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Who’s Got My Back? Measuring the Adoption of an
Internet-wide BGP RTBH Service
RADU ANGHEL, Delft University of Technology, The Netherlands
YURY ZHAUNIAROVICH, Delft University of Technology, The Netherlands
CARLOS GAÑÁN, Delft University of Technology, The Netherlands

Distributed Denial-of-Service (DDoS) attacks continue to threaten the availability of Internet-based services.
While countermeasures exist to decrease the impact of these attacks, not all operators have the resources or
knowledge to deploy them. Alternatively, anti-DDoS services such as DDoS clearing houses and blackholing
have emerged. Unwanted Traffic Removal Service (UTRS), being one of the oldest community-based anti-DDoS
services, has become a global free collaborative service that aims at mitigating major DDoS attacks through
the Border Gateway Protocol (BGP). Once the BGP session with UTRS is established, UTRS members can
advertise part of the prefixes belonging to their AS to UTRS. UTRS will forward them to all other participants,
who, in turn, should start blocking traffic to the advertised IP addresses.

In this paper, we develop and evaluate a methodology to automatically detect UTRS participation in the
wild. To this end, we deploy a measurement infrastructure and devise a methodology to detect UTRS-based
traffic blocking. Using this methodology, we conducted a longitudinal analysis of UTRS participants over ten
weeks. Our results show that at any point in time, there were 562 participants, including multihomed, stub,
transit, and IXP ASes. Moreover, we surveyed 245 network operators to understand why they would (not) join
UTRS. Results show that threat and coping appraisal significantly influence the intention to participate in
UTRS.

CCS Concepts: • Security and privacy→ Denial-of-service attacks; Security services; • Networks→
Network measurement.
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1 INTRODUCTION
As the intensity, capacity, and duration of Denial of Service (DoS) attacks increase, network operators
constantly look for countermeasures [26]. There are many DDoS mitigation methods, each having
different levels of complexity, cost, and efficiency [49, 50]. The most common are blackholing,
clean pipe, content delivery networks (CDN) attack dilution, and antiDDoS proxy. While antiDDoS
proxy and CDN attack dilution methods are widespread for specific applications (e.g., TCP- or
UDP-based), clean pipe and blackholing are the only ones that work for all application types. Given
that clean pipe increases the loading times (latency) and is complex to deploy, blackholing is more
popular among network operators [13].
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With blackholing, all traffic, covering both legitimate and attack packets, is sent into a black
hole, or null route. In this context, Remotely Triggered Black Hole (RTBH) emerges as a commonly
used technique that provides the ability to dynamically announce attack destinations for which
undesirable traffic should be dropped before it enters a protected network [50]. At its core, RTBH
leverages the Border Gateway Protocol (BGP) to reroute attack traffic to places that minimize harm,
which usually entails dropping the traffic.

When only one network operator removes incoming DDoS traffic, the attack is only partially
mitigated and the garbage traffic continues to impact network operators as it traverses the Internet.
This reduces their bandwidth and affects their customers. At the same time, if multiple network
operators collaborate, the attack may be stopped closer to its source, and more of the path it would
have taken is protected. To facilitate this collaboration at no cost, Unwanted Traffic Removal Service
(UTRS) was launched as a free RTBH solution in 2014. This service allows its members to announce
some IP addresses they own, the traffic to which should be dropped. To the best of our knowledge,
UTRS is currently the only global free-to-participate RTBH initiative, so network operators who do
not have access to ISPs offering RTBH or do not want to incur additional costs can still participate
in it, and get yet another anti-DDoS tool in their arsenal.
Unfortunately, this collaborative RTBH suffers from network effects [4], i.e., the effectiveness

of the blackholing increases as more network operators work together. Therefore, it becomes
essential to know how many network operators participate in UTRS, who they are, and what their
characteristics are in order to be able to evaluate how effective it is. This information allows for
a comprehensive assessment of the collaborative effort’s impact on DDoS attack mitigation. By
understanding how many network operators are actively engaged in RBTH and who they are,
researchers and practitioners can gauge the scope and reach of the system. Moreover, gaining
insights into the characteristics of participating network operators is crucial for evaluating the
overall effectiveness of RBTH. Factors such as their geographical distribution, network infrastructure
capabilities, and experience in handling DDoS attacks can significantly influence the collective
response to threats. This knowledge empowers network operators to make informed decisions
about joining the RBTH service.

Therefore, the main research question that we set out is: How can we identify network operators
that are actively UTRS participants? In this work, we answer this question and characterize UTRS
participants by looking at factors like network type, and the institutional environment of the
country where the network operator is located. In addition to that, we ran a large-scale survey
study among network operators to identify the determinants that lead them to participate in UTRS.
Thus, the contributions of this paper are the following:
• We present the first experimental design to identify UTRS participants based on large-scale

measurements.
• We perform a longitudinal analysis over a 10-week period identifying at least 562 UTRS

members (conservative estimation) that actively participate in the service. We characterize
these operators based on their network size, type and operational region.

• We compare the results of our measurements with the results collected using RIPE Atlas
probes. This helps us to validate the main measurement methodology.

• We conduct a large-scale online survey across members and non-members of UTRS to validate
the results of the active measurements. We received 245 valid responses from both UTRS
participants and non-participants. Out of them, 58 out of 59 ASes (98%), who were identified
by our approach as UTRS participants, have confirmed their participation in UTRS.

• We identify the behavioral determinants driving UTRS participation using Protection Motiva-
tion Theory (PMT). Our results show that perceived vulnerability, perceived severity, response
efficacy, response cost, as well as social norms, influence the intention to participate in UTRS.
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2 BACKGROUND
BGP [37] is a path-vector routing protocol responsible for ensuring the interconnectivity of ASes
(also referred to as ASNs - AS Numbers) over the Internet by exchanging information about external
routing. In simple terms, BGP is a mechanism that is used to transport information about available
traffic routes from one section of the Internet to another. The intricacy of connections, rules, and
economics spurred the need for similarly sophisticated and fine-grained routing strategies as the
Internet expanded.

One such BGP extension defines RTBH. RTBH is one of the oldest methods used to mitigate DDoS
attacks, first documented in 2004 [44]. The RTBH works by using a previous arrangement between
the victim ISP and the upstream ISPs, peers, or Internet eXchanges (IX). The victim’s ISP, using BGP,
advertises the IP under attack, sometimes also using a previously agreed BGP community to its
upstreams, peers, or IX route servers. Upon receiving such an announcement, they start discarding
packets to that destination (null route, blackhole). This action has the effect of blocking all traffic
toward the victim’s IP, which also completes the attack because the victim is deemed offline.

Granular control over what is blocked can be achieved by using the FlowSpec format [31]. This
format allows specifying fine-grained rules similar to ACL/firewall ones. These rules allow peers
to perform more selective blocking of the traffic. For instance, in case of a reflection DDoS attack
using NTP, the AS can ask to block only traffic coming from source port 123 (UDP/NTP) to the
attacked host.

UTRS is a community project of Team Cymru [40]. Simply put, UTRS is an RTBH operated by a
trusted third party. Any AS can become a UTRS member and use the service to announce IPs, the
traffic to which should be blocked. Figure 1 explains this process. During Step 1, a UTRS member
announces an IP to UTRS. Members can announce networks under their control up to /25 and
/49 size for IPv4 and IPv6 correspondingly. During Step 2, UTRS distributes these announcements
among all the members. UTRS also supports BGP FlowSpec [31]. These announcements through
UTRS reach all members, i.e., they all receive information about which IPs should be blackholed.
However, UTRS does not force the members to do that. Thus, it is possible that some UTRS
members do receive the announcements but do not block the corresponding IP addresses. We
call the UTRS members that actively block the traffic to the announced IPs Active UTRS Members.
Note the collaboration within UTRS allows stopping the DDoS traffic closer to its source [28, 40];
thus, preventing it not only from reaching the destination network but also from congesting the
networks on the path to the victim.

3 OVERVIEW
3.1 System Setup
Figure 1 presents a high-level overview of our testbed. To perform our measurements, we used an
Autonomous System (Test AS) and a /24 IPv4 range under our control. The Test AS participates in
UTRS, but for measurement purposes, it does not actively block packets. UTRS validates authority
over the AS by getting confirmation from registered contacts in the RIR (Regional Internet Registry)
database for that AS. Further verification is performed automatically by the system when routes
are sent to UTRS: the IP(s) must be registered to the participating AS in order to be accepted and
propagated to the other participants.
We assigned three IPv4 addresses from the /24 in our Test AS to a virtual machine (VM):

A(nother), B(locked) and C(ontrol). We use the A(nother) IP (A-IP) to identify pingable IPv4
addresses in each AS visible in the Global Routing Table. We use a separate IP address for scanning
to minimize the effects of potential automatic blockings. The B(locked) IP (B-IP) is the one that
we have announced to UTRS for blackholing. In theory, the other participating AS should block
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Fig. 1. UTRS Announcement and System setup

traffic to this IP address after receiving the announcement. The last C(ontrol) IP address (C-IP) is
used for control purposes to confirm the connectivity between the Test AS and the tested AS.

3.2 Measurement Methodology
Figure 2 outlines the methodology we used in this paper to identify ASNs actively participating in
UTRS. For the sake of clarity, in this work, we call ASNs discovered using our approach as Detected
Active UTRS Participants (or UTRS Participants for short) in order to distinguish them from the
UTRS Members (actual members of UTRS). Note that there are no checks or penalties for a UTRS
member for not blocking the traffic to the announced IP. It is possible that some participating ASNs
are only receiving the UTRS-related route updates but do not block traffic to those IPs (e.g., our
Test AS is a UTRS member but is not an active UTRS participant – it does not blackhole announced
IPs). Unfortunately, our approach is not able to detect such cases. Instead, we identify only ASes
actively participating in UTRS, i.e., the ones that perform blackholing. Hereafter, we describe each
step of our approach in detail.

Announce B-IP to
UTRS

Identify a Pingable
IP in each AS

Compare Ping
Results from B-IP

and C-IP

Traceroute IPs that
are not reachable

from B-IP

Prune the Data
using

Traceroutes

Ping Pingable IPs
from B-IP and

C-IP1 2 3 4 5 6

Fig. 2. UTRS participants identification methodology

Step 1: Announcing B-IP to UTRS. Before launching an experiment, we announce B-IP to UTRS.
The B-IP is announced only once before the start of the measurements and withdrawn when they
are done, so Route Flap Dampening [48] is not affecting the measurements. As a result, all networks
of ASes participating in UTRS should start blocking traffic to this IP.
Step 2: Identifying a Pingable IP in each AS. During the second step, we look for a pingable IP
address in every AS that we use in our further measurements. From the latest Routing Information
Base (RIB) available at the University of Oregon’s RouteViews project [45], we gather a list of
maximum 10 prefixes for each AS visible in the Global Routing Table. Then, using the ZMap’s [16]
icmp_echoscan module, we randomly ping IPs in these networks, stopping when a pingable IP is
found. For this scan, we use A-IP as a source to reduce negative effects on our further measurements
(e.g., some network firewalls may start blocking our A-IP after some threshold is reached, but this
should not affect measurements from B-IP and C-IP). As a result, we get a list of the ASNs and
the corresponding pingable IP addresses. Note that we use our own ZMap scan results instead of
Censys [15] or USC ISI [17] hitlists because, for our measurements, it is crucial to have the freshest
possible data, that would still require us to ping the IPs from these lists.
Step 3: Pinging IPs identified in Step 1 from B-IP and C-IP. We ping each IP address identified
in the previous step from B-IP and C-IP. We chose to use ICMP due to its high simplicity and
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reachability, with a 98.8% success rate compared to 88.7% for TCP and only 14.3% for UDP, as
found by Bano et al. [8]. Note that at Step 1, B-IP has been announced to UTRS. Because of this, all
traffic to B-IP, including ICMP echo replies, must be blocked by active UTRS members. Thus, our
B-IP node will not receive ICMP echo replies from IP addresses belonging to networks actively
participating in UTRS. Additionally, B-IP will not receive replies if the traffic to it passes through a
network of an active UTRS member.
C-IP is not announced to UTRS. Thus, all the traffic to this IP should not be blocked by UTRS

members so that we will get ICMP echo replies. For instance, in Figure 1, we should get ICMP echo
replies from pingable IP addresses in the AS2, AS3, AS4, AS6, and AS7 networks if we ping them
from the C-IP source but will not receive anything when pinging them from B-IP.
We ping IPs from B-IP and C-IP almost simultaneously: right after pinging from the B-IP node,

we launch another ping from C-IP. It is highly unlikely that our whole Test AS network would be
blocked by a firewall or an Intrusion Detection System (IDS) in such a short time. Moreover, to
each pingable IP address, we send three packets from B-IP and C-IP. Such a low number should not
result in blocking our network as well.
Step 4: Comparing Ping Results from B-IP and C-IP. At this step, we compare the replies
collected from each ping at the previous step. There are four possible outcomes:
Case BCxx (#𝑃𝑘𝑡𝐵−𝐼𝑃 > 0, #𝑃𝑘𝑡𝐶−𝐼𝑃 > 0): Pings from both B-IP and C-IP to the pingable IP ad-

dress get replies. We consider the corresponding AS as one that does not participate in UTRS.
Case BC0x (#𝑃𝑘𝑡𝐵−𝐼𝑃 = 0, #𝑃𝑘𝑡𝐶−𝐼𝑃 > 0): Pings from C-IP receive a reply, while those sourced

from B-IP do not. We consider the corresponding AS as affiliated with UTRS (the AS can be
either an active UTRS participant or routes to it pass through a network of an active UTRS
participant).

Case BCx0 (#𝑃𝑘𝑡𝐵−𝐼𝑃 > 0,#𝑃𝑘𝑡𝐶−𝐼𝑃 = 0): Pings from B-IP receive a reply, while from C-IP do not.
Ideally, this should not happen, but we observe such cases. Their presence can be explained by
connectivity issues, ICMP rate-limiting, and multipath routing (packets take different routes
from/to the destination: one blocks, while another does not).

Case BC00 (#𝑃𝑘𝑡𝐵−𝐼𝑃 = 0,#𝑃𝑘𝑡𝐶−𝐼𝑃 = 0): Pings from both B-IP and C-IP do not receive replies.
This result is unexpected as we have got a reply to A-IP before. However, this may be caused
by several reasons. For instance, this could be due to the connectivity problem with/for the
corresponding AS, ICMP rate-limiting, or a firewall blocking packets.

Step 5: Traceroute IPs not reachable from B-IP.We consider the ASes from Case BC0x, identified
during the previous step, as active UTRS participant candidates: the traffic from this candidate AS
to the IP announced to UTRS (B-IP) is blocked. This can happen for two reasons: either the AS
actively participates in UTRS itself, or the traffic to it passes through a network of an active UTRS
member. For instance, in Figure 1, AS2, AS4 and AS6 are active UTRS members, while AS7 is not.
However, the traffic to AS7 passes through the network of AS4, which performs the blackholing.
Therefore, from our Test AS point of view, AS7 is also considered as the AS participating in UTRS.
AS3 is a particular case. The traffic to it passes through ASes participating in UTRS, but itself, it is
also an active UTRS participant.

To determine which candidate ASes are active UTRS participants, we rely on the traceroutes to
the pingable IP addresses corresponding to the ASes potentially participating in UTRS. Our initial
intuition was the following. If a candidate AS is an active UTRS participant, then the traceroute
sourced from B-IP to a pingable IP would stop at a router that belongs to this AS. Therefore,
comparing the traceroutes from B-IP and C-IP to the pingable IP, we should be able to distinguish
active UTRS participants from the upstream blocking ASes. Unfortunately, the initial analysis of
the collected data using the method described in the previous step showed the impracticability of
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our naïve approach. There are several issues with it. First, traceroutes from B-IP and C-IP, even
being launched at the same exact moment may go forward through different paths, for instance, in
the case of Equal-Cost Multipath (rfc2992) [23]. Second, the backward path of a reply from a router
may not be the same as the forward path of the corresponding request. A reply may go through a
network participating in UTRS, thus, forcing us to falsely mark the router’s AS as participating in
UTRS. These peculiarities make our naïve approach unusable.
Step 6: Prune the Data using Traceroutes. To overcome these limitations of the naïve approach
described in the previous step, we have developed a new probabilistic graph-based approach for
detecting the ASes participating in UTRS. Our approach relies only on the traceroutes collected
from non-blocked C-IP and ping data from B-IP and C-IP. It takes into consideration all traceroute
measurements from C-IP simultaneously and combines them with the information obtained at
Step 3. This provides a broader view of the relationships between the ASes, allowing us to better
filter out the ASes not participating in UTRS, however, making our approach probabilistic. In the
following section, we consider our algorithm in detail.

3.3 Data Pruning Algorithm
The data pruning process consists of two phases. During the first phase, we build a directed graph
representing Path of transited ASes. During the second phase, we analyze each node in the graph,
selecting those who, with high probability, are active UTRS participants.
Phase 1: Bulding the Graph of Transited ASes. This phase includes several stages. First, we
take the candidate list of active UTRS participants obtained at Step 4 and the traceroutes from
C-IP to the pingable IPs in these ASes. During the second stage, we analyze each traceroute to
a pingable IP. In particular, we take the IP address of each hop in a traceroute and map it to the
corresponding AS number (ASN). For this data enrichment, we use the pyasn [21] Python library
with the latest route information database from the RouteViews project [45] available at the time
of measurement. If pyasn cannot detect the ASN (e.g., if the IP is in a private or not announced
network - Internet Exchange ranges are usually not announced to the Internet to protect them
from attacks), we ignore these nodes. Thus, we obtain a sequence of ASNs representing a path
from our Test AS to the ASN corresponding to the pingable IP. During the third stage, we remove
multiple occurrences of the same ASN (in this case, the sequence represents several consecutive
routers belonging to the same AS), i.e., self-loops in the graph.

Then, we add the nodes from a sequence to our graph. If a node is in our candidate list of active
UTRS participants obtained at Step 4, we mark it as blocking, otherwise, we mark it as non-blocking.
In Figure 1, blocking nodes are red (AS2, AS3, AS4, AS6 and AS7), while non-blocking (AS1 and AS5)
are blue. The green node, Test AS, is our autonomous system. It is considered non-blocking in
further analysis. The AS graph in Figure 1 resembles the data-plane view from the Test AS to the
tested ASes representing the paths the packets actually take to travel to their destinations.
Phase 2: Nodes Analysis. During the second phase, we analyze each node in the graph and its
predecessors. Algorithm 1 provides the pseudocode of the graph analysis algorithm.

We iterate over each node in the graph (Line 3) and analyze whether it is blocking or non-blocking.
If the node is blocking (Line 5), then we check if any of the node’s predecessors is non-blocking (see
Line 6). If this is the case, we add this node to the set of active UTRS participants. In Figure 1, AS2,
AS4 and AS6 belong to this set. Note that we can make this conclusion with a very high probability.
If all predecessors are blocking (e.g., AS3 or AS7), then we cannot make such a conclusion: the
corresponding AS may be an active UTRS participant (AS3) but may also block the traffic due to
upstream blocking nodes (AS7). Thus, AS3 is a False Negative.
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Algorithm 1: Graph analysis algorithm
In :𝐺 - AS path graph built at Stage 1
Out :𝑢𝑡𝑟𝑠_𝑝𝑡𝑐𝑝𝑛𝑡𝑠 - a set of ASNs corresponding to active UTRS participants,

𝑜𝑑𝑑_𝑎𝑠𝑛𝑠 - a set of ASNs corresponding to Odd ASes
1 𝑢𝑡𝑟𝑠_𝑝𝑡𝑐𝑝𝑛𝑡𝑠 ← ∅;
2 𝑜𝑑𝑑_𝑎𝑠𝑛𝑠 ← ∅;
3 for 𝑛𝑜𝑑𝑒 in𝐺 do
4 𝑝𝑑𝑠 ← 𝐺.predecessors(node);
5 if blocking(node) then
6 if any(! blocking(pds)) then
7 𝑢𝑡𝑟𝑠_𝑝𝑡𝑐𝑝𝑛𝑡𝑠.add(node);
8 end
9 else
10 if all(blocking(pds)) then
11 𝑜𝑑𝑑_𝑎𝑠𝑛𝑠.add(node);
12 end
13 end
14 end

If a node is non-blocking (see Line 9), then we check if all the node’s predecessors are blocking
(Line 10). If yes, we add the node to the Odd ASes set (the traffic reaches this node although all
upstream nodes block the traffic). For instance, in Figure 1, AS5 represents a member of this set.
As you can see, the traffic to this node comes from the ASes that actively participate in UTRS;
therefore, ideally, the traffic from our Test AS should not reach AS5. Additional routes to node AS5
or routing misconfiguration might explain the appearance of these cases (they represent only 1% of
the cases).
It is possible to prune the list of active UTRS participants further by considering the results of

several independent measurements. However, this approach has several issues. First, our measure-
ments are distinct in time (one week). During this period, the list of UTRS members may change
(new members can join UTRS, or some may stop participating). If we run the experiments more
often, the results may also be incorrect (e.g., some networks may start blocking the packets from
our Test AS). Second, it is not clear what threshold to choose. In order to get the threshold value, we
need ground truth data which, unfortunately, is not available. We leave investigating these issues as
future work. Within the scope of this paper, we provide the results considering each measurement
individually and report a conservative estimate of UTRS participants number by selecting the ones
who appear in all our measurements (see Section 4.3).

3.4 RIPE Atlas Experiment
Due to the probabilistic nature of our method, a single measurement using our approach does not
produce a complete and entirely accurate list of UTRS participants. Authors in [29, 36] observed
that some routers have stringent ICMP rate limiting rules. As we issue a non-negligible number
of ICMP requests during the Main Experiment, it may occur that some ISPs will block the pings
from our AS after some time, which may negatively affect the results of our analysis. Due to Team
Cymru’s [40] refusal to share the list of UTRS members to verify our findings directly, we add
an additional experimental setup to validate our results. To achieve this goal, we use the RIPE
Atlas platform [1]. This platform allows executing network measurements, including pings and
traceroutes, from probes spread out all over the world.
We employ this platform to run an experiment similar to the one described in Section 3.2.

However, in this experiment, we do the measurements in the reverse direction, i.e., we ping and
traceroute our B-IP and C-IP from the Atlas probes. Thus, contrary to our Main Experiment, we
do not expect the corresponding probe IP addresses to be blocked as the number of ICMP echo
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packets from a probe is negligible. Moreover, this experiment could help us to discover more UTRS
participants. Because the measurements are done from the other side, we may uncover UTRS
participants that are considered as upstream blocked in our main experiment (e.g., AS3 in Figure 1).
We adapted our methodology and algorithm described in Section 3.2 and Section 3.3 to this setup:
Step 1: Obtain a list of probes from the Atlas API filtered by status=Connected and tagged as
system-ipv4-works.
Step 2: Run ping measurements towards B-IP and C-IP. Due to the limitations of the Atlas platform,
we split the probes in batches to be able to run the measurement with all available probes.
Step 3: Compare ping results:
Case BCxx: Pings to both B-IP and C-IP succeed - non blocking;
Case BC0x: Ping to B-IP fails while to C-IP succeeds - blocking;
Case BCx0: Ping to C-IP fails while to B-IP succeeds - should not happen in theory;
Case BC00: Both pings to B-IP and C-IP fail - there is a connectivity problem, firewall, packet loss.
Step 4: Trace routes to B-IP (not used) and C-IP (used) for the Case BC0x probes.
Step 5: Process traceroutes using an adapted Algorithm 1.

4 MEASUREMENT RESULTS
We ran our measurements once per week for ten consecutive weeks in March-May 2022. Each week
we performed two measurements, namely ‘Main Experiment (ME)” and “RIPE Atlas Experiment
(RAE)”. In this section, we analyze the results of each experiment separately, and compare them as
validation of the main measurement methodology.

4.1 Individual Measurements Results
Table 1 shows the results of the individual measurements for our experiments. It is split into two
parts headed ME and RAE corresponding to each measurement. These two parts have a similar
structure: firstly, we present the initial population numbers for both experiments, then we report
the number of ASes of depending on ping reachability, and finally, we provide the number of UTRS
Participants identified using our algorithm for each individual week.

Table 1. Number of detected ASes per measurement: ME - Main Experiment; RAE - RIPE Atlas Experiment;
UP - UTRS Participants; OA - Odd ASes

Number of Measurement
1 2 3 4 5 6 7 8 9 10

Main Experiment (ME)
Active ASes 72768 72740 72771 72788 72854 72908 72973 72960 73060 73038
ASes w/ Pingable IPs 68354 68288 68272 68309 68402 68500 68583 68503 68669 68600
𝐵𝐶𝑥𝑥𝑀𝐸 65712 65409 65614 66031 66295 66179 65978 66008 66157 66414
𝐵𝐶0𝑥𝑀𝐸 2668 2778 2783 2188 2207 2237 2485 2476 2423 2592
𝐵𝐶𝑥0𝑀𝐸 44 53 61 50 74 57 65 57 41 48
𝐵𝐶00𝑀𝐸 85 63 68 91 73 94 82 54 60 105
𝑈𝑃𝑀𝐸 1498 1529 1570 1217 1252 1321 1397 1356 1426 1470
𝑂𝐴𝑀𝐸 14 14 13 11 11 13 14 11 14 14
RIPE Atlas Experiment (RAE)
Probes 11088 11053 11051 11083 11084 11098 11117 11135 11168 11157
ASes w/ Probes 3483 3483 3493 3502 3500 3498 3489 3505 3519 3505
𝐵𝐶𝑥𝑥𝑅𝐴𝐸 3379 3384 3388 3400 3397 3395 3385 3399 3403 3391
𝐵𝐶0𝑥𝑅𝐴𝐸 110 108 113 108 103 105 109 114 123 126
𝐵𝐶𝑥0𝑅𝐴𝐸 5 3 3 4 5 1 2 1 2 4
𝐵𝐶00𝑅𝐴𝐸 21 19 24 19 22 19 20 20 20 21
𝑈𝑃𝑅𝐴𝐸 90 89 94 91 88 91 94 97 100 101
𝑂𝐴𝑅𝐴𝐸 2 3 2 2 3 3 2 2 1 3
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As we explained in Section 3.2, we start our Main Experiment (ME) by collecting a list of
Active ASes and the corresponding 10 network prefixes from the RIBs provided by the RouteViews
project [45]. The “Active ASes” row in Table 1 provides the number of Active ASes we got from
the RIB files for a particular measurement. This number is pretty stable during these weeks and
varies in the range 72, 740 − 73, 060 ASes, increasing as more ASes are assigned by RIRs and put in
use. Out of these ASes, each week, on average, we discovered 68, 448 Autonomous Systems with
Pingable IPv4 addresses (see the “ASes w/ Pingable IPs” row for exact values per each week).

For the RIPE Atlas Experiment (RAE), we report correspondingly the number of probes (“Probes”)
and ASes (“ASes w/ Probes”) where these probes are located. In the RIPE Atlas network, there are
about 11,000 such probes in approximately 3, 500 distinct ASes. The coverage of ASes in RAE is
considerably lower than in ME. Comparing the numbers in Table 1, we can see that in ME, pingable
IPs are discovered in 68, 448 ASes, while in RAE, probes are only found in 3, 498 ASes on average.
Thus, Main Experiment covers almost 20 times more ASes than RIPE Atlas Experiment.

The rows “𝐵𝐶𝑥𝑥𝑀𝐸”, “𝐵𝐶0𝑥𝑀𝐸”, “𝐵𝐶𝑥0𝑀𝐸”, and “𝐵𝐶00𝑀𝐸” in Table 1 show the number of ASes
per each case described in Step 4 in Section 3.2. The majority of the ASes with pingable IPs do not
participate in UTRS (on average 96.39% across all weeks). There could be multiple reasons for that:
network operators do not know about the UTRS project; they do not trust Team Cymru [40]; ISPs
do not see an immediate benefit in its adoption, or they use a different RTBH service, e.g., their
own or provided by an Internet EXchange Point (IXP). In Section 6, we explore these factors.

Theoretically, the ASes from the BCx0 category should not be present in our results because this
means that the announced B-IP gets the response, while C-IP does not. This situation is possibly
explained by the target network starts blocking us after receiving the pings from our A- and B-IPs,
and our C-IP does not get the response. Moreover, such situations are also possible due to Internet
volatility due to connectivity issues or multipath routing. However, the number of such ASes is
low, constituting only 0.08% of all ASes with pingable IPs. We can consider the corresponding ASes
as the ones that do not participate in UTRS because B-IP gets replies. Similarly, the presence of the
BC00 instances can be explained by the blocking happening after the initial ping from A-IP. The
portion of BC00 ASes is larger than the BCx0 ones and is equal, on average, to 0.1%.
Similarly to ME results, the majority of the ASes, where RIPE Atlas probes are located, do not

participate in UTRS (on average 96.98% across all weeks). Out of 3, 498 checked ASes, we were able
to find, on average, only 112 of them that potentially participate in UTRS (see the “𝐵𝐶0𝑥𝑅𝐴𝐸” row
in the lower part of Table 1). We also found BCx0 (0.09%) and BC00 (0.59%) cases in our RIPE Atlas
data. This shows that these cases are a universal phenomenon and are not attributed only to our
Test AS. Rather, they exist due to the flaky nature of the Internet. Note that the portion of BC00
cases in RAE is higher than in ME. This may be due to traffic blocking from the RIPE Atlas probes
or because we do not test the connection to our Test AS from RIPE Atlas probes (similar to pings
from our A-IP in our ME).

The values in the “𝐵𝐶0𝑥𝑀𝐸” and “𝐵𝐶0𝑥𝑅𝐴𝐸” rows show the number of ASes that block the traffic
to B-IP while allowing the traffic to C-IP. These ASes are either active UTRS participants, or the
traffic to our Test AS from them passes through networks of ASes actively participating in UTRS.
According to our measurements, these values represent the upper bound of the number of active
UTRS participants. According to our data, 4.08% of ASes with pingable IPs and 3.2% of distinct
ASes with probes are active UTRS participants at most. We feed these sets of ASes together with
the traceroute data to our data pruning algorithm. As its output, we obtain two sets: the first stores
UTRS Participants (UP), and the second contains Odd ASes (OA).
The “𝑈𝑃𝑀𝐸” row in Table 1 shows the number of active UTRS participants for each week in

ME. Using this approach and the data, we have identified between 1, 217 up to 1, 570 ASes that
actively participate in UTRS, with an average of 1, 404 (1.93% of all active ASes). Unfortunately,
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1 1.00 0.63 0.57 0.47 0.46 0.42 0.42 0.41 0.43 0.39
2 0.92 1.00 0.63 0.52 0.50 0.47 0.45 0.45 0.44 0.43
3 0.82 0.89 1.00 0.53 0.50 0.47 0.44 0.44 0.44 0.42
4 0.83 0.88 0.87 1.00 0.66 0.60 0.56 0.57 0.53 0.51
5 0.84 0.88 0.88 0.92 1.00 0.61 0.58 0.57 0.56 0.51
6 0.81 0.84 0.83 0.88 0.95 1.00 0.57 0.54 0.54 0.52
7 0.77 0.78 0.79 0.81 0.88 0.87 1.00 0.66 0.57 0.55
8 0.75 0.77 0.77 0.79 0.85 0.84 0.91 1.00 0.60 0.59
9 0.70 0.73 0.75 0.77 0.81 0.80 0.81 0.82 1.00 0.61
10 0.72 0.73 0.73 0.76 0.80 0.81 0.82 0.83 0.90 1.00
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Fig. 3. Robustness of the results

Team Cymru does not reveal the list of UTRS members as well as their exact number (although it
did this in the past). Therefore, we cannot verify our findings with the ground truth data. At the
same time, their webpage [40] says that their community contains 1300+ network operators.
At the same time, using the data from RAE, we detect from 88 to 101 active UTRS participants

(“𝑈𝑃𝑅𝐴𝐸”). On average, 2.67% of distinct ASes with RIPE Atlas Probes are active UTRS participants.
This percentage is higher than for ME where 1.93% of all active ASes belong to active UTRS
participants. There could be several explanations for this phenomenon. We hypothesize that
the networks that host RIPE Atlas probes are managed by more Internet-savvy administrators.
Therefore, there is a higher chance that they would also push to become UTRS members.

Note that the number of detected active UTRS participants is not stable. For instance, between
the third and the fourth week, we observe a sharp drop (by 353) in the number of active UTRS
participants (from 1, 570 to 1, 217). Such a rapid drop cannot be explained by natural fluctuations
of UTRS member numbers (ASes joining and leaving UTRS) and probably, reflect network issues.
The number of UTRS participants detected using the RAE data confirms this (there is no such
rapid decrease). We can further prune the results using the data from several measurements (see
Section 3.3). However, in order to do this, we would need access to ground truth to estimate the
threshold value. In this paper, we consider as UTRS participants only those ASes that consistently
appear in our results during all ten weeks.

4.2 Intra-Experiment Results Analysis
In this section, we analyze the sets of active UTRS participants within one experiment, which we
identified using our methodology. Our goal is to estimate if we can rely on one measurement to
obtain a robust set of UTRS participants. I.e., if we get roughly the same set of UTRS participants
for each measurement, then there is no need to do several measurements in order to improve the
reliability of the results. To achieve this goal, we calculate the Jaccard similarity between UTRS
participant sets for a pair of different measurements. So as Jaccard similarity is a symmetrical
metric, Figure 3a presents the results for ME and RAE simultaneously: the ME and RAE data are
above and below the diagonal correspondingly. The figure visualizes the results using a heat map:
red and blue colors match high and low values of Jaccard similarity correspondingly.

We can draw several conclusions from Figure 3a. First, the closer the measurements in time, the
higher the similarity between the UTRS participant sets both for Main and RIPE Atlas Experiments
(the values consistently increase the closer to the diagonal). Indeed, for ME, the highest Jaccard
similarity (0.66) is between the sets of the fourth and fifth weeks, while the lowest (0.39) is between
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the first and the tenth. Similarly, the RAE results show the highest similarity between the fifth and
the sixth week (0.95), while the lowest (0.70) is recorded between the sets of the first and the ninth
weeks. That shows the community is not yet stable: the members have been joining and leaving
(or stopping to block the advertised IPs). This suggests that we should do the measurements more
often to get a better picture of dynamics. We consider this as future work.
Second, we can clearly see that the sets obtained using the RAE data are more stable over time

than the UTRS participant sets obtained using the data from ME: upper part of Figure 3a is more
bluish, while the lower part is more reddish. This means that the sets of UTRS participants are
more similar for RAE than ME. Figure 3b reflects this observation even more clearly. It shows the
proportion of detected UTRS participants occurring a particular number of times in each week’s
data. For each week, there are two columns: one column for ME and another for RAE.

The proportion of ASes appearing in every week’s UTRS participants set is larger in RAE than in
ME. Indeed, on average, around 78% (or 73) of UTRS participants are the same across all weeks for
RAE, while only 39% (or 550) of ASes are the same for ME. We assume that a much lower percentage
in ME may be explained by different UTRS policies for different network prefixes within the same
AS. We elaborate on this issue in Section 7.

At the same time, both the RAE and ME data have UTRS participants that appear only once. On
average, there are about 7.57% and 1.87% of such ASes inME and RAE correspondingly. These results
confirm that Internet measurements are flaky. Moreover, they also suggest that our probabilistic
algorithm still has space for improvement.

During all ten weeks, we observed 3259 unique ASes identified as UTRS participants in ME and
128 in RAE. Out of them, 550 (16.88%) and 73 (57.03%) are met in each ME and RAE measurement
correspondingly. We speculate that, with a very high probability, these ASNs are UTRS members
because they consistently show in the results. However, to create a final list of UTRS, we first need
to find out what UTRS participants identified in both experiments. In Section 4.3, we cross-analyze
the results of these experiments and create a final set of UTRS participants.

4.3 Inter-Experiment Results Analysis
In this section, we cross-compare the sets of Autonomous Systems that we obtained in ME and RAE.
Table 2 reports the results of this analysis. Compared to Table 1, there are two additional columns:
“Unique” reports the size of the union of all corresponding measurement sets, and “Common” shows
the size of the intersection.

The first row, “𝐶𝐴𝑀𝐸”, shows the number of ASes checked duringME. The values there correspond
to the number of ASes with Pingable IPs in Table 1. During all ten weeks, 70, 975 ASes are checked
at least once in our ME, out of which 65, 364 are the same across all measurements. The “𝐶𝐴𝑅𝐴𝐸”
row reports the number of checked ASes during RAE, i.e., the number of ASes with RIPE Atlas
probes. Interestingly, even though adding to or removing a node from RIPE Atlas network is not a
frequent event, the number of RAE checked ASes fluctuates considerably. During all measurements,
we checked 3, 815 unique ASes, out of which only 3, 073 are met in all measurements.

While we assumed that the coverage of AS during ME was extensive, the RAE data can still
augment it. This becomes obvious if we consider the values in the third and fourth rows in Table 2.
Indeed, for each measurement, the size of the union of ME and RAE ASes (the values in the
“𝐶𝐴𝑀𝐸 ∪𝐶𝐴𝑅𝐴𝐸”) is larger than the number of ME Checked ASes (“𝐶𝐴𝑀𝐸”), while the size of the
intersection (“𝐶𝐴𝑀𝐸 ∩𝐶𝐴𝑅𝐴𝐸”) is smaller than the number of RAE Checked ASes (“𝐶𝐴𝑅𝐴𝐸”). In
total, using the data from both experiments, we were able to cover 70, 992 distinct ASes, out of
which 65, 401 are common in all measurements.

This is also visible in the results provided in the second part of Table 2, where we compare the
sets of UTRS participants detected during ME and RAE. Indeed, the number of UTRS participants
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Table 2. Inter-experiment results: ME - Main Experiment; RAE - RIPE Atlas Experiment; UP - UTRS Partici-
pants; CA - Checked ASes

Measurement Unique Common1 2 3 4 5 6 7 8 9 10
Number of Checked ASes (CA)

𝐶𝐴𝑀𝐸 68354 68288 68272 68309 68402 68500 68583 68503 68669 68600 70975 65364
𝐶𝐴𝑅𝐴𝐸 3483 3483 3493 3502 3500 3498 3489 3505 3519 3505 3815 3073

𝐶𝐴𝑀𝐸 ∪𝐶𝐴𝑅𝐴𝐸 68383 68314 68297 68331 68423 68522 68610 68526 68694 68623 70992 65401
𝐶𝐴𝑀𝐸 ∩𝐶𝐴𝑅𝐴𝐸 3454 3457 3468 3480 3479 3476 3462 3482 3494 3482 3798 3036

Number of UTRS Participants (UP)
𝑈𝑃𝑀𝐸 1498 1529 1570 1217 1252 1321 1397 1356 1426 1470 3259 550
𝑈𝑃𝑅𝐴𝐸 90 89 94 91 88 91 94 97 100 101 128 73

𝑈𝑃𝑀𝐸 ∪𝑈𝑃𝑅𝐴𝐸 1521 1548 1596 1238 1273 1341 1412 1378 1448 1494 3287 579
𝑈𝑃𝑀𝐸 ∩𝑈𝑃𝑅𝐴𝐸 67 70 68 70 67 71 79 75 78 77 100 44

RAE UTRS Participants not in ME UTRS Participants (Δ = 𝑈𝑃𝑅𝐴𝐸 −𝑈𝑃𝑀𝐸)
Δ 23 19 26 21 21 20 15 22 22 24 62 7

Δ −𝐶𝐴𝑀𝐸 0 0 1 1 1 1 1 1 1 1 1 0
Δ ∩ 𝐵𝐶𝑥𝑥𝑀𝐸 15 10 14 13 11 11 9 13 15 13 46 3
Δ ∩ 𝐵𝐶0𝑥𝑀𝐸 8 9 10 7 9 8 4 7 5 10 18 3
Δ ∩ 𝐵𝐶𝑥0𝑀𝐸 0 0 0 0 0 0 0 0 0 0 0 0
Δ ∩ 𝐵𝐶00𝑀𝐸 0 0 1 0 0 0 1 1 1 0 2 0
Final UTRS
Participants 1506 1538 1582 1225 1262 1330 1403 1365 1433 1481 3265 562

in the ME&RAE sets union (“𝑈𝑃𝑀𝐸 ∪𝑈𝑃𝑅𝐴𝐸”) is higher than only in the ME UTRS participants set
itself (“𝑈𝑃𝑀𝐸”). There are 550 and 73 common UTRS participants during all ten weeks detected
using the ME and RAE data correspondingly.

We also analyzed the difference between RAE and ME UTRS participant sets for each week. The
“Δ” row reports the number of ASes detected as UTRS participants using the RAE data that are not
detected as those in ME. As you can see, there are about 21 such ASes. That shows that despite
higher coverage of ASes during the Main Experiment, RIPE Atlas Experiment is still useful and
contributes to the results. There are several reasons why this happens.

Although we have shown that ME covers a considerably larger number of ASes than RAE, it is
possible that we are not able to find pingable IPs in some ASes hosting RIPE Atlas probes. Therefore,
we are not able to confirm if they are UTRS participants using the ME data. We compared the sets
of RAE UTRS participants (“𝑈𝑃𝑅𝐴𝐸”) and ME Checked ASes (“𝐶𝐴𝑀𝐸”). The row “Δ−𝐶𝐴𝑀𝐸” reports
the difference. As you can see, there is only 1 such unique AS. This AS has only one /24 IPv4 prefix
assigned. As this AS is not covered by our ME, we consider it as a UTRS participant only based on
the RAE data and add it to the final set of UTRS participants.
Consequently, all other RAE UTRS Participants are also checked during ME, but they are not

detected as ME UTRS Participants. To understand why this happened, we get the intersection of
these ASes with the sets of ASes corresponding to different ME Ping cases. The four rows with
emphasized titles in the third part of Table 2 report these values. Three out of four rows have
non-zero values. Let us consider each case in detail.
Intersection with ME BCxx (“Δ ∩ 𝐵𝐶𝑥𝑥𝑀𝐸”). The ASes from this category were detected as RAE
UTRS Participants, while during ME, we received echo replies to both B-IP and C-IP. Most likely,
the corresponding ASes represent False Positives for the RIPE Atlas experiment – they are falsely
identified as UTRS participants using RAE data.
Intersection with ME BC0x (“Δ ∩ 𝐵𝐶0𝑥𝑀𝐸”). The ASes from this category were detected as
candidates during ME, but were filtered out with our pruning algorithm because there is no link to
them from a non-blocking AS. At the same time, during RAE, when we do the measurements in
the reverse direction, these ASes were identified as UTRS participants. Thus, the numbers in this
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row can be interpreted as False Negatives for our Main Experiment. However, these are not all False
Negatives. To get the correct number, we should have had probes in all ASes and run measurements
from each probe.
Intersection with ME BC00 (“Δ ∩ 𝐵𝐶00𝑀𝐸”). The ASes from this category were detected as UTRS
participants during RAE, but during ME, we did not receive replies to B-IP and C-IP from them. As
we noted in Section 3.2, in ideal conditions, we should not get such results because we had found
the corresponding pingable IP by getting a reply to A-IP. Therefore, we assume that these cases are
due to the flaky nature of Internet measurements.
Summing up all these considerations, the final set of UTRS participants for a measurement

obtained using both experiments data is the union of ME UTRS Participants, RAE UTRS Participants
not in ME Checked ASes, False Negatives for our Main Experiment (Intersection with ME BC0x
(“Δ ∩ 𝐵𝐶0𝑥𝑀𝐸”)) and RAE UTRS Participants that were filtered out during ME because of the
absence of ping replies to both our IPs (Intersection with ME BC00 (“Δ ∩ 𝐵𝐶00𝑀𝐸”)). The row “Final
UTRS Participants” in Table 2 shows the corresponding numbers for each measurement. The final
set of highly likely UTRS participants is obtained by taking the intersection of all measurements.
Thus, we claim that we are able to detect 562 active UTRS participants with a very high probability.
In the following section, we provide the characterization of ASes from this set.

5 UTRS MEMBERS CHARACTERIZATION
In this section, we provide the characterization of the identified UTRS participants. To achieve this
goal, we use publicly available external data.
Figure 4 plots the customer cone size as well as the AS rank of the UTRS participants versus

non-participants. To build this figure, we enriched our data with the information from the CAIDA’s
ASRank [9] dataset. As can be seen, the detected UTRS participants tend to have a higher rank
than non-participating ones. Similarly, when looking at the cone size, for both metrics (number
of addresses and number of ASes), the detected UTRS participants have proportionally more and
bigger customers than those not participating. This signals the willingness of big and medium-sized
ASes to join the UTRS.
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Fig. 4. AS rank and customer cone size eCDFs

We also classified UTRS participants using ASdb [53]. ASdb provides an updated North American
Industry Classification System (NAICSlite) and classifies, according to this system, the registered
organizations associated with ASNs. Each ASN in the dataset is associated with one or several
Categories (Layer-1) and Sub-categories (Layer-2). ASdb incorporates the data from PeeringDB [34]
and from CAIDA AS Classification [10] and supersedes them in terms of coverage and the quality
of classification. We downloaded the latest1 available ASdb dataset [53] and enriched our data using
this information. Table 3 contains the obtained results classifying the UTRS participants according
to Category 1 - Layer 1 and Category 1 - Layer 2.
1The dataset snapshotted in May 2022.
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Table 3. UTRS participants classification using ASdb (Total: 196)

Category & Sub-Category #
Computer and Information Technology 138

Hosting and Cloud Provider 14
Internet Service Provider (ISP) 100

Software Development 4
No sub-category 20

Retail Stores, Wholesale, and E-commerce Sites 4
Clothing, Fashion, Luggage 1

Other 2
No sub-category 1

Community Groups and Nonprofits 4
Human Rights and Social Advocacy 1

No sub-category 3
Health Care Services 5

Hospitals and Medical Centers 3
No sub-category 2

Travel and Accommodation 2
Other 1

No sub-category 1
Other 8

No sub-category 8

Category & Sub-Category #
Education and Research 19

Colleges, Universities, and Professional Schools 4
Education Software 2

Other 1
No sub-category 12

Media, Publishing, and Broadcasting 2
Online Informational Content 1
Radio and Television Providers 1

No sub-category 1
Manufacturing 6

Clothing and Textiles 4
No sub-category 2

Service 5
Buildings, Repair, Maintenance 1

Law, Business, and Consulting Services 3
No sub-category 1

Construction and Real Estate 1
Civil Engineering Construction 1

Finance and Insurance 1
Investment, Portfolio Management, Pensions and Funds 1

Table 3 shows the majority of the detected UTRS participants belong to the Computer and
Information Technology category. Almost half of all ASes present in ASdb are from Internet Service
Provider (ISP) and Hosting and Cloud Provider sub-categories. These AS types directly benefit from
participating in UTRS because this allows them to reduce the size of DDoS attacks on their networks.
Nevertheless, we must note that ASdb did not classify all ASes in our dataset: only 196 out of 562
UTRS participants are categorized.

Using the CAIDA’s ASRank [9] dataset obtained during the last week of our measurements, we
also built a map of the detected UTRS participants. Figure 5 shows the location of these ASes. As
you can see from the figure, three main regions, namely, Western Europe, the USA, and Brazil, host
most of the detected UTRS participants. While it is not surprising to see the former two because
these are the most developed regions in the world, Brazil is an unexpected member. At the same
time, a recent study shows [30] that the adoption of the anti-DDoS security best practices (namely,
source address validation) in Brazilian ISPs is significantly faster than in the rest of the world.

Fig. 5. UTRS participants map
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6 UTRS PARTICIPATION DETERMINANTS
In the previous sections, we identified and characterized UTRS participants, but what makes a
network operator join such community-based RTBH? What are the determinants for participating
in UTRS? To identify the determinants that drive UTRS participation, we conducted a survey based
on Protection Motivation Theory (PMT) [38]. PMT is frequently utilized in behavioral cybersecurity
research, with numerous instantiations of the theoretical model used in the literature [6, 11, 19].
PMT is appealing to cybersecurity researchers since it focuses on a threat as well as a prevalent
countermeasure to that threat.

There are two primary components of PMT. Threat appraisal is concerned with perceived vulner-
ability and severity. The conditional chance that a DDoS attack will damage if no countermeasures
are taken is referred to as perceived vulnerability. The perceived severity of a prospective attack
refers to the possible negative implications to the network produced by DDoS attacks in the context
of our study. The premise here is that if a DDoS attack happens as a result of not having joined
UTRS, and if this becomes a severe problem, they will consider joining UTRS. Coping appraisal in
PMT entails: (1) assessing the efficacy of the protective behavior in coping with the threat (response
efficacy); (2) believing in one’s own ability to manage protective behaviors (self-efficacy); and (3)
estimating the costs (including money, time, and energy) and efforts required to perform protective
behaviors (perceived response cost). Overall, response efficacy and self-efficacy are projected to
strengthen coping appraisal, whereas response cost is expected to decrease it (see Figure 6).

Rewards

Severity

Vulnerability

Response efficacy

Self-efficacy

Response costs

Social norms

Threat
ap-

praisal

Coping
ap-

praisal

UTRS
intention

UTRS
participation

Fig. 6. UTRS-adoption research model. Arrows refer to possible influence relationships.

6.1 Data Collection Instrument
Informed by PMT, we created an instrument consisting of a self-reporting questionnaire, which
was completed online by network operators after obtaining written informed consent. This ques-
tionnaire has two parts: the first is demographic information and experience, and the second – PMT
constructs.We developed the questionnaire based on an extensive review of the literature [20, 32, 41].
Demographic variables included age, professional experience, gender, and region. The experience
questionnaire consists of three items (Yes/No) and questions about UTRS participation, usage of
alternative RTBH services, and ASes under management.
The items were based on PMT, including perceived vulnerability (3 Items), perceived severity

(3 Items), perceived self-efficacy (3 Items), perceived response efficacy (3 Items), response cost (4
Items), perceived reward (3 Items), social norms (3 Items), intention (2 Items). Self-efficacy, response
cost, and threat severity were measured with scales adapted from [51]. Effort expectancy, rewards,
and perceived severity items were adapted from [14]. Social norm items were adapted from [47].
All items are stated in Appendix B (see Table 8).

The PMT items were measured on a five-point Likert scale ranging from 1 (strongly disagree) to
5 (strongly agree).
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Table 4. Correlation results between the self-reported control variables and the endogenous variable

Control variable Correlation (𝜙) p-value
Gender 0.13 0.45
Experience 0.18 0.74
Region -0.04 0.86
Age -0.18 0.21
Size -0.01 0.79
Notes: Cramer’s V test computed for multi-categorical vari-
ables, point biserial correlation for numerical variables.

6.2 Participants and Sampling
The data was collected between May and June 2022. Participants were network operators who
appeared as technical contact points in PeeringDB [34]. Participants were selected using the
stratified cluster sampling method. First, all network operators identified as participating in UTRS
were included. This allowed us to validate the results of our methodology. From the rest of the
network operators, we selected a random sample of 2, 000 networks.
Among the total 2, 562 network operators that were invited, 2, 491 (89.09%) did not participate.

Among the remaining 305 participants, 60 (2.15%) were excluded due tomissing data on key variables
(UTRS participation, managed ASes), yielding a final sample of 245 (8.76%): 59 UTRS participants
and 186 – non-participants. Out of the 59 UTRS participants, 58 self-reported themselves to be
UTRS members, which serves as validation of the accuracy of our measurement methodology. On
the other hand, out of the 186 non-participants, 13 were not sure about their memberships, and the
rest just self-reported to be non-members.

6.3 Control variables
To reduce the endogeneity that comes with the existence of potential confounders, we specify a
set of control variables accounting for a part of the dependent variable’s variance. We studied five
control variables (gender, age, region, experience and network size) to investigate their impact on
the endogenous variable, UTRS adoption. The first four control variables are directly related to
demographic information, while the last control variable relates to the size of the network operated
by the respondent. Table 4 presents the results of the correlation tests between the control variables
and the endogenous variable. None of the control variables had a statistically significant correlation
with the intention to adopt UTRS.

6.4 Factors Driving UTRS Participation
We use Structural Equation Modeling (SEM) to investigate complicated interactions between latent
variables [22]. To examine survey data containing behavioral questions, SEM is often utilized.
Given our sample population of more than 200 respondents, SEM allows us to build up and verify
links between PMT theoretical constructs and their actual indicators. First, we used confirmatory
factor analysis to assess the measurement model that included all latent variables. The second step
focused on the structural model, which examined the hypothesized links between the components.

Before looking into the results of the model, we computed descriptive statistics of the responses.
The percentages of the respondent’s choices per item are shown in Figure 7. There is a clear pattern:
most of the respondents (>70%) agreed or strongly agreed with all items apart from the ones
inversely coded that showed the opposite patterns. This indicates the suitability and reliability of
the instrument, as it was already confirmed by Cronbach’s alpha (𝛼 > .7).
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Table 5. Overview of structural model findings

Std. coeff (𝛽) Std. error p-value
Latent variables
Severity→ Threat 0.89 0.04 0.00
Vulnerability→ Threat 0.60 0.05 0.00
Rewards→ Threat 0.66 0.05 0.00
Effort→ Coping -0.02 0.07 0.78
Performance→ Coping 0.93 0.06 0.00
Costs→ Coping -0.63 0.05 0.00
Social→ Coping 0.69 0.05 0.00
Threat→ Intention 0.37 0.06 0.00
Coping→ Intention 0.17 0.06 0.00
Intention→ UTRS 0.31 0.06 0.00
Control variables
Gender→ UTRS -0.02 0.06 0.68
Experience→ UTRS 0.07 0.06 0.25
Age→ UTRS -0.05 0.06 0.39
Region→ UTRS -0.04 0.06 0.47
Size→ UTRS -0.04 0.06 0.51

Next, we look at the standardized coefficients (𝛽) of the fitted structural model. The overview of
the findings is provided in Table 5 (see more details in Figure 8). None of the control variables has a
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statistically significant impact on the adoption of UTRS. For protection-motivated factors (latent
variables), the threat appraisal components, threat severity (𝛽 = .89, 𝑝 < .001) and vulnerability
(𝛽 = .60, 𝑝 < .001), had positive associations with threat appraisal. Taken together, the results
suggest that the threat of DDoS attacks evokes the need for protective measures. Moreover, the
rewards of implementing these measures are positively associated with diminishing the threat (𝛽 =
.66 𝑝 < .001). In turn, the threat appraisal construct (𝛽 = .37, 𝑝 < .05) is proved to have a positive
association with the intention to join the RTBH community. A possible explanation is that network
operators see themselves as protectors of network assets and, hence, the threat of DDoS attacks
evokes in them the fear to adopt potential countermeasures. Their awareness of security threats
and knowledge of the relevant severe consequences are stronger drivers of the adoption of UTRS.

As for coping appraisals of the protection motivation model, the effort to join UTRS (𝛽 = −.002,
𝑝 > .1) had no statistically significant effect on the intention to participate in UTRS. Response cost
(𝛽 = −.63, 𝑝 < .01) was negatively associated with security protection motivation. On the other
hand, social influence (𝛽 = −.002, 𝑝 > .1) showed a positive effect on the intention to participate.

6.5 Survey Takeaways
Our survey served a twofold purpose: it (i) validated our measurement methodology as most of
the respondents voluntarily stated whether they were part of the UTRS, and (ii) helped us gain a
deeper understanding of the motivations behind participation in the UTRS. Moreover, the analysis
of the survey responses has provided valuable insights into our research question: What motivates
network operators to participate in the UTRS, and what factors might discourage their involvement?

As stated by some respondents, the UTRS is not a silver bullet to fight DDoS attacks, and as such,
it is not a countermeasure that fits every single network operator. In this section, we present the
key takeaways from the survey:
• Network operators are more likely to join UTRS if they believe DDoS attacks are a serious

threat to their networks. A staggering 78% of these surveyed operators acknowledged the
looming threat of DDoS attacks, while an even more resounding 92% concurred that the
potential disruptions caused by these attacks were not to be taken lightly.

• Network operators who believe that UTRS can help them protect their networks are less likely
to perceive DDoS attacks as a major threat. 88% of respondents voiced their belief that the
disruptive force of DDoS attacks could indeed be mitigated through the protective services
rendered by UTRS.

• The time and cost required to participate in UTRS can discourage some network operators
from joining. A discerning 7% of respondents expressed concern over the potential financial
strain imposed by UTRS operations, while 12% harbored reservations about the perceived
network sluggishness associated with this security measure.

• Social pressure from peers can encourage network operators to participate in UTRS. A substan-
tial 73% of the surveyed operators found themselves in a network of influence, knowing other
operators already were using UTRS. Remarkably, a mere 10% stood as outliers, not perceiving
RTBH as the prevailing norm against DDoS attacks.

7 DISCUSSION & LIMITATIONS
UTRS adoption. Our results show that at least 562 network operators from around the globe
actively participate in UTRS. Given the collaborative nature of UTRS and the intrinsic network
effects that come with it, UTRS would become even more effective if large or even Tier 1 network
operators would participate. However, our survey also showed that a major concern for participating
is the negative externalities of BGP blackholing, i.e., the impact on legitimate traffic.
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On the other hand, the survey showed us that network operators’ intentions to participate in
UTRS are significantly influenced by perceived vulnerability, perceived severity, response efficacy,
potential intrinsic and extrinsic rewards, social norms, and response cost. Only response cost
had a substantial negative impact on the intention to participate in UTRS. Because our response
cost component is primarily concerned with effort and time required rather than monetary cost,
and our coping component captures avoidance behaviors, this may be explained by positing that
network operators who estimate a high commitment of time and effort may simply avoid further
consideration of UTRS, no matter how desirable it may be in other ways.
Implications and Applications. The measurement methodology and results have practical impli-
cations for both researchers and network operators. Researchers can leverage the insights gained
from this study to understand the participation patterns in UTRS and enhance their understanding
of how network operators utilize RTBH services for DDoS mitigation. Furthermore, the research
methodology can be extended to measure and analyze other RTBH services or similar security
mechanisms in the future.

For network operators, the results provide valuable information about UTRS support and partici-
pation rates among ASes. This knowledge can help network operators make informed decisions
regarding UTRS adoption. The characteristics of the participating ASes can significantly impact
the efficacy of blackholing. For instance, the presence of Tier 1 networks in the UTRS potentially
enhances its effectiveness.
Our findings highlight the significance of allowing network operators to contribute to collabo-

rative RTBH communities. Our research reveals that the operator’s impression of how difficult it
will be to participate (our response cost construct) has a significant effect on their decision to join
UTRS. As the operator’s perceived severity of the DDoS threat grows, so does their intention to
participate and their proclivity to employ some coping mechanism (such as avoiding the issue).
Organizations will need to give both training and assistance to their network operators in order
for them to participate effectively in RTBH communities. Limitations. One of the trade-offs
of this work is our choice to select only 10 prefixes for each AS to find a pingable IP. According
to our measurements, more than 90% of all ASes from the ASRank [9] announce less or equal to
this number of prefixes. According to CIDR-Report [2], the mean number of prefixes per AS is
13, with over 26, 000 ASes announcing only one prefix. Therefore, we consider this threshold as a
reasonable choice that lowers the impact on both the measured and measurement networks. With
this threshold, we achieve 93.9% coverage of all Active ASNs.

We select only one pingable IP address per AS. BGP takes IP’s prefix into account when selecting
a route to this IP. Thus, two packets to two different prefixes of the same AS may flow to their
destinations through different paths. However, for this work, we assume that ASes are under a
single administrative control and have the same UTRS policy for all its prefixes. Moreover, finding
IPs in every prefix creates prohibitive overheads for our work.

Another limitation is that the list of UTRS members is not public. Such a list would provide the
ground truth and allow us to verify our findings. Regrettably, Team Cymru informed us that they
are unable to provide the list or even confirm the accuracy of ours. However, the results of our
survey prove that our methodology is effective in identifying UTRS participants.
In some cases where multiple paths are available to a tested ASN, packets could take either

a blocking or a non-blocking path, for example, when using ECMP (Equal-Cost Multipath) [23].
This is not under our control, as this depends on the routing policies and preferences of each AS.
However, our analysis should converge, given the large number of traces that we consider in this
work. Still, we consider doing an experiment using the Paris traceroute tool [5] in order to prove
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our assumptions. However, in this case, we will need to adjust our system setup because, currently,
the Paris traceroute tool does not support multiple network interfaces.

8 RELATEDWORK
There is a vast body of literature designing and evaluating DDoS countermeasures. In order to
mitigate DDoS attacks, multiple technical solutions have been developed with varying degrees
of efficiency, hardware or on-premises solutions like F5, Arbor devices installed in the network
path that detect and mitigate attacks. These are devices that can address both volumetric and
application attacks. However, if the attack volume is above the capacity of the network, or the
device itself, the attack cannot be mitigated, causing disruption that possibly extends beyond the
attack target [42]. Other solutions focus on applications like WAFs (Web Application Firewall), for
example, Akamai or Cloudflare. These solutions hide the actual IP address of the victim website
behind their reverse proxy and implement proprietary technologies to filter attacks [39]. Attackers
can bypass this type of solution in certain situations due to misconfigurations [25]. Another type of
DDoS mitigation involves BGP routing the victim networks, either temporarily during the attack
or permanently, through a service provider that offers DDoS protection services, for example,
Akamai, Arbor, Cloudflare [43]. [49] proposes a DXP (DDoS Information Exchange Point) that
encourages collaboration between networks (IXPs) in detecting and mitigating DDoS attacks closer
to the source, as such detection requires visibility at multiple locations. An ISP may also use a
hidden Distributed Reflection DoS (DRDoS) honeypot [27] to filter out the unwanted traffic in their
networks [52]. In some cases, the costs of these solutions are higher than the benefits, and the
victim’s ISP may choose to block all traffic to the victim. This is achieved through a mechanism
called blackholing or null routing, usually implemented through a BGP RTBH [3, 18]. A study on
the efficacy of BGP RTBH at an Internet Exchange is proposed by [33]. However, this is a passive
measurement limited to the Internet Exchange providing the passive data.

9 CONCLUSION
In this paper, we present the first Internet-wide investigation of participation in UTRS as a popular
DDoS mitigation technique based on RTBH. We designed a methodology for inferring UTRS
participation based on active measurements, allowing any UTRS participant to identify who are
the other participants. For instance, our methodology can be adopted by Team Cymru in order to
promote active UTRS participants.
Our analysis shows that at least 562 networks worldwide actively participate in this RTBH

community service to protect their customers and peers. UTRS participants’ characteristics show
that both large and small networks can benefit from this service. This heterogeneity of participants
is also proved by the different sectors in which the participants operate, ranging from education to
construction and real estate.
The survey, responded by 245 network operators, shed light on the determinants driving the

participation in UTRS. Informed by a theoretical PMT model, our results show that the intention
to participate in UTRS is significantly affected by the threat appraisal. Those operators who see
themselves as more vulnerable to DDoS attacks are more prone to participate in UTRS. Similarly,
operators also showed a coping behavior influencing the decision to participate in UTRS, i.e.,
operators who foresaw high costs and performance issues for adopting UTRS were more reluctant
to join UTRS. Finally, social norms also have a significant impact on the intention to participate.
Acknowledgements. We extend our sincere gratitude to all survey participants. This work is
supported by the Dutch Research Council (NWO) under the RAPID project (Grant No. CS.007).
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APPENDICES
A ETHICS
We had a detailed discussion with the university’s IRB and received clearance to conduct this study.
We conducted our own scans since there is no existing public dataset that reveals UTRS membership.
Our study followed all the active monitoring guidelines for ethical network measurement research
[46], including creating a web page running at the IP address of the scanner, communication with
Internet response teams, and providing an opt-out option for network operators. We want to stress
that our measurement did not create any burden on the UTRS participants as once they joined
UTRS, dropping the traffic becomes an automated process. We also randomly distributed our queries
across the IPv4 address space, so the scanner to detect pingable IP addresses does not consistently
query the same AS before moving on to the next one. Furthermore, in line with the Menlo report [7],
we considered that the marginal impacts of these measurements are outweighed by the beneficence
of measuring the effectiveness of UTRS and potentially attract more participants..
The institutional ethics committee also cleared our survey instrument with was thoroughly

evaluated and approved by them. Survey participants were briefed about the data collection process
through the consent form at the beginning of the study. Additionally, at the end of the study, all
participants were debriefed to clarify that their data will not be shared with anyone other than the
researchers conducting this study.

B SURVEY: DEMOGRAPHICS

Table 6. Survey participant characteristics

UTRS participation

Variable No, N = 176 1 Yes, N = 691 p-value2

Gender 0.46
Female 1 (0.6%) 0 (0%)
Male 164 (93%) 65 (94%)
Others 5 (2.8%) 0 (0%)
Prefer not to say 6 (3.4%) 4 (5.8%)

Age 0.99
18 - 24 2 (1.1%) 1 (1.4%)
25 - 34 14 (8.0%) 6 (8.7%)
35 - 44 79 (45%) 32 (46%)
45 - 54 52 (30%) 20 (29%)
55 - 64 28 (16%) 10 (14%)
65 - 75 1 (0.6%) 0 (0%)

Experience 0.19
6 months - 1 year 7 (4.0%) 1 (1.4%)
1 year - 3 years 37 (21%) 15 (22%)
3 years - 5 years 71 (40%) 37 (54%)
Over 5 years 61 (35%) 16 (23%)

Region 0.89
Africa 3 (1.7%) 2 (2.9%)
Asia 9 (5.1%) 3 (4.3%)
Europe 78 (44%) 34 (49%)
Latin America 14 (8.0%) 4 (5.8%)
North America 72 (41%) 26 (38%)

1 Median (IQR) and Frequency (%)
2 Fisher’s exact test
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C ASSESSMENT OF THE MEASUREMENT MODEL
We used reliability, convergent validity, and discriminant validity metric to evaluate the measure-
ment model. First, we evaluated the reliability by checking the reliability of the components by
using Cronbach’s alpha [12]. The reliability of entire structures exceeds .70, which is a usually
utilized threshold [35]. The numerical value is between .822 and .886, both of which are above
.70, as illustrated in Table 7. This outcome indicates sufficient reliability. Secondly, to evaluate
convergence validity, we looked at Extracted Average Variance (AVE), which should exceed the .50
threshold. It can be seen from Table 7 that the AVE value exceeds .50 for all items. Therefore, our
model has a good convergence validity. Finally, the validity of the discrimination if the composite
reliability is greater than .7, which is the case for all constructs.

Table 7. Measurement model reliability of latent variables.

Latent variables
SEV VUL EFF PER REW COS SOC

CA 0.822 0.839 0.840 0.853 0.846 0.886 0.879
CR 0.843 0.845 0.829 0.880 0.849 0.885 0.887

AVE 0.649 0.646 0.618 0.790 0.653 0.720 0.798
Notes: CR = Composite Reliability, AVE = Average Variance Extracted,
CA = Cronbach’s Alpha. SEV = Threat Severity, VUL = Threat Vulnera-
bility, EFF = Self-efficacy, PER = Response efficacy, REW= Intrinsic and
extrinsic rewards, COS = Response Cost, SOC= Social influence

Next, we tested the whole model. First, we evaluated the research model’s global goodness-of-fit.
A good model should have a root mean square error of approximation (RMSEA) <.06, a comparative
fit index (CFI) >.95, Tucker Lewis Index (TLI) >.95, and a standardized root mean square residual
(SRMR) <.08 [24]. In our study, the results showed an excellent approximate fit for the research
model: RMSEA = .01 (90% C.I. = .000, .033), CFI = .999, TLI = .998, and SRMR = .072. The chi-square
statistics were significant (𝜒2(199) = 305.99, 𝑝 < .001).
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D NETWORK OPERATORS SURVEY INSTRUMENT

Table 8. The measurements and items

Latent Items
Severity
Sev1 DDoS attacks are a serious security threat
Sev2 DDoS attacks can cause serious complications in-

cluding service downgrade and downtime.
Sev3 DDoS attacks can cause reputation damage.

Vulnerability
Vul1 My organization could get a DDoS attack.
Vul2 My network will get disrupted if it gets a DDoS

attack.
Vul3 The frequency of DDoS attacks has increased over

the last few years.
Self-efficacy
Effort1 It is easy to mitigate DDoS attacks through remote

blackholing.
Effort2 I would join a remote blackholing community re-

gardless of its cost.
Effort3 To mitigate a DDoS attack, I would drop traffic

despite the possibility of the side effects (e.g., drop-
ping legitimate traffic).

Performance
Perf1 DDoS disruptions can be mitigated by joining a

collaborative remote blackholing service like the
Unwanted Traffic Removal Service (UTRS).

Perf2 Collaborative remote blackholing is one of the best
solutions for counteracting problems caused by
DDoS.

Rewards
Rew1 I will help others if I join a collaborative remote

blackholing service like the Unwanted Traffic Re-
moval Service (UTRS).

Rew2 Collaborative remote blackholing is more conve-
nient to take other countermeasures to prevent
DDoS attacks.

Rew3 It will save me time/money if I join a collaborative
remote blackholing service like UTRS.

Costs
Costs1 Community-based remote blackholing is expen-

sive/costly to configure and operate.
Costs2 Collaborative blackholing requires updating the

configuration all the time.
Costs3 Collaborative remote blackholing can slow down

your network
Social
Social1 I know several network operators that use a col-

laborative remote blackholing service like UTRS.
Social2 Community-based blackholing is the norm among

network operators to mitigate DDoS.
Intention
Intent1 I intend to use a community-based remote black-

holing service in the near future.
Intent2 I expect that community-based remote blackhol-

ing continues to be of use in the future.
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