in Engineering,
Article number: 123730.

REFERENCES

4

119

[56] Jouin, M., Gouriveau, R., Hissel, D., Péra, M.-C., & Zerhouni, N. (2016). Particle
filter-based prognostics: Review, discussion and perspectives. Mechanical
Systems and Signal Processing, 72, Pages: 2–31.

5
NOVEL METRICS TO EVALUATE

PROBABILISTIC RUL PROGNOSTICS

In the previous chapter, we estimated the Probability Density Function (PDF) of
the Remaining Useful Life (RUL). However, standard metrics to evaluate point RUL
prognostics, such as the Root Mean Square Error, are not suitable to evaluate
probabilistic RUL prognostics. In this chapter, we therefore propose four new metrics
to evaluate probabilistic RUL prognostics in the form of a PDF.

First, we propose to use the Continuous Ranked Probability Score (CRPS) and the
weighted CRPS to evaluate the accuracy and sharpness of an individual probabilistic
RUL prognostic. Then, we evaluate the reliability of all probabilistic RUL prognostics
with the α-Coverage and the Reliability Score.

We test these metrics for aircraft turbofan engines, where we estimate the PDF of
the RUL of these engines using a Convolutional Neural Network with Monte Carlo
dropout. The proposed metrics are suitable to evaluate the accuracy, sharpness and
reliability of these probabilistic RUL prognostics.

Parts of this chapter have been published in:

de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic Remaining Useful
Life prognostics with applications to turbofan engines. Proceedings of the 7th European Conference
of the Prognostics and Health Management (PHM) Society, 7, Turin, Italy, Pages: 96–109

121

5

122 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

5.1. INTRODUCTION
Maintenance is undergoing a paradigm shift from time-based maintenance, where
tasks are scheduled at fixed time intervals, to predictive maintenance. Under
predictive maintenance, sensors continuously measure the condition of components.
These measurements are used to estimate the Remaining Useful Life (RUL) of
components. In turn, the RUL prognostics are integrated in the maintenance
planning. Predictive maintenance has the potential to reduce the maintenance costs,
while maintaining the reliability of assets [2].

Figure 5.1.: A) Point RUL prognostics, B) Probabilistic RUL prognostics.

Most studies focus on developing point RUL prognostics, i.e., one value for the
RUL prognostic. For example, a prognostic may indicate that the RUL equals 30
flight cycles for an aircraft component (see Figure 5.1-A). Point RUL prognostics
for turbofan engines are developed in [3, 4] using a Convolutional Neural Network
(CNN) and in [5] using a Long Short-Term Memory neural network. In [6], point
RUL prognostics are obtained for aircraft landing gear brakes using linear regression.

For reliability purposes, however, it is key that the uncertainty associated with
the estimated RUL is also determined. In this line, several studies estimate the
Probability Density Function (PDF) of RUL, i.e., they develop probabilistic RUL
prognostics (see Figure 5.1-B). In [7] and [8], the RUL distribution of turbofan
engines is obtained using a Long Short-Term Memory neural network and Deep
Gaussian processes, respectively. In [9] the RUL distribution of aircraft cooling
units is estimated using particle filtering. Probabilistic RUL prognostics for nuclear
components are developed in [10] using Gaussian Process regression. Last, in [11]
the RUL distribution is estimated using a noisy Gamma deterioration process.

To evaluate probabilistic RUL prognostics, well-established metrics such as the
Root Mean Square Error (RMSE) or the Mean Absolute Error (MAE) are not directly
applicable. In principle, the RMSE and MAE could be computed relative to the mean
of the estimated RUL distribution. However, this would disregard the variance and
sharpness of the estimates, and give little indication of the actual trustworthiness of
the RUL prognostics. In [12, 13], a few metrics are proposed to evaluate probabilistic
RUL prognostics such as the prognostic horizon, probabilistic α−λ, (cumulative)

5.2. PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN ENGINES

5

123

relative accuracy and convergence. These metrics evaluate the accuracy of the
RUL prognostics, and specifically how this accuracy changes over the lifetime of
components. For an example of their usage, see [14]. However, these metrics
all require a sequence of RUL prognostics over the lifetime of each component.
Yet, for many publicly available degradation test sets, such as the C-MAPSS data
set on turbofan engines [15], only one RUL prognostic per test instance can
be determined. As such, the prognostic horizon, probabilistic α−λ, relative
accuracy and convergence cannot be used to evaluate these single probabilistic RUL
prognostics. Most importantly, these metrics do not explicitly quantify the reliability
of the probabilistic RUL prognostics.

In this chapter, we propose two novel metrics to evaluate the accuracy and
sharpness of probabilistic RUL prognostics, namely the Continuously Ranked
Probability Score (CRPS) and the weighted CRPS. The weighted CRPS uses different
penalties when the RUL is overestimated or underestimated. Depending on the
type of component, these penalties can be adjusted. For example, for safety-critical
components it is important that the RUL is not overestimated, to avoid failures.
In such cases, the weighted CRPS applies a larger penalty for overestimating the
RUL than for underestimating the RUL. We also propose novel metrics to explicitly
evaluate the reliability of the probabilistic RUL prognostics, namely the α-Coverage,
the Reliability Diagram and the Reliability Score. The Reliability Diagram provides a
visual interpretation of the performance of the prognostics. We illustrate our metrics
with the probabilistic RUL prognostics for turbofan engines. We estimate a PDF of
the RUL of these engines with a CNN with Monte Carlo dropout.

In Section 5.2, we introduce the CNN with Monte Carlo dropout to estimate a
PDF of the RUL for turbofan engines. We next propose metrics to evaluate these
estimated RUL distributions in Section 5.3. Last, we illustrate the proposed metrics
in a case study in Section 5.4.

5.2. PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN

ENGINES

Figure 5.2.: Schematic overview of the CNN architecture for dataset FD001.

In this section, we generate probabilistic RUL prognostics for aircraft turbofan
engines using a Convolutional Neural Network (CNN) and Monte Carlo dropout.

5

124 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

Specifically, we estimate the PDF of the RUL of an engine, and not just one
point value for the RUL. We apply our methodology to the turbofan engines in
the C-MAPSS dataset, which is generated using the NASA Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) program [15]. The dataset contains
measurements of 21 sensors that monitor the degradation of the turbofan engines.
The C-MAPSS dataset consists of four data subsets, each with a different number of
operational and fault conditions (see Table 5.1). Each subset contains a training set,
with run-to-failure instances, and a test set. For each failure instance in the test set,
the data is terminated somewhere before failure with the aim to estimate the RUL.
More information on this publicly available data set can be found in [16].

FD001 FD002 FD003 FD004
Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Table 5.1.: C-MAPSS datasets for turbofan engines.

We select the 14 out of 21 sensors available in the C-MAPSS dataset that
have non-constant measurements. The remaining 7 sensors exhibit constant
measurements over time and are thus not considered for RUL estimation. The
selected sensor measurements are normalized using min-max normalization [4] with
respect to the operating condition [17]. We also include the history of the operating
conditions in the input of the CNN, i.e., the number of flights spent in each
operating condition, as in [17].

The architecture and hyperparameters of the CNN are similar to the CNN proposed
in [4]. Specifically, the CNN consists of 5 convolutional layers, where the first
four convolutional layers each have 10 kernels of size 10×1 (i.e., one-dimensional
kernels). The last convolutional layer has one kernel of size 3×1, combining all
10 feature maps into one feature map. This last feature map is flattened in a
flatten layer, and connected to a fully connected layer. All these layers use the
hyperbolic tangent (tanh) activation function. Last, one single neuron is attached to
the fully connected layer to estimate the RUL using the Rectified Linear Unit (ReLU)
activation function. A schematic overview of this CNN is in Figure 5.2. The weights
of the CNN are optimized using the Adam optimizer [18] with a batch size of 512
samples, and a maximum of 250 training epochs. The learning rate is 0.001 for the
first 200 epochs, and 0.0001 for the last 50 epochs. A cut-off value Rearly of 125
flights is applied. We use a window size of 30 flights for FD001 and FD003, of 20
flights for FD002 and of 15 flights for FD004.

To obtain a probability distribution of the RUL using a CNN, we additionally apply
Monte Carlo dropout [8, 19]. During the training phase, we apply a dropout rate of
ρ = 0.5 in each layer, with the exception of the last convolutional layer before the
flatten layer, and the first convolutional layer [20]. During the testing phase, we also
use dropout and estimate the RUL of each test instance i for Mi > 1 times, each
time randomly selecting neurons to be dropped. This is illustrated in Figure 5.3. The

5.2. PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN ENGINES

5

125

(a) First pass (b) Second pass

Figure 5.3.: Monte Carlo dropout during two different passes through the network,
in a neural network with two fully connected layers.

PDF of the RUL for a test instance i is now created with the Mi RUL prognostics,
where each individual prognostic is assigned a probability of 1

Mi
.

Figure 5.4 shows the obtained PDF of the RUL for engines i ∈ {53,4,86,67} of test
set FD001. The PDF of the RUL of engine 53 is well centered around the actual
RUL, and the variance is relatively low. The PDF of the RUL of engine 4 is also
well centered around the actual RUL, but the variance is larger, suggesting a larger
uncertainty about the prediction. In contrast, the PDFs of the RUL of engines 86 and
67 are not well centered around the actual RUL. Moreover, the actual RUL of engine
67 falls outside the estimated PDF for the RUL.

(a) PDF of RUL for engine 53, FD001. (b) PDF of RUL for engine 4, FD001.

(c) PDF of RUL for engine 86, FD001. (d) PDF of RUL for engine 67, FD001.

Figure 5.4.: The estimated PDF of the RUL of four individual engines in the test set
of FD001.

5

126 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

5.2.1. METRICS OFTEN USED TO EVALUATE POINT RUL PROGNOSTICS

The metrics often used to assess the accuracy of point RUL prognostics are the
Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) and the Mean
Score. These metrics are computed based on the actual RUL vs. the estimated point
RUL. When the PDF of the RUL is estimated instead, the MAE, RMSE and the Mean
Score can be computed based on the actual RUL vs. the mean estimated RUL.

Formally, let N be the number of test instances in one C-MAPSS test set, and let
yi be the actual RUL for test instance i . Let ŷi j , j ∈ {1,2, . . . , Mi }, be the j th RUL
prognostic for engine i . Let ȳi be the mean estimated RUL of test instance i :

ȳi = 1

Mi

Mi∑
j=1

ŷi j . (5.1)

Then, when considering probabilistic RUL prognostics, we can evaluate the accuracy
of the mean estimated RUL as follows:

MAEp = 1

N

N∑
i=1

|ȳi − yi |. (5.2)

RMSEp =
√√√√ 1

N

N∑
i=1

(ȳi − yi)2. (5.3)

Mean Scorep = 1

N

N∑
i=1

si , (5.4)

with

si =
e−

ȳi −yi
γ −1, ȳi − yi < 0

e
ȳi −yi
δ −1, ȳi − yi ≥ 0

,

with γ and δ user-defined metrics. For the C-MAPSS data set, γ= 13 and δ= 10 are
usually applied [4].

Test set RMSEp MAEp Mean Scorep

FD001 12.76 9.22 2.78
FD002 14.74 11.14 3.55
FD003 11.89 9.07 2.43
FD004 18.03 13.44 8.03

Table 5.2.: RMSEp (in flights), MAEp (in flights) and Mean Scorep with respect to the
mean RUL prognostic - C-MAPSS dataset.

Table 5.2 shows the RMSEp , MAEp and Mean Scorep of our probabilistic RUL
prognostics, estimated with a CNN with Monte Carlo dropout. Training the neural
network took between 12.1 (FD001) to 27.3 (FD002) seconds per epoch on a

5.3. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

5

127

computer with an Intel Core i7 processor at 2.11 GHz and 8Gb RAM. Our results are
comparable with state-of-the-art RUL prognostic results in [5].

However, these metrics do not fully capture the quality of the probabilistic RUL
prognostics. The reliability and sharpness of the RUL prognostics is not evaluated,
e.g, the variance of the generated PDF of the RUL. For example, for engine 4 (see
Figure 5.4b) the absolute error with the mean estimated RUL is only 3.2 flights, and
the Score with the mean estimated RUL is only 0.28. The mean estimated RUL is
thus very close to the actual RUL. However, the standard deviation of the PDF of
the RUL is large (σ= 13.6), suggesting a large uncertainty in the prediction. This
large variance is not reflected in the mean estimated RUL, and thus neither in the
RMSEp , MAEp and Mean Scorep metrics. Similarly, for engine 86 (see Figure 5.4c),
the absolute error with the mean estimated RUL is 24.6 flights, and the score value
with the mean estimated RUL is 10.67, which shows that the mean estimated RUL
is far off the actual RUL. However, the actual RUL still falls within the PDF of the
RUL. This is again not reflected in the mean RUL estimation and thus in the three
metrics above. To analyze the full estimated PDF of the RUL with the corresponding
uncertainty estimates, we introduce four additional metrics that characterize the
reliability, the sharpness and the accuracy associated with the PDFs of the RUL.

5.3. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL
PROGNOSTICS

In this section, we introduce the following novel metrics to characterize the
reliability, the sharpness and the accuracy of probabilistic RUL prognostics (i.e, when
estimating the PDF of the RUL): the Continuous Ranked Probability Score (CRPS),
the weighted CRPS (CRPSW), the α-Coverage, and the Reliability Score (RS). The
Python code to calculate the proposed metrics is provided in [1].

5.3.1. CONTINUOUS RANKED PROBABILITY SCORE (CRPS)
The Continuous Ranked Probability Score (CRPS) evaluates i) if the estimated RUL
distribution is centered around the actual RUL of a component i , i.e., the accuracy
of the RUL prognostic, and ii) if the variance of the RUL distribution is low, i.e., the
sharpness of the RUL prognostic. A probabilistic RUL prognostic for a component i
is best when all RUL prognostics ŷi j , j ∈ {1,2, . . . , Mi } are close to the actual RUL yi .

The CRPS has been used to evaluate probabilistic predictions for applications such
as flight delays [21], sea level pressure and surface temperature [22] and electricity
prices [23]. However, to the best of our knowledge, this metric has not yet been used
to evaluate probabilistic RUL prognostics.

Let F ŷi (x) denote the estimated, empirical CDF of the RUL of a component i . The
CRPS is defined as follows:

CRPS = 1

N

N∑
i=1

CRPSi , (5.5)

CRPSi =
∫ ∞

−∞
(
F ŷi (x)−I{yi ≤ x}

)2 d x,

5

128 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

Figure 5.5.: Illustration of the CRPSi metric for a single component i .

with I{yi ≤ x} =
{

1, yi ≤ x

0, yi > x.

Intuitively, the CRPSi for a component i can be seen as a probabilistic generalization
of the absolute error |yi − ŷi |. Specifically, when calculating the CRPS of a point
RUL prognostic, we obtain the absolute error of this point RUL prognostic. The
smaller the CRPS metric is, the closer the RUL prognostic is to the actual RUL. In
an ideal case when a perfect RUL prognostic without uncertainty (i.e., a point RUL
prognostic) is obtained, the CRPS equals zero. A comprehensive explanation of this
metric can be found in [24].

Figure 5.5 shows a graphical representation of the CRPS for a single component
i . The blue solid line represents the empirical CDF of the RUL prognostic of this
component i . The light-green area is the CRPS for this component i . This area
(i.e., the CRPS value) is small if the accuracy and sharpness of the probabilistic RUL
prognostic are high. In general, if the prognostics are accurate and sharp, then most
RUL estimates are located close to the true RUL yi , and the tails of the distribution
are small and low. This leads to a low CRPS value. Conversely, the CRPS value
increases if the true RUL yi falls outside the estimated RUL distribution, i.e., if the
RUL prognostic is inaccurate.

5.3. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

5

129

5.3.2. WEIGHTED CRPS (CRPSW)
For most components and systems, overestimating the RUL is much more detrimental
than underestimating the RUL [4]. Overestimating the failure time is less desirable
since missing a component failure may have severer consequences than replacing
this component too early. We thus propose the weighted CRPS metric, which
considers different penalties for the RUL being overestimated or underestimated.
Depending on the type of component, these penalties can be adjusted. In the
case of safety-critical components, for example, larger penalties are applied to
overestimating the RUL. This is because a RUL overestimation may lead to a failure.
The weighted CRPS is defined as follows:

CRPSW = 1

N

N∑
i=1

CRPSW
i , (5.6)

CRPSW
i = (2−β)

∫ yi

−∞
(F ŷi (x)−I{yi ≤ x})2d x +β

∫ ∞

yi

(F ŷi (x)−I{yi ≤ x})2d x,

= (2−β)
∫ yi

−∞
(F ŷi (x))2d x +β

∫ ∞

yi

(F ŷi (x)−1)2d x,

with 0 ≤β≤ 2 an user-specific parameter. The magnitude of the penalty is specified
through the weight β. The weight β can be specified by the user, and depends on
the domain and on the application.

5.3.3. α-COVERAGE

The CRPS evaluates the accuracy and sharpness of the probabilistic RUL prognostics.
It is, however, also important to verify the trustworthiness and reliability of the RUL
prognostics. To address this, we introduce the coverage of RUL prognostics, similar
to [10]. In this chapter, however, we construct the coverage of the probabilistic RUL
prognostics without assuming that these prognostics follow a specific distribution,
such as the Gaussian (normal) distribution.

Figure 5.6.: Illustration of the percentiles with the estimated CDF of the RUL of a
test instance i .

5

130 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

To calculate the coverage, we first construct a confidence interval around the
median of the estimated RUL distribution with width α. For example, let us assume
that we have Mi = 1000 RUL prognostics for a test instance i , i.e., ŷi j , j ∈ {1,2, . . . , Mi }.
Let us consider the confidence interval around the median with width α= 0.4 = 40%.
Then, this confidence interval is [ŷ0.30

i , ŷ0.70
i], with ŷ0.30

i the RUL prognostic belonging

to the 50%−0.5α = 30th percentile. In our example, when we sort all Mi = 1000
prognostics from small to large, this is the j = 300th RUL prognostic ŷi ,300. Also,
ŷ0.70

i is the RUL prognostic belonging to the 50%+0.5α= 0.70th percentile. In our
example, when we sort all Mi = 1000 prognostics from small to large, this is the
j = 700th RUL prognostic ŷi ,700. The estimated probability that the actual RUL yi of
component i is within the confidence interval [ŷ0.30

i , ŷ0.70
i] is α= 40%. This example

is illustrated in Figure 5.6.
We construct a confidence interval with width α= 0.4 for all i ∈ {1,2, · · · , N } test

instances. It is expected that for α= 40% of the test instances, the actual RUL yi is
within the confidence interval [ŷ0.30

i , ŷ0.70
i]. If the actual RUL of more than 40% of the

test instances falls within the confidence interval [ŷ0.30
i , ŷ0.70

i], then the uncertainty
for α= 0.4 is overestimated. Otherwise, the uncertainty for α= 0.4 is underestimated.
With this, we formulate the α−Coverage as the fraction of the RUL prognostics (out
of the N test instances), for which the true RUL lies in the α confidence interval:

α-Coverage = 1

N

N∑
i=1

I
(
yi ∈

[
ŷ0.5−0.5α

i , ŷ0.5−0.5α
i

])
(5.7)

with I
(
yi ∈

[
ŷ0.5−0.5α

i , ŷ0.5−0.5α
i

])={
1 yi ∈

[
ŷ0.5−0.5α

i , ŷ0.5−0.5α
i

]
0 Otherwise

, (5.8)

where ŷβi denotes the RUL prognostic belonging to the βth percentile of test instance
i . The closer the α-Coverage is to α, the more reliable the RUL prognostics are.
For example, in Figure 5.4c, the true RUL does not fall within the 90% confidence
interval of the RUL distribution. If we estimate a RUL distribution for ten individual
components, we expect that for only one out of these ten components, the true RUL
lies outside the 90% confidence interval, as is the case in Figure 5.4c.

Last, if two RUL prognostic methods have the same coverage for a width α, the
method that provides tighter confidence intervals is preferred. In other words, a
higher sharpness of the RUL distributions is preferred. In this way, the estimated
RUL distributions give a more precise picture of the actual RUL. A higher sharpness
also leads to a lower CRPS. The tightness of the confidence intervals, or the mean
width of the confidence intervals, is defined as [10]:

α-Mean width = 1

N

N∑
i=1

(
ŷ0.5+0.5α

i − ŷ0.5−0.5α
i

)
. (5.9)

5.3.4. RELIABILITY SCORE (RS)
Though the α-Coverage indicates the reliability of the estimated RUL distribution,
this reliability is evaluated only relative to a specific α. To conduct a generic,

5.3. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

5

131

parameter-free reliability analysis of the estimated RUL distribution, we next
introduce the Reliability Score (RS). We first introduce the reliability diagram.

Figure 5.7.: Illustration of the reliability diagram and the Reliability Scores.

For classification problems, a reliability diagram is used as a visual representation
of the reliability of the uncertainty associated with the predictions. A reliability
diagram is also referred to as a calibration curve. In [12], the reliability diagram is
proposed as a RUL prognostic metric. Here, the problem of RUL prognostics is posed
as a classification problem with multiple classes. In contrast, in [25], the reliability
diagram is defined based on the concept of coverage (see Section 5.3.3). In doing
so, a regression problem does not have to be posed as a multi-class classification
problem to construct a reliability diagram. The authors of [25] determine a reliability
diagram for flight delay estimations. Similarly, we define a reliability curve C (α)
based on α−Coverage for probabilistic RUL prognostics, i.e., C (α) = {α-Coverage,
α ∈ {0.00,0.01,0.02, . . . ,1.00}}. The reliability diagram is then a visual representation of
this reliability curve. Figure 5.7 gives an illustration of a reliability curve.

The reliability diagram is used to visually inspect whether the uncertainty
associated with the RUL prognostics is over- or underestimated. For example, when
α= 0.4, the ideal coverage would be 0.4 as well. In this case, the actual RUL of
40% of the test instances would fall inside a confidence interval with width α= 0.4.
However, in the example in Figure 5.7, the 0.4-Coverage is 0.6, i.e., the actual RUL
of 60% of the test instances falls inside the confidence interval, instead of 40% of
the test instances. The uncertainty of the RUL prognostics is thus overestimated.
In contrast, the uncertainty of the RUL prognostics is underestimated at α= 0.8 in

5

132 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

Figure 5.7. Here, the actual RUL of only 70% of the test instances falls inside the
confidence interval with a width of α= 0.8.

In general, for classification problems, the Brier Score [26] is used to quantify
the reliability of predictions. However, in our adaption of the reliability diagram,
each test instance may fall into multiple confidence intervals. The calculation of the
Brier Score is thus not directly applicable. To address this, we define the following
Reliability Scores (RS) to quantify the reliability of the RUL prognostics instead:

RSunder =
∫ 1

0
I {C (α) ≤α} (α−C (α))dα, (5.10)

RSover =
∫ 1

0
(1−I{C (α) ≤α}) (C (α)−α)dα, (5.11)

RStotal = RSunder +RSover, (5.12)

with I {C (α) ≤α} =
{

1, C (α) ≤α
0, Otherwise

. (5.13)

The RSover quantifies the overestimation and RSunder the underestimation
of the uncertainty associated with the probabilistic RUL prognostics. Let
C̃ (α) = {α,α ∈ {0.00,0.01, . . . , 1.00}} be the ideal curve, i.e., the curve where the
Coverage is exactly the width of the confidence interval α. To quantify the
extent to which the uncertainty associated with the probabilistic RUL prognostics
is underestimated, we calculate the area RSunder between the ideal curve and the
reliability curve C (α) when the reliability curve is below the ideal curve (i.e., C (α) ≤α,
pink area in Figure 5.7). To quantify the extent to which the uncertainty associated
with the probabilistic RUL prognostics is overestimated, we calculate the area RSover

between the ideal curve and the reliability curve C (α) when the reliability diagram is
above the ideal curve (i.e., C (α) ≥α, blue area in Figure 5.7). The total RS (RStotal) is
then the sum of RSover and RSunder.

5.4. RESULTS WITH THE NOVEL METRICS
In this section, we evaluate our metrics for the obtained probabilistic RUL
prognostics for the turbofan engines in the C-MAPSS dataset. These probabilistic
RUL prognostics are obtained with a CNN with Monte Carlo Dropout (see Section
5.2). Table 5.3 and 5.4 show the corresponding values of the four proposed metrics.
The CRPS is lowest for data subset FD003 (6.56), and highest for data subset FD004
(10.09). This is in line with the obtained MAE, which is also lowest for data subset
FD003 and highest for data subset FD004. The CRPS thus gives a good overview
of the general performance of probabilistic RUL prognostics. Moreover, in contrast
with the MAE, the sharpness and accuracy of the estimated RUL distributions are
also reflected by the CRPS values.

For data subset FD002, the CRPSW is lower than the CRPS. This indicates that for
this dataset, the RUL is relatively often underestimated. In contrast, for data subset
FD003, the CRPSW is higher than the CRPS. This indicates that for FD003, the RUL is

5.4. RESULTS WITH THE NOVEL METRICS

5

133

Figure 5.8.: Reliability diagrams - C-MAPSS data subsets.

Test set MAEp CRPS CRPSW (β= 1.5) RSover RSunder RStotal

FD001 9.22 6.97 7.03 0.073 0.001 0.074
FD002 11.14 8.44 7.80 0.001 0.077 0.078
FD003 9.07 6.56 7.27 0.034 0.001 0.035
FD004 13.44 10.09 10.38 0.001 0.065 0.065

Table 5.3.: Results for the four C-MAPSS data sets - CRPS and Reliability Score.

relatively often overestimated. The weighted CRPS, compared to the standard CRPS,
thus gives a good indication on whether the RUL is usually over- or underestimated.

α= 0.5 α= 0.95
Test set Coverage Mean width Coverage Mean width
FD001 0.60 16.9 0.95 48.0
FD002 0.40 13.2 0.83 38.0
FD003 0.53 15.4 0.93 44.7
FD004 0.44 15.5 0.81 43.8

Table 5.4.: Results for the four C-MAPSS data sets- α-Coverage for several values of
α.

The reliability diagram of the four data subsets is shown in Figure 5.8. For
data subsets FD001 and FD003, the uncertainty of the RUL prognostics is slightly
overestimated. In other words, the prognostics indicate that the RUL lies in an
interval with a certain probability. However, these probabilities are too small, relative
to the actual number of times the RUL falls within these intervals. For example, let
us consider the 0.5-Coverage of data subset FD001. Here, the estimated probability
that a test instance falls inside its confidence interval with width 0.5 equals 0.5.

5

134 5. NOVEL METRICS TO EVALUATE PROBABILISTIC RUL PROGNOSTICS

We thus expect that 50% of the test instances fall inside their confidence interval
with width 0.5, and 50% fall outside their confidence interval. However, 60% of the
test instances fall inside their confidence interval with width 0.5, i.e., the observed
probability is 0.6 instead of 0.5 (see Table 5.4). This shows that the uncertainty
associated with the RUL estimates is overestimated.

In contrast, for data subsets FD002 and FD004, the uncertainty is underestimated,
i.e., the prognostics indicate that the RUL lies in an interval with a certain
probability. These probabilities are too high relative to the actual number of times
the RUL falls within these intervals. Table 5.3 shows that both the overestimation
and the underestimation of the uncertainty associated with the RUL prognostics is
well quantified by the Reliability Scores.

Table 5.4 shows the 0.5-Coverage and the 0.95-Coverage. Also this metric indicates
that the RUL prognostics for data subsets FD001 and FD003 overestimate the
uncertainty associated with the prognostics, while for data subsets FD002 and FD004
the uncertainty associated with the prognostics is underestimated. Moreover, the
mean width of the 0.95 confidence interval is large, ranging from 38.0 flights (data
subset FD002) to 48.0 flights (data subset FD001). This implies that the sharpness of
the RUL distributions is quite low.

5.4.1. RUL PROGNOSTICS FOR INDIVIDUAL ENGINES

In this section, we analyze our proposed metrics for probabilistic RUL prognostics
for four specific engines 53, 4, 86 and 67 of data subset FD001 in Table 5.5 and Table
5.6. The estimated PDF of the RUL of these four engines is shown in Figure 5.4.

Engine number i Actual RUL yi Mean estimated RUL ȳi yi − ȳi Scorep si

53 26 29.0 -3.0 0.35
4 82 78.8 3.2 0.28

86 89 113.6 -24.6 10.67
67 77 114.5 -37.5 41.61

Table 5.5.: Performance metrics for engines i =53, i =4, i =86 and i =67 in the test
set of FD001 - standard metrics. The metrics, except the score, are in
flights.

For engine 53, the actual RUL is very close to the mean estimated RUL. The error
is thus only -3.0 flights. Also CRPS53, which is the generalization of the absolute
error, is only 2.96. However, most of the mass of the estimated distribution of the
RUL is on the right of the actual RUL, i.e., the RUL is overestimated (see Figure 5.4a).
This is reflected in the relatively high CRPSW

53 of 3.72. The actual RUL falls both
within the α= 0.5 and α= 0.95 confidence interval, and the widths of these intervals
(15 and 45 flights respectively) are relatively small compared to engines 4, 86 and 67.

For engine 4, the mean estimated RUL is close to the actual RUL, with an error of
3.2 flights. Thus CRPS4 is only 3.49. Also, CRPSW

4 = 2.68, which is less than CRPS4.
This is because most of the mass of the estimated PDF of the RUL is on the left of
the actual RUL, i.e., the RUL is underestimated (see Figure 5.4b). The α= 0.5 and

5.5. CONCLUSIONS

5

135

Engine CRPSW
i I(α)i I(α)i

number i CRPSi β= 1.5 α= 0.5 ŷ0.75
i − ŷ0.25

i α= 0.95 ŷ0.975
i − ŷ0.025

i
53 2.96 3.72 1 15 1 45
4 3.49 2.68 1 19 1 54

86 17.98 26.96 0 16 1 48
67 30.74 46.11 0 16 0 46

Table 5.6.: Performance metrics for engines i =53, i =4, i =86 and i =67 in the test
set of FD001 - new metrics. Here, I(α)i equals 1 if the actual RUL yi is
within the α confidence interval of the estimated RUL distribution, and 0
otherwise.

α = 0.95 confidence interval both contain the actual RUL, but the width of these
intervals (19 and 54 flights respectively) is relatively large compared to the other 3
engines. The low sharpness of this RUL distribution is thus reflected in the large
widths of the confidence intervals.

For engines 86 and 67, the mean estimated RUL is far off the actual RUL. This is
reflected in the high CRPS values of 17.98 and 30.74, respectively. Moreover, nearly
all the mass of the estimated PDF of the RUL of both engines is on the right of the
actual RUL, i.e., the RUL is overestimated (see Figures 5.4c and 5.4d). The weighted
CRPS metric is thus 26.96 and 46.11, respectively. This is higher than the standard
CRPS metric for these two engines. The actual RUL of engine 86 falls within the
α= 0.95 confidence interval, but the actual RUL of engine 67 does not.

5.5. CONCLUSIONS
In this chapter, we have introduced novel metrics to evaluate the estimated PDF of
the RUL of components. The CRPS and CRPSW metrics evaluate the accuracy and
sharpness of the estimated RUL distributions. The α-Coverage and Reliability Scores
evaluate the reliability of the RUL prognostics.

We illustrate the four metrics for probabilistic RUL prognostics of the turbofan
engines in the C-MAPSS dataset. We obtain these probabilistic RUL prognostics
using a CNN with Monte Carlo dropout. The results show the distribution of the
RUL of the turbofan engines is well estimated using this method. Moreover, the
accuracy, sharpness and reliability of the obtained probabilistic RUL prognostics are
shown to be well evaluated by our proposed metrics. Future studies that determine
probabilistic RUL prognostics could therefore benefit from evaluating their results
using these proposed metrics.

REFERENCES

[1] de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic
Remaining Useful Life prognostics with applications to turbofan engines.
Proceedings of the 7th European Conference of the Prognostics and Health
Management (PHM) Society, 7, Turin, Italy, Pages: 96–109.

[2] Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency
of aircraft maintenance strategies using agent-based modelling and stochastic
Petri Nets. Reliability Engineering & System Safety, 202, Article number: 107052.

[3] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[4] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[5] Xia, J., Feng, Y., Lu, C., Fei, C., & Xue, X. (2021). LSTM-based multi-layer
self-attention method for Remaining Useful Life estimation of mechanical
systems. Engineering Failure Analysis, 125, Article number: 105385.

[6] Lee, J., & Mitici, M. (2022). Multi-objective design of aircraft maintenance
using Gaussian process learning and adaptive sampling. Reliability Engineering
& System Safety, 218, Article number: 108123.

[7] Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance
framework using deep learning for failure prognostics. Reliability Engineering
& System Safety, 188, Pages: 251–262.

[8] Biggio, L., Wieland, A., Chao, M. A., Kastanis, I., & Fink, O. (2021).
Uncertainty-aware prognosis via deep Gaussian process. IEEE Access, 9, Pages:
123517–123527.

[9] de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component
systems of repairables with Remaining-Useful-Life prognostics and a limited
stock of spare components. Reliability Engineering & System Safety, 214, Article
number: 107761.

[10] Baraldi, P., Mangili, F., & Zio, E. (2015). A prognostics approach to nuclear
component degradation modeling based on Gaussian process regression.
Progress in Nuclear Energy, 78, Pages: 141–154.

[11] Le Son, K., Fouladirad, M., & Barros, A. (2016). Remaining Useful Lifetime
estimation and noisy Gamma deterioration process. Reliability Engineering &
System Safety, 149, Pages: 76–87.

[12] Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher,
M. (2008, October 6-9). Metrics for evaluating performance of prognostic

137

5

138 REFERENCES

techniques. International Conference on Prognostics and Health Management,
Denver, Colorado, USA, Pages: 1–17.

[13] Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2009, March 7-14).
Evaluating algorithm performance metrics tailored for prognostics. IEEE
Aerospace conference, Big Sky, Montana, USA, Pages: 1–13.

[14] Lall, P., Lowe, R., & Goebel, K. (2011, April 18-20). Prognostics and health
monitoring of electronic systems. 12th International Conference on Thermal,
Mechanical & Multi-Physics Simulation and Experiments in Microelectronics
and Microsystems, Linz, Austria, Pages: 1–17.

[15] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data
set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[16] Ramasso, E., & Saxena, A. (2014, September 29 - October 2). Review and
analysis of algorithmic approaches developed for prognostics on CMAPSS
dataset. Proceedings of the Annual Conference of the Prognostics and Health
Management (PHM) Society 2014, 6, Fort Worth, Texas, USA, Pages: 1–11.

[17] Babu, G. S., Zhao, P., & Li, X.-L. (2016, April 16-19). Deep Convolutional
Neural Network based regression approach for estimation of Remaining Useful
Life. Proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA), Dallas, Texas, USA, Pages: 214–228.

[18] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[19] Gal, Y., & Ghahramani, Z. (2016, June 19-24). Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning. Proceedings
of The 33rd International Conference on Machine Learning, 48, New York, New
York, USA, Pages: 1050–1059.

[20] Gal, Y., Hron, J., & Kendall, A. (2017). Concrete dropout. arXiv preprint
arXiv:1705.07832.

[21] Zoutendijk, M., & Mitici, M. (2021). Probabilistic flight delay predictions using
machine learning and applications to the flight-to-gate assignment problem.
Aerospace, 8(6), Article number: 152.

[22] Gneiting, T., Raftery, A. E., Westveld III, A. H., & Goldman, T. (2005). Calibrated
probabilistic forecasting using ensemble model output statistics and minimum
CRPS estimation. Monthly Weather Review, 133(5), Pages: 1098–1118.

[23] Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price
forecasting: A review of probabilistic forecasting. Renewable and Sustainable
Energy Reviews, 81, Pages: 1548–1568.

[24] Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of
Statistics and Its Application, 1, Pages: 125–151.

[25] Vandal, T., Livingston, M., Piho, C., & Zimmerman, S. (2018, October
24-25). Prediction and uncertainty quantification of daily airport flight delays.
Proceedings of the 4th International Conference on Predictive Applications and
APIs, 82, Boston, Massachusetts, USA, Pages: 45–51.

[26] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.
Monthly Weather Review, 78(1), Pages: 1–3.

6
ALARM-BASED MAINTENANCE

SCHEDULING WITH IMPERFECT

POINT RUL PROGNOSTICS

In the first two chapters, we develop point Remaining Useful Life (RUL) prognostics,
without quantified uncertainty, for aircraft components. However, these point RUL
prognostics are imperfect with some errors. These errors make it difficult to integrate
point RUL prognostics in the maintenance planning.

In this chapter, we therefore propose a dynamic predictive maintenance scheduling
framework for a fleet of aircraft, that integrates the imperfect point RUL prognostics.
Based on the evolution of the point RUL prognostics over time, alarms are triggered.
After an alarm is triggered, we schedule the maintenance tasks. Here, we use a safety
factor when scheduling the maintenance tasks, to account for the errors in the RUL
prognostics. The alarms prevent that the maintenance tasks are rescheduled multiple
times. We optimize the maintenance schedule with a linear program, while the
hyperparameters of this method are optimized with a genetic algorithm.

We illustrate our approach for a fleet of 20 aircraft, each equipped with 2 turbofan
aircraft engines. We obtain point RUL prognostics with a Convolution Neural Network.

Parts of this chapter have been published in:

de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive maintenance scheduling for
aircraft engines with imperfect Remaining Useful Life prognostics. Reliability Engineering & System
Safety, 221, Article number: 108341

139

6

140
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

6.1. INTRODUCTION

The cost of aircraft maintenance is estimated to be 10.3% of the total airline
operating costs, with approximately 3.3 million dollars spent on maintenance per
aircraft in 2019 [2]. Striving to reduce these costs, aircraft maintenance is shifting to
data-driven, predictive maintenance where on-board sensors are increasingly used
to monitor the health condition of the aircraft components. Based on these sensor
measurements, dedicated algorithms are developed to estimate the Remaining Useful
Life (RUL) of the components. Using RUL prognostics, the aim is to anticipate
failures and optimize the deployment of maintenance tasks. One of the main
challenges in predictive maintenance is to obtain reliable RUL prognostics and to
integrate them in the maintenance planning [3].

Most existing studies focus solely on developing RUL prognostics, using either a
model-based or a machine learning approach [4]. Model-based RUL prognostics
assume that the degradation of components is characterized by a stochastic process.
For instance, in [5, 6], the RUL of aircraft cooling units is estimated using particle
filtering with an exponential degradation model and a linear model, respectively.
In [7], RUL prognostics for aircraft landing gear brakes are obtained using a
linear regression, while a Gamma process characterizes the degradation of the
brakes. Machine learning algorithms have been proposed to estimate the RUL
of, for instance, aircraft turbofan engines [8–10] and bearings [11, 12]. In [8–10],
a Convolutional Neural Network (CNN) is used to estimate the RUL of turbofan
engines. To estimate the RUL of rolling element bearings, a CNN with a residual is
proposed in [11], while a CNN with multi-scale feature extraction is proposed in [12].
We refer to [4, 13] for an extensive overview of recent studies about RUL prognostics.

Several studies focus on predictive maintenance planning, while the RUL
prognostics are based on simple, generic probability distributions. For instance, in
[14], the degradation of a railway network is simulated with a mixture of parametric
models, and maintenance is planned using a Markov Decision Process. In [15], the
degradation of aircraft components is modelled with a stationary Gamma process,
while a Large Neighbourhood Search algorithm is proposed for the maintenance
planning of a fleet of aircraft.

Few studies develop RUL prognostics and subsequently integrate these prognostics
in the maintenance planning [3, 16]. Most of these studies focus on maintenance
planning for one (multi-component) system. In [16], multi-class RUL prognostics
for aircraft turbofan engines are generated using a Long Short-Term Memory neural
network. Based on these prognostics, engine replacements are planned and spare
parts are ordered. In [17], prognostics for aircraft airframe cracks are developed
using an extended Kalman filter. These prognostics are further used to determine
which panels of a single aircraft are maintained, if any. In contrast to these studies,
we consider the maintenance of a fleet of aircraft.

Even fewer studies develop RUL prognostics and subsequently integrate these
prognostics in the maintenance planning for multiple assets/systems. In [18], a
particle filtering algorithm is used to determine RUL prognostics for aircraft cooling
units. With these prognostics, maintenance for a fleet of aircraft is planned using
linear programming, taking into account the availability of spare parts. In [19], the

6.1. INTRODUCTION

6

141

maintenance of multiple aircraft brakes is considered. An aircraft brake is replaced
as soon as the estimated RUL falls below a threshold. Multiple objectives, such
as minimizing flight delays, minimizing the number of unscheduled maintenance
tasks and minimizing the total number of maintenance tasks, are considered. In
[20], maintenance is planned for a fleet of vehicles using a multi-objective genetic
algorithm. The aim is to minimize the total maintenance costs, the total workload,
the expected number of failures and the changes in the maintenance schedule.

In general, these studies show that integrating RUL prognostics into maintenance
planning models leads to lower maintenance costs and a more efficient use of
spare parts [16, 18]. However, when planning maintenance, the errors (e.g., RMSE,
MAE, false negatives, false positives) of the RUL prognostics are not considered. To
account for such potential errors when planning maintenance, we propose a system
of alarms to initiate maintenance task scheduling, together with a safety margin that
adjusts the moment when maintenance tasks are scheduled.

This chapter proposes a dynamic, predictive maintenance planning framework
for a fleet of aircraft that integrates RUL prognostics for aircraft components.
These prognostics are periodically updated as more measurements become available.
Alarms are triggered based on the evolution of the prognostics over time. Triggering
an alarm for a component initiates the scheduling of a maintenance task for this
component. The ideal time to schedule such a task is determined based on the
RUL prognostics and a safety margin, to account for potential errors in the RUL
prognostics. Maintenance tasks for a fleet of aircraft are scheduled with an integer
linear program, based on these ideal maintenance times. Once a maintenance
task for a component is scheduled, we continue to periodically update the RUL
prognostics of the component. Based on the evolution of the prognostics for this
component over time, maintenance tasks may be rescheduled at a high cost.

The time when alarms are triggered is crucial. Triggering alarms when the
estimated RUL is large may result in the initiated maintenance task being
re-scheduled several times, as RUL prognostics are updated over time. Triggering
alarms when the estimated RUL is small may result in component failures as there
may not be enough time and resources left to perform maintenance. Using a genetic
algorithm, we optimize the parameters of our alarm policy (the frequency of alarms,
the threshold for triggering alarms and the safety margin).

We illustrate our approach for the maintenance planning of a fleet of aircraft, each
equipped with two engines. By employing our alarm-based maintenance framework,
the costs with engine failures account for only 7.4% of the total maintenance
costs. Overall, our framework provides an end-to-end approach for maintenance
scheduling of multiple components with imperfect RUL prognostics.

The remainder of this chapter is organized as follows. In Section 6.2, we use a
CNN to obtain RUL prognostics for turbofan engines. In Section 6.3, we develop
an alarm-based maintenance planning framework that integrates RUL prognostics in
the maintenance schedule. In Section 6.4, we illustrate our approach for a fleet of
aircraft equipped with turbofan engines. Conclusions are provided in Section 6.5.

6

142
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

6.2. RUL PROGNOSTICS USING A CONVOLUTIONAL

NEURAL NETWORK (CNN)
In this section, we develop RUL prognostics for turbofan engines using Convolutional
Neural Networks (CNNs) and the C-MAPSS turbofan aircraft engine degradation
dataset [21]. CNNs have successfully been applied to estimate the RUL for turbofan
aircraft engines in, for instance, [8–10].

The C-MAPSS dataset consists of simulated data on the degradation of turbofan
engines. This data was generated by NASA using the Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS). The dataset contains multi-variate
temporal data of 21 sensors. There are 4 data subsets, FD001, FD002, FD003
and FD004, each with specific operating and fault conditions. Each subset has
one training set where measurements are recorded until the failure of the engine
(run-to-failure instances), and one test set. In the test set, the sensor recordings are
terminated somewhere before failure, and the aim is to estimate the RUL at that
moment. In all cases, each engine has a different level of initial wear. Over time, the
condition of an engine degrades as it approaches failure. A description of the 4 data
subsets is given in Table 6.1.

FD001 FD002 FD003 FD004
Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Table 6.1.: C-MAPSS datasets for turbofan engines [21].

Of the 21 sensors considered, 7 sensors have constant values over time. As such,
we select the remaining 14 sensors with non-constant measurements for the input
of the CNNs. We normalize the sensor measurements with min-max normalization
[8] with respect to the operating condition [9] in each subset as follows:

m̂i j =
2
(
mk

i j −mmin
j k

)
mmax

j k −mmin
j k

−1, (6.1)

with mk
i j the sensor measurement of sensor j during flight i , where flight i was

performed under operating condition k, while mmin
j k and mmax

j k denote the minimum

and maximum value in the training set of sensor j under operating condition k
respectively. Last, m̂i j is the normalized measurement of sensor j during flight i .

6.2.1. ARCHITECTURE OF THE CNN
As input for the CNN, we consider multi-dimensional data samples X :

X = [x1, x2, . . . , xN] , (6.2)

6.2. RUL PROGNOSTICS USING A CONVOLUTIONAL NEURAL NETWORK (CNN)

6

143

where N is the number of flights included. For each flight i ∈ {1,2, . . . , N }, xi contains
the sensor measurements obtained during the flight and history of the operating
conditions at that flight:

xi = [m̂i 1,m̂i 2, . . . ,m̂i M ,oi 1,oi 2, . . . ,oiO] . (6.3)

Here, m̂i j denotes the normalized measurement of the j th sensor during flight i , M
denotes the total number of sensors considered, oi r denotes the history of operating
condition r at flight i , and O denotes the number of operating conditions of the
considered subset. The history of operating condition r denotes the number of
flights, since the first flight of the considered engine up to flight i , an engine has
performed in operating condition r [9].

Figure 6.1.: Schematic overview of the CNN.

Figure 6.1 shows the architecture of the proposed CNN. We consider L
convolutional layers. The first L −1 convolutional layers each have K f kernels, and
thus generate K f feature maps. Each kernel has a size of Ks ×1. We thus use

one-dimensional kernels [8]. The convolutional operation in the l th convolutional
layer for the nth kernel k l

n is [22]:

z l
n =σ

(
k l

n ∗ z l−1 +bl
n

)
, (6.4)

where z l
n is the nth feature map of layer l , * is the convolutional operator, z l−1 are

the feature maps in layer l −1, bl
n is the bias of the nth feature map of layer l , and

σ(·) is the activation function of the convolutional layer. The Lth convolutional layer
has one kernel with a size of K

′
s ×1. This layer combines all the K f feature maps of

the previous layer into one single feature map.
Using the extracted features of the convolutional layers, the CNN estimates the

RUL. The 2-dimensional, final feature map of the last convolutional layer is flattened.
In this layer, we apply a drop-out rate ρ to prevent overfitting. The flatten layer is
connected with a fully connected layer. Let zfl be the output of the flatten layer,
and let w f be the weights of the fully connected layer. The output z f of the fully
connected layer is then [22]:

z f =σ
(
w f zfl +b f

)
, (6.5)

6

144
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

where b f denotes the bias of the fully connected layer, and σ(·) denotes the
activation function of this layer. Last, the final layer with one neuron outputs a RUL
prognostic using a linear activation function.

Following a grid-search hyper-parameter tuning, with the hyperparameters of [8] as
starting point, we consider L = 5 convolutional layers. The first 4 convolutional layers
contain K f = 10 kernels, each with a size of Ks = 10×1, while the last convolutional

layer contains 1 kernel with a size of K
′
s = 3×1. Same padding is implemented in

all convolutional layers to ensure that the feature maps have a constant dimension.
In the flatten layer, we apply a drop-out rate of ρ = 0.5 during training. Finally, the
fully connected layer contains 100 neurons. All layers, except the last layer, apply a
hyperbolic tangent (tanh) activation function.

We optimize the weights of the CNN using the Adam optimizer [23] with a
batch size of 256 samples, and a maximum of 250 training epochs. The initial
learning rate is 0.001, which is multiplied by 0.6 after 10 consecutive epochs without
improvement, for a stable convergence of the weights. We use a window size of 30
flights for subsets FD001 and FD003, and of 21 and 19 flights for subsets FD002 and
FD004 respectively, i.e., the number of flights available for the shortest test instance
in the test sets of FD002 and FD004.

RUL PROGNOSTICS FOR AIRCRAFT ENGINES

Rearly FD001 FD002 FD003 FD004
Our approach 125 12.22 15.07 12.72 18.10
CNN [8] 125 12.61 22.36 12.64 23.31
MS-DCNN [10] 125 11.44 19.35 11.67 22.22
CNN with pooling [9] varies 18.45 30.29 19.82 29.16
CNN with pyramid pooling [24] - 12.64 25.92 12.39 26.84

Table 6.2.: RMSE for the RUL prognostics using C-MAPSS and a (variant of) a CNN.

We apply our CNN to each of the 4 test data subsets FD001, FD002, FD003 and
FD004. We evaluate the obtained RUL prognostics by means of the Root Mean
Square Error (RMSE) metric:

RMSE =
√

1

n

n∑
w=1

(ew)2, (6.6)

where n is the number of testing instances in the considered data subset and ew is
the RUL prognostic error (in flights) for an engine w , ew = RULactual

w −RULestimated
w .

Moreover, we use a piece-wise linear RUL target function [8, 10, 25] with Rearly = 125
flights, i.e, when the actual RUL is larger than Rearly = 125 flights, the target RUL of
the neural network is Rearly = 125 flights.

Table 6.2 shows the RMSE for each of the 4 test data subsets of C-MAPSS. The
RMSE is highest for subsets FD002 and FD004, where the engines are subject to
multiple operating conditions. Figure 6.2 shows the RUL prognostic versus the actual

6.2. RUL PROGNOSTICS USING A CONVOLUTIONAL NEURAL NETWORK (CNN)

6

145

(a) FD001. (b) FD002.

(c) FD003. (d) FD004.

Figure 6.2.: RUL prognostics of the engines in the four C-MAPSS data subsets. The
engines are sorted in an increasing order of their actual RUL.

RUL for the individual engines in the 4 test data subsets. As expected, the results
show that the RUL prognostics are indeed imperfect with non-zero errors.

Table 6.2 also compares the performance of our RUL prognostic model with
existing studies that employ CNNs for RUL prognostics as well. The results show
that we obtain a lower RMSE for subsets FD002 and FD004 compared to [8–10,
24]. A more advanced CNN in [10] results in a lower RMSE for subsets FD001
and FD003. Overall, our results are comparable to the best existing results for
this dataset when using a CNN. Table 6.3 gives an overview of the performance of
RUL prognostic models for the C-MAPSS dataset when considering various machine
learning algorithms. A more extensive overview of such models can be found
in [25, 26]. The lowest RMSE is obtained when using a LSTM neural network
with multi-layer self-attention [25], or a hierarchical attention graph convolutional
network [27]. Also here, the performance of our RUL prognostic method is

6

146
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

comparable with existing methods.

Rearly FD001 FD002 FD003 FD004
Our approach 125 12.22 15.07 12.72 18.10
LSTM-MLSA [25] 125 11.57 14.02 12.13 17.21
CNN-LSTM [28] 125 11.17 - 9.99 -
HAGCN [27] 130 11.93 15.05 11.53 15.74
HDNN [29] 125 13.02 15.24 12.22 18.17
Semi-supervised [30] 130 12.56 22.73 12.10 22.66
CapsNets [31] 125 12.58 16.30 11.71 18.96

Table 6.3.: RMSE for RUL prognostics using C-MAPSS and various machine learning
algorithms.

In the next section, we integrate these imperfect RUL prognostics into a predictive
maintenance scheduling model for a fleet of aircraft.

6.3. METHODOLOGY - MAINTENANCE SCHEDULING WITH

IMPERFECT RUL PROGNOSTICS
In this section, we propose a generic, alarm-based maintenance planning framework
for a fleet of aircraft with imperfect RUL prognostics.

6.3.1. PROBLEM DESCRIPTION

FLEET OF AIRCRAFT WITH DEGRADING COMPONENTS

Let A denote a fleet of aircraft. Each aircraft a ∈ A is equipped with a set Va of
identical components. The health of each component degrades over time. A RUL
prognostic for each component v ∈Va is obtained every day.

MAINTENANCE SLOTS

Each aircraft a ∈ A has allocated a set of maintenance slots Sa during which the
aircraft is on the ground and maintenance is performed. These slots are scheduled
months in advance. During these slots, periodic maintenance tasks and inspections
are scheduled in advance as well, as described in the aircraft maintenance manuals
[32]. Let ds denote the day during which a maintenance slot s ∈ Sa is planned.

ADDITIONAL MAINTENANCE TASKS DRIVEN BY RUL PROGNOSTICS

During a maintenance slot, additional maintenance tasks may be scheduled based on
RUL prognostics, in anticipation of a failure. Performing an additional maintenance
task for a component v ∈ Va costs cp . We assume that at most h additional
maintenance tasks can be performed every day, due to the limited availability of the
maintenance engineers, specialized tools and equipment. This capacity h is uniform
across tasks, i.e., independent of the type of maintenance task.

6.3. METHODOLOGY - MAINTENANCE SCHEDULING WITH IMPERFECT RUL
PROGNOSTICS

6

147

When a component v ∈Va fails, we assume that an unscheduled maintenance task
for this component is immediately performed at a cost c f > cp , even if no capacity
is available. In this case, the spare maintenance slots reserved by airlines for urgent
maintenance tasks are used.

ROLLING HORIZON APPROACH AND RESCHEDULING ADDITIONAL MAINTENANCE TASKS

We assume a discrete-time problem with time steps of 1 day. Additional maintenance
tasks are planned using a rolling horizon approach. At current day d0, we consider a
scheduling time window Dd0 = [d0+k,d0+k+ l), where k is the minimum number of
days required to prepare an additional maintenance task and k + l is the moment in
time up to which maintenance slots are known. At day d0, additional maintenance
tasks may be scheduled within this time window Dd0 based on the available RUL
prognostics. We then advance to the next moment of maintenance scheduling at day
d0+τ (new current day) with time window Dd0+τ = [d0+τ+k,d0+τ+k + l) for which
new, updated RUL prognostics are generated. Again, additional maintenance tasks
may be scheduled in time window Dd0+τ, based on the updated RUL prognostics.
This process is repeated for future time windows.

(a) d0 = 0.

(b) d0 = 7.

Figure 6.3.: Illustration of two sequential time windows of the rolling horizon
approach with τ= 7, k = 7 and l = 63 days.

Figure 6.3 shows an example of a sequence of two maintenance scheduling time
windows with τ = 7, k = 7 and l = 63 days. At current day d0 = 0, we schedule
additional maintenance tasks for the time window [d0 +k,d0 +k + l) = [7,70) (Figure
6.3a). We fix all additional tasks scheduled up to day d0 +τ+k = 14, and advance in
time to a new current day d0 +τ= 7. For this new current day, we now consider the
scheduling time window [14,77) (Figure 6.3b).

A rescheduling of an additional maintenance task occurs when this task has been

6

148
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

assigned at day d0 to a slot s in time window Dd0 , and the same task is re-assigned
at day d0+τ to another slot s′ ̸= s in a subsequent time window Dd0+τ. Rescheduling
additional tasks may occur due to updated RUL prognostics or due to exceeding the
limit h of additional tasks per day. Since rescheduling a maintenance task often is
not desired, it costs cr < cp .

Figure 6.4.: Example - Maintaining 2 aircraft in one time window of the rolling
horizon approach, with RUL prognostics.

Figure 6.4 shows an example of maintenance for two aircraft in one time window
of the rolling horizon approach, when considering RUL prognostics. We consider
the maintenance planning for aircraft 1, component 1 (1− 1), and aircraft 2,
component 1 (2−1). Our time window consists of 20 days. For aircraft 1, there are
two maintenance slots in which we can plan an additional maintenance task for
component 1: at day 2, and at day 13. Aircraft 2 has only one maintenance slot,
at day 13. Component 1 of aircraft 1 is expected to fail at day 14. However, the
actual failure time of this component is day 19. The RUL is thus underestimated.
Component 1 of aircraft 2 is expected to fail at day 17, while it actually fails at day
10. The RUL is thus overestimated.

6.3.2. ALARM-BASED MAINTENANCE SCHEDULING

Figure 6.5.: Example - RUL-based alarm for a component v .

6.3. METHODOLOGY - MAINTENANCE SCHEDULING WITH IMPERFECT RUL
PROGNOSTICS

6

149

We propose to schedule maintenance for a fleet of aircraft using RUL-based
alarms. A schematic overview of this framework is given in Figure 6.5. Every day,
the RUL prognostic for a component v is updated. In case the estimated RUL
falls below an alarm threshold T for n consecutive days (i.e., n days in a row), an
alarm is triggered. We refer to this component as an alarmed component. At the
next maintenance scheduling moment in the rolling horizon approach, an additional
maintenance task is scheduled for this component.

We require the RUL prognostic to fall below the alarm threshold T for n consecutive
days due to the possible non-monotonic trend of the prognostics. As a result,
the times at which the RUL prognostic falls below an alarm threshold can be far
apart (false positives). Acting on these false positives would lead to unnecessary
maintenance and costs. We define n to identify a consistent behavior of degradation
in a short period of time instead.

Consider current day d0 when a RUL prognostic RULv,d0 for an alarmed component
v is available. Ideally, we would schedule maintenance at day d0 +RULv,d0 to
minimize the wasted life of the component, while avoiding a failure. However, since
we consider imperfect RUL prognostics, we assume a safety factor β, 0 ≤β≤ 1, such
that we aim to schedule maintenance before a target day instead:

d target
v,d0

= d0 +β ·RULv,d0 .

These parameters T , n and β are optimized in Section 6.3.3.

SCHEDULING MAINTENANCE FOR ALARMED COMPONENTS: ONE TIME WINDOW

Given an alarm threshold T , an n number of times the RUL prognostic falls below
T before an alarm is triggered, and a safety factor β, we propose the following
maintenance scheduling model for a fleet of aircraft. The objective of the model
is to minimize the total maintenance costs. This model is applied for each time
window of the rolling horizon approach.

Let V alarm denote the set of alarmed components in the fleet of aircraft at current
day d0, i.e., the set of components for which we should schedule maintenance. Let
Sa,Dd0

⊆ Sa denote the set of all available maintenance slots for aircraft a ∈ A such
that the slot is within the scheduling time window Dd0 , i.e., ds ∈ Dd0 , ∀s ∈ Sa,Dd0

.

Due to the limited capacity h and the limited number of maintenance slots, it may
be that not all alarmed components v ∈V alarm can be maintained in the scheduling
time window Dd0 . In this case, we assume that a buffer, generic slot is available to
maintain the aircraft [18]. Let sgen be a generic slot at day dsgen = d0. When using
this generic slot, a very high cost cg >> c f is incurred. This slot does not have
capacity constraints. All aircraft may be maintained in this generic slot. The set of
slots Sa,Dd0

available for each aircraft a ∈ A thus includes this generic slot.

We consider the following integer linear program to schedule additional
maintenance tasks at day d0 in the scheduling time window Dd0 :

6

150
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

Decision variable The decision variable is defined as follows:

xav s =


1, Component v ∈Va ∩V alarm of aircraft a ∈ A is maintained

in slot s ∈ Sa,Dd0
,

0, Otherwise,

(6.7)

Objective function Let cav s denote the costs of scheduling an additional
maintenance task for component v ∈ Va ∩V alarm of aircraft a ∈ A during slot
s ∈ Sa,Dd0

. We define cav s as:

cav s = p late
(
ds −d target

v,d0

)++pearly
(
d target

v,d0
−ds

)++presI res
v +pgenI gen

s ,

where p late is a penalty for each day an additional maintenance task is scheduled
after the target day d target

v,d0
, pearly is a penalty for each day an additional maintenance

task is scheduled before the target day d target
v,d0

(wasting component life), pres is a
penalty for rescheduling an additional maintenance task for a component v to a
new slot and pgen >> p late, pearly, pres is the penalty for using the generic slot sgen.
The (·)+ operator means that we consider the positive number, i.e., (x)+ = min(0, x).
Last, I res

v and I gen
s are indicator functions:

I res
v =

{
1, An additional maintenance task for component v is rescheduled,

0, Otherwise,

I gen
s =

{
1, Slot s ∈ Sa,Dd0 is the generic slot sgen

0, Otherwise.

The objective is to minimize the costs of scheduling additional maintenance tasks:

min.
∑

a∈A

∑
v∈Va :v∈V alarm

∑
s∈Sa,Dd0

cav s xav s . (6.8)

Constraints We consider the following constraints:∑
s∈Sa,Dd0

xav s = 1, ∀a ∈ A, ∀v ∈Va : v ∈V alarm (6.9)

∑
a∈A

∑
v∈Va∩V alarm

∑
s∈Sa,Dd0

\{sgen}:ds=d
xav s ≤ h, ∀d ∈ Dd0 (6.10)

xav s ∈ {0,1} ∀a ∈ A,∀v ∈Va ∪V alarm,∀s ∈ Sa,Dd0
∪ {sgen} (6.11)

Constraint (6.9) ensures that an additional maintenance task is scheduled for each
alarmed component v ∈V alarm. Constraint (6.10) ensures that at most h additional
tasks are scheduled every day, aside from the generic slot.

This model assumes known values for T , n and β. We next determine these values.

6.3. METHODOLOGY - MAINTENANCE SCHEDULING WITH IMPERFECT RUL
PROGNOSTICS

6

151

6.3.3. OPTIMIZING THE ALARM POLICY WITH A GENETIC ALGORITHM

We now optimize the alarm threshold T , the number of times n that the RUL
prognostic falls below T before an alarm is triggered, and the safety factor β of our
maintenance planning framework using a genetic algorithm (GA) [33]. The aim is to
minimize the long-term maintenance costs.

Agent chromosomes and initialization Let Θi be the population of |Θi | = N agents
in iteration i of the GA. Let θp be the chromosome with the parameters of agent
θ ∈Θi :

θp =
(
T θ,nθ,βθ

)
, (6.12)

with T θ the alarm threshold, nθ the number of times the RUL prognostic falls below
T before an alarm is triggered, and βθ the safety factor. These parameters define
agent θ ∈Θi . We initialize T θ with a random integer in [k, l], nθ with a random
integer in [1,5] and βθ with a random value from [0.01,0.02, . . . ,1.00] for all agents in
the initial generation Θ0.

Selection of the parents Let θ f denote the fitness of agent θ ∈Θi of iteration i .

We select N parents for the population of the i +1th generation with tournament
selection: For each parent, we first randomly select r individual agents from Θi .
Then, the agent with the highest fitness θ f of these r agents is selected as a parent.

Reproduction: Crossover and mutation Each pair of 2 parents selected from Θi

generates 2 new child agents, that become part of the population Θi+1 of generation
i +1. We use one-point crossover [33] to generate the two new child agents. We
mutate each element of the new child agent chromosome with a probability p̃. An
element is mutated with random resetting [33].

Termination The GA is terminated after M generations. The agent with the highest
fitness across all generations is selected as the final agent.

MONTE CARLO SIMULATION TO EVALUATE THE FITNESS OF A GA AGENT

We evaluate the fitness θ f of an agent θ with parameters θp = (
T θ,nθ ,βθ

)
by

calculating the expected maintenance costs over a period of 10 years using Monte
Carlo simulation. We perform 100 Monte Carlo simulation runs (iterations). For
each iteration i ∈ {1,2, . . . ,100}, we generate a maintenance planning over a period of
10 years using the rolling horizon approach (see Section 6.3.1). At the beginning of
each scheduling time window Dd0 in the rolling horizon approach, we update the
RUL prognostics. With these RUL prognostics and the alarm threshold T θ and nθ

of the agent θ under consideration, we determine the set of alarmed components
V alarm. We also determine the target day to maintain each alarmed component
using the safety factor βθ and the updated RUL prognostics. We then assign each
alarmed component to exactly one maintenance slot in the scheduling time window
Dd0 , using the proposed scheduling model (see eqs. (6.7)-(6.10)).

6

152
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

After each iteration i , we calculate the costs θc,i of the generated maintenance
planning using c f , the costs of an engine failure, cp , the costs of an additional
maintenance task, cr , the costs of rescheduling a maintenance task and cg , the costs
of using a generic slot. We define the fitness of agent θ as:

θ f =
1

1
100

∑100
i=1θc,i

, (6.13)

i.e., the higher the expected costs, the lower the fitness of the agent.

6.4. CASE STUDY AND RESULTS - ENGINE MAINTENANCE

SCHEDULING
We apply our maintenance planning framework in Section 6.3 to the engines in the
C-MAPSS data set [21]. Since in the test set of C-MAPSS the sensor measurements
terminate at some time before engine failure, RUL prognostics cannot be generated
after every flight until failure. Therefore, we apply our maintenance framework for
14% of the training instances of C-MAPSS, which are run-to-failure instances. A
similar approach has been taken in [16]. The 14% instances are randomly selected
from the C-MAPSS training subsets, i.e., we randomly select 14% of the engines
from subset FD001, resulting in 14 engines selected, 14% of the engines from
subset FD002, resulting in 37 engines selected, 14% of the engines from subset
FD003, resulting in 14 engines selected, and 14% of the engines from subset FD004,
resulting in 35 engines selected. In total, we select 100 engines for which we apply
our proposed maintenance framework. For these 100 instances, we obtain RUL
prognostics using CNNs, as discussed in Section 6.2. For this, we do not use any
knowledge about the actual failure times of these engines. The remaining 86% of the
training instances of each subset are used to train the CNNs.

Let E denote the set of the selected 100 turbofan engines. These engines have
an average lifespan of 204 flights, with a minimum lifespan of 110 flights, and a
maximum lifespan of 430 flights.

6.4.1. IMPERFECT RUL PROGNOSTICS FOR TURBOFAN ENGINES

Using the CNN as discussed in Section 6.2, we obtain a RUL prognostic after every
flight for each engine in the set E . Figure 6.7 shows the obtained RUL prognostics up
to Rearly = 125 flights before failure for each engine in E . Figure 6.6 shows the RMSE
for the obtained prognostics up to 125 flights before failure. The accuracy of the
RUL prognostics varies over time and across the 4 subsets of the C-MAPSS dataset.

We evaluate the obtained series of RUL prognostics using the RMSE, the
Cumulative Relative Accuracy (CRA) and the Convergence of the RMSE metrics [34].
The CRAλ is defined as follows [34]:

CRAλ =
1

n

n∑
w=1

1−
|RULactual

w,λ −RULestimateed
w,λ |

RULactual
w,λ

,

6.4. CASE STUDY AND RESULTS - ENGINE MAINTENANCE SCHEDULING

6

153

Figure 6.6.: RMSE of the RUL prognostics over time for the engines in E , split over
the four C-MAPSS subsets.

where n is the number of components in the considered data subset, RULactual
w,λ is

the actual RUL of engine w at λ percent of its lifetime (i.e., λ= 0.5 gives the actual
RUL of engine w halfway its lifetime, and λ= 0.9 gives the actual RUL of engine
w at 90% of its lifetime), and RULestimated

w,λ is the estimated RUL of engine w at λ
percent of its lifetime.

The convergence of the RMSE metric [34] quantifies how fast the RMSE metric
converges over time to its minimum value, assuming that the RUL prognostics
improve over time. The convergence of the RMSE is defined as:

Convergence =
√(

xc −Rearly
)2 + y2

c ,

where (xc , yc) is the centroid of the area under the RMSE curve in Figure 6.6.
Notice that this curve starts only at Rearly = 125 flights before failure. The lower the
convergence, the faster the RMSE converges.

Table 6.4 shows the RMSE, the CRAλ,λ ∈ {0.5,0.9} and the Convergence of the
RMSE, obtained for the engines in the set E . The results show that CRAλ improves
with increasing λ, i.e., the RUL prognostics improve as the engines approach the
actual time of failure. The Convergence of the RMSE ranges between 51.00 and
64.64, and the highest Convergence of the RMSE is obtained for data subset FD001.

6

154
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

(a) The 14 test engines of data set FD001. (b) The 37 test engines of data set FD002.

(c) The 14 test engines of data set FD003. (d) The 35 test engines of data set FD004.

Figure 6.7.: RUL prognostics over time for the engines in E , split over the four
C-MAPSS subsets.

FD001 FD002 FD003 FD004
RMSE (flight) 14.35 17.98 12.05 15.15
CRA0.5 0.79 0.74 0.79 0.80
CRA0.9 0.93 0.97 0.97 0.98
Convergence (flights) 64.64 51.96 52.07 51.00

Table 6.4.: RMSE, Cumulative Relative Accuracy (CRA), and Convergence of the
RMSE, for the RUL prognostics results for the run-to-failure data of the
engines in set E .

6.4.2. ALARM-BASED MAINTENANCE SCHEDULING FOR AIRCRAFT

ENGINES

We consider a fleet of |A| = 20 aircraft, each equipped with |Va | = 2 engines. The
engines are randomly selected from E . For each aircraft a ∈ A, we label the two
engines as a −1 (first engine of aircraft a) and a −2 (second engine of aircraft a).

For each aircraft, we consider maintenance slots with a frequency of 10 - 20
days, reflecting a realistic maintenance slots frequency [32]. Moreover, an additional
maintenance task can be scheduled for only h = 1 engine per day, and at least k = 7

6.4. CASE STUDY AND RESULTS - ENGINE MAINTENANCE SCHEDULING

6

155

(a) Maintenance schedule created at day d0 = 259. Here, the actual failure time is day 312
for engine 10-2 and day 327 for engine 11-1.

(b) Maintenance schedule created at day d0 = 266. Here, the actual failure time is day 329
for engine 1-1, day 319 for engine 2-1, day 312 for engine 10-2, day 327 for engine 11-1,
and day 314 for engine 18-1. The predicted failure time is day 319 for engine 2-1 and
day 317 for engine 11-1.

Figure 6.8.: Maintenance schedule in 2 sequential time windows of the rolling
horizon approach, at day d0 = 259 and day d0 = 266.

days (one week) are needed to prepare an additional maintenance task. Also, the
available maintenance slots are known up to k + l = 70 days (10 weeks) in advance,
and the maintenance schedule is updated every τ= 7 days (one week). We assume
that each aircraft performs one flight per day.

We assume a cost cr = 5000 for rescheduling an additional maintenance task,
cp = 10,000 for performing an additional maintenance task, c f = 50,000 for an engine
failure and cg = 106 for using a generic slot. For the objective function of the integer
linear program in Section 6.3.2, we consider the maintenance penalties pearly = 1
for every day maintenance is scheduled earlier than the target day, pres = 100 for
rescheduling an additional maintenance task, p late = 1000 for every day maintenance
is scheduled after the target day and pgen = 106 for using a generic slot.

With these penalties, we thus consider the target day of a maintenance task as a
strict deadline; performing maintenance far before the target day is preferred over
performing maintenance just after the target day.

To determine the alarm policy (T,n,β) using the GA in Section 6.3.3, we consider
N = 30 agents per population, M = 20 generations, r = 5 participants in each

6

156
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

tournament and a mutation probability p̃ = 1/3. As result, we obtain the alarm
threshold T = 49 days, n = 1 and the safety factor β= 0.44.

Figure 6.8 shows the maintenance schedule with this alarm policy for two
sequential time windows of the rolling horizon approach, at day d0 = 259 and day
d0 = 266. Here, from the total of 40 engines, we only show the alarmed engines. At
day d0, the beginning of scheduling window Dd0 , we update the RUL prognostics of
the engines. With these updated RUL prognostics, the alarm threshold T = 49 days,
n = 1 and the safety factor β= 0.44, we then determine the alarmed engines and the
corresponding target days. These target days and the available maintenance slots
are the input of the integer linear program in Section 6.3.2. An alarmed engine is
assigned to exactly one maintenance slot by this integer linear program.

For example, aircraft 17, engine 2 (17−2) has four maintenance slots in Figure 6.8:
at days 268, 285, 304 and 322 (not depicted). The estimated failure time of engine
17-2 is at day 290, while the actual failure time is at day 292. A maintenance task for
engine 17-2 is scheduled at day 268, well before the target day at day 273.

At day d0 = 259, aircraft 10, 11, 14, 16 and 17 each have one alarmed engine.
For each alarmed engine, an additional maintenance task is scheduled in the first
maintenance slot available. For the alarmed engines of aircraft 11, 16 and 17, this
maintenance slot is before the target day, while for the alarmed engines of aircraft
10 and 14, this maintenance slot is after the target day.

At day d0 = 266, the additional maintenance tasks for aircraft 14 and 17 are fixed
from the previous time window. However, the additional maintenance tasks for
aircraft 10, 11 and 16 may still be rescheduled. Moreover, aircraft 1, 2 and 18 also
have an alarmed engine now. For aircraft 10 and 16, the additional maintenance
task remains planned at day 278 and day 274 respectively, as in the previous time
window. However, the additional maintenance task for aircraft 11 is rescheduled
from day 279 to day 291. This reschedulement is because only h = 1 additional
maintenance task can be planned per day, and at day 279 an additional maintenance
task is now scheduled for engine 1-1. Moreover, the maintenance task of engine 13-2
is only planned at day 298, 22 days after its target day and also after its failure time.
This is because the only maintenance slot available for this aircraft before day 298
is at day 278, when maintenance for engine 10-2 is already scheduled. At the next
maintenance opportunity for engine 10-2, maintenance for engine 18-1 is already
scheduled. If we maintain engine 13-2 at day 278, we would thus have to reschedule
the maintenance for engine 10-2 to day 304.

Table 6.5 shows the alarmed engines at day d0 = 259 and day d0 = 266. At the
moment of the alarm, the estimated RUL is between 39 and 48 days, while the
actual RUL is between 30 to 70 days. The RUL prediction error at the moment of the
alarm has an error between -22 days (underestimation of the failure time) to 14 days
(overestimation of the failure time). The error in the RUL prognostics underlines the
need for a safety factor β, with which a target day is determined.

The computational time to optimize the maintenance schedule for the first and
second time window using the integer linear program in Section 6.3.2 is 0.012sec and
0.022sec respectively, on a computer with an Intel Core i7 processor (8th generation)
at 2.11 GHz and 8Gb RAM. The integer linear program is solved using the optimizer

6.4. CASE STUDY AND RESULTS - ENGINE MAINTENANCE SCHEDULING

6

157

Engine Day of Predicted RUL at Actual RUL at
(a-1, a-2) alarm alarm (days) alarm (days)

1-1 265 46 64
2-1 261 44 58

10-2 259 41 53
11-1 257 48 70
13-2 263 39 28
14-2 243 47 42
16-1 259 44 30
17-2 254 42 38
18-1 262 48 52

Table 6.5.: The day of the alarm, and the estimated and actual RUL at the moment
of the alarm, for all engines that are alarmed at day d0 = 259 and day
d0 = 266.

Gurobi version 9.0.2 with standard settings, implemented in Python.

ENGINE FAILURES UNDER THE PROPOSED ALARM-BASED MAINTENANCE FRAMEWORK

In this section, we analyze the engine failures that occur during a period of 10
years when applying our maintenance framework for a fleet of |A| = 20 aircraft with
|Va | = 2 aircraft turbofan engines.

Predicted Actual Actual Target
Engine Day of RUL at RUL at failure day d target

(a-1, a-2) alarm alarm (days) alarm(days) day at alarm
13-1 103 45 21 124 122
11-2 229 48 25 254 250
12-1 227 48 28 255 248
13-2 263 40 28 291 280
6-2 358 45 35 393 377
4-1 1188 37 29 1217 1204

10-1 1859 48 25 1884 1880
1-2 2175 48 28 2203 2196

16-1 2531 44 23 2554 2550
20-1 2683 44 33 2716 2702
17-2 3143 48 28 3171 3164
1-1 3193 46 42 3235 3213

Table 6.6.: Failures occurring in 10 years of operations for a fleet of 20 aircraft using
the maintenance framework. The day of the alarm is calculated since the
beginning of the simulation, i.e., since day 0.

A total of 12 engine failures occur in the considered time period of 10 years. These
failures are described in Table 6.6. At the day of the alarm, the RUL is overestimated

6

158
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

by 4 - 24 days: In other words, engine failures mainly occur when the RUL is
(greatly) overestimated at the moment of the alarm. Using our proposed safety
factor β= 0.44, the target day is 2 - 22 days before the actual failure time at the day
of the alarm. Should additional maintenance tasks for these 12 engines have been
scheduled before or at the initial target day, then these engines would thus not have
failed.

However, the maintenance tasks are scheduled after the initial target day. For
6 out of the 12 engine failures, this is because no maintenance slot is available
before the target day, i.e., there is a lack of maintenance slots. For the other
failures, a maintenance slot is available before the target day. However, an additional
maintenance task for another engine is already scheduled during the day of this
maintenance slot, whereas at most h = 1 additional tasks can be scheduled per day.
Increasing the number of maintenance slots or the maintenance capacity would thus
help to decrease the number of engine failures.

6.4.3. MAINTENANCE WITH PERFECT RUL PROGNOSTICS VS. IMPERFECT

RUL PROGNOSTICS

We evaluate the performance of our proposed maintenance framework for a fleet of
|A| = 20 aircraft, each equipped with |Va | = 2 engines, over a period of 10 years using
Monte Carlo simulation, with 1000 simulation runs. We compare the performance of
our framework when considering perfect and imperfect RUL prognostics.

PREDICTIVE MAINTENANCE PLANNING WITH PERFECT RUL PROGNOSTICS

We apply our maintenance framework in Section 6.3.2 together with perfect RUL
prognostics, i.e., the RUL prognostics equal the actual RUL of the engines. As we
have perfect RUL prognostics, we set the safety factor β = 1. Moreover, we do
not postpone planning maintenance to obtain more accurate RUL prognostics or
avoid reschedulements due to updated RUL prognostics. Instead, we define that an
engine becomes alarmed as soon as its RUL prognostic is below an alarm threshold
T = k + l = 70 days, for n = 1 day in a row. Here, k + l is the period of time up to
which maintenance slots are known.

Using perfect RUL prognostics, more than 99.9% of the maintenance tasks are
scheduled before the target day (see Figure 6.9b). This is possible since an
engine becomes alarmed k + l = 70 days before its target day. There are thus
multiple possible maintenance slots in which the additional maintenance task can
be scheduled. The expected number of engine failures is therefore nearly zero (see
Table 6.7). In contrast, 11% of the additional maintenance tasks are planned after
the target day when considering imperfect RUL prognostics (see Figure 6.9a). This
is because an engine becomes alarmed when the estimated RUL equals T = 49 days
or less. Once a component becomes alarmed, only β ·estimated RUL ≤ 0.44 ·49 = 21
days or less are thus available before the target day. There is, therefore, a smaller
time window to schedule an additional maintenance task. This leads, in combination
with the imperfect RUL prognostics, to a larger expected number of engine failures

6.4. CASE STUDY AND RESULTS - ENGINE MAINTENANCE SCHEDULING

6

159

(a) Maintenance planning with imperfect RUL
prognostics.

(b) Maintenance planning with perfect RUL
prognostics.

Figure 6.9.: Expected number of days an additional maintenance task is scheduled
before (negative number) or after (positive number) the final target day
in ten years, using perfect and imperfect RUL prognostics.

and thus to less reliable aircraft (see Table 6.7). We note that the generic slot is
never used in our case study, showing that the slots were sufficient to perform the
required maintenance tasks.

Imperfect Perfect
RUL prognostics RUL prognostics

Engine failures 13.61 0.10
Rescheduled maintenance tasks 67.26 2.15

Additional maintenance tasks 819.7 739.0

Table 6.7.: Long-term expected performance in ten years when considering imperfect
and perfect RUL prognostics. The results are obtained with 95%
confidence intervals that have a maximum width of 0.6 engine failures,
1.4 rescheduled maintenance tasks and 1.2 additional maintenance tasks,
respectively.

With imperfect RUL prognostics, the expected number of rescheduled maintenance
tasks equals 67.26, while it equals only 2.15 when considering perfect RUL
prognostics (Table 6.7). For imperfect RUL prognostics, the number of rescheduled
maintenance tasks is higher since, i) the target day changes over time due to updated
RUL prognostics and ii) the engines become alarmed β ·estimated RUL ≤ 0.44 ·49 = 21
days or less before their target day, resulting in a smaller time window to find an
optimal maintenance moment for each engine. With imperfect RUL prognostics,
more engine life is wasted as well due to the safety factor β (see Figure 6.10).
As a consequence, more additional maintenance tasks are performed than when
considering perfect RUL prognostics (Table 6.7).

6

160
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

(a) Maintenance planning with imperfect RUL
prognostics.

(b) Maintenance planning with perfect RUL
prognostics.

Figure 6.10.: Expected engine wasted life, using perfect and imperfect prognostics, in
ten years.

Figure 6.11.: Expected costs over a period of 10 years, using imperfect and perfect
RUL prognostics.

The total expected costs decrease by 19.7% when using perfect RUL prognostics
instead of imperfect RUL prognostics (see Figure 6.11). In both cases, most of the
costs are driven by the costs of performing additional maintenance tasks: 89.7% of
the costs come from performing additional maintenance tasks when using imperfect
RUL prognostics, while 99.8% of the costs come from performing additional
maintenance tasks when using perfect RUL prognostics. When considering imperfect
RUL prognostics, 7.4% from the costs are due to engine failures. Also, only 3.7% of
the costs are a result of rescheduling maintenance tasks.

6.5. CONCLUSIONS

6

161

p̃ N r Iteration i θ f ·107 Mean cost (millions)

0.1

10 5 12 1.103 9.068

30
5 24 1.105 9.047

10 15 1.103 9.067

50
5 5 1.106 9.043

10 48 1.105 9.047

1
3

10 5 43 1.100 9.092

30
5 9 1.106 9.043

10 8 1.106 9.043

50
5 33 1.106 9.043

10 6 1.106 9.043

0.5

10 5 22 1.101 9.085

30
5 6 1.106 9.043

10 43 1.104 9.058

50
5 30 1.103 9.067

10 18 1.105 9.047

Table 6.8.: Sensitivity analysis - hyperparameters of the GA. The best agent is first
found in iteration i .

6.4.4. SENSITIVITY ANALYSIS - HYPERPARAMETERS OF THE GENETIC

ALGORITHM

We perform a sensitivity analysis to evaluate the influence of the hyperparameters
on the GA in Section 6.3.3. We consider the number of agents N ∈ {10,30,50}, the
mutation probability p̃ ∈ {0.1,1/3,0.5}, the number of participants in the tournament
selection r ∈ {5,10} and M = 50 generations. Table 6.8 shows the fitness θ f , the mean
costs of the generated maintenance planning (see eq. (6.13)), and iteration i of the
GA when the best agent is found first. The fitness θ f of the final agents θ ranges
from 1.100 ·10−7 to 1.106 ·10−7, with a corresponding mean cost per iteration of
the Monte Carlo simulation run between 9.043 to 9.092 million, i.e., a difference of
0.5%. The performance of the GA is thus robust: a similar solution is found with all
considered combinations of the hyperparameters.

The final agent with the maximum fitness of 1.106 ·10−7, and the corresponding
costs of 9.043 million, is consistently found with a mutation probability of p̃ = 1

3
and N = 30 or N = 50 agents. With p̃ = 1

3 , N = 30 and r ∈ {5,10}, the best fitness is
obtained in just 9 and 8 iterations of the GA, respectively.

6.5. CONCLUSIONS

We have proposed a dynamic maintenance framework for a fleet of aircraft where
component RUL prognostics are updated periodically. Maintenance task scheduling
is initiated as soon as an alarm is triggered. These alarms are based on the evolution
of the RUL prognostics over time. Tasks are scheduled using a rolling horizon
approach with time windows. In each time window, an integer linear program

6

162
6. ALARM-BASED MAINTENANCE SCHEDULING WITH IMPERFECT POINT RUL
PROGNOSTICS

specifies the slots in which maintenance is scheduled. The ideal time to schedule
a task is determined based on the RUL prognostics and a safety factor, to account
for potential errors in the RUL prognostics. The parameters of the maintenance
framework are obtained using a genetic algorithm.

We illustrate our maintenance framework for a fleet of 20 aircraft, each equipped
with 2 turbofan engines. The RUL prognostics of these turbofan engines are obtained
using a CNN. These prognostics are updated every day. The results show that,
with our maintenance framework, alarms are triggered early enough to enable the
scheduling of additional tasks such that failures are prevented. The total cost savings
with failure prevention outweigh the costs with potential task rescheduling due to an
early alarm. The results also show that engine failures still occur due to the limited
availability of maintenance slots or due to the limited number of maintenance tasks
that can be performed per day. The long-term results show that the costs due to
engine failures account for only 7.4% of the total maintenance costs. In the ideal
case with perfect RUL prognostics, the maintenance costs are 19.7% lower.

The proposed maintenance planning framework is applicable to other aircraft
components as well. Of course, the costs considered should be adjusted accordingly.
For example, the costs of a component failure c f and the corresponding penalty p late

for planning a maintenance task after the target day may be lowered if a component
is non safety-critical. In general, we can apply the proposed maintenance planning
framework to condition-monitored assets from other industries as well, e.g., a fleet of
trains or a fleet of ships. Additional industry-specific constraints may be considered
for the maintenance of these assets. An interesting constraint to consider is to
also tune the planning horizon as parameter, depending on the industry-specific
possibilities for this planning horizon.

REFERENCES

[1] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[2] Maintenance Cost Technical Group (MCTG). (2020). Airline maintenance cost
executive commentary (FY2019 data), public version (tech. rep.). International
Air Transport Association (IATA).

[3] Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2021). Prognostics and Health
Management: A review from the perspectives of design, development and
decision. Reliability Engineering & System Safety, 217, Article number: 108063.

[4] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[5] de Pater, I., & Mitici, M. (2021, June 28 - July 2). Model-based Remaining-
Useful-Life prognostics for aircraft cooling units. Proceedings of the European
Conference of the Prognostics and Health Management (PHM) Society, 6, Virtual,
Pages: 1–8.

[6] Mitici, M., & de Pater, I. (2021). Online model-based Remaining-Useful-Life
prognostics for aircraft cooling units using time-warping degradation clustering.
Aerospace, 8(6), Article number: 168.

[7] Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency
of aircraft maintenance strategies using agent-based modelling and stochastic
Petri Nets. Reliability Engineering & System Safety, 202, Article number: 107052.

[8] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[9] Babu, G. S., Zhao, P., & Li, X.-L. (2016, April 16-19). Deep Convolutional
Neural Network based regression approach for estimation of Remaining Useful
Life. Proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA), Dallas, Texas, USA, Pages: 214–228.

[10] Li, H., Zhao, W., Zhang, Y., & Zio, E. (2020). Remaining Useful Life prediction
using multi-scale deep Convolutional Neural Network. Applied Soft Computing,
89, Article number: 106113.

[11] Cao, Y., Ding, Y., Jia, M., & Tian, R. (2021). A novel temporal Convolutional
Network with residual self-attention mechanism for Remaining Useful Life
prediction of rolling bearings. Reliability Engineering & System Safety, 215,
Article number: 107813.

163

6

164 REFERENCES

[12] Li, X., Zhang, W., & Ding, Q. (2019). Deep learning-based Remaining Useful
Life estimation of bearings using multi-scale feature extraction. Reliability
Engineering & System Safety, 182, Pages: 208–218.

[13] Jimenez, J. J. M., Schwartz, S., Vingerhoeds, R., Grabot, B., & Salaün, M. (2020).
Towards multi-model approaches to predictive maintenance: A systematic
literature survey on diagnostics and prognostics. Journal of Manufacturing
Systems, 56, Pages: 539–557.

[14] Verbert, K., De Schutter, B., & Babuška, R. (2017). Timely condition-based
maintenance planning for multi-component systems. Reliability Engineering &
System Safety, 159, Pages: 310–321.

[15] de Pater, I., del Mar Carillo Galera, M., & Mitici, M. (2021, September 19-23).
Criticality-based predictive maintenance scheduling for aircraft components
with a limited stock of spare components. Proceedings of the 31st European
Safety and Reliability Conference, Angers, France, Pages: 55–62.

[16] Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance
framework using deep learning for failure prognostics. Reliability Engineering
& System Safety, 188, Pages: 251–262.

[17] Yiwei, W., Christian, G., Binaud, N., Christian, B., Haftka, R. T., et al. (2017). A
cost driven predictive maintenance policy for structural airframe maintenance.
Chinese Journal of Aeronautics, 30(3), Pages: 1242–1257.

[18] de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component
systems of repairables with Remaining-Useful-Life prognostics and a limited
stock of spare components. Reliability Engineering & System Safety, 214, Article
number: 107761.

[19] Lee, J., & Mitici, M. (2022). Multi-objective design of aircraft maintenance
using Gaussian process learning and adaptive sampling. Reliability Engineering
& System Safety, 218, Article number: 108123.

[20] Wang, Y., Limmer, S., Van Nguyen, D., Olhofer, M., Bäck, T., & Emmerich,
M. (2021). Optimizing the maintenance schedule for a vehicle fleet: A
simulation-based case study. Engineering Optimization, 54(7), Pages: 1258–
1271.

[21] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data
set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[22] Wang, B., Lei, Y., Li, N., & Yan, T. (2019). Deep separable Convolutional Network
for Remaining Useful Life prediction of machinery. Mechanical Systems and
Signal Processing, 134, Article number: 106330.

[23] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[24] Song, Y., Zhang, Y., Bliek, L., & Xia, T. (2021, September 19-23). A temporal
pyramid pooling-based Convolutional Neural Network for Remaining Useful
Life prediction. Proceedings of the 31st European Safety and Reliability
Conference, Angers, France, Pages: 603–609.

REFERENCES

6

165

[25] Xia, J., Feng, Y., Lu, C., Fei, C., & Xue, X. (2021). LSTM-based multi-layer
self-attention method for Remaining Useful Life estimation of mechanical
systems. Engineering Failure Analysis, 125, Article number: 105385.

[26] Zhao, Y., & Wang, Y. (2021). Remaining Useful Life prediction for multi-sensor
systems using a novel end-to-end deep-learning method. Measurement, 182,
Article number: 109685.

[27] Li, T., Zhao, Z., Sun, C., Yan, R., & Chen, X. (2021). Hierarchical attention graph
convolutional network to fuse multi-sensor signals for Remaining Useful Life
prediction. Reliability Engineering & System Safety, 215, Article number: 107878.

[28] Peng, C., Chen, Y., Chen, Q., Tang, Z., Li, L., & Gui, W. (2021). A Remaining
Useful Life prognosis of turbofan engine using temporal and spatial feature
fusion. Sensors, 21(2), Article number: 418.

[29] Al-Dulaimi, A., Zabihi, S., Asif, A., & Mohammadi, A. (2019). A multimodal
and hybrid deep neural network model for Remaining Useful Life estimation.
Computers in Industry, 108, Pages: 186–196.

[30] Ellefsen, A. L., Bjørlykhaug, E., Æsøy, V., Ushakov, S., & Zhang, H. (2019).
Remaining Useful Life predictions for turbofan engine degradation using
semi-supervised deep architecture. Reliability Engineering & System Safety, 183,
Pages: 240–251.

[31] Ruiz-Tagle Palazuelos, A., Droguett, E. L., & Pascual, R. (2020). A novel deep
capsule neural network for Remaining Useful Life estimation. Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
234(1), Pages: 151–167.

[32] Ackert, S. P. (2010). Basics of aircraft maintenance programs for financiers
(tech. rep.). Aircraft Monitor.

[33] Kramer, O. (2017). Genetic algorithms. In Genetic algorithm essentials (Pages:
11–19). Springer.

[34] Saxena, A., Celaya, J., Saha, B., Saha, S., & Goebel, K. (2009, September 27
- October 1). On applying the prognostic performance metrics. Proceedings
of the Annual Conference of the Prognostics and Health Management (PHM)
Society 2009, 1, San Diego, California, USA, Pages: 1–16.

7
MAINTENANCE SCHEDULING WITH

PROBABILISTIC RUL PROGNOSTICS

In the previous chapter, we show that it is difficult to integrate point Remaining Useful
Life (RUL) prognostics without quantified uncertainty in the maintenance planning.
In Chapters 4 and 5, we therefore develop probabilistic RUL prognostics, in the form
of a Probability Density Function (PDF), instead. In this chapter, we integrate these
probabilistic RUL prognostics in the maintenance planning.

We first develop probabilistic RUL prognostics using a Convolutional Neural Network
with Monte Carlo dropout (similar to the approach in Chapter 5). We then integrate
these probabilistic RUL prognostics in the maintenance planning. First, the optimal
maintenance moment for a single component is found. Then, the multi-component
maintenance planning is optimized, where the number of components that can be
replaced per day is limited. The maintenance planning for a period of ten years is
analyzed with a Monte Carlo simulation.

Our approach is illustrated for the maintenance planning of aircraft turbofan engines.
The optimal replacement time for the engines is close to the lower bound of the 99%
confidence interval of the probabilistic RUL prognostics. Consequently, on average
only 0.003 engines fail per ten years in the Monte Carlo simulation.

Parts of this chapter have been published in:

Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive maintenance for
multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines.
Reliability Engineering & System Safety, 234, Article number: 109199

Mitici, M., de Pater, I., Zeng, Z., & Barros, A. (2023, September 3-7). Predictive maintenance
planning using renewal reward processes and probabilistic RUL prognostics–Analyzing the influence
of accuracy and sharpness of prognostics. Proceedings of the 33st European Safety and Reliability
Conference, Southampon, UK, Pages: 1034–1041

167

7

168 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

7.1. INTRODUCTION

Modern systems are monitored by multiple sensors that generate large volumes
of data. For example, for a Boeing 787, 20 terabytes of sensor measurements
are generated per flight hour [3]. In predictive maintenance, a new maintenance
strategy, such sensor measurements are used to estimate the time left until failure,
called the Remaining Useful Life (RUL), of components and systems [4]. These RUL
prognostics are subsequently used to plan maintenance. It is shown that predictive
maintenance, with this integration of RUL prognostics in the maintenance planning,
significantly reduces the maintenance costs and the number of failures [5–7].
However, most existing studies on predictive maintenance focus only on developing
RUL prognostics, without optimizing the maintenance planning: According to [8],
the use of RUL prognostics in the maintenance optimization for complex systems
is a relatively underexplored area. On the other hand, many studies optimize the
maintenance planning without RUL prognostics, where the probability of failure is
based on a generic probability distribution instead [9].

Studies on developing RUL prognostics often input the sensor measurements in a
machine learning model, which estimates the RUL. Most studies estimate one point
for the RUL, i.e., they develop point RUL prognostics without quantified uncertainty.
For example, in [10], point RUL prognostics are developed for batteries using a deep
neural network, while point RUL prognostics are developed in [6, 11] for turbofan
engines using a Convolutional Neural Network (CNN). Only few studies instead
estimate the Probability Density Function (PDF) of the RUL. In [12] and [13], the
PDF of the RUL of turbofan engines is estimated using a deep Gaussian process and
a neural network with Monte Carlo dropout, respectively.

Figure 7.1.: Overview of the roadmap for predictive maintenance, where sensor
measurements are used to develop probabilistic RUL prognostics with a
CNN with Monte Carlo dropout. These RUL prognostics are subsequently
integrated in the maintenance planning.

Other studies propose advanced maintenance planning models, but assume that
the degradation of the components/systems follows a generic distribution with fixed
parameters. These studies thus do not develop component-specific RUL prognostics
from the sensor measurements. For instance, some studies assume that the
degradation of components/systems follows a generic Gamma process [8, 14–16],

7.1. INTRODUCTION

7

169

a Wiener process [17], or a non-homogeneous Poisson process [18]. With these
assumptions, the maintenance planning of the components/systems is optimized
with the renewal-reward process [16], a Markov decision process [19, 20], or a
heuristic [8]. In practice, however, the degradation of components/systems rarely
follows such a generic degradation process. By using the sensor measurements to
predict the RUL of each specific component, much more detailed information on
the failure time of an individual component is obtained.

Few studies develop data-driven RUL prognostics by tracking the specific
degradation of a component/system through sensor measurements, and actually
integrate these RUL prognostics in the maintenance planning. In [6] and [21],
data-driven point RUL prognostics are developed for aircraft engines using a CNN
and a recurrent neural network, respectively. These point RUL prognostics are
integrated in the maintenance planning using an integer linear program and a
threshold-based approach, respectively. With point RUL prognostics, however, there
is no insight in the uncertainty of the estimated RUL, which complicates the
maintenance planning. Ignoring the uncertainty in the RUL prognostics may lead
to many failures. In contrast, we propose a maintenance planning framework that
integrates probabilistic RUL prognostics into the maintenance planning.

Probabilistic RUL prognostics for aircraft engines are used in [7] to optimize
the replacements of the engines with a deep reinforcement learning model.
Reinforcement learning, however, is a black-box model, and it is unclear how and
why the maintenance decisions are made. In contrast, in this chapter we use the
renewal-reward process to optimize the replacements of engines with probabilistic
RUL prognostics. With a renewal-reward process, the maintenance decisions are
very easy to explain. In [22] the distribution of the RUL for aircraft cooling units is
estimated using a physics-based model. Similarly, in [23], the future degradation
of a railway track is estimated using a physics-based model. These prognostics
are further used to plan the maintenance for the cooling units and railway tracks,
respectively. Physic-based models for RUL prognostics, however, require that a
physical degradation model is available, which is often not the case for complex
systems [24]. In contrast, in this chapter, we therefore generate data-driven
probabilistic RUL prognostics for the maintenance planning.

In this chapter, we propose an end-to-end framework for predictive maintenance.
In this framework, the sensor measurements are first used to estimate probabilistic
RUL prognostics, and these RUL prognostics are subsequently used to optimize the
maintenance planning (see Figure 7.1). We develop probabilistic RUL prognostics
using a CNN with Monte Carlo dropout. These RUL prognostics are subsequently
used to determine the optimal maintenance moment for a single component
with the renewal-reward process. This is further extended to a multi-component
maintenance planning model, where we consider a limited maintenance capacity.

We illustrate our approach with the maintenance planning for aircraft turbofan
engines. We simulate the maintenance planning with probabilistic RUL prognostics
for several years with a Monte Carlo simulation. With the results of this simulation,
we analyse the advantages of using probabilistic RUL prognostics when planning
maintenance. For example, an engine is replaced soon if there is a large probability

7

170 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

of failure in the near future (i.e., if the estimated RUL is small). In the Monte Carlo
simulation, there are therefore only very few engine failures. Last, we compare our
maintenance approach with a traditional, time-based maintenance strategy without
RUL prognostics. The results show that our approach reduces the maintenance costs
by 53% compared to this time-based maintenance strategy. Compared with an ideal
case with perfect RUL prognostics, our approach has only slightly more failures.

Overall, the main contributions of this chapter are:

• We obtain reliable probabilistic RUL prognostics, in the form of a PDF, for
aircraft turbofan engines using a CNN with Monte Carlo dropout. By estimating
the PDF of the RUL, maintenance can be planned while taking the uncertainty
associated with the RUL prognostics into account.

• With the renewal-reward process, the optimal maintenance moment is usually
found with a generic distribution of the failure time, such as the exponential
or Weibull distribution. Instead, we show how a renewal-reward process can
be used to plan maintenance based on probabilistic RUL prognostics.

• To find the optimal maintenance moment, we minimize the expected costs
while considering the uncertainty of the RUL prognostics. Moreover, while
most existing studies focus only on single component maintenance planning,
we also consider the multi-component maintenance planning, where the
limited maintenance capacity is considered.

The remainder of this chapter is structured as follows. In Section 7.2 we develop
probabilistic RUL prognostics using a CNN with Monte Carlo dropout. We analyze
the accuracy and reliability of these prognostics in Section 7.3. In Section 7.4 we
propose an optimization model for the maintenance planning of components, taking
into account the estimated PDF of the RUL. In Section 7.5 we illustrate our approach
for a set of turbofan engines. We also analyze the performance of our approach
relative to a time-based maintenance strategy, and relative to an ideal case with
perfect RUL prognostics. Last, conclusions are provided in Section 7.6.

7.2. METHODOLOGY - PROBABILISTIC RUL PROGNOSTICS

FOR TURBOFAN ENGINES
In this section, we estimate the PDF of the RUL of aircraft engines after each flight
cycle using a Convolutional Neural Network (CNN) with Monte Carlo dropout.

7.2.1. DESCRIPTION OF THE DATASET

In this study, we consider the aircraft turbofan engines in the C-MAPSS dataset
[25]. In this dataset, the degradation of engines is simulated using the Commercial
Modular Aero-Propulsion System Simulation (C-MAPSS) program of NASA.

The C-MAPSS dataset consists of four subsets: FD001, FD002, FD003 and FD004.
In turn, each subset consists of a training and a test set. For each engine in the
training set, one measurement per sensor per flight cycle is generated, from the

7.2. METHODOLOGY - PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN

ENGINES

7

171

FD001 FD002 FD003 FD004
of training instances 100 260 100 249
of test instances 100 259 100 248
of operating conditions 1 6 1 6
of fault conditions 1 1 2 2

Table 7.1.: The C-MAPSS subsets for aircraft engines [25].

installation of the engine until the failure (i.e., run-to-failure instances). In the test
set, one measurement per sensor per flight cycle is generated as well. However, the
sensor measurements stop at some time before failure. The goal is to predict the
RUL at that moment, i.e., the number of flight cycles until the engine fails. For
subset FD002 and FD004, six different flight conditions are present, where each flight
is performed under one flight condition. Moreover, in subset FD003 and FD004, two
different fault conditions are present (see Table 7.1).

There are 21 sensors in C-MAPSS, of which seven exhibit a constant sensor
measurement over time. We therefore only consider the remaining 14 sensors with
non-constant measurements. We normalize the sensor measurements in each subset
with min-max normalization with respect to the operating condition [26, 27]:

m̂i j =
2(mo

i j −mmin
j o)

mmax
j o −mmin

j o

−1, (7.1)

with mo
i j the sensor measurement of sensor j during flight cycle i , where flight

cycle i was performed under operating condition o, while mmin
j o and mmax

j o denote

the minimum and maximum value in the training set of sensor j under operating
condition o respectively. Last, m̂i j denotes the normalized measurement of sensor j
obtained during flight cycle i .

7.2.2. ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORK

Figure 7.2 shows the proposed architecture of the CNN. At flight cycle f of an engine
v , we consider data sample X v

f as input to this CNN:

X v
f =

[
xv

f −N , xv
f −N+1, . . . , xv

f

]
. (7.2)

Here, N denotes the number of past flight cycles included (i.e., the window size),
and xv

i denotes the normalized sensor measurements of engine v at flight cycle i :

xv
i = [

m̂v
i 1,m̂v

i 2, . . . ,m̂v
i H

]
, (7.3)

with H the total number of considered sensors, and m̂v
i j the normalized sensor

measurement of flight cycle i of engine v from sensor j (see eq.(7.1)).
The CNN consists of L convolutional layers (see also Figure 7.2). Each

convolutional layer consists of K filters, where each kernel has a size of 1×S,

7

172 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

Figure 7.2.: A schematic overview of the considered Convolutional Neural Network.

i.e., we use one-dimensional kernels [26]. The convolutional operation in the l th

convolutional layer for the nth filter k l
n is [28]:

z l
n = tanh

(
k l

n ∗ z l−1 +bl
n

)
, (7.4)

where z l
n is the nth feature map of layer l , ∗ is the convolutional operator, z l−1

are the feature maps in layer l −1, bl
n is the bias of the nth filter of layer l , and

tanh(·) denotes the hyperbolic tangent activation function. Next, we consider a
single convolutional layer with one filter, where each kernel has a size of 1×S′. This
layer combines all K feature maps in one single feature map. We denote the output
of this last convolutional layer by zL .

Last, we add two fully connected layers to the CNN. These layers predict the RUL
based on the extracted features of the last convolutional layer. The output z f of the
first fully connected layer is [28]:

z f = tanh
(
w f zL +b f

)
, (7.5)

where b f is the bias and w f are the weights of the first fully connected layer. Last,
a second fully connected layer with one neuron and the ReLU activation function
outputs the final RUL prognostic.

7.2.3. MONTE CARLO DROPOUT

We estimate a PDF of the RUL by applying Monte Carlo dropout in the CNN. We
apply a dropout rate ρ in each layer of the CNN, except the first layer (to avoid the
loss of input information). With Monte Carlo dropout, this dropout rate is not only
applied when training the CNN, but also in the testing phase. Specifically, for each
test sample, we perform M forward passes through the neural network. During each
forward pass, different, randomly selected neurons (ρ percent) are dropped (see

7.2. METHODOLOGY - PROBABILISTIC RUL PROGNOSTICS FOR TURBOFAN

ENGINES

7

173

(a) First pass (b) Second pass

Figure 7.3.: A schematic example of Monte Carlo dropout for a neural network with
three fully connected layers, during two passes of a sample through a
neural network.

Figure 7.3). Thus, a different RUL prognostic is obtained with each forward pass.
In [29], it is shown that a neural network with Monte Carlo dropout approximates
a Bayesian neural network representing a deep Gaussian process. Below, we give a
short overview of this result and how we apply it to construct a PDF of the RUL.

Let X be the samples with sensor measurements in the training set of CNN, and
let Y be the corresponding RUL values. In a Bayesian neural network, the goal is
to predict the posterior distribution p

(
y |x, X ,Y

)
of the RUL y belonging to a test

sample x, given the training samples X and Y :

p
(
y |x, X ,Y

)= ∫
p

(
y |x,ω

)
p (ω|X ,Y)dω, (7.6)

where ω denotes all the weights in the neural network. Here, p
(
y |x,ω

)
is the

probability that the RUL equals y , given test sample x and the weights of the neural
network ω. Moreover, p (ω|X ,Y) is the posterior distribution of the weights, and
denotes the probability that the weights are ω, given the training samples X and Y .

It usually is computationally very expensive to analyse the posterior distribution
p (ω|X ,Y) exactly. In variational inference, the posterior distribution p (ω|X ,Y) is
therefore approximated with a distribution q (ω)∗ instead. Here, we first define a
family (i.e., set) Q of possible posterior distributions q (ω). The goal is then to find
the distribution q (ω)∗ ∈Q that minimizes Kullback-Leibler divergence K L with the
true posterior distribution p (ω|X ,Y) [30]:

q (ω)∗ = arg minq(ω)∈Q

{
K L

(
q (ω) |p (ω|X ,Y)

)}
. (7.7)

This is equivalent to finding the distribution q (ω)∗ ∈Q that maximizes the evidence
lower bound (ELBO) LELBO [29, 30]:

LELBO =
∫

q (ω) log
(
p (Y |X ,ω)

)
dω−K L

(
q (ω) |p (ω)

)
, (7.8)

where p (ω) is the prior of the weights. We assume that the prior is the standard
multivariate normal distribution. Using q (ω)∗, we approximate the posterior

7

174 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

distribution p
(
y |x, X ,Y

)
of the RUL of a test sample by:

q
(
y |x)= ∫

p
(
y |x,ω

)
q (ω)∗ dω, (7.9)

where q
(
y |x)

is the approximation of p
(
y |x, X ,Y

)
.

In [29], the family Q of possible distributions q (ω) is defined as all Gaussian
mixture distributions with two components. The authors of [29] show that this
mixture can be approximated by setting q (ω) in each layer i as:

ωi =ωoriginal
i ·diag

([
θi , j

]Ri
j=1

)
, (7.10)

θi j ∼ Bernoulli
(
1−ρ)

, j = 1, . . . ,Ri (7.11)

where ωi are the weights of layer i , Ri is the number of nodes in layer i , and

ω
original
i are the weights of layer i without dropout. Moreover, diag(z) denotes the

diagonal matrix constructed with a vector z and θi j is zero when node j of layer i is
dropped out, and one if not. Here, we minimize eq. (7.8) by changing the weights ω
of the neural network. With this family Q, the authors of [29] obtain the following
estimator of minus the evidence lower bound −LELBO [29]:

L̂MC = 1

T

T∑
i=1

(
yi − ŷi

)2 +λ
T∑

i=1
||ωi ||22, (7.12)

with T the number of training samples, yi and ŷi the actual and estimated RUL
of training sample i respectively, and λ a weight decay parameter. This is the
same objective as minimized when training a neural network, i.e., to maximize the
evidence lower bound we can simply train the neural network with dropout to
minimize the standard loss function.

With this result, we approximate the expected value ŷ of the RUL of a test sample:

ŷ = Eq(y |x)
(
y
)= 1

M

M∑
j=1

ŷ j

(
x,ω j

)
, (7.13)

where M is the number of forward passes through the neural network, ω j are the
weights of the neural network belonging to the j th forward pass (i.e., where some
neurons are dropped out), and ŷ

(
x,ω j

)
is the resulting RUL prognostic from the j th

forward pass through the neural network. For the PDF of the RUL, we give each
individual RUL prognostic ŷ j

(
x,ω j

)
a probability of 1

M .

7.3. RESULTS - PROBABILISTIC RUL PROGNOSTICS FOR

AIRCRAFT TURBOFAN ENGINES

In this section, we present the probabilistic RUL prognostics for turbofan engines.

7.3. RESULTS - PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT TURBOFAN

ENGINES

7

175

7.3.1. HYPERPARAMETER TUNING

The considered hyperparameters of the neural network are in Table 7.2, optimized
with as starting point the hyperparameters of the CNN in [6, 26]. In contrast with
these papers, the window size equals N = 30 for all four data subsets. For data
subsets FD002 and FD004, however, some test instances do not have 30 historical
flight cycles. For these test instances we apply zero padding [31], i.e., we set all
the sensor measurements of the missing flight cycles to zero. This technique is
very common in image processing. Moreover, we use a piece-wise linear RUL target
function [26, 32, 33] with Rearly = 125 flight cycles, i.e, the target RUL is Rearly = 125
flight cycles when the actual RUL is larger than 125 flight cycles.

Hyperparameter Value
Hyperparameters - architecture

Window-size N 30
Convolutional layers L 5
Number of filters K 10
Kernel size S 10
Kernel size S′ last convolutional layer 3
Number of nodes fully connected layer 100
Monte Carlo dropout rate ρ 0.5
Number of passes M 1000
Rearly 125

Hyperparameters - optimization
Optimizer Adam [34]
Number of epochs 250
Training-Validation split 80%-20%
Initial learning rate 0.001
Decrease learning rate when no improvement in validation
loss for ... epochs in a row

10

Decrease learning rate by 1
2

Table 7.2.: Considered hyperparameters of the CNN.

7.3.2. MEAN ESTIMATED RUL
Table 7.3 shows the Root Mean Square Error (RMSE) [35], which is calculated with
the mean estimated RUL (see eq. (7.13)), for the four data subsets. The RMSE of the
mean estimated RUL is higher for subsets FD002 and FD004 than for subsets FD001
and FD003, probably due to the multiple operating modes.

Table 7.3 also shows the results of existing studies employing various machine
learning algorithms for the same dataset. The performance of our RUL prognostic
method with respect to the mean estimated RUL is comparable to the state-of-the art
solutions, especially for data subset FD002 and FD004. Potential contributing factors
to the good performance of our approach are that we consider a larger window

7

176 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

size N for FD002 and FD004 than most existing studies, and that we normalize the
measurements with respect to the operating conditions (see eq. (7.1)).

FD001 FD002 FD003 FD004
Our approach 12.42 13.72 12.16 15.95
CNN [26] 12.61 22.36 12.64 23.31
LSTM-MLSA [33] 11.57 14.02 12.13 17.21
CNN-LSTM [36] 11.17 - 9.99 -
HAGCN [37] 11.93 15.05 11.53 15.74
HDNN [38] 13.02 15.24 12.22 18.17
MPHD-NN [39] - 14.25 - 16.44

Table 7.3.: RMSE (in flights) for the RUL prognostics using C-MAPSS and various
machine learning algorithms. Here, Rearly = 130 in [37], and Rearly = 125 in
the other considered studies. The best results are denoted in bold.

7.3.3. PDF OF THE RUL PROGNOSTICS

Instead of predicting only one number for the RUL, however, we predict the PDF of
the RUL. Figure 7.4 shows the PDF of the RUL for two test instances of data subset
FD004. For test instance 67 (Figure 7.4a), the mean estimated RUL is close to the
actual RUL. The PDF, however, is very wide. For test instance 38 (Figure 7.4b), the
mean estimated RUL is far away from the actual RUL. Moreover, the actual RUL falls
outside the estimated PDF, even though this PDF is very wide as well.

(a) Test instance 67, data subset FD004 of
C-MAPSS.

(b) Test instance 38, data subset FD004 of
C-MAPSS.

Figure 7.4.: Histogram of the estimated RUL of two test instances.

The RMSE only evaluates the mean estimated RUL. We therefore use the
α-Coverage and the reliability diagram to evaluate the reliability of the PDF of the
RUL, i.e., how well the estimated probabilities match with the observed outcomes

7.3. RESULTS - PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT TURBOFAN

ENGINES

7

177

[13, 40]. The α-Coverage is defined as [13]:

α-Coverage = 1

D

D∑
i=1

Iα
(
yi

)
, (7.14)

with Iα(yi) =
{

1, yi ∈
[

ŷ0.5−0.5α
i , ŷ0.5+0.5α

i

]
0, Otherwise,

where α ∈ [0,1] is an user-defined parameter, ŷk
i is the k th percentile of the

estimated RUL distribution for test instance i , and D is the number test instances.
[ŷ0.5−0.5α

i , ŷ0.5−0.5α
i] is thus the α percent confidence interval around the median of

the PDF of test instance i . The closer the α-Coverage is to α, the more reliable the
RUL prognostics are. Related to this metric is the α-Mean width, which is the mean
width in flight cycles of the confidence intervals at α [13, 40]:

α-Mean width = 1

D

D∑
i=1

(
ŷ0.5+0.5α

i − ŷ0.5−0.5α
i

)
. (7.15)

FD001 FD002 FD003 FD004

α= 0.50
α-Coverage 0.54 0.51 0.57 0.52
α-Mean width 16.3 15.2 16.7 16.8

α= 0.90
α-Coverage 0.91 0.85 0.92 0.85
α-Mean width 39.2 36.1 40.3 40.1

α= 0.95
α-Coverage 0.95 0.89 0.97 0.90
α-Mean width 46.4 42.4 47.6 47.3

Table 7.4.: α-Coverage and α-Mean width (in flight cycles) for the RUL prognostics
of the engines in the C-MAPSS datasets.

Table 7.4 shows the α-Coverage for α ∈ {0.5,0.9,0.95}. As an example, we illustrate
the α= 0.9 coverage. With α= 0.9, we obtain the confidence interval [ŷ0.05

i , ŷ0.95
i],

where ŷ0.05
i and ŷ0.95

i are the RUL prognostics belonging to the 5%th and the

95%th percentile respectively. If we estimate the RUL and the corresponding 90%
confidence interval for test instance i a large number of times, we thus expect that
α= 90% of the resulting confidence intervals contain the actual RUL. To calculate
the α-Coverage, we construct this confidence interval with width α= 0.9 for all D
test instances of each data subset, and count how often the true RUL falls within
the confidence interval. It is expected that for α= 90% of the test instances, the
actual RUL yi falls within the considered confidence interval. For data subset
FD003, the actual RUL yi falls within the confidence interval for 92% of the test
instances. This means that the uncertainty for data subset FD003 and α = 0.9 is
slightly overestimated. In contrast, for data subset FD002 and FD004, the α-Coverage
equals 85%, i.e., the actual RUL yi of 85% of the test instances falls within the
considered confidence interval. This means that the uncertainty for data subsets
FD002 and FD004 and α= 0.9 is underestimated.

7

178 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

In general, the α-Coverage is close to α for all subsets and all the considered
values for α (see Table 7.4). This means that the estimated probabilities match well
with the observed outcomes, and the RUL prognostics are thus reliable. However,
the mean widths of the confidence interval are quite large. The uncertainty of the
RUL prognostics is thus large, despite the reliability of the RUL prognostics.

Figure 7.5.: Reliability diagram for the four subsets of C-MAPSS.

Figure 7.5 shows the reliability diagram of the four subsets of C-MAPSS [13]. Here,
C (α)i =

{
α-Coverage,α ∈ {0.00,0.01,0.02, . . . ,1.00}

}
is the reliability curve of subset

i ∈ {FD001, FD002, FD003, FD004}. Moreover C̃ (α) = {α,α ∈ {0.00,0.01, . . . ,1.00}} is the
ideal curve, i.e., the curve where the coverage C (α) =α. When the reliability curve is
beneath the ideal curve for a certain α, then the uncertainty is underestimated at
this value for α. In contrast, when the reliability curve is above the ideal curve for a
certain α, the uncertainty is overestimated at this value for α. Figure 7.5 shows that
the reliability curves of all four data subsets are close to the ideal curve. Thus, the
uncertainty of the RUL prognostics is well estimated.

7.4. METHODOLOGY - MAINTENANCE SCHEDULING
In this section, we propose a model to find the optimal replacement moment of
a component based on the probabilistic RUL prognostics and the expected costs
associated with maintenance. For the maintenance planning of a single component,
we pose the problem of identifying an optimal replacement time as a renewal-reward
process. For the maintenance planning of multiple components, we propose
an integer linear program that additionally takes into account the availability of
maintenance slots and the capacity of these slots.

7.4.1. SINGLE-COMPONENT MAINTENANCE PLANNING

We find the optimal moment to replace a single component with a renewal-reward
process. Let {N (t), t ≥ 0} be a renewal process where the process regenerates when

7.4. METHODOLOGY - MAINTENANCE SCHEDULING

7

179

a component is replaced [41]. Let Cn be the cost incurred during the nth renewal
cycle, due to a replacement of the component, and let Ln be the length of the nth

cycle, i.e., the time between the nth and the (nth −1) replacement. In our case,
an nth component is thus used for a Ln amount of time. Defining C (t) as the
cumulative cost incurred up to time t , the renewal-reward theorem states that the
long-term average cost per unit of time (limt→∞ C (t)

t) is equivalent to [41]:

lim
t→∞

C (t)

t
= E[C1]

E[L1]
.

To determine an optimal replacement time that minimizes the long-term average
cost per unit of time, we can thus simply minimize the costs incurred during one
cycle, over the length of one cycle:

E(cost incurred during one cycle)

E(length of one cycle)
. (7.16)

We assume that at some present moment, a component (aircraft engine) has
been used for k time steps. At this present moment k, an optimal replacement
moment that minimizes eq. (7.16) is determined. If a preventive replacement is
scheduled at k + tk time steps (i.e., in tk time steps from the present moment), and
the component does not fail until time k + tk , then a cost cr is incurred for this
preventive replacement. Here, the risk is that the component may fail at some time
k + j ,0 ≤ j < tk . If the component indeed fails after j time steps, than a cost cf > cr is
incurred and this component is immediately replaced by a new one. The component
is thus either i) replaced upon failure at a cost cf, or ii) is preventively replaced at a
cost cr after using it for k + tk time-steps.

The component is continuously monitored by sensors. The sensor measurements
of the first k time steps of usage are available. In Section 7.2, xv

i , i ∈ {1,2, . . . ,k}
denotes this series of measurements up to time step k of an engine v . Based on
these sensor measurements, the probability that the RUL of the component is i
time steps, i ≥ 0, is estimated using a CNN with Monte Carlo dropout (see Section
7.2). Let φk (i) denote the probability that, after being used for k time steps, the
component has a RUL of exactly i time steps, i ≥ 0.

Figure 7.6.: An example of the probability φk (i) for a single component, as estimated
at time k = 100.

7

180 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

Let C (k, tk) denote the replacement costs of the component and let L(k, tk) denote
the lifetime of the component, given that this component has already been used for
k time steps. Here, the component is replaced i) upon failure, or ii) preventively
after being used for k + tk time-steps. We are interested in identifying the optimal
value of tk , i.e., an optimal time to replace the component, which minimizes the
long-term average cost per unit of time (see eq. (7.16)):

E[C (k, tk)]

E[L(k, tk)]
, (7.17)

where the expected replacement cost of the component is:

E[C (k, tk)] = cf

tk−1∑
i=0

φk (i)+ cr

(
1−

tk−1∑
i=0

φk (i)

)
, (7.18)

and the expected lifetime of the component is:

E[L(k, tk)] =k +
tk−1∑
i=0

i ·φk (i)+ tk

(
1−

tk−1∑
i=0

φk (i)

)
. (7.19)

Let t∗k denote the optimal value for tk , that minimizes eq. (7.17). In general, if
there is a high probability that the RUL is zero, then t∗k is also expected to tend to
zero. Conversely, if there is a high probability that the RUL is large, then t∗k is also
expected to be relatively large.

Figure 7.6 shows an example of the probability φk (i) of a component of having a
RUL of i time steps, given that it has already been used for k = 100 time steps. We
evaluate the expected costs over the expected lifetime if tk = 5, i.e., if we replace the
component at day k + tk = 105. The probability that the component fails in the next
tk = 5 days equals

∑4
i=0φk (i) = 0.14 (blue, dotted area in Figure 7.6). The expected

cost when replacing the component at day 105 is cf ·0.14+ cr(1−0.14). The expected
lifetime is 100+0.41+5 · (1−0.14) = 104.71.

7.4.2. MULTI-COMPONENT MAINTENANCE PLANNING

We now consider the maintenance planning for multiple components. Let V denote
the set of components (aircraft engines). Let dp denote the present day, and d v

0
denote the installation day of a component v ∈V . Let kp = dp −d v

0 denote the usage
time of component v ∈V at present day dp.

At present day dp, a probabilistic RUL prognostic, i.e., the estimated PDF of the
RUL, is available for each component v ∈V (see Section 7.2). Let φv

kp
(i) denote the

estimated probability that the RUL of component v ∈V is exactly i flight cycles, after
being used for kp flight cycles at the present day dp . Again, φv

kp
(i) is estimated

using CNN with Monte Carlo dropout in Section 7.2. We assume that each engine
performs one flight cycle per day.

A component can be replaced in dedicated maintenance slots, i.e. days when the
component is available for maintenance, and the maintenance facility and required
equipment are available. In the case of an aircraft engine, the aircraft is on the

7.4. METHODOLOGY - MAINTENANCE SCHEDULING

7

181

ground during these maintenance slots, and the aircraft maintenance hangar and
equipment are available [6]. At present day dp, maintenance slots are known up to l
days in advance. Let Sv be the set of maintenance slots available for a component
v ∈V in the period [dp,dp + l). The set Sv is specific to component v .

We also consider generic maintenance slots, i.e., a day during which any
component v ∈ V can be replaced, but at an additional high cost cg. One generic
maintenance slot is available per day. Let Sg be the set of generic maintenance slots
available in the period [dp, dp + l).

Figure 7.7.: Example of the notation in the multi-component maintenance planning
problem for a single engine v = 1.

Let d s be the day belonging to slot s, s ∈ Sg ∪Sv , v ∈V , and let Sd be the set of all
slots at day d ∈ [dp,dp + l), i.e., all s ∈ Sg ∪Sv , v ∈ V : d s = d . Let t s

p = d s −dp denote
the number of days a maintenance slot s is available after present day dp. Last, due
to limited resources, at most h components can be replaced per day. Figure 7.7
shows an example of the notation in the multi-component maintenance planning
problem for a single engine v = 1.

We analyse the maintenance planning for a period of T days using a rolling
horizon approach. First, at present day dp = 1, the maintenance planning is made for
the time-window [dp,dp + l). Here, the RUL prognostics are obtained at present day
dp = 1. Then, the replacements planned in the first τ,τ< l days of this maintenance
planning are executed. It is assumed that components that fail in the first τ days
are immediately replaced. Next, we roll to the next time window by updating the
present day dp := 1+τ and by updating the RUL prognostics. With these new RUL
prognostics, a maintenance planning is now made for the time-window [dp,dp + l),
i.e., for [1+τ,1+τ+ l). This process is repeated until the maintenance planning of
the full T days is executed.

An example of two iterations of a rolling horizon approach is in Figure 7.8, with
|V | = 3 engines. At the first present day dp = 1, we know the maintenance slots of
the l = 10 subsequent days (day dp + l is not included). Using the RUL prognostics,
we thus make a maintenance planning for the next l = 10 days (Figure 7.8a). Then,

7

182 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

(a) First iteration of the rolling horizon
approach, present day dp = 1.

(b) Second iteration of the rolling horizon
approach, present day dp = 6.

Figure 7.8.: Schematic example of two iterations of the rolling horizon approach,
with |V | = 3 engines, τ= 5 days, l = 10 days, and present days dp = 1 and
dp = 6.

we fix the decisions of the first τ= 5 days, update the RUL prognostics and move
forward to present day dp = 1+τ= 6 (Figure 7.8b). Note that the mean estimated
failure time changes between present day dp = 1 and dp = 6, because the RUL
prognostics are updated in each new time-window.

MAITNENANCE COSTS

Let cv
s denote the expected costs over the expected lifetime of the component (see

eq. (7.17)) when component v is replaced in slot s, with dp ≤ d s < dp + l . We
calculate cv

s by dividing the expected costs of this replacement by the expected
lifetime, given that component v is replaced i) upon failure or ii) preventively in
slot s, whichever comes first. The expected costs cv

s consist of the expected failure
costs, the expected preventive replacement costs, and the expected costs of using
the generic slot. Formally,

cv
s =

cf

t s
p−1∑
i=0

φv
kp

(i)+ (
cr + cgIg(s)

)(
1−

t s
p−1∑
i=0

φv
kp

(i)

)

(dp −d v
0)+

t s
p−1∑
i=0

iφv
kp

(i)+ t s
p

(
1−

t
p
s −1∑
i=0

φv
kp

(i)

) , (7.20)

where

Ig(s) =
{

1 s ∈ Sg

0 Other,
. (7.21)

Let cv
DN denote the expected cost over the expected lifetime of component v ∈V

within the period [dp,dp + l), when no replacement is planned for this component
in this period, i.e., when we do nothing (DN). In other words, the replacement of
this component is postponed to after day dp + l , and we thus only incur costs in the
period [dp,dp + l) if the component fails in this period. The costs, only considering

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

183

the period [dp,dp + l) for both the expected costs and the expected life, are:

cv
DN =

cf

l−1∑
i=0

φv
kp

(i)

(dp −d v
0)+

l−1∑
i=0

iφv
kp

(i)+ l

(
1−

l−1∑
i=0

φv
kp

(i)

) . (7.22)

With these costs, we propose an Integer Linear Program (ILP) to schedule the
component replacements at present day dp for the time-window [dp,dp + l).

DECISION VARIABLES

We consider the following decision variable:

xv s =
{

1, Component v ∈V is replaced in slot s ∈ Sv ∪Sg

0, Otherwise.
(7.23)

OBJECTIVE

We aim to minimize the expected costs over the expected lifetime, i.e.,:

min.
∑

v∈V

(∑
s∈Sv∪Sg

cv
s xv s + cv

DN

(
1− ∑

s∈Sv∪Sg

xv s

))
. (7.24)

CONSTRAINTS

A component v ∈V can be scheduled for replacement at most once in a time-window:∑
s∈Sv∪Sg

xv s ≤ 1, ∀v ∈V (7.25)

At most h components can be scheduled for replacement during one day, due to the
limited maintenance capacity and limited resources:∑

v∈V

∑
s∈Sd

xv s ≤ h, ∀d ∈ [
dp,dp + l

)
(7.26)

Last, we consider a binary variable:

xv s ∈ {0,1} ∀v ∈V ,∀s ∈ (
Sv ∪Sg

)
. (7.27)

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN

ENGINES
In this section, we illustrate our maintenance planning methodology proposed in
Section 7.4 for the aircraft turbofan engines.

7

184 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

(a) Actual RUL = 125 flight cycles. (b) Actual RUL = 75 flight cycles.

(c) Actual RUL = 25 flight cycles.

Figure 7.9.: Predicted PDF of the RUL of engine 2 of subset FD001, C-MAPSS. This is
the first engine selected from subset FD001 for maintenance planning.

7.5.1. PROBABILISTIC RUL PROGNOSTICS FOR THE MAINTENANCE

PLANNING

In Section 7.3 we have presented the RUL prognostics for the engines in the C-MAPSS
test sets. For these test engines, the measurements stop at some moment before
failure, i.e., these are not complete series until the moment of failure. To analyse
the predictive maintenance planning, however, we need complete series of sensor
measurements up to the moment of failure, i.e., we need run-to-failure instances.
The engines in the C-MAPSS training set have such complete run-to-failure series
of measurements. Thus, we use the engines in the C-MAPSS training set for
maintenance planning. We first randomly select 80% of the engines of each training
set (568 engines in total) [6, 42] to train the CNNs (see Section 7.2). For the
remaining 20% of engines (a total of 141 engines), we estimate the PDF of the
RUL after each flight using the trained CNNs and Monte Carlo dropout. The RUL
prognostics of these 141 engines are then used to analyze the maintenance planning
model proposed in Section 7.4.

Figure 7.9 shows the obtained PDF of the RUL of engine 2 of subset FD001 when
the actual RUL is 125, 75 and 25 flight cycles. Engine 2 is the first engine randomly
selected from FD001 for maintenance planning. The PDF of the RUL of this engine

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

185

Figure 7.10.: The mean estimated RUL for the last 125 flight cycles for the engines
selected for maintenance planning from subset FD001, C-MAPSS.

is centered around the actual RUL for all three time moments. However, the mean
estimated RUL is closer to the actual RUL when the actual RUL is 75 or 25 flight
cycles, than when the actual RUL is 125 flight cycles.

Figure 7.10 shows the mean estimated RUL for the last 125 flight cycles before
failure for all engines selected for maintenance planning from FD001. Here, each
colored line shows the RUL prognostics belonging to one engine. After each flight,
the mean estimated RUL is updated for each engine. For all engines, the mean
estimated RUL slightly underestimates the actual RUL when the actual RUL is
125 flight cycles. For a few engines, moreover, the mean estimated RUL deviates
substantially from the actual RUL when the actual RUL is still large. However, the
mean estimated RUL converges to the actual RUL when an engine becomes closer
to failure.

FD001 FD002 FD003 FD004
RMSE 13.06 15.15 13.58 15.93

α= 0.50
α-Coverage 0.50 0.47 0.60 0.60
α-Mean width 16.3 15.5 16.9 16.5

α= 0.90
α-Coverage 0.90 0.82 0.89 0.88
α-Mean width 39.2 37.5 40.7 39.9

α= 0.95
α-Coverage 0.94 0.88 0.93 0.91
α-Mean width 46.4 44.4 48.1 47.2

Table 7.5.: The RMSE (with the mean estimated RULs), α-Coverage and α-Mean
width for the RUL prognostics of the engines selected for maintenance
planning from the C-MAPSS training sets.

Table 7.5 shows the metrics of the RUL prognostics with all the 141 engines
selected for maintenance planning. The RMSE is higher than for the test instances
in Section 7.2, while the α-Coverage diverges more from α. This is as expected, since
there are less failure instances available to train the CNN.

7

186 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

7.5.2. SINGLE-ENGINE REPLACEMENT PLANNING

Actual RUL k Mean estimated RUL 99% CI of the RUL t∗k k + t∗k
Engine 2 - subset FD001

True lifetime = 287 flight cycles
125 162 113.7 [83,144] 83 245
100 187 99.3 [66, 128] 66 253
75 212 79.7 [40,114] 40 252
50 237 45.5 [14,75] 13 250
25 262 31 [0,64] 0 262

Engine 10 of subset FD002
True lifetime = 184 flight cycles

125 59 112.5 [82, 141] 85 144
100 84 114.2 [85, 146] 85 169
75 109 91.6 [55, 127] 58 167
50 134 81.1 [49, 114] 48 182
25 159 30.4 [0,60] 0 159

Engine 2 of subset FD003
True lifetime = 253 flight cycles

125 128 115.3 [83, 146] 82 210
100 153 118.4 [89,151] 88 241
75 178 92.9 [67,125] 62 240
50 203 59.3 [27,92] 27 230
25 228 28.4 [0,57] 0 227

Engine 3 of subset FD004
True lifetime = 307 flight cycles

125 182 111.5 [81, 144] 80 262
100 207 101.2 [67,135] 72 279
75 232 68.1 [40,100] 40 272
50 257 50.4 [23,79] 21 278
25 282 23.2 [0,53] 0 282

Table 7.6.: The actual RUL, the number of cycles the engine has already been in
use k, the mean estimated RUL, the 99% confidence interval (CI) of the
estimated RUL, the optimal number of flight cycles to use the engine
before preventive replacement t∗k , and the optimal replacement moment
of the engine k + t∗k . The first engines randomly selected for maintenance
planning from FD001, FD002, FD003, FD004 are chosen for illustration.

In this section, we discuss the optimal moment of replacement k + t∗k from Section
7.4.1, eq. (7.17). We consider a preventive replacement cost cr = 10 and a failure cost
cf = 50. Table 7.6 shows for four engines the optimal moment for replacement k + t∗k ,
at five moments during the life of each engine. Engine 2, 10, 2, and 3 is the first
randomly selected engine for maintenance planning from C-MAPPS subset FD001,
FD002, FD003, and FD004, respectively. As an example, consider engine 2 of subset

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

187

(a) Engine 2 of subset FD001. (b) Engine 10 of subset FD002.

(c) Engine 2 of subset FD003. (d) Engine 3 of subset FD004.

Figure 7.11.: Actual RUL, mean estimated RUL and t∗k . Engine 2, 10, 2 and 3 are the
first randomly selected engines for maintenance planning from FD001,
FD002, FD003 and FD004, respectively.

FD001 when the actual RUL is 125 flight cycles. At this moment, the engine has
been used for k = 162 flight cycles. The mean estimated RUL is 113.7 flight cycles,
and the 99% confidence interval of the estimated RUL is [83,144]. Given the current
usage of 162 flight cycles, it is optimal to replace this engine after an additional of
t∗k = 83 flight cycles, i.e., at the lower bound of the 99% confidence interval of the
estimated RUL. The optimal moment of a preventive replacement of this engine is
thus k + t∗k = 162+83 = 245 flight cycles.

The optimal moment of replacement k + t∗k varies over time, since the RUL
prognostics are updated after each flight cycle. In Table 7.6, t∗k is close to the
lower bound of the 99% confidence interval of the RUL prognostic. Here, t∗k is thus
smaller if the RUL prognostics are more uncertain, i.e., if the confidence intervals
are wider. On the other hand, the more certain the RUL prognostics are, the closer
t∗k is to the mean estimated RUL. Figure 7.11 further illustrates the optimal number
of flight cycles t∗k for the engines in Table 7.6. For all four engines, t∗k follows the
same trend as the mean estimated RUL. Moreover, when the actual RUL is 25 flight
cycles or less, it is optimal to immediately perform a preventive replacement for all
four engines, i.e., t∗k = 0. This is because, at this moment, we estimate with a quite

7

188 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

high probability that the RUL of the engine is 0 flight cycles (see the 99% confidence
intervals of the RUL in Table 7.6).

For engine 10 of subset FD002 (Figure 7.11b), the mean estimated RUL is larger
than the actual RUL, when the actual RUL is around 60 flight cycles. Based on
these prognostics, equation (7.17) is minimized when the engine is replaced after
the failure time. For example, the mean estimated RUL is 93 flight cycles, with a
100% confidence interval of [62,123], while the actual RUL is only 55 flight cycles.
The estimated probability that the engine fails on or before the actual RUL is thus
zero. The optimal replacement moment, based on the RUL prognostics, is therefore
t∗k = 65 flight cycles, i.e., after the failure time of the engine. However, due to the
updating of the RUL prognostics, it is again optimal to replace engine 10 of FD002
before the failure time around 40 flight cycles before failure onwards.

Figure 7.12 shows the actual RUL− t∗k for all 141 engines considered for
maintenance planning, at five moments during the engines’ life. As an example,
for engine 2 of subset FD001 in Table 7.6, it is optimal to replace the engine
after t∗k = 83 flight cycles, while the actual RUL is 125 flight cycles. The
actual RUL− t∗k = 125−83 = 42 flight cycles, i.e., the optimal moment of replacement
is 42 flight cycles before engine failure.

When the actual RUL is 125 cycles or when the actual RUL is 100 cycles, then the
optimal moment of replacement is always before the engine fails. When the actual
RUL is 125 cycles, it is optimal to replace each engine at least 30 cycles before its
failure. This is because the RUL is slightly underestimated when the actual RUL is
125 cycles (see Figure 7.10), and the lower bounds of the 95% and 99% confidence
intervals are always much smaller than 125 flight cycles. When the actual RUL is 75
or 50 flight cycles, however, the RUL prognostics sometimes overestimate the actual
RUL: For some engines, the estimated probability that the RUL is equal to or smaller
than the actual RUL is even zero. The optimal moment of replacement for some
engines therefore falls after the engine failure date when the actual RUL is 75 or
50 flight cycles. When the actual RUL is 25 flight cycles (Figure 7.12e), however, it
is optimal to immediately perform a preventive replacement for most engines, i.e.,
t∗k = 0. Moreover, 25 flight cycles before failure, the optimal maintenance moment is
at least 10 days before the engine fails.

7.5.3. MULTI-ENGINE REPLACEMENT PLANNING

In this section, we plan maintenance for multiple engines using the methodology in
Section 7.4.2. We consider a fleet of |V | = 50 engines, which are randomly selected
from the 141 engines considered for maintenance. Maintenance slots are randomly
sampled with a frequency of one per 10-20 days [6]. We assume that at most h = 1
engine per day can be maintained, and that maintenance slots are known l = 50
days ahead. We consider a preventive replacement cost cr = 10, a cost of using a
generic slot cg = 10 and a cost of a failure are cf = 50. As mentioned before, we also
assume that each engine performs one flight cycle per day.

We analyse the maintenance planning of the engines for a period of T = 10×365
days (i.e., ten years). We plan maintenance l = 50 days ahead, where we fix the
maintenance during the first τ= 10 days. Last, we assume that a failed engine is

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

189

(a) Actual RUL = 125 flight cycles. (b) Actual RUL = 100 flight cycles.

(c) Actual RUL = 75 flight cycles. (d) Actual RUL = 50 flight cycles.

(e) Actual RUL = 25 flight cycles.

Figure 7.12.: Histogram of (actual RUL - t∗k), for all engines selected for maintenance
planning from the C-MAPSS datasets.

immediately replaced with a new engine. We implement the ILP in Python using
Gurobi, on a computer with an Intel Core i7 processor at 2.11 GHz and 8Gb RAM. It
requires 109 seconds to create a maintenance planning for a period of ten years.

Figure 7.13 shows the resulting maintenance planning at present days dp = 791
and dp = 801. At day 791, a replacement is planned for 6 engines, namely engines 9,
14, 16, 29, 40 and 41. For each engine with a planned replacement, we show the
available maintenance slots (blue squares), the actual failure time (red cross in a

7

190 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

(a) Present day dp = 791. Not depicted is that engine 14 fails at day 843, that engine 16 fails
at day 854, while the mean estimated failure time is at day 845, and that the mean
estimated failure time of engine 41 is at day 836.

(b) Present day dp = 801. Not depicted is that engine 1 fails at day 846, while the mean
estimated failure time is at day 850, that engine 14 fails at day 843, that engine 16 fails
at day 854, while the mean estimated failure time is at day 844, and that engine 17 fails
at day 845, while the mean estimated failure time is at day 852.

Figure 7.13.: Maintenance planning at present day dp = 791 and day dp = 801. Only
the engines for which a replacement is planned during these two
present days are depicted.

circle) and the mean estimated failure time (orange cross in a dotted circle). For an
engine v ∈V at present day dp, we use t∗kp,v to denote the optimal t∗k from eq. (7.17)

in Section 7.4.1. Here, dp + t∗kp,v
thus denotes the optimal replacement moment from

the renewal-reward process with a single engine (blue cross).

For engine 29, 40 and 41, the engine replacement is planned close to the optimal
moment from the renewal-reward process. For engines 29 and 40, the replacement
is planned 4 and 1 day(s) before this optimal moment, respectively. For engine
41, the replacement is planned 1 day after this optimal moment. For engine 9, 14
and 16, however, the replacement is planned 16, 16 and 12 days after the optimal
moment from the single-engine problem, respectively. For all these three engines,
an earlier maintenance slot closer to the single-engine optimal replacement moment
is available. However, engine 29 or engine 41 is already replaced at the days of
these maintenance slots. Since we assume that at most one engine per day can be

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

191

maintained, we cannot maintain engine 9, 14 and 16 at these days as well.
Using the rolling horizon approach, the maintenance decisions of the first τ= 10

days of the maintenance planning are executed. Engine 29 and engine 40 are
replaced at day 793 and day 797 respectively, and no engine failure occurs. The RUL
prognostics are updated, and a new maintenance planning is then made at day 801.

At day 801, the replacements for engine 14, 16 and 41 remain planned in the same
maintenance slots. The updated prognostics of engine 9, however, indicate that this
engine could fail very soon: At present day 791, the first available maintenance slot
that fulfilled the capacity constraint was at day 815. The probability that engine
9 would fail before day 815 was estimated at 7.7%. The costs of using a generic
slot (10) thus exceeded the expected failure costs (cf ·0.077 = 50 ·0.077 = 7.7). The
replacement was therefore scheduled at day 815. At present day 801, however, the
estimated probability that engine 9 fails before day 815 is 26.5%. The expected
failure costs (50 ·0.265 = 13.25) are thus higher than the cost of using a generic
slot. A generic slot (purple, dotted square) is therefore used to replace this engine
immediately at day 801. Additionally, a replacement is planned for engine 1 at day
822, four days after the optimal moment for a single engine, and for engine 17 at
day 829, two days after the optimal moment for a single engine.

Figure 7.14.: The optimum replacement time dp + t∗kp,v for single engine replacement

(see eq. (7.17)) minus the scheduled replacement time d ILP
p,v in the

multi-engine replacement problem.

Let d ILP
p,v be the day of a scheduled replacement of engine v ∈ V , as planned at

present day dp using the ILP for multi-engine maintenance planning. Figure 7.14
gives a histogram of the optimal moment of replacement dp + t∗kp,v for the case of

a single engine, minus the scheduled replacement time d ILP
p,v from the multi-engine

problem. For example, in Figure 7.13a, it is optimal at present day dp = 791 to
replace engine v = 41 at day 802, i.e. dp+ t∗kp,v = 791+11 = 802. However, it is planned

to replace engine v = 41 at day d ILP
p,v = 803 instead. The replacement of engine 41 is

thus scheduled 802−803 =−1, i.e., one day day after the optimal moment.
Figure 7.14 shows that the results obtained for the maintenance of multiple engines

are similar to the results for single-engine maintenance: Most of the time, the
optimal replacement moment of the single-engine problem is close to the optimal

7

192 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

replacement moment of the multi-engine problem. The optimal replacement time
obtained from the multi-engine problem, however, can also deviate up to 20 days
from the optimal replacement time obtained from the single-engine problem due to
the limited availability of slots and the limit of h replacements per day.

7.5.4. LONG-TERM PERFORMANCE OF DIFFERENT MAINTENANCE

STRATEGIES

In this section, we compare three maintenance strategies: i) the proposed
maintenance strategy with probabilistic RUL prognostics (Section 7.4), ii) a
maintenance strategy with perfect RUL prognostics, and iii) a time-based
maintenance strategy without RUL prognostics. The long-term performance of these
maintenance strategies is analyzed by means of a Monte Carlo simulation.

Perfect RUL prognostics For this maintenance strategy, we assume that we exactly
know the failure time of the engine without any uncertainty, i.e., that we have
perfect RUL prognostics. For this strategy, we use the same ILP as in Section 7.4.2.
However, we now input the actual RUL in eq. (7.20) and eq. (7.22), instead of the
estimated probabilistic RUL prognostics.

Time-based maintenance For this strategy, we determine the probability of the
failure of an engine based on its current usage. In Section 7.5.1, we selected
568 engines to train the CNN, while the remaining 141 engines were used for
maintenance planning. For the time-based maintenance strategy, we use the 568
engines to determine a generic histogram of the lifetime of engines (see Figure 7.15).

Figure 7.15.: Histogram of the lifetime of the 568 historical failure instances selected
for training the CNN in Section 7.5.1.

For any of the 141 engines selected for maintenance planning, the estimated
probability that the lifetime of this engine is i flight cycles at the moment of
installation, is the proportion of the 568 engines for which the lifetime is i flight
cycles. For example, 2 out of the 568 engines have a lifetime of 231 flight

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

193

cycles. When planning maintenance, we therefore estimate that, at the moment of
installation, the probability that the lifetime of an engine is 231 flight cycles is 2

568 .
Let φ̃(i) denote the probability that the lifetime of an engine is exactly i flight cycles.
In the considered example, φ̃(231) = 2

568 ≈ 0.0035.
Consider that any engine of the 141 engines has been used for k flight cycles. The

lifetime L of this engine is thus larger than or equal to k cycles, i.e., L ≥ k. Given
that L ≥ k, the conditional probability φ̃(k + i |L ≥ k) that the lifetime L = k + i flight
cycles is solely based on the histogram in Figure 7.15:

φ̃(k + i |L ≥ k) = φ̃(L = k + i ∩L ≥ k)

φ̃(L ≥ k)
(7.28)

= φ̃(k + i)

1−∑k−1
i=0 φ̃(i)

(7.29)

The difference between Section 7.5.1 and the time-based maintenance strategy is
that under the time-based maintenance strategy, the probability of failure for all 141
engines is estimated to be the same, given an usage period of k cycles. The sensor
measurements are not considered in calculating the probability of failures.

As another example, assume that an engine has been used for k = 220 flight cycles.
The probability 1−∑219

i=0 φ̃(i) that the lifetime of an engine is 220 flight cycles or
larger is 0.4296. The conditional probability that the lifetime L of this engine equals
231 flight cycles is thus φ̃(231|L ≥ 220) = 0.0035

0.4296 = 0.008. Using these conditional
probabilities φ̃(k + i |L ≥ k), we plan the single-component and multi-component
replacements with the same method as before.

Time-based single-component replacement
Now that φ̃(k + i |L ≥ k) is determined based on the histogram in Figure 7.15, eq.
(7.18) with the expected costs and (7.19) with the expected lifetime become:

E[C (k, tk)] = cf

tk−1∑
i=0

φ̃(k + i |L ≥ k)+ cr

(
1−

tk−1∑
i=0

φ̃(k + i |L ≥ k)

)
,

E[L(k, tk)] = k +
tk−1∑
i=0

i · φ̃(k + i |L ≥ k)+ tk

(
1−

tk−1∑
i=0

φ̃(k + i |L ≥ k)

)
.

Time-based multi-component replacement
We again plan the multi-component replacement using the ILP in Section 7.4.2. Let
kv

p = dp −d v
0 be the number of days engine v ∈V is in use at present day dp .

Now that φ̃(k + i |L ≥ k) is determined based on the histogram in Figure 7.15, the
expected costs of planning to replace an engine v in slot s (eq. (7.20)) become:

cv
s =

cf

t s
p−1∑
i=0

φ̃(kv
p + i |L ≥ kv

p)+ (
cr + cgIg(s)

) ·(1−
t s

p−1∑
i=0

φ̃(kv
p + i |L ≥ kv

p)

)

kv
p +

t s
p−1∑
i=0

i · φ̃(kv
p + i |L ≥ kv

p)+ t s
p

(
1−

t s
p−1∑
i=0

φ̃(kv
p + i |L ≥ kv

p)

) . (7.30)

7

194 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

(a) Expected number of preventive engine
replacements.

(b) Expected number of used generic slots.

(c) Mean wasted life per replacement. (d) Expected number of failures.

Figure 7.16.: The expected number of engine replacements, used generic slots and
failures per ten years, and the mean wasted life per replacement, for i)
time-based maintenance, ii) maintenance with probabilistic, imperfect
RUL prognostics and iii) maintenance with perfect RUL prognostics.
The 99% confidence interval of the mean (CI) is also given.

while the expected costs of doing nothing become:

cv
DN =

cf

l−1∑
i=0

φ̃(kv
p + i |L ≥ kv

p)

kv
p +

l−1∑
i=0

i · φ̃(kv
p + i |L ≥ kv

p)+ l

(
1−

l−1∑
i=0

φ̃(kv
p + i |L ≥ kv

p)

) .

Long-term results We evaluate the long-term performance of the three maintenance
strategies by performing a Monte Carlo simulation with 10,000 simulation runs,
where each run lasts 10 years (see Figure 7.16).

The expected number of replacements decreases by 32% when considering
imperfect RUL prognostics instead of time-based maintenance. When using perfect
instead of imperfect RUL prognostics, the expected number of replacements further
decreases by 11% (see Figure 7.16a). This difference is because the mean wasted life

7.5. RESULTS - MAINTENANCE PLANNING FOR TURBOFAN ENGINES

7

195

per replacement is highest (75.8 flights) when using time-based maintenance, and
lowest when considering perfect RUL prognostics (9.0 flights, see Figure 7.16c).

However, when using imperfect RUL prognostics, wasting the life of the engines
prevents many engine failures: Only 26 engines fail in the 10000 Monte Carlo
simulations of ten years. When using perfect RUL prognostics, the exact failure time
is known, and no engine thus fails in any simulation. With time-based maintenance,
on average 62 engines fail per ten years, even though an engine is replaced on
average 75.8 flight cycles before failure (see Figure 7.16d).

Last, we expect to use 30.4 generic slots when considering imperfect RUL
prognostics, while we expect to use less than one generic slot with perfect RUL
prognostics or time-based maintenance (see Figure 7.16b). This is because imperfect
RUL prognostics are updated over time. The estimated failure time of an engine
may therefore suddenly decrease when new sensor measurements become available.
In this case, it is sometimes more cost efficient to replace an engine in a generic
slot than to risk a failure. In contrast, the prognostics for perfect prognostics and
time-based maintenance do not suddenly change.

Figure 7.17.: The expected costs over a period of ten year, for i) time-based
maintenance, ii) maintenance with probabilistic, imperfect RUL
prognostics and iii) maintenance with perfect RUL prognostics. The
99% confidence interval of the mean (CI) is also given.

Figure 7.17 shows the expected maintenance cost per ten years for the three
maintenance strategies. For all three strategies, most costs come from replacing the
engines. When considering time-based maintenance, moreover, the expected costs
of engine failures are 3082. In contrast, these costs are negligible when considering
perfect or imperfect RUL prognostics. With imperfect RUL prognostics, however, the
expected costs of using generic slots are 304, while these costs are negligible for the
other two strategies. Overall, the costs decrease with 53% when considering imperfect
RUL prognostics instead of time-based maintenance. Moreover, the maintenance
costs further decrease by 14% when considering perfect RUL prognostics.

7

196 7. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS

7.6. CONCLUSIONS
This chapter proposes an end-to-end framework for predictive maintenance for
systems, where the sensor measurements are used to generate probabilistic RUL
prognostics, which are integrated in the maintenance planning for single and
multiple components/systems. Our proposed approach is illustrated with the
C-MAPSS turbofan engines. Probabilistic RUL prognostics (the PDF of the RUL)
are obtained using a CNN with Monte Carlo dropout. The resulting probabilistic
prognostics are shown to be reliable, with a high α-Coverage for all values of α.

Using these probabilistic RUL prognostics and the renewal-reward process, we
determine an optimal moment to replace an engine. The optimal moment of
replacement is shown to be close to the lower bound of the 99% confidence
interval of the RUL prognostics. The results also show that more uncertain the RUL
prognostics are, i.e., the wider the confidence intervals are, the earlier a component
is preventively replaced to avoid a failure.

We further plan the replacements of multiple engines using an integer linear
programming model that integrates the RUL prognostics. Here, the planning is
further constrained by the availability of maintenance slots and the limited number
of replacements that can be scheduled per day. In the long-run, we show that our
approach leads to low expected number of engine failures. Compared with the ideal
case when the true RUL is known exactly in advance (ideal RUL prognostics), our
approach leads to only 11% more engine replacements and a cost increase of only
14%. We also analyze the long-term performance of our approach with the long-term
performance of a traditional, time-based maintenance strategy. The results show
that by using our probabilistic RUL prognostics, the expected number of engine
replacements decreases with 32% per year. Moreover, the expected number of failure
decreases from over 61 to 0.003 in ten years.

As future work, we aim to further analyze the impact of the costs on the
maintenance planning results, and to plan maintenance for different types of
(aircraft) systems and components, such as multi-component aircraft systems.

REFERENCES

[1] Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive
maintenance for multiple components using data-driven probabilistic RUL
prognostics: The case of turbofan engines. Reliability Engineering & System
Safety, 234, Article number: 109199.

[2] Mitici, M., de Pater, I., Zeng, Z., & Barros, A. (2023, September 3-7). Predictive
maintenance planning using renewal reward processes and probabilistic RUL
prognostics–Analyzing the influence of accuracy and sharpness of prognostics.
Proceedings of the 33st European Safety and Reliability Conference, Southampon,
UK, Pages: 1034–1041.

[3] Badea, V. E., Zamfiroiu, A., & Boncea, R. (2018). Big data in the aerospace
industry. Informatica Economica, 22(1), Pages: 17–24.

[4] Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and Health
Management: A review from the perspectives of design, development and
decision. Reliability Engineering & System Safety, 217, Article number: 108063.

[5] Alaswad, S., & Xiang, Y. (2017). A review on condition-based maintenance opti-
mization models for stochastically deteriorating system. Reliability Engineering
& System Safety, 157, Pages: 54–63.

[6] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[7] Lee, J., & Mitici, M. (2022). Deep reinforcement learning for predictive aircraft
maintenance using probabilistic Remaining-Useful-Life prognostics. Reliability
Engineering & System Safety, 230, Article number: 108908.

[8] Shi, Y., Zhu, W., Xiang, Y., & Feng, Q. (2020). Condition-based maintenance
optimization for multi-component systems subject to a system reliability
requirement. Reliability Engineering & System Safety, 202, Article number:
107042.

[9] Keizer, M. C. O., Flapper, S. D. P., & Teunter, R. H. (2017). Condition-based
maintenance policies for systems with multiple dependent components: A
review. European Journal of Operational Research, 261(2), Pages: 405–420.

[10] Ren, L., Zhao, L., Hong, S., Zhao, S., Wang, H., & Zhang, L. (2018). Remaining
Useful Life prediction for lithium-ion battery: A deep learning approach. IEEE
Access, 6, Pages: 50587–50598.

[11] de Pater, I., & Mitici, M. (2023). Developing health indicators and RUL
prognostics for systems with few failure instances and varying operating
conditions using a LSTM autoencoder. Engineering Applications of Artificial
Intelligence, 117, Article number: 105582.

197

7

198 REFERENCES

[12] Biggio, L., Wieland, A., Chao, M. A., Kastanis, I., & Fink, O. (2021).
Uncertainty-aware prognosis via deep Gaussian process. IEEE Access, 9, Pages:
123517–123527.

[13] de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic
Remaining Useful Life prognostics with applications to turbofan engines.
Proceedings of the 7th European Conference of the Prognostics and Health
Management (PHM) Society, 7, Turin, Italy, Pages: 96–109.

[14] Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency
of aircraft maintenance strategies using agent-based modelling and stochastic
Petri Nets. Reliability Engineering & System Safety, 202, Article number: 107052.

[15] Do, P., Assaf, R., Scarf, P., & Iung, B. (2019). Modelling and application of
condition-based maintenance for a two-component system with stochastic and
economic dependencies. Reliability Engineering & System Safety, 182, Pages:
86–97.

[16] Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predictive maintenance
policy for complex multi-component systems. Reliability Engineering & System
Safety, 120, Pages: 39–50.

[17] Zhang, Z., Si, X., Hu, C., & Lei, Y. (2018). Degradation data analysis and
Remaining Useful Life estimation: A review on Wiener-process-based methods.
European Journal of Operational Research, 271(3), Pages: 775–796.

[18] Caballé, N. C., Castro, I. T., Pérez, C. J., & Lanza-Gutiérrez, J. M. (2015).
A condition-based maintenance of a dependent degradation-threshold-shock
model in a system with multiple degradation processes. Reliability Engineering
& System Safety, 134, Pages: 98–109.

[19] Schöbi, R., & Chatzi, E. N. (2016). Maintenance planning using continuous-state
Partially Observable Markov Decision Processes and non-linear action models.
Structure and Infrastructure Engineering, 12(8), Pages: 977–994.

[20] Andriotis, C., & Papakonstantinou, K. (2019). Managing engineering systems
with large state and action spaces through deep reinforcement learning.
Reliability Engineering & System Safety, 191, Article number: 106483.

[21] Chen, C., Zhu, Z. H., Shi, J., Lu, N., & Jiang, B. (2021). Dynamic predictive
maintenance scheduling using deep learning ensemble for system health
prognostics. IEEE Sensors Journal, 21(23), Pages: 26878–26891.

[22] de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component
systems of repairables with Remaining-Useful-Life prognostics and a limited
stock of spare components. Reliability Engineering & System Safety, 214, Article
number: 107761.

[23] Consilvio, A., Di Febbraro, A., & Sacco, N. (2020). A rolling-horizon approach for
predictive maintenance planning to reduce the risk of rail service disruptions.
IEEE Transactions on Reliability, 70(3), Pages: 875–886.

[24] Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022). Fusing physics-based
and deep learning models for prognostics. Reliability Engineering & System
Safety, 217, Article number: 107961.

REFERENCES

7

199

[25] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data
set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[26] Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining Useful Life estimation in
prognostics using deep Convolution Neural Networks. Reliability Engineering
& System Safety, 172, Pages: 1–11.

[27] Babu, G. S., Zhao, P., & Li, X.-L. (2016, April 16-19). Deep Convolutional
Neural Network based regression approach for estimation of Remaining Useful
Life. Proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA), Dallas, Texas, USA, Pages: 214–228.

[28] Wang, B., Lei, Y., Li, N., & Yan, T. (2019). Deep separable Convolutional Network
for Remaining Useful Life prediction of machinery. Mechanical Systems and
Signal Processing, 134, Article number: 106330.

[29] Gal, Y., & Ghahramani, Z. (2016, June 19-24). Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning. Proceedings
of The 33rd International Conference on Machine Learning, 48, New York, New
York, USA, Pages: 1050–1059.

[30] Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A
review for statisticians. Journal of the American statistical Association, 112(518),
Pages: 859–877.

[31] Hashemi, M. (2019). Enlarging smaller images before inputting into
Convolutional Neural Network: Zero-padding vs. interpolation. Journal of
Big Data, 6(1), Pages: 1–13.

[32] Li, H., Zhao, W., Zhang, Y., & Zio, E. (2020). Remaining Useful Life prediction
using multi-scale deep Convolutional Neural Network. Applied Soft Computing,
89, Article number: 106113.

[33] Xia, J., Feng, Y., Lu, C., Fei, C., & Xue, X. (2021). LSTM-based multi-layer
self-attention method for Remaining Useful Life estimation of mechanical
systems. Engineering Failure Analysis, 125, Article number: 105385.

[34] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[35] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[36] Peng, C., Chen, Y., Chen, Q., Tang, Z., Li, L., & Gui, W. (2021). A Remaining
Useful Life prognosis of turbofan engine using temporal and spatial feature
fusion. Sensors, 21(2), Article number: 418.

[37] Li, T., Zhao, Z., Sun, C., Yan, R., & Chen, X. (2021). Hierarchical attention graph
convolutional network to fuse multi-sensor signals for Remaining Useful Life
prediction. Reliability Engineering & System Safety, 215, Article number: 107878.

[38] Al-Dulaimi, A., Zabihi, S., Asif, A., & Mohammadi, A. (2019). A multimodal
and hybrid deep neural network model for Remaining Useful Life estimation.
Computers in Industry, 108, Pages: 186–196.

[39] Al-Dulaimi, A., Asif, A., & Mohammadi, A. (2020, June 8-10). Multipath parallel
hybrid deep neural networks framework for Remaining Useful Life estimation.

7

200 REFERENCES

IEEE International Conference on Prognostics and Health Management (ICPHM),
Detroit, Michigan, USA, Pages: 1–7.

[40] Baraldi, P., Mangili, F., & Zio, E. (2015). A prognostics approach to nuclear
component degradation modeling based on Gaussian process regression.
Progress in Nuclear Energy, 78, Pages: 141–154.

[41] Tijms, H. C. (1986). Stochastic modelling and analysis: A computational
approach. John Wiley & Sons, Inc.

[42] Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance
framework using deep learning for failure prognostics. Reliability Engineering
& System Safety, 188, Pages: 251–262.

8
MAINTENANCE SCHEDULING WITH

PROBABILISTIC RUL PROGNOSTICS

AND A LIMITED STOCK OF SPARES

In the previous chapter, we scheduled maintenance for aircraft systems using
probabilistic Remaining Useful Life (RUL) prognostics. Here, we did not consider
the availability of spare parts, or the individual components and redundancies
in the aircraft system. In this chapter, we therefore schedule maintenance for
multi-component aircraft systems with a limited number of spare components.

First, we develop probabilistic RUL prognostics, in the form of a Probability Density
Function (PDF), using a model-based approach (similar to the approach in Chapter
4). We then schedule maintenance for multiple multi-component systems with these
probabilistic RUL prognostics, using an integer linear program and a rolling horizon
approach. The maintenance of the multiple systems is linked through the availability
of the spare components and the shared maintenance opportunities.

We illustrate our approach for a fleet of aircraft, each equipped with a cooling system
consisting of four cooling units. Our predictive maintenance strategy reduces the
maintenance costs with 48% relative to a corrective maintenance strategy and with
30% relative to a preventive maintenance strategy.

Parts of this chapter have been published in:

de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component systems of
repairables with Remaining-Useful-Life prognostics and a limited stock of spare components.
Reliability Engineering & System Safety, 214, Article number: 107761

de Pater, I., del Mar Carillo Galera, M., & Mitici, M. (2021, September 19-23). Criticality-based
predictive maintenance scheduling for aircraft components with a limited stock of spare components.
Proceedings of the 31st European Safety and Reliability Conference, Angers, France, Pages: 55–62

201

8

202
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

8.1. INTRODUCTION

Aircraft maintenance is key for safe and efficient airline operations, with airlines
spending approximately 9% of their total operation costs on Maintenance, Repair
and Overhaul, which, in 2018, was estimated to be 69 billion dollars [3]. Striving for
cost savings, aircraft maintenance is currently shifting from corrective or preventive
maintenance towards predictive maintenance. For predictive maintenance, sensors
are continuously monitoring the health of components and systems, algorithms are
generating Remaining Useful Life (RUL) prognostics, and maintenance is performed
based on these prognostics in anticipation of failures [4].

One of the main challenges of predictive maintenance is to obtain RUL prognostics
for systems and components. RUL prognostics support a high exploitation time
of the systems and components, while limiting Aircraft-On-Ground events due to
unexpected failures. Equally challenging is to integrate RUL prognostics into the
aircraft maintenance schedule, while the entire complexity of this process is taken
into account: The management of spare components, the availability of maintenance
time slots and system reliability requirements.

Most studies focus solely on developing RUL prognostics using either a model-
based, a data-driven or a hybrid approach [5]. Model-based approaches are proposed
in, for instance, [6, 7]. In [6] a two-factor state-space model of the degradation is
used to develop RUL prognostics, with an application to rolling element bearings. In
[7], particle filtering is combined with a support vector data description to obtain
RUL prognostics for engines. In this chapter, we also propose a model-based
approach to obtain RUL prognostics for the cooling units (CUs) in wide-body aircraft.
However, our focus does not lie on developing RUL prognostics only, but also on
proposing a maintenance scheduling model that integrates such prognostics.

For predictive maintenance scheduling, threshold-based maintenance policies are
frequently used [8], i.e., as soon as the degradation of a component exceeds a
threshold, a maintenance action is planned [9–15]. The degradation thresholds are
determined using Monte Carlo simulation [10, 15, 16], semi-regenerative processes
[9, 13], Bayesian networks [11], or heuristics [12, 14].

Other studies use Markov Decision Processes (MDPs) [17, 18] and Partially
Observable Markov Decision Processes (POMDPs) [8, 19–21] to optimize the
maintenance schedule. In [18], an MDP is formulated for the maintenance
optimization of a system subject to both failures due to gradual deterioration
and to abrupt, sudden failures. In [19], POMDPs are proposed to model the
predictive maintenance schedule, with a focus on civil engineering structures. This
methodology is further applied to obtain an optimal maintenance schedule for
concrete structures in [20]. Also in [21], a POMDP formulation is proposed to
schedule maintenance for civil structures. One of the challenges for using (PO)MDPs
is the large computational time [17, 19]. To address this issue, in [19], a point-based
algorithm is used to solve the POMDP, while in [8], deep reinforcement learning is
applied to optimize the maintenance of steel bridge structures.

Only a few studies, however, develop RUL prognostics models and integrate
them in the maintenance schedule. In [22], the RUL of a rolling element bearing
is estimated with a feed forward Neural Network. Based on these prognostics,

8.1. INTRODUCTION

8

203

maintenance is planned using a search algorithm. In [23], an exponential model
is developed to estimate the RUL of a rolling element bearing, and maintenance
is planned just before the estimated failure time. In [24], an exponential model
is also used to estimate the RUL of a rolling element bearing. With this, optimal
maintenance moments and ordering times of spare components are determined.
In [25], the RUL of an aircraft component is estimated using a Short Long-Term
Memory Neural Network. This is used to determine optimal times to order new
spare parts and plan maintenance as well. In [26], an extended Kalman filter is
developed to estimate the crack growth in an airframe of an aircraft. Using these
prognostics, maintenance for the airframe is planned. However, all these studies
consider the maintenance scheduling for only one system, while in this study we
consider the maintenance scheduling for multiple multi-component systems.

In [27], RUL prognostics for an aircraft hydraulic system, consisting of multiple
sub-systems (i.e., a multi-component system), are developed using a Kalman filter.
With this, a maintenance schedule for a single aircraft is proposed using an
exhaustive search strategy. In contrast, we plan maintenance for a fleet of multiple
aircraft, i.e., for multiple multi-component systems, that are linked through the
availability of spare components and through the shared maintenance opportunities.

Last, but not least, the consideration of spare parts for predictive and condition-
based maintenance (with or without integrated RUL prognostics) is crucial. One
cannot execute a maintenance replacement without having a spare component to
perform the replacement with. Many studies determine an optimal component
replacement time and assume that a spare component is always available at these
times [22, 23, 28]. Other studies determine optimal times to order one-time-use,
non-repairable components [12, 24, 25]. For aircraft, however, many components
are repairables, i.e., a failed component is sent to a repair shop to be repaired
(overhauling [29]). Ordering repairable components is either expensive and/or it
takes a long time to receive these components from the manufacturer. In general, the
airlines repair and reuse components or, if really necessary, lease a new component.
The lease is ended as soon as an own spare component is repaired. Our approach
proposes a predictive maintenance scheduling model for repairables. To the best
of our knowledge, this is the first study that considers predictive maintenance
scheduling for repairable components of multi-component systems [29]. While this
is relevant for aircraft maintenance, a similar approach can also be used for the
maintenance scheduling of repairable components for other systems and domains.

In this chapter we propose a rolling horizon maintenance scheduling model for
multiple multi-component systems of repairable components. This rolling horizon
maintenance scheduling model integrates i) model-based RUL prognostics for the
components, ii) the availability of spare components and, iii) available maintenance
time slots when an aircraft could be maintained (see Figure 8.1). Moreover, the
scheduling model incorporates a reliability constraint for each multi-component
system. The RUL prognostics are generated using a model-based approach with
a particle filtering algorithm. Over time, as more sensor data become available,
these prognostics are updated. The updated RUL prognostics are then used in
each time window of the rolling horizon maintenance scheduling model to decide

8

204
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

Figure 8.1.: An integrated maintenance scheduling approach with Remaining Useful
Life prognostics for components, the management of spare components
and fixed maintenance opportunities.

which components to replace. A linear integer program is proposed to solve the
maintenance scheduling problem in each time window.

To illustrate our approach, a case study with a fleet of 13 wide-body aircraft,
each equipped with a multi-component system of cooling units (CUs), is considered.
An optimal maintenance schedule for the CU replacements in a fleet of aircraft is
obtained using a rolling horizon approach. The performance of this maintenance
schedule in terms of maintenance costs, number of replacements and number of
system failures is analyzed. Last, the long-term performance of our prognostic-based
maintenance scheduling model is compared against a corrective and a preventive
maintenance strategy. The results show that our model outperforms these two
strategies with respect to maintenance costs and the number of Aircraft-On-Ground
events.

The main contributions of this chapter are as follows:

• An integrated rolling horizon maintenance scheduling model for a fleet of
aircraft, each equipped with a system of multiple repairable components, is
developed. This maintenance schedule integrates model-based Remaining
Useful Life prognostics and considers the management of a limited stock of
spare repairable components.

• A realistic maintenance setting is considered, where aircraft maintenance can
only be performed during pre-defined time slots, during which the aircraft is
on ground and can undergo maintenance.

• The overhauling of repairable components is considered, i.e. a limited total
number of spare components is assumed to be available. Upon failure, a
component is sent to a repair-shop. Once repaired, the component is returned

8.2. PROBLEM DESCRIPTION

8

205

to the pool of spares components. The overhauling of repairable components
has been identified as a research gap in [29].

• A predictive maintenance scheduling model is developed for multiple multi-
component systems. The maintenance of multiple systems is linked through
the availability of spare repairable components and through the shared
maintenance opportunities.

The remainder of this chapter is structured as follows. In Section 8.2 we provide the
problem description and introduce the main notation. We then develop model-based
RUL prognostics for aircraft cooling units in Section 8.3. In Section 8.4 we develop
an integrated maintenance scheduling model for a fleet of aircraft, each equipped
with a multi-component system of repairable components. This model integrates
the RUL prognostics, the management of a limited stock of spare components, and
the available maintenance slots. In Section 8.5 we illustrate our model for a fleet
of wide-body aircraft, each equipped with a multi-component system of cooling
units. The performance of our prognostics-based maintenance scheduling model is
compared against a corrective and a preventive maintenance strategy in Section 8.6.
Last, Section 8.7 provides conclusions and recommendations for future research.

8.2. PROBLEM DESCRIPTION
We consider a discrete time model, where every day d there are decisions made
regarding the maintenance schedule of the aircraft. These decisions are based on the
Remaining Useful Life prognostics of the aircraft components, the available spare
components and the available time slots in which maintenance can be performed.

8.2.1. MULTI-COMPONENT AIRCRAFT SYSTEM

Let A denote a fleet of aircraft. Each aircraft has a system of multiple, identical
repairable components. Let Ca , a ∈ A, denote the set of components of this system
in aircraft a ∈ A. Each component is assumed to fail independently of the other
components. When a component fails, it is replaced with an as-good-as-new one. A
replacement can also be triggered by the Remaining Useful Life prognostic of this
component, in anticipation of a failure. The installation day of the as-good-as-new
component is denoted by d install

ac , a ∈ A, c ∈ Ca . At the same time, the removed
component is sent for repair.

The aircraft is said to be in an Aircraft-On-Ground (AOG) condition and can no
longer fly, if this multi-component system fails. A system is considered to be failed
when the number of failed components exceeds the number of minimum allowed
component failures, as specified by the Minimum Equipment List (MEL) [30].

8.2.2. MAINTENANCE SLOTS

A maintenance slot is a time interval during which maintenance on an aircraft can
be performed [26, 27]. Over time, there is a sequence of slots S. Each slot s ∈ S
has a capacity ms specifying the number of aircraft that can be simultaneously

8

206
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

maintained during this slot. There is no limit on the number of components that
can be replaced per aircraft within a maintenance slot. For a specific aircraft a ∈ A,
the set Sa ⊆ S specifies the slots in which aircraft a can be maintained. A slot s
starts during day ds . The cost of maintaining an aircraft in slot s is cs .

8.2.3. REPAIRABLE COMPONENTS

We plan maintenance for repairable components, i.e., after removal the component
undergoes a repair process such that it can be used again instead of being
discarded [29, 31]. When a component fails, it is removed from the aircraft while
a spare, as-good-as-new component from the stock is installed instead. The faulty
component is repaired. This repair takes ∆ days. Once repaired, the component is
added to the stock. We assume that a component is in an as-good-as-new condition
once repaired. There is a limited amount of spare components (limited stock). A
component is leased from an external supplier if there are no spares in stock when a
component is replaced. We assume that a leased component is immediately available
for installment. In the case study, we consider the repairable aircraft cooling units.

There is a fixed cost cLf for leasing a component. Additionally, a cost cLd is
incurred for every day the component is leased. Last, cfix denotes the cost of
repairing a component that is not failed but for which the RUL prognostic indicates
a failure in the near-future. If, however, the component is already failed at the
time of replacement, then a cost cfix + cex is incurred to repair the component. It is
thus more costly to replace a failed component than a non-failed component with a
estimated failure in the near-future.

8.2.4. PROBABILISTIC RUL PROGNOSTICS

Each component c ∈Ca of aircraft a is monitored by sensors. Based on the available
sensor measurements, at current day d0, a RUL prognostic for each component is
made. Based on these RUL prognostics, we determine P fail

acd , the probability that
component c of aircraft a fails by the beginning of day d > d0. The RUL prognostic
model and P fail

acd are discussed in detail in Section 8.3.

Based on P fail
acd , the probability of a system failure at the beginning of day d > d0,

or equivalently, the probability of the aircraft being in an AOG-condition at the
beginning of day d , denoted by P AOG

ad , is determined.

8.2.5. MAINTENANCE SCHEDULING OBJECTIVE

Taking into account i) the maintenance slots available for each aircraft to undergo
maintenance, ii) the RUL prognostic of each aircraft component and iii) the available
spare components, we are interested in assigning the aircraft to maintenance
slots, such that the total cost of the maintenance schedule is minimized.
Furthermore, for each aircraft assigned to a maintenance slot it is determined which
component/components of this aircraft are replaced.

8.2. PROBLEM DESCRIPTION

8

207

(a) d0 = 120. (b) d0 = 125.

(c) d0 = 130.

Figure 8.2.: Illustration of the rolling horizon approach and the update of the
prognostic information, τ= 5 days, PH = 15 days.

8.2.6. ROLLING HORIZON MAINTENANCE SCHEDULING

We determine a maintenance schedule using a rolling horizon approach [14, 32,
33]. In each iteration of the rolling horizon approach, we optimize the maintenance
schedule for a time window of PH days, that starts at day d0. At the beginning of
this time window, we have: i) all the maintenance slots available during this time
window, given by the set S, ii) the RUL prognostics for each component and for
each day d ∈ [d0,d0 +PH) (i.e., P fail

acd is specified for each day d within the time
window, and for each component c ∈Ca of each aircraft a ∈ A), and iii) the number
of spare components initially available at the beginning of each day d ∈ [d0,d0+PH],

denoted by Sbegin
d . If initially, components are leased at the beginning of day d , then

Sbegin
d is negative. For the first time window, a maintenance schedule is created. The

decisions of the first τ days of this maintenance schedule are then fixed, and the
time window is moved forward τ days. Here, τ≤ PH . Next, a new maintenance
schedule is created for this slided time window. This is iterated for several successive
time windows, until the end time of the maintenance schedule is reached.

An example of the rolling horizon approach is given in Figure 8.2. Here, there are
three iterations of the rolling horizon procedure, with a time window of PH = 15
days that moves forward τ= 5 days each iteration. The first iteration (Figure 8.2a)
starts at day d0 = 120. All decisions regarding the maintenance schedule before day
d0 = 120 are fixed, while the maintenance schedule between day d0 = 120 and day
d0 +PH = 135 is under optimization. Then, the decisions of the first τ = 5 days

8

208
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

of this maintenance schedule are fixed and the time window is moved τ= 5 days
forwards. In the next iteration (Figure 8.2b), the maintenance schedule is optimized
between day d0 = 125 and day d0 +PH = 140. This is repeated for the last iteration
as well (Figure 8.2c). Also, at the beginning of each iteration the RUL prognostics are
updated. This is illustrated for a component c ∈Ca of an aircraft a ∈ A.

8.3. PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT

COOLING UNITS

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3

(d) Sensor 4 (e) Sensor 5 (f) Sensor 6

(g) Sensor 7 (h) Sensor 8 (i) Sensor 9

Figure 8.3.: Mean and maximum sensor measurement per day for one CU for all
nine available sensors. This CU fails at day 48.

In this section, we develop model-based Remaining Useful Life prognostics for
aircraft cooling units from the sensor measurements.

8.3. PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT COOLING UNITS

8

209

8.3.1. AIRCRAFT COOLING UNITS (CUS)

Figure 8.4.: Schematic overview of a cooling unit.

All considered aircraft are equipped with 4 identical cooling units (CUs). The CUs
are part of the cooling system. Figure 8.4 shows a schematic overview of one CU,
consisting of a condenser, a flash tank, an evaporator and a compressor. Figure 8.5
shows a schematic overview of the cooling system in an aircraft, where there are 4
CUs that are integrated with a Pump, Galley cooling units and Air Heat Exchangers.
We assume that each aircraft performs one flight per day.

Figure 8.5.: Schematic overview of the cooling system.

8.3.2. HEALTH INDICATOR FOR CUS

As the CU (the aircraft) is increasingly used over time, the filter gets clogged,
accelerating the compressor wear, which ultimately leads to a failure. We consider
nine sensors monitoring the CUs. Figure 8.3 shows the mean and maximum sensor
measurement per day until failure for one CU and for each of the nine available
sensors. For the purpose of our analysis, the data sets are anonymized.

8

210
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

Let δd denote the flight time during the d th day when this CU is in use, i.e., δd

is the number of valid sensor measurements larger than a threshold ϕ= 0. Let y s
d ,b

denote the bth valid sensor measurement during day d for this CU, generated by a
sensor s. We normalize the measurements during day d as follows:

ỹ s
d ,b =

y s
d ,b

maxs −maxb∈1,...,δd

(
y s

d ,b

) , (8.1)

with maxs the overall maximum measurement generated by sensor s.
We then define the health indicator mi

d of CU i at day d as follows, with n > 1:

md = 1

n

d∑
j=d−n

1

δ j

δ j∑
b=1

ỹ s
j ,b . (8.2)

Our health indicator combines the increasing maximum sensor measurement
towards failure (see Figure 8.3) and the increasing mean sensor measurement
towards failure (see again Figure 8.3), while it is at the same time independent of
the length of the flights during a day d . For our analysis, we select for the health
indicator the sensor with the largest correlation coefficient with the time to failure
[34, 35], which in our case is sensor 8 with a correlation coefficient of 0.77. Figure
8.6 shows the health indicator obtained 30 days before failure for 5 CUs. For all CUs,
the increase in the health indicator accelerates towards failure.

Figure 8.6.: The health indicator mi
d for 5 CUs i 30 days before failure.

8.3.3. METHODOLOGY - RUL PROGNOSTICS FOR CUS

Based on the health indicator md , we now determine the RUL prognostics for each
of these components. There are two phases for the health indicator. In the first

8.3. PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT COOLING UNITS

8

211

phase, this component is only monitored and the health indicator md is recorded
every day d .

As soon as the health indicator reaches a prognostics threshold T P , i.e., as soon as
md > T P , a second phase begins where a prognostic for the RUL of this component
is determined. In this second phase, we consider the true degradation level of this
component, denoted by xd , and the health indicator md at day d as follows:

xd = xd−1 +αdλd expλd d , (8.3)

md = xd +νd , (8.4)

where αd ∼ N (µα,σ2
α),λd ∼ N (µλ,σ2

λ
), and νd ∼ N (0,σ2

ν) are model parameters.
The exponential functional form in eq. (8.3) is assumed since the cumulative

damage in a component has an effect on the degradation rate of the component
[36]. An exponential degradation model is a good approximation for non-linear
degradation processes such as corrosion, bearing degradation and the deterioration
of LED lighting [37–41]. The CU can also be seen as subject to accelerated wear due
to increasing filter clogging.

(a) The estimated PDF of the RUL. (b) The probability of failure P fail
acd .

Figure 8.7.: The RUL prognostics for CU c of aircraft a, estimated at day 339 since
the start of the monitoring phase. The actual RUL is 15 days, and actual
failure time is at day 354.

Next, we estimate the RUL of this component using a particle filtering algorithm
(see, for instance, [42]). We consider the recorded health indicator values md ′ for
this component up to the current day d , i.e., d ′ < d . Based on these indices,
we estimate the RUL of this component as follows. We initialize x0 with the
measured health levels prior to the second phase. We consider n initial particles(
x(i)

0 ,α(i)
0 ,λ(i)

0)
)

, i ∈ {1,2, . . . , n}, each with initial weight 1/n. Then, new particles(
x(i)

d ,α(i)
d ,λ(i)

d

)
are obtained as follows:

x(i)
d = x(i)

d−1 +α(i)
d λ(i)

d exp(λ(i)
d d), (8.5)

where α(i)
d and λ(i)

d are realizations of the random variables αd and λd , respectively.

8

212
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

(a) The estimated PDF of the RUL. (b) The probability of failure P fail
acd .

Figure 8.8.: The RUL prognostics for CU c of aircraft a, estimated at day 344 since
the start of the monitoring phase. The actual RUL is 10 days, and actual
failure time is at day 354.

(a) The estimated PDF of the RUL. (b) The probability of failure P fail
acd .

Figure 8.9.: The RUL prognostics for CU c of aircraft a, estimated at day 349 since
the start of the monitoring phase. The actual RUL is 5 days, and actual
failure time is at day 354.

As d increases, and new measurements are available, the weights of the particles
are updated and normalized with:

p
(
md |x(i)

d

)
= 1p

2πσν
exp

−1

2

(
md −x(i)

d

σν

)2 . (8.6)

Now, given the weights of the particles, these particles are re-sampled [16] and,
again, their weights are updated as 1/n. Last, the RUL zd of this component
is estimated at the current day d based on the re-sampled particles and the
measurements up to and including day d , where the RUL zd is defined as:

RUL = inf
{

zd : x(d + zd) ≥ D|x0, x1, . . . , xd
}

, (8.7)

8.3. PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT COOLING UNITS

8

213

where D is a pre-defined failure threshold, x0, x1, . . . , xd are the estimated degradation
levels of this component at days 0,1, . . . ,d , respectively, and x(d +zd) is the estimated
degradation level at time d + zd . We use eq. (8.7) to predict the RUL zi

d of each
individual particle i in the particle filtering algorithm as follows:

zi
d = inf

{
zi

d : x(i)
d+zi

d

≥ D|x(i)
0 , x(i)

1 , . . . , x(i)
d

}
. (8.8)

Here, x(i)
0 , x(i)

1 , . . . , x(i)
d are the estimated degradation levels of particle i at days

0,1, . . . ,d , and x(i)
d+zd

is the estimated degradation level of particle i at day d + zd .

Last, the probability that the RUL equals zd at current day d is approximated by:

p (RUL = zd |m0,m1, . . . ,md) =
n∑

i=1
w (i)

d D
(
zd − zi

d

)
, (8.9)

where w i
d is the weight of the i th particle, and D(·) is an indicator function:

D(y) =
{

1 y = 0,

0 y ̸= 0.
(8.10)

From eq. (8.9), which provides the PDF of the RUL obtained at current day d
for a component c ∈Ca of aircraft a ∈ A, we obtain the probability P fail

acd∗ that this
component c of aircraft a fails before some future day d∗ > d as follows:

P fail
acd∗ = P

(
RUL ≤ (d∗−d)

)
. (8.11)

Thus, given a current day d , eq. (8.11) determines the probability of failure before
a day d∗ > d for a specific CU. If, however, the CU is in the first, monitoring-only
phase, than we assume that P fail

acd∗ = 0.001.

8.3.4. RESULTS - RUL PROGNOSTICS FOR CUS

Following the methodology in Section 8.3.3, we determine the RUL prognostics for
CUs using 1000 particles, σν = 0.01, n = 10 days, D = 22 and T P = 11. Furthermore,
we determine µα, µλ, σ2

α and σ2
λ

using Maximum Likelihood Estimation of α and
λ on the log transformation of eq. (8.3) on the available data [43]. Figures 8.7, 8.8
and 8.9 show the PDF of the RUL and the distribution of P fail

acd of the same CU c of
an aircraft a estimated at day 339 (15 days before failure), day 344 (10 days before
failure) and at day 349 (5 days before failure) since the start of the monitoring phase.
The RUL estimation is precise, i.e., the actual RUL always falls within the probability
distribution of the estimated RUL, while the uncertainty in the prognostic is low.
For all prognostic horizons, the actual RUL is slightly underestimated. For this CU,
it takes on average 14.4 seconds to estimate the RUL distribution using a computer
with an Intel Core i7 processor at 2.11 GHz and 8Gb RAM.

8

214
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

8.4. METHODOLOGY - PREDICTIVE MAINTENANCE

SCHEDULING MODEL
Using the prognostics obtained in Section 8.3 and information about the availability
of the maintenance slots and spare components, we introduce a linear integer
program to plan the maintenance of multiple aircraft systems of repairable
components. This model is applied, using a rolling horizon approach, for a
scheduling time window of PH days [d0, . . . ,d0 +PH) (see Section 8.2.6 and Figure
8.2). We first introduce some additional notation and definitions.

Definition 2 An aircraft is said to be critical when the probability that this aircraft
is in an AOG-condition at the end of the scheduling time window [d0, . . . ,d0 +PH)
exceeds a reliability threshold r , i.e., P AOG

a(d0+PH) ≥ r .

Let Ar ⊆ A denote the set of critical aircraft at the beginning of the scheduling
time window [d0, . . . ,d0 +PH).

Let Ga denote the set of all possible subsets of the components of aircraft a ∈ Ar

that can be replaced in the scheduling time window [d0, . . . ,d0 +PH), such that
P AOG

a(d0+PH) < r . We assume that once a component is replaced in a scheduling time
window, then this component cannot fail anymore in the same time window. The
set Ga depends on the configuration of the multi-component system. To illustrate
Ga , we discuss an example of a system where the components are linked in series,
i.e., if one component fails, the whole system fails. Let critical aircraft a have a
system consisting of 4 components in series, Ca = {1,2,3,4}. Let the probability of
failure for component k ∈ {1,2} by day d0 +PH be P fail

ak(d0+PH) > r . Let the probability

of failure for component k ∈ {3,4} by day d0 +PH be P fail
ak(d0+PH) << r . Then, at

least component 1 and 2 must be replaced to ensure that P AOG
a(d0+PH) < r . The set

Ga of component subsets that can be replaced to avoid the aircraft being in an
AOG-condition is thus:

Ga = {
{1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}

}
We now introduce the decision variables, objective function and constraints of the

predictive maintenance scheduling model with limited spare components.

DECISION VARIABLES

We consider the following main decision variable.

Xacs =


1, Component c ∈Ca of aircraft a ∈ A is replaced in

maintenance slot s ∈ Sa ,

0, Otherwise.

We also consider the following three auxiliary variables which i) keep track of the
maintenance schedule for an entire aircraft, ii) keep track of the number of leased

8.4. METHODOLOGY - PREDICTIVE MAINTENANCE SCHEDULING MODEL

8

215

components at the end of a day, and iii) keep track of the number of newly leased
components during a day. First,

Yas =
{

1, Aircraft a ∈ A is assigned to slot s ∈ Sa ,

0, Otherwise.

Here, the auxiliary variable Yas is defined by the decision variables Xacs as follows:

Yas ≥ Xacs , ∀a ∈ A, ∀c ∈Ca , ∀s ∈ Sa (8.12)

(8.13)

where eq. (8.12) ensures that when a component c ∈Ca of aircraft a ∈ A is replaced
in maintenance slot s ∈ Sa , the entire aircraft is assigned to maintenance slot s.

Second, we define the number of leased spare parts at the end of day
d ∈ [d0, . . . ,d0 +PH +∆) as:

Ld = max

0,
∑

a∈A

∑
c∈Ca

∑
s∈Sa :

ds≤d<ds+∆

Xacs −Sbegin
d

 ∀d ∈ [d0, ...,d0 +PH +∆), (8.14)

where Sbegin
d is the number of spare components initially available at the beginning

of day d (see Section 8.2.6). Eq. (8.14) defines the number of leased spare
components to be the number of components in repair at the beginning of day
d , minus the number of initially available spare components. If a component is
replaced on day d ∈ [d0, . . . ,d0+PH), then this component is in repair until day d +∆.

Third, we define Lnew
d to be the number of newly leased spare parts during day

d ∈ [d0, ...,d0 +PH +∆). The following two constraints apply for Lnew
d :

Lnew
d = max{0,Ld −Ld−1} ∀d ∈ [d0 +1, ...,d0 +PH +∆) (8.15)

Lnew
d0

= max
{

0,Ld0 −max
{

0,Sbegin
d0−1

}}
. (8.16)

Equations (8.14), (8.15) and (8.16) are linearized exactly with the use of binary
dummy variables, following [44, Chapter 4.5].

OBJECTIVE FUNCTION

We consider the following objective function that minimizes the total costs with the
maintenance of multiple aircraft systems.

min
∑

a∈A

∑
c∈Ca

((∑
s∈Sa

Xacs

cfix +P fail
acds

· cex

ds −d install
ac

)
+

((
1− ∑

s∈Sa

Xacs

)
cfix +P fail

ac(d0+PH) · cex

d0 +PH −d install
ac

))

+ ∑
a∈A

∑
s∈Sa

Yas · cs +
d0+PH+∆−1∑

d=d0

(
Ld · cLd +Lnew

d · cLf
)

. (8.17)

8

216
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

The first term of eq. (8.17) represents the expected cost of replacing a component.
This cost is incurred either when the replacement is planned within the scheduling
time window [d0, . . . ,d0 +PH), or later when the decision to replace is postponed
to the beginning of the next scheduling time window. In the first case, a fixed
repair cost cfix is incurred, plus a cost cex when the component is actually failed
at the moment of replacement. This cost is normalized with the number of days
the component is in use ds −d install

ac , i.e., it is preferred to use the component
as long as possible. In the second case, we consider the cost of postponing the
replacement, which contains the same costs cfix and cex, relative to the earliest
possible replacement time when the decision is postponed. Overall, the first term
of eq. (8.17) trades-off between replacing a component in the current time window
(which gives a lower exploitation time of the component, but also a lower probability
of failure) or postponing the replacement to a later time window (which gives a
higher exploitation time of the component, but also a higher probability of failure).

The second term of eq. (8.17) represents the costs of assigning an entire aircraft
to a maintenance slot, while the last term represents the cost of leasing spare
components for an entire fleet of aircraft.

CONSTRAINTS

Additionally to constraints (8.12), (8.14), (8.15), (8.16) that define the auxiliary
variables, we consider the following constraints:∑

s∈Sa

Yas ≤ 1 ∀a ∈ A (8.18)∑
a∈A

Yas ≤ ms ∀s ∈ S (8.19)

∃g ∈Ga :
∑
c∈g

∑
s∈Sa :

ds<d r
a

Xacs ≥ |g | ∀a ∈ Ar

where d r
a = argmind∈{d0+1,....,d0+PH }{P AOG

ad |P AOG
ad ≥ r } (8.20)

Xacs ∈ {0,1} ∀a ∈ A,∀s ∈ Sa , ∀c ∈Ca (8.21)

Yac ∈ {0,1} ∀a ∈ A, ∀s ∈ Sa (8.22)

Ld ,Lnew
d ∈N+ ∀d ∈ {d0, ...,d0 +PH +∆} (8.23)

Constraint (8.18) ensures that each aircraft is assigned to at most one maintenance
slot within the scheduling time window. Constraint (8.19) ensures that the number
of aircraft assigned to a maintenance slot s does not exceed the slot’s capacity ms .
Constraint (8.20) ensures that the probability that an aircraft is in an AOG-condition
does not exceed a reliability threshold r within the scheduling time window. To
prevent that an aircraft a ∈ Ar is in an AOG-condition, a subset of the components
must be replaced before d r

a , where d r
a is the first day d within the time window

[d0 +1, . . . ,d0 +PH) when P AOG
ad r

a
≥ r . To ensure that P AOG

a(d0+PH) < r , i.e., that the

probability of an AOG-condition for aircraft a ∈ Ar does not exceed the reliability
threshold, all the components in at least one subset g ∈ Ga have to be replaced,
i.e., all |g | components of the subset g are replaced. This constraint is linearized

8.5. RESULTS - PREDICTIVE MAINTENANCE SCHEDULING FOR COOLING UNITS

8

217

exactly with the use of binary dummy variables, following [44, Chapter 3.6]. Finally,
Constraints (8.21), (8.22) and (8.23) define the domains of the decision variables.

8.5. RESULTS - PREDICTIVE MAINTENANCE SCHEDULING

FOR COOLING UNITS
In this section, we illustrate the maintenance scheduling model (see Section 8.4)
for a fleet of |A| = 13 homogeneous, wide-body aircraft. Each aircraft is equipped
with N = 4 identical cooling units (CUs) in the cooling system, as introduced in
Section 8.3. First, we discuss the cooling units system and its k-out-of-N system’s
configuration in Section 8.5.1. In Section 8.5.2 we illustrate the maintenance
scheduling model for this multi-component, k-out-of-N system. Last, in Section
8.5.3 the computational time of the model is discussed for different sizes of aircraft
fleet.

8.5.1. k-OUT-OF-N SYSTEM OF CUS

Each aircraft is equipped with N = 4 cooling units (CUs), which are linked in a
k-out-of-N system. Here, the Minimum Equipment List (MEL) requires that k = 2
[30]. An aircraft is thus allowed to fly (i.e., not in an AOG-condition) if at least
k +1 = 3 or more CUs are operational. However, if exactly k = 2 CUs are operational,
then the aircraft is still allowed to fly for a maximum of V = 10 days [30]. Otherwise,
the aircraft is in an Aircraft-On-Ground condition, which is defined as follows:

Definition 3 An aircraft is in an Aircraft-On-Ground (AOG) condition as soon as i)
(N −k)+1 or more components fail, or ii) (N −k) components have been failed for
more than V days.

The probability P AOG
ad that an aircraft a ∈ A with a k-out-of-N system is in an

AOG-condition at the beginning of day d , is as follows:

P AOG
ad =P

(
i ∈ {

(N f −k)+1, . . . , N
}

components fail before the beginning of day d ,

or exactly (N −k) components fail before the beginning of day d −V
)

For the case of the cooling system with N = 4, k = 2 and V = 10, the probability of
an aircraft being in an AOG-condition at day d is:

P AOG
ad =

4∏
i=1

P fail
ai d +

4∑
i=1

(
1−P fail

ai d

) 4∏
l=1
l ̸=i

P fail
al d

+
3∑

i=1

4∑
j=i+1

P fail
ai (d−10)P

fail
a j (d−10)

4∏
l=1

l ̸∈{i , j }

(
1−P fail

al d

)
. (8.24)

In Section 8.4, we define that the set Ga contains all subsets of Ca that could
be replaced to ensure that P AOG

a(d0+PH) < r , i.e., the set of components that could be
replaced to avoid having the aircraft in an AOG-condition. To illustrate Ga for the

8

218
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

cooling system, we discuss the following example. Let a critical aircraft a ∈ Ar (see
Definition 2) have N = 4 CUs, i.e., Ca = {1,2,3,4}. Furthermore, let r = 0.01 and
PH = 15 days. Then P AOG

a(d0+15) is the sum of i) the probability that three of four
components fail by day d0 +15, and ii) the probability that two components fail by
day d0 +15−10 and no components fail between day d0 +15−10 and day d0 +15
(see eq. (8.24)). Moreover, let the probabilities that components 1, 2 3 and 4 fail by
day d0 +15 be P fail

a1(d0+15) = 1, P fail
a2(d0+15) = 0.05, P fail

a3(d0+15) = 0.05 and P fail
a4(d0+15) = 0.001.

Last, let the probabilities that components 1, 2, 3 and 4 fail by day d0 +15−10 be
P fail

a1(d0+5) = 1, P fail
a2(d0+5) = 0.02, P fail

a3(d0+5) = 0.02 and P fail
a3(d0+5) = 0.001.

In this example, the set of replaced components must include at least component
{1}, or components {2,3} to ensure that P AOG

a(d0+15) < 0.01. Thus, the set of component
subsets that can be replaced to solve the aircraft criticality (see Definition 2) is:

Ga ={{1}, {2,3}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}.

8.5.2. MAINTENANCE SCHEDULING

Costs
cfix 104

cex 5 ·103

cLf 4 ·104

cLd 103

Rolling horizon parameters
PH 15 days
τ 5 days
CU-related parameters
N 4 CUs
k 2 CUs
∆ 4 weeks
V 10 days

Sbegin
0 3 CUs

Reliability-related parameters
r 0.01

Table 8.1.: Parameter values for the maintenance scheduling model in Section 8.4.

In this section, we illustrate the maintenance scheduling model (see Section 8.4)
for a fleet of |A| = 13 homogeneous, wide-body aircraft. The initial stock of spare

CUs for this fleet of 13 aircraft at day 0 is Sbegin
0 = 3. Moreover, the first τ= 5 days

of each maintenance schedule in the rolling horizon approach are fixed. In general,
various values for τ can be considered. The other parameter values for our proposed
maintenance scheduling model are given in Table 8.1.

In practice, it is assumed that there are two types of maintenance slots for the
aircraft: i) aircraft-specific slots, which are dedicated to one specific aircraft, and
ii) generic slots, which can be used by all aircraft. We assume that at most two

8.5. RESULTS - PREDICTIVE MAINTENANCE SCHEDULING FOR COOLING UNITS

8

219

aircraft can be maintained at the same time in a generic slot, i.e., mgeneric
s = 2. In

extreme cases, when there are very few aircraft-specific slots or a large number of
aircraft, this capacity could be increased. One generic slot is available every day.

Last, we assume that the cost cs of a maintenance slot s is cgeneric
s = 104 for a generic

slot and cspecific
s = 1 for an aircraft-specific slot. For our analysis, we use historical

aircraft-specific slots that have been used in practice by the fleet of 13 aircraft. On
average, an aircraft has 35 of these aircraft-specific maintenance slots per year.

Figure 8.10.: Maintenance schedule for 50 days, from day 1465 to 1515 for a fleet of
13 wide-body aircraft.

Figure 8.10 shows the final maintenance schedule of the fleet of 13 aircraft for a
period of 50 days, using a rolling horizon approach with scheduling time windows of
PH = 15 days, of which each time the first τ= 5 days are fixed. In this period, 6 CUs
are replaced, 1 CU is leased and the total maintenance costs of the CUs is 137.203.
These results are obtained in 3.3 seconds with the Gurobi solver version 9.0.2 with
standard settings (branch-and-cut algorithm), implemented in Python, using an Intel
Core i7 processor at 2.11 GHz and 8Gb RAM. The model is initialized with a random
installation time from the uniform distribution for each CU, between 80 and 200
days before the start of the maintenance schedule (d install

ac ∼U (80,200)).

a ∈ A c ∈Ca Day of slot sd Failed at replacement? Actual RUL
10 3 1465 No 9 days
8 2 1480 Yes -
8 3 1480 No 11 days
4 4 1484 No 6 days
2 3 1508 No 9 days
3 3 1508 Yes -

Table 8.2.: The replaced components in the maintenance schedule in Figure 8.10.

In Figure 8.10, the aircraft-specific maintenance slots available for each aircraft
during the 50 days period are depicted. There is also a generic slot available every

8

220
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

day. Aircraft a ∈ {3,4,10} are assigned to an aircraft-specific maintenance slot, while
aircraft a ∈ {2,8} are assigned to generic slots. Regarding the aircraft-specific slots,
aircraft 3 is planned to be maintained during day 1508, aircraft 4 during day 1484
and aircraft 10 during day 1465. Regarding the generic slots, aircraft 2 is assigned to
a generic slot at day 1508 and aircraft 8 during day 1480.

The components that are replaced in the maintenance schedule of 50 days are
given in Table 8.2. Aircraft 8 is assigned to a maintenance slot at day 1480, during
which two components, CU 2 and 3, are replaced. For the other aircraft, only
one component per maintenance slot is replaced. Out of the 6 replacements, 4
components are replaced before they fail (66%). On average 8.75 days of the RUL
are wasted when a component is replaced before its failure time. During the 50
days considered, there is one new component leased at day 1484 (i.e. Lnew

1484 = 1).
This component is leased until day 1492 (i.e. Ld = 1∀d ∈ [1484, . . . ,1492] while
Ld = 0∀d ∈ [1465, . . . ,1483]∪ [1493, . . . ,1515]).

Figure 8.11.: The prognostics at the beginning of scheduling time windows
[1495,1510),[1500,1515), [1505,1520).

To illustrate the dynamic character of our rolling horizon approach, Figures 8.11
and 8.12 show three rolling time windows, which correspond to the last several days
in Figure 8.10. Figure 8.11 shows the prognostics at the beginning of each time
window. Only the CUs that have not failed yet, but that are in the second phase of
the prognostics at the beginning of the time window, are shown. These prognostics
are used as input in the maintenance scheduling model in Figure 8.12. Also here, we

8.5. RESULTS - PREDICTIVE MAINTENANCE SCHEDULING FOR COOLING UNITS

8

221

only show the aircraft with some CUs that might fail in the future.

Figure 8.12.: The maintenance schedule of three iterations of the rolling horizon
approach for time windows [1495,1510),[1500,1515) and [1505,1520).

At the beginning of time window [1495,1510), two CUs are in the second phase
of the prognostics: CU 2 of aircraft 3 and CU 2 of aircraft 2 (see Figure 8.11).
CU 3 of aircraft 3 is already failed. This aircraft is therefore critical, and some
components have to be replaced before day 1508. In contrast, all CUs of aircraft 2
are still functional, and this aircraft is therefore not critical. For this time window
[1495,1510), there are no spare CUs available until day 1508. Aircraft 2 has no
generic slots after or on day 1508, and the replacement of CU 2 of aircraft 2 is
therefore not scheduled. However, a replacement of a CU of aircraft 3 has to be
scheduled before day 1508, i.e., before a spare CU becomes available, due to the

8

222
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

required reliability of each aircraft. The replacement of CU 2, with a estimated
near-future failure, is therefore scheduled in the aircraft-specific slot at day 1500 (see
Figure 8.12), and it is planned to lease a CU. The maintenance schedule of the first
five days, [1495,1499], is fixed. Since there is no maintenance planned in the first
five days, no maintenance is thus executed and no CUs are leased.

In the next time window, [1500,1515), CU 2 of aircraft 3 and CU 2 of aircraft 2 are
not failed yet (see Figure 8.11). With the updated prognostics for CU 2 of aircraft
3, some components have to be replaced before day 1511 in this time window,
instead of before day 1508. Aircraft 3 is therefore scheduled to be repaired in the
generic slot during day 1508, when a spare CU becomes available. Both CU 2 and
CU 3 of aircraft 3 are failed by this day, and one of them (CU 3) is selected for
replacement in a specific slot. As before, the first five days of this maintenance
schedule, [1500,1504], are now fixed.

In the third time window, [1505,1520), both CU 2 of aircraft 2 and CU 2 of
aircraft 3 have failed. However, CU 3 of aircraft 2 is now in the second phase
of the prognostics (i.e., estimated to fail in the near-future) as well. The aircraft
is therefore critical; Some components have to be replaced before day 1517. An
aircraft-specific slot for aircraft 2 is available on day 1507. However, no spare CU is
available then. Since using a generic slot is much cheaper than leasing a spare CU,
the replacement of CU 3 of aircraft 2 is scheduled in a generic slot at day 1508. The
maintenance actions planned from day 1505 to day 1509 are fixed, which means
that the maintenance planned on day 1508 (see Figure 8.10) is now fixed.

8.5.3. COMPUTATION TIME VS SIZE OF AIRCRAFT FLEET

Table 8.3 shows the total computational time required to obtain a maintenance
schedule for 60 months for different aircraft fleet sizes. Here, the number of spare
CUs and the capacity of the generic slots is proportional to the fleet size. We also
include the average computation time required to solve the maintenance scheduling
problem for one time window (15 days). These computation times are obtained
using a computer with an Intel Core i7 processor at 2.11 GHz and 8Gb RAM. For an
aircraft fleet as large as 140 aircraft, a total of 1239 seconds are needed to obtain
a maintenance schedule for 60 months, with an average computation time of 1.22
seconds to solve the problem for one time window of 15 days.

Size of fleet of aircraft
13 30 60 90 120

Time (sec.) - 60 months schedule 71 179 482 752 1239
Time (sec.) - one time window of 15 days 0.04 0.14 0.44 0.73 1.22

Table 8.3.: Total computational time in seconds for the maintenance scheduling for
various aircraft fleet sizes.

8.6. PREDICTIVE MAINTENANCE VS. CORRECTIVE AND PREVENTIVE MAINTENANCE

8

223

8.6. PREDICTIVE MAINTENANCE VS. CORRECTIVE AND

PREVENTIVE MAINTENANCE
In this section, we compare our proposed predictive maintenance model with limited
spare components (see Section 8.4) with a corrective and a preventive maintenance
strategy (see [45, 46]), for the k-out-of-N systems. For these two maintenance
strategies, we also consider a limited amount of spare components and fixed
maintenance slots. Corrective and preventive maintenance strategies are often used
in the practice of aircraft maintenance [16, 47, 48].

CORRECTIVE MAINTENANCE (C M) FOR k-OUT-OF-N SYSTEMS OF

REPAIRABLES WITH LIMITED SPARES

We consider a corrective maintenance (C M) strategy where the system is maintained
only when k = 2 or more components of the system are failed (see also Definition
3). We plan the aircraft maintenance in the following order of priority: First,
the maintenance for all aircraft already in an AOG-condition (see Definition 3)
is planned. An aircraft in an AOG-condition is assigned to the earliest available
maintenance slot. When there are f ≥ k failed components in the aircraft, at least
f −1 failed components are replaced in this maintenance slot. If there are not
enough spare components, then extra components are leased so that all f −1 failed
components can be replaced.

Second, all aircraft with k = 2 failed components that are not yet in an
AOG-condition (see Definition 3), are assigned to maintenance slots. Such an
aircraft is maintained in the earliest available aircraft-specific slot, as long as this
does not lead to an AOG-condition. Otherwise, the aircraft is maintained in the
earliest available maintenance slot, irrespective of the type of slot. At least 1 failed
component is replaced. If there are not enough spare components, then extra
components are leased.

Last, all remaining failed components in the two types of aircraft above are
replaced as well, as long as there are enough spare components.

PREVENTIVE MAINTENANCE (P M) FOR k-OUT-OF-N SYSTEMS OF

REPAIRABLES WITH LIMITED SPARES

We also consider a preventive maintenance (P M) strategy where the system is
maintained to prevent a system failure. To prevent that the entire system fails, i.e., at
least k +1 components are failed, or k components are failed for more than V days,
we replace components as soon as they fail, provided spare components are available.
First, the aircraft for which the system has k = 2 or more failed components are
maintained as in the C M strategy. Then, the failed components in the remaining air-
craft are replaced as well. These aircraft can only be assigned to aircraft-specific slots.
Furthermore, no spare components can be leased to replace these failed components.

We analyze C M , P M and the prognostics-based maintenance scheduling model
for a fleet of 13 aircraft for a period of 60 months using Monte Carlo simulation

8

224
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

(a) The number of AOG-events. (b) The number of leased components.

(c) The total number of replacements (de-
noted by T), and the number of replace-
ments of non-failed components (denoted
by N F).

Figure 8.13.: The expected long-term performance of P M , C M and prognostics-based
maintenance model (Pr og .M) for a period of 60 months and a fleet of
13 wide-body aircraft, including 95% confidence intervals (CI).

with a 1000 simulation runs. All parameters and costs are the same as in Table 8.1.
Figure 8.13 shows the performance of C M , P M and our proposed prognostics-based
maintenance scheduling model. Table 8.4 gives 95% confidence intervals. Figure
8.13a shows the expected number of times an aircraft is in an AOG-condition (see
Definition 3) for the three strategies. This is called an AOG-event. The results show
that the C M strategy leads to the highest number of expected AOG-events.

Figure 8.13b shows the expected number of leased spare components per strategy.
The most spare components are leased for the C M strategy. Both the P M
strategy and the prognostic maintenance scheduling model need relatively few spare
components. The total number of replacements T , and the number of replacements
of non-failed components N F , is given in Figure 8.13c. For the C M and P M
strategies, by definition, only failed components are replaced. The number of total
replacements is highest for the P M strategy, because components are replaced as
soon as they fail (provided that there are enough spare components). In contrast, for

8.6. PREDICTIVE MAINTENANCE VS. CORRECTIVE AND PREVENTIVE MAINTENANCE

8

225

95% CI- 95% CI- 95% CI- 95% CI-
AOG events Leases Replacements Total costs (million)

CM [0.71, 0.82] [21.6, 22.3] [112.2, 113.1] (T) [3.05, 3.10]
PM [0.08, 0.11] [4.43, 4.78] [134.7, 135.6] (T) [2.26, 2.29]

Pred.M 0.0 [3.90, 4.19] [105.1, 106.0] (T) [1.57, 1.60]
[87.2, 88.0] (NF)

Table 8.4.: 95% confidence interval (CI) of the long-term performance of PM, CM
and Pred.M (predictive maintenance), where T is the total number of
replacements, and NF is the total number of replacements of non-failed
components.

the C M strategy, failed components are replaced only when there are at least k = 2
failed components in a system. For the prognostic-based maintenance scheduling,
the total number of replacements is the lowest because components that fail are not
necessarily immediately replaced. When the probability of an AOG-condition for an
aircraft exceeds the reliability threshold r , it is often more beneficial to replace the
component(s) that have a failure estimated in the near-future, thus saving repair
costs. Here, for on average 88 out of the 106 replacements, the components are not
failed at the time of replacement.

Figure 8.14.: The expected long-term maintenance costs of P M , C M and prognostics-
based maintenance model (Pr og .M) for a period of 60 months and a
fleet of 13 wide-body aircraft, including 95% confidence intervals (CI).

Last, the total expected maintenance costs are given in Figure 8.14. For all
strategies, the repair costs constitute the largest fraction of the expected total costs,
while the expected slot costs constitute the smallest fraction of the expected total
costs. The expected total costs are the highest for the C M strategy, while the
prognostic maintenance schedule has the lowest expected total costs.

Overall, the results of our case study show that the prognostics-based maintenance

8

226
8. MAINTENANCE SCHEDULING WITH PROBABILISTIC RUL PROGNOSTICS AND A

LIMITED STOCK OF SPARES

scheduling model is most beneficial, with the lowest expected maintenance costs
and the lowest expected number of number of AOG-events.

8.7. CONCLUSION
An integrated approach to develop RUL prognostics from sensor data, and to
subsequently optimize the maintenance schedule, is proposed for a fleet of
aircraft, each equipped with a multi-component system of repairable components.
RUL prognostics are updated over time with new sensor measurements. The
maintenance schedule takes the RUL prognostics into account to schedule
component replacements in a rolling horizon fashion. As a case study, a fleet of
wide-body aircraft, each equipped with a system of cooling units, is considered.
First, model-based RUL prognostics are developed for these aircraft cooling units.
Second, these RUL prognostics are integrated into a rolling horizon maintenance
scheduling model. The scheduling model also considers a limited stock of spare
components, as well as the available maintenance slots. Moreover, a reliability
constraint is imposed on each considered system.

The results show that by integrating prognostics into the maintenance schedule,
components are replaced in anticipation of failure without wasting their useful life.
Our proposed prognostics-based predictive maintenance scheduling model reduces
the costs by 48% relative to a corrective maintenance strategy and by 30% relative
to a preventive maintenance strategy. Overall, our approach shows how RUL
prognostics could be integrated in the maintenance schedule, and illustrates the
potential costs savings with predictive maintenance.

As future work, we plan to further extend our maintenance scheduling model.
We plan to consider other aircraft systems and components for the maintenance
scheduling as well, and to compare the predictive maintenance strategy with several
other corrective and preventive maintenance strategies, using a larger range of
performance indicators. Last, we plan to relax the assumption that a repaired CU
is “as-good-as-new”, and instead consider imperfect repairs. With such extensions,
we aim to obtain an increasingly closer-to-implementation prognostics-driven
maintenance scheduling model.

REFERENCES

[1] de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component
systems of repairables with Remaining-Useful-Life prognostics and a limited
stock of spare components. Reliability Engineering & System Safety, 214, Article
number: 107761.

[2] de Pater, I., del Mar Carillo Galera, M., & Mitici, M. (2021, September 19-23).
Criticality-based predictive maintenance scheduling for aircraft components
with a limited stock of spare components. Proceedings of the 31st European
Safety and Reliability Conference, Angers, France, Pages: 55–62.

[3] Maintenance Cost Technical Group (MCTG). (2020). Airline maintenance cost
executive commentary (FY2019 data), public version (tech. rep.). International
Air Transport Association (IATA).

[4] Daily, J., & Peterson, J. (2017). Predictive maintenance: How big data
analysis can improve maintenance. In Supply Chain Integration Challenges in
Commercial Aerospace (Pages: 267–278). Springer.

[5] Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017).
Prognostics and Health Management for maintenance practitioners - Review,
implementation and tools evaluation. International Journal of Prognostics and
Health Management, 8(3), Pages: 1–31.

[6] Li, N., Gebraeel, N., Lei, Y., Bian, L., & Si, X. (2019). Remaining Useful Life
prediction of machinery under time-varying operating conditions based on
a two-factor state-space model. Reliability Engineering & System Safety, 186,
Pages: 88–100.

[7] Jiao, R., Peng, K., Dong, J., & Zhang, C. (2020). Fault monitoring and Remaining
Useful Life prediction framework for multiple fault modes in prognostics.
Reliability Engineering & System Safety, 203, Article number: 107028.

[8] Andriotis, C., & Papakonstantinou, K. (2019). Managing engineering systems
with large state and action spaces through deep reinforcement learning.
Reliability Engineering & System Safety, 191, Article number: 106483.

[9] Huynh, K. T., Grall, A., & Bérenguer, C. (2018). A parametric predictive
maintenance decision-making framework considering improved system health
prognosis precision. IEEE Transactions on Reliability, 68(1), Pages: 375–396.

[10] Nguyen, K.-A., Do, P., & Grall, A. (2014). Condition-based maintenance
for multi-component systems using importance measure and predictive
information. International Journal of Systems Science: Operations & Logistics,
1(4), Pages: 228–245.

[11] Nielsen, J. S., & Sørensen, J. D. (2018). Computational framework for risk-based
planning of inspections, maintenance and condition monitoring using discrete

227

8

228 REFERENCES

Bayesian networks. Structure and Infrastructure Engineering, 14(8), Pages:
1082–1094.

[12] Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare
provisioning policy for deteriorating systems with uncertain deterioration to
failure. European Journal of Operational Research, 194(1), Pages: 184–205.

[13] Huynh, K. T., Barros, A., & Bérenguer, C. (2014). Multi-level decision-making
for the predictive maintenance of k-out-of-N : F deteriorating systems. IEEE
Transactions on Reliability, 64(1), Pages: 94–117.

[14] Shi, Y., Zhu, W., Xiang, Y., & Feng, Q. (2020). Condition-based maintenance
optimization for multi-component systems subject to a system reliability
requirement. Reliability Engineering & System Safety, 202, Article number:
107042.

[15] Mercier, S., & Pham, H. H. (2012). A preventive maintenance policy for
a continuously monitored system with correlated wear indicators. European
Journal of Operational Research, 222(2), Pages: 263–272.

[16] Lee, J., & Mitici, M. (2020). An integrated assessment of safety and efficiency
of aircraft maintenance strategies using agent-based modelling and stochastic
Petri Nets. Reliability Engineering & System Safety, 202, Article number: 107052.

[17] Zhang, Z., Wu, S., Li, B., & Lee, S. (2015). (n, N) Type maintenance policy
for multi-component systems with failure interactions. International Journal of
Systems Science, 46(6), Pages: 1051–1064.

[18] Chen, D., & Trivedi, K. S. (2005). Optimization for condition-based maintenance
with semi-Markov decision process. Reliability Engineering & System Safety,
90(1), Pages: 25–29.

[19] Papakonstantinou, K. G., & Shinozuka, M. (2014a). Planning structural
inspection and maintenance policies via dynamic programming and Markov
processes. Part I: Theory. Reliability Engineering & System Safety, 130, Pages:
202–213.

[20] Papakonstantinou, K. G., & Shinozuka, M. (2014b). Planning structural
inspection and maintenance policies via dynamic programming and Markov
processes. Part II: POMDP implementation. Reliability Engineering & System
Safety, 130, Pages: 214–224.

[21] Schöbi, R., & Chatzi, E. N. (2016). Maintenance planning using continuous-state
Partially Observable Markov Decision Processes and non-linear action models.
Structure and Infrastructure Engineering, 12(8), Pages: 977–994.

[22] Wu, S.-j., Gebraeel, N., Lawley, M. A., & Yih, Y. (2007). A neural network
integrated decision support system for condition-based optimal predictive
maintenance policy. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 37(2), Pages: 226–236.

[23] Kaiser, K. A., & Gebraeel, N. Z. (2009). Predictive maintenance management
using sensor-based degradation models. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 39(4), Pages: 840–849.

[24] Elwany, A. H., & Gebraeel, N. Z. (2008). Sensor-driven prognostic models for
equipment replacement and spare parts inventory. IIE Transactions, 40(7),
Pages: 629–639.

REFERENCES

8

229

[25] Nguyen, K. T., & Medjaher, K. (2019). A new dynamic predictive maintenance
framework using deep learning for failure prognostics. Reliability Engineering
& System Safety, 188, Pages: 251–262.

[26] Yiwei, W., Christian, G., Binaud, N., Christian, B., Haftka, R. T., et al. (2017). A
cost driven predictive maintenance policy for structural airframe maintenance.
Chinese Journal of Aeronautics, 30(3), Pages: 1242–1257.

[27] Vianna, W. O. L., & Yoneyama, T. (2017). Predictive maintenance optimization
for aircraft redundant systems subjected to multiple wear profiles. IEEE Systems
Journal, 12(2), Pages: 1170–1181.

[28] Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predictive maintenance
policy for complex multi-component systems. Reliability Engineering & System
Safety, 120, Pages: 39–50.

[29] Keizer, M. C. O., Flapper, S. D. P., & Teunter, R. H. (2017). Condition-based
maintenance policies for systems with multiple dependent components: A
review. European Journal of Operational Research, 261(2), Pages: 405–420.

[30] Easy access rules for the Master Minimum Equipment List (CS-MMEL) (Initial
issue) (tech. rep.). (2018). European Aviation Safety Agency (EASA).

[31] de Smidt-Destombes, K. S., van der Heijden, M. C., & van Harten, A. (2009).
Joint optimisation of spare part inventory, maintenance frequency and repair
capacity for k-out-of-N systems. International Journal of Production Economics,
118(1), Pages: 260–268.

[32] Liang, Z., & Parlikad, A. K. (2020). Predictive group maintenance for multi-
system multi-component networks. Reliability Engineering & System Safety,
195, Article number: 106704.

[33] Bouvard, K., Artus, S., Bérenguer, C., & Cocquempot, V. (2011). Condition-
based dynamic maintenance operations planning & grouping. Application
to commercial heavy vehicles. Reliability Engineering & System Safety, 96(6),
Pages: 601–610.

[34] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[35] Yang, F., Habibullah, M. S., Zhang, T., Xu, Z., Lim, P., & Nadarajan, S.
(2016). Health index-based prognostics for Remaining Useful Life predictions
in electrical machines. IEEE Transactions on Industrial Electronics, 63(4), Pages:
2633–2644.

[36] Si, X.-S., Wang, W., Chen, M.-Y., Hu, C.-H., & Zhou, D.-H. (2013). A degradation
path-dependent approach for Remaining Useful Life estimation with an exact
and closed-form solution. European Journal of Operational Research, 226(1),
Pages: 53–66.

[37] Tseng, S.-T., Tang, J., & Ku, I.-H. (2003). Determination of burn-in parameters
and residual life for highly reliable products. Naval Research Logistics (NRL),
50(1), Pages: 1–14.

[38] Park, C., & Padgett, W. J. (2006). Stochastic degradation models with several
accelerating variables. IEEE Transactions on Reliability, 55(2), Pages: 379–390.

8

230 REFERENCES

[39] Gebraeel, N. Z., Lawley, M. A., Li, R., & Ryan, J. K. (2005). Residual-life
distributions from component degradation signals: A Bayesian approach. IIE
Transactions, 37(6), Pages: 543–557.

[40] Elwany, A. H., Gebraeel, N. Z., & Maillart, L. M. (2011). Structured replacement
policies for components with complex degradation processes and dedicated
sensors. Operations Research, 59(3), Pages: 684–695.

[41] Chen, N., & Tsui, K. L. (2013). Condition monitoring and Remaining Useful Life
prediction using degradation signals: Revisited. IIE Transactions, 45(9), Pages:
939–952.

[42] Djuric, P. M., Kotecha, J. H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M. F.,
& Miguez, J. (2003). Particle filtering. IEEE Signal Processing Magazine, 20(5),
Pages: 19–38.

[43] Lei, Y., Li, N., Gontarz, S., Lin, J., Radkowski, S., & Dybala, J. (2016). A
model-based method for Remaining Useful Life prediction of machinery. IEEE
Transactions on Reliability, 65(3), Pages: 1314–1326.

[44] MirHassani, S., & Hooshmand, F. (2019). Methods and models in mathematical
programming. Springer.

[45] Mital, A., Desai, A., Subramanian, A., & Mital, A. (2014). Product development: A
structured approach to consumer product development, design, and manufacture
(2nd ed.). Elsevier.

[46] Ahmad, R., & Kamaruddin, S. (2012). An overview of time-based and
condition-based maintenance in industrial application. Computers & Industrial
Engineering, 63(1), Pages: 135–149.

[47] Ackert, S. P. (2010). Basics of aircraft maintenance programs for financiers
(tech. rep.). Aircraft Monitor.

[48] Ren, H., Chen, X., & Chen, Y. (2017). Reliability based aircraft maintenance
optimization and applications. Academic Press.

9
A STOCHASTIC PROGRAM FOR

MAINTENANCE SCHEDULING UNDER

ENDOGENOUS UNCERTAINTY WITH

PROBABILISTIC RUL PROGNOSTICS

In Chapters 6, 7 and 8, we first create an initial maintenance planning, and update
this planning over time with a rolling horizon approach. However, these future
updates are not considered yet when creating the initial planning. In this chapter, we
instead jointly optimize the initial maintenance planning and the future updates.

We formulate the maintenance planning problem as a multi-stage stochastic program.
This stochastic program contains endogenous uncertainty, since the RUL of a system
changes after maintenance. We solve the stochastic program with the nested Benders
decomposition algorithm. To reduce the computational time, we propose a new
clustering algorithm that is integrated in the nested Benders decomposition algorithm.

We illustrate our approach with aircraft engines, where we plan maintenance for up
to five engines and for a planning horizon of four weeks (28 days/stages). We follow
Chapter 7 to make the probabilistic RUL prognostics for these engines. By solving the
stochastic program, we lower the expected costs by up to 0.89% compared to the upper
bound solution. Moreover, our clustering algorithm reduces the computational time.
With five engines, we execute the same number of iterations 25 times faster with the
clustering algorithm, than without the clustering algorithm.

Parts of this chapter are under review for publication:

de Pater, I., & Mitci, M. (2023). Predictive maintenance planning under endogenous uncertainty
using stochastic programming with a novel clustering algorithm integrated in the nested Benders
decomposition. Under review at Mathematical Programming Series B.

231

9

232
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

9.1. INTRODUCTION

Maintenance for complex systems is expensive. The cost of aircraft maintenance
account for 10% of the total airline operating costs [1]. For offshore wind turbines,
the maintenance and operation cost account for 25%−30% of the total life cycle
costs [2]. Data-driven predictive maintenance aims to reduce these costs, while
increasing the availability of the systems. Nowadays, there are many sensors that
monitor the health condition of complex systems [3]. For predictive maintenance,
these sensor measurements are used to estimate a Probability Density Function
(PDF) of the Remaining Useful Life (RUL, time left until failure) of a system. These
predictions, called “probabilistic RUL prognostics”, are subsequently used to plan
maintenance [3]. In this chapter, we formulate the predictive maintenance planning
problem with probabilistic RUL prognostics as a multi-stage stochastic program.

Stochastic programming has been considered for maintenance planning under
different types of uncertainty: Uncertain weather for the maintenance of offshore
wind farms [4], uncertain power demand for the maintenance of nuclear power
plants [5] and uncertainty in the maintenance duration [6]. In these papers, the
uncertainty is assumed to be “exogenous”, i.e., the uncertainty is not influenced by
the decisions. In contrast, we consider the uncertainty of the estimated RUL. The
PDF of the RUL is dependent on the maintenance decisions, since the probability of
failure decreases after maintaining a system. This is called “endogenous” uncertainty.

In [7, 8], a distinction is made between endogenous uncertainty type 1 and type 2.
For endogenous uncertainty type 1, the decisions change the underlying probability
distribution of the uncertain parameters. This type of uncertainty occurs for instance
in reliable transportation network design [9], where the unknown capacity after a
disruption depends on the protection decisions, and highway strengthening [10],
where the unknown failure probability after a disaster depends on the investment
decisions. With endogenous uncertainty type 1, the stochastic programs usually
become non-linear [9, 10], which complicates the solution methods.

Endogenous uncertainty type 1 occurs when the condition-based maintenance
planning is combined with the operation planning [11–13]. In these studies, the
degradation of a system is modelled with a generic degradation process. The
decisions on the operation planning influence this degradation process, which in
turn influences the estimated RUL/failure time. In [11–13], the uncertain RUL is
integrated in the stochastic program by making the probability of failure a variable,
which gives a non-linear program. In contrast, in this chapter, we estimate the PDF
of the RUL based on the sensor measurements of the system, without considering
the operational planning. We therefore do not have type 1 endogenous uncertainty.

For endogenous uncertainty type 2, the decisions change the timing of when
the outcome of the uncertain parameters is observed, and thus the shape of the
scenario tree [7, 8]. Type 2 endogenous uncertainty occurs for instance in gas field
development [7] (where the uncertain gas reserve is only revealed after deciding to
exploit a gas field) and clinical trial planning for new drugs [14] (where the unknown
effectiveness of a drug is only revealed after deciding to perform a drug trial). A
stochastic program with this type of endogenous uncertainty is often formulated as
a linear program. Here, non-anticipativity constraints enforce that the outcome of

9.1. INTRODUCTION

9

233

two different scenarios is the same when the uncertain parameter has not been
observed yet. Whether these constraints are active depends on the decisions [7, 8].

Endogenous uncertainty type 2 in condition-based maintenance planning is
considered in [12, 15, 16]. In our problem, we also have endogenous uncertainty type
2: When we do not replace a component before it fails, we observe the RUL/failure
time when the component fails. But when we replace a component before it
fails, we never observe the RUL/failure time. The authors of [15, 16] optimize the
condition-based maintenance planning for a multi-component system under this
type of endogenous uncertainty. Here, the probability of failure is estimated after
inspections, and the multi-stage problem is approximated by a two-stage problem
with a rolling horizon approach. In contrast with [15, 16], however, we plan
predictive maintenance for multiple systems (each consisting of a single component).
The maintenance for multiple systems is linked over time by the limited capacity
and the availability of spare components. We therefore solve the full multi-stage
stochastic program instead of approximating it with a two-stage problem.

In this chapter, we optimize the predictive maintenance planning for multiple
systems using a multi-stage stochastic linear program. First, we obtain probabilistic
RUL prognostics for these systems based on the sensor measurements with a
Convolutional Neural Network. We then optimize the maintenance planning with
these RUL prognostics, by jointly optimizing the initial maintenance planning at the
first day and the updates at later days. Due to a limited capacity and a limited
number of spare components, only a limited number of systems can be replaced at
the same time. In this study, we provide the following contributions:

• We formulate the predictive maintenance planning problem for multiple
systems as a multi-stage stochastic integer linear program. We estimate the
PDF of the RUL of these systems with a Convolutional Neural Network with
Monte Carlo dropout. Moreover, we formulate the stochastic program such
that the constraint matrix is totally unimodular. With this, we obtain an integer
optimal solution when solving the relaxation of the integer stochastic program.

• We propose a new dynamic clustering algorithm, based on the endogenous
uncertainty of our problem. We integrate this new algorithm in the nested
Benders decomposition algorithm [17, 18], that we use to solve the multi-stage
stochastic program. The clustering algorithm decreases the computational time
for solving the problem to optimality.

• We apply our method to a realistic case study for aircraft engines, where we
consider up to 5 engines and a planning horizon of 4 weeks (28 days/stages).
Considering 5 engines, we perform the same number of iterations 25 times
faster with our clustering algorithm, than without the clustering algorithm.

In the remainder of this work, we first introduce the considered predictive
maintenance planning problem in Section 9.2. We then formulate the corresponding
multi-stage stochastic program in Section 9.3, and propose the solution method with
our new clustering algorithm in Section 9.4. Last, we apply this method to a case
study with aircraft engines in Section 9.5.

9

234
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

9.2. PROBLEM FORMULATION - PREDICTIVE MAINTENANCE

SCHEDULING
We consider the maintenance planning for a set of systems E . Let d = 0 denote the
current day. We optimize the maintenance planning over the next D days.

9.2.1. DATA-DRIVEN RUL PROGNOSTICS

We estimate the Probability Density Function (PDF) of the Remaining Useful Life
(RUL) for each system e ∈ E , using the sensor measurements of this system. The
RUL of system e is the number of days left until failure for this system. Let ped

denote the probability that the RUL of system e ∈ E is d days, i.e., the probability
that system e fails at day d ,0 ≤ d ≤ D . We also calculate the conditional probability
p ′

ed that the RUL of system e ∈ E is d days, given that it has not failed before day d
(i.e., the hazard rate):

p ′
ed = ped

1−∑d−1
h=0 peh

. (9.1)

In Section 9.5.1, we define a Convolutional Neural Network that is used to estimate
these failure probabilities.

The estimated PDF of the RUL of system e is only valid if no maintenance is
performed on this system. As soon as a system is maintained, we assume that the
probability of failure becomes zero until day D , i.e., we have endogenous uncertainty.

9.2.2. CONSTRAINTS FOR THE MAINTENANCE SCHEDULING

We assume that the maintenance task for a system e ∈ E consists of replacing this
system, i.e., the system is removed, and a spare system is immediately installed
instead. The removed, faulty system is maintained in an external facility. This takes
d s days, i.e., the repair lead time is d s days. After maintenance, the system can be
reused. Until it is reused, it is added to the stock of spare systems. Let s be the
number of initially available spare systems in stock. Let d g denote the number of
days it takes to replace a system e ∈ E . We assume that the replacement for each
system e ∈ E begins at the start of every day d ∈ [0,1, . . . ,D], and that at most g
systems can be replaced simultaneously. A similar assumption is made in [19, 20].

9.2.3. MAINTENANCE COSTS

Let cr denote the costs of replacing, and subsequently maintaining, a system e ∈ E ,
let c f denote the cost incurred when a system e ∈ E fails, and let cl denote the costs
per day a system remains failed (i.e., the system is failed, but its replacement has
not started yet). We minimize the expected costs over the expected lifetime of the
systems. Let Ie denote the number of days system e ∈ E has been used before the
current day 0. The total lifetime of a system e is d + Ie if a system e fails at, or is
replaced at, day d ∈ [0,1, . . . ,D].

An initial maintenance planning is made at the current day d = 0. This planning
can be updated over time. For instance, we can reschedule a replacement to an

9.3. MULTI-STAGE STOCHASTIC INTEGER LINEAR PROGRAM FOR PREDICTIVE

MAINTENANCE SCHEDULING

9

235

earlier day if a system fails. Since constantly changing the maintenance planning is
undesirable, we add a small penalty if we change the maintenance planning at a
later day d > 0. Specifically, we incur a cost ci > 0 for inserting a replacement in the
maintenance planning, and a cost ck > 0 for cancelling a planned replacement.

9.3. MULTI-STAGE STOCHASTIC INTEGER LINEAR PROGRAM

FOR PREDICTIVE MAINTENANCE SCHEDULING
We pose the optimization of the predictive maintenance planning, including possible
updates at future days, as a multi-stage stochastic integer linear program as follows.

9.3.1. SCENARIO TREE

We consider a discrete-time multi-stage stochastic program. At the beginning of
each day d ∈ [0,1, . . . ,D], we observe if system e ∈ E has failed or not. We assume
that at the beginning of day d = 0, at the root node, no system has failed yet. With
this, we construct a scenario tree. Figure 9.1 shows an example of a scenario tree
with two systems E = {1,2} and three days d ∈ [0,1,2].

Each possible outcome in the scenario tree is represented by a node. Let N denote
the set of nodes in the multi-stage scenario tree. Let Nd ⊆ N denote the set of nodes
in the scenario tree that belong to day d . We denote the day of a node n ∈ N by
d(n). At day d = 0, there is one root node, denoted by 0. Let E n

fail ⊆ E denote the set
of systems that have already failed before node n. Let E n

new ⊆ E be the set of systems
that fail at the beginning of day d(n) at node n. For each system e ∈ E n

fail, we also

have the day d fail
e (n) system e failed in the considered node n. For instance, for

node 7 in Figure 9.1, E 7
new = {2}, while E 7

fail = {1} with d fail
1 (7) = 1. We assume that a

system fails at most once in the considered planning horizon.
For each node n ∈ N , we denote the direct successor nodes by S(n) ⊆ Nd(n)+1. The

leaf nodes, i.e., the nodes at day D , do not have any successors. For a successor
node m ∈ S(n) of node n, the following six conditions S1-S6 hold:

S1 d(m) = d(n)+1

S2 E m
fail = E n

fail ∪E n
new

S3 ∀e ∈ E n
fail,d fail

e (m) = d fail
e (n)

S4 ∀e ∈ E n
new,d fail

e (m) = d(n)

S5 ∄e ∈ E m
new : e ∈ E m

fail.

S6 The probability qnm to go from node n to node m is strictly larger than 0.

The probability qnm to go from node n to node m (where node m fulfills conditions
S1 - S5) is:

qnm = ∏
e∈E m

new

p ′
ed(m)

∏
e∈E\

(
E m

new∪E m
fail

)
(
1−p ′

ed(m)

)
. (9.2)

Let a(n) ∈ Nd(n)−1 denote the direct ancestor node of a node n ∈ N \ {0}.

9

236
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Figure 9.1.: Example of a scenario tree for two systems E = {1,2}, and with three days
d ∈ [0,1,2]. On the arcs are the probabilities to go from one node to the
other node.

9.3.2. MODEL FORMULATION

VARIABLES

The main decision variable xn
ed denotes, at node n, at which day d ≥ d(n) we plan

to replace system e. This variable is defined for each node n ∈ N , each system e ∈ E
and each day d ∈ [d(n),d(n)+1, . . . ,D]:

xn
ed =

{
1, It is planned at node n that system e will be replaced at day d ,

0, Otherwise.
(9.3)

At each node n ∈ N \ {0}, we introduce auxiliary variables that cancel planned
replacements or that insert new replacements. Both variables are defined for each

9.3. MULTI-STAGE STOCHASTIC INTEGER LINEAR PROGRAM FOR PREDICTIVE

MAINTENANCE SCHEDULING

9

237

node n ∈ N \ {0}, each system e ∈ E , and each day d ∈ [d(n),d(n)+1, . . . ,D]:

i n
ed =


1, At node n, a replacement for system e is planned at day d , i.e.,

xn
ed = 1. This replacement was not planned for system e at day d

at the ancestor node a(n), i.e., xa(n)
ed = 0.

0, Otherwise.

(9.4)

kn
ed =


1, The replacement of system e, planned at day d at the ancestor

node a(n) (i.e., xa(n)
ed = 1), is cancelled at node n, i.e., xn

ed = 0.

0, Otherwise.

(9.5)

We also define an auxiliary variable indicating whether system e has already been
replaced at node n. This variable is defined for each node n ∈ N and each system
e ∈ E as follows:

r n
e =

{
1, System e has been replaced in the past at node n.

0, Otherwise.
(9.6)

Last, we define for each node n ∈ N , the number of spare systems in stock at day
d ∈ [d(n),d(n)+1, . . . ,D]:

vn
d = Number of available spares in stock at node n at day d , (9.7)

where vn
d is an integer variable. Similarly, we define for each node n ∈ N the left-over

capacity at day d ∈ [d(n),d(n)+1, . . . ,D], i.e., the number of replacements that can
still be made per day:

wn
d = Remaining capacity at node n at day d , (9.8)

where wn
d is an integer variable as well.

MODEL FORMULATION AT THE ROOT NODE

For the root node 0, we consider the following integer linear program:

Min. v0 (9.9)

s.t. r 0
e = 0 ∀e ∈ E (9.10)

v0
d + ∑

e∈E
x0

e0 = s ∀d ∈ [0,1, . . . ,d s −1] (9.11)

v0
d = s ∀d ∈ [d s ,d s +1, . . . ,D] (9.12)∑

e∈E

d∑
d ′=max(0,d−d s+1)

x0
ed ′ ≤ s ∀d ∈ [0,1, . . . ,D] (9.13)

w0
d + ∑

e∈E
x0

e0 = g ∀d ∈ [0,1, . . . ,d g −1] (9.14)

w0
d = g ∀d ∈ [d g ,d g +1, . . . ,D] (9.15)

9

238
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

∑
e∈E

d∑
d ′=max(0,d−d g +1)

x0
ed ′ ≤ g ∀d ∈ [0,1, . . . ,D]. (9.16)

v0
d ∈ {0,1, . . . , s}, w0

d ∈ {0,1, . . . , g } ∀d ∈ [0, . . . ,D] (9.17)

x0
ed ∈ {0,1} ∀e ∈ E ,∀d ∈ [0, . . . ,D] (9.18)

v0 denotes the objective function, which is discussed below. Eq. (9.10) defines
whether or not a system has already been replaced. We assume that at the root
node, no system is replaced yet.

Eq. (9.11) and eq. (9.12) define the number of spares available in stock at all future
days. Here, only the planned replacements at the current day 0 are considered,
since all replacements planned at future days may still be cancelled. If we replace a
system e at day d , then it comes back in stock as spare on day d +d s . The number
of spares is thus s after d s days (eq. (9.12)), and s minus the number of systems we
replace at day 0 before day d s (eq. (9.11)). Last, eq. (9.13) ensures that we cannot
plan more replacements then there are spare systems in stock, i.e., we can schedule
at most s replacements per d s days.

Eq. (9.14) and (9.15) define the remaining capacity. Again, only the planned
replacements at current day 0 are taken into account. Each replacement takes d g

days. The remaining capacity is therefore g after d g days (eq. (9.15)), and g minus
the number of systems replaced at day 0 before day d g (eq. (9.14)). Eq. (9.16)
ensures that we cannot exceed the available capacity, i.e., we can schedule at most
g replacements per d g days.

Objective function Let yn denote the set of decision variables of the linear program
at a node n ∈ N . For any node n ∈ N \ {0}, the objective function is a function of the
decision variables y a(n) at the ancestor node a(n). Let vn(y a(n)) denote the objective
function of node n ∈ N \ {0}. The objective function v0 at the root node is then:

v0 = ∑
e∈E

cr

0+ Ie
x0

e0 +
∑

m∈S(0)
q0m vm(y0). (9.19)

Eq. (9.19) consists of the replacement costs and the expected future costs. We
only add the replacement costs cr for replacements that are planned at day 0,
since replacements planned at future days can still be cancelled. We scale these
replacement costs by the lifetime of the system, i.e., we minimize the costs per day
a system has been used.

MODEL FORMULATION AT THE OTHER NODES

For any node n ∈ N \ {0}, we consider the following integer linear program:

Min. vn (
y a(n)) (9.20)

s.t. xn
ed − i n

ed ≤ xa(n)
ed ∀e ∈ E ,∀d ∈ [d(n), . . . ,D] (9.21)

xa(n)
ed −kn

ed ≤ xn
ed ∀e ∈ E ,∀d ∈ [d(n), . . . ,D] (9.22)

r n
e = r a(n)

e +xa(n)
ed(a(n)) ∀e ∈ E (9.23)

9.3. MULTI-STAGE STOCHASTIC INTEGER LINEAR PROGRAM FOR PREDICTIVE

MAINTENANCE SCHEDULING

9

239

xn
ed +

(
r a(n)

e +xa(n)
ed(a(n))

)
≤ 1 ∀e ∈ E ,∀d ∈ [d(n), . . . ,D] (9.24)

vn
d + ∑

e∈E
xn

ed(n) = v a(n)
d ∀d ∈ [d(n), . . . ,min(d(n)+d s −1,D)] (9.25)

vn
d = s ∀d ∈ [d(n)+d s , . . . ,D] (9.26)∑

e∈E

d∑
d ′=max(d(n),d−d s+1)

xn
ed ′ ≤ v a(n)

d ∀d ∈ [d(n), . . . ,D] (9.27)

wn
d + ∑

e∈E
xn

ed(n) = w a(n)
d ∀d ∈ [d(n), . . . ,min(d(n)+d g −1,D)] (9.28)

wn
d = g ∀d ∈ [d(n)+d g , . . . ,D] (9.29)∑

e∈E

d∑
d ′=max(d(n),d−d g +1)

xn
ed ′ ≤ w a(n)

d ∀d ∈ [d(n), . . . ,D]. (9.30)

vn
d ∈ {0,1, . . . , s}, wn

d ∈ {0,1, . . . , g } ∀d ∈ [d(n), . . . ,D] (9.31)

xn
ed , i n

ed ,kn
ed ∈ {0,1} ∀e ∈ E ,∀d ∈ [d(n), . . . ,D] (9.32)

r n
e ∈ {0,1} ∀e ∈ E . (9.33)

vn
(
y a(n)

)
denotes the objective function, which is discussed below. Eq. (9.21) and

(9.22) are new, compared to the model at the root node, and define the variable for
inserting new and cancelling previously planned replacements, respectively. Here,
we enforce i n

ed = 1 if we plan to replace system e at day d (xn
ed = 1), while we did not

plan this at the ancestor node a(n) (xa(n)
ed = 0). Similarly, kn

ed = 1 if we plan at the

ancestor node a(n) to replace system e at day d (xa(n)
ed = 1), while we do not plan

this anymore at node n (xn
ed = 0). Since the cost ci and ck associated with inserting

and cancelling a replacement are strictly positive, i n
ed is zero in the optimal solution

if no new replacement is inserted, while kn
ed is zero in the optimal solution if we do

not cancel a planned replacement.
Eq. (9.23) defines the variable r n

e . A system e is already replaced at node n (r n
e = 1)

if: i) it is already replaced at the ancestor node a(n) (r a(n)
e = 1), or ii) if it is replaced

at day d(n)−1 at the ancestor node a(n) (xa(n)
ed(a(n)) = 1). Eq. (9.24) ensures that each

system is replaced at most once: All future planned replacements are cancelled as
soon as a system is replaced.

Eqs. (9.25) and (9.26) define the number of available spare systems. These
constraints are similar to the constraints on the spares at the root node. However,
the number of available spares now depends on the number of available spares v a(n)

d
at the ancestor node a(n). Constraint (9.27) defines, as before, that we cannot plan
more replacements than the number of available spare systems. Similarly, eq. (9.28)
and (9.29) define the remaining capacity, which depends on the remaining capacity
w a(n)

d at the ancestor node a(n). Eq. (9.30) ensures that we cannot plan more
replacements than the available capacity.

Objective function: The objective function vn(y a(n)) for node n is:

vn (
y a(n))= ∑

e∈E n
new

(
1− r n

e

) c f

d(n)+ Ie
(9.34)

9

240
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

+ ∑
e∈E n

new∪E n
fail

(
1− r n

e −xn
ed(n)

) cl

d fail
e (n)+ Ie

+xn
ed(n)

cr

d fail
e (n)+ Ie

+ ∑
e∈E\(E n

fail∪E n
new)

xn
ed(n)

cr

d(n)+ Ie
+ ∑

e∈E

D∑
d=d(n)

(
ci i n

ed + ck kn
ed

)
+ ∑

m∈S(n)
qnm vm (

yn)
.

The first term of this objective function contains the cost of new failures. Here, we
do not incur any failure cost if system e is already replaced before node n (r n

e = 1).
The second term of the objective contains the cost of i) systems that remain failed
for an extra day, without being replaced, and ii) the cost of replacing failed systems.
The third term contains the cost of replacing systems that have not failed yet. As
before, we only add the cost of systems that are replaced at day d(n), since all
replacements planned at future days can still be cancelled. We scale these three cost
terms by the number of days a system has been used.

The fourth term of the objective contains the cost of cancelling and inserting
replacements. If system e has not failed and is not replaced yet, we do not know the
number of days the system e will be used. These are therefore the only costs that
we do not scale by the number of days a system is used. The last term contains the
expected future costs of node n. This term is not included in the objective function
of the leaf nodes at day D .

A shorter (schematic) way to denote the objective function vn(y a(n)) at node n is:

vn (
y a(n))=C n + (

cn)T yn +Qn (
yn)

, (9.35)

where T denotes the transpose. The first part C n is the constant term, while Qn(yn)
denotes the future expected costs:

C n = ∑
e∈E n

new

c f

d(n)+ Ie
+ ∑

e∈E n
new∪E n

fail

cl

d fail
e (n)+ Ie

, (9.36)

Qn (
yn)= ∑

m∈S(n)
qnm vm (

yn)
. (9.37)

Last, (cn)T yn contains all remaining terms of the objective function i.e., the cost
terms (in the vector cn) multiplied by the decision variables yn . The objective of a
leaf node n ∈ ND consists of the first two terms (C n + (cn)T yn) only.

The uncertainty in this problem is only in the objective function of the linear
programs [21], which depends on the probabilistic RUL of the systems. In contrast,
the constraint matrix and right-hand side of the linear programs only depend on the
decisions at the ancestor node, and not on any random parameters.

9.3.3. ENDOGENOUS UNCERTAINTY AND NON-ANTICIPATIVITY

The uncertainty in our problem is endogenous (type 2), since the decision to replace
a system or not affects the PDF of the RUL. Before replacing a system, the probability

9.4. NESTED BENDERS DECOMPOSITION AND A NOVEL CLUSTERING ALGORITHM

9

241

of failure is estimated based on the sensor measurements. After replacing a system,
we assume that the probability of failure is zero at all future days.

For instance, assume that we replace system 1 at day 0 in Figure 9.1, and that we
observe at day 1 that system 2 fails. We then do not know if we are in node 1
(system 2 fails, system 1 would have failed if we had not replaced it) or in node 3
(only system 2 fails), i.e., we do not observe the RUL of system 1. The optimal
solution at node 1 and node 3 should therefore not depend on the unobserved
RUL of the replaced system 1. With endogenous uncertainty type 2, this is usually
enforced with non-anticipativity constraints [7, 8]. However, in our problem, this is
not necessary. We instead proof the following theorem in Appendix 9.A:

Theorem 1: For the considered problem, the optimal solution at a node n does
not depend on the (unobserved) RUL of the replaced systems.

9.3.4. TOTALLY UNIMODULAR CONSTRAINT MATRIX

The linear program in each node contains integer variables. If the constraint
matrix of an integer program is totally unimodular, and if the right-hand side
coefficients are integral, then every extreme point of the feasible region is integral
[22]. The optimal solution of the relaxation of the integer linear program (found with
the simplex method), is thus integer. In Appendix 9.B, we proof the following theorem:

Theorem 2: For the considered problem, it holds that:

• The constraint matrix of the linear program at any node n ∈ N is totally
unimodular

• In the optimal solution of the stochastic program, the right-hand side of each
linear program is integer.

When solving the linear relaxation of the integer program (with the simplex method),
the optimal solution will thus be integer.

To ensure that the constraint matrix is totally unimodular, we allow that multiple
replacements are planned for a single system. However, in constraint (9.24), we do
restrict that at most one replacement is executed per system. In general, it is not
desirable to plan multiple replacements and subsequently cancel them. To address
this, we set the cancellation costs ck larger than the inserting costs ci (ck > ci), such
that it is not optimal to plan multiple replacements.

9.4. NESTED BENDERS DECOMPOSITION AND A NOVEL

CLUSTERING ALGORITHM
Our problem is sufficiently expensive (the objective value of any node n ∈ N cannot
go to −∞) and complete (the objective value of any node n ∈ N cannot go to ∞). We
thus solve the relaxation of the multi-stage stochastic integer program using nested
Benders decomposition [17, 18], also called the nested L-shaped method. We first

9

242
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

shortly introduce this method in the context of our problem, and we then propose
our new dynamic clustering algorithm, to reduce the computational time.

9.4.1. NESTED BENDERS DECOMPOSITION

The difficult term in a stochastic program are the expected future costs Qn(yn). In
the nested Benders decomposition, Qn(yn) is therefore replaced by a variable θn

for each node n ∈ N \ ND . We let the variable θn converge to Qn(yn) by iteratively
adding constraints on θn , called the “optimality cuts”, to the linear program. To
start, we add the constraint θn ≥ 0 to each node n ∈ N \ ND , where 0 is a trivial
lower bound for the expected future costs. At each node n ∈ N , we always have a
feasible solution: We can always cancel all planned replacements and plan no new
replacements. It is thus not necessary to derive feasibility cuts.

We move through the scenario tree using the “Fast-Forward-Fast-Backward” (FFFB)
heuristic [18]. We start in the “forward mode” (with the initial constraint that θn ≥ 0
to each node n ∈ N \ ND) and solve the linear program of the root node, of each
node at day 1, etc., until we have solved the linear program of each leaf node at
day D . Here, we take all optimality cuts added to the linear program, which is
only the trivial constraint θn ≥ 0 in the first iteration, into account. We then switch
to the “backward mode”, and use the solution of the leaf nodes to derive a new
optimality cut for each node at day D −1, and solve the linear program at each node
at day D −1 with this new optimality cut. This continues until we have added a
new optimality cut to the root node. We then switch again to the forward mode
and repeat the procedure, until we have found an optimal solution. Each switch in
direction is counted as a new iteration.

Let π̂m,i denote the optimal dual variables of the linear program at a successor
node m ∈ S(n) of node n in iteration i of the nested Benders decomposition. The
optimality cut that we add to node n is:

θn ≥ ∑
m∈S(n)

qnm

(
C m +

(
π̂m,i

)T (
hm −T m yn))

. (9.38)

It is only useful to add this cut if the optimal value of θn at iteration i −1, θ̂n,i−1,
does not fulfill this constraint yet. Here, we use an optimality tolerance of ϵ, where
ϵ is a very small number. We thus only add the cut if θ̂n,i−1 + ϵ is strictly smaller
than the value of the cut in iteration i −1. We find an optimal solution (given the
optimality tolerance), and thus terminate the algorithm, if we move backward from
the leaf nodes to the root node without adding any optimality cuts.

By adding the optimality cuts to the linear programs, the constraint matrices
are not totally unimodular anymore. The solutions we find at each node during
the algorithm are thus not necessary integer. However, with this algorithm, we
approximate the optimal solution. If there is one unique optimal solution, this
optimal solution is integer [23], with a tolerance of ϵ. If there are multiple optimal
solutions, then the obtained optimal solution is not necessarily integer [23]. In this
case, we can solve our problem once with integer constraints. However, we expect
that this is highly unlikely for the considered problem, and we indeed obtain only
integer solutions in the case study.

9.4. NESTED BENDERS DECOMPOSITION AND A NOVEL CLUSTERING ALGORITHM

9

243

MULTICUT STRATEGY

The optimality cut in eq. (9.38) is derived with the “unicut” strategy, where only
one optimality cut at the time is added to a node n. Another strategy to derive
optimality cuts is the multicut strategy [24]. With this strategy, we add one variable
θn

m to the linear program at node n for each successor node m ∈ S(n). The objective
at node n becomes to minimize C n + (cn)T yn +∑

m∈S(n)θ
n
m . We add an optimality cut

on θn
m to node n for each successor node m ∈ S(n) when going backward:

θn
m ≥ qnm

(
C m + (π̂m,i)T (hm −T m yn)

)
. (9.39)

As before, we only add this cut if it is not yet fulfilled in the current solution, with
an optimality tolerance of ϵ.

9.4.2. A DYNAMIC CLUSTERING ALGORITHM UNDER ENDOGENOUS

UNCERTAINTY

The number of nodes in the scenario tree grows exponentially with the number of
systems and days. In this section, we therefore use the endogenous uncertainty of
our problem to reduce the number of linear programs we have to solve in each
iteration i of the nested Benders decomposition.

For instance, assume that in iteration i of the nested Benders decomposition, we
replace system 1 at the root node in the example in Figure 9.2. In Appendix 9.A,
we show that then, the optimal solution of node 1 and 3 (or any other node) does
not depend on the unobserved RUL of system 1. Moreover, node 1 and 3 have the
same ancestor node (the root node), and are therefore indistinguishable [8] in this
example. The optimal solutions are therefore equal, given the independence of the
optimal solution on the unobserved RUL of system 1. If the optimal solutions of
node 1 and 3 are the same, we suspect that the linear program is the same as well.
Also the optimal solutions of node 5, 8 and 9 do not depend on the unobserved RUL
of system 1. Since the optimal solutions of the ancestor nodes 1 and 3 are equal, we
expect that the optimal solutions of node 5,8 and 9 are equal as well. If the linear
programs of node 1 and 3 (or node 5, 8 and 9) are indeed the same in iteration i ,
we can group node 1 and 3 (or node 5, 8 and 9) together in one cluster in iteration
i . Then, we need to solve only one linear program per cluster.

DEFINITION OF A CLUSTER

We cluster nodes in the scenario tree in each iteration i of the nested Benders
decomposition, based on the replacement decisions at iteration i . Let E n,i

rep denote the

set of systems that are already replaced at node n in iteration i , i.e., r n
e = 1∀e ∈ E n,i

rep,

while r n
e ̸= 1∀e ∈ E \ E n,i

rep. A cluster αi ⊆ N at iteration i is a set of nodes, where any

node n,m ∈αi fulfill the following five conditions C1-C5:

C1 The days of the nodes are the same: d(n) = d(m).

C2 The set of replaced systems at iteration i is the same: E n,i
rep = E m,i

rep .

C3 Each replaced system is replaced at the same day in iteration i .

9

244
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Figure 9.2.: Example of clustering in a scenario tree with two systems E = {1,2} and
three days d ∈ {0,1,2}, where system 1 is replaced at day d = 0.

C4 If a replaced system e ∈ E n,i
rep has, at node n, failed before or at the day it

is replaced in iteration i , then i) e ∈ E m
fail and ii) d fail

e (n) = d fail
e (m). In other

words, if the RUL of a replaced system is observed in one node, then it is
also observed in the other node and it is the same.

C5 For each system e that is not yet replaced at node n and m in iteration
i , the failure history is the same. For each system e ∈ E \ E n,i

rep, one of the
following three conditions holds:

C5a System e fails at day d(n) in both node n and node m, i.e., e ∈ E n
new

if and only if e ∈ E m
new. This implies that E n

new \ E n,i
rep = E m

new \ E m,i
rep . Let

Eαi

new = E z
new \ E z,i

rep, with z any node in αi .

9.4. NESTED BENDERS DECOMPOSITION AND A NOVEL CLUSTERING ALGORITHM

9

245

C5b System e has already failed at node n and node m, with the same day
of failure, i.e., e ∈ E n

fail if and only if e ∈ E m
fail, with d fail

e (n) = d fail
e (m).

This implies that E n
fail \ E n,i

rep = E m
fail \ E m,i

rep .

C5c System e is still working at node n and node m, i.e., if e ∉ E n
fail ∪E n

new

if and only if e ∉ E m
fail∪E m

new. This implies that (E \E n,i
rep)\(E n

fail∪E n
new) =

(E \E m,i
rep)\(E m

fail∪E m
new). Let Eαi

work = (E \E z,i
rep)\(E z

fail∪E z
new) be the set of

working, non-replaced systems of cluster αi , with z any node in αi .

In other words, the RUL of a non-replaced system is either i) not observed
in both nodes, or ii) is observed in both nodes and is the same.

Two nodes in the same cluster are indistinguishable in iteration i (for the definition of
indistinguishable, see [8]). Using this, we proof the following theorem in Appendix 9.C:

Theorem 3: The integer linear program of two nodes n,m in the same cluster αi

in iteration i of the nested Benders decomposition, is the same during this iteration.

NESTED BENDERS DECOMPOSITION WITH THE CLUSTERING ALGORITHM

Assume that we are at the root node at iteration i of the nested Benders
decomposition, and that we move forward through the tree. The solution of the
linear relaxation of the integer program at the root node, or at any other node, is
not necessarily integer due to the optimality cuts. However, we cluster based on the
set of replaced systems E n,i

rep, where a system e is only in E n,i
rep if r n

e = 1 at iteration

i . With non-integer replacement decisions, the set E n,i
rep is empty, and each cluster

exists of a just single node.
To prevent this, we group the integer programs of the nodes belonging to day 0 up

to day δ of the planning horizon together in one large integer program. This large
integer program is the large-scale deterministic equivalent (LDE) of our problem
up to day δ. Such grouping is often performed in multi-stage stochastic programs
[18]. When we are at the root node, in the forward mode, we first solve this large
integer program up to day δ. Here, we do not consider the linear relaxation, i.e., we
impose that the decision variables are integer. The Benders decomposition algorithm
was originally developed for solving first-stage (master) integer programs, so this
algorithm still works with this restriction [17].

Because we now impose that the solution has to be integer, the constraint matrix
of the integer program up to day δ does not have to be totally unimodular anymore.
Since we set ck > ci , it is optimal to plan at most one replacement per system. To
guide our program to the optimal solution, we add the valid inequality that at most
one replacement per system is planned at each node to the large integer program
belonging to day 0 up to day δ:

D∑
d=d(n)

xn
ed ≤ 1 ∀e ∈ E , ∀d ∈ [0,1, . . . ,δ], ∀n ∈ Nd . (9.40)

Based on the integer solution from day 0 up to day δ, we cluster all nodes after
day δ. Here, we put two nodes in the same cluster if they fulfill conditions C1 - C5.

9

246
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

For instance, in the example in Figure 9.2, we consider δ= 0. The optimal solution
at the root node is to replace system 1 at day 0. With this replacement, we create
two clusters at day 1, and 3 clusters at day 2.

Clustering algorithm and the unicut strategy After solving the integer program up
to day δ and the clustering, we move forward to day δ+1. Within one cluster αi

at day δ+1, the linear program, including the expected future costs, of all nodes is
the same (only in iteration i). In the nested Benders decomposition, the expected
future costs at node n are approximated by θn . The optimality cuts at node n then
give lower bounds on θn . Since the expected future costs are the same for any node
n ∈αi , these lower bounds are valid for the expected future costs of all nodes n ∈αi

(again, only in iteration i). We thus form one linear program for cluster αi , which is
the same as the linear program of any node n ∈αi . We replace the expected future
costs in this linear program of cluster αi by θ, and add all optimality cuts of all
nodes n ∈αi as constraints on θ. An additional advantage of this is that sharing cuts
may accelerate the convergence of the nested Benders decomposition [25].

After solving one linear program for each cluster at day δ+1, we solve one linear
program per cluster at day δ+2, etc., until we reach the last day D . We again solve
the linear relaxation of the integer program for any day d > δ. Due to the optimality
cuts, the solutions are not necessarily integer. The clusters are thus only made based
on the integer solution up to day δ.

After reaching day D , we continue with iteration i +1 and move backwards through
the scenario tree. For a cluster αi at day d < D , a “successor cluster” α′i is a cluster
at day d +1, for which there exists a least one node n′ ∈α′i that is a successor node
of any node n ∈αi (see the proof in Appendix 9.C, eq. (9.47)). For each cluster at day
D −1, we derive an optimality cut on θ using the optimal solution of each successor
cluster. To derive this cut, we use the probability to go from any node in cluster αi

to any node in successor cluster α′i (see eq. (9.63) in Appendix 9.C). The optimality
cut gives a lower bound on the expected future costs in iteration i at cluster αi . As
these expected future costs are the same for all nodes n ∈αi (in iteration i), this cut
provides a valid lower bound on θn for any node n ∈αi . We add this cut to all nodes
n ∈αi as constraint on θn . We go backward until we have added optimality cuts to
the large integer program belonging to day 0 up to day δ. We then continue with
iteration i +2, moving forward again. Note that the clustering is dynamic, i.e, the
solution of the integer program from day 0 up to day δ, and thus the clusters, may
be different in iteration i +2 than in iteration i .

Clustering algorithm and the multicut strategy The clustering is different with the
multicut strategy than with the unicut strategy. In the multicut strategy, we add
one variable θm for each successor node m ∈ S(n), for all nodes n ∈αi , to the linear
program of a cluster αi . In the objective function of cluster αi , we add q̃nαi θm for
each node m ∈ S(n) and each node n ∈αi . Here, q̃nαi denotes the probability that
we are at node n if we are in cluster αi in iteration i . When we go backward through
the scenario tree, we do not consider the clusters anymore. Instead, we derive an
optimality cut for θn

m for each node n as before (eq. (9.39)).

9.5. CASE STUDY AND RESULTS - MAINTENANCE SCHEDULING OF AIRCRAFT

ENGINES

9

247

9.5. CASE STUDY AND RESULTS - MAINTENANCE

SCHEDULING OF AIRCRAFT ENGINES
In this section we illustrate the stochastic program introduced in Section 9.3 to plan
the replacement of aircraft engines. We first estimate the Remaining Useful Life
(RUL) of these engines.

9.5.1. PROBABILISTIC RUL PROGNOSTICS FOR AIRCRAFT ENGINES

We apply the proposed methodology to the predictive maintenance planning for the
aircraft engines in the C-MAPSS dataset [26, 27]. In this section, we shortly discuss
how we estimate the PDF of the RUL of these engines (i.e., the probabilistic RUL
prognostics) following [19].

FD001 FD002 FD003 FD004
Training instances 100 260 100 249
Testing instances 100 259 100 248
Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Table 9.1.: C-MAPSS datasets for turbofan engines from [26, 27].

The C-MAPSS dataset contains the simulated measurements of 21 sensors. For
each engine, one measurement per sensor per flight is available. The data of the
C-MAPSS dataset is divided into four subsets with different operating conditions and
fault modes, named FD001, FD002, FD003 and FD004 (see Table 9.1). Each subset
is in turn divided into a training and a test set. Each test set contains engines for
which the measurements stop at some point before failure. We estimate the RUL of
the engine at this point.

To estimate the RUL, we use the Convolutional Neural Network (CNN) introduced
in [19], consisting of 5 convolutional layers and 2 fully connected layers. We use the
same architecture, the same sensor selection, the same hyperparameters and the
same optimization tools as in [19] (see Section 3.1 in [19]). In the test phase, we
estimate the PDF of the RUL using Monte Carlo dropout [19, 28], with a dropout
rate of 0.5 in the first fully connected layer.

Table 9.2 shows the the Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE) [3] with the mean estimated RUL of the test engines. The MAE is
between 8.6 to 11.1 flights and the RMSE is between 12.1 to 15.6 flights. This is
comparable to the prognostics in state-of-the-art papers (see [19]).

FD001 FD002 FD003 FD004
RMSE (flights) 12.2 13.8 12.1 15.6
MAE (flights) 9.0 9.8 8.6 11.1

Table 9.2.: Metrics of the mean estimated RUL for the test engines of the four subsets
of C-MAPSS.

9

248
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

The obtained RUL prognostic is in flights and not in days. We assume that each
aircraft performs two flights per day. Let f 1

d and f 2
d denote the first and second

flight of a single aircraft during day d . The probability ped that the RUL of engine e
equals d days, is the probability that the RUL equals f 1

d flights plus the probability
that the RUL equals f 2

d flights.

9.5.2. MAINTENANCE SCHEDULING - DESCRIPTION OF THE PARAMETERS

Parameter Description Value
Problem parameters

D Last day of the maintenance planning 27
d g Number of days it takes to replace an engine 3
g Maintenance capacity 1

d s Number of days it takes to externally repair an engine 15
s Initial number of spare engines 2 or 3

Costs (euros)
cr Cost of replacing an engine 20,000
c f Cost of an engine failure (once) 20,000
cl Cost per day an engine remains failed 100,000
ci Cost of inserting a new replacement in the planning 2
ck Cost of cancelling a planned replacement 1

Parameters of the solution method

ϵ Optimality tolerance 10−5

δ Last day we group at the root node 9

Table 9.3.: Overview of the considered parameters.

An overview of the considered parameters is in Table 9.3. We construct a
maintenance planning for four weeks, from day 0 up to day D = 27 (i.e., 28
days/stages). Depending on the number of engines in the case study, we consider
an initial stock of s = 2 or s = 3 spare engines.

We consider a cost of cr = 20,000 for replacing an engine, and a cost of c f = 20,000
for an engine failure. Once an engine has failed, the aircraft cannot be used
anymore until it undergoes maintenance. This may lead to flight delays and flight
cancellations, which are very expensive. We therefore consider a cost of cl = 100,000
for each day an engine remains failed.

We also consider a small penalty of ci = 1 and ck = 2 for inserting or cancelling
an engine replacement, respectively. We set ck > ci , to ensure that at most one
replacement per engine is planned in the optimal solution. Recall that we scale the
other costs by the lifetime of the engine. For instance, if an engine is replaced after
200 days, we add a cost of cr /200 = 100 per day to the objective. In this example,
replacing an engine is per day 100 times as expensive as inserting a replacement,
and 50 times as expensive as cancelling a replacement.

Table 9.4 shows an overview of the engines for which we plan maintenance. The
estimated PDFs of the RUL of the engines are in Figure 9.3. To ensure a diverse set

9.5. CASE STUDY AND RESULTS - MAINTENANCE SCHEDULING OF AIRCRAFT

ENGINES

9

249

Number ped > 0 for the Mean Width of
Engine of Install first time estimated PDF of
name Subset engine day Ie at day d = . . . RUL (days) RUL (days)
1-24 FD001 24 -93 4 9 9
2-39 FD002 39 -75 16 22 13
3-32 FD003 32 -60 21 27 17
4-70 FD004 70 -95 13 18 13
1-49 FD001 49 -152 3 7 10

Table 9.4.: Overview of the engines that we consider in the maintenance planning.

of RUL prognostics, we have iteratively selected the engines from another subset.
Moreover, we have chosen the engines such that it is optimal to replace them
somewhere in the next four weeks. Last, the engines are selected such that the mean
estimated RUL and the width of the PDF vary.

(a) Engine 1-24. (b) Engine 2-39. (c) Engine 3-32.

(d) Engine 4-70. (e) Engine 1-49.

Figure 9.3.: PDF of the estimated RUL for the five considered engines.

9.5.3. DIFFERENT SOLUTION STRATEGIES

We analyze the computational time of four different solution methods. We combine
each solution method, except the LDE, with the unicut and multicut strategy. We
implement each solution method in Python using Gurobi version 10, on a computer
with 8GB of RAM memory and 4 Intel i7 (8th generation) CPU cores.

• LDE: For the large-scale deterministic equivalent (LDE) of the problem, we
add all constraints and objective functions of all nodes to a single, very large,
integer program (the LDE) and solve it.

9

250
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

• Benders: This method uses the nested Benders decomposition method (see
Section 9.4.1).

• Cluster: This method uses the nested Benders decomposition method,
combined with the clustering algorithm (see Section 9.4.2).

• Group: This method uses the nested Benders decomposition, where we also
add the integer programs of the nodes from day 0 up to day δ together (as
in the clustering algorithm, Section 9.4.2). However, we do not consider any
clusters.

LOWER BOUND AND UPPER BOUND

As lower bound on the objective value of the stochastic program, we use the solution
of the wait-and-see (WS) problem [17]. For the WS problem, we assume that we
know at day 0 the true RUL with absolute certainty. Let LB denote the lower
bound, i.e., the value of the optimal solution of the WS problem. Let z denote the
corresponding optimal objective value of the multi-stage stochastic program. We
define the Expected Value of Perfect Information (EVPI) [17] as percentage:

EVPI = 100 · z −LB

LB
. (9.41)

The EVPI states how much costs (in percent) we would save by exactly knowing the
true RUL without any uncertainty.

The expected value of the expected value (EV) problem (the EEV) is often used as
upper bound of a stochastic program. In the EV problem, we replace the random
RUL by the mean estimated RUL. The optimal solution would be to replace each
engine just before the mean estimated RUL (if possible). The engines thus have a
large probability of failure before being replaced, and the EEV is therefore high.

Instead, we propose a problem-specific method to find a tighter upper bound. Our
problem is stochastic since we may change the maintenance planning (by cancelling
or inserting replacements) after day 0. For the upper bound problem, we assume
that we can only make an initial maintenance planning at day 0, and that this
planning cannot be changed anymore. We thus do not update this maintenance
planning at later days, even if an engine fails. The upper bound UB is then the
expected value of the optimal solution of this upper bound problem. We define the
Value of the Stochastic Solution (VSS) [17] as percentage:

VSS = 100 · UB− z

z
. (9.42)

The VSS shows how much costs (in percent) we expect to save by solving the
stochastic program instead of implementing the upper bound solution.

Before we solve the stochastic program, we first analyse the gap between the
upper and lower bound (in percent):

∆(UB−LB) = 100 · UB−LB

LB
. (9.43)

9.5. CASE STUDY AND RESULTS - MAINTENANCE SCHEDULING OF AIRCRAFT

ENGINES

9

251

This gives an upper bound on both the VSS and the EVPI, i.e., VSS ≤∆(UB−LB) and
EVPI≤∆(UB−LB) [29]. It is only worthwhile to solve the stochastic program if the
VSS is large. If ∆(UB−LB) is small, then the VSS is also small, and we can simply
solve the upper bound problem instead of the stochastic program.

9.5.4. NUMERICAL RESULTS: SINGLE ENGINE MAINTENANCE

SCHEDULING

In this section, we analyse the results when planning maintenance for each single
engine in Table 9.4. We thus report the optimal maintenance planning when
considering only one single engine, i.e., the restrictions on the capacity and the
number of spares are irrelevant.

SINGLE ENGINE MAINTENANCE SCHEDULING - UPPER AND LOWER BOUND

Engine # of nodes Bounds
name in scenario tree LB UB UB - LB ∆(UB−LB)
1-24 208 198.38 205.52 7.14 3.60%
2-39 106 206.60 220.22 13.62 6.59%
3-32 56 134.73 247.41 112.68 83.63%
4-70 145 177.79 185.56 7.77 4.37%
1-49 233 126.37 129.29 2.92 2.31%

Table 9.5.: Overview of the size of the scenario tree and the lower bound (LB) and
upper bound (UB) for the single engine maintenance planning.

Table 9.5 gives the LB and the UB for the single engine maintenance planning.
The gap ∆(UB−LB) is between 2.31% and 6.59% for engine 1-24, 2-39, 4-70 and 1-49.
For engine 3-32, the gap is even 83.63%. This is because the mean estimated RUL
of this engine is large. For some cases in the WS problem, the engine does not fail
in the next four weeks, and is thus not replaced. This lowers the cost considerably.
However, even a gap of 2.31% in the costs is quite large. We thus continue with
solving the stochastic program.

SINGLE ENGINE MAINTENANCE SCHEDULING - STOCHASTIC SOLUTION

Table 9.6 gives the results for the single engine stochastic maintenance planning.
The VSS is relatively small, between 0.00% (engine 1-49) to 0.89% (engine 2-39).
Table 9.6 also shows the planned day of replacement, as planned at the root node
(day 0). In the stochastic solution, we plan to replace most engines one day later
than in the upper bound solution (except for engine 1-49). This is as expected: In
the stochastic program, we can immediately reschedule the replacement when an
engine fails. If an engine fails in the upper bound problem, however, it remains
failed until the day the replacement was planned at the root node. This incurs a
high cost cl per day. It is thus beneficial to replace engines earlier in the upper

9

252
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Objective value Planning at root node (day 0)
Day of Day of

Engine Optimal replacement replacement
name obj. value z VSS EVPI - UB solution -stochastic solution
1-24 204.46 0.52% 3.06% 5 6
2-39 218.28 0.89% 5.65% 16 17
3-32 247.09 0.13% 83.40% 21 22
4-70 184.78 0.42% 3.93% 13 14
1-49 129.29 0.00% 2.31% 3 3

Table 9.6.: The stochastic solution for the single engine maintenance plannings: The
optimal objective value, the VSS and the EVPI, and the day of replacement,
as planned at day 0 (root node), in the upper bound solution and the
stochastic solution.

bound solution. Here, the exception is engine 1-49, where the stochastic solution
and the upper bound solution are the same.

9.5.5. NUMERICAL RESULTS: MULTI-ENGINE MAINTENANCE

SCHEDULING

In this section, we analyse the multi-engine maintenance planning. Most airlines
operate a fleet of a few dozen to a few hundred aircraft. However, since engines
rarely fail, we expect that only a handful of engines in the fleet may fail within
the same next four weeks. We do not consider the engines without a chance of
failure in the next four weeks in the maintenance optimization, since it is optimal
not to plan any replacement for these engines. Instead, for the multi-engine
maintenance planning, we only consider engines for which it is optimal to replace
them somewhere in the next four weeks. We consider the following four cases:

• 2 engines: We make a maintenance planing for engine 1-24 and engine 2-39
in Table 9.4. We consider s = 2 spares in the initial stock.

• 3 engines: We make a maintenance planing for engine 1-24, 2-39 and engine
3-32 in Table 9.4. We consider s = 2 spares in the initial stock.

• 4 engines: We make a maintenance planning for engine 1-24, 2-39, 3-32 and
engine 4-70 in Table 9.4. We consider s = 2 spares in the initial stock.

• 5 engines: We make a maintenance planning for engine 1-24, 2-39, 3-32, 4-70
and engine 1-49 in Table 9.4. To ensure that we can replace all engines, we
consider s = 3 spares in the initial stock.

MULTI-ENGINE MAINTENANCE SCHEDULING - UPPER AND LOWER BOUND

Table 9.7 shows the LB and UB for the different multi-engine maintenance planning
cases. As expected, the number of nodes grows exponentially with the number of

9.5. CASE STUDY AND RESULTS - MAINTENANCE SCHEDULING OF AIRCRAFT

ENGINES

9

253

Total number # of nodes Bounds
of engines in scenario tree LB UB UB−LB ∆(UB−LB)

2 894 404.97 425.74 20.77 5.13%
3 3.666 540.78 673.15 132.37 24.48%
4 44.580 730.19 876.42 146.23 20.03%
5 445.653 847.29 988.83 141.54 16.71%

Table 9.7.: Overview of the size of the scenario tree and the lower bound (LB) and
upper bound (UB) for the multi-engine maintenance planning.

considered engines. The gap between the upper and lower bound (∆(UB−LB)) is
quite large, between 5.13% (2 engines) to 24.48% (3 engines). We therefore continue
with solving the stochastic program.

MULTI-ENGINE MAINTENANCE SCHEDULING - STOCHASTIC SOLUTION

Total Objective value Planning at root node (day 0)
number Optimal Day of replacement Day of replacement

of obj. -UB solution -stochastic solution
engines value z VSS EVPI 1-24 2-39 3-32 4-70 1-49 1-24 2-39 3-32 4-70 1-49

2 422.74 0.71% 4.39% 5 16 n.a. n.a. n.a. 6 17 n.a. n.a. n.a.
3 669.83 0.50% 23.86% 5 16 21 n.a. n.a. 6 17 22 n.a. n.a.
4 876.11 0.04% 19.98% 2 17 21 6 n.a. 2 17 22 6 n.a.
5 986.11 0.28% 16.38% 5 17 21 13 2 6 17 22 13 1

Table 9.8.: The stochastic solution for the multi-engine maintenance planning: The
optimal objective value, the VSS and the EVPI, and the day of replacement,
as planned at day 0 (root node), in the upper bound solution and the
stochastic solution.

Table 9.8 shows the stochastic results for the multi-engine maintenance planning.
The VSS is relatively small, between 0.04% (four engines) to 0.71% (two engines).
The VSS with four engines is small since we only plan the replacement of engine
3-32 at a different day in the stochastic solution than in the upper bound solution
(at the root node). In contrast, the EVPI is very large. With perfect RUL prognostics,
the expected costs would decrease by 4.39% (2 engines) to 23.86% (3 engines).

Figure 9.4 illustrates the initial maintenance planning at the root node with five
engines. For the stochastic solution, we plan to replace engine 1-24, 2-39 and 3-32
at the same day as in Table 9.6, i.e., at the optimal replacement day if we only
consider a single engine. Engine 1-49 is now replaced at day 1, instead of at day
3 (the optimal replacement day if we only consider a single engine). In this way,
the engine becomes available as spare at day 16. Engine 4-70 is replaced at day
13, instead of at day 14 (the optimal replacement day if we only consider a single
engine). In this way, the capacity to replace a new engine becomes available at day

9

254
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Figure 9.4.: Illustration of the optimal stochastic solution and the optimal upper
bound solution for the case with five engines.

16. This capacity and the spare is used to replace engine 2-39 at day 16, if it fails at
that day, and at day 17 otherwise.

COMPUTATIONAL TIME FOR THE MULTI-ENGINE MAINTENANCE SCHEDULING

Total Method LDE Benders Benders Group Group Cluster Cluster
number Unicut/

of engines Multicut n.a. Unicut Multicut Unicut Multicut Unicut Multicut

2
Time 0.4 0.7 0.6 0.1 0.1 0.1 0.1

of it. n.a. 56 48 10 10 10 14

3
Time 5.4 6.7 5.8 1.9 1.1 0.8 0.7

of it. n.a. 126 100 50 28 44 32

4
Time > 180 > 180 > 180 36.9 46.6 9.8 16.0

of it. n.a. > 249 > 210 70 72 86 74

5
Time > 180 > 180 > 180 > 180 > 180 77.5 > 180

of it. n.a. > 21 > 16 > 24 > 20 102 > 51

Table 9.9.: Computational time (in minutes) and number of iterations for solving the
stochastic program to optimality for i) various solution methods and ii)
the unicut and multicut strategy. We stop solving the problem after three
hours (denoted by > 180), where we also give the number of iterations in
three hours (denoted by > . . .). The shortest time per instance is denoted
in bold.

Table 9.9 shows the computational time for solving the stochastic program
to optimality, using various solution methods. Here, we consider a maximum
computational time of three hours. As expected, the computational time grows
exponentially with the number of engines. With 2 or 3 engines, all methods solve
the stochastic program to optimality in less than 10 minutes.

With 4 engines, the computational time of the different methods diverges. Setting
up the LDE of the stochastic program with four engines already takes more than 3

9.6. CONCLUSIONS

9

255

hours. And the plain nested Benders decomposition algorithm converges very slowly:
Even though we perform 249 (unicut strategy) and 210 (multicut strategy) iterations,
we do not find the optimal solution within three hours. In contrast, with the group
and cluster method, we only need between 70 to 86 iterations to find an optimal
solution, and we converge to the optimal solution in less than one hour. Here, the
cluster method is 3.8 (unicut strategy) and 2.9 (multicut strategy) times faster than
the grouping method. The cluster method with the unicut strategy is the fastest
method, and finds the optimal solution within 10 minutes.

With 5 engines, we even only find the optimal solution with the cluster method
combined with the unicut strategy. Here, we find the optimal solution after 77
minutes and 102 iterations. With the cluster method and the multicut strategy,
we only perform 51 iterations in the full three hours. This is because with the
multicut strategy, we do not consider the clusters when moving backwards through
the tree. With the grouping method, we have even performed only 24 (unicut) and
20 (multicut) iterations after three hours. With the clustering algorithm and the
unicut strategy, we already perform the first 24 iterations in 7.1 minutes, which is is
25 times faster than the grouping method. This shows the benefits of our clustering
algorithm, with the unicut strategy, when solving a multi-stage stochastic program.

When considering five engines (or more), in the maintenance optimization, the
size of the scenario tree and the computational time becomes very large. We
therefore advice to use the upper bound solution with five or more engines. For our
case study, the optimality gap with the upper bound solution is only 0.28% when
considering five engines (and up to 0.89% over all case studies) while we find the
upper bound solution in less than a minute. However, since engines rarely fail, we
expect that a situation where five engines or more have a probability of failure in
the next four weeks rarely occurs.

9.6. CONCLUSIONS

In this chapter, we formulate the predictive maintenance planning problem for
multiple systems with probabilistic RUL prognostics as a multi-stage stochastic
integer linear program. We formulate the stochastic program such that the constraint
matrix is totally unimodular. We can therefore solve the relaxation of the integer
linear program, and still obtain an integer optimal solution. Moreover, our problem
has endogenous uncertainty type 2. Instead of using non-anticipativity constraints
to handle this endogenous uncertainty, we formulate our problem such that the
optimal solution does not depend on the (possibly unobserved) random RUL of
the replaced systems. Last, we propose a new clustering algorithm, based on the
endogenous uncertainty in our problem. We integrate this clustering algorithm in
the nested Benders decomposition algorithm to accelerate this solution method.

We apply our method to a case study with aircraft engines, where we plan
maintenance for the next four weeks (28 days/stages) and for up to 5 engines.
We also consider a problem-specific upper bound solution, where we assume that
we cannot update the maintenance schedule over time. By solving the stochastic
program, we lower the expected costs by up to 0.89%, compared to the upper

9

256
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

bound solution. Moreover, our new clustering algorithm indeed decreases the
computational time. With 5 engines, we only find the optimal solution within the
time limit of three hours with the new clustering algorithm (combined with the
unicut strategy). Moreover, with 5 engines, we solve the same number of iterations
25 times faster with the clustering algorithm, than without the clustering algorithm.
However, due to the exponential grow of the computational time, we advice to use
the upper bound solution when considering 5 or more engines.

As future work we plan to extend the considered problem by integrating more
aspects of predictive maintenance into the optimization. For instance, we plan to
optimize the maintenance planning with multiple types of maintenance tasks instead
of only replacements, such as inspections and repairs. We also aim to consider
imperfect replacements/maintenance, where the component still has a probability of
failure after being maintained.

APPENDIX 9.A. PROOF OF THEOREM 1

9

257

APPENDIX 9.A. PROOF OF THEOREM 1
Let E n

rep be the set of systems that are already replaced at node n, i.e., r n
e = 1∀e ∈ E n

rep.
This set thus depends on our maintenance decisions made before node n. If a
system is replaced before it fails, we do not observe the random RUL. We show that
the optimal solution of node n does not depend on the (unobserved) RUL of the
replaced systems.

Figure 9.5.: A schematic example of the set S′(n) with the direct and indirect
successor nodes of a node n.

Let S′(n) ⊆ N be the set with node n and with all direct and indirect successor
nodes of node n, i.e., S′(n) contains node n, the successor nodes S(n) of node n, the
successor nodes S(m) for each successor node m ∈ S(n), etc. (see Figure 9.5). By the
definition of r z

e (constraint (9.23)), the set of replaced systems at a node n, E n
rep, is a

subset of the replaced systems at node z ∈ S′(n), i.e., E n
rep ⊆ E z

rep. It therefore holds
that for any node z ∈ S′(n), r z

e = 1 (constraint (9.23)) and xz
ed(z) = 0 (constraint (9.24))

for all e ∈ E n
rep. By filling in these values in the first two terms C z + (cz)T y z of the

objective of any node z ∈ S′(n) (eq. (9.35)), we obtain:

C z + (cz)T y z = ∑
e∈E z

new\E n
rep

(
1− r z

e

) c f

d(z)+ Ie
(9.44)

+ ∑
e∈

(
E z

new∪E z
fail

)
\E n

rep

(
1− r z

e −xn
ed(z)

) cl

d fail
e (z)+ Ie

+xz
ed(z)

cr

d fail
e (z)+ Ie

+ ∑
e∈E\E n

rep\
(
E z

fail∪E z
new

) xz
ed(z)

cr

d(z)+ Ie
+ ∑

e∈E

D∑
d=d(z)

ci i z
ed + ck kz

ed .

In eq. (9.44), the only term with the replaced systems are the costs of inserting and
cancelling replacements. These costs do not depend on the random RUL of the
system. C z + (cz)T y z of node z ∈ S′(n) is thus completely independent of the RUL of
the replaced systems E n

rep at node n.
We now show by induction that the optimal solution in node n is independent on

the, possibly unobserved, RUL of the replaced systems at node n:

Base step for a leaf node in S′(n) For a leaf node z ∈ S′(n) (i.e., d(z) = D), the
objective function consists only of the terms C z + (cz)T y z . The constraint matrix and
right-hand side of all nodes m ∈ Nd is the same for all days d ∈ [0,1, . . . ,D]. The
constraint matrix and right-hand side are thus also completely independent of the
RUL of the systems (see Section 9.3.2). The optimal solution at node z is therefore
independent of the RUL of the replaced systems at node n.

9

258
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Induction step Assume that for all nodes z ∈ S′(n) with d(z) ≥ d , d ∈ [d(n)+1, . . . ,D],
the optimal solution at node z is independent of the RUL of the replaced systems at
node n.

We now consider a node m ∈ S′(n) with d(m) = d −1. The last term of the objective
function at node m, Qm(ym) (see eq. (9.37)), are the expected future costs. By
the induction step, the value of the optimal solution v z

(
ym

)
of a successor node

z ∈ S(m) is independent of the RUL of the replaced systems at node n. The objective
function C m + (cm)T ym +Qm(ym) (see eq. (9.35)) is thus independent of the RUL of
the replaced systems at node n. The constraint matrix and right-hand side of any
node n ∈ N are also independent of the RUL of the systems (see the base step). The
optimal solution of the linear program at node m ∈ S′(n), including node n itself, is
thus independent of the (unobserved) RUL of the replaced systems at node n.

APPENDIX 9.B. PROOF OF THEOREM 2
APPENDIX 9.B.1. TOTALLY UNIMODULAR CONSTRAINT MATRIX

In this appendix, we show that the constraint matrix at any node n ∈ N is totally
unimodular using the consecutive ones property [30]. A matrix fulfills the consecutive
ones property if i) all entries are either 0 or +1 and ii) for each row, the ones appear
consecutively. Moreover, when adding a unit vector as row/column to a totally
unimodular matrix, and when multiplying a row/column in a totally unimodular
matrix with minus one, the matrix remains totally unimodular [22].

Figure 9.6.: Overview of the constraint matrix for any node n ∈ N \ {0}.

Figure 9.6 shows a schematic overview of the constraint matrix for any node
n ∈ N \ {0}. We divide this constraint matrix in 3 blocks:

• Block 1: Block 1 in Figure 9.6 contains the coefficients belonging to the xn
ed

variables, and to all constraints except the cancelling constraints (eq. (9.22)).
The first column contains the coefficients of xn

1d(n), where 1 denotes the first

considered system, until the E th column contains the coefficients of xn
|E |d(n),

where |E | denotes the last system. We then continue with the coefficients of
xn

1(d(n)+1) in the next column, until the last column of block 1 contains the
coefficients of xn

|E |D (see Figure 9.6). With this ordering of the variables, the
matrix in block 1 fulfills the consecutive ones property [30], and is thus totally
unimodular:

– In constraint (9.30) and (9.27), we iteratively sum the xn
ed variables over

all systems and over a subset of consecutive days. In constraint (9.28)

APPENDIX 9.B. PROOF OF THEOREM 2

9

259

and eq. (9.25), we sum the xn
ed(n) variables over all systems. Due to the

ordering of the variables, the ones in the rows of these constraint appear
consecutive.

– Constraints eq. (9.21) and eq. (9.24) contain only one xn
ed variable per

constraint, each time with a coefficient of one. Constraints eq. (9.23),
(9.26) and (9.29) do not contain the variables xn

ed . The rows of these
constraints in block 1 thus contain a single one, and only zeroes beside,
or only zeroes.

• Block 2: The rows in block 2 contain the coefficients for the xn
ed variables of

the cancelling constraints (eq. (9.22)). Each row, with the coefficients of the
xn

ed variables, of a cancelling constraint contains a single −1, and only zeroes
beside. The matrix in block 1 and 2 is thus totally unimodular.

• Block 3: Block 3 contains the columns with the coefficients belonging to all
other variables. There is no specific ordering of these variables. Each variable,
except the xn

ed variables, is present in exactly one constraint, with a coefficient
of either −1 or 1. The column with the coefficients belonging to any variable
(except the xn

ed variables) thus contains a single −1 or 1 element, and only
zeroes beside. The matrix in block 1, 2 and 3 is thus totally unimodular.

Our constraint matrix is thus totally unimodular for any node n ∈ N \ {0}. The
constraint matrix of the root node is a submatrix of the constraint matrix in Figure
9.6, without the cancellation and inserting variables, and without constraints (9.21),
(9.22) and (9.24). The constraint matrix at the root node is thus also totally
unimodular.

APPENDIX 9.B.2. INTEGER RIGHT-HAND SIDE WITH INDUCTION

We now show by induction that in the optimal solution (found with the simplex
method), the right-hand side of the integer program at each node n ∈ N is integer:

Base step for the root node The right-hand side of the linear program of the root
node consists of 0 (eq. (9.10)), s, (eq. (9.11), (9.12), and (9.13)), and g , (eq. (9.14),
(9.15) and (9.16)). The right-hand side of the linear program of the root node is
thus integer, while the constraint matrix is totally unimodular. The optimal solution
(when using the simplex method) of the relaxation of the integer program is thus
integer.

Induction step Assume that for any day d ′ ≤ d , with d ∈ [0,1, . . . ,D − 1], the
right-hand side of the integer program at any node n ∈ Nd ′ is integer. The optimal
solution of such a node n is then also integer (when using the simplex method).

Consider a node m ∈ N at a day d(m) = d +1. The right-hand side of the linear
program consists of integers (s, g and 1) , together with a linear combination (with
coefficients of −1 and 1 only) of the variables of the ancestor node. By the induction
step, the optimal solution of the ancestor node is integer. This means that the

9

260
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

right-hand side of the linear program of node m is integer, and that the optimal
solution (when using the simplex method) is integer as well.

APPENDIX 9.C. PROOF OF THEOREM 3.
In this appendix, we prove that the linear program of two nodes in the same cluster
is the same. This proof consists of two parts. An overview of the proof, with the
corresponding sections, is in Figure 9.7.

Figure 9.7.: Overview of the proof that the linear program of two nodes in the same
cluster is the same

APPENDIX 9.C.1. PRELIMINARY 1: C n + (cn)T y =C m + (cm)T y FOR TWO

NODES n AND m IN THE SAME CLUSTER.
Consider nodes n,m ∈ N \ {0} that are both in the same cluster αi at iteration
i of the nested Benders decomposition. In this section, we prove that
C n + (cn)T yn =C m + (cm)T ym (see the schematic objective in Section 9.3.2). To make
the notation between the linear program of node n and m consistent, we rename
the variables by removing the dependency on the node, i.e., xed = xn

ed , y = yn , etc.

We use the rewritten form of C n + (cn)T yn in eq. (9.44) (Appendix 9.A). Here, we
replace i) d(n) by d(m) (C1), ii) E n

new \ E n,i
rep by E m

new \ E m,i
rep (C5a), iii)

(
E n

new ∪E n
fail

)
\ E n,i

rep

by
(
E m

new ∪E m
fail

)
\ E m,i

rep (C5a, C5b), where we replace d fail
e (n) by d fail

e (m) for each

system in E n
fail \ E n,i

rep (C5b), and iv) (E \ E n,i
rep) \ (E n

fail ∪E n
new) by (E \ E m,i

rep) \ (E m
fail ∪E m

new)
(C5c). With this, we obtain:

C n + (cn)T y = ∑
e∈E m

new\E m,i
rep

(1− re)
c f

d(m)+ Ie
(9.45)

+ ∑
e∈

(
E m

new∪E m
fail

)
\E m,i

rep

(
1− re −xed(m)

) cl

d fail
e (m)+ Ie

+xed(m)
cr

d fail
e (m)+ Ie

+ ∑
e∈(E\E m,i

rep)\(E m
fail∪E m

new)

xed(m)
cr

d(m)+ Ie
+ ∑

e∈E

D∑
d=d(m)

ci ied + ck ked

APPENDIX 9.C. PROOF OF THEOREM 3.

9

261

=C m + (cm)T y. (9.46)

where we again use the rewritten form of C m + (cm)T ym in eq. (9.44) (Appendix 9.A)
to go to eq. (9.46).

APPENDIX 9.C.2. PRELIMINARY 2: TWO NODES IN THE SAME CLUSTER

HAVE TWO ANCESTOR NODES IN THE SAME CLUSTER

We consider two nodes n,m ∈ N that are in the same cluster αi in iteration i of the
nested Benders decomposition. We now prove by contradiction that the ancestor
nodes a(n) and a(m) are also in the same cluster at iteration i .

Assume that node n and m are in the same cluster, while a(n) and a(m) are not
in the same cluster at iteration i . Then, node a(n) and a(m) violate at least one of
the cluster conditions. We show that in this case, node n and m also violate at least
one cluster condition, which is a contradiction:

1. a(n) and a(m) violate condition C1. This means that d(a(n)) ̸= d(a(m)). Then
d(n) = d(a(n))+1 ̸= d(a(m))+1 = d(m) (S1). Node n and m thus violate condition C1.

2. a(n) and a(m) violate condition C2. This means that E a(n),i
rep ̸= E a(m),i

rep . Without loss

of generality (w.l.o.g.), we assume that ∃e ∈ E a(n),i
rep : e ∉ E a(m),i

rep , i.e., r a(n)
e = 1,r a(m)

e = 0.

Then r n
e = 1 (constraint (9.23)), and e ∈ E n,i

rep (by definition). There are two options
for system e at node a(m):

• xa(m)
ed(a(m)) = 0. By constraint (9.23), r m

e = 0 , and e ∉ E m,i
rep (by definition). Thus,

E n,i
rep ̸= E m,i

rep , and node n and m violate condition C2.

• xa(m)
ed(a(m)) = 1. By constraint 9.23, r m

e = 1 and e ∈ E m,i
rep (by definition). However,

for node m, system e is replaced at day d(a(m)) = d(a(n)) (S1), while for
node n, system e is replaced before day d(a(n)). Node n and m thus violate
condition C3.

3. a(n) and a(m) violate condition C3. This means that ∃e ∈ E a(n),i
rep , such that the

day of replacement of this system is not the same in node a(n) and a(m). The day
of replacement is fixed, since each system can only be replaced once (constraint
(9.24)). Node n and m thus also violate condition C3.

4. a(n) and a(m) violate condition C4. We assume w.l.o.g. that ∃e ∈ E a(n),i
rep such that

e ∈ E a(n)
fail and has, at node a(n), failed before or at the day it is replaced (in iteration

i), that violates condition C4. For node n, it thus holds that e ∈ E n
fail (S2), with

d fail
e (n) = d fail

e (a(n)) < d(a(n)) (S3, S4), and also for node n, this system failed before
or at the day it is replaced. For system e at node a(m), there are three options:

• e ∉ E a(m)
fail , and e ∉ E a(m)

new . Then, e ∉ E m
fail (S2).

• e ∉ E a(m)
fail , but e ∈ E a(m)

new . Then, e ∈ E m
fail (S2) with d fail

e (m) = d(a(m)) = d(a(n)) >
d fail

e (n) (S1, S4).

• e ∈ E a(m)
fail , but d fail

e (a(n)) ̸= d fail
e (a(m)). Then, d fail

e (n) = d fail
e (a(n))) ̸= d fail

e (a(m))) =
d fail

e (m) (S3).

9

262
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Thus, node n and m also violate condition C4.

5. a(n) and a(m) violate condition C5. We assume w.l.o.g. that ∃e ∈ E \ E a(n),i
rep : e ∈

E \ E a(m),i
rep , for which condition C 5 does not hold. Then, there are three options:

a) We do not replace system e in node a(n) or node a(m), i.e., xa(n)
ed(a(n)) ̸= 1,

xa(m)
ed(a(m)) ̸= 1. Then, e ∉ E n,i

rep,e ∉ E m,i
rep (by definition). At least one of the following

holds:

• a(n) and a(m) violate condition C5a. We assume w.l.o.g. that e ∈ E a(n)
new ,e ∉ E a(m)

new .
Then, e ∈ E n

fail (S2) with d fail
e (n) = d(a(n)) = d(a(m)) (S1, S4). There are two

options for system e at node a(m):

– e ∈ E a(m)
fail . Then, e ∈ E m

fail (S2), with d fail
e (m) = d fail

e (a(m)) < d(a(m)) = d fail
e (n)

(S3, S4).

– e ∉ E a(m)
fail . Then, e ∉ E m

fail (S2).

• a(n) and a(m) violate condition C5b. We assume w.l.o.g. that e ∈ E a(n)
fail . Then,

e ∈ E n
fail (S2) with d fail

e (n) = d fail
e (a(n)) < d(a(n)) (S3, S4). There are three options

for system e at node a(m):

– e ∉ E a(m)
fail ,e ∉ E a(m)

new . Then, e ∉ E m
fail (S2).

– e ∉ E a(m)
fail but e ∈ E a(m)

new . Then, e ∈ E m
fail with d fail

e (m) = d(a(m)) = d(a(n)) >
d fail

e (n) (S2, S4).

– e ∈ E a(m)
fail , but d fail

e (a(m)) ̸= d fail
e (a(n)). Then, e ∈ E m

fail (S2), but d fail
e (m) =

d fail
e (a(m)) ̸= d fail

e (a(n)) = d fail
e (n) (S3).

• a(n) and a(m) violate condition C5c. We assume w.l.o.g. that e ∈ E a(n)
fail ∪E a(n)

new

and that e ∉ E a(m)
fail ∪E a(m)

new . Then, e ∈ E n
fail, while e ∉ E m

fail (S2).

In all these cases, node n and m violate condition C 5b.

b) We assume w.l.o.g. that we replace system e at node a(n) (xa(n)
ed(a(n)) = 1), but not

at node a(m) (xa(m)
ed(a(m)) ̸= 1). The, r n

e = 1, while r m
e = 0 (constraint 9.23), and e ∈ E n,i

rep

but e ∉ E m,i
rep (by definition). Then, node n and m violate condition C2.

c) We replace system e at both node a(n) and at node a(m), i.e., xa(n)
ed(a(n)) = 1,

xa(m)
ed(a(m)) = 1. Then, e ∈ E n,i

rep,e ∈ E m,i
rep (by definition). At least one of the following

holds:

• a(n) and a(m) violate condition C5a. We assume w.l.o.g. that e ∈ E a(n)
new , e ∉ E a(m)

new .
Then, e ∈ E n

fail (S2), with d fail
e (n) = d(a(n)) = d(a(m)) (S1, S4). For node n, the

failure day of system e equals the day it is replaced, and condition C4 thus has
to hold. There are two options for system e at node a(m):

– e ∈ E a(m)
fail . Then, e ∈ E m

fail (S2) with d fail
e (m) = d fail

e (a(m)) < d(a(m)) = d fail
e (n)

(S3, S4).

– e ∉ E a(m)
fail . Then, e ∉ E m

fail (S2).

APPENDIX 9.C. PROOF OF THEOREM 3.

9

263

• a(n) and a(m) violate condition C5b. We assume w.l.o.g. that e ∈ E a(n)
fail . Then,

e ∈ E n
fail ((S2) with d fail

e (n) = d fail
e (a(n)) < d(a(n)) (S3, S4). For node n, the failure

day of system e is before the day it is replaced, and condition C4 thus has to
hold. There are three options for system e at node a(m):

– e ∉ E a(m)
fail , e ∉ E a(m)

new . Thus, e ∉ E m
fail (S2).

– e ∉ E a(m)
fail , but e ∈ E a(m)

new . Then, e ∈ E m
fail with d fail

e (m) = d(a(m)) = d(a(n)) >
d fail

e (n) (S2, S4).

– e ∈ E a(m)
fail , but d fail

e (a(m)) ̸= d fail
e (a(n)). Then, e ∈ E m

fail (S2) but d fail
e (m) =

d fail
e (a(m)) ̸= d fail

e (a(n)) = d fail
e (n) (S3).

• a(n) and a(m) violate condition C5c. We assume w.l.o.g. that e ∈ E a(n)
fail ∪E a(n)

new

and that e ∉ E a(m)
fail ∪E a(m)

new . Then, e ∈ E n
fail (S2), with d fail

e (n) ≤ d(a(n)) (S3, S4). For
node n, system e failed before or at the day it is replaced, and condition C4
thus has to hold. However, e ∉ E m

fail (S2).

In all cases, node n and m thus violate condition C4.

Concluding, if node n,m are in the same cluster at iteration i , then the ancestor
nodes a(n) and a(m) are also in the same cluster at iteration i .

APPENDIX 9.C.3. INDUCTION 1: TWO NODES n,m IN THE SAME

CLUSTER HAVE THE SAME LINEAR PROGRAM - IF THE

SOLUTION OF THE ANCESTOR NODES a(n) AND a(m)
IS THE SAME

Consider two nodes n,m ∈ N that are in the same cluster αi at iteration i of the
nested Benders decomposition. Let ŷ i ,z denote the solution of the linear program at
node z in iteration i . We assume that the solution of the ancestor nodes of node n
and m is equal in iteration i , i.e., ŷ i ,a(n) = ŷ i ,a(m). Under this assumption, we prove
that the linear program of node n and m are equal in iteration i .

The schematic version of the constraints of the linear program of a node z ∈ N \{0}
is W z y z = hz −T z y a(z). The constraint matrix W z , the recourse matrix T z and
the right-hand side coefficients hz are the same for all nodes z ∈ Nd , for any day
d ∈ [0,1, . . . ,D] (see Section 9.3.2).

Base case at day D We consider two leaf nodes n,m ∈ ND that are in the same
cluster αi at iteration i .

• Since d(n) = d(m), the constraint matrix and right-hand side of the linear
program at node n and m are equal if ŷ i ,a(n) = ŷ i ,a(m).

• The schematic objective of a leaf node z is C z + (cz)T y z (see eq. (9.35)). In
Appendix 9.C.1 (preliminary 1), we show that C n + (cn)T y = C m + (cm)T y for
two nodes n,m in the same cluster. Leaf nodes n and m thus have the same
objective function.

At iteration i , the linear programs of leaf node n and m are thus equal, given that
ŷ i ,a(n) = ŷ i ,a(m).

9

264
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Induction step Assume that the statement holds for any day d ′ ≥ d , with
d ∈ [2,3, . . . ,D]: For two nodes n′,m′ ∈ Nd ′ , that are in the same cluster at iteration i ,
the linear programs are equal if ŷ i ,a(n′) = ŷ i ,a(m′). We prove that the linear programs
of two nodes n,m ∈ Nd−1 at day d −1, that are in the same cluster αi , are equal if
ŷ i ,a(n) = ŷ i ,a(m):

• Since d(n) = d(m), the constraint matrix and right-hand side coefficients of
node n and m are equal if ŷ i ,a(n) = ŷ i ,a(m).

• In Appendix 9.C.1 (preliminary 1), we show that C n + (cn)T y =C m + (cm)T y for
two nodes in the same cluster. In Appendix 9.C.3 (preliminary 3, see below),
we show that, with the induction step, the expected future costs are also equal
for node n and m, i.e.,

∑
z∈S(n) qnz v z

(
yn

)=∑
z∈S(m) qmz v z

(
ym

)
. Node n and m

thus have the same objective function.

At iteration i , the linear programs of nodes n and m are thus equal, given that
ŷ i ,a(n) = ŷ i ,a(m).

PRELIMINARY 3: EXPECTED FUTURE COSTS ARE THE SAME FOR TWO NODES IN THE

SAME CLUSTER

In this part, we prove that the future expected costs for two nodes n and m are
equal, if node n and m are in the same cluster αi (given the induction step, and in
iteration i). Let αi (z) denote the cluster of a node z ∈ N in iteration i . Let Si (αi)
denote the set with all successor clusters of a cluster αi at iteration i :

Si (αi) =
{
α′i : ∃z ∈αi ,∃g ∈ S(z) :αi (g) =α′i

}
. (9.47)

With the induction step, the objective function of two nodes z, g in the same

cluster is the same, if d(g) = d(z) ≥ d . Let vα
i
(y) denote the objective function of

any node z in cluster αi (d(z) ≥ d), with y as input. With this, we rewrite the future
expected costs at node n:∑

z∈S(n)
v z (y)qnz =

∑
α′i∈Si (αi)

∑
z∈α′i :z∈S(n)

v z (y)qnz (9.48)

= ∑
α′i∈Si (αi)

vα
′i

(y)
∑

z∈α′i :z∈S(n)

∏
e∈E z

new

p ′
ed(z)

∏
e∈E\

(
E z

new∪E z
fail

)
(
1−p ′

ed(z)

)
(9.49)

= ∑
α′i∈Si (αi)

vα
′i

(y)
∑

z∈α′i :z∈S(n)

∏
e∈E z

new\E z,i
rep

p ′
ed(z)

∏
e∈

(
E\E z,i

rep

)
\
(
E z

new∪E z
fail

)
(
1−p ′

ed(z)

)
∏

e∈E z
new∩E z,i

rep

p ′
ed(z)

∏
e∈E z,i

rep\
(
E z

new∪E z
fail

)
(
1−p ′

ed(z)

)
(9.50)

= ∑
α′i∈Si (αi)

vα
′i

(y)
∏

e∈Eα′i
new

p ′
ed(z)

∏
e∈Eα′i

work

(
1−p ′

ed(z)

)
(9.51)

∑
z∈α′i :z∈S(n)

∏
e∈E z

new∩E z,i
rep

p ′
ed(z)

∏
e∈E z,i

rep\(E z
new∪E z

fail)

(
1−p ′

ed(z)

)
.

APPENDIX 9.C. PROOF OF THEOREM 3.

9

265

Here, we go to eq. (9.48) by using that all clusters with any successor node of node
n, are included in Si (αi) (see eq. (9.47)). We go from eq. (9.48) to eq. (9.49) by
using the definition of qnz (see eq. (9.2)), and by using the induction step to rewrite
v z (y). In eq. (9.50), we split the products in two parts, over the replaced and the
non-replaced systems. In eq. (9.51), we use condition C5a and condition C5c of a
cluster to rewrite the future expected costs.

We now analyse the last term in eq. (9.51), which we name βα
′i ,n :

βα
′i ,n = ∑

z∈α′i :z∈S(n)

∏
e∈E z

new∩E z,i
rep

p ′
ed(z)

∏
e∈E z,i

rep\(E z
new∪E z

fail)

(
1−p ′

ed(z)

)
. (9.52)

Let E n,i
new rep denote the set of systems that are replaced at day d(n) at node n in

iteration i , i.e., xn
ed(n) = 1 for all e ∈ E n,i

new rep. For any successor node z ∈ S(n), it

follows from the definition of r z
e (constraint (9.23)) and from the definition of E z,i

rep
that:

E z,i
rep = E n,i

rep ∪E n,i
new rep (9.53)

We denote this set by E n,i
suc rep. For any successor node z ∈ S(n), it holds that

E z
fail = E n

new ∪E n
fail (S2). Let E n

suc fail = E n
new ∪E n

fail denote the set of already failed

systems at any successor node z ∈ S(n). Last, we define An,i = E n,i
suc rep \ E n

suc fail as the
set of replaced systems that have not yet failed at node n (in iteration i). According
to condition S5 of a successor node, there cannot be a system in e ∈ E z

new (z ∈ S(n))
that is already in E z

fail, i.e., E z
new = E z

new \ E z
fail. From here, we derive that:

E z
new ∩E n,i

suc rep = (E z
new \ E n

suc fail)∩E n,i
suc rep (9.54)

= E z
new ∩ (E n,i

suc rep \ E n
suc fail) (9.55)

= E z
new ∩ An,i . (9.56)

With this, we rewrite βα
i ,n :

βα
′i ,n = ∑

z∈α′i :z∈S(n)

∏
e∈E z

new∩E n,i
suc rep

p ′
ed(z)

∏
e∈E n,i

suc rep\E n
suc fail\E z

new

(
1−p ′

ed(z)

)
(9.57)

= ∑
z∈α′i :z∈S(n)

∏
e∈E z

new∩An,i

p ′
ed(z)

∏
e∈An,i \E z

new

(
1−p ′

ed(z)

)
. (9.58)

Two successor nodes z, g ∈ S(n) fulfill condition C1 to condition C4 of a cluster
automatically. Any two successor nodes z, g ∈ S(n) for which the non-replaced
systems fulfill condition C5, are therefore in the same cluster. This is thus
independent of which of the replaced systems in An,i fail at node z/g . In other
words, the successor cluster α′i ∈ Si (αi) (where n ∈αi) contains one successor node
of node n for each possible combination of new failures from the replaced systems
in the set Ai ,n (if the probability of this combination is strictly larger than zero).

9

266
9. A STOCHASTIC PROGRAM FOR MAINTENANCE SCHEDULING UNDER ENDOGE-
NOUS UNCERTAINTY WITH PROBABILISTIC RUL PROGNOSTICS

Each successor node may thus contain l = 0 up to l = |Ai ,n | new failures of replaced
systems (that did not fail yet at node n). The probability that l replaced systems,
out of the |Ai ,n | replaced systems, fail at day d(n)+1 is given by:∑

Enew∈Fl

∏
e∈Enew

p ′
e,d(n)+1

∏
e∈Ai ,n \Enew

(
1−p ′

e,d(n)+1

)
, (9.59)

where F l denotes the set with all subsets of Ai ,n of length l . This equals the
probability of having l out of |Ai ,n | successes in the Poisson binomial distribution.

With this, we rewrite βα
′i ,n :

βα
′i ,n =

|Ai ,n |∑
l=0

∑
Enew∈Fl

∏
e∈Enew

p ′
e,d(n)+1

∏
e∈Ai ,n \Enew

(
1−p ′

e,d(n)+1

)
(9.60)

= ∏
e∈Ai ,n

(
p ′

e,d(n)+1 +
(
1−p ′

e,d(n)+1

))
(9.61)

= 1 (9.62)

Here, we follow eq. 2 in [31] in going from eq. (9.60) to eq. (9.61). This is also

intuitive: βα
′i ,n equals summing the PDF of the Poisson binomial distribution over

all possible outcomes, i.e., over all possible number of successes l , which is 1. We
use this in eq. (9.51):∑

z∈S(n)
v z (y)qnz =

∑
α′i∈Si (αi)

vα
′i

(y)
∏

e∈Eα′i
new

p ′
ed(α′i)

∏
e∈Eα′i

work

(
1−p ′

ed(α′i)

)
, (9.63)

where d(α′i) denotes the day of any node in cluster α′i . Note that∏
e∈Eα′i

new
p ′

ed(α′i)

∏
e∈Eα′i

work

(
1−p ′

ed(α′i)

)
is the probability to go from any node in cluster

αi to any node in cluster α′i . The expected future cost function for a node n in
cluster αi thus only depends on the cluster αi . The expected future cost functions
are therefore the same for any two nodes n,m ∈αi (with the induction step).

APPENDIX 9.C.4. INDUCTION 2: TWO NODES IN THE SAME CLUSTER

HAVE THE SAME LINEAR PROGRAM

We consider two nodes n,m ∈ N that are in the same cluster αi at iteration i of
the nested Benders decomposition. In this section, we prove by induction that the
solution of the ancestor nodes a(n) and a(m) is equal, i.e., ŷ i ,a(n) = ŷ i ,a(m). Given
the first induction (Appendix 9.C.3), the linear programs of node n and m are thus
equal.

Base case at day d = 1 We consider two nodes n,m ∈ N1 at day d = 1, that are
in the same cluster αi at iteration i . By definition, the root node is the ancestor
of node n and m. Node n and m thus have the same ancestor solution, i.e.,
ŷ i ,a(n) = ŷ i ,0 = ŷ i ,a(m). Given the first induction (Appendix 9.C.3), the linear programs
of node n and m are thus equal in iteration i .

APPENDIX 9.C. PROOF OF THEOREM 3.

9

267

Induction step Assume that the statement holds for any day d ′ ≤ d , with
d ∈ [1,2, . . . ,D −1]: For two nodes n′,m′ ∈ Nd ′ in the same cluster at iteration i , the
linear programs are equal in iteration i .

We now consider two nodes n,m ∈ Nd+1, at day d +1, that are in the same
cluster αi at iteration i . The ancestor nodes a(n) and a(m) of node n and m are
also in the same cluster α′i in iteration i (preliminary 2, Appendix 9.C.2). Since
d(a(n)) = d(a(m)) = d , the linear programs of the ancestor nodes a(n) and a(m) are
equal (given the induction step). There might be multiple optimal solutions to the
linear program of node a(n) and a(m). However, since the linear programs of all
nodes in cluster α′i are equal (induction step), we simply solve the linear program
belonging of a single node in cluster α′i . We use this solution as the optimal solution
to all nodes in cluster α′i , and guarantee that ŷ i ,a(n) = ŷ i ,a(m). By the first induction
(Appendix 9.C.3), the linear programs of node n and m are thus equal in iteration i .

REFERENCES

[1] Maintenance Cost Technical Group (MCTG). (2020). Airline maintenance cost
executive commentary (FY2019 data), public version (tech. rep.). International
Air Transport Association (IATA).

[2] Schouten, T. N., Dekker, R., Hekimoğlu, M., & Eruguz, A. S. (2022). Maintenance
optimization for a single wind turbine component under time-varying costs.
European Journal of Operational Research, 300(3), Pages: 979–991.

[3] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health
prognostics: A systematic review from data acquisition to RUL prediction.
Mechanical Systems and Signal Processing, 104, Pages: 799–834.

[4] Papadopoulos, P., Coit, D. W., & Aziz Ezzat, A. (2022). Stochos: Stochastic op-
portunistic maintenance scheduling for offshore wind farms. IISE Transactions,
Pages: 1–15.

[5] Lusby, R., Muller, L. F., & Petersen, B. (2013). A solution approach based on
Benders decomposition for the preventive maintenance scheduling problem
of a stochastic large-scale energy system. Journal of Scheduling, 16, Pages:
605–628.

[6] Amaran, S., Zhang, T., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Medium-
term maintenance turnaround planning under uncertainty for integrated
chemical sites. Computers & Chemical Engineering, 84, Pages: 422–433.

[7] Goel, V., & Grossmann, I. E. (2004). A stochastic programming approach to
planning of offshore gas field developments under uncertainty in reserves.
Computers & Chemical Engineering, 28(8), Pages: 1409–1429.

[8] Goel, V., & Grossmann, I. E. (2006). A class of stochastic programs with decision
dependent uncertainty. Mathematical programming, 108, Pages: 355–394.

[9] Bhuiyan, T. H., Medal, H. R., & Harun, S. (2020). A stochastic programming
model with endogenous and exogenous uncertainty for reliable network design
under random disruption. European Journal of Operational Research, 285(2),
Pages: 670–694.

[10] Peeta, S., Salman, F. S., Gunnec, D., & Viswanath, K. (2010). Pre-disaster
investment decisions for strengthening a highway network. Computers &
Operations Research, 37(10), Pages: 1708–1719.

[11] Leo, E., & Engell, S. (2022). Condition-based maintenance optimization via
stochastic programming with endogenous uncertainty. Computers & Chemical
Engineering, 156, Article number: 107550.

[12] Leo, E., & Engell, S. (2023). Handling Type-I and Type-II endogenous
uncertainties in simultaneous production planning and condition-based
maintenance optimization in continuous production. Computers & Chemical
Engineering, 174, Article number: 108227.

269

9

270 REFERENCES

[13] Basciftci, B., Ahmed, S., & Gebraeel, N. (2020). Data-driven maintenance and
operations scheduling in power systems under decision-dependent uncertainty.
IISE transactions, 52(6), Pages: 589–602.

[14] Colvin, M., & Maravelias, C. T. (2008). A stochastic programming approach
for clinical trial planning in new drug development. Computers & Chemical
Engineering, 32(11), Pages: 2626–2642.

[15] Zhu, Z., & Xiang, Y. (2021). Condition-based maintenance for multi-component
systems: Modeling, structural properties, and algorithms. IISE transactions,
53(1), Pages: 88–100.

[16] Zhu, Z., Xiang, Y., & Zeng, B. (2021). Multicomponent maintenance optimization:
A stochastic programming approach. INFORMS Journal on Computing, 33(3),
Pages: 898–914.

[17] Haneveld, W. K. K., Van der Vlerk, M. H., & Romeijnders, W. (2019). Stochastic
programming: Modeling decision problems under uncertainty. Springer Nature.

[18] Murphy, J. (2013). Benders, nested Benders and stochastic programming: An
intuitive introduction. arXiv preprint arXiv:1312.3158.

[19] Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive
maintenance for multiple components using data-driven probabilistic RUL
prognostics: The case of turbofan engines. Reliability Engineering & System
Safety, 234, Article number: 109199.

[20] de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive
maintenance scheduling for aircraft engines with imperfect Remaining Useful
Life prognostics. Reliability Engineering & System Safety, 221, Article number:
108341.

[21] Garstka, S. J. (1973). Stochastic programs with recourse: Random recourse costs
only. Management Science, 19(7), Pages: 747–750.

[22] Wolsey, L. A., & Nemhauser, G. L. (1988). Integer and combinatorial
optimization. John Wiley & Sons.

[23] Kong, N., Schaefer, A. J., & Ahmed, S. (2013). Totally unimodular stochastic
programs. Mathematical Programming, 138, Pages: 1–13.

[24] Birge, J. R., & Louveaux, F. V. (1988). A multicut algorithm for two-stage
stochastic linear programs. European Journal of Operational Research, 34(3),
Pages: 384–392.

[25] Infanger, G., & Morton, D. P. (1996). Cut sharing for multistage stochastic
linear programs with interstage dependency. Mathematical Programming,
75(2), Pages: 241–256.

[26] Saxena, A., & Goebel, K. (2008). Turbofan engine degradation simulation data
set, NASA Prognostics Data Repository, NASA Ames Research Center, Moffett
Field, California, USA.

[27] Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008, October 6-9).
Damage propagation modeling for aircraft engine run-to-failure simulation.
International Conference on Prognostics and Health Management, Denver,
Colorado, USA, Pages: 1–9.

[28] Gal, Y., & Ghahramani, Z. (2016, June 19-24). Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning. Proceedings

REFERENCES

9

271

of The 33rd International Conference on Machine Learning, 48, New York, New
York, USA, Pages: 1050–1059.

[29] Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming
(2nd ed.). Springer Science & Business Media.

[30] Fulkerson, D., & Gross, O. (1965). Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15(3), Pages: 835–855.

[31] Wang, Y. H. (1993). On the number of successes in independent trials. Statistica
Sinica, 3(2), Pages: 295–312.

10
CONCLUSION

This thesis presents an overarching predictive aircraft maintenance framework. This
framework describes, first, how to estimate the RUL of aircraft systems from the sen-
sor measurements (Chapters 2 and 3), second, how to quantify the uncertainty of these
RUL prognostics (Chapters 4 and 5), and last, how to use these RUL prognostics to opti-
mize the aircraft maintenance planning (Chapters 6, 7, 8 and 9). Here, the main findings
are presented (Section 10.1), the final conclusions are drawn (Section 10.2), and future
research directions are specified (Section 10.3).

10.1. REVIEW OF THE PREDICTIVE MAINTENANCE

CHALLENGES
In the Introduction (Chapter 1), three challenges of predictive aircraft maintenance were
stated. How these challenges were addressed in this thesis is discussed below.

10.1.1. REVIEW OF CHALLENGE 1
The first challenge concerns the development of accurate point RUL prognostics for air-
craft systems. Accurately estimating the RUL of aircraft systems is challenging because,
first, there is a lack of failure data and, second, aircraft are operated under highly-varying
conditions. In Chapter 2, these challenges were addressed by using an unsupervised
learning method (a Long Short-Term Memory autoencoder) to create a health indica-
tor for aircraft systems. This health indicator was then used to estimate the RUL with
a similarity-based matching method. This method was applied to estimate the RUL of
aircraft engines, with only six available failure instances. Even with so few failure in-
stances, the RUL prognostics are accurate with a Root Mean Square Error (RMSE) of 2.67
flights only. Moreover, we handle the varying operating conditions by integrating these
operating conditions at several places in the autoencoder. This improves the correlation
between the health indicator and the operating time (trendability) by 45%.

Training a RUL prognostic neural network can be very time consuming. In Chapter
3, this training time was significantly reduced through developing a new initialization
method for the weights in the last layer of a neural network. To initialize the weights,
the initial loss was minimized by solving a constrained linear regression problem. In the

273

10

274 10. CONCLUSION

case study, this new initialization strategy was applied in a neural network that estimates
the RUL of aircraft engines. With the new initialization method, it is shown that 34% less
epochs are needed to reach the same validation loss as the best benchmark initializa-
tion method (Kaiming initialization [1]). Here, an epoch is one iteration of training the
neural network, where all training data are used once to fine-tune the weights. The new
initialization strategy was also applied to an image classification neural network. The
new initialization strategy, combined with transfer learning, gives the highest accuracy
on the test set of the considered classification problem.

Overall, Chapter 2 provides a generic data-driven approach to estimate the RUL of air-
craft systems, which can be applied to any (aircraft) system with high-frequency sensor
measurements for which at least a few failure instances are available. With the method
in Chapter 3, the training of the neural network in Chapter 2, or of other RUL prognostic
neural networks, can be accelerated. Together, these two chapters provide an approach
for the fast development of accurate RUL prognostics for aircraft systems.

10.1.2. REVIEW OF CHALLENGE 2
The second challenge is to improve the uncertainty quantification of the RUL prog-
nostics, developing probabilistic RUL prognostics. In Chapter 4, the Probability Den-
sity Function (PDF) of the RUL of aircraft cooling units was estimated. First, several
potential health indicators for the cooling units were evaluated. With the best health-
indicator, the moment the cooling unit becomes unhealthy was subsequently identified
with Chebyshev’s inequality. Next, a dynamic time-warping clustering method was used
to determine the degradation model of an unhealthy cooling unit, and the PDF of the
RUL was estimated with this degradation model and particle filtering. In the case study,
all cooling units are diagnosed as unhealthy between 40 to 2 flights before failure. Parti-
cle filtering already provides accurate RUL prognostics at this moment, with a RMSE of
only 4.04 flights. Last, the inner workings of a filtering method are explainable, whereas
black-box models such as neural networks are not.

While many metrics exist to evaluate point RUL prognostics (i.e., RUL prognostics with-
out quantified uncertainty), there is a lack of metrics to evaluate probabilistic RUL prog-
nostics. In Chapter 5, four new metrics were proposed to evaluate probabilistic RUL
prognostics in the form of a PDF. The first two metrics, the Continuous Ranked Prob-
ability Score (CRPS) and the weighted CRPS, evaluate the accuracy and sharpness of a
single probabilistic RUL prognostic. The other two metrics, the α−Coverage and Relia-
bility Score, evaluate the reliability of multiple probabilistic RUL prognostics. In the case
study, a PDF of the RUL of aircraft engines was estimated with a Convolutional Neural
Network (CNN) with Monte Carlo dropout. The new metrics shows that the obtained
probabilistic RUL prognostics are reliable and accurate. However, they also indicate that
the sharpness of the probabilistic RUL prognostics can still be improved.

Together, Chapters 4 and 5 provide an approach to develop and evaluate probabilistic
RUL prognostics for aircraft systems. The model-based approach in Chapter 4 can be ap-
plied to aircraft systems for which a reliable health indicator is available, especially if an
aircraft system exhibits different degradation trends. With the metrics in Chapter 5, the
trustworthiness of probabilistic RUL prognostics in the form of a PDF can be evaluated
before employing them in the maintenance planning.

10.1. REVIEW OF THE PREDICTIVE MAINTENANCE CHALLENGES

10

275

10.1.3. REVIEW OF CHALLENGE 3
The last step, and third challenge, in predictive maintenance is to optimize the mainte-
nance schedule for a fleet of aircraft with these RUL prognostics.

In Chapter 6, the aircraft maintenance schedule was optimized with imperfect point
RUL prognostics. Maintenance was only planned once the RUL prognostic of a system
fell below an alarm threshold several flights in a row, i.e., when an alarm was triggered,
to avoid rescheduling maintenance tasks. The target maintenance date for an alarmed
aircraft system was determined based on the RUL prognostic and a safety factor, to avoid
failures due to errors in the RUL prognostic. The hyperparameters (the safety factor and
the alarm threshold) of this optimization method were determined with a genetic algo-
rithm. With this method, the maintenance schedule for aircraft engines was optimized,
where the RUL was estimated with a CNN. The maintenance schedule was analysed with
a Monte Carlo simulation. Due to the safety factor, on average only 1.6% of the main-
tenance tasks take place after the engine failed, while, due to the alarm threshold, on
average only 8.2% of the maintenance tasks is rescheduled.

Probabilistic RUL prognostics were instead used to optimize the aircraft maintenance
schedule in Chapter 7. First, the optimal maintenance moment for a single aircraft sys-
tem was determined using the renewal-reward process. With a linear program, mainte-
nance was subsequently scheduled for a fleet of aircraft. The probabilistic RUL prognos-
tics allow a trade-off between maintaining a system now, avoiding a possible failure, ver-
sus postponing the maintenance, thus extending the lifetime. In the case study with air-
craft engines, the PDF of the RUL was estimated with a CNN with Monte Carlo dropout.
The risk of failure soon outweighs the benefits of extending the lifetime of an engine:
The optimal maintenance moment for the engines is usually close to the lower bound
of the 99% confidence interval of the estimated RUL. Due to these early optimal mainte-
nance times, on average only 0.003 engines fail in ten years with a fleet of 50 aircraft, as
estimated with a Monte Carlo simulation of the long-term maintenance schedule.

In Chapter 8, this problem was extended by including a limited number of spare com-
ponents, and by considering a multi-component aircraft system with redundant compo-
nents. For each component within the system, the RUL was estimated using a particle
filtering algorithm, followed by an optimization of the maintenance planning with a lin-
ear program. In the case study, this method was applied to schedule maintenance for
aircraft cooling systems, each equipped with four cooling units. The long-term main-
tenance schedule was analysed with a Monte Carlo simulation, which showed that on
average 83% of the maintenance tasks take place before the failure of the cooling unit.

Last, the aircraft maintenance scheduling problem was formulated as a multi-stage
stochastic program in Chapter 9. By solving this stochastic program with the nested
Benders decomposition algorithm, the initial maintenance planning and the future up-
dates were jointly optimized. A new clustering algorithm was proposed to accelerate
the solution method, based on the endogenous (decision-dependent) uncertainty in the
maintenance planning problem. In the case study, maintenance was planned for up
to five aircraft engines with a planning horizon of four weeks (28 days/stages). Solving
the stochastic program instead of the benchmark method (that does not consider future
updates) reduces the expected costs by up to 0.89%. Moreover, with five engines, the
same number of iterations of the nested Benders decomposition algorithm is executed

10

276 10. CONCLUSION

25 times faster with the clustering algorithm, than without the clustering algorithm. The
computational time still grows exponentially with the number of engines, however, po-
tentially limiting the implementation of this approach.

Concluding, Chapters 6, 7, 8 and 9 show how both point- and probabilistic RUL prog-
nostics can be used to optimize the maintenance planning, while considering several
maintenance aspects such as the fixed maintenance opportunities and the spare parts.
By analyzing the long-term maintenance planning, these chapters also demonstrate the
effect of predictive aircraft maintenance on the maintenance costs, the reliability of the
aircraft and on the maintenance efficiency.

10.2. MAIN CONCLUSIONS

The overall conclusions from this thesis are summarized here.

1. Predictive aircraft maintenance increases the aircraft reliability and the
maintenance efficiency, while reducing maintenance costs.

In Chapters 7 and 8, a predictive maintenance strategy (i.e., a maintenance strat-
egy with RUL prognostics) was compared with a preventive maintenance strategy (i.e.,
a maintenance strategy without RUL prognostics). The predictive maintenance strategy
results in more reliable aircraft, with less failures, while the maintenance becomes more
efficient, with less maintenance tasks. In Chapter 7, the expected number of engine fail-
ures in ten years decreases from 61.6 with preventive maintenance to 0.003 with pre-
dictive maintenance, while the expected number of maintenance tasks decreases from
1159.2 to 925.8. In Chapter 8, the expected number of Aircraft On Ground events in five
years is very low (not more than 0.1) with both preventive and predictive maintenance,
while the expected number of maintenance tasks decreases from 135 to 106 with pre-
dictive maintenance. Overall, the maintenance costs decrease with 53% (Chapter 7) and
30% (Chapter 8) in the predictive maintenance strategy.

2. Better RUL prognostics will further increase the aircraft reliability and the
maintenance efficiency, while further reducing maintenance costs.

In Chapters 6 and 7, a predictive maintenance strategy with the imperfect RUL prog-
nostics from the RUL prognostic models was compared with the ideal case of mainte-
nance with perfect RUL prognostics without any errors or uncertainty. In both chapters,
the number of failures and the number of maintenance tasks decrease when consider-
ing perfect RUL prognostics. In Chapter 6, the expected number of engine failures in
five years decreases from 13.61 to 0.10 with perfect RUL prognostics, while the expected
number of maintenance tasks decreases from 819.7 to 739.0. In Chapter 7, the expected
number of failures in ten years decreases from 0.003 to less than 0.001 with perfect RUL
prognostics, while the expected number of maintenance tasks decreases from 925.8 to
825.8. Last, the maintenance costs decrease by 19.5% (Chapter 6) and 14% (Chapter 7)
with the perfect RUL prognostics. From this, it is concluded that efforts to further im-
prove the RUL prognostic models are worthwhile.

10.2. MAIN CONCLUSIONS

10

277

3. When only a limited number of failure instances is available, it is best to first
develop a health indicator and only then estimate the RUL.

Usually, only very limited failure data are available for aircraft systems. It is therefore
often not possible to train an accurate supervised learning model that directly estimates
the RUL from the sensor measurements. Instead, more accurate RUL prognostics can
be obtained by first developing a health indicator for the system, and then estimating
the RUL with this health indicator. Whereas for some systems, a standard physical for-
mula can be used to create a health indicator (see Chapter 4), other systems instead
require training an unsupervised learning model with the unlabelled data samples from
non-degraded systems, to develop a health indicator (see Chapter 2). The developed
health indicator can subsequently be used to estimate the RUL, for instance using a fil-
tering method (Chapter 4) or a similarity-based matching method (Chapter 2). In the
case study in Chapter 2, the RMSE of the RUL prognostics made with the health indica-
tor is indeed 19% lower than the RMSE of the RUL prognostics made with a supervised
learning neural network. Moreover, compared with black-box models such as neural
networks, RUL prognostics based on health indicators are explainable to human opera-
tors responsible for the maintenance tactics and strategies.

4. Quantifying the uncertainty of the RUL prognostics significantly improves
predictive aircraft maintenance.

Throughout this thesis, both point RUL prognostics without quantified uncertainty
(Chapters 2, 3 and 6) and probabilistic RUL prognostics (Chapters 4, 5, 7, 8 and 9) were
considered. The maintenance planning was optimized with point RUL prognostics in
Chapter 6. However, the method proposed in this chapter only works if many failure in-
stances are available, which is often not the case for aircraft systems. Otherwise, the hy-
perparameters of this method cannot be optimized. In contrast, with probabilistic RUL
prognostics, there is a clear, quantifiable trade-off between the risks and benefits of post-
poning maintenance for a system. This trade-off facilitates the maintenance planning.
Moreover, the trustworthiness of probabilistic RUL prognostics can be easily evaluated
with the metrics introduced in Chapter 5.

5. To improve predictive maintenance, it is important to include, adapt and combine
mathematical and physical methods from different fields.

Throughout this thesis, a variety of mathematical methods from different fields were
applied to predictive maintenance. In Chapter 2, a neural network from the field of nat-
ural language processing, developed for translating texts, was used to create a health
indicator. In Chapter 3, an econometric method was applied to initialize the weights
in the last layer of a neural network. In Chapter 4, the health indicators were clustered
with dynamic time-warping, a method used in automatic speech recognition [2]. For
the predictive maintenance planning, RUL prognostics from machine learning models
were combined with optimization methods from operations research (Chapters 6, 7, 8
and 9). And last, in Chapters 4 and 8, the Root Mean Square, a formula used in physics to
describe the energy content of a signal [3], was employed to develop a health indicator
for the aircraft cooling units. Including, adapting and combining different mathematical
and physical methods improves the predictive maintenance practice.

10

278 10. CONCLUSION

10.3. RECOMMENDATIONS FOR FUTURE RESEARCH
Many open challenges still exist that complicate the implementation of predictive air-
craft maintenance in current-day practice. Below, some of these challenges are dis-
cussed and recommendations for future research are provided.

10.3.1. RECOMMENDATIONS REGARDING THE RUL PROGNOSTICS

1. Availability and quality of aircraft condition-monitoring data.
Modern aircraft health monitoring systems constantly measure the condition of air-

craft components, generating huge amounts of sensor data [4]. It is extremely time-
consuming and challenging to safely store, clean and document these huge amounts
of data. First, it is expensive to store terabytes of data [5], especially since this storage
should happen in a safe way, guaranteeing that the data are not corrupted [6]. Second,
the data are often not clean, with many instances of missing or “wrong” data due to bro-
ken sensors [5]. Third, the written description of maintenance actions often varies per
technician and can be hard to understand for others [7]. Last, it is sometimes unclear
who actually owns the aircraft sensor data [8]. To obtain accurate RUL prognostic mod-
els, all these issues above should be addressed, and the whole aircraft data management
process should be streamlined and improved.

2. No data about failure instances.
An important assumption in this thesis is that some data of failure instances always

exist. However, for some aircraft systems, no failure data are available at all, for in-
stance for new systems or for safety-critical systems [7]. For several aircraft components,
usually part of non safety-critical systems with redundant components, it might be un-
clear when and even if the component failed [5]. For these components, it is unknown
whether a data sample comes from a healthy, unhealthy or failed component, i.e., the
sample cannot be labelled. Another challenge is therefore to develop a RUL prognostic
model for systems without any failure instances, using only unlabelled data samples.

3. Explainability and validation of the RUL prognostic model.
The European Union Aviation Safety Agency (EASA) has to approve the RUL prog-

nostic models of an airline. For this, it is essential to validate and verify the model on
a validation and verification data set [6]. However, it is not possible to make a large
validation and verification set if very few (or none) failure instances are available. Sec-
ond, a RUL prognostic model has to be explainable for maintenance operators to be
approved [6], which is difficult when using black-box models such as neural networks.
Future research should therefore focus on developing RUL prognostic models that can
be approved by EASA, i.e., for which a validation and verification procedure with limited
failure data is developed and, second, that are explainable.

10.3.2. RECOMMENDATIONS REGARDING THE MAINTENANCE

SCHEDULING

1. Maintenance scheduling for the full aircraft.

10.3. RECOMMENDATIONS FOR FUTURE RESEARCH

10

279

In this thesis, maintenance is planned for a single aircraft system, in multiple air-
craft, based on the RUL prognostics. However, maintenance often needs to be planned
for all systems in an aircraft combined. Whereas for some systems, RUL prognostics
are available, for other systems, time-based deadlines for both inspections and mainte-
nance tasks are required [9]. Optimizing the maintenance planning for a fleet of aircraft,
when considering all systems in each aircraft, remains a daunting challenge.

2. Integration of the predictive maintenance planning and the flight scheduling.
The aircraft maintenance planning is intertwined with the flight scheduling, i.e., the

assignment of aircraft to flights. Since all flights need an aircraft assigned to it, mainte-
nance cannot be planned for too many aircraft at the same time. Moreover, in the flight
schedule, it should be taken into account that an aircraft is at the right maintenance
location at the planned maintenance moment. The flight scheduling problem also has
constraints itself. For instance, each flight should get an aircraft with the right capacity
(not too few/too many seats). Jointly optimizing the maintenance schedule with RUL
prognostics and the flight schedule is therefore a challenging research direction.

3. Uncertainty in the probabilistic RUL prognostics.
An implicit assumption in this thesis is that the uncertainty quantification of the

probabilistic RUL prognostics is “correct”, i.e., that the estimated PDF of the RUL com-
pletely coincides with the true PDF of the RUL. For instance, if it is estimated with prob-
ability zero that the RUL of a system is 25 flights, it is assumed that this system indeed
cannot fail at 25 flights. However, as indicated by the metrics in Chapter 5, the estimated
PDFs of the RUL are not always correct. The estimated PDF should, if the estimation
method is unbiased, converge to the true PDF when more labelled data samples be-
come available. However, since typically only a limited number of labelled data samples
is available, the uncertainty in the estimated PDF remains. Optimizing the predictive
maintenance planning while taking this uncertainty in the estimated PDF of the RUL
into account is therefore still an open problem.

Overall, this thesis provides a generic framework for predictive aircraft maintenance,
that describes how to estimate the RUL with quantified uncertainty for aircraft systems,
and how to use these RUL prognostics to optimize the aircraft maintenance planning.
With these recommendations, this framework can be extended to improve, enhance and
expand the current-day predictive aircraft maintenance process.

REFERENCES

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 7-13). Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classification. Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, Pages: 1026–1034.

[2] Müller, M. (2007). Information retrieval for music and motion. Springer.
[3] Zhu, J., Nostrand, T., Spiegel, C., & Morton, B. (2014, September 29 - October 2).

Survey of condition indicators for condition monitoring systems. Proceedings of
the Annual Conference of the Prognostics and Health Management (PHM) Society,
6, Fort Worth, Texas, USA, Pages: 1–13.

[4] Badea, V. E., Zamfiroiu, A., & Boncea, R. (2018). Big data in the aerospace industry.
Informatica Economica, 22(1), Pages: 17–24.

[5] Verhagen, W. J., Santos, B. F., Freeman, F., van Kessel, P., Zarouchas, D., Loutas, T.,
Yeun, R. C., & Heiets, I. (2023). Condition-based maintenance in aviation: Chal-
lenges and opportunities. Aerospace, 10(9), Article number: 762.

[6] EASA concept paper: First usable guidance for level 1 machine learning applications
(1st ed., tech. rep.). (2023). European Union Aviation Safety Agency (EASA).

[7] Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020). Poten-
tial, challenges and future directions for deep learning in Prognostics and Health
Management applications. Engineering Applications of Artificial Intelligence, 92,
Article number: 103678.

[8] From aircraft health monitoring to aircraft health management (tech. rep.). (2022).
International Air Transport Association (IATA).

[9] Tseremoglou, I., & Santos, B. F. (2024). Condition-based maintenance scheduling
of an aircraft fleet under partial observability: A deep reinforcement learning ap-
proach. Reliability Engineering & System Safety, 241, Article number: 109582.

281

CURRICULUM VITÆ

Ingeborg de Pater was born on October 18, 1995
in Utrecht, the Netherlands. In 2014, she started
her bachelor in Econometrics and Operations Re-
search at the Erasmus University Rotterdam, the
Netherlands. As part of her bachelor, she joined an
exchange program to the City University of Hong
Kong, she did a minor in Modern Physics at the
Delft University of Technology, followed some phi-
losophy courses and participated in the Bachelor
Honours Research Class. Besides her studies, she
worked as a student-assistant, teaching tutorials
for various courses to first-year bachelor students.

After finishing her bachelor (Cum Laude), she
continued with her master in Econometrics and
Management Science at the Erasmus University Rotterdam, where she followed the track
in Operations Research and Quantitative Logistics. She completed her master by writ-
ing a thesis during an internship at the Dutch Railways (NS) on rebalancing the rolling
stock in the railway network. During her study, she was an active member of a student
association, where she participated in various committees, and of the debating society,
organizing a debating summer school and participating in numerous debating tourna-
ments. During her master, she was the treasurer of this debating society.

After obtaining her master degree (Cum Laude), Ingeborg started in 2020 as a PhD can-
didate in the Air Transport and Operations group at the Aerospace Engineering faculty
of the Delft University of Technology. Her research, as described in this thesis, was on
predictive aircraft maintenance, where she estimated the Remaining Useful Life (RUL)
of aircraft systems with quantified uncertainty, and optimized the aircraft maintenance
schedule with these RUL prognostics. At the end of her PhD, she was also a visiting stu-
dent at Computer Science faculty of Utrecht University, the Netherlands. She presented
her work at various conferences during her PhD, and won several awards for her work.

In her free time, she enjoys cooking, trying recipes from different cuisines, baking,
hiking (or, in the Netherlands, walking), visiting the zoo and museums, reading, mostly
fiction books, and occasionally playing recorder.

283

LIST OF PUBLICATIONS

JOURNAL PAPERS

8. de Pater, I., & Mitci, M. (2023). Predictive maintenance planning under endogenous un-
certainty using stochastic programming with a novel clustering algorithm integrated in the
nested Benders decomposition. Under review at Mathematical Programming Series B.

7. Landau, D. H. M. C., de Pater, I., Mitici, M., & Saurabh, N. (2023). A federated learning frame-
work preserving data-privacy for airlines that collaboratively generate Remaining Useful
Life prognostics. Under review at Future Generation Computer Systems.

6. de Pater, I., & Mitici, M. (2023a). A mathematical framework for improved weight initial-
ization of neural networks using Lagrange multipliers. Neural Networks, 166, Pages: 579–
594.

5. Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive maintenance for
multiple components using data-driven probabilistic RUL prognostics: The case of turbo-
fan engines. Reliability Engineering & System Safety, 234, Article number: 109199.

4. de Pater, I., & Mitici, M. (2023b). Developing health indicators and RUL prognostics for
systems with few failure instances and varying operating conditions using a LSTM autoen-
coder. Engineering Applications of Artificial Intelligence, 117, Article number: 105582.

3. de Pater, I., Reijns, A., & Mitici, M. (2022). Alarm-based predictive maintenance scheduling
for aircraft engines with imperfect Remaining Useful Life prognostics. Reliability Engineer-
ing & System Safety, 221, Article number: 108341.

2. de Pater, I., & Mitici, M. (2021). Predictive maintenance for multi-component systems of re-
pairables with Remaining-Useful-Life prognostics and a limited stock of spare components.
Reliability Engineering & System Safety, 214, Article number: 107761.

1. Mitici, M., & de Pater, I. (2021). Online model-based Remaining-Useful-Life prognostics for

aircraft cooling units using time-warping degradation clustering. Aerospace, 8(6), Article

number: 168.

PEER-REVIEWED CONFERENCE PAPERS

6. de Pater, I., & Mitici, M. (2023, September 3-7). Constructing health indicators for systems
with few failure instances using unsupervised learning. Proceedings of the 33st European
Safety and Reliability Conference, Southampton, UK, Pages: 3066–3073.

5. Mitici, M., de Pater, I., Zeng, Z., & Barros, A. (2023, September 3-7). Predictive maintenance
planning using renewal reward processes and probabilistic RUL prognostics–Analyzing the
influence of accuracy and sharpness of prognostics. Proceedings of the 33st European Safety
and Reliability Conference, Southampon, UK, Pages: 1034–1041.

285

286 LIST OF PUBLICATIONS

4. de Pater, I., & Mitici, M. (2022, July 6-8). Novel metrics to evaluate probabilistic Remaining
Useful Life prognostics with applications to turbofan engines. Proceedings of the 7th Euro-
pean Conference of the Prognostics and Health Management (PHM) Society, 7, Turin, Italy,
Pages: 96–109.

3. Lee, J., de Pater, I., Boekweit, S., & Mitici, M. (2022, July 6-8). Remaining-Useful-Life prog-
nostics for opportunistic grouping of maintenance of landing gear brakes for a fleet of air-
craft. Proceedings of the European Conference of the Prognostics and Health Management
(PHM) Society, 7(1), Turin, Italy, Pages: 278–285.

2. de Pater, I., & Mitici, M. (2021, June 28 - July 2). Model-based Remaining-Useful-Life prog-
nostics for aircraft cooling units. Proceedings of the European Conference of the Prognostics
and Health Management (PHM) Society, 6, Virtual, Pages: 1–8.

1. de Pater, I., del Mar Carillo Galera, M., & Mitici, M. (2021, September 19-23). Criticality-

based predictive maintenance scheduling for aircraft components with a limited stock of

spare components. Proceedings of the 31st European Safety and Reliability Conference, Angers,

France, Pages: 55–62.

AWARDS

4. Professor Stein Haugen paper award, European Safety and Reliability Conference, 2023. For
the paper “Constructing health indicators for systems with few failure instances using un-
supervised learning”.

3. Best paper award, second price, European Conference of the Prognostics and Health Man-
agement Society, 2022. For the paper “Remaining-Useful-Life prognostics for opportunistic
grouping of maintenance of landing gear brakes for a fleet of aircraft”.

2. Anna Valicek Award first place, Annual student paper competition from the Airline Group of
the International Federation of Operational Research Societies (AGIFORS), 2021. For the pa-
per “Predictive maintenance for multi-component systems of repairables with Remaining-
Useful-Life prognostics and a limited stock of spare components”.

1. Best innovation award, Presentation at the Annual AGIFORS Airline Operations & Mainte-

nance Conference, 2021.

	Contents
	Acknowledgements
	Summary
	Introduction
	Challenges for predictive aircraft maintenance
	Challenge 1: Developing accurate RUL prognostics for aircraft systems
	Challenge 2: Quantifying the uncertainty of the RUL prognostics
	Challenge 3: Optimizing the aircraft maintenance schedule with RUL prognostics

	Approach, outline, and scope of this thesis
	Approach for Challenge 1: Developing accurate RUL prognostics for aircraft systems.
	Approach for Challenge 2: Quantifying the uncertainty of the RUL prognostics
	Approach for Challenge 3: Optimizing the aircraft maintenance schedule with RUL prognostics

	Health indicators and point RUL prognostics with a LSTM autoencoder
	Introduction
	Methodology - health indicators with a LSTM autoencoder
	LSTM-AE with local Luong attention
	Constructing a health indicator with the reconstruction errors of the LSTM-AE

	Case study - aircraft engines
	Aircraft engines in the N-CMAPSS data set
	Data preprocessing
	Illustration of N-CMAPSS data set
	Metrics to evaluate the health indicators

	Results - health indicator for aircraft engines
	Hyperparameters of LSTM-AE
	Sensor selection for constructing a health indicator
	Health indicators of the test engines
	Comparison with other autoencoders

	Methodology - Online RUL prognostics using similarity-based matching
	Health state division using Chebyshev's inequality
	Similarity-based matching method for RUL prognostics

	Results - Online RUL prognostics for aircraft engines
	Health state division and RUL prognostics
	Comparison with the RUL prognostics of other autoencoders
	Comparison with other, supervised learning methods
	Impact of the number of available labelled data samples on the RUL prognostics

	Conclusion

	An improved weight initialization strategy for neural networks, applied to point RUL prognostics
	Introduction
	Methodology - Weight initialization in the last layer of the neural network
	Neural network for a regression problem
	Constraints on the weights of the last layer of the neural network
	Lagrange relaxation of the constrained linear regression problem
	Procedure for the weight initialization of a neural network
	Assuming the weights must have zero mean

	Case study and results for regression problems
	Benchmark strategies
	Comparison of different weight initialization strategies
	Initialization of the weights with only a part of the training set
	Weight initialization with a mean weight of zero

	Case study and results for classification problems
	Case study with the CIFAR-100 dataset
	Results for the CIFAR-100 dataset with training a neural network from scratch
	Results for the CIFAR-100 dataset with transfer learning

	Conclusions
	Appendices
	Solution of the minimization problem (eq. (3.14)) for
	Solution of the minimization problem with a mean weight of zero (eq. (3.21)) for
	Derivation of the constraints on the weights following glorot2010understanding

	Model-based probabilistic RUL prognostics with clustering
	Introduction
	Methodology - Online model-based RUL prognostics
	Step 1: Constructing a health indicator and defining the health stage
	Step 2: Selecting a degradation model for a component
	Step 3: Online clustering of (non-failed) components
	Step 4: RUL prognostics

	Case study and results for cooling units (CUs)
	Health indicator for the CUs
	Clusters for the health indicators
	Cluster 1 - Linear degradation model
	Cluster 2 - Exponential degradation model
	RUL estimation

	Conclusions

	Novel metrics to evaluate probabilistic RUL prognostics
	Introduction
	Probabilistic RUL prognostics for turbofan engines
	Metrics often used to evaluate point RUL prognostics

	Novel metrics to evaluate probabilistic RUL prognostics
	Continuous Ranked Probability Score (CRPS)
	Weighted CRPS (CRPSW)
	-Coverage
	Reliability Score (RS)

	Results with the novel metrics
	RUL prognostics for individual engines

	Conclusions

	Alarm-based maintenance scheduling with imperfect point RUL prognostics
	Introduction
	RUL prognostics using a Convolutional Neural Network (CNN)
	Architecture of the CNN

	Methodology - Maintenance scheduling with imperfect RUL prognostics
	Problem description
	Alarm-based maintenance scheduling
	Optimizing the alarm policy with a genetic algorithm

	Case study and results - Engine maintenance scheduling
	Imperfect RUL prognostics for turbofan engines
	Alarm-based maintenance scheduling for aircraft engines
	Maintenance with perfect RUL prognostics vs. imperfect RUL prognostics
	Sensitivity analysis - hyperparameters of the genetic algorithm

	Conclusions

	Maintenance scheduling with probabilistic RUL prognostics
	Introduction
	Methodology - Probabilistic RUL prognostics for turbofan engines
	Description of the dataset
	Architecture of the Convolutional Neural Network
	Monte Carlo dropout

	Results - Probabilistic RUL prognostics for aircraft turbofan engines
	Hyperparameter tuning
	Mean estimated RUL
	PDF of the RUL prognostics

	Methodology - Maintenance scheduling
	Single-component maintenance planning
	Multi-component maintenance planning

	Results - maintenance planning for turbofan engines
	Probabilistic RUL prognostics for the maintenance planning
	Single-engine replacement planning
	Multi-engine replacement planning
	Long-term performance of different maintenance strategies

	Conclusions

	Maintenance scheduling with probabilistic RUL prognostics and a limited stock of spares
	Introduction
	Problem description
	Multi-component aircraft system
	Maintenance slots
	Repairable components
	Probabilistic RUL prognostics
	Maintenance scheduling objective
	Rolling horizon maintenance scheduling

	Probabilistic RUL prognostics for aircraft cooling units
	Aircraft cooling units (CUs)
	Health indicator for CUs
	Methodology - RUL prognostics for CUs
	Results - RUL prognostics for CUs

	Methodology - Predictive maintenance scheduling model
	Results - Predictive maintenance scheduling for cooling units
	k-out-of-N system of CUs
	Maintenance scheduling
	Computation time vs size of aircraft fleet

	Predictive maintenance vs. corrective and preventive maintenance
	Conclusion

	A stochastic program for maintenance scheduling under endogenous uncertainty with probabilistic RUL prognostics
	Introduction
	Problem formulation - predictive maintenance scheduling
	Data-driven RUL prognostics
	Constraints for the maintenance scheduling
	Maintenance costs

	Multi-stage stochastic integer linear program for predictive maintenance scheduling
	Scenario tree
	Model formulation
	Endogenous uncertainty and non-anticipativity
	Totally unimodular constraint matrix

	Nested Benders decomposition and a novel clustering algorithm
	Nested Benders decomposition
	A dynamic clustering algorithm under endogenous uncertainty

	Case study and results - Maintenance scheduling of aircraft engines
	Probabilistic RUL prognostics for aircraft engines
	Maintenance scheduling - Description of the parameters
	Different solution strategies
	Numerical results: Single engine maintenance scheduling
	Numerical Results: Multi-engine maintenance scheduling

	Conclusions
	Appendices
	Proof of theorem 1
	Proof of theorem 2
	Totally unimodular constraint matrix
	Integer right-hand side with induction

	Proof of theorem 3.
	Preliminary 1: Cn + (cn)T y = Cm + (cm)T y for two nodes n and m in the same cluster.
	Preliminary 2: Two nodes in the same cluster have two ancestor nodes in the same cluster
	Induction 1: Two nodes n,m in the same cluster have the same linear program - if the solution of the ancestor nodes a(n) and a(m) is the same
	Induction 2: Two nodes in the same cluster have the same linear program

	Conclusion
	Review of the predictive maintenance challenges
	Review of Challenge 1
	Review of Challenge 2
	Review of Challenge 3

	Main conclusions
	Recommendations for future research
	Recommendations regarding the RUL prognostics
	Recommendations regarding the maintenance scheduling

	Curriculum Vitæ
	List of Publications

