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Abstract 

Digital twins (DTs) are virtual replicas of physical assets that can be used to monitor and 
manage their performance. To date, the DT concept has been effectively implemented in various 
industries, including aeronautics, manufacturing, medicine, and more recently, in the architec-
ture, engineering, and construction sector. In the latter, these assets can be related to buildings, 
bridges, or other important infrastructures of the built environment. Although the creation of 
synthetic benchmark datasets for the validation of novel damage detection approaches has been 
attempted in the past, such alternatives are not easily findable or accessible. Thus, a new syn-
thetic data generation framework is proposed within the DT paradigm context, that can pro-
duce FAIR benchmark databases that are characterized by Findability, Accessibility, 
Interoperability, and Reuse. This paper aims at exploring the uncertainty types, sources, and 
quantification approaches involved in the synthetic data generation methodologies and tools of 
the intended framework which could be used as a faster and cheaper alternative to real moni-
toring, for the creation and development of DT prototypes of bridges for both industry and 
research-oriented purposes. This work also highlights the benefits and drawbacks of imple-
menting synthetic data for these purposes and points out tentative future improvements in the 
field. 
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1 INTRODUCTION 

The Architecture, Engineering, and Construction (AEC) industry is rapidly developing and 
adopting the concepts of the Digital Twin (DT) paradigm. Although there are still numerous 
challenges and obstacles to overcome before the complete deployment and widespread imple-
mentation of DTs, there is a shared vision and consensus among the scientific community and 
bridge practitioners regarding the potential of the technology for revolutionizing bridge design, 
management, and operation procedures [1]. However, to establish a proper application frame-
work that can be adopted on a large scale by the industry, further research is required. 

As the AEC industry delves deeper into the development and adoption of the DT paradigm, 
the need for a reliable benchmark database for testing and validating newly designed technolo-
gies and algorithms have arisen. Both development and validation processes are better per-
formed during a prototyping stage. Prototypes play a critical role in bridging the gap between 
ideation and implementation, enabling a smooth transition from design to production and im-
plementation [2]. In addition, when it comes to implementing new technologies and materials 
on bridges with cultural heritage value [3-6], comprehensive validation is advised before such 
interventions can be deemed adequate, in compliance with the guidelines set forth by the 
ICOMOS International Scientific Committee on the Analysis and Restoration of Structures of 
Architectural Heritage (ISCARSAH) [7]. The Committee plays an important role in ensuring 
the preservation and continued use of historic buildings and structures around the world, and in 
promoting the recognition and protection of cultural heritage sites as vital components of our 
global heritage. 

Although the creation of similar synthetic benchmark datasets has been proposed in the lit-
erature in the past [8], such alternatives are hard to find and even harder to access. Thus, newly 
created synthetic databases should be made available, while being “Findable, Accessible, In-
teroperable, and Reusable”. In other words, such data should adhere to the so-called “FAIR” 
principles [9]. These principles were developed to address the challenges of managing and shar-
ing data in an increasingly complex and interconnected digital landscape. With this idea in mind, 
a novel synthetic FAIR data generation framework within the context of the DT paradigm has 
been recently proposed [10] (see Figure 1). 

In this framework, a series of benchmark databases containing meaningful data including 
different damage scenarios will be created. It will account for the creation of multi-metric data, 
namely, vibration, strain, visual and mixed synthetic data under both undamaged and damaged 
scenarios. Both environmental and operational conditions can be fine-tuned and included in the 
data generation process. A synchronizing module will ensure that all data can be correctly 
tracked over time. 

There are several uncertainties that need to be considered in a synthetic data generation pro-
cess, that have to do with data quality, model accuracy, variability, data coverage, uncertainty 
propagation, among others. These uncertainties can have significant impacts on the accuracy 
and reliability of the DT. Thus, they should be carefully considered and managed to ensure that 
the digital twin accurately represents the behavior of the bridge under a wide range of real-
world conditions. The proposed framework takes this into account by considering both epis-
temic and aleatory uncertainties for the adequate generation of realistic scenarios [11, 12], 
which are key features to be accounted for in the validation process of any newly developed 
technology. The data generated would be suitable for use in the development and validation of 
model-based, data-driven, and physics-informed components for damage detection, localization, 
description, and prognosis of the bridge DT, thus reducing the time and money required for the 
creation of novel prototypes. Within this context, the synthetically generated data would mock 
the physical asset components of the DT.  
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In this paper, the uncertainties component of the framework is presented, explored, and dis-
cussed in detail. The rest of the manuscript is organized as follows: in Section 2 of the paper 
the source, description, and advised mitigation measurements of the considered uncertainties 
within the proposed synthetic data generation framework are presented. In Section 3 the strat-
egy adopted for the inclusion of the main types of uncertainty within the generated data is ex-
posed and discussed, and finally, in Section 4 conclusions are drawn and further work is 
proposed. 

 
Figure 1. The proposed framework for synthetic data generation, which accounts for uncertainties and could be 

used in the prototyping of DTs. 

2 DATA UNCERTAINTIES 
Aleatory and epistemic uncertainties are two types of uncertainties commonly encountered 

in engineering and scientific fields [13]. Aleatory uncertainty arises from the inherent variabil-
ity or randomness in the system being studied. It is also known as natural variability or irreduc-
ible uncertainty. Such uncertainties cannot be easily reduced or eliminated by simply acquiring 
more data or improving the employed measurement techniques. Examples include natural dis-
asters, random fluctuations in material properties, and variability in environmental conditions. 
Table 1 presents the main sources of aleatory uncertainty that could affect the data quality col-
lected on a real bridge DT project.  
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Source Description Mitigation 
Measurement 
errors 

Sensor misalignment, installation errors, or sen-
sor damage can affect both vibration-based [14] 
and strain-based [15] damage detection reliabil-
ity. 

Using high-quality, carefully cali-
brated, properly installed/maintained 
sensors, and adequate filtering tech-
niques. 

Image Quality Camera resolution, focus, and exposure settings 
produce low-quality images that preclude visual-
based [16] approaches. 

Using high-quality, properly cali-
brated, and well-maintained cameras. 

Table 1. Aleatory uncertainties: Sources, description, and corresponding mitigation actions. 

 
Source Description Mitigation 
Environmental Temperature variations influence the dynamic re-

sponse of bridges as well as the strain distribution 
on them, which can affect vibration-based [17] 
and strain-based [18] damage detection results, 
respectively. 

Visual-based methods are highly susceptible to 
changes in visibility-related environmental ef-
fects such as the presence of rain, mist, or fog 
[19].  

Measuring environmental conditions 
at the time of data collection and ac-
counting for their effects on the dy-
namic response of the bridge. 

Collecting visual data under con-
sistent lighting and viewing condi-
tions. 

Modeling Simplified finite element analysis or other model-
ing techniques introduce errors that reduce the ac-
curacy of vibration-based [20] damage detection 
results. 

Using high-quality models that accu-
rately reproduce the bridge’s geome-
try, material, and loading conditions. 

Baseline The accuracy of both vibration-based [21] and 
strain-based [22] damage detection results de-
pends on the accuracy of the baseline infor-
mation, which is collected under undamaged 
scenarios.  

Improving data collection and col-
lecting data over a longer period, as 
well as implementing statistical anal-
ysis to detect and discard outliers. 

Damage loca-
tion 

Vibration-based [23, 24] and strain-based [25] 
damage detection techniques are typically most 
effective at identifying damage at mid-span or 
near supports locations, whereas visual-based 
[26] damage detection techniques are typically 
most effective at identifying damage on the 
bridge surface. 

Increasing the number and quality of 
sensors and/or implementing sensor 
placement optimization techniques. 

Material varia-
bility 

The material properties of the bridge compo-
nents, such as the modulus of elasticity and Pois-
son’s ratio of the bridge materials, may vary due 
to manufacturing variability or aging. This can 
introduce uncertainties in the strain-based [27] 
damage detection results. 

Increasing the number of sensors and 
probe specimens along the bridge. 

Image Interpre-
tation 

The interpretation of visual data can be subjective 
and dependent on the experience and expertise of 
the analyst. This can introduce uncertainties in 
the visual-based damage detection results [28]. 

Establishing clear guidelines and cri-
teria for image interpretation and 
providing training to the analysts. 

Table 2. Epistemic uncertainties: Sources, description, and corresponding mitigation actions. 

Epistemic uncertainty, on the other hand, arises from incomplete knowledge or understand-
ing of the system being studied. It is also known as reducible uncertainty because it can be 
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reduced or eliminated by acquiring more data or improving the understanding of the system. 
Examples include measurement errors, modeling assumptions, and incomplete knowledge of 
the system being studied. Table 2 contains the sources of epistemic uncertainty considered in 
the proposed synthetic data generation framework within the DT paradigm. 

Overall, it is important to carefully consider and quantify these uncertainties to ensure that 
regardless of the damage detection, localization, quantification, and/or prognosis approach used 
(i.e., model-based, data-driven, or physics-informed), results will be accurate and reliable. The 
Uncertainty Quantification (UQ) can be done using several methodologies and techniques [29, 
30], such as: 

• Fuzzy methods, which map responses to structural parameters using fuzzy clustering. As 
a drawback, these methods rely on membership functions, also called grades, which are 
difficult to define accurately, thus inducing new sources of uncertainty. 

• Probabilistic methods, which rely on the use of Probability Density Functions (PDFs), a 
likelihood function, and weighting coefficients. They are highly reliant on the chosen 
stochastic method and are relatively expensive in terms of computational cost. 

• Interval methods, which do not require assumptions made in terms of PDFs, discrete sam-
pling techniques nor modal measure-of-fit but can explore the entire space within the 
feasible parameters’ range. 

Mixed damage detection approaches on bridges, which combine multiple types of data such 
as vibration, strain, and visual data, can help to reduce the uncertainties associated with each 
individual data type. However, further uncertainties associated with mixed damage detection 
methods could arise leading to some undesirable scenarios, as explained below: 

• Integration of data [31]: Integrating multiple types of data can be challenging and requires 
careful consideration of the uncertainties associated with each type of data and their pos-
sible interactions.  

• Calibration and synchronization [32]: The calibration and synchronization of the different 
types of sensors used for data collection can affect the accuracy of the mixed damage 
detection results.  

• Uncertainty Propagation [33]: Uncertainties in the individual data types can propagate 
through the data integration process, which can affect the accuracy of the mixed damage 
detection results.  

Furthermore, the implementation of mixed damage detection approaches can also be hin-
dered by their increased cost and complexity, in comparison to using a single type of data. 
Finally, it is worth noting that regardless of the damage detection approach employed, the dam-
age detection threshold adopted will be of paramount importance and can vary depending on 
the type and severity of the damage under study. Small or subtle damage may be difficult to 
detect, which can introduce uncertainties and lead to undesirable results with limited reliability. 

3 UNCERTAINTIES MODULE AND DISCUSSION 
The epistemic uncertainties commonly present in real-world study cases will not represent a 

concern within the context of the synthetic databases generated by the proposed framework as 
the undamaged scenario data would correspond to the so-called “ground truth”, in other words, 
an accurate and objective baseline model. Nevertheless, environmental uncertainties will be 
included in the creation of environmental data, and those related to modeling and material var-
iability will be represented by the generation of different bridge models. Finally, damage loca-
tion and image interpretation would be accounted for by the generation of several damaged 
scenarios.  
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On the other hand, the proposed framework will generate data with different levels of alea-
tory uncertainty so that the prototypes could be validated in face of different feasible study case 
scenarios. Measurement errors can be synthetically generated by the inclusion of artificial noise 
in the data, with different magnitudes [34]. Uncertainties related to the quality of digital images 
and the effect of real-world noise could be properly simulated by reducing the image resolution 
and adding artificial noise, i.e., by introducing random variations in the pixel values of the 
digital image. In general, adding noise is a common technique used in various fields, such as 
computer vision, image processing, and data science, to simulate real-world scenarios or to 
enhance the robustness of algorithms. 

4 CONCLUSIONS AND FURTHER WORK 
A generalized shift towards a Digital Twin paradigm by members of the engineering, archi-

tecture, and construction industry is evident. As this new approach is currently in its early stages 
of development and adoption, new proposals to optimize its application need to be developed. 
Such attempts require the development of prototypes that need to be validated against bench-
mark data. Thus, a framework for the creation of a synthetic data generation tool has been pro-
posed capable of producing high-quality FAIR data that allows novel developed prototypes to 
be validated and consequently be implemented on further stages of the Digital Twin creation 
for real infrastructure assets.  

This paper explored the uncertainty types, sources, and quantification approaches involved 
in the synthetic data generation methodologies and tools of the intended framework. Further 
work needs to be done, mainly within three directions: (i) operationalization of the proposed 
framework; (ii) self-validation of the generated synthetic data; and (iii) continuous mainte-
nance/support. The results of these attempts will be presented by the authors in future publica-
tions. 
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