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ABSTRACT: Maintenance planning of engineering systems is often posed as a stochastic optimal control 
problem, aimed at determining a series of discrete interventions that upkeep structural integrity. 
Advanced algorithmic schemes within the joint framework of Partially Observable Markov Decision 
Processes (POMDPs) and multi-agent Deep Reinforcement Learning (DRL) have been recently able to 
approximate well global optima for this complex problem, outperforming existing time- and condition-
based decision strategies. Integral to their success is the hypothesis that system components represent 
individual agents who form cooperative policies to minimize a central life-cycle cost. Thereby, the policy 
output scales linearly with the number of components, alleviating the curse of dimensionality related to 
combinatorial choices. State complexity and long-term optimality are handled efficiently via deep 
learning and POMDP principles, respectively. However, the efficiency of multi-agent coordination can 
fade as the number of agents increases. To this end, we propose a new formulation: we pose the problem 
as a continuous-control dynamic resource allocation one, combining hierarchical DRL and mixed-integer 
programming. Moving from flat decentralized to hierarchical multi-agent decompositions allows us to 
improve further the policy output scalability. The new Adaptive Knapsack Hierarchical Resource 
Allocator (AK-HRA) DRL architecture distributes available resources within the system, creating local, 
independently solvable, multi-choice knapsack optimization problems. By design, AK-HRA allows 
decision-makers to inscribe known hierarchical structures and local decision rules in their architectures, 
thereby enhancing control and interpretability over the solution space. The efficacy of the new approach 
is demonstrated in a multi-component reliability system subject to stochastic deterioration.

1. INTRODUCTION 
Structural degradation induced by several stressors 
and hazards poses a continuous threat to structural 
safety. In view of an aging and growing built 
environment, the study of the onset, evolution, and 
control of deterioration processes, therefore, 
becomes more and more crucial. This motivated a 
significant rise of systematic decision analysis and 
optimization frameworks from the risk and 
reliability community in past decades, in an effort 
to mitigate the emerging socioeconomic impacts 
(Marseguerra et al., 2002; Faber and Stewart, 
2003; Straub and Faber, 2005; Frangopol et al., 

2012; Papakonstantinou and Shinozuka, 2014; 
Biondini and Frangopol, 2016;  Andriotis and 
Papakonstantinou, 2019; Morato et al., 2022). 

Traditional methodologies for determining 
maintenance policies for structural systems have 
largely revolved around informed constructs of 
engineering judgment, considering time- and 
condition-based decision rules. These typically 
seek to optimize intervals between actions and 
performance thresholds that, when violated, 
activate corrective or preventive interventions and 
inspection or monitoring strategies (Marseguerra 
et al., 2002; Straub and Faber, 2005; Ahmad and 
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Kamaruddin, 2012; Frangopol et al., 2012). 
Despite their interpretability merits due to 
straightforward static optimization statements and 
respective computational workflows, time- and 
threshold-based methods can manifest optimality 
and scalability issues as we increase the 
complexity of the studied system.  

A solution to such limitations comes from the 
family of stochastic optimal control and 
(approximate) dynamic programming methods. In 
(Ellis et al., 1995; Corotis et al., 2005) a Partially 
Observable Markov Decision Process (POMDP) 
was proposed to solve nonstationary stochastic 
inspection and maintenance of deteriorating 
systems. POMDPs accommodate joint inference 
and control, by handling noisy observations and 
actions in a common Bayesian framework. The 
main burden in incorporating POMDPs had 
traditionally been the complexity to solve them. To 
this end, in (Papakonstantinou and Shinozuka, 
2014; Memarzadeh et al., 2015; Papakonstantinou 
et al., 2018), the problem was formulated within 
point-based value iteration, which allowed 
POMDPs to scale in inspection and maintenance 
applications with hundreds of states, actions, and 
observations. A few years later, in (Andriotis and 
Papakonstantinou, 2019; 2021), the development 
of multi-agent actor-critic deep reinforcement 
learning algorithmic formulations for this POMDP 
problem, allowed us to trace so far intractable 
solutions in deteriorating engineering systems with 
hundreds of components and combinatorically 
explosive state, action, and observation spaces. 
Single-agent DRL formulations have also 
demonstrated important potential when limited 
intervention actions are involved, employing deep 
Q-network architectures (Rocchetta et al., 2019; 
Zhang and Si, 2020). 

Decentralized multi-agent actor-critic DRL 
formulations have been proven to be particularly 
efficient when dealing with multi-component 
environments, as they allow for linear scaling of 
system-level decisions with the number of 
involved components, under the assumption that 
the latter are controlled by individual agents who 
try to optimize a common function within the 

principles of centralized training / decentralized 
execution (Andriotis and Papakonstantinou, 2019, 
2021; Saifullah et al., 2022, Morato et al., 2023). 
The next big challenge is to scale up in systems 
with a massive number of components, e.g. in the 
order of thousands, with limited optimality losses. 
In such environments, coordination of multiple 
discrete agents can become hard, whereas the 
presence complex and noisy spaces calls for 
exploiting any available prior knowledge of 
topological and statistical structures of the system 
at hand, in order to improve the learning and 
interpretability properties of the employed 
algorithmic decision-making architectures.  

To address this need, we present a novel 
formulation within hierarchical DRL, a structured 
framework for intelligent sequential decision-
making relying on decomposing complex tasks 
into multiple, consecutive, simpler subproblems 
(Kulkarni et al., 2016). In (Zhou et al., 2022), the 
hierarchies are applied for maintenance planning 
according to known component importance, 
whereas in (Botteghi et al., 2022) they are used for 
autonomous navigation of robots in pipe 
inspection. Following successful off-policy actor-
critic training principles from (Andriotis and 
Papakonstantinou, 2019, 2021) we herein develop 
a hierarchical DRL framework based on a new 
mathematical statement: we bring the problem in a 
continuous-control dynamic resource allocation 
form and introduce the Adaptive Knapsack 
Hierarchical Resource Allocator (AK-HRA) DRL 
architecture to solve it. AK-HRA consists of 
hierarchical actors. Upstream actors distribute the 
resources to be used by downstream actors, thus 
eventually a structured flow of resources from 
system-, to subsystem- to component-level is 
sought. At the ultimate hierarchical layer lies a 
number of 'leaf' subproblems determining the 
discrete action selection. These are solved as multi-
choice knapsack problems, whose knapsack size is 
governed by the upstream DRL outputs. 
Implementation details of AK-HRA are discussed 
and its performance is assessed in a structural 
integrity management problem of a degrading 
system that allows for thorough evaluation. 
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2. BACKGROUND 
In DRL-driven structural integrity management 
optimization, we aim to determine an optimal 
mapping from the system belief over deterioration 
/damage states to the corresponding intervention 
and information actions throughout a planning 
horizon. Typically, the agent starts by exploring 
the environment randomly, far from the optimal 
region. As the training goes on, the agent 
accumulates knowledge about the environment by 
receiving noisy observations, ot ϵ Ω, of its state, st 
ϵ S, at different time steps, t, taking actions, at ϵ A, 
and collecting costs, ct ϵ C. The agent cannot 
observe st accurately, therefore, the formed policy 
is at best a mapping from the history h=(a0:t-1,o0:t) 
to the current action, at. When the transition and 
observation models are known or computable 
offline, which is not uncommon for deterioration 
models of engineering systems, we can form a 
sufficient statistic of h, which is belief, bt. The 
mapping from beliefs to actions is generally 
stochastic and the sought policy is π=Pr(at | bt). 

Throughout training, π is refined and updated to 
determine the optimal policy π* within a region of 
feasible policies Πc, defined by the stochastic 
and/or deterministic constraints of the optimization 
problem (Andriotis and Papakonstantinou, 2021):
 

 *
0: 0: 1 0

Π 0

arg min ~ , ,


   
 

 
  

 


c

T
t

t t t t
t

c a o a b │   (1) 

where γ is a positive discount factor lower than 1.0 
translating future costs to the current value. 

After each decision step, belief bt, which is 
essentially a probabilistic distribution over the 
possible states, is computed via Bayesian updates. 
Following standard POMDP assumptions Eq. (1) 
can be written as: 

 

            *
0

Π
arg min 







c

V b     (2) 

where Vπ is the value function, representing the 
cumulative costs until termination of the planning 
horizon, t=T. 

In an off-policy actor-critic DRL setting, the 
policy and the value functions are parametrized by  

actor and critic neural networks, respectively. For 
the actor the (policy) gradient is: 

      log | , ( , )
      t t tt tg b b aaw A        (3) 

where θ is the actor neural network weights vector, 
wt is an importance sampling weight, and Aπ is the 
advantage function. The expectation in Eq. (3) is 
approximated by randomly sampling a replay 
buffer (Andriotis and Papakonstantinou, 2019). 
The advantage function used takes the form:  

1( , ) ( , ) ( | ) ( | )      t t t t t tA b a c b a V b V b  (4) 

where φ is the critic neural network weights vector. 
The corresponding gradients are calculated using 
the mean squared error as a loss function:  

            ( ) ( , ) 
    t t t tg b aVw A b             (5) 

In the next section the specific form and 
parametrization of the policy function for the AK-
HRA architecture is presented and discussed.  

3. HIERARCHICAL RESOURCE ALLOCATOR  
3.1. Problem decomposition & parametrization 
Hierarchical reinforcement learning relies on 
constraining lower-hierarchy decision spaces by 
higher-hierarchy ones in a nested fashion, thereby 
creating simpler local policy subspaces (Florensa 
et al., 2017). Building on this principle, we 
introduce a novel Adaptive Knapsack Hierarchical 
Resource Allocator (AK-HRA) DRL architecture 
to determine optimal intervention policies for 
engineering systems. AK-HRA DRL seeks to 
solve a continuous-control resource allocation 
problem. Structural integrity management is 
fundamentally a dynamic resource allocation 
problem and, if formulated as such, the task that 
DRL agents undertake is to distribute optimally a 
given resource, such as budget, over time. This 
allocation is here not done directly from system-to-
component, but is supported by a hierarchical 
structure that mimics the system structure, and 
leverages known locally optimal responses. 
Thereby , it  distributes  resources  gradually  from 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Decision layers for hierarchical resource 
allocation problem decomposition. 
 
system, to subsystems, up to components level.  

The concept forming the basis of the AK-HRA 
decompositions is illustrated in Fig. 1, where, 
without loss of generality, the resources are 
streamed into three levels (system, subsystem, and 
component). Each rhombus represents a 
distribution node, that controls the flow of 
resources streamed down to lower hierarchical 
levels. Accordingly, the optimal policy, π, is the 
one that optimizes the division of resources as we 
traverse the hierarchical structure from left to right. 
At the core of this architecture lies the hypothesis 
that, however complex a structural management 
policy is, it can be decomposed into simple 
resource allocation decisions. Synthesizing back 
these decision primitives, we can capture global 
policies of increased sophistication.  

The distribution branches are modeled as 
Dirichlet distributions (Gammelli et al., 2021; Tian 
et. al, 2022), which provide a consistent form for 
continuous allocation applications: 
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where d=1,2,…,D is the distribution node index; 
yd,t is the Kd-dimensional output of the Dirichlet; 
αd,t is the vector of concentration parameters; and 
B is a multivariate Beta function, expressed as a 
function of the Gamma function, Γ:  
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Eqs. (6),(7) are used for each one of the rhombus 
nodes of Fig. 1. As such, consecutive decision 
layers are designed to allocate resources to the 
entire system, subsystems, and components in a 
nested sequential manner. The joint policy, π=πHRA, 
for N decision hierarchies can be expressed as:  

       1: 1
, ,

1 1

( | , , )  

 


iDN

i i i
HRA d d t d t t i

i d

y b y      (8) 

Substituting Eq. (8) in Eq. (3), we obtain the 
gradients of the actors controlling the different 
decision hierarchies. In DRL terms, the actors 
learn the mapping between their belief and the 
Dirichlet distributions concentration parameters. 
Finally, the developed formulation seamlessly 
incorporates constraints in the same fashion as in 
(Andriotis and Papakonstantinou, 2021).  

3.2. Multi-choice knapsack subproblems 
The nested hierarchical decomposition of the 
original problem shown in Fig. 1, results in a 
number of simple and parallelizable ‘leaf’ 
subproblems at the lowest-level hierarchy. To 
prevent generation of branches in systems with 
large number of components, the stopping depth of 
the hierarchical structure is herein chosen to be 
before the component level is reached, i.e. at the 
2nd hierarchy. Then, we form the resource 
allocation among subsystem components as a 
multi-choice knapsack optimization problem. This 
allows us to further reduce DRL parametrization 
and outputs, thus making training more efficient. 

SYSTEM 

SUBSYSTEM 

COMPONENT 

resource  
dispatch subsystem  

allocation 
component 
allocation 

1st hierarchy 

2nd hierarchy 

3rd hierarchy 

resource  
supply 
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As such, the task of the AK-HRA agents is to 
define the sizes of the knapsack problems in an 
adaptive manner at every decision step. The multi-
choice knapsack objective for the leaf problems is 
to maximize the cumulative risk improvement 
given a set of discrete maintenance actions and a 
DRL-prescribed budget constraint.  

Overall, the final architecture constructs 
independent and parallelizable knapsack problems 
by passing the system resources across two 
hierarchies. The first hierarchy is responsible for 
deciding the budget to spend for the whole system. 
Conditioned on the system belief, the fraction of 
the budget to be spent is decided (the rest is set 
aside as shown by the unconnected branch of the 
1st hierarchy in Fig. 1). This decision is passed on 
to the input layer of the 2nd hierarchy, which 
distributes the budget among the different 
subsystems. Finally, the 3rd hierarchical allocation 
is conducted by solving a knapsack problem for 
each subsystem, based on the local budget. The 
solution to this problem is approximated by risk 
reduction per unit cost ranking. Based on the 
finally chosen actions, the costs, advantages, and 
gradients are computed to update π and Vπ.  

4. APPLICATION 

The partially observable deteriorating system 
introduced in (Andriotis and Papakonstantinou, 
2021) and shown in Fig. 2 is adopted here to 
evaluate the developed architecture. The aim is to 
determine a near-optimal maintenance schedule 
over a 30-year planning horizon. The features 
adapted and added for the current set-up are:  
 The expected risk, corresponding to network 

closure due to component failures, should not 
exceed a probability of 3% in 30 years. 

 Three maintenance actions are available: do 
nothing, partial repair, and replace. Do nothing 
has no effect on deterioration, partial repair 
improves component’s state by one, and  
replace restarts the deterioration process. 
Inspections are conducted every year. 

 A maintenance crew mobilization cost is added 
on top of individual maintenance costs every 
time at least one non-do-nothing action is taken 

 
 

 
 
 
 
 
 
 
 

Figure 2: 10-component system with three classes of 
deterioration severity. 
 
system-wide (15% of replacing a component). 

In this application three decision hierarchies are 
considered, one at the entire network level 
(system), one at the link level (subsystem), and one 
at the component level. The actor networks consist 
of two DRL levels, each including two fully 
connected hidden layers with 100 ReLU activation 
functions. No weights are shared among different 
hierarchical layers. The first and second 
hierarchical layers output a 2- and 4-dimensional 
softplus outputs, respectively, allocating a 
gradually decreasing budget supply throughout the 
training. The critic network has two fully 
connected layers with 150 ReLU activations each, 
and outputs a 1-demensioal linear output, which is 
a surrogate of the 30-year expected maintenance 
cost, i.e. the value function. Both networks use the 
Adam optimizer to update functions, with learning 
rates  adjusted  from  1E-5  to  1E-6,  and  1E-4  to  

 

 
Figure 3: Training performance of AK-HRA algorithm 
and comparison with baseline policies. 

Class III 

A 

B 

10 

8 
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Figure 4: Policy features at the system-level: Budget 
dispatch (top); PoF evolution (bottom). 
 
1E-5 for the actor and critic, respectively.  

For evaluating performance, the developed AK-
HRA architecture is compared to condition- and 
time-based optimized heuristics, as well as the 
Decentralized Multi-agent Actor Critic (DDMAC) 
baseline. Multiple DRL instances are trained, each 
of which for 500K episodes and the best 5 are 
reported for each type. The total maintenance 
policy costs during training are presented  in Fig. 
3. It is shown that AK-HRA surpasses the time- 
and condition-based baselines after ~250K training 
life-cycle realizations, eventually reaching policies 
improved by ~25%, comparing the expected cost 
of the policy retrieved from the converged agents, 
under 10K realizations. The 30-year risk constraint 
was observed to be stably met from early training 
stages (~50K episodes). AK-HRA compares well 
with the flat decentralized DDMAC architecture. 
Observing the mean training curves, AK-HRA is 
~8% better, whereas the best AK-HRA reaches 
~110-75% of the expected life-cycle cost of the 
best and worst DDMAC, respectively, under 10K 
realizations. Importantly, this is achieved with 6 
outputs, instead of 30 in the decentralized case. 

To visualize the dynamics of the trained policy 
on a temporal scale, Fig. 4 shows the risk evolution 
over time during the planning horizon for three 
realizations accompanied by the corresponding 
dispatched budget (as a ratio of the total supply), 
as predicted by the first hierarchical Dirichlet 
layer.  Naturally, at the beginning of the life-cycle,  

 

 
 

Figure 5: Policy features at the subsystems-level: 
Budget allocation (top); PoF evolution (bottom). 
 
components are let to deteriorate with less control 
actions. Maintenance interventions slow down the 
risk evolution,  as observed at the marked points of 
Fig. 4, and correspond to spikes in the dispatched 
budget. We observe that the dispatched budget 
remains mostly relatively low (i.e., lower than 
~0.1), which corresponds to none or minor 
interventions, except for sparser spikes, which 
indicate moments of major intervention needs, 
involving simultaneous maintenance across the 
system. The preference to rare simultaneous 
actions is explained by the agents attempt to 
eliminate unnecessary mobilization costs. 
Naturally, the spikes have visible effects in the 
slope of the risk evolution curves throughout the 
planning horizon. Overall, the devised adaptive 
intervention schedule manages to keep the 
expected risk within the prescribed Probability of 
Failure (PoF) threshold over the planning horizon.  

Focusing on the subsystem hierarchical layers, 
it is observed that the Dirichlet-allocated budget 
and the respective PoF dynamics depend on the 
mixture of deterioration classes and number of 
components of the subsystem (i.e., link). For 
instance, link #4 has two components that belong 
to the severe deterioration class, resulting in higher 
allocated resources and PoF, as seen in Fig. 5 (incl. 
the 95% confidence intervals). The subsystem 
allocation hierarchy essentially allows the 
algorithm to weigh the relative importance of a link 
to the budget (simpler than assigning actions).  As 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 
Dublin, Ireland, July 9-13, 2023 

 7 

 

 

 

 

 
 
 

seen in Fig. 5, from high to low importance, the 
links’ order is #4,2,1,3. An interesting dynamic is 
observed for links #1,4. Link #1 is let to degrade 
faster than its counterparts. This link consists of 3 
components, one high- and two low-severity ones, 
and is the safest link of the least reliable path from 
A to B (links #1,4). Thus, for as long as link #4 PoF 
is higher, there is little incentive to upkeep link #1.   

Fig. 6 focuses on the component level, where 
the actual maintenance actions are chosen, 
highlighting an indicative realization and 
corresponding statistics of component PoF 
(following realization #2 from Fig. 4). Three 
characteristic components of each class are shown. 
In realization time, fluctuations come from the 
noisy observations, which trigger changes in prior 
beliefs. For instance, state 4 is observed for 
component 8 (severest deterioration class) at step 
7, resulting in a major increase of the perceived 
risk. However, subsequent observations, updating 
the belief further, confirm that the component is 
deteriorating at a steady rate and no intervention is, 
therefore, imposed. Partial repair actions are taken 
at later stages to reduce increased deterioration. On 
the contrary, no intervention is needed for 
component 2 (low-severity class) due to its 
relatively low probability of failure over the 
planning horizon. Similarly, component 10 
(medium deterioration class) is maintained only 
due to failure. Overall, the schedule remains robust 
to jumps in risk estimates, and the agents tend to 
postpone maintenance interventions to leverage 
discounted costs and new state observations. 

5. CONCLUSIONS 
We introduce a new formulation for structural 
integrity  management  optimization,  articulating  

 
 
 
 
 
 
 
 
 
 

the problem as a continuous-control dynamic 
resource allocation one. To facilitate allocation 
from the global system-level to the local 
component-level, we devise hierarchical decision 
layers leveraging prior knowledge of the system 
structure. To solve the resulting problem, we 
propose a novel Adaptive Knapsack Hierarchical 
Resource Allocator (AK-HRA) DRL architecture, 
which consists of hierarchical actors that control 
the flow of resources across the different decision 
layers. Upstream actors dispatch and distribute the 
resources to be used by downstream ones, thus 
streamlining resources from system to subsystem 
to component level in a principled manner. By 
traversing the formed hierarchies, the global 
decision is shaped along the way, whereas the 
problem is ultimately broken down into a number 
of independent and parallelizable multi-choice 
knapsack problems that determine the actions for 
each component. AK-HRA DRL is implemented 
in a maintenance planning problem of a 
deteriorating system under risk constraints, where 
it is shown to outperform traditional baselines, and 
to reach competitive alternative optima to state-of-
the-art multi-agent formulations based on flat 
decentralization. Further, the new formulation 
allows us to considerably reduce the policy output, 
while also bringing interpretability advances. 
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