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Deep Statistical Solver for Distribution
System State Estimation

Benjamin Habib , Elvin Isufi , Member, IEEE, Ward van Breda, Arjen Jongepier ,
and Jochen L. Cremer , Member, IEEE

Abstract—Implementing accurate Distribution System State Es-
timation (DSSE) faces several challenges, among which the lack of
observability and the high density of the distribution system. While
data-driven alternatives based on Machine Learning models could
be a choice, they suffer in DSSE because of the lack of labeled data.
In fact, measurements in the distribution system are often noisy,
corrupted, and unavailable. To address these issues, we propose the
Deep Statistical Solver for Distribution System State Estimation
(DSS2), a deep learning model based on graph neural networks
(GNNs) that accounts for the network structure of the distribution
system and the governing power flow equations of the problem.
DSS2 is based on GNN and leverages hypergraphs to model the
network as a graph into the deep-learning algorithm and to repre-
sent the heterogeneous components of the distribution systems. A
weakly supervised learning approach is put forth to train the DSS2:
by enforcing the GNN output into the power flow equations, we
force the DSS2 to respect the physics of the distribution system. This
strategy enables learning from noisy measurements and alleviates
the need for ideal labeled data. Extensive experiments with case
studies on the IEEE 14-bus, 70-bus, and 179-bus networks showed
the DSS2 outperforms the conventional Weighted Least Squares
algorithm in accuracy, convergence, and computational time while
being more robust to noisy, erroneous, and missing measurements.
The DSS2 achieves a competing, yet lower, performance compared
with the supervised models that rely on the unrealistic assumption
of having all the true labels.

Index Terms—State estimation, distribution system, deep
learning, graph neural network, physic-informed neural network,
weakly supervised learning.

I. INTRODUCTION

D ISTRIBUTION systems are taking a more active role in
the energy transition. These active distribution systems

require more extensive monitoring and control, which is possible
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by developing Distribution System State Estimation (DSSE) [1].
Currently, state estimation (SE) is mostly only possible in the
transmission systems, and several challenges exist to extending
SE to distribution systems successfully. First, conventional SE
algorithms for transmission systems are challenging to adopt
to distribution systems as the assumptions differ. Additionally,
the distribution grid lacks real-time measurements. Conven-
tional algorithms assume full observability of the grid with
redundant measurements, which is impractical [2]. To address
the observability issue of distribution systems,forecasted values
based on historical data called pseudomeasurements1 are used to
compensate for the lack of measurements, but they are often in-
accurate and can impact the SE accuracy [3]. Also, the Weighted
Least Squares (WLS) method used for SE is time-consuming
and sensitive to data noise for large distribution systems [4].
Multi-area SE has been widely investigated to speed up the
estimation process [5], [6], and has been extended to distribution
systems [7]. However, the convergence and sensitivity issues re-
main, and division into multiple areas brings in communication
and time-synchronization challenges.

Different algorithms have been proposed to improve the ro-
bustness and convergence of SE, notably the branch-current
WLS, the Least Absolute Value, and the Generalized Maximum
Likelihood [4], [8]. Branch-current algorithms are more robust
to parameter selection and uncertainty and are more suited for
the weakly meshed and radial topologies in the distribution
system [9]. Although, these algorithms suffer from the lack of
qualitative measurements in wide distribution systems and the
uncertainty of distributed loads and generators. Kalman Filters
aim to improve speed and estimation performance under low
observability. They are linked to the Forecast-Aided SE concept,
where model-based approaches use the previous states as extra
information to enhance accuracy and speed [4], [10], [11], [12],
[13]. However, Kalman Filter SE is limited by the assumptions of
system linearization and the Gaussian distribution of the mea-
surements, which reduce its accuracy and robustness. Indeed,
power systems are highly nonlinear, and measurements can show
a non-Gaussian distribution [14].

Data-driven techniques showed promising results in perform-
ing fast DSSE without the above-mentioned assumptions. Deep
learning models showed remarkable results to fit data for the SE
task [15], [16], [17], [18]. This supervised learning approach

1It is common in DSSE to define pseudomeasurements as values estimated
from historical data, as opposed to defining them as unmeasured variables
calculated from the measurement of neighbor variables.
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trains neural networks to fit labels, which are the grid’s state
variables. These labels are usually provided from simulations,
as getting them from the grid is often impossible. As such,
these approaches suffer from the scarcity of real labelled data
and supervised learning is only possible using simulation data.
Therefore, the models can only fit simulators exclusively and
not real systems. Even though some approaches try to improve
this technique by introducing some inductive bias [19] and
physic-awareness [20], they all require extensive supervised
learning using large labelled databases [4].

Combining model-based and data-driven approaches is a
promising research direction to overcome the limitations of
the model-based techniques with data-driven tools [11]. This
approach is considered in [21] to combine the efficiency of
Kalman Filters with the robustness of supervised Deep Learning
architectures. It showed interesting results in low-dimensional
problems; however, it suffers from high-dimensional problems
due to the need for labelled data and unstable training. In the
field of ’hybrid’ approaches, [22] combines data with physics
and develops a model-specific deep neural network (DNN)
by unrolling a SE solver to enhance estimation performance
and alleviate computation expenses. However, the model is
trained with fully labeled data, and the physic-awareness of the
approach is limited and does not include the structure of the
system.

To address the lack of labeled data for training data-driven
models, the concept of weakly supervised learning has been
proposed [23]. This is similar to supervised learning but it
is used for tasks where data is only partially or inaccurately
labeled, relying on physical information, mathematical tools, or
model-based modules to enhance the training process. While
unsupervised learning also trains models without labels, weakly
supervised learning still relies on imperfect values defined as
labels. Although weakly supervised learning is highly practical
for tasks such as DSSE, it has not yet been investigated for this
particular problem.

Topology and parameter estimation in distribution systems
from limited measurements have also been explored in the liter-
ature, with promising results. In [24], a model-based algorithm
using linear regression is proposed for topology and parameter
estimation from limited measurements. In [25], smart meter data
is utilized to estimate the topology through an Ordinary Least
Squares method. Meanwhile, [26] proposes a data-driven Lasso
algorithm for topology estimation.

Graph Neural Networks (GNNs) are a particular family of
deep learning models that use the underlying network structure
as an inductive bias [27], [28] to tackle the curse of dimen-
sionality and reduce the data demand. GNNs have also shown
robustness to perturbations in the network topology [29], [30],
[31], which makes them appealing data-driven alternatives for
the DSSE task. GNNs are investigated for power system applica-
tions, where the electrical lines correspond to the graph’s edges
and the buses correspond to the graph’s nodes [32], and the data
varies for the specific application.

GNNs have been investigated for their potential use in SE in
power systems, as shown in [19], [33], [34], [35]. The models
in [19], [33] demonstrate that GNNs can accurately perform

SE while being robust against noise and missing data. More-
over, [34] shows that GNNs can provide fast and robust SE, and
any inaccuracies in the data would only impact local estima-
tion. Additionally, [35] highlights that GNN models can handle
fast sampling measurements, thereby improving SE in power
systems. However, the heterogeneity of components in power
systems cannot be accurately modeled using simple graphs, and
thus, GNNs have limited expressivity in the graph model for
power system applications.

Despite the increasing development of GNNs applications in
power systems and growing research on deep learning for DSSE,
the literature on GNN for DSSE is limited to parallel works [36],
[37] In [36], an electrical-model-guided GNN is used to perform
DSSE and compared to conventional methods and other ma-
chine learning techniques. This approach demonstrated higher
accuracy and robustness, indicating the potential of GNN-based
approaches. In [37], a GNN model is combined with matrix
completion techniques to perform DSSE without the need for
a detailed system model, highlighting the robustness of GNN
approaches to model inaccuracies. While these approaches show
promising results, they rely on labeled data for training, which
is impractical due to the limited observability of the system’s
state.

In this article, we propose the Deep Statistical Solver for
Distribution System State Estimation (DSS2), a GNN model
based on the Deep Statistical Solver architecture [38] specialized
for optimization tasks on power systems. The model is trained in
weakly supervision manner to tackle the issues of data scarcity
and inaccurate labeling. The success of such weak supervision
is conveyed by considering physical information of the network
and the physical laws of the power flow equations in the training
loss function, rendering labels obsolete. Specific contributions
include:

1) DSS2, the Deep Statistical Solver model for accurate data-
driven DSSE using a weakly supervised approach.

2) adding physical constraints as penalization to the loss
function, enhancing the model’s performance.

3) the innovative use of weakly supervision in the context
of data-driven DSSE, which leverages the power flow
equations to restrict the model’s search for the mapping
function, hence reducing the data demand and improving
robustness to inaccurate measurements.

Our goal with this proposition is to enhance the accuracy of
grid estimation in situations where there are limited measure-
ments and low-quality input values, such as pseudomeasure-
ments. To achieve this, we propose using a deep learning model
that learns solely from the grid’s measurements and the physical
information of the system.

We validate the model using various case studies on the IEEE
14-bus, 70-bus, and 179-bus systems and compare it to the WLS
algorithm baseline and other Deep Learning architectures. The
proposed DSS2 is up to 15 times faster, 4 times more accurate,
and more robust than the standard WLS algorithm. Our model
also outperforms supervised learning approaches, being 10 times
more accurate in line-loading estimation while alleviating the
need for labelled data. Interestingly, our approach is better for
larger networks as the GNN learns in the neighborhood of buses,
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and the larger the power network, the more data to learn from.
The source code of this work is available on GitHub [39].

This article presents the methodology in Sections II and III,
introducing the Deep Statistical Solver model and extending its
usage to DSS, respectively. Section IV are the case studies and
compares the performances to the baseline algorithm and other
data-driven models. Section V concludes this work.

II. PROPOSED APPROACH FOR STATE ESTIMATION

A. Conventional Problem Formulation

The state estimation problem aims at finding the state vector
x based on a noisy measurement vector z. Conventionally, we
consider the voltage amplitude and angle at every grid bus as
state variables, and z can include any measurement type:

x = [V0, V1, . . . , Vn−1, ϕ0 = 0., ϕ1, . . . , ϕn−1] ∈ R2n×1

(1a)

z = [z0, z1, . . . , zm−1] ∈ Rm×1, (1b)

where we consider n buses and m measurements. Vi is the
voltage amplitude at bus i, and ϕi the voltage phase angle. We
have 2n− 1 state variables, as ϕ0 is set to 0 by the slack bus
convention. Linking the measurement vectorz to the state vector
x, we define a measurement function h(x):

z = h(x) + ε, (2)

where ε ∈ Rm×1 is the measurement noise vector, and h(x) are
the power flow equations shown in (3) [40].

h(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vi = Vi

ϕi = ϕi

Pij→=−ViVj [R(Yij) cos(Δϕij)+I(Yij) sin(Δϕij)]

+V 2
i

[
R(Yij) +

R(Ysij )

2

]

Pij←=ViVj [−R(Yij) cos(Δϕij)+I(Yij) sin(Δϕij)]

+V 2
j

[
R(Yij) +

R(Ysij )

2

]

Qij→=ViVj [−R(Yij) sin(Δϕij)+I(Yij) cos(Δϕij)]

−V 2
i

[
I(Yij) +

I(Ysij )

2

]

Qij←=ViVj [R(Yij) sin(Δϕij)+I(Yij) cos(Δϕij)]

−V 2
j

[
I(Yij) +

I(Ysij )

2

]

Iij→ =

∣∣∣∣Pij→ − jQij→√
3Vie−jϕi

∣∣∣∣ = |Pij→ − jQij→|√
3Vi

Iij← =

∣∣∣∣∣
Pij← − jQij←√

3Vje−jϕj

∣∣∣∣∣ =
|Pij← − jQij←|√

3Vj

Pi = −
∑

j∈N (i) Pij← + Pij→

Qi = −
∑

j∈N (i) Qij← +Qij→

(3)

In this measurement function, (3), Δϕij = ϕi − ϕj + φij is the
voltage angle difference across the line that connects bus i to

Fig. 1. State estimation with (a) WLS with Newton-Raphson solver uses an
initial guessx0 of the state vectorx that iteratively updatesxb until the tolerance
Δx > ε or a maximum of iterations is reached, (b) supervised learning uses a
label vector y to train an ANN to fit the output x to the input z and (c) the
proposed weakly supervised approach considers the power flow equations h(x)
( (3)) to get the estimated measurements and fits the output x of the GNN model
to the input z without labels. The target optimization is similar to WLS.

bus j, φij is the shift angle of the transformer if any, and Yij and
Ysij are respectively the line and shunt admittance of the line
between bus i and bus j. Measuring flows at bus i, we have Pij→
and Qij→ as the active and reactive power flow from bus i to
bus j, and Pij← and Qij← as the power flow from bus j to bus i.
Current flow Iij follows the same convention. Finally, we derive
the active and reactive power injections at bus i, Pi, and Qi from
the power flows. All these outputs are possible elements of z,
depending on the measurement infrastructure.

The measurement function h(x) contains equations that con-
nect the state variables Vi and ϕi to all types of measurements in
the network. The first two lines correspond to identity functions
that link the state variables to their direct measurements. Lines
3-6 consist of AC power flow equations used to derive power
flows from the state variables. Lines 7-8 derive current flows
from the previously derived power flows. Finally, lines 9-10
derive the nodes’ power injection by ensuring exact power
balance in each network node.

The measurement functionh(x) is nonlinear, and (2) includes
the probabilistic noise vector ε. In SE, we are interested in
finding the inverse relation h−1(z) to estimate the state vector x
while compensating the error ε. The conventional SE approach,
shown in Fig. 1(a), uses the iterative Newton-Raphson algorithm
to minimize a WLS objective function [40]. This technique uses
the redundancy of measurements to provide an accurate estima-
tion. However, the approach requires at least the same number of
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measurements as state variables, meaning m ≥ 2n− 1, and the
system needs to be fully observable. Moreover, matching this
requirement but failing to provide enough redundancy highly
impacts the estimation accuracy. In practice, m ≈ 4n achieves
satisfying results, which is impractical for the distribution sys-
tem [41]. The iterative process may even diverge in case of poor
observability or high noise level in the measurements [4].

Another approach to approximate h−1(z) is to train an Ar-
tificial Neural Network (ANN) to map this function. ANNs
approximate functions using a series of nonlinear operations
parameterized by their trainable weights θ [42]. These weights
are estimated during the training phase to approximate the given
relation. For the SE task, the model is trained to approximate the
inverse relation h−1(z), considering the measurement vector z
as the input of the ANN and the state vector x as its output. We
use the state estimation’s convention of x as output and z as
input of the model.:

fθ (z) := h−1(z)→ x (4)

In a common supervised learning approach, the approach assigns
a label vector y as the true value of x for each measurement
sample (one measurement vector z). In the training process,
shown in Fig. 1(b), the model fits the data using available
labels as reference. This approach, although quite efficient, is
impractical for DSSE due to the lack of labelled data. Instead, our
contribution combines Deep Learning and WLS optimization to
propose a weakly supervised learning approach, alleviating the
need for labels.

B. Weakly Supervised Learning

To develop a weakly supervised learning approach for the
DSSE task, we incorporate the power flow equations from (3)
within the training phase, as shown in Fig. 1(c). The H2MGNN
algorithm takes the measurement vector z as an input, and
provide an estimated state vector x as an output, which is then
used to retrieve the estimated values h(x) of the network using
the power flow equations ( (3)). The loss function of the model is
then set to be the minimization objective of the WLS approach:

L(z,x) =
∑
k∈M

|zk − hk(x)|2
σ2
k

(5)

with σk the standard deviation of the measurement k’s uncer-
tainty assumed as Gaussian distribution, and M the measure-
ments set. While SE aims at considering the actual noise ϕ of
the measurement vector, a ‘first guess’ of this value is assumed.
σk. |M| = m is the number of measurements where | · | is the
cardinality of a set. We assume uncorrelated measurements.

The detailed training procedure shown in Fig. 1(c) can be
divided into four steps:

1) An estimated state vector x is given by the H2MGNN
algorithm from an input measurement vector z.

2) The power flow equations integrated into the measurement
function h(x) are used to retrieve network’s values from
the estimated state x.

3) The estimated values h(x) are compared to the actual
measurement vector z in the Weighted Least Squared

loss function. An estimation error is retrieved from each
input measurement and weighted by the inverse of the
measurement’s variance.

4) The sum of all estimation errors consists in the loss
function, and we apply gradient descent to find the partial
derivatives and tune the H2MGNN accordingly.

In this training process, the model is trained by mini-
mizing the error between the measurements z and the esti-
mated values h(x), and the uncertainty σ2 of the measure-
ments is used as weights to emphasize learning from the most
accurate measurements. With this loss function, we imple-
ment a weakly supervised learning approach where we use
the input measurements z as noisy, imperfect labels that the
H2MGNN needs to fit through the power flow equations,
and no ground-truth labels are used for training. Function
(3) is differentiable w.r.t the output state variables, and the
gradient can be expressed using the measurement Jacobian
matrix H(x) = ∇h(x).

With this method, the target optimization of the training
phase is exactly the conventional WLS minimization problem,
allowing the model to learn an input-output mapping that rep-
resents this function. Our goal is to achieve a similar level
of performance as the WLS approach while improving the
model’s numerical stability, computation time, robustness, and
observability requirements.

C. Physical Penalization Terms in the Loss Function

We propose aiding the WLS learning loss (5) with different
penalization terms to reduce the number of local minima and
’guide’ the outputs towards physically-feasible solutions. We
assume our model does not need to estimate unstable states as
protection schemes are faster and more reliable, so we guide
the learning process to only estimate stable states in the output.
Considering stable networks, we add three terms to the loss:
� Voltage level stability criteria: power systems ensure a

voltage level between V LB = 95% and V UB = 105% per
unit to remain stable. Therefore, a two-sided penalization
[V − V UB ]+ + [V LB − V ]+ is added to the loss function
to enforce this criterion.2

� Phase angle stability criteria: large variations in phase
angles are improbable in stable systems. For example, a
phase angle difference of more than ΔϕUB = 0.25 rads
between two neighbouring buses would characterize an
unstable network. Therefore, we add a second two-sided
penalization [Δϕ−ΔϕUB ]+ + [−ΔϕUB −Δϕ]+ to the
loss function to constrain this phase angle difference to
ΔϕUB = 0.25.

� Line loading stability criteria: power systems regulators
ensure the network’s security by applying safety margins
to line loading. To keep the model output within a physical
range, we apply a third penalization [l − lUB ]+ on the line
loading when the prediction gives a loading higher than
lUB = 100%.

2[x]+ = max(0, x)
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Fig. 2. Modelling the network (a) with two generators, three loads, two lines,
and two transformers as (b) a standard graph and (c) an H2MG. The standard
graph (b) has vertices ( ) and edges ( ) with their features represented as boxes.
The H2MG (c) models the components, bus ( ), line ( ), and transformer
( ) as hyperedges connected to any number of connection ports with their
features.

Adding these terms to the loss function, the equation used in
the training process becomes:

L(z,x) =
∑
k∈M

|zk − hk(x)|2
σ2
k

+ λ0[λ1[V − V UB ]+

+ λ1[V
LB − V ]+ + λ2[Δϕ−ΔϕUB ]+

+ λ2[−ΔϕUB −Δϕ]+ + λ3[l − lUB ]+], (6)

whereλ0, λ1, λ2, λ3 are hyperparameters set to balance the effect
of each mathematical term during training. These terms penalize
the model output towards physically plausible boundaries and
avoid diverging toward local minima that are well beyond the
physical margins of the system.

III. THE DEEP STATISTICAL SOLVER MODEL

This section proposes the H2MG structure, the mod-
elling of the heterogeneous components of the distribution
grid, the Hyper-Heterogeneous Multi Graph Neural Network
(H2MGNN) and how to learn the H2MGNN in weak supervision
for DSS by applying Section II.

A. Hyper-Heterogeneous Multi Graph (H2MG)

The H2MG uses hypergraphs to model power grids. Power
grids are complex networks where different heterogeneous com-
ponents are connected as shown in Fig. 2(a). Modelling power
networks solely with vertices and edges, as done with standard
graph models, Fig. 2(b), leads to information losses when merg-
ing grid components together into graph objects. More versa-
tile modelling of such networks is possible using hypergraphs,
Fig. 2(c), where each component can be modelled as a specific
hyperedge which can mitigate the loss of information.

The H2MG formalism is defined by:
� Objects as hyperedges: every object in the network is

modelled as a hyperedge that can connect to any number

of vertices. This is shown in Fig. 2 where each component
is modelled separately as a hyperedge: we represent lines
and transformers as hyperedges connected to two vertices,
whereas buses are modelled as hyperedges connected to
one vertex.

� Vertices as ports: vertices represent the interfaces between
objects. In a hypergraph, vertices are connection points
between the components (the hyperedges). These con-
nection points between components in a power system
are the network’s buses. Therefore, we model buses as
both hyperedges as network components and vertices as
network interfaces.

� Hyper-Heterogeneous Multi Graph: the collection of hy-
peredges connected through vertices forms a hypergraph,
and we call this hypergraph heterogeneous if it contains
multiple classes of objects.

Hyperedges carry features and outputs, while vertices, as
connection ports, do not carry input-output information.

B. H2MG Neural Network (H2MGNN)

The H2MGNN is a GNN architecture that works with H2MG
models. It uses a recursive process to learn information from the
hypergraph and related features. It is a recurrent and residual
GNN architecture, with trainable mappings implemented as
standard ANNs and trained through standard back-propagation.
As presented in Algorithm 1, we consider four types of variables:
� Vertex latent variables, considering a vertex set V corre-

sponding to the interface role of buses: hv
i , ∀ i ∈ V;

� hyperedge latent variables, considering c ∈ C as the ob-
jects’ class, and e ∈ Ec as the objects’ hyperedge: hc

e;
� hyperedge inputs zc

e;
� hyperedge outputs x̂c

e.
In our setting, the hyperedge index e refers to the object’s

connections: considering a vertex i and its neighbouring vertex
j, e = i for a bus, and e = ij for a line.

In the initialization of Algorithm 1, the hyperparameter d
sets the dimension of the latent variables. We initialize these
latent variables with a flat start (zero values) and set predicted
output variables to the initial values x̂c

e,0 dependent on the
task. For DSSE, a common initialization is Vi = 1 p.u. and
ϕi = 0rad. Then, the H2MGNN algorithm recursively updates
these variables in the system with trainable mappings φθ. An
iteration variable t is defined to weigh each iteration in the update
process and T is the maximum number of iterations. At each
iteration, latent variables are updated by an increment defined
through the message-passing step similar to conventional GNN
algorithms:

Δhv
i =

∑
(c,e,o)∈N (i)

φc,o
θ

(
t

T
,hv

i ,h
c
e, x̂

c
e, z

c
e

)
, ∀i ∈ V (7a)
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Algorithm 1: H2MGNN Algorithm.
1: procedure fθz

c
e

� Initialization
2: for i ∈ V do
3: hv

i ← 0d

4: for c ∈ C do
5: for e ∈ Ec do
6: hc

e ← 0d

7: x̂c
e ← x̂c

e,0

� Latent interaction
8: t← 0
9: while t < T do

10: for i ∈ V do
11: hv

i ← hv
i +

1
T ×

∑
φc,o
θ ( t

T ,h
v
i ,h

c
e, x̂

c
e, z

c
e)

12: for c ∈ C do
13: for e ∈ Ec do
14: hc

e ← hc
e +

1
T × φc,h

θ ( t
T ,h

v
i ,h

c
e, x̂

c
e, z

c
e)

15: x̂c
e ← x̂c

e +
1
T × φc,y

θ ( t
T ,h

v
i ,h

c
e, x̂

c
e, z

c
e)

16: t← t+ 1
17: return x̂c

e

withN (i) the set of hyperedges connected to vertex i, and o the
connection port of a hyperedge (if connected to multiple ports).
The final output of the model is stored in the hyperedge outputs
x̂c
e.

C. Proposed DSS2 Implementation

As presented in Fig. 1(c), we use the H2MGNN model to
estimate the state variables x from the measurements z through
Algorithm 1 and train it through the weakly supervised approach
with the WLS as target optimization. For the DSSE described
in Section II, the DSS2 model approximates the inverse of the
measurement function (3) as (4). To simplify the model, we
consider balanced systems and only model the positive sequence
of the networks. We model buses, lines and transformers and
integrate generators and loads as nodes’ power injection, as
commonly done for the DSSE task.

The input features follow the WLS algorithm where, for each
measurement, we consider the two, the measured value and its
uncertainty. Voltage angles are considered as possible inputs of
the model to allow the use of synchronized phasors, but are
not required as most distribution systems do not carry such
measurements. We also add all other parameters as features
needed to compute the measurement function (3) as topology
parameters. The features and parameters assigned to each class
of components are listed in Table I. The model’s output is every
bus’s voltage amplitude and angle, as typical in SE. Finally,
we add booleans to detail components: 1z defines buses with
zero-injection (no consumption or generation), 1s defines slack
buses, and 1cl defines closed lines. These booleans simplify
the model and provide more information about the network to
the DSS2 model. In other words, this simplification considers
’virtual measurements’ to enforce zero power flow at buses
without injection (1z), no power flow at the connected buses
to an open line (1− 1cl) and Vs = 1 p.u. and φs = 0 rad at the

TABLE I
FEATURES AND TOPOLOGY PARAMETERS OF THE H2MGNN (MODELLED AS

AN H2MG)

slack bus s where s is the index of the vector 1s that equals
1. Since distribution grids typically have a limited number of
measurements, we assume a low amount of measurements and
incorporate pseudomeasurements to complete the observability
of the system. These pseudomeasurements are based on histor-
ical demand data and are added as active and reactive power
injections Pi and Qi for buses where observability is lacking.

IV. CASE STUDIES

Case studies have been undertaken to provide insights into the
proposed approach and evidence of its efficacy. After stating the
case studies settings and showing the efficiency of the proposed
weakly-supervised learning approach, we analyse the perfor-
mance of the DSS2 exploring the trade-off of providing labels
and accuracy, subsequently, investigating the accuracy, conver-
gence and computational speed for larger networks. Finally,
we investigate the performance of the proposed approaches
for different measurement noise, when the measurements are
disturbed, and when we have higher and lower load levels and
renewable powers.

A. Test Systems and Setup

We considered the 14-bus CIGRE MV distribution grid with
PV and Wind distributed energy resources (DER) activated [43],
the 70-bus Oberrhein MV/LV sub-grid, and the whole 179-bus
Oberrhein grid from [41]. The networks are presented in Fig. 3.
The measurement locations for each network are shown in Fig. 3.
These measurements M either measure the power flow over
lines or the voltages at buses and were assumed with different
Gaussian noise, as further discussed.

For each network, 8640 load samples were collected, equiva-
lent to one year of hourly data. Each load scenario considers load
levels of 24 consecutive samples discretized hourly for all loads
in the network. These load scenarios resulted from a Monte Carlo
sampling on standard load profiles taken from [44], considering
a 15% uncertainty. For each sample, in each scenario, assuming
balanced systems, the AC power flow computed the full true
state using PandaPower 2.9 [41] and Python 3.8. Subsequently,
one sample’s full true state considered all loads and generators’
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Fig. 3. Three test networks consisting out of trafos ( ), lines ( ), MV/LV
buses ( ) and HV buses ( ). The state can be estimated using the set of power flow
measurements ( ) and voltage measurements ( ). Relevant indices are indicated,
and lines’ indices are underlined. Case studies on the 70-bus grid focus on buses
indicated with .

active and reactive power levels, the bus voltage levels, phases,
and line loadings. System operators do not have access to this
full true state; however, some key variables are provided by the
measurements specified earlier. These observed variables were
assumed corrupted with zero-mean Gaussian white noise at the
measurement locations. Between 0.5% and 2% standard devi-
ations were assumed for the voltage and current measurement
noises, and between 1% and 5% for the active and reactive power
measurement errors. Pseudomeasurements of power levels were
considered at every (unobserved) bus using generic load and
generation profiles taken from [44].

The dataset was split into train, validation, and test sets,
following an 80/10/10 split. In supervised learning, the measure-
ment vector z at the measurement locations mentioned above
represents the input to the model, and the full state represents
the label y.

Several baseline models were assumed as follows. The stan-
dard SE WLS algorithm [45], a standard ANN model trained
with supervised learning, and the DSS2 model but trained with
supervised learning (referenced with sup. DSS2). The WLS
algorithm from PandaPower 2.9 was used, and the deep learning
models were implemented in Tensorflow 2.8 [46]. The ANN
was designed with 5 layers of 32 hidden values, tanh activation
functions and a Glorot normal initializer. The code to reproduce
the case studies of this article can be accessed in GitHub [39].

TABLE II
HYPERPARAMETER VALUES OF DSS2 TRAINED FOR THREE POWER NETWORKS

Fig. 4. Validation RMSEs of voltages (a) and line loading (b) during training.

B. Efficiency of the Weakly-Supervised Learning

This section investigates the efficiency of the weakly su-
pervised learning DSS2 approach and hyperparameters that
can impact the state estimation accuracy. The hyperparameters
penalization factor λ = λ0 = λ1 = λ2, batch size, dropout rate
r, �2-regularizer, and the number of iteration T were fixed. A
grid search tuned the hyperparameters learning rate within the
ranges α ∈ {0.001, 0.002, . . . , 0.009, 0.01}, layer dimension
d ∈ {8, 16, 24, 32, 40, 48}, and layers number ∈ {2, 3, 4, 5}.
The selected hyperparameter values are in Table II for each
network.

The efficiency of the learning approach is shown in Fig. 4(a)
and (b) when training on the 14-bus network. The voltage and
line loading estimation RMSE slowly decreased at each epoch,
showing a learning curve through the power flow equations and
using only the noisy measurements and pseudomeasurements.
When training in weakly supervision, DSS2 learned to minimize
the different objectives using noisy measurements as ’reference
values’. However, the computational time to train DSS2 in
weakly supervision was lower than to train in supervision.

C. Trade-Off Between Accuracy and Available Labels

This case study investigates the performance of the proposed
weakly supervised DSS2 model on the 14-bus system compared
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TABLE III
MEAN (STANDARD DEVIATION IN PARENTHESES) VALUES OF PERFORMANCE METRICS IN DEFAULT CONDITIONS

Fig. 5. Comparing RMSE of estimating (a) voltage levels and (b) line loadings
in the 14-bus network between WLS ( ), DSS2 ( ), FFNN ( ) and sup. DSS2 ( ).
In (a), the dashed lines show acceptable state estimators based on the standard
deviation. Below the dashed green is acceptable, and above red is unacceptable.
In (b), indexes 12 and 13 are transformers.

to three baselines. The second column in Table III summarizes
the results.3

The RMSE for voltages of the proposed weakly supervised
DSS2 was three times lower than the WLS, 2.5% versus 9.9%.
In more detail, Fig. 5(a) shows the voltage estimation RMSE per
bus. The RMSE was lower than the 0.5% threshold for all buses,
showing successful learning from voltage measurement data
while handling measurements’ noise. The difference in RMSE
between the observed (buses 1,8, and 12) and the unobserved
buses are small, showing the capability of our DSS2 model to
extrapolate to all buses. The supervised models (ANN, sup.
DSS2) estimated the voltage more accurately, as expected, as
they learned from the ideal true voltage data having an unfair,
impractical advantage.

The RMSE of line loading of the weakly supervised DSS2

reaches performances equivalent to the WLS, outperforming the

3Observability in the large networks is reached artificially by using pseu-
domeasurements in unobservable parts of the networks.

supervised models by a wide margin according to Table III.
This observation offered insights. Supervised models poorly
estimated indirect values such as the line loading that were
calculated using the power flow equations. The models only
outputted the state variables and supervised models poorly con-
sidered the coupling of the state variables in the estimations
of line loading. However, the weakly supervised model learned
directly through the power flow equations about the coupling
with the effect of estimating line loading more accurately. In
more detail, Fig. 5(b) shows the loading estimation error per line.
The weakly supervised DSS2 model had a very high accuracy
on measured lines (lines 0 and 10) and their extension (lines
1 and 11). However, there was a clear drop in performance
for the estimation of transformers’ loading, shown at indexes
12 and 13. The simple modelling of transformers or slack may
have led to this reduced accuracy as the transformers and lines
were considered in the same class of models. As a result of this
simple modelling, the H2MGNN considered the same mapping
for these components, which may have reduced the accuracy of
transformer estimations.

D. Convergence, Accuracy and Computation Speed in Large
Networks

This case study investigates the performance of the proposed
DSS2 compared to the WLS in larger networks, the 70-bus
and 179-bus networks, along three performance criteria: the
convergence rate, the accuracy, and the computational time. The
2nd and 3rd columns in Table III summarize the results.

When analysing the convergence rate, the DSS2 always con-
verges, and the WLS never converges in the 179-bus network.
The WLS was unstable in this large and noisy network, leading
to these poor convergence rates. WLS’ convergence issues with
noisy measurements in large systems is already well-known [4],
[10]. Many noisy measurements constrain the Newton-Raphson
solver and can lead to divergence. More specifically, the WLS
had issues in handling flow measurements. In response to these
issues and to compare the accuracy and computational times of
DSS2 with WLS, only voltage measurements and pseudomea-
surements were used in WLS to increase the convergence rate
(WLS* in the table). This increased the convergence rate in the
70-bus system but did not increase the convergence of the WLS
in the 179-bus. Therefore, in the 179-bus system, the tolerance
of the Newton-Raphson iterative process and the number of
iterations were increased (WLS** in the table). Increasing these
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Fig. 6. Estimation of the voltage level at (a) bus 34 and (b) bus 223 of the
70-bus network under normal conditions and across the sampling period, using
WLS ( ), and DSS2 ( ). True voltage ( ) and measurement ( ) as references.

parameters increased the convergence rate at the cost of lower
accuracy and slower processing.

When analysing the accuracy, a key advantage of the DSS2

becomes visible. DSS2 outperformed the WLS in every metric
in the two larger networks. The models based on GNN, such
as DSS2, learn from local operations (in the neighbourhood
of buses) and extrapolate to other locations (to other neigh-
bourhoods of buses). Therefore, the more buses and lines in
the network, the more local operations to learn from that can
further enhance the model’s accuracy. Also, these networks have
more static loads and less DER than the 14-bus network, so
the variation of voltage and line loading was smaller, and the
estimated values from the DSS2 become more accurate. Fig. 6(a)
and (b) compare the estimated voltage levels through a sampling
period in the 70-bus system for the measured bus 34 and the
unmeasured remote bus 223, respectively. The accuracy of the
DSS2 model estimating the voltage in measured nodes through
noisy measurements was high. However, the model lacked gen-
eralizability when estimating voltage in remote, unmeasured
nodes.

When analysing the computation times, in the last row of
Table III, the DSS2 increasingly outperformed WLS for larger
networks. The computational time of the WLS and the DSS2

increased from the 70-bus network to the 179-bus network by
factors of 10 and 2, respectively. The DSS2 scaled to a larger
network 5-fold better than the WLS algorithm. The WLS needed
more iterations for this larger system until the Newton-Raphson
converged, although the tolerance was increased, which typi-
cally decreased the computational times. The DSS2 also showed
a lower variance in the computational times as it is not based on
an iterative algorithm.

Fig. 7. Comparison of RMSE for the estimation of (a) voltage level and (b) line
loading between the WLS ( ) and DSS2 ( ) in the 70-bus network; considering
different levels of measurement noise.

Fig. 8. Estimation of the voltage level at (a) bus 34 of the 70-bus network under
high noise level and across the sampling period, using WLS ( ), and DSS2 ( ).
True voltage ( ) and measurement ( ) as reference.

E. Measurement Noise

This case study compares the robustness to measurement
noise of the DSS2 to the WLS in the 70-bus network. The
level of measurement noise refers to the standard deviation σi of
the Gaussian noise added to the measurements. Three different
levels of noise were considered. The default level had 1% noise
on ideal measurements of voltage and current, and 2% noise on
the ideal measurements of active and reactive power; the low
level had 0.5% and 1% noise, and the high level 3% and 5%,
respectively.

At high noise, Fig. 7 shows the RMSE of the DSS2 was more
than 10 times better than that of the WLS showing significantly
higher robustness of DSS2. DSS2 had a similarly high accuracy
at low and high noise as in the default noise level. DSS2 learned
to process many noisy signals with different standard deviations
within the high noise level ranges and GNN structures. The
dropout step during training improved the capability of the DSS2

model to handle stochasticity, including noise. Fig. 8 compares
the voltage level estimation at high measurement noise for the
bus 34. The DSS2 successfully cancelled the increased noise,
whereas the WLS algorithm struggled to stay accurate.

F. Missing and Erroneous Measurements

This case study investigates the impact of missing and er-
roneous measurements on the DSS2 and the WLS algorithm
at the 70-bus network. Case (i) assumed a missing voltage
measurement on bus 39 that was naively replaced with their



4048 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 2, MARCH 2024

Fig. 9. Comparison of RMSE for the estimation of (a) voltage level and
(b) line loading between WLS ( ) and DSS2 ( ) in the 70-bus network considering
(i) missing voltage measurement, (ii) erroneous voltage measurement and erro-
neous active power flow measurements, and (iii) missing voltage measurement
and erroneous voltage measurements.

Fig. 10. Estimation of voltage level at bus 34 of the 70-bus network under
missing measurement conditions and across the sampling period, using WLS
( ), and DSS2 ( ). True voltage ( ) and measurement ( ) as reference.

historical mean value. Case (ii) assumed erroneous voltage
measurements on buses 39, 58 and 80, and erroneous active
power flow measurements in lines 162 and 165 with a higher
deviation from the true state values than the expected (standard)
deviation. Case (iii) assumed missing voltage measurements on
buses 34, 39 and 80 and erroneous voltage measurements on bus
58.

Fig. 9 shows the results. The DSS2 had high robustness to
missing and erroneous measurements in all three cases, with
a similar RMSE as the default case (no missing or erroneous
measurements). However, the erroneous measurement case (ii)
impacted the WLS, showing an increase of around 20% on rel-
ative voltage RMSE. Fig. 10 focuses on one bus with erroneous
measurements, the bus 34 in case (iii). The measurement in bus
34 was missing for the whole sequence and was naively replaced
by the empirical mean value (light blue).

A key insight of this analysis is that the DSS2 was not
impacted by this missed value and successfully provided an ac-
curate estimation. Interestingly, the DSS2 model was not trained
to handle such events. However, using known patterns from
neighbouring information, the DSS2 remained accurate. Indeed,
the GNN architecture increased the interpolation capabilities by
incorporating the data symmetries w.r.t. the underlying graph.

G. Changes in Power Levels of Load and Renewables

This case study investigates the generalization capability of
the DSS2 (and the WLS) to changes in levels of power in

Fig. 11. Comparing RMSE for (a) voltage level and (b) line loading between
the WLS ( ) and DSS2 ( ) in the 70-bus network considering from the default
three changes in generation and load: 30% decrease in generation and 30%
increase in load, 25% increase in generation and 100% increase in load and 75%
decrease in generation and 60% increase in load.

the loads and distributed generation compared to the training
dataset. Three cases altered the power levels for the testing
dataset on the 70-bus network by:

(−30%,+30%) 30% decrease in generation, 30% increase in
load,

(+25%,+100%) 25% increase in generation, 100% increase in
load to simulate a system near overload.

(−75%,+60%) 75% decrease in generation, 60% increase in
load to simulate more voltage deviations

Note that the DSS2 model was never trained on such cases;
only default power levels were used for training.

Fig. 11 shows the results. In the case of a ‘small’ load
change (−30%,+30%), the DSS2 showed good estimation
performances with only a small increase in RMSE. However,
in the cases (+25%,+100%) and (−75%,+60%) the RMSE
significantly increased. The lines were highly loaded in the
case (+25%,+100%). Hence, the loading estimation was highly
impacted. In the case (−75%,+60%), the deviation in volt-
age was more harmful to the voltage estimation. These results
explored the limitations of the changes in loading levels that
the DSS2 model could handle. Good results were perceived for
changes in loads of around 30% showing good generalization
capability of the DSS2 model to handle state estimation tasks
under limited uncertain changes. However, the model became
sensitive when the network was extremely loaded or under strong
voltage deviations, and then, the model does not generalize well
anymore to extreme conditions.

V. DISCUSSION AND CONCLUSION

This article introduces the Deep Statistical Solver for Distribu-
tion System State Estimation. This Deep Learning architecture
incorporates the power flow equations in the loss function for
physics awareness. Our proposed DSS2 approach uses the same
objective function as the WLS, allowing to train of the model
with a noisy and poorly labelled dataset. This approach is called
weak supervision learning, and we combine it with a GNN
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architecture to enhance the learning from local patterns and
the robustness of the model. A remarkable advantage of the
DSS2 is that the larger the power network, the better the perfor-
mance. The DSS2 is based on a GNN architecture that learns
from local patterns (in the neighbourhood of buses). Hence,
the larger the network, the more local patterns the GNN-based
architecture can learn from. We consider this remarkable as
conventional power system analysis, for example, for estimating
the state, often scales poorly with network size, whereas DSS2

showed the reverse effect. Another outstanding advantage is
that through learning in the neighbourhood of buses, the DSS2

model becomes robust and invariant to changes in individual
values, such as missing, erroneous measurements. This is an
important practical advantage over other conventional methods
(and the studied supervised models) that depend on the accuracy
of individual measurements. Our different case studies show that
the DSS2 is faster, more robust, and more scalable than WLS as
DSS2 does not involve iterative algorithms and learns from local
patterns and noisy measurements. Compared to supervised mod-
els, the weakly supervised DSS2 shows equivalent speed and
voltage accuracy while outperforming the supervised models in
estimating indirect values such as line loading. We conclude that
learning from the power flow equations and the neighbourhood
are the strengths of DSS2; these incorporate a coupling between
voltage magnitudes and voltage angles to fit the measurements.
Finally, the DSS2 model does not require labels as the approach
is weakly supervised learning from the power flow equations.
This type of learning makes the DSS2 model more practical than
other ML-based approaches as labels are scarce.

Our implementation of the DSS2 has limitations. First of all,
the penalization method used in training impacts the quality of
estimation but does not ensure any guarantee of convergence dur-
ing testing. Feasible solutions cannot be guaranteed with a data-
driven method that focuses on individual accuracy. Secondly, in
our implementation of the H2MG architecture, the assumption to
modelling transformers as lines may have particularly limited the
accuracy of transformers’ loading estimation. There, the model
was ‘forced’ to learn a similar input-output mapping for lines
and transformers that may reduce the expressivity of the model.
Then, the DSS2’s estimation is impacted when the load power
level in the network varies significantly. The generalization
ability of the DSS2 showed a limit of around 30% load changes.
The changes in measurements are encouraging but should be
improved.

Future work could investigate the types of measurements
and meter placement decisions that would maximize the DSS2

performances. Adding an algorithm that detects changes in the
data could benefit quantifying the confidence of state estimations
by DSS2. Combining the DSS2 for state estimation to a state-of-
the-art anomaly detector could improve generalization. Also, an
extension to unbalanced systems is deemed possible by extend-
ing to unbalanced systems modeling and power flow equations,
and it should be investigated in the future. Then, the network’s
model in the deep learning architecture could be improved. The
proposed model is simple; however, the H2MGNN architecture
allows for advanced modelling of components that can further
increase the expressivity and performance of the DSS2. Finally,

future work should explore robustness to model inaccuracies
and implementation for distribution grids that undergo topology
changes. This can be achieved by leveraging the robustness of
GNN to graph variation. Such an implementation will further
improve the practicality, robustness, and accuracy of the model.
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