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Whether you think you can,
or you think you can’t

– you’re right.

– Henry Ford

Tell me and I forget.
Teach me and I remember.

Involve me and I learn.

– Benjamin Franklin

If you can’t explain it simply,
you don’t understand it well enough.

– Albert Einstein

The more you know,
the more you realize you know nothing.

– Socrates
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interference When waves interfere, they superimpose, often strengthening each other
in some locations, while cancelling each other out in other locations. xvii, xviii, 26,
47, 58, 78, 90, 91

interparticle distance Distance between two particles i and j , r⃗ j i . xxx, 30, 47, 65, 79,
90

interpolation To approximate the output of a function at a certain input parameter by
using known function values at the two (or more) nearest input parameters. 31



GLOSSARY xix

Lagrangian particle tracking A method of computing the trajectory of a particle based
on all (fluid) forces acting on the particle, see Sec. 2.2.2. xxv, 21, 37, 64

laminar ‘Neat’ flow in which fluid particles follow smooth layered paths (i.e., stream-
lines). Opposite: turbulent flow. xxi, xxiii, 19

laser speckle contrast imaging Laser speckle imaging, but using the speckle contrast as
a metric to study the scattering medium. xxv, 3, 58, 78, 89, 90, 105, 112, 117

laser speckle imaging When a diffusive medium is illuminated by a laser, the diffracted
light will form a speckle pattern, containing information about the scattering medium,
see Fig. 4.1. xix, xxv, 2, 26, 57, 72, 77, 119, 131

Maxwell equations Maxwell derived four equations, which are the governing equations
of light. Or, more generally: of electromagnetic fields. 8

microstepping Our process of mimicking the finite camera integration time by per-
forming optics simulations in rapid succession, and then averaging the result. We
repeat this for each timestep at which we gather data. See Sec. 6.4. 99, 130, 131

Mie theory Exact solution to the scattering of light by a single spherical particle, as de-
rived by Gustav Mie in 1908. xxiii, 9, 25, 31, 59, 78, 91, 111, 121

monochromatic Comprising a single color; comprising a single wavelength. xviii, 91,
100

Monte Carlo method Mathematical method that uses repeated random sampling of a
chance process to estimate quantities of interest using statistical analysis. 58, 90

morphology The study of the form, shape and structure of (parts of) organisms. 33, 72

multiscattering When light scatters not only from each scatterer (i.e., ‘initial scatter-
ing’), but the scattered light too scatters from each scatterer recursively, see Fig.
2.1. xv, xxi, xxv, 2, 26, 57, 59, 78, 91, 98, 100, 111

Navier-Stokes equations A set of equations for conservation of mass and momentum,
which govern the behaviour of fluids. 19, 40, 64, 93

Newton’s binomial theorem Theorem on how to expand (a +b)n in each individual com-
ponent. This also works when taking the n’th derivative of a function which has the
form of the product of two functions: f (x) = g (x)h(x). 34

non-invasive Without affecting the thing being measurement, e.g., a measurement on
a patient without a need to use a needle or cut the patient open. 1, 58, 78, 90, 111

non-Newtonian fluid A fluid with a different rheology than Newton’s law of viscosity,
which says that viscosity is independent of stress. Examples are: toothpaste, cus-
tard, shampoo and blood. 16, 37, 94, 112



xx GLOSSARY

numerical experiment Experiment conducted using a computer simulation, as opposed
to a physical experiment that is often performed in a laboratory setup. 3, 111

Nyquist criterion To prevent a loss of information when discretely measuring a signal,
the sampling frequency should be at least double the highest frequency contained
in the signal.. 80

objective speckle Speckle (pattern) that forms without passing through any kind of imag-
ing system, such as lenses.. 79

OpenFOAM (Open-source Field Operation And Manipulation) A free open-source com-
putational fluid mechanics code developed by OpenCFD Ltd. and the commu-
nity.. 37, 93

orthogonality Two vectors or two functions are said to be orthogonal if their inner prod-
uct equals zero. The inner product of two functions is defined as the integral of the
product of the two functions over a predefined relevant length scale. xx, 11, 122

orthonormal Two vectors are orthonormal if they are orthogonal and have a length
equal to one. 48

particle image velocimetry Experimental method for velocimetry, in which the fluid is
seeded with tracer particles. If these particles are sufficiently small, they will follow
the streamlines of the fluid. By illuminating the fluid, the motion of these particles
can be tracked over time (i.e., recording a video), and the velocity field can be com-
puted for each frame.. xxv, 2, 78, 91, 113

peripheral vascular disease Disease in which blood circulation becomes limited (in cer-
tain parts of the body), reducing the availability of oxygen and nutrients; most
commonly caused by atherosclerosis. 2

permeability Measure of magnetization that a material obtains in response to an ap-
plied magnetic field. 8, 62

permittivity Measure of electric polarizability of a dielectric material. 8

phantom (in fluid dynamics) Model used for in-vitro studying a flow, e.g., a transparent
hollow artery made of an index-matched plastic. 60

phase Waves have a phase which describes the point in the oscillation the wave is at.
Specifically, the ‘initial phase’ determines the starting point of the wave, e.g., φ0

in: cos
(
(kz −ωt )+φ0

)
. xvi, xviii, xxiv, 14, 16, 35, 60, 91

plane wave A wave that stretches infinitely in two dimensions, i.e., a plane, while prop-
agating in the third dimension. xxv, xxvi, 9, 14–16, 25–27, 48, 59, 78, 91, 100

plaque (arterial) Sticky substance that piles up inside arteries, consisting of cholesterol,
waste products, calcium and fibrin; see also: atherosclerosis. xv, 4, 90, 114

plug flow Flow with a constant velocity, see Eq. (1.56). 20, 60, 79, 104, 112



GLOSSARY xxi

Poiseuille flow Exact static flow profile in a cylindrical geometry, see Eq. (1.58). 20, 62,
93, 104, 112

polarisation The direction in which (the electric field of) a transverse wave oscillates,
which is orthogonal to the propagation direction. xvi, 11

pressure Force per unit area. xviii

pulsatile flow Flow with a periodic temporal dependency. xxiv, 61

real-time When dynamic results can be seen immediately, the results are available “in
real-time”, as opposed to requiring processing first.. 1, 111

reflection (diffuse) When light hits a rough medium, it scatters in all directions, i.e., it
diffuses. xvii, 60

reflection (specular) When light scatters off of a smooth surface (e.g., a mirror), the light
ray is reflected by the law which states that ‘the angle of incidence equals the angle
of reflection’. 60

refraction The redirection of a light ray as it passes from one medium into the next. xxi

refractive index Dimensionless number that is a property of a medium, which is a mea-
sure for the refraction of light. 8, 26, 71, 80, 94, 119

Reynolds number Non-dimensional number in fluid mechanics equal to the ratio of
inertia-dominated and viscous-dominated forces. At a sufficiently high Reynolds
number, the fluid becomes turbulent as opposed to being laminar at low Reynolds
numbers. 19, 39

rheology The study of how a fluid’s viscosity depends on the strain rate in the fluid. xix,
16, 37

Ricatti-Bessel function A set of mathematical functions that appear in some problems
involving the solution of a spherical differential equation. They are related to the
spherical Bessel functions of the first and the second kind: ψn(ρ) ≡ ρ jn(ρ) and
ξn(ρ) ≡ ρh(1)

n (ρ). 8, 12, 123

scatterer A particle that we use to scatter light. xix, xxii, 4, 9, 25, 26, 47, 58, 60, 90, 112,
113

scattering When a wave scatters, it diverts from its original straight path, e.g., by being
disturbed by a particle or an aperture. xvii–xix, xxi, xxiii, 2, 9, 58, 78, 100

scattering angle Angle in the scattering plane between the scattered wave and the in-
coming wave, see Fig. 1.2. xv, xvii, 13, 26, 48, 62

scattering order In our optics code, we implemented multiscattering iteratively. The
scattering order is the number of times the wave has scattered by the scatterers
thus far, see Fig. 2.2. 26, 78, 100



xxii GLOSSARY

scattering plane Plane spanned by the propagation vectors of the incoming and the
scattered field, see Fig. 1.2. xxi, 13

sclerosed Affected by (athero)sclerosis. 4, 92, 111

signal-to-noise ratio Ratio of the strength/amplitude of the signal (i.e., the informa-
tion) to the amplitude of the noise present in the measurement. 91, 105

size parameter Dimensionless number that gives the size of a particle in terms of the
light’s wavelength, see above Eq. (1.28). 12, 26

speckle (pattern) Spot-like random intensity pattern that forms due to interference af-
ter light diffracts from a diffusive medium, e.g., see Fig. 4.3a. xviii–xx, xxii, xxiii,
xxvii, xxxi, 2, 42, 57, 58, 72, 78, 89, 90, 92, 100, 112

speckle boiling When speckles randomly appear and disappear in a speckle pattern,
e.g., as a result of scatterers moving relative to each other or in-/outside of the
imaging plane, it looks like the top of a pan of boiling water; hence ‘speckle boiling’.
2, 4, 57, 58, 80, 90, 101, 104, 112, 118

speckle contrast Measure for the contrast in a speckle image: ratio between the stan-
dard deviation and the mean intensity, see Eq. (4.1). xix, xxvii, xxviii, 3, 60, 77, 80,
91, 100, 102, 105, 112, 117, 131

speckle decorrelation time Characteristic timescale upon which the auto-correlation
of a speckle pattern drops below a certain threshold (typically 1/e). xxx, 59, 77, 113

translating speckle When scatterers move in the imaging plane, each with the same ve-
locity, then speckle pattern simply moves along with the same velocity. 2, 58, 84,
90, 118

spectral analysis Analyzing a signal by using the frequency spectrum. 106

spectral noise Noise in the frequency spectrum. 71

spherical Bessel function A set of mathematical functions that are defined as the solu-
tion of the Helmholtz differential equation in spherical coordinates, which is the
eigenvalue problem for the Laplace operator: ∇2 f =−k2 f . xxi, xxii, xxviii, xxxi, 10,
26, 62

spherical Hankel function The spherical Hankel function of the first/second kind is a
different name for the spherical Bessel function of the third/fourth kind, respec-
tively. 12, 26

stagnation point Point in a fluid flow at which the local velocity is zero. 95

statistical noise When a data set is not infinite, there will be random fluctuations in a
measured value around its true value, introducing a statistical error (noise) to the
measurement. 63

steady state Not changing as time advances; independent of time. 41



GLOSSARY xxiii

stenosis An abnormal narrowing of an artery, limiting or obstructing blood flow. 1, 4,
89, 90, 104, 105, 115

Stokes number Non-dimensional number in fluid mechanics equal to the ratio of the
characteristic time of a particle relative to the characteristic time of the flow. If
the Stokes number is ≪1, the particles respond immediately to any changes in the
flow, which makes the particles behave as simple tracer particles that follow the
flow’s streamlines precisely. 39

strain Measure for the deformation of a material, including fluids. xxiii

strain rate The change of strain over time; derivative of strain with respect to time. xxi,
19

stress Force per unit area inside a material, including fluids. xvi, xix, 19

subjective speckle Speckle (pattern) that forms after being imaged with an imaging sys-
tem, such as lenses.. 79

T-matrix method Computational technique to compute light scattering by non-spherical
particles; think of it like a more generic – though more computationally expensive
– Mie method. 33, 66, 100

Taylor expansion In a Taylor expansion, a function is approximated at f (x) by taking
the value at x0 being nearby x, and estimating how to get from f (x0) to f (x) by
considering the function’s derivatives up to a certain order. 34

trough Point where the amplitude of a periodic function is at its minimum. 70, 104

turbid medium A medium which both strongly absorbs and scatters light. 2, 57, 58, 86,
90

turbulence Flow with chaotic fluctuations in its pressure and velocity, resulting in ed-
dies/vortices and a heavy time-dependent flow. Opposite: laminar flow. xix, xxi,
19

under-relaxation In an algorithm, the required change of a variable can be computed,
as opposed to the new value. With under-relaxation you do not update the vari-
able’s value by the full change, but only a fraction of the change, to slow down
strong non-linear fluctuations in the solution. 41

underresolved Imaging (the details of) an object requires a sufficient number of pixels;
underresolving is when too few pixels are used – the details of the object are then
lost, or in the most extreme case the object is smaller than one pixel. 63

velocimetry Measuring the velocity of a fluid. xx, xxvii, 1, 4, 78, 90

viscosity Measure of the resistance of a fluid to deformation. xxi, 16, 19



xxiv GLOSSARY

vortex A circulation in a flow. 104

vorticity A measure of the local spinning motion in a flow field, mathematically equal
to the curl of the flow velocity vector.. 118

wave number Spatial frequency of a wave, k = 2π/λ. 8, 62

wavefront Surface over which the phase of a wave is constant, at a specific time. xviii

white noise A noisy signal with a statistically uniform frequency spectrum. 91

windowing To subdivide an image into smaller parts, see the paragraph above Eq. (4.6).
63, 101, 112

Womersley flow Exact flow profile for time-dependent flow in a cylindrical geometry,
see Eq. (1.59). 20

Womersley number Non-dimensional number in (bio)fluid mechanics for pulsatile flow,
representing the ratio between pulsatile flow frequency terms to the viscous ef-
fects. 20



ACRONYMS

BC Boundary Condition. xvi, 9, 12, 69, 70, 80, 84, 122, 123

CCA common carotid artery. xvi

CFD Computational Fluid Dynamics. 4, 20, 25, 41, 42, 60, 64, 78, 91–93, 98, 99, 105, 111,
115, 125, 130

ECA external carotid artery. xvi, 60, 79, 92, 95, 97, 104, 105

FF Far-Field. 13, 26, 27, 33–36, 48, 49, 51, 53, 54, 62, 64–66, 72, 78, 79

I/O Input & Output. 27, 126

ICA internal carotid artery. xvi, 91, 92, 95–97, 104, 105

IPW Incoming Plane Wave. 14–16, 27–29, 34, 48, Glossary: plane wave

LPT Lagrangian Particle Tracking. 21, 38, 93, Glossary: Lagrangian particle tracking

LSCI Laser Speckle Contrast Imaging. xxvii, 3, 4, 58, 78, 79, 89–92, 98, 99, 105, 106, 112–
119, Glossary: laser speckle contrast imaging

LSI Laser Speckle Imaging. 2, 3, 26, 41, 57, 59–61, 69, 71, 72, 77, 86, 97, 119, 131, Glossary:
laser speckle imaging

MRA Magnetic Resonance Angiography. 1, 90

MRI Magnetic Resonance Imaging. 1, 115, 116

MSFF Multi-Scattering Far-Field. 26, 54, 126, Glossary: multiscattering

NF Near-Field. 27

OOP Object-Oriented Programming. 29, 126

PIV Particle Image Velocimetry. 2, 78, 91, 93, 94, 96, 97, 113, Glossary: particle image
velocimetry

PPG Photoplethysmography. 2, 4, 111

PSF point-spread function. 66

xxv



xxvi ACRONYMS

PW Plane Wave. 9, 11, 26–28, 34, 35, 50, 59, 61, 62, 64, 65, 72, 129, Glossary: plane wave

RAM Random Access Memory. 28, 30, 33

RBC Red Blood Cell. xviii, 16, 25, 33, 34, 37, 38, 59, 60, 65, 71, 72

SSFF Single-Scattering Far-Field. 26, 52–54

VSH Vector Spherical Harmonic. 10–13, 62, 121–123



NOMENCLATURE

a [m1] Spherical particle radius, page 10

α [−] Dimensionless number: Womersley; Represents the ratio between transient
inertial force and viscous force, page 20

an [−] Mie coefficient for the even term of the scattered field, page 12

β [−] Correction factor for the loss of correlation caused by the ratio of pixel size to
speckle (pattern)speckle size, page 82

bn [−] Mie coefficient for the odd term of the scattered field, page 12

C [−] Depending on the author, the speckle contrast is denoted as either C or K .
In this thesis I’ll use K , page 60

c [m1s−1] Speed of light in vacuum, page 8

χ [−] Electric susceptibility, page 8

cn [−] Mie coefficient for the odd term of the internal field, page 11

crohs [−] Constant defining the ‘region of high-sensitivity’ for performing velocimetry
using LSCI, page 114

C (2)
t (τ) [−] Autocovariance of temporal (speckle) fluctuations, page 82

D [m1] Characteristic length scale, page 19

D [m1] Aperture diameter, page 66

d [m1] Physical distance particles have travelled during one camera integration
time, page 80

dn [−] Mie coefficient for the even term of the internal field, page 11

dspeckle [m1] Width of a typical speckle, page 66

E⃗ [Vm−1 = NC−1 = m1kg1s−3A−1] Electric field, page 8

E0 Electric field - magnitude when using complex notation, page 11

E⃗1 Electric field - inside the scatterer, page 10

E⃗2 Electric field - total outside the scatterer, page 9

E⃗i Electric field - incident, page 9

xxvii



xxviii NOMENCLATURE

e−iωt This thesis uses the minus sign convention in the complex wave notation, page 8

ϵ [m−3kg−1s4A2] Complex (electric) permittivity, page 8

ϵ0 [m−3kg−1s4A2] (Electric) permittivity of vacuum, page 8

E⃗s Electric field - scattered, page 9

f [s−1] Frequency, page 62

f ext
i [Nm−1 = kg1s−2] External force per unit length, page 19

fs [s−1] Data sampling frequency, page 99

F (t ) [−] Time-dependent modulation function, page 62

H⃗ [m−1A1] Magnetic field, page 8

H [m1] Characteristic length scale (thickness), page 38

h(1)
n [−] Spherical Bessel function of the third kind (or Hankel function of the first

kind) and of order n, page 12

I [Wm−2 = kg1s−3] Intensity, page 29

Jn [−] Bessel function of the first kind and of order n, page 49

jn [−] Spherical Bessel function of the first kind and of order n, page 11

K [−] Speckle contrast, page 60

k [m−1] Wave number, 2π
λ , page 8

k0 [m−1] Wave number in vacuum, 2π
λ0

, page 8

κ [−] nκ is the complex part of the complex refractive index, page 8

L [m1] Characteristic length scale (length), page 38

L [m1] Length of cylinder, page 17

L [m1] Orthogonal distance between the center of the aperture and the camera;
Used only in Chap. 3., page 51

λ [m1] Wavelength, page 8

M⃗ [−] Vector Spherical harmonic 1, page 10

M [−] Number of pixels of the camera, page 30

M [−] Total number of pixels of the camera, page 65

m Sum index for the azimuthal term (Mie theory), page 10

m [−] Relative refractive index N1
N2

, page 12



NOMENCLATURE xxix

m [kg1] Mass, page 38

Mx/y [−] Number of pixels in the x/y-direction of the camera, page 64

µ [−] Short for cosθ, page 13

µ [NA−2 = m1kg1s−2A−2] (Magnetic) permeability, page 8

µ [Pa · s = m−1kg1s−1] (Dynamic) viscosity, page 19

µ0 [NA−2 = m1kg1s−2A−2] (Magnetic) permeability of vacuum, page 8

ns,int [−] Number of samples used to sample the camera integration time, see Fig. 4.2,
page 61

N⃗ [−] Vector Spherical harmonic 2, page 10

N [−] Complex refractive index, page 8

N [−] Number of particles, page 17

n Sum index for the radial term (Mie theory), page 10

n [−] Real refractive index, page 8

nC Cut-off index of the infinite Mie sum, page 26

n̂ [−] Unit normal vector to some surface, page 10

ν [m2s−1] Kinematic viscosity, page 19

ω [s−1] Angular frequency, page 8

P [Pa = m−1kg1s−2] Pressure, page 19

p [−] Scattering order; The number of particles the light scattered upon before
hitting the camera., page 27

∆ϕ [rad] Phase difference, page 27

ϕ [rad] Azimuthal cylindrical angle, page 14

ϕ [rad] Azimuthal spherical angle, page 10

φ [−] Volume fraction; Hematocrit, page 17

πn [−] Short for
P 1

n (cosθ)
sinθ , page 13

P m
n [−] Associated Legendre polynomial, page 10

P (r ) [−] Probability density function with argument r , page 17

P (r ≤ R1) [−] Cumulative probability density function with argument R1 and parameter
r , page 18



xxx NOMENCLATURE

ψn [−] Ricatti-Bessel function of the first kind and of order n, page 12

Q [m3s−1] Flow rate, page 102

r⃗ [m1] Position vector xx̂ + y ŷ + zẑ, page 15

R [m] Radius of a cylinder, page 19

r [m1] Radial cylindrical coordinate (context: fluid dynamics), page 17

r [m1] Radial spherical coordinate, page 10

r⃗ j i [m1] Distance between particles j and i , page 30

r [m1] Magnitude of displacement vector (interparticle distance), page 15

r⃗ [m1] Displacement vector, page 15

Re [−] Dimensionless number: Reynolds; Represents the ratio of inertial forces and
viscous forces, page 19

ρ [−] Short for kr , page 10

ρ [m−3kg1] Mass density, page 19

[S] [−] Amplitude Scattering Matrix, page 13

s [m1] Radial cylindrical coordinate (for Mie theory), page 14

S1 [−] Amplitude Scattering Matrix Element related to E⊥, page 13

S2 [−] Amplitude Scattering Matrix Element related to E∥, page 13

σ [m−3kg−1s3A2] Conductivity, page 8

σI [Wm−2 = kg1s−3] Standard deviation of intensity, page 60

σ j i [m−1kg1s−2] Deviatoric stress tensor, page 19

St [−] Dimensionless number: Stokes; Represents the ratio of the particle response
time and the characteristic fluid timescale, page 39

∆tint [s1] Timestep used to sample the camera integration time, see Fig. 4.2, page 61

∆t [s1] Time interval, page 61

T [s1] Total simulation time, page 67

t [s1] Time, page 8

τ [s1] Characteristic timescale, page 38

τc [s1] Speckle decorrelation time, page 59



NOMENCLATURE xxxi

τn [−] Short for
dP 1

n (cosθ)
dθ , page 13

θ [rad] Zenith spherical angle, page 10

θs [rad] Scattering angle from Mie theory, page 13

tint [s1] Camera integration time, page 59

U [m1s−1] Characteristic velocity scale of the fluid, page 19

u Uniformly generated random number, page 18

u [m1s−1] Velocity, page 19

ui [m1s−1] i ’th component of the velocity vector, page 19

V [m1s−1] Characteristic velocity scale of the particle, page 38

V [m3] Volume, page 17

v(r ) [m1s−1] Radial-dependency of the velocity, u(r, t ), page 62

wspeckle [m1] Characteristic length scale for the speckle size, page 83

x [−] (Optics) Size parameter = k2a, page 12

xi [m1] i ’th component of the position vector, page 19

ξn [−] Ricatti-Bessel function of the third kind and of order n, page 12

y [−] (Optics) Size parameter times relative refractive index = k1a = mx, page 12

z [m1] Distance between the object and the image plane, page 66

z [m1] Height cylindrical coordinate, page 14

zn [−] Any kind of spherical Bessel function of order n, page 10

z(1)
n [−] Spherical Bessel function of the first kind and of order n, page 11

z(3)
n [−] Spherical Bessel function of the third kind and of order n, page 12

〈Υ〉 These brackets denote the mean of some quantityΥ, page 19

Υ1 The subscript ‘1’ refers to some quantityΥ inside the scatterer, page 9

Υ2 The subscript ‘2’ refers to some quantityΥ outside the scatterer, page 9

Υe The subscript ‘e’ refers to ‘even’, page 10

Υ f The subscript ‘f’ refers to ‘fluid’, page 21

Υo The subscript ‘o’ refers to ‘odd’, page 10

Υp The subscript ‘p’ refers to ‘particle’, page 21





SUMMARY

Cardiovascular diseases are one of the leading causes of death worldwide, for example
by causing strokes. Timely diagnosis of such diseases is pivotal for a patient’s chance of
survival. Furthermore, in the present world in which medical expenses are going through
the roof, we can save greatly on costs if certain diseases are detected in an earlier stage.
To that end, our research is focused on improving medical measurement techniques, to
give doctors a greater arsenal to combat these diseases.

Ideally, a measurement technique is cheap, accurate, and all while causing minimal
discomfort to the patient. Light-based techniques have proven previously to have great
potential to fulfil that role. For example, that tiny device that you can put on your finger,
and similarly the sensor in a sports watch, are able to measure your heart rate using light.

For our research we have developed a computer model, such that we can use the
power of modern computing. Our model is able to predict how light is reflected by red
blood cells flowing through an artery. The computer is then able to rapidly simulate
many scenarios, producing a lot of data about what the reflected light looks like for each
scenario. From that data, we are able to say something about what a certain pattern in
the reflected light says about the underlying system: the flowing red blood cells.

As a first step, we have used our model to figure out how we can determine the heart
rate from the reflected light. You could argue that that’s nothing special, as your sports
watch can already do precisely that, but it’s an important step nonetheless, since our
technique is different than what your sports watch is doing. Namely, the data our tech-
nique provides is more complex, but as a consequence also contains much more in-
formation and thereby yields a greater potential if we just become able to extract that
information from the data.

Therefore, our second step was to determine the exact velocity of the red blood cells
from the reflected light, which is quite of a magical thing when you think about it: even
though we cannot ‘see’ the red blood cells directly, we can still ‘see’ how fast they are
moving. Although we succeeded in determining the velocity, in reality a doctor will likely
need to do some tweaking to account for patient-specific factors, such as skin tone.

Finally, we studied the disease atherosclerosis, in which accumulating cholesterol
causes arteries to become more narrow, which ultimately could lead to a stroke. The
narrowing of an artery, alters the flow behavior of the red blood cells, which we were
able to pick up by studying changing patterns in the reflected light from our simulations.
By extension, it should be possible to use reflected light to detect atherosclerosis, rapidly
and cheaply flagging patients who are at risk.

We have shown the potential of reflected light techniques for medical diagnosis pur-
poses. Although further research and work is still required to put these techniques into
practice for doctor’s to use, we have set the groundwork to enable these techniques in
the not-too-distant future.

xxxiii





SAMENVATTING

Hart- en vaatziekten, zoals een hartinfarct, behoren tot de grootste doodsoorzaken we-
reldwijd. Wanneer deze ziekten ruim op tijd gediagnosticeerd worden, dan neemt de
overlevingskans van patiënten sterk toe. Bovendien kunnen we de hoge medische kos-
ten van dure therapieën terugbrengen door ziekten eerder te detecteren. Om dat te be-
reiken, onderzoeken wij hoe we medische meettechnieken kunnen verbeteren, zodat
dokters een groter arsenaal hebben om hart- en vaatziekten te bestrijden.

De ideale meettechniek is goedkoop, accuraat, en zo comfortabel mogelijk voor de
patiënt. Uitermate geschikt daarvoor zijn technieken die licht gebruiken. Neem bijvoor-
beeld dat kleine apparaatje dat je op je vinger plaatst, of de sensor in een sporthorloge:
je meet je hartslag met behulp van licht(absorptie).

Wij hebben voor ons onderzoek een computermodel ontwikkelt die in staat is om te
berekenen hoe licht wordt weerkaatst door rode bloedcellen die door aderen stromen.
Het grote voordeel van zo’n computermodel, is dat de computer zeer snel veel verschil-
lende situaties kan simuleren. In de gegenereerde data zitten patronen. Ons doel is om
uit die patronen informatie te halen over het onderliggende systeem – de stromende
rode bloedcellen – en daarmee een nieuwe medische meettechniek te ontwikkelen.

Als eerste stap hebben wij ons computermodel gebruikt om te bepalen hoe je een
hartslag kunt meten met behulp van weerkaatst licht. Dit klinkt waarschijnlijk als niets
bijzonders – want jouw sporthorloge kan dat natuurlijk ook al – maar toch is het een hele
belangrijke stap. Onze meettechniek is namelijk anders, en gebruikt weerkaatst licht om
veel complexere data te produceren. Het grote voordeel is dat in die complexe data veel
meer informatie verstopt zit. Als wij die informatie eruit weten te halen, dan kunnen wij
meer dingen van het bloed meten.

Daarom was onze tweede stap om iets met onze meettechniek te doen wat een sport-
horloge niet kan: kunnen we de snelheid van de stromende rode bloedcellen meten? Dit
is best magisch eigenlijk: ook al kunnen wij de rode bloedcellen niet direct ‘zien’, kunnen
we toch ‘zien’ hoe snel ze gaan! Het is ons gelukt om deze snelheid te meten; echter, in de
praktijk zal een dokter met wat instellingen moeten spelen om goed te kunnen meten:
patiënt-afhankelijke factoren zoals huidskleur beïnvloeden namelijk het resultaat.

Onze laatste stap was om de ziekte atherosclerose te bestuderen, oftewel aderverkal-
king: het dichtslibben van de aderen door een ophoping van cholesterol. Een vernauwde
ader beïnvloedt het gedrag van de stromende rode bloedcellen, wat tot karakteristieke
patronen in het weerkaatste licht zal leiden. Als we deze patronen omkeren, kunnen wij
met onze meettechniek vernauwde aders detecteren. Doordat onze meettechniek snel
en goedkoop is, kunnen risicopatiënten tijdig gesignaleerd worden.

We hebben met dit onderzoek de grote potentie van het gebruiken van weerkaatst
licht als medische meettechniek gedemonstreerd. Alhoewel eerst meer onderzoek nodig
is voordat deze techniek in de praktijk ingezet kan worden, hebben we met ons onder-
zoek een stevige basis gelegd om dit in de nabije toekomst mogelijk te maken.

xxxv





INTRODUCTION

BLOOD IS PIVOTAL
Blood is of pivotal importance to many living beings, including us, as humans. Through
our red blood cells, blood energizes organs by supplying oxygen. Through our white
blood cells, blood is the vessel of the immune system to cure us from diseases. And
through our platelets, blood is able to mend cuts to prevent bleeding by forming clots
with the platelets. Given the importance of blood, it should come to no surprise that car-
diac and hematological diseases (e.g., atherosclerosis) often prove critical if not treated
adequately and timely.

To correctly diagnose such diseases is difficult, as symptoms are often quite generic.
For a correct diagnosis, more information is required, requiring gathering data through
performing measurements. Therefore, being able to perform reliable measurements on
blood properties and blood flow is crucial for a doctor to correctly diagnose a patient.

Many techniques exist for measuring blood properties and composition, such as ex-
tracting a patient’s blood and analysing its contents in a laboratory. This can, in fact,
yield information on a great many diseases not directly relating to the blood itself.

MEASURING BLOOD FLOW
Diseases such as atherosclerosis are more related to the flow of blood through the arterial
system than to the properties and composition of the blood itself. Various techniques
exist for determining properties and anomalies of the blood flow, preferably through
measurements performed outside of the body. Each technique has its advantages and
disadvantages; or, applications in which it performs well and others in which it cannot
be used. Ideally, measurement techniques should be non-invasive, in addition to being
cheap, accurate, in-vivo and real-time.

Medical sonography uses transmission or reflection of ultrasound, which is particu-
larly useful for imaging soft tissue. [1] Probably the most well-known application is fetal
(B-mode or M-mode) ultrasound, i.e., imaging unborn babies using sound echos. [2, 3]
Doppler sonography, using the Doppler effect for velocimetry, can be used to visualize
and measure the blood velocity locally. This technique is useful for locating a stenosis
[4]; however – like all Doppler-based techniques – whereas it has a good axial (depth) res-
olution, its lateral (sideways) resolution is poor, requiring the measurement device to be
placed as parallel to the flow as possible. This is a limitation, as many important arteries
are more or less parallel to the skin, making perpendicular imaging most practical.

Another technique that can measure the blood velocity locally – and thereby detect
stenoses amongst many other things – is Magnetic Resonance Angiography (MRA), which
is a type of MRI specially for blood flow. [4, 5] In MRA, hydrogen atoms are excited elec-
tromagnetically, and, subsequently, the photons emitted as the atoms de-excite are mea-
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sured. This technique is very accurate and versatile, but it is unfortunately very expen-
sive and provides a considerable amount of discomfort to the patient.

As a cheap and versatile imaging technique, light has historically held great poten-
tial. [6] When direct imaging is possible, Particle Image Velocimetry (PIV) can be used for
velocimetry by carefully tracking the movement of the imaged particles. [7] When direct
imaging is not possible (i.e., indirect imaging), such as in turbid media, photoacoustic
imaging could be used to image contrasts between absorptive and non-absorptive tis-
sue at up to 2-3 cm depth in the body. [6, 8] Short pulses of light are used to locally
heat primarily the highly absorptive tissue, which causes a small expansion of the tissue,
producing an ultrasound wave that can be measured.

However, to perform measurements it is not necessarily required to do imaging. Al-
ternatively, Photoplethysmography (PPG) might be useful. PPG is a very cheap technique
that measures light absorption by illuminating skin at one side and measuring at the
other side. PPG is popularly used in a pulse oximeter to measure a heartbeat through
the fluctuations in light absorption as more or less red blood cells pass by over time. [9]
PPG may also be used to detect peripheral vascular disease [10], and to measure oxygen
saturation and blood pressure.

Whereas PPG only considers the absorption of light, the full scattered field of light
after passing through or reflected by a body part could yield much more information
about the underlying medium. Diffuse optics techniques may be used to study dynamics
in turbid media, such as blood flow in the body. [11, 12]

LASER SPECKLE IMAGING TECHNIQUES
A technique that capitalizes on the scattered light specifically is Laser Speckle Imaging
(LSI): a method for indirect imaging, in which a plane wave of coherent light illuminates
a patient locally, and the subsequent (multiply) scattered light is measured. The result
is a somewhat random interferometric pattern: a speckle pattern. Any dynamics in the
scattering medium will result in the speckle pattern to change over time through trans-
lating speckle or so-called speckle boiling [13]; therefore, the dynamics of the speckles
contains information about (the dynamics of) the underlying medium.

Until now, LSI has mostly been used to study blood perfusion from capillary beds.
[14, 15] Recently, a technique called dynamic light scattering imaging (DLSI) was devel-
oped, which uses temporal speckle intensity autocorrelation functions to improve the
quantitative measurement of cerebral blood flow. [16] Other researchers have recently
combined LSI with PIV into their optical speckle image velocimetry (OSIV) technique,
which works by tracking the speckles of translating speckle, but without the need for
seeding particles like in PIV. [17] Both methods are able to beautifully reconstruct the
entire velocity field in the capillary system of mice’s brains. Unfortunately, DLSI requires
the dynamics to be sufficiently slow and will in practice only work for small arteries (i.e.,
diameter < 200µm), while OSIV relies on negligible speckle boiling to properly track the
movement of the speckles. Another, related, major limitation to both methods is that
they could only be achieved in an invasive manner: opening up the mouse’s skull.

In the present thesis, we are interested primarily in measuring the blood flow in the
carotid artery, where the above techniques optimised for blood perfusion cannot be
used directly, as different length and time scales are involved in our application. How-
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ever, it has been shown previously that Laser Speckle Contrast Imaging (LSCI) is a good
candidate technique for the carotid artery. [18–20] The LSCI technique is a type of LSI,
in which the speckle contrast is used as a metric. Through the speckle contrast, we can
measure the dynamics of the speckle pattern, providing a measure of the dynamics of
the underlying scattering medium. [21]

Presently, LSCI is not yet the desired fully quantitative measurement technique that
it hopefully can become. [17, 22] For example, in an actual in-vivo situation, amongst
many other noise factors, a patient’s skin will introduce noise on the measured sig-
nal. Further research is required to study the precise effect of such a static surrounding
medium, and thereafter how to filter that effect to enable measuring in-vivo and non-
invasively. And even if we do, each individual patient might require a different filter, for
which patient-specific calibration may always remain necessary. [22]

Additionally, there still exists disagreement in the literature about how to quanti-
tatively derive the velocities inside the scattering medium from a speckle pattern. Al-
though the speckle contrast, K , provides a metric to measure the velocity, the precise
relationship between velocity and K remains elusive, even in a ‘perfect’ laboratory situ-
ation. [14, 23–26] Therefore, more research is required to settle the debate, and to turn
LSCI into the non-invasive and in-vivo quantitative measurement technique that it can
hopefully become.

RESEARCH QUESTIONS AND METHODOLOGY OF THIS THESIS
The goal of my thesis is to unlock the full potential of LSCI for blood flow velocimetry
from outside the body, or at least take big steps towards that end:

Can we perform velocimetry measurements using light scattered
by in-vivo flowing blood for medical diagnosis purposes?

A positive answer to this question could lead to a new medical measurement technique
that is cheap, while resulting in only minimal discomfort to the patient by being non-
invasive and in-vivo. Hopefully, this technique will aid in prematurely detecting serious
arterial diseases, such as atherosclerosis.

To answer the research question, we deploy a numerical methodology, i.e., we per-
form computer simulations of both the blood flow and the LSCI measurement technique
in their mutual interaction. In a simulation setup, we are able to vary input parame-
ters and for each combination generate an output, i.e., perform numerical experiments.
The goal is to find relationships between output and input, and thereby gain a thorough
understanding of the physics involved in the scattering of light by red blood cells and
accounting for all interacting factors. The advantage of our approach over physical ex-
periments, is that in numerical experiments we can more quickly vary parameters, and
situations difficult to reproduce in a laboratory setup may be attainable in numerical ex-
periments; however, physical experiments will always be required in conjunction with
numerical experiments to verify their veracity

Eventually, our work should lead to new medical measurement devices. To that end,
we have developed a new computational model and computer code to simulate the
whole LSCI process.
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OUTLINE OF THIS THESIS
The underlying electromagnetic, optical and fluid dynamics theories that our model is
based on, will first be discussed in Chap. 1.

Subsequently, Chap. 2 will outline our numerical LSCI algorithm, as well as discuss
the made simplifications and their consequences. The first part of Chap. 2 describes
our optics code, which simulates instantaneous light scattering by an ensemble of par-
ticles. The second part of Chap. 2 presents the fluids code, which is used for simulating
the motion of particles, including in complex arterial geometries. The third and last part
of Chap. 2 describes the coupling of the optics code to the fluids code to simulate light
scattering by arbitrarily moving particles. The used fluids code is a well established Com-
putational Fluid Dynamics (CFD) code that needs little further validation; however, our
optics code is new and will be validated in Chap. 3.

In the following three chapters, we subdivide our research question into three spe-
cific questions. While related, each has a different (medical) application.

Firstly, in Chap. 4 we perform numerical experiments to answer the question whether
LSCI can at least do the same as PPG: “Can we use LSCI to measure the frequency sig-
nature of a flow modulated by a pulsatile heartbeat-like signal?” We deploy a simple
cylindrical geometry seeded with spherical tracer particles, representing blood flow in a
patient’s artery. We study the effect of various quantities – most notably the effect of the
very important speckle boiling phenomenon.

Secondly, in Chap. 5 we take the next step towards extracting more information from
the LSCI measurements. The goal is to perform quantitative velocimetry measurements
– “Can we use LSCI to measure the velocity of the underlying scatterers in a turbid flow?”
– and compare the obtained quantitative relationship to theoretical models. This is an
important question, as there exists the aforementioned disagreement in the literature
as to how to quantitatively derive the velocity from the speckle contrast [14, 24], while
performing accurate quantitative measurements is pivotal to medical devices.

Thirdly, in Chap. 6 we take the first major step towards what a medical device could
potentially do – “Can we detect atherosclerosis from light scattered by in-vivo flowing
blood?” We simulate a complex patient-specific sclerosed artery, i.e., an artery suffering
from the disease atherosclerosis in which a buildup of plaque has caused the narrowing
of the artery. We find characteristic signatures in the scattered light for specific underly-
ing flow features, e.g., for a bifurcation and for the region around the stenosis.

Finally, Chap. 7 will bring it all together to answer our main research question, pro-
vide opportunities for future research, and speculate about other applications of our
research.
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1
THEORY

In this chapter, the relevant background theory will be summarised. Some more detailed
derivations are delegated to an appendix. In Sec. 1.1, Mie theory will be derived, which
computes the light scattered by a spherical scatterer of any size. In Sec. 1.2, the relevant
properties of blood are described, followed by the governing equations describing any flow:
the Navier-Stokes equations. In Sec. 1.3 some relevant exact solutions to the Navier-Stokes
equations are given. In Sec. 1.4, Lagrangian particle tracking is described, together with
the possibly relevant forces, which is used to simulate the movement of particles.

This chapter was published previously: Van As, K. (2015). Interferometric Scattering of Light by an Ensemble of
Flowing Spherical Particles: A Numerical Study [Master’s Thesis, Delft University of Technology]. [1] Available
online via http://repository.tudelft.nl.
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1.1. MIE THEORY
While studying the colour effects of colloidal gold particles, in 1908 Gustav Mie (1868-
1957) derived a solution for diffraction by a sphere [2]. This paper was written in Ger-
man. Ever since, two English translations have appeared in the literature [3, 4], which
wasn’t until 1976. In fact, Mie’s paper was almost ignored altogether until 1945 [5], likely
because his theory was impractical, given the infinite series and Ricatti-Bessel functions
involved. His solution had to wait for the digital era and until stable algorithms were
developed.

Nowadays, many books on Electrodynamics and Optics derive the Mie solution. In
van de Hulst [6], a brief derivation using Gaussian units is given, which is a nice starting
point. Stratton [7] contains a more rigorous derivation, as do Bohren & Huffman [8].

In this section, the book of Bohren & Huffman will be followed closely, without re-
ferring it repetitively. The most important steps and thoughts in the derivation will be
summarised.

1.1.1. MAXWELL’S EQUATIONS AND THE WAVE EQUATION

Let E⃗ resp. H⃗ be the electric and magnetic fields. Then, assuming a periodic field A⃗ =
Re

{
A⃗c e−iωt

}
(A⃗c ∈ C3), with A⃗ ∈ {E⃗ , H⃗ }, the Maxwell equations may be written in the

form:

∇· (ϵE⃗c
)= 0, (1.1)

∇× E⃗c = iωµH⃗c , (1.2)

∇· H⃗c = 0, (1.3)

∇× H⃗c =−iωϵE⃗c , (1.4)

where ω is the frequency of the periodic solution, µ is the (magnetic) permeability and
the complex (electric) permittivity is

ϵ= ϵ0
(
1+χ)+ iσ/ω, (1.5)

where σ is the conductivity and χ is the electric susceptibility. All these parameters de-
pend on the propagation medium.

Starting from Maxwell’s Equations, it is possible to derive the vector wave equation,
which both E⃗ and H⃗ must satisfy:

∇2 A⃗c +k2 A⃗c = 0⃗, (1.6)

where k2 =ω2µϵ→ k =ω(N /c) ≡ N k0 is the wave number, where the (complex) refrac-
tive index was introduced, given in terms of the electromagnetic constants/coefficients:

N =
√

ϵµ

ϵ0µ0
= n(1+ iκ) (1.7)

where the subscript 0 indicates the value of the parameter in vacuum. Also, c = 1/
p
ϵ0µ0

is the speed of light in vacuum.
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Figure 1.1: Geometry of the scattering
problem by an arbitrary particle. In
Mie theory, a spherical particle will be
considered. Reproduced from Bohren
& Huffman Fig. 3.1 (p58) [8].

The scalar wave equation (Helmholtz equation) is just Eq. (1.6):

∇2ψ+k2ψ= 0. (1.8)

As tempting as it is, the individual components of A⃗c do not satisfy the scalar wave
equation separately. From Eq. (1.8) this is not obvious, since the coupling of the compo-
nents occur in the Boundary Conditions (BCs), to be considered below.

1.1.2. DERIVATION OF THE SCATTERED FIELD
Consider the scattering geometry in Fig. 1.1. A Plane Wave (PW) is incident on a particle,
which will exert a force on the electrons within the particle. Their movement will both
alter the internal and external field. In scattering theory, we consider the external field
as a superposition of the incident, E⃗i , and scattered field, E⃗s :

E⃗2 = E⃗i + E⃗s . (1.9)

At the particle’s boundary, these internal and external fields are coupled via electromag-
netic BCs. In Mie theory, a spherical scatterer is observed, which gives a relatively easy
exact solution.

Boundary Conditions. BCs are contained within the Maxwell equations and found by
integrating them over a small volume or a small loop around a boundary. Integrating
over a volume yields a condition for the normal component via Eqs. Eqs. (1.1 and 1.3).
The tangential component follows from Eqs. Eqs. (1.2 and 1.4). These BCs are respec-
tively: [

ϵ2E⃗2 −ϵ1E⃗1
] · n̂

∣∣
r=a = 0, (1.10)[

µ2H⃗2 −µ1H⃗1
] · n̂

∣∣
r=a = 0, (1.11)[

E⃗2 − E⃗1
]× n̂

∣∣
r=a = 0⃗, (1.12)[

H⃗2 − H⃗1
]× n̂

∣∣
r=a = 0⃗, (1.13)
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where n̂ is the outwards normal of the particle: n̂ = r̂ for a sphere. Index 1 refers to the
internal field and index 2 refers to the external field, cf. Fig. 1.1. a denotes the radius of
the spherical particle.

Solve the Scalar Wave Equation. The scalar wave equation Eq. (1.8) in spherical coor-
dinates is most easily solved using separation of variables (r,θ,ϕ). The linearly indepen-
dent basis set of solutions are:

ψenm = cos(mϕ)P m
n (cosθ) zn (kr ) ,

ψonm = sin(mϕ)P m
n (cosθ) zn (kr ) ,

(1.14)

where e and o denote ‘even’ and ‘odd’ respectively. P m
n is the associated Legendre poly-

nomial and zn denotes any spherical Bessel function. As usual when solving a linear
differential equation, the general solution is a superposition of all solutions in the basis
set of solutions.

Solve the Vector Wave Equation. As mentioned, E⃗ and H⃗ do not satisfy the scalar wave
equation. However, the solution to the scalar wave equation may be used to construct
solutions to the vector wave equation (proof by direct substitution):

M⃗ =∇× (⃗
rψ

)
,

kN⃗ =∇× M⃗ ,

kM⃗ =∇× N⃗ ,

(1.15)

which gives a total of four vector solutions for each {n,m}. These solutions are called
Vector Spherical Harmonics (VSHs). Written out in its entirety, using1 ρ ≡ kr :

M⃗{e
o
}
mn =

{ −sinmϕ

cosmϕ

}
m

sinθ
P m

n (cosθ) zn
(
ρ
)
θ̂

+
{ −cosmϕ

−sinmϕ

}
dP m

n (cosθ)

dθ
zn

(
ρ
)
ϕ̂, (1.16)

N⃗{e
o
}
mn =

{
cosmϕ

sinmϕ

}
n (n +1)P m

n (cosθ)
zn

(
ρ
)

ρ
r̂

+
{

cosmϕ

sinmϕ

}
dP m

n (cosθ)

dθ

1

ρ

d
(
ρzn

(
ρ
))

dρ
θ̂

+
{ −sinmϕ

cosmϕ

}
P m

n (cosθ)

sinθ

m

ρ

d
(
ρzn

(
ρ
))

dρ
ϕ̂. (1.17)

1Note that ρ depends on k, which depends on the medium via the refractive index: k = N k0.
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Expand the Incident Field in terms of Vector Spherical Harmonics. The incident field
is a PW, which is without loss of generality2 written as:

E⃗i = E0e ik2z x̂ = E0e ik2r cosθ (
sinθcosϕr̂ +cosθcosϕθ̂− sinϕϕ̂

)
, (1.18)

which may be expanded in terms of VSHs, which are the basis functions of the studied
system:

E⃗i = E0

∞∑
n=1

in 2n +1

n (n +1)

(
M⃗ (1)

o1n − iN⃗ (1)
e1n

)
, (1.19)

which follows from the equivalent of Fourier’s trick: take the functional inner product
and by the orthogonality of the VSHs Eq. (1.15) many terms drop out. The coefficients
may then be computed using the non-zero inner products of the non-orthogonal func-
tions. The ‘(1)’ refers to the use of the spherical Bessel function of the first kind, z(1)

n ≡ jn ,
which is the only finite Bessel function in the origin, which is required since Eq. (1.18) is
finite in the origin.

Arriving at this solution is the most difficult part of the Mie derivation. To quote
Bohren & Huffman [8] (p92): “This is undoubtedly the result of the unwillingness of a
plane wave to wear a guise in which it feels uncomfortable; expanding a plane wave in
spherical wave functions is somewhat like trying to force a square peg into a round hole.”

Notably in Eq. (1.19), only the m = 1 term survived, because the incident field Eq.
(1.18) only possesses the m = 1 term. By orthogonality of the cosine and sine function,
all terms other than m = 1 will then drop out during expansion.

Finally, the magnetic field, H⃗i , follows from the curl of Eq. (1.19), cf. Eq. (1.2):

H⃗i = −k2

ωµ2
E0

∞∑
n=1

in 2n +1

n (n +1)

(
M⃗ (1)

e1n + iN⃗ (1)
o1n

)
. (1.20)

Expand the other Fields in terms of Vector Spherical Harmonics. The next step in the
derivation is to expand the other fields in terms of VSHs, as that is the general solution
to the vector wave equation Eq. (1.6). We may write:

E⃗1 =
∞∑

n=1
En

(
cn M⃗ (1)

o1n − idn N⃗ (1)
e1n

)
, (1.21)

H⃗1 = −k1

ωµ1

∞∑
n=1

En

(
dn M⃗ (1)

e1n + icn N⃗ (1)
o1n

)
, (1.22)

where En = E0in (2n +1)/n (n +1), which is merely for convenience. The spherical Bessel
function of the first kind has been used, because of its finiteness at the origin, which is
contained within the internal region. Again, the magnetic field followed from the curl.

2A sphere is highly symmetrical, so at this point the coordinate system is arbitrary. However, by choosing the
propagation direction as the z-axis and the polarisation of the electric field along the x-axis, we fix the coordi-
nate system. If in some external lab frame the propagation direction and/or the polarisation is different (but
still orthogonal), a simple rotation of axis permits usage of the Mie solution as derived with a fixed orientation,
i.e., no generality was lost in fixing the coordinate system.
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Similarly, the scattered field may be expanded according to:

E⃗s =
∞∑

n=1
En

(
ian N⃗ (3)

e1n −bn M⃗ (3)
o1n

)
, (1.23)

H⃗s = k2

ωµ2

∞∑
n=1

En

(
ibn N⃗ (3)

o1n +an M⃗ (3)
e1n

)
, (1.24)

where the spherical Bessel function of the third kind ≡ spherical Hankel function of the
first kind, z(3)

n ≡ h(1)
n has been used. This follows from its asymptotic behaviour. It be-

comes an outgoing spherical wave for kr ≫ n2:

h(1)
n (kr ) ∼ (−i)ne ikr

ikr
, (1.25)

which is to be expected on physical grounds for a scattering process.
The reader may wonder why m ̸= 1 is again omitted. And why are the N⃗omn and

M⃗emn terms omitted for E⃗? This follows from the BCs, in combination with the orthog-
onality of the VSHs and the fact that the incident field Eq. (1.19) does not possess those
terms. Since I’d not just believe that either, a more detailed description may be found in
App. A.1.

Find the Mie Coefficients. The Mie coefficients, {an ,bn ,cn ,dn}, are finally found by
applying the BCs Eqs. (1.10-1.13) to the field expansions Eqs. (1.19-1.24). The derivation
may be found in App. A.2. Four equations with four unknowns are then found, from
which all four coefficients follow. In this research, only the scattering coefficients are of
interest:

an = µ2m2 jn(y)[x jn(x)]′−µ1 jn(x)[y jn(y)]′

µ2m2 jn(y)[xh(1)
n (x)]′−µ1h(1)

n (x)[y jn(y)]′
, (1.26)

bn = µ1 jn(y)[x jn(x)]′−µ2 jn(x)[y jn(y)]′

µ1 jn(y)[xh(1)
n (x)]′−µ2h(1)

n (x)[y jn(y)]′
, (1.27)

where x ≡ k2a is the size parameter, y ≡ k1a = mx, and m is the relative refractive index:

m ≡ k1

k2
= N1

N2
=

√
ϵ1µ1

ϵ2µ2
. (1.28)

To simplify the Mie coefficient, we introduce the Ricatti-Bessel functions:

ψn(ρ) ≡ ρ jn(ρ), (1.29)

ξn(ρ) ≡ ρh(1)
n (ρ), (1.30)

from which the Mie coeffients simplify to:

an = µ2mψn(y)ψ′
n(x)−µ1ψn(x)ψ′

n(y)

µ2mψn(y)ξ′n(x)−µ1ξn(x)ψ′
n(y)

, (1.31)

bn = µ1ψn(y)ψ′
n(x)−µ2mψn(x)ψ′

n(y)

µ1ψn(y)ξ′n(x)−µ2mξn(x)ψ′
n(y)

. (1.32)

In the present research, µ1 =µ2 =µ0 ≡µ, and thus µ will drop out of the coefficients.
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1.1.3. AMPLITUDE SCATTERING MATRIX
Substituting the definition of the VSHs Eqs. (1.16 and 1.17) into the field expansion Eq.
(1.23), yields:

E⃗s · r̂ = cosϕ

ρ2

∞∑
n=1

En iann(n +1)sinθπn(cosθ)ξn(ρ), (1.33)

E⃗s · θ̂ = cosϕ

ρ

∞∑
n=1

En
(
ianτn(cosθ)ξ′n(ρ)−bnπn(cosθ)ξn(ρ)

)
, (1.34)

E⃗s · ϕ̂= −sinϕ

ρ

∞∑
n=1

En
(
ianπn(cosθ)ξ′n(ρ)−bnτn(cosθ)ξn(ρ)

)
, (1.35)

where two angular functions were introduced to replace the associated Legendre poly-
nomials:

τn(cosθ) ≡ dP 1
n (cosθ)

dθ
, πn(cosθ) ≡ P 1

n (cosθ)

sinθ
. (1.36)

As it turns out, these two angular functions possess nice recursive properties, useful for
numerical algorithms [8, 9].

If we now apply the Far-Field (FF) approximation, ξn may be replaced by its asymp-
totic limit, cf. Eqs. (1.25 and 1.30). It then follows that the radial component of E⃗s falls
off 1/ρ faster than the other components, making it negligible in the FF. We are left with
(using µ≡ cosθ):

E⃗s · θ̂ ∼ cosϕ
e iρ

−iρ
E0

∞∑
n=1

2n +1

n(n +1)

(
anτn(µ)+bnπn(µ)

)
, (1.37)

E⃗s · ϕ̂∼−sinϕ
e iρ

−iρ
E0

∞∑
n=1

2n +1

n(n +1)

(
anπn(µ)+bnτn(µ)

)
. (1.38)

Upon introduction of the amplitude scattering matrix, [S](µ), this may be written in
the form: [

E⃗s · θ̂
E⃗s · ϕ̂

]
= e iρ

−iρ
E0

[
S2 0
0 S1

][
cosϕ
−sinϕ

]
, (1.39)

where the components of the amplitude scattering matrix are given by

S2(µ) ≡
∞∑

n=1

2n +1

n(n +1)

(
anτn(µ)+bnπn(µ)

)
,

S1(µ) ≡
∞∑

n=1

2n +1

n(n +1)

(
anπn(µ)+bnτn(µ)

)
.

(1.40)

Finally, recall that the incident field was chosen to travel in the ẑ-direction and po-
larised in the x̂-direction. With this convention, θ = θs is the scattering angle: the angle
between the propagation vector of the incident field (⃗ki = kẑ) and the propagation vec-
tor of the scattered field (⃗ks = kr̂ ). The scattering plane, which is per definition the plane
spanned by those two propagation vectors, is a vertical plane rotated with an angle ϕ
with respect to the x̂-axis. This is illustrated by Fig. 1.2.
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Figure 1.2: The standard scattering geometry is
shown: an Incoming Plane Wave is coming in from
below with k̂i = ẑ and is scattered radially outward
from the origin k̂s = r̂ , which is the position of a
scatterer.
The scattering plane is per definition the area
spanned by these two propagation vectors, which is
shown as a gray shaded area in the figure. Its unit
normal is ϕ̂.
Any incident field (here: polarised in the x̂-
direction) may be resolved into a parallel (E∥) and
perpendicular (E⊥) component relative to the scat-
tering plane. The same applies to the scattered field.
For an arbitrary coordinate system, the fields may
then be expressed in terms of those parallel and per-
pendicular components.

Noting that a rotation of axis preserves orthogonality, it follows that for an arbitrary
coordinate system we can use the component parallel and perpendicular to the scatter-
ing plane. In cylindrical coordinates (s,ϕ, z), the incident field may be written as

E⃗i = E0e ikz x̂ = E0e ikz (
cosϕŝ − sinϕϕ̂

)
, (1.41)

where the ϕ̂-component is orthogonal to the scattering plane and ŝ is parallel to it (see
Fig. 1.2).

Comparing this result for the incident field with Eq. Eq. (1.39), and noting that the
ϕ̂-component is orthogonal to the scattering plane and that the θ̂-component is parallel
to it, we may write: [

Es∥
Es⊥

]
= e ik(r−z)

−ikr

[
S2 0
0 S1

][
Ei∥
Ei⊥

]
, (1.42)

where e−ikz was merely introduced to cancel the exponential in Eq. (1.41), i.e., the left
hand side is solely a function of r (and θ via [S]) and not of z, which is confusing in Mie
theory literature.

1.1.4. MULTIPLE SCATTERERS
When multiple scatterers are considered, it is required to convert Mie theory to some
global coordinate system, i.e., currently the origin was set in the center of the scatterer,
which is ambiguous with multiple scatterers. Also, the different scatterers will very likely
have a different initial phase, which must be considered.

Global Coordinates. In order to define Mie theory with respect to some global coor-
dinate system, it is important to express everything relative to some common origin. In
Fig. 1.3, we define

r⃗ ≡ r⃗ − r⃗ ′, (1.43)
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Figure 1.3: r⃗ is used to define a dif-
ference in position, which permits
the local coordinates (which used r⃗
in previous sections) to be written
in global coordinates (which now
claims the symbol r⃗ ).

where r⃗ is the position with respect to the global origin and r⃗ ′ is the position of the local
origin with respect to the global origin. In Mie theory, r⃗ ′ is the position of the scatterer
with respect to the global origin.

Using this symbol, it is possible to replace all r⃗ derived in local coordinates by r⃗ and
the solution in global coordinates has been found. E.g., Eq. (1.42) becomes:

[
Es∥
Es⊥

]
= e ik(r−z)

−ikr
[

S2 0
0 S1

][
Ei∥
Ei⊥

]
. (1.44)

Initial Phase. Since Mie theory was derived in a local coordinate system, the reference
to any sort of initial phase is lost. However, it is still implicitly contained within the so-
lution, i.e., the factor e−iωt is omitted in the complex notation of the electric field, but
the combination of e−iωt and e ikz determines a spacetime origin for the Incoming Plane
Wave (IPW), which cannot be the same for all scatterers.

Fig. 1.4 shows a test geometry which has an identical distance between each particle
and the scattering target, such that only the initial phase may influence the relative phase
of the two scatterers. Since we wish to measure the scattered field of the two scatterers
simultaneously, it is required to sample the IPW at a different time (t−1 vs. t0) at the same
z or at a different z at the same time (t0). So, with respect to some common global origin
where z = 0, we may write for the field at the scatterer’s local origin (using k⃗i = kẑ):

E⃗ (⃗r1, t ) = E⃗ (⃗0, t )e i⃗ki ·⃗r1 = E⃗ (⃗0, t )e ikz1 , (1.45)

E⃗ (⃗r2, t ) = E⃗ (⃗0, t )e i⃗ki ·⃗r2 = E⃗ (⃗0, t )e ikz2 , (1.46)

and since E⃗ (⃗0, t ) may be unambiguously defined, the relative phase difference immedi-
ately follows. So, the incident field of particle j may be given by:

E⃗ j = E0e i(kzlocal−ωt )e ikz j x̂, (1.47)

where the first exponential is the exponential used in (local) Mie theory, whilst the sec-
ond is a phase difference picked up due to the global coordinates, which must be taken
into account explicitely, separately from the Mie solution.
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Figure 1.4: This figure helps in understanding the
initial phase within Mie theory. The scattering tar-
get (e.g., a camera) is at a fixed identical distance
from the two scatterers, such that the final phase
need not be considered.
The (black) times on the very left show the times
from the perspective of the Incoming Plane Wave
(IPW). As expected, the wave does not arrive at the
two scatterers at the same time.
The (blue) times shown at the ‘events’ are reverse-
engineered times: If we are to measure at the scat-
tering target at a fixed time, we cannot consider
the IPW at the same time and at the same position
simultaneously.

1.2. BLOOD

For a human to survive, his organs need to be given useful energy. Blood is the means
for the human body to transfer all kinds of proteins and oxygen to the organs. Via white
blood cells, the immune system too uses the blood to fight infections.

Blood consists of the yellow liquid blood plasma in which particles are dispersed:
RBCs (erythrocytes), white blood cells (leukocytes) and platelets (thrombocytes). The
hematocrit is about 45% (for men) [10], blood plasma occupies about 54.3% and white
blood cells about 0.7%. Blood plasma consists of 92% water and 8% dissolved proteins,
e.g., glucose. At 37◦C, the resulting blood density is 1060 kg/m3 [11, 12].

For the present research, primarily the RBCs are of interest. These donut-shaped
particles (see Fig. 1.5) are responsible for transporting oxygen through the body, which
they acquire from the lungs.

Figure 1.5: This figure shows the shape of a RBC. It is a flex-
ible oval biconcave disk, a donut-shape if you will. Its flexi-
bility implies that it is able to change its shape as to be able
to squeeze through smaller arteries.

The high volume fraction of particles causes blood to behave like a non-Newtonian
fluid: it has a different rheology than simple water. In line with the theory of evolution,
this adapted rheology increases the transport compared with what pure blood plasma
would be able to do. The (dynamic) viscosity of blood is about µblood = 3 to 4 mPa · s at
37◦C. This is about a factor 4 more viscous than water (µwater = 0.890mPa · s at 25◦C) [13].

In this flow, there is a radial distribution for the RBC-concentration, as is measured
by Aarts et. al. [14] and shown in Fig. 1.6. This distribution may be converted into
a radial distribution for the particle number density, which may serve as a probability
density function when injecting particles in a flow simulation.
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Figure 1.6: Radial hematocrit profile in a cylinder as measured by Aarts et. al. [14].

1.2.1. CONVERTING A VOLUME DISTRIBUTION TO A NUMBER DISTRIBUTION
If φ denotes the hematocrit, then we may write that in an infinitesimal thin cylinder
surface (between r and r +dr ):

φ(r ) = dVrbc(r )

dV (r )
,

dV = 2πr dr L,

dN (r ) = dVrbc

V1rbc
,

where V denotes a volume, dN is the number of particles within the volume dV and L is
the length of the cylinder. And thus:

dN (r )

dr
= [

φ(r )r
] 2πL

V1rbc
≡ N P (r ), (1.48)

where P (r ) is the probability density function for the particle number and N is the total
number of particles within a cylinder of length L and radius R:

P (r ) = φ(r )r∫ R
0 φ(r )r dr

, (1.49)

N = 2πL

V1rbc

∫ R

0
φ(r )r dr. (1.50)
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Here, N is required to obtain the correct particle concentration, whereas P (r ) is required
to obtain the correct radial particle distribution. For the present research, N is strongly
limited by the computational resources and thus the required N cannot be achieved.

The cumulative particle distribution is then given by:

P (r ≤ R1) =
∫ R1

0
P (r )dr. (1.51)

which is useful for numerically converting a uniform distribution (as generated by the
computer) to an arbitrary distribution, i.e., if u ∈ U [0,1], then we can find the rinj at
which to inject the particle by inverting the equation P (rinj ≤ R1) = u. Fig. 1.7 illustrates
this graphically.

Figure 1.7: This figure shows a cumulative probability function, P (x ≤ X ), for some parameter, x. The derivative
of this function is the probability density function, i.e., the slope of this function is a measure for how probable
x is: the steeper the function at some x1, the more likely that x1 is chosen.
A random number u ∈U [0,1] can then be mapped to the x-axis. It is shown that for some constant range ∆u,
the range ∆x varies. Since all numbers in ∆u are equally likely, this means that values for x are not equally
likely.
In other words, f (x) ≡ P (x ≤ X ) and since f (x) is uniformly increasing, P ( f (x) ≤ f (X )) = f (x). But if we take
a random number u ∈ U [0,1], then P ( f (x) ≤ u) = u. It then follows that P (x ≤ X ) = u for X = f −1(u), i.e.,
x = f −1(u) should be taken, when sampling for x using uniform numbers, to satisfy the required probability
density function.
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1.2.2. THE NAVIER-STOKES EQUATIONS AND RHEOLOGY
The equations of fluid dynamics to be solved are the Navier-Stokes equations for incom-
pressible flow, using the Newtonian model for the stress tensor [15]:

∂ui

∂xi
= 0, (1.52)

∂ui

∂t
+u j

∂ui

∂x j
= 1

ρ

(
− ∂P

∂xi
+ ∂σ j i

∂x j
+ f ext

i

)
, (1.53)

σ j i =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
, (1.54)

where ui is the velocity in the xi direction, xi denotes the i ’th coordinate: xi ∈ {x, y, z}
for i ∈ {1,2,3}, ρ is the fluid density, µ the fluid viscosity, P is the pressure, σi j is the
deviatoric stress tensor and f ext

i represents the sum of all external forces per unit volume
(e.g., gravity). The Einstein summation convention is employed3.

Blood does, however, not behave like a Newtonian fluid. Consequently, Eq. (1.54)
should be replaced by a different constitutive relationship when a non-Newtonian fluid
model is assumed (i.e., a different rheology). For the scope of the present research, a
Newtonian model will be assumed nonetheless. For future research, non-Newtonian
models for blood can be found in e.g. Merrill [16], who shows that blood behaves like
a Newtonian fluid for high strain rate γ̇ = ∂uz

∂r > 100 s−1 (in cylindrical coordinates), but
has an offset in its shear stress (i.e., the yield stress) for small strain rates with a different
accompanying viscosity.

1.3. EXACT SOLUTION TO THE NAVIER-STOKES EQUATIONS
Whilst the Navier-Stokes equations Eqs. (1.52-1.54) are non-linear and there exists no
general solution (as of today), it may still be solved exactly for some specific cases, typi-
cally for a well-defined simple geometry and a sufficiently low Reynolds number.

The Reynolds number is the ratio of inertial forces and viscous forces and thus pro-
vides a measure for whether the flow is inertia-dominated (which will eventually result
in turbulence at a sufficiently high geometry-dependent Reynolds number, e.g., about
Re > 4000 for pipe flow) or viscous-dominated (which results in laminar flow for a suffi-
ciently low Reynolds number):

Re ≡ U D

ν
= 〈u〉2R

ν
, (1.55)

where U is a typical velocity scale, D a typical length scale andν is the kinematic viscosity
of the fluid at hand. The second expression is in terms of the more common parameters
used for pipe-flow: R is the radius of the pipe and 〈u〉 is the mean velocity:

〈u〉 ≡
∫

u(r )d a∫
d a

=
∫ R

0 u(r )r dr∫ R
0 r dr

. (1.56)

3In the Einstein summation convention, any repeated indices within the same term imply an inner product,
e.g., ai bi = a1 ·b1+a2 ·b2+a3 ·b3. Singular indices represent a set of equations, being a set of three equations
in the Navier-Stokes equations: one for each dimension.



1

20 1. THEORY

1.3.1. PLUG FLOW

In case of a laminar unidirectional flow in an infinite environment, the velocity will sim-
ply remain constant in magnitude and direction:

u⃗ =U ẑ. (1.57)

This solution is called plug flow. In more realistic situations, this solution is still useful
as a simplification. For example, in the case of flow inside a tube, there are several situa-
tions that approach plug flow [15]. (1) Nearby the entrance of a tube the velocity profile
is still developing, approaching plug flow in its center. (2) In pulsatile flow, the flow pro-
file is rather complex, but for a high Womersley number (see Sec. 1.3.3) the fluctuations
become smaller, approaching plug flow. (3) For a non-Newtonian fluid, such as blood,
the velocity profile is flattened in the center of the tube, which equals plug flow locally.

1.3.2. HAGEN-POISEUILLE FLOW

For the case of a cylinder of radius R, there exists an exact solution for the steady-state
( dΨ

dt = 0) fully-developped (u⃗ = u(r )ẑ, P = P (z)) profile. The result is the following:

u⃗(r ) =
(
−dP

dz

)
1

4µ

(
R2 − r 2) ẑ. (1.58)

Applying Eq. (1.56) to Poiseuille flow allows us to express the mean velocity, 〈u〉, in
terms of the maximum velocity, umax = u(r = 0). The result is that umax = 2〈u〉.

1.3.3. WOMERSLEY FLOW

The Womersley flow exact solution is similar to the Hagen-Poiseuille solution, but with
the d

dt -term included. For an arbitrary time-dependency of the pressure gradient, the
solution u(r, t ) takes the form of an inverse temporal Fourier transform of the Fourier
transform of ∂P

∂z multiplied by Bessel functions of the first kind and of zeroth order, J0.

For a cosine forcing of frequency ω0, ∂P
∂z =

∣∣∣ ∂P
∂z

∣∣∣
max

cos(ω0t ), this inverse Fourier trans-

form may be carried out, resulting in:

u(r, t ) =−
∣∣∣∣∂P

∂z

∣∣∣∣
max

1

ρω0

[
A(r )sin(ω0t )+B(r )cos(ω0t )

]
,

A(r ) ≡ℜ{y(r /R)},

B(r ) ≡ℑ{y(r /R)},

y(x) = 1− J0(α0i3/2x)

J0(α0i3/2)
,

(1.59)

where α0 ≡
p
ω0/νR is the dimensionless Womersley number and ρ is the mass density

of the fluid. This solution could be used to evolve Lagrangian particles (see Sec. 1.4) in a
time-dependent cylindrical fluid flow, without requiring a Computational Fluid Dynam-
ics (CFD) code.
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1.4. LAGRANGIAN PARTICLE TRACKING (LPT)
To simulate particles with a subgrid size, Lagrangian Particle Tracking (LPT) is used. Par-
ticles are point-particles subject to forces and are evolved using Newton’s law and some

integration scheme. Defining Y⃗ (t ) as the particle position, V⃗ (t ) = dY⃗ (t )
dt as the particle

velocity and u⃗ (⃗x, t ) as the fluid velocity, and letting the subscript p refer to the particle
and f to the fluid, the forces can then be written as [17, 18]:

• Particle Inertia Force. (left-hand side of Newton’s equation) F⃗i n = mp
dV⃗
dt

• Gravity and Buoyancy Force. F⃗g = (
mp −m f

)
g⃗

• Viscous Drag Force (Stokes). F⃗d =−6πµRp
(
V⃗ (t )− u⃗(Y⃗ (t ), t )

)
• Pressure Force. F⃗pr = m f

(
Du⃗
Dt −ν∇2u⃗

)∣∣∣
Y⃗ (t )

• Added-mass Force. F⃗am =−m f

2
d(V⃗ (t )−u⃗(Y⃗ (t ),t ))

dt

• Basset/History Force. F⃗B = Rpp
πν

∫ t

−∞
d(V⃗ (ξ)−u⃗(Y⃗ (ξ),ξ))

dξ
dξp
t−ξ

where dΨ
dt = ∂Ψ

∂t + V⃗ ·∇Ψ and DΨ
Dt = ∂Ψ

∂t + u⃗ ·∇Ψ for any Ψ. Which results in the following
force equation for particle motion:

F⃗i n = F⃗pr + F⃗am + F⃗d + F⃗g + F⃗B . (1.60)
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2
DESCRIPTION OF THE

ALGORITHM/CODE

Based on Mie theory (Sec. 1.1), we have designed and implemented an algorithm1 to com-
pute the light scattered by an ensemble of particles. Thus given an incoming plane wave
and given a certain configuration of scatterers, the optics code should compute the in-
tensity profile as measured by a given distant camera. This computed intensity will be
independent of time, unlike the instantaneous intensity, as will be discussed in Sec. 2.1.2.

In in-vivo blood flow, these scatterers (RBCs) are moving as a function of time in the ar-
teries, requiring us to study dynamic light scattering. To that end, the optics code must be
executed repetitively for each timestep, and the results combined to mimic a measurement
of an actual camera.

The optics code will use the result of a separate fluid dynamics code, which evolves the
particle positions over time, as its input. A separate code will take care of the coupling of
the two codes, such that any Computational Fluid Dynamics (CFD) code can be used as
an input to our optics code.

This chapter briefly describes the assumptions and the functionality of the optics code (Sec.
2.1), the fluids code (Sec. 2.2) and the coupling code (Sec. 2.3). A detailed description of the
codes is delegated to App. B. Evidently, some approximations were to be made; the effects
of which will also be discussed. Subsequently, Chap. 3 will show a validation study for the
optics code.

A large part of this chapter was published previously: Van As, K. (2015). Interferometric Scattering of Light by an
Ensemble of Flowing Spherical Particles: A Numerical Study [Master’s Thesis, Delft University of Technology].
[1] Available online via http://repository.tudelft.nl.
1Our code described in this chapter has been published open-source, see the List of Publications on page 137.
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2.1. OPTICS

The optics code2 is responsible for simulating Laser Speckle Imaging (LSI), i.e., comput-
ing the intensity profile at a given camera for a given incoming Plane Wave (PW) and a
given distribution of spherical scatterers. The computation will be performed in an in-
terferometric manner, i.e., the phase will carefully be taken care of for each individual
trajectory.

Currently, two codes have been created: Single-Scattering Far-Field (SSFF), which
only takes single scattering into account, and Multi-Scattering Far-Field (MSFF), which
takes multiscattering into account without any statistical averaging, which is an exten-
sion to the SSFF code. In either case, a FF assumption is made for the distance between
the scatterers.

2.1.1. THE MIE ALGORITHM

As a starting point, the Bohren & Huffman Mie code (‘bhmie’) has been used, which ac-
companies their book [2]. Their code has been written in F77 (Fortran). Their code com-
putes the amplitude scattering matrix as a function of the scattering angle, [S](θs ), for a
single homogeneous sphere. The scattering angles necessarily are a sequence of evenly
spaced scattering angles between 0◦ and 180◦. Additionally, it also outputs some θs -
averaged quantities, like the extinction efficiency. The only input parameters required
by bhmie are the size parameter, x, and the relative refractive index, m (see Eq. (1.28)
and the text just above it).

This code has been adapted to take as an argument an array of arbitrary scattering
angles.3 Then, any computed quantities which are not required for the present study
(like the extinction efficiency), we have removed from the code.

In bhmie, [S] is computed cf. Eq. (1.40), which is an infinite sum. This sum is trun-
cated at the index nC , which has been found empirically:

nC = round
(
x +4x

1
3 +2

)
, (2.1)

where x is the size parameter of the sphere. This heuristic was proposed by Wiscombe in
1979 [3, 4] and is merely a given wisdom in Bohren & Huffman’s book. The Bessel/Hankel
functions and Legendre polynomials are computed using recursion relationships, given
the exact (or asymptotic) value for some index. The book of Barber & Hill nicely sum-
marises all these, and more, computational techniques for easy reference [5].

2.1.2. THE EXTENDED ALGORITHM (CAMERA, MULTISCATTERING)
Fig. 2.1 shows qualitatively what the algorithm is expected to do. Briefly, an incoming
PW is scattered by each particle to each other particle. In the very-FF these scattered
fields are again PWs, and thus the exact same equations may be used to scatter those
fields again by each particle to each other particle. Ad infinitum. I will refer to these
iterations as “scattering orders”.

2Our code described in this chapter has been published open-source, see the List of Publications on page 137.
3Actually, the cosine of the scattering angles, since the scattering angle only appears as a cosine in the algo-

rithm.
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Figure 2.1: The figure shows the workflow of the algorithm in an animated manner. In (a), there is an incoming
Plane Wave (PW) (IPW) incident on the spherical scatterer labelled ‘1’, which will scatter. In the Near-Field
(NF), this gives a very complex scattered field as described by Mie theory Eq. (1.40). In the Far-Field (FF), this
may be approximated by a spherical wave (which is still a function of the scattering angle), which in the very-
FF may be approximated as a PW.
In (b), a second scatterer is illuminated by both the scattered PW and the original incoming PW, which will
again result in a PW in the very-FF. In this manner, each scatterer can scatter each wave to each other scatterer,
until convergence.
In (c), it is noted that this scattering process may continue ad infinitum when it is performed in the described
iterative manner.

Fig. 2.2 illustrates what the scattering order means. It also discriminates between
three distinct regions in the multiscattering-process, which are to be treated differently.
In initialscatter, the IPW is involved, which can be interpreted as the start-up of the
multiscattering part of the code. In multiscatter, the scattered field from each particle,
l , is used as an IPW for each particle, i , and is to be scattered to each particle, j , where
l ̸= i∩i ̸= j . Note that the figure does not show the “from each particle, l , to each particle,
j , via each other particle, i ”-process, but rather shows exactly one l , one i and one j
(Fig. 2.3 will help with that, as will be described below). Lastly, in scatter2cam, the
scattered fields from each particle of all scattering orders are scattered towards every
pixel of the camera, accumulated, and the intensity is computed. Finally, add some I/O
around these three routines and the entire optics code has been described.

From a mathematical point of view, the algorithm is structured as follows. Using
that fields add up arithmetically and using the Mie algorithm with the FF approximation
applied (cf. Eq. (1.44)), which gives the scattered field given an IPW, we have:

E⃗ p
j = ∑

i ̸= j
E⃗ p

j i , (2.2)

E⃗ p
j i =

∑
l ̸=i

E⃗ p
j i l , (2.3)

E⃗ p
j i l = [S] j i l E⃗ p−1

i l

expi∆ϕ j i

−ikr j i
, (2.4)

where E⃗ is the (electric) field, p denotes the scattering order, {l , i , j } are indices which
denote the three scatterers involved, ∆ϕ j i = kr j i is the phase picked up from moving
from particle i to j , r j i is the distance between particles i and j . The sums over l and i
are in words: “for each IPW (originating from particle l ), via each other particle i , scatter
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Figure 2.2: This figure illustrates what the
scattering order, p, means. Zeroth order
scattering is the direct arrival of the in-
coming PW on the camera. Any order
above that is the number of scatterers the
field has ‘seen’ before reaching the cam-
era.
The figure also identifies three distinct
regions in the multiscattering-process
which each require a slightly different al-
gorithm, as described in the text.
Evidently, every scattering order has
many more contributions than is shown
in the present figure.

to particle j ”. [S] is the amplitude scattering matrix, which is the output of the bhmie
algorithm of Sec. 2.1.1 with as input the scattering angle. [S] thus depends on all three
indices, because it takes three points to span an angle. Combining the equations and
rearranging terms, it follows that:

E⃗ p
j = ∑

i ̸= j

expi∆ϕ j i

−ikr j i

∑
l ̸=i

[S] j i l E⃗ p−1
i l , (2.5)

where it is noted that the spherical wave term could be taken out of the sum. This equa-
tion is to be interpreted as an iterative equation which takes us up one scattering order.

Eventually, every scattering order needs to be scattered to every pixel, c, of the cam-
era, as depicted in Fig. 2.2. Since fields add up arithmetically, this becomes:

E⃗c =
∑
p

E⃗ p
c , (2.6)

where E⃗ p
c is found from Eq. (2.5) by setting j = c (because a scattering target needs not

be sphere j , but might as well be pixel c). Bringing everything together and rearranging
terms, we then find:

E⃗c = E⃗ 0
c + E⃗ scattered

c = E⃗ 0
c +

∑
i

expi∆ϕci

−ikrci

∑
l ̸=i

[S]ci l

∞∑
p=1

E⃗ p−1
i l , (2.7)

where E⃗ 0
c denotes the IPW at the position of pixel c. Be careful not to omit the phase

of the IPW which is hidden within E⃗ 0
c , cf. Eq. (1.47). The term E⃗ p−1

i l , is the result of the
multiscattering-process, cf. Eq. (2.3) (after changing indices), with the IPW as its starting
point: E⃗ 1−1

i l ≡ E⃗ 0
i (using the phase belonging to the position of the sphere). Note that

when the equation is written in this manner, [S]ci l is only needed exactly once. “This
manner”, implies that we can scatter an accumulated field from each sphere, i , to each
pixel, c, where the accumulated field is:

E⃗ accum
i l =

∞∑
p=1

E⃗ p−1
i l . (2.8)

This will save both computational time and RAM.
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Figure 2.3: This figure illustrates all interac-
tions between particles. The numbers de-
note the ‘source’ of the arrow, with the in-
cident field referred to as the number of
the sphere (since that index was unused
anyway). These numbers may be used as
indices to store E⃗i l , as used in the algo-
rithm. So, in an OOP-manner, within each
sphere i , Nl fields are stored. The result is
a Lattice-Boltzmann-like memory storage,
in analogy with fluid dynamics.

Fig. 2.3 shows three spheres with all their required interactions (excl. camera). Within
the shown arrows, information may be stored. In Fig. 2.1b two fields incident on particle
2 were shown. Those incident fields were called E⃗i l in e.g. Eq. (2.5). Now, for each sphere,
i , we may store this field in arrow l . Given the equations, we need to store three fields

within each arrow: E⃗ p−1
i l , E⃗ p

j i and E⃗ accum
i l . The first is the result of the previous iteration,

‘old’, the second is what is currently being computed, ‘new’, and the third is the accumu-
lator used to scatter to the camera once the multiscattering-process has converged.

Finally, the intensity on the camera has been computed as

Ic = |E⃗c |2 = E⃗∗
c E⃗c , (2.9)

where Ic is the intensity in pixel c, and E⃗c is the complex electric field, cf. Eq. (2.7).
Strictly speaking, Itrue ∝ Icomputed, depending on, e.g., the calibration of the physical
camera. Note that this is a time-averaged intensity. The instantaneous intensity would
scale with cos2 (φ0 +ωt ), which averages out to a simple constant of proportionality.

Note that Eq. (2.7) is equivalent to the Lippmann-Schwinger equation for quantum
scattering problems [6], and the used infinite series expansion is equivalent to the Born
scattering series [7]. Deploying known solution methods to the Born series, could in
future work yield an alternative method of solving our equation [8, 9].

2.1.3. MEMORY REQUIREMENT OF THE ALGORITHM
Let N denote the number of particles, then from Eq. (2.5) it follows that we require

8bytes ·


 1/2︸︷︷︸

sym.in l & j


 2︸︷︷︸

S1,S2

N −1︸ ︷︷ ︸
Nl

 N︸︷︷︸
Ni


N −1︸ ︷︷ ︸

N j


=O

(
8N 3)bytes (2.10)

memory to store [S], which may be reduced by O(N 2) by noting that the backscattering
matrix is a constant for a given sphere i , and

8bytes ·


 3︸︷︷︸

3D

 3︸︷︷︸
new&old&accum


 N︸︷︷︸

N j


 N︸︷︷︸

Ni &IPW


= 72N 2bytes (2.11)
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to store the fields (cf. Fig. 2.3). The interparticle distance, r⃗ j i , needs not be stored as
it is computed with just one (vectorised) subtraction, which is negligible compared to
bhmie. Its amplitude requires Pythagoras, but is still very much negligible and not worth
complicating the code for.

Note that there is as well a scattering matrix to scatter from particle l , via particle i ,
to camera pixel c. Which would require require O(16M N 2) bytes, similar to Eq. (2.10)
without the symmetry, and where M is the number of pixels. Since there are already 104

pixels to have a 1D resolution of 100 pixels, this is typically higher than N for realistic
computations. Sadly, for M = 1002 and N = 1000 this results in 160GB, which is too
demanding for the RAM. However, as was noted using Eq. (2.8), it needs not be stored
in RAM, since it is only required once. Instead, 8 ·O(3M N ) bytes will be stored during
scatter2cam for computational efficiency of bhmie, i.e., bhmie is faster if performed in
a batch-process, because it can reuse its Bessel functions and Legendre polynomials.
Calling bhmie requires an additional amount of RAM equal to 8 ·O(4M N )bytes, resultig
in a total of O(56M N ) bytes.

As an example calculation, using 1000 particles and 300·300 pixels, we would require
approximately 8GB of RAM during the multiscatter routine. And during the scatter2cam
routine, we would require 2.2 GB, which occasionally spikes to 5 GB. Or, using 602 parti-
cles and 300·300 pixels, we require 1.8GB during multiscatter and 1.3 GB spiking to 3 GB
during scatter2cam. Note that the memory requirement of the first example is particle-
limited, whereas the second becomes pixel-limited. Since both cases are realistic, one
should consider both routines when determining the memory requirement for a given
case.

2.1.4. RUNTIME COMPLEXITY OF THE ALGORITHM

The algorithm is structured in three phases, which were shown in Fig. 2.2. Each of these
contributes to the runtime complexity of the algorithm, which describes how the run-
time of the algorithm scales with the input size at sufficiently large input sizes.

In the initialscatter routine, bhmie first is called exactly once using a vector size of
N −1 to scatter the incident field from the first to the second sphere, which is negligible.
Then it is called N times to prepare for the multiscatter routine using a vector size N (N−
1). Additionally, there is a loop over j and i , O(N (N −1)), which performs virtually the
same calculations as the multiscatter routine.

In the multiscatter routine, at its top level, the algorithm consists of four loops, as
shown in Alg. 3 of App. B.2. The inner loop is ran a total number of pN (N −1)(N −1)
times, and has a complexity of O(1). This results in a complexity of O(pN 3).

Table 2.1: Summary of all runtime complexities involved in the individual routines of the algorithm.

Loop work Call bhmie Total
initialscatter N 2 N ×N 2nC N 3nC

multiscatter pN 3 - pN 3

scatter2cam M N 2 N ×M N nC M N 2nC

Total N 2(M +pN ) N 2nC (M +N ) N 2(MnC +N (nC +p))
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In the scatter2cam routine, bhmie, again, is called N times, but now with a vector
size of M(N −1). Then, Eq. (2.7) is performed, requiring O(N (N −1)) operations (recall
that

∑
p was accumulated in multiscatter, cf. Eq. (2.8)). This is to be done for each pixel,

c, resulting in a complexity of O(M N 2).
The complexity of bhmie is O(nC nθ), where nC is the truncation index of the infinite

sum from Mie theory and nθ is the vector size as used above (which is the number of
scattering angles).

The accumulated result is summarised in Tab. 2.1, neglecting lower order terms.
Please note that complexities are frequently misinterpreted. They describe the behaviour
of a code in the limit that the parameters of the complexity (N , M , . . . ) go to ∞. For prac-
tical cases, it may very well be that the neglected lower order terms do in fact contribute
significantly more to the required computational resources, simply because they have a
greater constant of proportionality than the higher order terms.

2.1.5. SPEEDUP BY APPROXIMATING THE SCATTERING MATRIX
The bhmie routine, which performs the expensive calculation of computing the scatter-
ing matrix for one scattering angle, is called a total number of N 2(M + N ) times (see
Tab. 2.1). It is easily seen that for merely N = 100 particles and a camera with just
M = 100 × 100 pixels, these are already O(108) calculations. Therefore, it came to no
surprise that in our example application ∼90% of the runtime of our code was spent in-
side the bhmie routine. This means that optimising everything but bhmie may yield a
speedup of maximum ∼11%; therefore, the only way to achieve a good speedup of up
to a factor 10, is to optimise the bhmie routine. This is an example of the 3%-scenario
Donald Knuth was talking about4:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

– Donald Knuth

Fig. 2.4 visualises what the elements of the scattering matrix as a function of the
scattering angle look like for the parameters that we will use in Chap. 4. In particular,
in the bottom-right figure one may count ∼50 fluctuations over the entire domain of the
function. As an approximation, we could divide each fluctuation in 20 points – thus the
entire domain in 1000 points – and only compute the scattering matrix at those points.
The scattering matrix for all other input angles may then be found through linear inter-
polation5.

The gain of this interpolation strategy, is that we would now only need to call bhmie
O(103) times, as opposed to the example above of O(108) times. This yields an immense
speedup at virtually no loss of accuracy6, effectively eliminating the computational time
spent on bhmie. Since, in the example of our application, 90% of our time was spent on
this, our code speeds up by approximately a factor ∼10 as a consequence.

4I.e., optimising parts of your code that yield a negligible gain should be avoided at all times, because you pay
the price of making your code less clear and less maintainable, while you gain nothing for that pain!

5To yield more accurate interpolations, higher order interpolation schemes may be implemented in the future.
6If one is worried about the interpolation accuracy of 103 points, 104 points could as well be used for virtually

the same total computational time, as 104/108 ≪ 1 still.
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Figure 2.4: The amplitude scattering matrix elements S1 and S2 cf. Eq. (1.40) are shown as a function of
the scattering angle. The used parameters are: relative refractive index m = 1.52 (in Eq. (1.28)), wavelength
λ= 532nm, particle radius a = 4µm, and size parameter x ≈ 47. The bottom-right figure provides a zoomed-in
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in a polar plot.

Finally, note that this interpolation strategy yields a very good speedup only since the
scattering matrix depends on just one input parameter: the scattering angle. If, in the
future, non-spherical particles [10] or particles with differing optical properties would
be considered, the scattering matrix will become a multivariate function. With two input
parameters interpolation should still be possible, but a lower speedup will be attainable.

New memory and runtime complexities. Note that, whilst our code does indeed speed
up considerably, the runtime complexity (see Sec. 2.1.4) remains O(N 2(M +pN )) to per-
form all loop work. The memory requirement (see Sec. 2.1.3) does improve, as we now
only need the store the scattering matrix in 103 points, as opposed to for O(N 3) input
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values. The resulting memory complexity then becomes 72N 2 bytes, cf. Eq. (2.11), to
store the electromagnetic fields, which for N = 103 is a negligible RAM requirement.

2.1.6. CONVERGENCE OF THE ALGORITHM
In general, the study of convergence of an algorithm is a difficult one. Instead, a seem-
ingly sufficient condition is relatively easily seen from Eq. (2.4). If that equation is not to
diverge as a function of the scattering order, p, we require that

kr > maxθs ([S](θs )) , (2.12)

which right away gives a measure of how far the FF ought to be for convergence of the
FF-approximation. Satisfying this condition will be a sufficient condition, provided that
the sum in Eq. (2.3) does not grow out of bounds. This is guaranteedly satisfied if

kr > N maxθs ([S](θs )) (2.13)

holds, but for randomly distributed particles it is easily seen that this is an extremely
strong condition, since this condition assumes that all particles are distributed such that
their scattering angles give a maximum [S] for all particles. Fig. 2.4 show what the am-
plitude scattering matrix looks like as a function of the scattering angle, θs . Clearly, for
most values of θs , [S] is a factor O(102) lower than its maximum value.

With that being said, Eq. (2.13) is certainly too strong, but even Eq. (2.12) appears
to be strong in terms of convergence, because if it is not satisfied for some spheres, the
algorithm may still converge numerically, although it becomes more difficult. However,
the algorithm numerically converging is not the same as the convergence of the algo-
rithm to the true solution. If the electric field is to increase in strength in any scattering
event, it becomes difficult to believe that conservation of energy is satisfied. However,
this is paradoxical, since it is allowed for the electric field to increase in strength in one
direction, as long as it decreases in another (which is a direction which was not of interest
and was thus not considered).

Regardless, Eq. (2.12) should yield a practical sufficient condition, although its suffi-
ciency cannot be guaranteed in general.

2.1.7. APPROXIMATIONS AND THEIR CONSEQUENCES
Spherical Particles. The first approximation made, is the fact that we assume that
RBCs may be approximated by spherical scatterers. Steinke and Shepherd [11] have
shown that Mie theory can successfully be applied to randomly-oriented RBCs. Evi-
dently, RBCs in blood flow will have a preferential alignment. Nilsson et. al. [10] ob-
serve a single RBC using the T-matrix method and found that the forward-scattering
peak of a sphere is lower and broader than for oblate spheroids (which is still not the
precise shape of a RBC, but it is closer to its true shape than a sphere). In other words,
the amplitude scattering matrix, [S], is affected by the shape of the particles. Also, an
azimuthal-dependency is introduced, which is absent for the case of a sphere. Based
on their numerical study of a single particle, they conclude that it ‘seems inappropriate’
to use the spherical Mie theory to study RBCs. Especially if fundamental hematological
and morphological properties of RBCs are of interest. Nevertheless, at the same time one
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would expect that if the particles are dense enough (and RBCs in blood are dense with a
typical hematocrit of 45%, see Sec. 1.2), multiscattering will blur the precise shape of [S],
making the spherical assumption statistically more valid.

If the spherical assumption is not to be made, one could attempt implementing the
T-Matrix method, as described in Barber & Hill [5]. For time-dependent simulations with
O(1000) particles, however, this will bring along a steep increase in the required compu-
tational resources.

Infinite Series Truncation. Now that we have chosen spherical scatterers, the exact
Mie solution may be used to solve the scattering of an IPW by a single scatterer. There
are no further assumptions inside Mie theory: it is exact. However, it is exact using an
infinite series representation, which enforces it to be approximated (truncated) if it is to
be evaluated. The series is truncated after nC terms, cf. Eq. (2.1). Regardless of how
accurate this truncation is, the other approximations made will certainly be more ques-
tionable than truncating this series.

A similar problem lies within the computation of the Bessel/Hankel functions and
Legendre Polynomials, required by Mie theory: They are computed using recursion,
which has the consequence that any rounding errors will eventually blow up. For this
reason, Bohren & Huffman [2] explicitely warn their reader not to ‘simply’ increase nC ,
as you may unknowingly make your simulation less accurate.

Far-Field Assumption. Three FF-assumptions have been made: (1) the camera is in
the FF, (2) the particles are in each other’s FF and (3) particles are sufficiently small for
the spherical wave to be a PW over the size of the particle. Given the second assump-
tion, the first assumption is an obvious assumption. The second and third assumptions
require elaboration.

Starting with (3), mathematically this is the question of whether a spherical wave
has a constant amplitude over the size of a particle and is thus a simple PW. A stronger
version yet would be to say that the field is constant altogether (no longer a wave) over
the size of the particle, which we will observe first.

A spherical wave, moving outwards from the origin, is given by (the real part of):

Ψ(r ) = e ikr

kr
, (2.14)

where the factor e−iωt has been omitted. Now, if R denotes the constant distance be-
tween the source of Ψ and the particle under consideration (as before) and δ is the ra-
dius of the particle, thenΨ(R +δ) (at the particle’s boundary) may be expressed in terms
of Ψ(R) (at its center). Applying a Taylor expansion to Ψ(R +δ) around δR/R = 0, and
deploying Newton’s binomial theorem, gives:

Ψ(R +δ) =Ψ(R)
∞∑

n=0

(δ/R)n

n!

n∑
j=0

(
n

j

)
(ikR)n− j (−1) j j ! (2.15)

≈Ψ(R)

(
1+ δR

R
(ikR −1)+

(
δ

R

)2 (
1

2
(ikR)2 − ikR +1

))
. (2.16)
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The physical property is the real part of this complex function, which is approximately:

Re{Ψ(R +δ)} ≈ Re{Ψ(R)}

(
1− δ

R

)
− Im{Ψ(R)}kδ, (2.17)

and consequently equality implies that δ
R ≪ 1∩ kδ ≪ 1. Recall that these conditions

describe the situation in which the particle is so small, that even the phase is constant
on the length scale of the particle. Recalling Eq. (2.12), which gives a sufficient condition
for convergence, the conditions may be rewritten as

δ

R
≪ 1 ∩ max([S])

δ

R
< kR

δ

R
= kδ≪ 1. (2.18)

Given a typical value of maxθs ([S](θs )) ≈ 103 (size parameter x = 42 and refractive index
m = 1.52), it follows that the second condition is at least a factor 103 stronger than the
first for the present parameters.

Tracing back, we can say something about the weaker assumption made in (3), which
assumed a PW rather than a constant field, as was studied above:

Ψ(R +δ) ≈ e ik(R+δ)

kR

(
1− δ

R
+

(
δ

R

)2)
, (2.19)

where solely the reciprocal has been expanded. From this it is seen that a spherical wave
may be written as a plane wave if δ

R ≪ 1, which interestingly was the weaker part of above
condition for a constant field. From Eq. (2.19) it is easily seen that the relative error made
in the wave function is approximately δ

R . E.g., if δ
R = 0.1, a 10% error is made, in the wave

function.
Regarding (2), saying that the particles are in each other’s FF is saying that the inter-

particle distance should be much greater than a characteristic length. Mathematically,
this boils down to the question if it is justified to take the asymptotic value of the Hankel
functions in Mie theory. The expansion of the spherical Hankel function for big z ≡ kr
is given by:

h(1)
n (z) = e iz

(
− ie−

1
2 inπ

z
+ e−

1
2 inπn(n +1)

2z2 +O(z−3)

)
, (2.20)

= (−i)ne iz
(

1

iz
+ n(n +1)

2z2 +O(z−3)

)
, (2.21)

which immediately shows that h(1)
n (z) becomes independent of n for big z, and hence

could be taken out of the sum in Mie theory. Sadly, the second term scales with n2 and n
is an index that runs until ∞, so z must be a greater ∞ than n.

This problem is resolved by observing the full Mie sum, cf. Eq. (1.40). Ignoring the
coefficients an and bn and the Legendre functions, it is proportional to 2n+1

n(n+1) . Conse-

quently, the importance of the terms drops as 2
n for big n. So, while indeed the Hankel

functions do not converge to the first term in the expansion for all n as z grows big, the
series no longer cares about those Hankel functions.
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To make this FF-assumption more quantitative, we note that the series will be trun-
cated at nC , cf. Eq. (2.1). If it is again assumed that the terms in the Mie series are equally
important for all n, then we obtain a very worst case estimate of what FF means:

z ≫ nC (nC +1)

2
. (2.22)

For λ = 6 ·10−7m and rsph = 4 ·10−6m, this results in r ≫ 0.16mm. Again, this is a very
worst case requirement. A lower z may very well be feasible. If an and bn would be taken
into account, which is difficult to do generally, the requirement will soften.

The speed of light is much greater than the fluid speed. It is assumed that the speed
of light is much greater than the velocity of the particles (and thus the fluid). The con-
sequence of this assumption is that it is not required to consider the retarded time: the
instantaneous time suffices. If this assumption is not made, the position of the scatterers
would need to be backtracked to the time at which they scattered the light, rather than
taking the current snapshot of all positions.

If this assumption is not satisfied, an error will be made in [S] for each scattering
event, because the used scattering angles ({θs }) will be incorrect. Also, an error will be
made in the phase, since the calculated pathlength of the light may differ from the true
ones. The first error is difficult to analyse, since the fluctuations in [S] as function of
θs are a very complex function of the parameters of Mie theory (x, m). The second error
may be analysed by noting that the maximum error in the phase occurs when the particle
moves in the direction of k⃗. If the velocity of a particle is v , then in a time ∆t , the phase
changes according to (with z = z(t )):

φ(t ) = kz −ωt = k(z − ct ),

φ(t +∆t ) = k(z + v∆t − c(t +∆t ))

=φ(t )+k(v − c)∆t

=φ(t +∆t )|v≪c +kv∆t . (2.23)

From which it follows that kv∆t ≪ 2π is the criterion which justifies the assumption.
Now, note that the∆t of interest is the time it takes the light to travel from the light source
to the camera, as this is what was assumed to be instantaneous: ∆tmax = zmax/c. The
value for zmax is technically infinite, because of the multiscattering-process. However,
since each successive scattering order contributes less than the previous one to the final
result, the series is truncated. A typical measure for zmax would then be:

zmax =O(|⃗rcam − r⃗CM|)+pO(〈|⃗r |〉), (2.24)

where r⃗cam is the position of the camera, r⃗CM is the center-of-mass position of the parti-
cles and 〈|⃗r |〉 is the mean interparticle distance.

Altogether, this results in the following criterion:

kv∆t = k
v

c

(
O(|⃗rcam − r⃗CM|)+pO(〈|⃗r |〉))≪ 2π. (2.25)
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This may be made a little more concrete by noting the criterion for convergence Eq.
(2.12). Using that for λ = 600nm and a = 4µm, [S]max ≈ 103 in the forward direction (as
was used in the text just below Eq. (2.18)), taking the camera to be at a distance f 〈|⃗r |〉,
and 〈|⃗r |〉 = mrmin, we can write:

v

c
m( f +p)103 < k

v

c
zmax ≪ 2π, (2.26)

and consequently a worst-case criterion (by numerical convergence) would be (for say,
m = p = f = 10):

v

c
≪π ·10−5, v ≪ 103m/s, (2.27)

which is extremely easily satisfied for any flow, let alone blood flow. A realistic case will
not be too far off from the assumptions for {m, p, f } made, and consequently the v ≪ c
assumption in our algorithm is justified (for the tested parameters).

2.2. FLUIDS
For the fluids part of our multiphysics problem, OpenFOAM will be used (see App. B.1).
The purpose of the fluids code is to compute the positions of the RBCs as they move
along with the fluid. These positions will be written to a file (one file per ‘writeTime’),
which will be converted to the input of the optics code by the linker. Our ultimate goal is
to have the fluids code model blood flow in a complex patient-specific artery geometry.

2.2.1. BLOOD
Blood, which was described in Sec. 1.2, is usually modelled as a non-Newtonian fluid,
rather than a mixture between blood plasma and its many dispersed particles. Then, any
particles of interest (e.g. in drug delivery) are modelled as Lagrangian particles. For the
present research the RBCs are of interest, which differ from the above particles in two
important ways:

Firstly, they are asymmetrical and thus rotation plays a role, most certainly for the
light scattering. Currently, the optics code does, however, scatter the light from particles
as if they are spheres and thus rotation does not matter in the current stage, but will in
the future. Hence in the present stage, taking this into account for the fluids code does
not have a high priority.

Secondly, they are extremely densely packed with a typical hematocrit of 45%. This
will certainly mean that RBCs aren’t simple tracer particles and that they are two-way
coupled with the fluid, and possibly four-way coupled including particle-particle inter-
actions as well. However, if blood is modelled as a non-Newtonian fluid, the effect the
RBCs have on the fluid has already been taken into account by means of empirical mod-
els for the rheology of blood. Then, particle-particle interactions may, too, be forgotten
about for the used cylindrical geometry (see Sec. 2.2.4), since all particles will be “keep-
ing their lane” without collisions, while any other effects (e.g., drag applied to adjacent
“lanes”) are in the rheology. This is only true, however, if we use an empirical result for
the radial particle distribution, as was shown in Sec. 1.2. Applying Fig. 1.6 and Eq. (1.49)
gives the particle number distribution (histogram) resp. the particle volume distribution
shown in Figs. 2.5.
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Figure 2.5: Particles are injected using the radial hematocrit profile given in Fig. 1.6. This was converted to a
number density profile according to Eq. (1.49). The histogram of how 106 generated particles are distributed
is shown in these two figures (dots), while the solid line is simply Aarts et. al.’s result (Fig. 1.6). This shows that
they do indeed follow the required distribution, which confirms the method of Sec. 1.2.1.
The reader may wonder why the solid line is noisy. The reason is that Aarts et. al.’s plot has a range from
−R < r < R, which we converted to the range 0 < r < 1 by simply flipping the data points. The noise is the
consequence of the fact that their radial distribution profile was not perfectly symmetric around r = 0. For our
radial distribution profile we then take the average (which is per definition the smoothed version of the shown
noisy line) of their left (r < 0) and right (r > 0) side. Evidently, the noisiness of the solid line does not affect the
histogram, since the solid line is merely a probability distribution and because we deploy binning.

Although non-Newtonian effects will affect the (radial) velocity profile in the cylinder
(and hence the time-dependency of the scattering profile), they do not affect the instan-
taneous scattering profile, since this solely depends on the radial particle distribution,
which has been taken care of. It will, however, hypothetically affect how the scattering
profile evolves over time. Hence at the present stage, non-Newtonian effects have not
yet been taken into account, although they should in the near future. So, for now Eq.
(1.54) will be used to describe the rheology of the fluid.

2.2.2. LAGRANGIAN PARTICLE TRACKING (LPT)
Now that RBCs are being modelled using LPT, it is important to determine what forces
are relevant for the present problem of blood flow in the arteries. The possibly relevant
forces have been described in Sec. 1.4. Using dimensional analysis, we can estimate the
order of magnitude of each of those forces.

The forces scale with particle mass mp = ρp
4
3πa3, fluid mass m f = ρ f

4
3πa3, char-

acteristic velocity scales V (particle) and U (fluid), characteristic length scales H (in the
pipe thickness direction) and L (in the stream direction) and characteristic timescales τp

and τ f .

• Particle Inertia Force. ∼ mp V
τp

• Gravity and Buoyancy Force. ∼ (mp −m f )g (in direction of g⃗ )

• Viscous Drag Force (Stokes). ∼ 6πaµ(V −U )
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• Pressure Force. ∼ m f U
(

1
τ f

− ν
H 2

)
• Added-mass Force. ∼ m f

V −U
τp+τ f

• Basset/History Force. Vojir and Michaelides [12] show that the Basset term is rel-
evant (rigid sphere, viscous fluid) when there are high-frequency velocity varia-
tions. And then, it is most pronounced for fluid to particle density ratios of 0.002
to 0.700. For the present case the density ratio is about 1, which shows virtually no
influence of the Basset force. Certainly for the simple cylindrical geometry, there
are no high-frequency velocity fluctations: it has a steady state solution. Hence
the Basset force will be neglected. This conclusion is in line with the findings of De
Gruttola et. al. [13].

The typical timescale of the fluid is τ f ∼ L
U . The typical timescale of the particles

is τp = 2ρp a2

9νρ f
[14, 15]. Defining the Stokes number as the ratio St ≡ τp

τ f
, we can rewrite

τp in terms of τ f . Anticipating on the typical numbers below, the Stokes number will
be St ∼ 2 ·10−7, which implies that τp ≪ τ f . This is sufficiently low to assume that the
particles are merely tracer particles and thus that the velocity scales U and V will be of
the same order of magnitude, U ∼V .

Upon applying the above, substituting the relation of the masses, and letting ∆U =
(V −U ), we then find:

• Particle Inertia Force. ∼ 4
3π

ρp a3U 2

L St−1

• Gravity and Buoyancy Force. ∼ 4
3πa3(ρp −ρ f )g (in direction of g⃗ )

• Viscous Drag Force (Stokes). ∼ 6πaνρ f ∆U

• Pressure Force. ∼ 4
3πρ f a3U

(
U
L − ν

H 2

)
• Added-mass Force. ∼ 4

3πρ f a3 U∆U
L

Now, typical numbers for the given quantities are: ρ f = 1.16 ·103 kg/m3, ρp = 1.1 ·103

kg/m3, ν= 8.28 ·10−6 m2/s, a = 4 µm and H ∼ R = 8 mm. The typical Reynolds number
is Re = 50, from which we can take U ∼ umax = 5.2 cm/s. A useful value for L would be
the entrance/evolution length for laminar pipe flow, since that is the length over which
streamwise variations happen and L was introduced only in relation to τ. A formula for
the evolution length fitted using numerical results is given by Durst et. al. [16], which is
valid for the given Reynolds number (unlike most engineering formulas out there). The
result is that L ∼ 9.2 cm. Using these numbers, we can estimate the order of magnitude
of all forces:

• Particle Inertia Force. ∼ 4
3π

ρp a3U 2

L St−1 ∼ 4 ·10−8 N

• Gravity and Buoyancy Force. ∼ 4
3πa3(ρp −ρ f )g (in direction of g⃗ ) ∼ 2 ·10−13 N

• Viscous Drag Force (Stokes). ∼ 6πaνρ f ∆U ∼ 7 ·10−7 kg/s ·∆U



2

40 2. DESCRIPTION OF THE ALGORITHM/CODE

• Pressure Force. ∼ 4
3πρ f a3U

(
U
L − ν

H 2

)
∼ 7 ·10−15 N

• Added-mass Force. ∼ 4
3πρ f a3 U∆U

L ∼ 2 ·10−13 kg/s ·∆U

From these estimates, it immediately follows that the added-mass is negligible com-
pared to Stokes drag. Pressure is negligible compared to buoyancy, and buoyancy is only
important compared to Stokes drag if ∆U < 3 ·10−7 m/s. This number is sufficiently low
to state that, within the characteristic timescales of interest, Stokes drag is the only im-
portant force. This implies that it is to be expected that V = U (with negligible error).
The ‘particle inertia force’ is in fact not really a force: it is the left-hand side of Newton’s
equation. Therefore, its order of magnitude is merely a measure for the particle response
time, and it is always relevant.

Regarding gravity, having it turned on would not be desireable, as it would slowly de-
stroy the neat radial particle distribution profile, which was obtained from experimental
results7. At the present stage, the cases should remain simple to be able to draw conclu-
sions more easily.

The particles will be modelled as one-way coupled. This is justified, because at the
present stage we will only simulate N = 100 particles. For the parameters of Chap. 4,
these have a resulting volume fraction of O(10−6), which is sufficiently low to assume
one-way coupling, according to Peirano et al. [17]. In actual blood, or even in dilute
experiments, particles are much more densely packed. To simulate this effect, the best
way is to adopt a non-Newtonian fluid model, rather than two-way coupling the par-
ticles. Two-way coupling the particles would only have an effect if one would actually
simulate densely packed particles. There is however no reason for the fluids code to
simulate so many particles, because the optics code currently cannot handle that many
particles anyway.

2.2.3. NUMERICALLY SOLVING THE NAVIER-STOKES EQUATIONS
In OpenFOAM, the Navier-Stokes equations are discretised using the Finite-Volume
Method. This method converts partial differential equations to a set of coupled equa-
tions. For a set of coupled linear equations, a single matrix inversion can solve the entire
problem. Alternatively, the problem can be solved iteratively without inverting a single
matrix. The Navier-Stokes equations do, however, result in a set of coupled non-linear
equations, which are to be solved iteratively. OpenFOAM’s pimpleFoam solver is able
to do so.

THE PIMPLE ALGORITHM

OpenFOAM’s pimpleFoam uses the iterative “PIMPLE” algorithm, which is a combina-
tion of the “Pressure Implicit with Splitting of Operator (PISO)” algorithm [18] and the
“Semi-Implicit Method for Pressure Linked Equations (SIMPLE)” algorithm [19]. PIM-
PLE essentially takes PISO as an internal algorithm for an outer loop as seen in the SIM-
PLE algorithm. The resulting PIMPLE algorithm is as follows:8.

7Note that from Fig. 2.5 it followed that the experimental radial distribution profile was not symmetric. This
might be due to gravity, since the author has not mentioned the direction of gravity in their experiments.

8The PIMPLE algorithm appears to be unique to OpenFOAM (correct me if I’m wrong). Its documentation
consists merely of the source code for the solver: “$FOAM_APP/solvers/incompressible/pimpleFoam”.
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(a) Sketch of the used mesh. (b) The resulting mesh.

Figure 2.7: Geometry for the simple cylindrical case. (a) Sketch of the multiblock mesh, to be used by Open-
FOAM. The numbers indicate vertex numbers in a tuple of the front (z = 0) and back (z = L) index. The
triangles are anchors to be used to create a circular shape. (b) The resulting mesh, visualised in Paraview.

The inner loop (PISO) consists of solving the momentum and pressure equations in
succession using a predictor-corrector approach for a fixed number of corrector steps.
The outer loop (SIMPLE) iteratively repeats the inner loop until a certain convergence
criterion is satisfied, or the maximum number of iterations has been reached. The ve-
locity and pressure (for incompressible flow) are updated using under-relaxation. Once
the outer loop has converged, PIMPLE continues with the next timestep. I’d like to think
of the loops as finding a steady state solution for the next timestep.

2.2.4. GEOMETRY / MESH

In CFD, the flow is solved on a grid, conforming some geometry. While it is possible
to simulate virtually any geometry with the fluids code, in the present research arteries
are of interest, being either a simple cylinder or a full patient-specific complex arterial
model. The cylindrical geometry allows for comparison with experiments more easily.
As an example, the mesh for a cylindrical geometry is shown in Figs. 2.7.

2.3. COMBINED PHYSICS
Since our computational approach to LSI is one-way coupled, the fluids and optics codes
will be two separate codes, rather than one monolithic code9. This provides a lot more
convenience and flexibility: it permits virtually any existing CFD code to be used as the
input to our optics code.

For this to work properly, the fluids code and optics code must be able to communi-
cate, i.e., the output of the fluids code needs to be translated to the input of the optics
code. To emphasise, the task of the fluids code is to compute the particle positions as a

9A monolithic code is per definition a single code which performs all tasks. This design principle disencour-
ages resuability and flexibility and should be avoided if there is no reason to design a code that way. Since
the fluids code is independent of the optics code, there is no reason for the combined physics to be a single
monolithic code, because it is possible for them to be two separate codes without any additional effort.
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Figure 2.9: This figure shows the workflow of executing the combined code. The workflow consist of three
independent branches, which are, in principle, not connected. The first is related to the fluids code, the second
to the optics code, whilst the third is related to any post-processing activities.

function of time. The optics code takes these particle positions (amongst other input pa-
rameters) and computes the light scattering intensity at some predefined positions (i.e.,
at the camera’s pixels). The whole linking process of the two codes will be subdivided
into three separate workflows, as is shown in Fig. 2.9.

The first workflow is related to the fluids code. In the preprocessing step, the flow ge-
ometry with its accompanying mesh are generated, and the particle positions are gener-
ated (if the case under consideration uses manual injection, like in Fig. 2.5). Some more
complicated cases might require more preprocessing steps, depending on the CFD pack-
age used. Immediately thereafter, the fluids code is executed, writing particle positions
as a function of time to a series of files. First relatively big timesteps may be taken for the
simulation to reach the desired initial fluid dynamics state. Then smaller timesteps may
be taken to advance the particles on the timescale of interest for optics10; more details
about the time-stepping process for a practical case will be given in Sec. 4.2.1.

The second workflow is independent of the first. First, the output of the fluids code
is converted to an appropriate format. Then, an optics input file is generated, which
specifies all parameters required for the optics code (e.g., the refractive indices). Finally,
an external looper script loops over all particle position files and will repetitively call the
optics code. The result is an intensity file for each timestep.

The third workflow is related to post-processing. Firstly, we convert the output of the
optics code to a more pleasant format for post-processing. That is, the optics code can
compute the intensity in arbitrary points in space, but it is convenient to define those
arbitrary points as a 2D grid to represent a physical camera. The output of the optics
code can then be converted to the format corresponding to this 2D grid to ease the post-
processing process, such as creating speckle images in Chap. 4.

10The precise timescale of interest differs with the optical properties of the system, but typically you can think
of O(1 µs), which is significantly shorter than O(1 ms), as typically seen in CFD.
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2.4. SUMMARY
This chapter described the developed optics code, the fluids code and how they are used
in cohesion. These codes were developed to study the interferometric light scattering by
flowing spherical particles.

The optics code uses Mie theory, which describes the scattering of a plane wave by a
single spherical particle. It then assumes that the interparticle distance is sufficiently big
that the scattered wave is a spherical wave by the time it reaches the next particle: a far-
field assumption. Then it assumes that the particles are sufficiently small (or far away)
for the spherical wave to be approximately a plane wave over the size of the particle. Now,
since the scattered wave is again a plane wave incident on a single spherical particle, Mie
theory may be applied to describe the scattered wave caused by the previous incoming
wave. By continuing this process iteratively, all scattered waves may be collected at a
camera, in which multiscattering has been taken into account.

For the fluid dynamics part of the problem, any existing computational fluid dynam-
ics code may be used. OpenFOAM was used for the present research. Its task it to evolve
the particles as a function of time within a flow. In the present research, the modelled
fluid is a simplification of blood. It is modelled as a Newtonian fluid in which one-way
coupled particles are suspended, which are spherical particles that represent red blood
cells. The particles will be given a special radial number distribution, which represents
the radial distribution of red blood cells in an artery.

The two codes are one-way coupled, because the optics code depends on the fluids
code, but not the other way around. Hence, the fluids code will be used to output particle
positions at all times of interest, and then the optics code will be executed for each time
to compute the scattered intensity profile. Finally, separate post-processing codes will
create figures and extract metrics from the intensity files that were output by the optics
code.

Next, in Chap. 3 we will show a validation study for the optics code. Finally, in Chaps.
4-6 we will apply our code to practical situations with the goal of developing laser speckle
imaging as a new quantitative non-invasive in-vivo measurement technique, specifically
for biomedical applications. These three studies have the goal of extracting information
from the simulated optical measurements, respectively: extract a heartbeat, extract the
underlying flow’s velocity, and study how atherosclerosis can be detected.
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3
OPTICS CODE VALIDATION:

THE FRAUNHOFER SOLUTION

The optics code was described in Chap. 2. Several simplifications had to be made, and
their importance was discussed theoretically in Sec. 2.1.7. It is pivotal for a programmer
to convince not only himself, but also the world that his code does what it says it does. Or,
in our case, that our code makes accurate predictions of our physical reality.

To that end, in this chapter we mimic the classical double-slit experiment by aligning
many spherical particles in two straight lines. We execute our optics code on these par-
ticles, and compute the resulting intensity profile. Although these particles do not truly
form two slits, we do expect to obtain the same interferometric pattern, as an observer be-
ing very far away cannot see the individual particles. We then compare our results with
the solution described by the far-field Fraunhofer approximation at various length scales.

It is found that our code produces the expected interferometric features at all length scales
in which there are features to be expected: the length of an individual slit, the double slit
experiment, at the interparticle distance, and finally an Airy pattern at the length scale
of the individual scatterers. These scenarios provide evidence that our optics code does
indeed have the correct interferometric behaviour.

This chapter is a rewritten version of a chapter previously published in: Van As, K. (2015). Interferometric
Scattering of Light by an Ensemble of Flowing Spherical Particles: A Numerical Study [Master’s Thesis, Delft
University of Technology]. [1] Available online via http://repository.tudelft.nl.
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Figure 3.1: The diffraction geometry, reprinted from Goodman Fig. 4.1 (p65) [2]. θs is the scattering
angle. P0 is a point in the scattering plane, originating from point P1 on the aperture, Σ. (ξ,η) are
the orthonormal coordinates in the aperture plane, and (x, y) in the scattering plane respectively.

3.1. THEORY: THE FRAUNHOFER APPROXIMATION
One way to validate a code (to some extent) is to compare its output with known exact
theoretical solutions. In the case of light scattering, we may use the Fraunhofer diffrac-
tion equation (which is a Far-Field (FF) approximation) on some well-known cases: a
rectangular aperture and a double slit. In this section, the formalism of Goodman [2] is
followed to arrive at the Fraunhofer equation, cf. Fig. 3.1.

The Huygens-Fresnel principle may be used to describe the response of an aperture
to an Incoming Plane Wave (IPW). It states that the scattered amplitude, U (P0), at some
distant point P0 behind the aperture, is given by:

U (P0) = 1

iλ

Ï
Σ

U (P1)
exp(i kr01)

r01
cos(θ)dσ, (3.1)

where r01 is the magnitude of r⃗01, which is a vector pointing from P1 to P0, θ is the angle
between the aperture’s outward normal n̂ and r⃗01. λ is the wavelength and k = 2π

λ is the
wave number. Σ is the aperture and dσ is an infinitesimal surface element of the aper-
ture. The Huygens-Fresnel Principle is arrived upon after having made two assumptions:
(1) scalar wave theory must hold and (2) r01 ≫λ.

Fresnel approximated the Huygens-Fresnel Principle by making a near-axis assump-
tion, i.e., θ≪ 1. In this case, the zeroth order approximation is r01 = z/cos(θ) ≈ z. For the

phase factor, a second order approximation is made instead: r01 ≈ z
(
1+ (x−ξ)2+(y−η)2

2z

)
,

where P⃗1 = ξx̂+ηŷ is the local coordinate in the aperture, while P⃗0 = xx̂+ y ŷ is the coor-
dinate in the scattering plane. The resulting Fresnel diffraction integral is said to be valid
in the aperture’s near-field1.

1I consider the term ‘near-field’ for this purpose as very paradoxical, given the approximations made: near-axis
and far-field, i.e., the term ‘near-field’ seems to contradict the actual far-field assumption.
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The Fraunhofer approximation further approximates the Fresnel integral by only re-
taining the terms up to first order in the phase, i.e.,

z ≫ k

2
max

(
ξ2 +η2) , (3.2)

which makes the Fraunhofer approximation valid in the FF. The resulting Fraunhofer
diffraction integral then becomes:

U (x, y) = e i kz e i k
2z (x2+y2)

iλz

Ï
Σ

U (ξ,η)exp

[
−i

2π

λz

(
xξ+ yη

)]
dξdη. (3.3)

3.1.1. SOLUTION 1: RECTANGULAR APERTURE
For a single rectangular aperture, the Fraunhofer diffraction integral in Eq. (3.3) predicts
an intensity profile of the form

I (x, y) = A2

λ2z2 sinc2
(

2wX x

λz

)
sinc2

(
2wY y

λz

)
, (3.4)

where wXi is the half -width of the aperture in the x̂i direction, which denotes either x̂
or ŷ , and A = 4wX wY is the area of the aperture. This is a periodic, decaying function for
any given z. The distance between two successive minima in one direction is given by:

∆xi = λz

wXi

. (3.5)

3.1.2. SOLUTION 2: DOUBLE SLIT
The solution for the double slit experiment is similar to that of a single rectangular slit,
but involves a cosine instead of a sinc function. Eq. (3.5) applies as well, provided that
we interpret wXi as the distance between the two slits in the x̂i direction.

3.1.3. SOLUTION 3: CIRCULAR APERTURE
A circular aperture will result in an Airy pattern of the form

I (r ) =
(

A

λz

)2 [
2

J1(kwr /z)

kwr /z

]2

, (3.6)

where r =
√

x2 + y2 is the radius in the observation plane, w is the radius of the aperture
and J1 is the first Bessel function of the first kind.

The radial distance of the extrema of Eq. (3.6) may be found using

∆r j = b jλz/2w, (3.7)

where b j denotes the argument where J 2
1 (πb j ) has its j ’th extremum. Tab. 4.1 of Good-

man (p.78) [2] gives b j for the first few oscillations, e.g., b0 = 0 (maximum), b1 = 1.220
(minimum), and b2 = 1.635 (maximum). For comparison, we will primarily be using
b2 to find the distance between the first two maxima, which have a relative intensity of
0.0175 according to Eq. (3.6).
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Figure 3.2: The used scattering geometry. An incoming PW is coming in from below with k⃗ = kx̂.
The wave scatters off of each individual scatterer (red spheres), forming an interferometric pat-
tern on the camera. Note that the figure is not to scale: a much larger L, much smaller particles,
and many more particles were used in the actual simulations.

3.2. METHODS

3.2.1. GEOMETRY

Our code is not designed to work with apertures. Rather, it computes the field scattered
by an ensemble of spherical scatterers. We may, however, arrange many spheres in a
line and state that for an observer sufficiently far away this looks identical to a single slit
(or, arranging particles in two lines will look like a double slit). We choose our scattering
geometry as is shown in Fig. 3.2, using a square camera with its normal orthogonal to the
PW incoming from the x̂ direction. We use 301 equidistant spherical particles for each
slit. Since our setup comprises that many spherical particles, it is reasonable to assume
that an Airy pattern2 will be superimposed on the expected exact Fraunhofer solution.

3.2.2. NON-DIMENSIONALIZATION

In order to validate our code, we intend to compare the distance between interfero-
metric fringes (i.e., the distance between local maxima and minima) with those pre-
dicted by the Fraunhofer solution. To that end, we first non-dimensionalize some quan-

2Our spherical particles have a circular frontal area. An Airy pattern is the expected interferometric pattern of
scattering from a circular aperture.
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Table 3.1: Parameters used in our Fraunhofer validation study. d is the characteristic size of the
aperture. x̂i denotes the direction in which we theoretically expect to see the fringes. |⃗r | is the
camera’s half-width (identical in both directions), as computed from Eqs. (3.8-3.9). Constant pa-
rameters: λ= rsph = 0.02 and L = 103. All units are arbitrary units.

Case d x̂i |⃗r | L̃
(a) Length of each individual slit 60 ŷ 1.667 5.6 ·10−3

(b) Distance between the two slits 2 ẑ 50 5
(c) Distance between two scatterers within a slit, r 0.2 ŷ 500 500
(d) Diameter of an individual scatterer 0.04 Airy 1362.5 1.3 ·104

tities. We define |⃗ri | to be the half-width of the camera3. Next we non-dimensionalize
∆x̃i =∆xi /2 |⃗ri |, such that Eq. (3.5) becomes:

2 |⃗ri | = λL

d∆x̃i
, (3.8)

where d = wXi is the ‘characteristic size’ of the aperture being studied, and L is the dis-
tance between the aperture plane and the camera. This equation permits us to redefine
the non-dimensionalized camera size as 1x1, and choose ∆x̃i = 0.1, such that we expect
to see exactly 10 fringes 0.1 apart in the x̂i direction on our camera if our code is valid,
allowing for more easy comparison between different input parameters.

For the Airy pattern, a similar equation to Eq. (3.8) may be derived from Eq. (3.7):

2 |⃗r | = b jλL

d∆r̃
, (3.9)

using the parameters of Sec. 3.1.3, and using d = 2w as the ‘characteristic size’, which
equals 2rsph in our situation, where rsph is the radius of each individual spherical parti-
cle. If we now demand that ∆r̃2 = ∆r2/2 |⃗r | = 0.3, the hypothesis is that on the camera’s
virtual image the second maximum lies at a radius r̃2 = 0.3, in analogy with ∆x̃i = 0.1
above.

3.2.3. PARAMETERS
To validate our code, we identify four distinct cases, as our geometry has four important
length scales: length of a single slit, distance between slits, distance between scatterers,
and the size of each individual scatterer. These are shown in Tab. 3.1. Constant parame-
ters are listed in the table’s caption, which are chosen quite arbitrarily for the purpose of
this case study.

Important is that L is chosen such that the FF requirement of the Fraunhofer approx-
imation, cf. Eq. (3.2) is satisfied:

L̃ = L

d 2/λ
≫ 1, (3.10)

where L̃ is the non-dimensionalized camera distance. Fig. 3.3 shows the evolution of
an interference pattern as L is increased, while proportionally increasing the size of the

3Although we use a square camera, we write
∣∣⃗ri

∣∣ rather than |⃗r |, since in the more general case the camera
could be rectangular.



3

52 3. OPTICS CODE VALIDATION: THE FRAUNHOFER SOLUTION

Figure 3.3: As the camera is placed further away (increasing L), the interference pattern develops
towards the far-field solution. The colors show log(intensity), and are not to scale between the
images (i.e., that is impossible, because intensity decreases as L increases). Parameters used for
these simulations: λ= rsph = 2, d = 60, L = 104 with |⃗r | = 1.667 ·103 (cf. Eq. (3.8)) for the L̃ = 5.56
case, and the geometry as described in Sec. 3.2.1.

camera. Note that if L is sufficiently large, the interference pattern remains identical: the
Fraunhofer solution.

However, a word of caution: if L is increased too far, the computer simulations run
into numerical resolution problems, the first noisy effects of which can be seen in the
rightmost image of Fig. 3.3. As the results in the next section will show, this was trouble-
some for case (a) of Tab. 3.1; therefore, to validate our code for the (a) case, we performed
two additional simulations with a different λ that did not run into this numerical resolu-
tion problem, which are shown in Tab. 3.2.

3.3. RESULTS
The simulation results for our SSFF code are shown in Figs. 3.4. First note that the dif-
ference between (a)-(d) is merely the size of the camera used for the simulation. This
means that the pattern shown in (a) is the very center of (b), (b) of (c), and (c) of (d), e.g.,
the area of (b) is the middle 1% of the area of (c).

In (b) we are observing at the length scale of the double slit experiment, which was
the primary goal of this validation study. We find the expected squared cosine pattern
with 0.1 distance between the fringes in the ẑ direction.

Table 3.2: Two alternative versions of Tab. 3.1(a), using different values of λ= rsph.

ID λ= rsph d x̂i |⃗r | L L̃
(a1) 0.02 60 ŷ 1.667 ·100 103 5.56 ·10−3

(a2) 0.2 60 ŷ 1.667 ·103 105 5.56
(a3) 2 60 ŷ 1.667 ·104 105 55.6
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(a) d = 60, expected fringes in: ŷ (b) d = 2, expected fringes in: ẑ

(c) d = 0.2, expected fringes in: ŷ (d) d = 0.04, expected circular fringes

Figure 3.4: Simulated log(intensity) profile, cf. Tab. 3.1 (λ = 0.02), by the SSFF code. In (a) the FF
assumption could not be satisfied. In (d) circles are drawn to illustrate the hypothesised extrema of
the Airy pattern, which are from the middle outwards: max at r = 0, min, max at r = 0.3, min, max.

Similarly, (c) observes at the length scale of the distance between two individual par-
ticles within one slit. Although this is not the exact same as a double slit experiment,
we still find a cosine-like pattern with the expected 0.1 distance between fringes in the
ŷ direction. As we move further from the center, the distance between the fringes starts
to increase, which seems to contradict the prediction. However, given that a FF observer
does not actually see a rectangular aperture with the size equal to the interparticle dis-
tance, we should not expect to find an exact match for case (c): the order of magnitude
is spot on.

Case (d) is observing at the length scale of the individual spherical particles. For
these tiny circular apertures, we expect to see a large-scale Airy pattern. We find the
first maximum to line up with the expected 0.3 radius quite well; however, the minima
and more distant maxima do not line up precisely. The relative intensity of the first two
maxima (at r = 0 and r = 0.3) is 0.0184, while from Sec. 3.1.3 we’d expect a value of
0.0175, which is accurate to a ∼5% error. Given that a FF observer does not actually see
one tiny circular aperture, we should not expect an exact match in either this value nor
the precise location of all extrema: the order of magnitude is what we expect it to be.

Finally, in (a) we are observing at the length scale of a single long slit. Unfortunately,
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(a2) λ= rsph = 0.2 (a3) λ= rsph = 2

Figure 3.5: Like Fig. 3.4a, but using different values for λ and rsph, cf. Tab. 3.2, to be able to more
easily satisfy the FF requirement.

we were unable to produce the FF solution with L̃ ≫ 1, as these simulations ran into the
aforementioned numerical resolution problem (see Sec. 3.2.3), before reaching the FF
requirement. Therefore, (a) shows a near-field solution (compare with Fig. 3.3) with the
same L̃ as (b)-(d) instead, to show that it is the ∼0.1% middle area of (b).

Instead, Figs. 3.5 show cases (a2) and (a3) to replace case (a1) to study the length
scale of a single long slit4. Here we find the expected 0.1 distance between fringes, with
the sinc function’s characteristic wide central band with a width of 2 ·0.1.

Interestingly, case (a2) appears to show multiple superimposed Airy-like patterns
that we had not expected. We’d expect the Airy pattern caused by the spherical parti-
cles to be a factor ∼500 times larger than these circles. Since we are looking at a very
small interference pattern, these Airy-like patterns should be caused by a very large spa-
tial length scale. We do not know what caused them, but they do seem physical.

Finally, our MSFF code yielded the same conclusions as our SSFF code [1], with sim-
ilar figures, which we omit here to keep it concise.

3.4. CONCLUSIONS
In this chapter it was shown that our optics code is able to produce the expected inter-
ferometric features at various length scales, cf. what we may expect from the exact (FF)
Fraunhofer solution. The scattered profile from a single slit and a double slit were both
produced correctly, and the expected Airy pattern was found at the length scale of the
individual scatterers. Although this cannot proof the optics code to correctly compute
the light scattering by an ensemble of spheres, this does provide evidence that the (in-
terparticle) phase behavior of our optics code is correct.

A word of caution should be placed when studying cases in the extreme FF, as the
optics code could run into numerical resolution problems due to rounding errors.

For future research, it would be interesting to study different cases forλ and rsph, e.g.,
to find the origin of the very large Airy-like circles in Figs. 3.5.

4Cases (a2) and (a3) also run into numerical resolution problems as we kept increasing L̃ even further, but for
these cases we were still able to resolve the FF solution before reaching those problems.
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4
DETECTING A HEARTBEAT USING

LASER SPECKLE IMAGING

Laser Speckle Imaging (LSI) can be used to study dynamic processes in turbid media, such
as blood flow. However, it is presently still challenging to obtain meaningful quantitative
information from speckles, mainly because speckle is the interferometric summation of
multiply scattered light. Consequently, speckle represents a convolution of the local dy-
namics of the medium.

In this paper, we present a new computational model for simulating the LSI process, which
we aim to use for improving our understanding of the underlying physics. Thereby reliable
methods for extracting meaningful information from speckle may be developed.

To validate our code, we apply it to a case study resembling blood flow: a cylindrical fluid
flow geometry seeded with small spherical particles, and modulated with a heartbeat
signal. From the simulated speckle pattern, we successfully retrieve the main frequency
modes of the original heartbeat signal. By comparing Poiseuille flow to plug flow, we show
that speckle boiling causes a small amount of uniform spectral noise. Our results indicate
that our computational model is capable of simulating LSI, and will therefore be useful in
future studies for further developing LSI as a quantitative imaging tool.

This chapter was published previously: Van As, K., Boterman, J., Kleijn, C. R., Kenjeres, S. & Bhattacharya, N.
(2019). Laser speckle imaging of flowing blood: A numerical study. Physical Review E, 100. This paper was
selected as “Editor’s Choice”. In this chapter, minor clarifications were made compared to the published work.
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4.1. INTRODUCTION
Using diffuse optics for studying dynamics in disordered media is slowly becoming the
main enabler of non-invasive optical diagnostic devices [1], finding many applications
in the study of biological tissue. These developments are also driven by the increas-
ing demand for readily accessible health care to the rising world population. The main
phenomena occurring when light propagates in tissue are absorption and scattering.
Absorption of light is used for identifying the different molecular species present in a
sample, and for determining their concentration. Light scattering, on the other hand,
provides information about scatterer size and motion in the sample. In most cases, light
is used to illuminate tissue, after which the scattered light is collected in either reflection
or transmission.

Illuminating diffusive media with coherent light leads to a random interference pat-
tern called speckle. The speckle is formed by the constructive and destructive interfer-
ence resulting from path length variations of the light coming to the detector due to sur-
face irregularities or different depths traversed in the media. To interpret such speckle
images, physical models of light-tissue interaction are needed. Many different models
have been used to study light propagation in tissue with the aim of gaining better in-
sight into the underlying physics and quantifying the detected signals. These techniques
range from approximating the light transport as a diffusive process [2–6], simulating a
photon random walk using the Monte Carlo method [7–9], to modelling scattering from
blood using the Mie-Percus-Yevick equations [10].

Any motion of, or inside, the sample causes the speckle pattern to change. The en-
tire pattern could move (‘translating speckle’), maintaining speckle correlation, or the
speckles could randomly appear or disappear (‘speckle boiling’) due to relative motion
of the scatterers [11]. Since the speckle pattern contains information about the dynamics
of the scatterers, speckle imaging is thus used in many applications, ranging from non-
destructive testing, stellar interferometry [12], study of coatings [13, 14], to biomedical
applications [15]. Therefore, using speckle decorrelation is very attractive for the study
of flow behind turbid media, as is the case for many biological applications.

For the specific case of blood flow embedded in tissue, the reflection, absorption, and
transmission properties of the different layers that the light travels through each have an
impact on the detected light. The standardisation of parameters required for medical ap-
plications is very challenging, considering that properties of skin and tissue could vary
from patient to patient, e.g., depending upon health, age and ethnicity of the subject.
Although there is large variation in optical properties of the static scatterers contribut-
ing to the detected signal, the temporal dynamics of the flow or the moving scatterers is
also imprinted in the temporal evolution of the speckle patterns. Thus underlying flow
can be studied by observing the temporal statistics of speckle fluctuations [16, 17]. Us-
ing speckle patterns to study any phenomenon has the advantage that no direct imaging
is necessary, which largely simplifies the required equipment. In-vivo blood flow mon-
itoring has been studied quite extensively using speckle-based techniques. These tech-
niques, such as Laser Speckle Contrast Imaging (LSCI) and complementary techniques
like multi-exposure LSCI, along with relevant applications, have been described in detail
in a recent review [18].

However, there presently is no agreement in the literature as to how to quantitatively
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Figure 4.1: Sketch of Laser Speckle Imaging applied to an artery: a PW of coherent light
enters the medium, multiply scatters on the particles, and is finally gathered at a camera
set at a 90◦ angle with respect to the incoming light. The result is a noise-like interfero-
metric pattern, known as a speckle pattern, from which we wish to obtain quantitative
information.

deduce the material’s dynamics from the speckle dynamics [19]. One metric for quan-
tifying the speckle dynamics is the speckle contrast, which is the ratio of the intensity’s
standard deviation and its mean. Since the speckles are dynamic, they will blur when
observed with a regular camera due to its finite exposure time, tint. The speckle contrast
of the blurred speckles depends on tint and on the speckle decorrelation time, τc . It is
widely accepted that τc is inversely proportial to the local velocity of the scatterers, but
the proportionality constant is disagreed upon [19]. It was even shown theoretically that
the velocity distribution affects how the speckle contrast depends on τc [20]. Therefore,
in order to further develop LSI as a quantitative measurement technique, a thorough
understanding of the scattering process must be acquired.

This may be achieved by using computer simulations, which have the major ad-
vantage that noise factors – which are always present in experiments – may be turned
off one-by-one to quantify their effect. Therefore, we have developed an interferomet-
ric computational model which can simulate the LSI process: an incoming coherent
Plane Wave (PW) is multiply scattered by an ensemble of randomly distributed particles
– which represent RBCs in the present study – and is finally collected at a camera (see
Fig. 4.1). The optics code is based on coherent Mie scattering with multiple scattering
implemented iteratively, but simplified in order to make studying the temporal dynam-
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ics computationally feasible. The particles are evolved using an existing Computational
Fluid Dynamics (CFD) code, which we have coupled to our optics code. The result is
a novel modular code, capable of simulating every aspect of the LSI process. Finally,
note that the standard approach for simulating light scattering in turbid media is to use
Monte Carlo techniques [7–9], in which light scattering is simulated as random-walks of
photons. Our new approach explicitly tracks the position of each particle, allowing for
accurately computing interference effects, and should thus lead to more realistic results.

As a first step towards quantitative LSI, and to validate our simulations, we mimic
an experimental setup [21] which used a cylindrical phantom with a size characteristic
to that of the external carotid artery (ECA) (radius ∼1 mm). Spherical particles the size
of RBCs (radius ∼4 µm) were used as scatterers. The flow was given a mean velocity
typical to blood in the ECA (∼1 m/s), modulated with a realistic heartbeat. We study
the effect of a realistic flow profile by comparing it with plug flow. Using our code, we
have simulated the resulting dynamic speckle images of the moving particles. Finally, we
have retrieved the frequency spectrum of the modulated heartbeat from the speckles,
which also compares well with that from the experimental setup. These results show the
capability of our code to simulate the LSI process. In future work, we aim to include the
effect of more parameters to develop a quantitative understanding of their influence on
speckle dynamics (e.g., the effect of a surrounding static scattering medium: skin and
tissue).

4.2. APPROACH
In this section, we first outline the principle of LSI. Then we discuss the underlying the-
ory of our optics code: Mie theory. We proceed by discussing the geometry and the fluid
dynamics of our simple case study. Finally, we discuss some relevant notes for obtaining
accurate simulation results.

4.2.1. SPECKLE IMAGING
When phase-coherent light scatters on a surface that is rough at optically-relevant scales,
a speckle pattern is formed. This is the result of a random interferometric summation
caused by the different path lengths the light has travelled as it originates from different
spots of the scattering surface. One metric that can be used to extract information from
speckle is the speckle contrast [22, 23]:

K ≡ σI

〈I 〉 , (4.1)

where 〈I 〉 is the mean intensity and σI is its standard deviation. We speak of fully-
developed speckle when the phases become uniformly distributed over [0,2π] radians
after diffusing/scattering (i.e., no specular component remains) [24]. Then, the intensity
becomes Gaussian-distributed [25]: σI = 〈I 〉, and thus K = 1. However, when the light
depolarises due to multiple scattering, a value below one may be expected [26].

When both the illumination and the scatterers remain the same, the speckles will
also remain unchanged. When the scatterers move without relative motion, the speckles
will simply translate at the same rate. However, if there is relative motion between the
scatterers, the path length differences will change, which causes speckles to randomly
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t
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Figure 4.2: We sample instantaneous data rapidly (interval ∆tint) to mimic a real camera’s
integration time tint, and repeat this at distant intervals (∆t apart) to gather temporal data.

appear and disappear. This is called ‘speckle boiling’ [11, 27], which is a source of noise
in LSI.

Provided that the effect of speckle boiling is sufficiently small, we can use translat-
ing speckle to study the collective dynamics of the scatterers [22, 28], although non-
translational speckle could also be used [11]. When translating speckle is imaged with a
camera, a blurred speckle image will be measured due to the finite camera integration
time. Since blurring decreases σI , but does not affect 〈I 〉, the result is a lower K . There-
fore, through the camera integration time, the speckle contrast depends on the amount
of blurring and thus also on velocity [19]. Our research group has applied this principle
previously to experimentally study pulsatile flow in a patient-specific carotid artery [21,
29].

In the present work, we introduce a code capable of simulating the whole LSI process.
The optics code uses Mie theory to propagate a coherent PW to all scatterers, computes
how the light diffracts of each of them, and then propagates all scattered waves to a sim-
ulated camera. The resulting image is an interferometric scattering pattern: a speckle
pattern. In addition to scattering directly to the camera (i.e., single scattering), multiple
scattering is implemented iteratively (see Sec. 4.3.2). A separate fluid dynamics code is
used for computing the motion of the scatterers, after which the optics code is used to
calculate the instantaneous scattering. We mimic the aforementioned blurring effect of
a real camera by time-averaging many independent instantaneous simulations in rapid
succession with timestep ∆tint, as can be seen in Fig. 4.2. This is accurate provided that
ns,int is sufficiently large. We then repeat this process ∆t later to obtain temporal data:
K (t ).
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4.2.2. MIE THEORY
For simulating the electromagnetic scattering of light by the scatterers, our code makes
use of Mie theory, which describes the scattering of a PW by a single sphere [30–33]. The
electric field must satisfy the vector wave equation, ∇2E⃗ +k2E⃗ = 0⃗, where k is the wave
number. (The same applies to the magnetic field (H⃗), but we will leave H⃗ out of the
discussion, because it may always be derived from E⃗ by taking the curl: iωµH⃗ = ∇× E⃗ ,
where ω is the wave frequency and µ is the (magnetic) permeability.) A complete set of
orthogonal basis functions that solve the vector wave equation, are the Vector Spherical
Harmonic (VSH): N⃗pmn and M⃗pmn . Given an incident field travelling in the ẑ direction

and polarised in the x̂ direction, E⃗i = E0e ikz x̂, the scattered field may be expanded in
terms of the VSHs:

E⃗s (⃗r ) =
∞∑

n=1
En

(
ian N⃗ (3)

e1n (⃗r )−bn M⃗ (3)
o1n (⃗r )

)
, (4.2)

where En = E0in (2n +1)/n (n +1) is just a prefactor, r⃗ denotes that the functions depend
on position, the superscript “(3)” denotes the usage of the spherical Bessel function of
the third kind, and an and bn are the Mie scattering coefficients. µ can be neglected, as
its influence is minor for most media: µsphere ≈µsurroundings ≈µ0.

When a Far-Field (FF) approximation is made, the infinite sum in Eq. (4.2) reduces
to a single term, and the scattered field becomes an outgoing spherical wave:[

Es∥
Es⊥

]
= e ik(r−z)

−ikr

[
S2 0
0 S1

][
Ei∥
Ei⊥

]
, (4.3)

where E∥ and E⊥ are the component parallel and orthogonal to the scattering plane re-
spectively, [S] is the amplitude scattering matrix which for spherical particles only de-
pends on the scattering angle θS and properties of the spherical particle, and r is the
radial coordinate (i.e., the distance from the scatterer).

4.2.3. FLUID DYNAMICS
In the present work, we use a simple time-dependent flow in a cylindrical geometry:

u(r, t ) = v(r )F (t ), (4.4)

where u is the axial velocity, v(r ) is the radial velocity profile and F (t ) is a dimensionless
temporal modulation with a mean of 1.

To study an actual heartbeat, F (t ) will be read from a lookup table which contains the
shape of a realistic heartbeat, with the same peak-to-peak amplitude (0.75) as in Baker
et al. [34]. For the simpler sinusoidal case, we take F (t ) = A sin

(
2π f t

)+1, with 2A = 0.75.
The particle positions are integrated in time using the Euler forward scheme with dimen-
sionless timestep ∆t∗ = f ∆t = 5 · 10−4, which yields a maximum relative discretisation
error of 0.1%.

The exact solution for the radial velocity profile in a cylinder is Hagen-Poiseuille flow,

v(r ) = 2〈v〉
(
1−

( r

R

)2
)

, (4.5)

where 〈v〉 is the mean velocity, and R is the radius of the cylinder. For this realistic flow
profile, there will be relative motion between the scatterers and there will therefore be
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speckle boiling. To investigate its influence, we will compare the results with plug flow:
v(r ) = 〈v〉.

4.2.4. DATA ANALYSIS
To extract useful information from our simulated speckle images, three factors in partic-
ular are important: (1) speckle boiling causes temporal noise, (2) the camera should be
sufficiently big with a sufficient resolution, and (3) for a large camera the speckle contrast
should be calculated using windowing.

First, speckle boiling is a physical noise factor caused by the relative motion of the
scatterers [11], such as is the case in a fluid. In this work, we will study flow with and
without speckle boiling, as was discussed in the previous section, which enables us to
determine its influence.

Second, to mitigate statistical noise, a sufficient number of speckles must be cap-
tured, and a sufficient number of pixels should be used to represent each speckle (i.e,
resolution). The first ensures that the speckle space is well-represented, and thus that
the data samples are uncorrelated; the latter ensures that speckles are not smoothed over
the finite area of a pixel, because that artificially reduces the measured K for which needs
to be corrected [35, 36]. For a real camera of 10242 pixels, it was found that about 42 pix-
els per speckle suffices for obtaining a good result [36, 37]. For our simulated camera,
however, we are realistically limited to about 2562 pixels by computational constraints1.
Using 2562 pixels with 42 pixels per speckle, we obtained merely a noise signal for K ,
which indicates bad statistics.

To overcome this, we instead have our simulated camera underresolve the speck-
les, typically using merely (1/5)2 pixels for each speckle in this paper. One cannot do
this with a real camera, as this would artificially reduce K , because of spatial averaging
over the finite pixel size. However, our simulated pixels are infinitesimal points in space.
Thus the underresolving in our simulations is equivalent to using infinitesimal pixels
whose separation is much greater than the typical speckle size, as is recommended by
Skipetrov et al. [35]. In that manner, the simulated camera effectively samples an area
400x larger than it could possibly have for resolved speckle2. Therefore, by underresolv-
ing the speckles, we retain all intensity fluctuations, while increasing our statistical sam-
ple size.

Third, since the amplitude scattering matrix of a sphere in Eq. (4.3) depends on the
scattering angle, 〈I 〉 will generally not be constant across an image, which artificially in-
creases σI . Therefore, applying Eq. (4.1) directly will give a larger value for K than it
should have been. This is especially true for a large camera, such as our simulated cam-
era. If the system is sufficiently dense (i.e., high particle concentration), singly scattered
light will be negligible compared to multiply scattered light. For multiply scattered light,
the light is incident from random directions, resulting in a randomly distributed θs and
thereby averaging out the effect of [S](θs ).

1With our settings, 32841 instantaneous optics simulations are performed for each simulation. Using 32 cores
of a 2.4 GHz AMD Opteron 6234 processor, the simulation time for 2562 pixels is 180 hours. The runtime
scales linearly with the number of pixels (so 5122 pixels would take four times longer), and scales perfectly
with the number of computing cores (so using merely 1 core would take 32 times longer).

2As was discussed in the previous paragraph, using 42 pixels per speckle suffices for resolved speckle. We use
(1/5)2, which means that with the same total number of pixels, we observe a 52 ·42 = 400 times larger area.
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However, for relatively dilute experiments, such as studied in our simulations due
to computational constraints, single scattering contributes significantly. To overcome
the issue at hand, we use local speckle contrast analysis [38], in which K is calculated
through windowing, and then averaged to obtain the (average) speckle contrast of the
whole image:

K = 1

Mx My

Mx−1∑
x=0

My−1∑
y=0

Kx,y , (4.6)

where Mx/y is the number of pixels in the x/y-direction of the camera. We will discuss
the required window size in Sec. 4.4.1.

4.3. CODE DESCRIPTION

Our code3 comprises three parts: first CFD is used to evolve the particles in time, then
the particle positions are extracted from the fluid simulation and processed to be used
as the input for the optics code, and lastly a Mie-based optics code is used to compute
the scattering of an incoming PW by the collection of particles.

4.3.1. COMPUTATIONAL FLUID DYNAMICS (CFD)
To obtain the flow field and particle movements, one can readily apply CFD, in which
the discretized Navier-Stokes equations describing fluid momentum and mass conser-
vation are solved numerically. Particles are typically simulated using Lagrangian particle
tracking. However, since the flow considered in this paper is rather simple, we use the
exact solution of the Navier-Stokes equations for the velocity of the particles instead (see
Sec. 4.2.3). When a particle leaves the cylinder, it is teleported back to the entrance at
the same radial and polar position (i.e., cyclic boundary conditions).

Regardless, our code is designed to be compatible with any existing CFD code (e.g.,
OpenFOAM). This is possible, because the speed of light is very large. Therefore, the
particles cannot move a fraction of λ in the time δt it takes the light to scatter off of all
particles (i.e., vδt ≪ λ results in v ≪ 2 · 102 m/s for the case of our interest, whereas
v ∼ 1 m/s). Consequently, CFD and the optics code are one-way coupled: CFD does not
depend on the optics code, but its output serves as the input of the optics code.

4.3.2. OPTICS

Our optics code uses the Mie FF solution, Eq. (4.3), to compute the scattered light of
each particle separately, while explicitly keeping track of the phase. The required Mie
scattering coefficients in Eq. (4.2) are computed using the bhmie.f90 script from the
book of Bohren & Huffman [31], using the cutoff index nC as was found empirically by
Wiscombe [39]. Computing the Mie solution for all of space is very computationally
demanding, but luckily it only needs to be evaluated at the points of interest, being the
individual points of our virtual camera (i.e., pixels of zero area), and at the positions of
every particle for multiple scattering.

Multiple scattering is implemented iteratively. In the first iteration, the incident laser

3Our code (see Chap. 2) has been published open-source, see the List of Publications on page 137.
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light is scattered via each particle l to each of the N −1 other particles i ̸= l :

E⃗ 0
i l = scatterl→i

(
E⃗incident

)
, (4.7)

where the “scatter” operation refers to Eq. (4.3). In successive iterations p, every particle
i then has N −1 incoming waves from source particles l ̸= i , which it should scatter to all
N −1 other particles j ̸= i :

E⃗ p
j i =

∑
l ̸=i

E⃗ p
j i l , (4.8)

E⃗ p
j i l = scatteri→ j

(
E⃗ p−1

i l

)
. (4.9)

This process includes backscattering (i.e., j = l ̸= i ). The iterative process is repeated
until the maximum of the magnitudes of all scattered electric fields E⃗ p

j i , is a factor 108

smaller than the incident light, which for our simulations results in about 6-7 iterations.
Subsequently, all (multiply) scattered fields E⃗ p

j i are scattered to each of the M camera

pixels c:

E⃗ci =
∑
l ̸=i

scatteri→c

(∑
p

E⃗ p
i l

)
. (4.10)

Finally, the intensity at each pixel K can be computed:

Ic =
∣∣∣∣∣∑

i
E⃗ci

∣∣∣∣∣
2

. (4.11)

The (computational) complexity of the resulting algorithm is N 2(N +M), to be repeated
for each timestep. The code is perfectly parallel (i.e., using x cores is x times faster),
because a great number of independent instantaneous simulations are performed.

Through our iterative process, two implicit (and arguably too strong) assumptions /
simplifications are made. Firstly and most strongly, we use the Mie FF solution Eq. (4.3)
at the length scale of the interparticle distance. It is clear that this assumption is easily
violated: for particle radius a = 4 µm and λ= 600 nm, the interparticle distance should
be r ≫ 0.1 mm to satisfy the assumption. However, blood has a hematocrit of ∼50%,
meaning the typical distance between adjacent RBCs is of the order of the particle radius.
Although this assumption is not satisfied for true blood, it is still satisfied in our simu-
lations for 95% of the interparticle distances (〈r〉 = 3.45 mm), because we are limited
to relatively few particles due to computational constraints. Therefore, this assumption
does not affect our results at present. The second assumption is that Mie theory requires
an incoming PW; therefore, we approximate the outgoing spherical wave Eq. (4.3) of the
first particle as a PW at the position of the second particle:

Ψ(r ) = e ikr

kr
≈Ψ(z) = e ikz e ikr cur s

kr
(
1− z

r
)

. (4.12)

This is a PW provided that a ≪ r , which is much more easily satisfied than the previous
assumption.
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The scattering matrix must be computed N 2(N +M) times, comprising over 90% of
the computational effort of the code. Since we had made a FF assumption, the scatter-
ing matrix only depends on the scattering angle. Therefore, we precompute it with 100
samples per degree, allowing for accurate interpolation, and yielding a speedup of a fac-
tor ∼10. In conclusion, despite some assumptions being arguably too simplifying, they
enable us to simulate time-dependent laser speckle imaging within a feasible computa-
tional effort.

As an alternative to our approach, one could instead use more sophisticated meth-
ods such as the T-matrix method. With some adaptations, existing T-matrix codes – such
as GMM [40] or FaSTMM [41] – could be implemented within our combined fluids and
optics framework by replacing the core calculation routines of our optics code. Using the
T-matrix method, the above FF assumption is eliminated: the calculated multiply scat-
tered field is exact. It would even become possible to study non-spherical particles. The
FaSTMM method uses a multipole expansion to accelerate the T-matrix method. It was
developed after we had first developed our code, and has a computational complexity of
O( f (N )·N ·log N ) [42], while our code has O(∼N 3). Here, f (N ) is the number of iterations
needed for their iterative matrix inversion, which depends on N in an unknown compli-
cated manner. While benchmarks are not given, and we cannot compare the complex-
ities due to the unknown f (N ) parameter, the FaSTMM was used on a supercomputer
to compute the instantaneous scattering intensity of a cluster of up to N = 105 particles
[42], which is very promising. However, a single (temporal) simulation of ours requires
O(104) individual scattering simulations (cf. Fig. 4.2), and will furthermore need to be
repeated for each pixel of the simulated camera. Therefore, we had currently settled on
less particles, and some assumptions to make our simulations computationally feasi-
ble. Furthermore, we will argue in the following section that our simulations are already
sufficiently accurate for our purposes. Nevertheless, future work should investigate the
present capabilities of the FaSTMM method.

4.4. RESULTS

All simulation parameters are summarised in Tab. 4.1 for reference.

Figs. 4.3 show several speckle figures. Instantaneous (i.e., no camera integration)
speckle is shown in Fig. 4.3a. In this figure, the typical speckle is 4±1 by 5±1 pixels in
size, which translates to 16±3.9 µm by 78±16 µm. Theoretically, the speckle size should
correspond roughly to the characteristic width of the point-spread function (PSF) of the
aperture [19]:

dspeckle ∼
λz

D
, (4.13)

where z is the distance between the object and image plane, and D is the aperture diam-
eter. Note that in our simulations the ‘aperture’ is the cylinder’s frontal area: 1 cm by 2
mm. Since our aperture has an aspect ratio of 5, the speckles have aspect ratio 1/5. That
is why we chose our camera to be rectangular with aspect ratio 4, as to measure (almost)
circular speckles. Using the settings in Tab. 4.1, Eq. (4.13) results in 13 µm by 67 µm. Es-
pecially since we only compare a ‘characteristic’ width, our results correspond well with



4.4. RESULTS

4

67

Table 4.1: Simulation Parameters

O
p

ti
cs Refractive index

nsphere = 1.52
nmedium = 1

Wavelength λ= 532 nm

Fl
ow

Sy
st

em
Fluid mean velocity 〈v〉 = 1 m/s

Flow signal frequency
fsinusoidal = 1 Hz
fheartbeat = 1.20 Hz

Particle radius a = 4 µm
Number of particles N = 100
Radius cylinder R = 1 mm
Length cylinder L = 1 cm

C
am

er
a Number of pixels M = 128×128

Physical sizea 1.25 cm × 5.0 cm
Distance from cylinder 25 cm

Si
m

u
la

ti
o

n Camera integration time ∆tint = 100 µs
# integration samples ns,int = 40
Total simulation time T = 40 periods
Data sampling rate 20 samples/period

aNote that our simulated camera size is without any lenses.

theory, which validates the interferometric behaviour of our code4.
Fig. 4.3b shows the corresponding time-integrated speckle image. For our settings,

the speckles blur over ∼10% of the camera’s width, in the direction of motion. Note,
however, that these resolved speckle figures were created with a 1 mm by 4 mm camera
for the sake of visualization, whereas the following results use unresolved speckle (as was
discussed in Sec. 4.2.4), such as is shown in Fig. 4.3c.

4.4.1. CONVERGENCE
To obtain accurate results, several factors are important, which we will now discuss.
Firstly, it is important to have a sufficient number of pixels (M) (i.e., spatial resolution) in
combination with a sufficiently large camera (to sample enough of speckle space to ob-
tain statistical significance). Secondly, a sufficient number of camera integration sam-
ples (ns,int) (i.e., temporal resolution) is required to mimic a real camera. Thirdly, an
appropriate camera integration time (∆tint) should be used, depending on the charac-
teristic velocity (〈v〉). We will not discuss the latter in this paper, other than noting that
∆tint = 100 µs is appropriate for 〈v〉 = 1 m/s, given that we obtain good results (whereas
we have found that either a too large or a too small ∆tint results in noise).

Fig. 4.4a shows the effect of the number of pixels (M), and the used windowing size
(cf. Eq. (4.6)) on the speckle contrast of an instantaneous simulation. As was discussed
in Sec. 4.2.1, we may expect K = 1 for fully-developed speckle, but since we have a minor
(∼10%) contribution of multiple scattering, a value slightly below 1.0 may be expected.
The figure shows that when no windowing is used, the computed K is significantly too

4For further optics code validation, see Chap. 3.
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(a) Simulation: resolved, instantaneous (b) Simulation: resolved, blurred (c) Simulation: unresolved, blurred

Figure 4.3: A few characteristic speckle figures: the influence of the camera integration time, and resolved ver-
sus unresolved speckle. (b) is the temporally blurred version of (a). Note that the color ranges differ: absolute
values are meaningless, and the blurred image (b) has a factor 10 lower intensity range than (a), which would
have caused (b) to appear mostly dark blue. The 16x16 grid used for local speckle contrast analysis is addition-
ally shown in (c). Deviations from Tab. 4.1: the camera size in (a) and (b) is 1 mm × 4 mm, and all three figures
use 2562 pixels.

high. The reason for obtaining K > 1 is that our camera is sufficiently large for interfero-
metric fringes to be visible (see Fig. 4.3c), the cause of which was discussed in the third
point of Sec. 4.2.4. The fringes increase σI , and thus also K cf. Eq. (4.1). By using an
increasing number of smaller windows, we find that K decreases. This happens because
we effectively zoom-in on the fringes, leaving only the speckles to be seen (see the grid
drawn on Fig. 4.3c). Therefore, windowing with sufficiently small windows is a good
thing. This is evidenced by the convergence to a value just below K = 1.0, up to “grid
642”.

However, as we use increasingly small windows for “grid 1282–5122”, K starts to be-
come increasingly underestimated. The same effect is seen in the bottom-left part of the
figure. This happens because we then effectively zoom-in on the speckles, which results
in a reduced σI and therefore a reduced K , and will eventually result in K = 0 (i.e., in the
limit of infinitely small windows). Additionally, the point at which windows become too
small is relative to the speckle size, because a sufficient number of speckles should be
visible in a window to accurately calculate K . For example, at 40962 (212) pixels, speck-
les are about 6.42 pixels in size; thus using windows of 82 pixels (as is the case for “grid
5122”) is clearly too small. The figure shows that this effect begins roughly at “grid 1282”,
corresponding to a window-size-to-speckle-size ratio of 5. Therefore, we conclude that
this ratio should be larger than ∼5 to obtain quantitative results. Furthermore, all lines
are consistently satisfyingly close to their asymptotic value when windows of at least 82

pixels are used, which is consistent with the experimental heuristic of using 52–72 pixels
as a compromise between spatial resolution (i.e., small windows) and sufficient statistics
(i.e., large windows) [20] to obtain qualitative results.

Consequently, a balance between these two opposing effects is required. The win-
dows corresponding to “grid 642” and “grid 322” differ by merely ∼1.2%, and “grid 162”
deviates by merely ∼3.1% from “grid 642”, which indicates convergence in that middle
range. Given the computational constraints, we decided to go for 1282 (27) pixels, for
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(a) Spatial Convergence (b) Temporal Convergence

Figure 4.4: The effect of the spatial (number of pixels, M) and temporal resolution (number of sampling points,
ns,int, during the constant camera integration time, cf. Tab. 4.1), and the effect of windowing on the computed

speckle contrast (K ). The notation “grid 162” denotes subdividing the image in a 16x16 grid of calculation
windows (i.e., windows of 82 pixels for 1282 (27) total pixels), as is illustrated in Fig. 4.3c.

which a 16x16 grid (i.e., 8x8-pixels windows) is most appropriate with a ∼2.6% error with
respect to its value at 40962 (212) pixels, and ∼0.4% with respect to the asymptote of “grid
642”.

In Fig. 4.4b the effect of the number of camera integration samples (ns,int) on K for a
temporal simulation may be seen. For the sake of completeness, the result is also shown
for a varying number of pixels. The first thing to note is that the convergence behaviour
is independent of M , indicating that spatial and temporal convergence may be studied
independently. The 1282 pixels case deviates merely ∼1.2% from those with more pixels,
indicating that 1282 pixels is also appropriate for a temporal simulation. For ns,int =
10, we have a ∼2% error relative to the ns,int = 160 case, which reduces to ∼0.5% for
ns,int = 40. As a general rule of thumb, we found that one needs a higher ns,int for a
smaller camera. For our present camera, ns,int = 10 would suffice, but in line with our
simulations with a smaller camera, we went for ns,int = 40 in the present work as well.

4.4.2. EXTRACTING A HEARTBEAT

As was discussed in Sec. 4.2.3, we study four distinct cases: sinusoidal plug flow, sinu-
soidal Poiseuille flow, heartbeat plug flow, and heartbeat Poiseuille flow. Tracer particles
suspended in each flow were simulated, after which our LSI code was used to simulate
speckle.

Figs. 4.5 show K (t ) and the frequency spectra for the sinusoidal cases. For plug flow
(Fig. 4.5b), we obtain a perfectly periodic signal. This happens because we obtain the
very same particle positions for successive cycles due to our cyclic BCs. For Poiseuille
flow (Fig. 4.5c) on the other hand, we retrieve a periodic signal, with some noise. Most of
that noise may be attributed to speckle boiling. In the frequency spectra it may be seen
that the main frequency peak of the input signal is easily reconstructed, for plug flow and
Poiseuille flow alike. It may be seen that the effect of speckle boiling on the frequency
spectrum is minor noise with roughly the same amplitude at all frequencies, which is
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(a) Input (temporal modulation) (b) Plug Flow (c) Poiseuille Flow

Figure 4.5: Simulation results for the sinusoidally modulated flow. Top: obtained speckle contrast time series,
shown for five simulated periods. Bottom: its frequency spectrum obtained from forty simulated periods.
Insets on bottom: the frequency spectrum as obtained from merely two simulated periods.

easy to filter out if we would want to.

Unlike the input signal, the output signal also shows a frequency peak at twice the
main frequency. This is caused by the fact that K (t ) is broad at its troughs, but narrow at
its crests. This widening and narrowing effect may be created by superimposing a cosine
of twice the sine’s frequency. K (t ) shows this behaviour, unlike the input signal, because
K does not simply scale linearly with velocity (u) [19]. Hence we may not expect K (t )
to be identically proportional to u. More specifically, for low velocities, K drops sharply
from 1, whereas for high velocities K approaches the asymptotic value of 0 slowly. Thus
changes at a low velocity (troughs of u; crests of K ) result in large changes in K , whereas
changes at a high velocity (crests of u; troughs of K ) result in a smaller change in K .
Therefore, the crests of K should theoretically be more narrow than its troughs – as is
also observed.

The results for the heartbeat-modulated cases are shown in Figs. 4.6. Just like for
the sinusoidal cases, K (t ) shows the same features as the input signal. That is, there is a
clear mapping between all local minima and maxima, and crests of u again correspond
to troughs of K and vice versa. For plug flow (Fig. 4.6b), the signal is nicely periodic with
little noise. In the frequency spectrum it may be seen that the original main frequency
is found, and the characteristic higher order frequencies are also retrieved. The relative
peak heights are not identical as those of the input signal, but – as was also concluded for
the sinusoidal case – they should not be, because K does not scale linearly with u. The
little noise that is present, is caused by the different particle positions for each cycle, as
with a period of 0.835 s the cyclic BCs do not result in identical particle positions in the
next cycle, as had been the case for the sinusoidal modulation with a period of precisely
1 s.

For Poiseuille flow (Fig. 4.6c), we once again obtain a signal which is more noisy than
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(a) Input (temporal modulation) (b) Plug Flow (c) Poiseuille Flow

Figure 4.6: Simulation results, like Fig. 4.5 above, but now for a heartbeat-modulated flow.

plug flow, which may again be fully attributed to the speckle boiling associated with the
Poiseuille flow profile. Taking the frequency spectrum of plug flow as a reference, it may
be concluded that the effect of speckle boiling is to apply spectral noise independent of
frequency, as was also observed for sinusoidal flow. The relative peak heights are within
2% of those of plug flow – so within our convergence errors – proving that speckle boiling
has no significant effect on our ability to use LSI for studying the dynamics of a flow
system.

Our group has previously applied the principles outlined in this paper to extract the
heartbeat in an experimental setup [21]. The heartbeat was also measured in-vivo using
this technique [29]. Our simulations compare well with those experimental results.

4.4.3. FUTURE WORK
The results presented thus far show the capability of our code to simulate LSI. As merely
the first step, we have applied our LSI code to extract a heartbeat from a simulated flow,
and studied the effect of (the noise induced by) speckle boiling. Clearly, simpler tech-
niques such as light-absorption techniques are already able to do this, as only a (qualita-
tive) sensitivity to fluctuations in blood density is required. The real power of LSI is that
it is based on light scattering, which is sensitive to many more parameters, and may thus
be developed to become a truly versatile measurement technique.

Quantitative local velocity measurements that can non-invasively monitor (opaque)
turbid media might be possible, because speckles are primarily sensitive to the trans-
verse direction of motion, and the speckle contrast (amongst other speckle metrics)
is sensitive to the magnitude of velocity [19, 22]. When combined with regional laser
Doppler techniques [20], which are sensitive to the longitudinal direction of motion,
a three-dimensional flowmetry technique for turbid media might be developed. Light
scattering is also sensitive to the refractive index of the RBCs, which yields information
about their oxygen content. LSI may also be used as a cheap technique for blood perfu-
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sion measurements [38]. Further possibilities include, but are not limited to: premature
detection of atherosclerosis, measuring the dynamic morphology of RBCs, and distin-
guishing between different depths in complex flow networks. The primary benefit of our
new code is that we can enable/disable and vary parameters at will, allowing us to study
their effect. For future work, our new code may thereby be used to study and develop
said applications.

4.5. CONCLUSIONS
In this paper, we have developed and applied a computational model for simulating the
interference of multiply-scattered coherent light by moving particles. The model’s pur-
pose is to help us further develop Laser Speckle Imaging (LSI) as a quantitative imaging
technique. The model is based on Mie theory, which provides an exact solution for the
scattering of a PW by a single sphere. The fields of all particles are gathered at the pix-
els of our simulated camera by adding them vectorially, and then squaring them to ob-
tain the intensity. To incorporate multiple scattering, we devised an iterative process in
which each particle not only scatters to every pixel, but also to every other particle. The
process is repeated until successive scattering orders become negligible. Simplifying as-
sumptions were made to make the process computationally feasible: we assumed that
particles are sufficiently far apart (i.e., in each other’s FF) and sufficiently small, so that
they see scattered fields approximately as incoming PWs. Although these assumptions
affect the speckle pattern, they do not restrict us from obtaining meaningful results.

To show that our simplifications are not limiting, we have applied our model to a
case study resembling blood flow: spherical particles of several micrometer moving in a
cylindrical geometry with 1 m/s mean velocity. The flow system was modulated with a 1
Hz sinusoidal signal, and a 1.20 Hz heartbeat signal. Using speckle blurring with a cam-
era integration time of 100 µs, we have successfully retrieved the main frequency modes
of the input signal from the speckles. We have studied the influence of speckle boiling on
the quality of the result by comparing plug flow with a Poiseuille flow profile, and found
that speckle boiling applies uniform spectral noise to the signal. For our present case,
its effect was of the same order as our measurement uncertainty, ∼2%, and thus speckle
boiling was not found to be detrimental for the result. Our results prove that our numer-
ical model is capable of simulating the whole LSI process, and is therefore a useful new
tool for improving LSI as a quantitative indirect imaging technique.
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5
HOW VELOCITY AFFECTS THE

SPECKLE CONTRAST

We study how the speckle contrast depends on scatterer velocity, with the goal of further
developing Laser Speckle Imaging (LSI) as a quantitative measurement technique. To that
end, we perform interferometric computer simulations on a dilute plug flow. The results
of our numerical experiment, that we compare with known analytical expressions to con-
firm their veracity, match well at low velocities with the Gaussian expression. Finally, we
address the issue of how velocity depends on speckle decorrelation time, and show that the
imaging-system-dependent speckle size is most likely the relevant connecting length scale.

This chapter was published previously: Van As, K., Simons, B. A., Boterman, J., Kleijn, C. R., Kenjeres, S. &
Bhattacharya, N. (2022). The dependence of speckle contrast on velocity: a numerical study. J. Eur. Opt. Society-
Rapid Publ. 2022, 18(2), 11.
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5.1. INTRODUCTION
Laser Speckle Contrast Imaging (LSCI) is a promising technique for the non-invasive
measurement of dynamic systems (i.e., velocimetry), such as blood flow [1–6]. When
coherent light scatters off of particles, a speckle image is formed. When those particles
are in motion, the speckles will be dynamic as well. The result is both speckle transla-
tion and speckle boiling [7, 8], with a characteristic speckle decorrelation time τc . When
imaged with a camera with exposure time T , the resulting speckle image will undergo
blurring, the amount of which depends on the particles’ velocities. The blurring is quan-
tified using the speckle contrast, K , thus providing a metric for velocity, V [9]. At present,
this makes LSCI useful for relative velocity mapping [1]. Due to its simplicity, high spatial
resolution, and low cost, LSCI has already been widely adopted [10–14].

However, quantitative measurements with LSCI have been elusive due to the lack of a
method for quantitatively determining the velocity from K , which prevents us from mak-
ing quantitative measurements with LSCI. Another optical technique for velocimetry is
Particle Image Velocimetry (PIV), which, although established, has the disadvantage that
direct imaging is required and is thus invasive in nature. In a recent paper, the velocity
profile was quantitatively reconstructed with the new optical speckle image velocime-
try technique [15] that combines LSCI with PIV, but their technique relies on negligible
speckle boiling, which is only attainable with invasive measurements. The sidestream
dark field LSCI technique [16] still requires some direct imaging of the flow as well. Ef-
forts have been made to overcome these problems for non-invasive measurements, such
as improvements to the analytical relationship between K and τc [17, 18], studying the
effect of the temporal correlation function of light [5, 19, 20], and using multiple expo-
sure times [21, 22] or multiple wavelengths [23]. Although LSCI is promising, much work
is still required to make it a fully quantitative measurement technique.

In this work, we continue the work of Duncan and Kirkpatrick [17] by investigating
how K depends on τc and τc in turn on V . Once we accurately know these relationships
and what they depend on, we can convert a measured K into the velocity of the scattering
system, thus enabling us to make quantitative measurements with LSCI. To obtain those
relationships, we perform computer simulations using our new in-house code [24].

5.2. SIMULATION

5.2.1. APPROACH

Our code (see Chap. 2) is based on Mie theory, which describes the scattering of a lin-
early polarised plane wave by a single homogeneous spherical particle. Using a Far-Field
(FF) approximation, the plane wave that was scattered by a particle locally becomes a
plane wave again. In that manner, multiscattering between particles is implemented it-
eratively, in which each particle scatters to each other particle, including backscattering,
until successive scattering orders become negligible. Finally, all scattered fields are gath-
ered at a two-dimensional grid of infinitesimal points (i.e., our “simulated camera”), at
which the intensity I is calculated. Using a separate CFD code, we then evolve the parti-
cles in time. The instantaneous light scattering calculation is repeated at nint rapid time
intervals and then averaged over to mimic the finite integration time T of a camera. The
result is a fully interferometric code, capable of simulating dynamic speckle.
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Figure 5.1: Simulation setup: a plane wave is incident on a cylindrical geometry filled with
tiny spherical particles in motion. A ’camera’, placed at a right angle, measures the resulting
dynamic interferometric speckle pattern over time. Figure not to scale.

We do not simulate any kind of imaging system such as lenses. Consequently, we
study objective speckle – as opposed to the subjective speckle that forms in the imaging
plane of a lens. Since both types of speckle have similar dynamics, simulating lenses is
irrelevant to our simulation.

Several simplifications were made that enable us to study dynamic systems within
a reasonable computational time. The strongest is the aforementioned FF approxima-
tion in Mie theory. This is easily violated, as this requires an interparticle distance of
r⃗ ≫ 0.1mm (i.e., for our parameters outlined below). The second part of the FF ap-
proximation is that the particle size should be ≪ r⃗ , which is much more easily satisfied
than the previous assumption. However, although these assumptions are not valid for,
e.g., real blood flow (r⃗ ∼ 10−5 m), they are still satisfied in our simulations, because we
are limited to relatively few particles by computational constraints. Thus strictly speak-
ing our model is only applicable to sufficiently dilute flow, but it may be expected that
the results on dynamic speckle imaging are more widely applicable nonetheless. More
details about our code and the assumptions may be found in our previous paper [24].

To study how K ≡ σI /〈I 〉 depends on V , we use a simple cylindrical geometry with
plug flow (i.e., a uniform constant velocity profile). The cylinder is 1 cm long with a 1 mm
radius, which is characteristic for the external carotid artery (ECA)1. The camera and the

1LSCI until now has mostly been used to study blood perfusion from capillary beds [1], but the ECA is also a
good candidate for this technique [25]
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laser are placed at right angles, and also orthogonal to the cylinder’s axis (see Fig. 5.1).
100 tracer particles with radius 4 µm are randomly distributed over the geometry. When
a particle leaves the cylinder, it is reinserted at the entrance at the same radial and polar
position (i.e., cyclic BCs). Although our code is capable of simulating more complex
geometries and flow profiles, we chose this simple setup as a first step to minimize the
effect of speckle boiling. Effects of using a different flow profile on the noise induced by
the associated increase in speckle boiling was studied in Chap. 4.

On the optics side of the code, we use a real refractive index of 1.52 for the spheres
and 1.00 for the surrounding medium. The wavelength of illumination is 532 nm. The
camera is placed at a distance of 25 cm from the cylinder, and is given a size of 1.25 cm
by 5.00 cm with 1282 pixels2. With these settings speckles are underresolved, on average
using merely 1 pixel for every 25 speckles (i.e., 0.22 pixels per typical speckle). Whereas
an experiment should satisfy the Nyquist criterion as to prevent an artificial reduction
of K due to spatial averaging over the finite size of a pixel [26], our simulation uses in-
finitesimal point pixels and thus does not have this problem. Consequently, we can use
fewer pixels that are separated by multiple speckle sizes to obtain a better statistical rep-
resentation of the speckle space while retaining all intensity fluctuations [24]. Finally,
from the obtained speckle pattern, the speckle contrast is calculated using local speckle
contrast analysis [20, 24] with windows of 8x8 pixels (see Sec. 4.2.4).

5.2.2. RESULTS
A study of the effect of velocity V and camera integration time T on the speckle contrast
K is shown in Fig. 5.2. The simulations were performed with 10 different sets of random
initial particle positions, which allowed us to calculate the systematic error caused by
fluctuations in the precise particle positions that will always be present in experiments
and simulations alike3. The data points in the figure are the resulting mean speckle con-
trasts, and the error bars show the resulting standard deviations. Additional errors are
not incorporated into these error bars, such as due to spatial and temporal discretization
(which are ∼2% each [24]). The figure nicely shows that K ≈ 1 at zero velocity, which is
the expected value for fully-developed static speckle [27]. Actually, K is slightly (∼1.2%)
less than unity [24], but this is not substantial when compared to the uncertainties of
discretization and of the random particle instantiations.

As either V or T is increased, K decreases because more motion is captured. Gener-
ally speaking, the error is also lower for higher V and T , presumably because for those
situations averaging occurs over a larger range of particle positions, which renders the
random particle instantiations less relevant.

We hypothesize that the relevant parameter should in fact be d = V T , which is the
physical distance the particles have travelled during the camera integration time. Fig.
5.3 shows the same data as Fig. 5.2, but rescaled using d . Clearly, all data points nicely
collapse onto a single master curve. In fact, in a simulation with the same initial parti-
cle instantiations, doubling either V or T gives precisely identical particle positions and
thus identical speckle and K .

2We require a very large camera to capture objective speckle, as there are no lenses to converge the light.
3However, we do not yet know what parameters this error depends on. Thus we cannot assume that this error

has the same magnitude for all simulation parameters, let alone in all experiments.
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Figure 5.2: Speckle contrast K dependence on scatterer velocity V for various camera integra-
tion times T . The error bars show the spread (standard deviation) caused by 10 different sets
of random initial particle positions.

Figure 5.3: Speckle contrast K dependence on scatterer “distance travelled”, d =V T . The data
points are from Fig. 5.2, and are shown to collapse onto a single master curve.
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5.3. THEORETICAL COMPARISON
Several analytical expressions for K are already well-known [17, 19, 20]. As a numer-
ical experiment, we compare our simulations with these analytical models as to con-
firm/determine their applicability. Whereas physical experiments are good at measur-
ing at large integration times, our simulations can be used for very small integration
times not yet approachable in experiments. More generally, simulations can be used for
circumstances that are difficult to reach experimentally, and thereby compliment exper-
imental results.

5.3.1. THEORY

SPECKLE CONTRAST DEPENDENCE ON DECORRELATION TIME

The analytical expressions are derived from the temporal fluctuation statistics of the
speckles caused by the motion of the scatterers. Using the autocovariance of the tem-
poral fluctuations C (2)

t (τ), it is possible to integrate over a time period T to obtain the
spatial variance σI of time-integrated speckle [20, 28], and thus also K :

σ2
I (T ) = 2

T

∫ T

0

(
1− τ

T

)
C (2)

t (τ)dτ. (5.1)

However, the difficulty in deriving an analytical expression is that the motion of the scat-
terers is usually a priori unknown or too complicated; therefore, C (2)

t (τ) caused by said
motion must be assumed.

When a Lorentzian covariance is assumed, the speckle contrast is:

K 2 =β τc

2T

[
2− τc

T

(
1−e−2T /τc

)]
, (5.2)

where β is a factor that corrects for the loss of correlation due to the ratio of pixel size to
speckle size [20], with β = 1 for infinitesimal pixels. Analogously, for an assumed Gaus-
sian covariance, it holds that:

K 2 =β τc

2T

[p
2πerf

(p
2T

τc

)
− τc

T

(
1−e−2(T /τc )2

)]
. (5.3)

The Lorentzian equation is valid for unordered (Brownian) motion, whereas the Gaus-
sian equation is more appropriate for ordered motion. Since those two types of motion
are statistically independent, reality is likely somewhere between these two limits [19].

However, it is not yet clear whether these relationships are truly applicable in prac-
tice. An arguably more appropriate relationship for blood flow was derived while assum-
ing a constant velocity [29]:

K 2 =β τc

3.83T

∫ 3.83T /τc

0

(
2J1(x)

x

)2

dx, (5.4)

where J1(x) is the Bessel function of the first kind. The number 3.83 was introduced to
define τc in Eq. (5.1) as the time τ after which J1(x) = 0 for the first time. This curve fol-
lows the Gaussian curve closely for small T /τc , whereas it follows the Lorentzian for large



5.3. THEORETICAL COMPARISON

5

83

T /τc . This is sensible, because for small T /τc the motion is very ordered (∼Gaussian),
whereas for large T /τc the blurring caused by the accumulated speckle blurring is so
large that we might as well have been looking at speckle boiling caused by unordered
motion (∼Lorentzian).

SCALING OF THE DECORRELATION TIME WITH VELOCITY

These expressions all give K as a function of τc , whereas the goal is to measure V . To that
end, an expression for τc (V ) is needed. It was postulated that τc scales inversely with V :
[17]

τc = w

V
, (5.5)

where the proportionality constant w should be a characteristic length scale; however,
its value is still being disagreed upon by two orders of magnitude [5]. The first proposal
simply used the wavelength, wλ = λ/2π, although without any derivation [1, 17]. Re-
cent experimental research on speckle dynamics still uses this relation [30]. Later it was
suggested that w should be the speckle size [17, 19],

wspeckle =
λz

D
, (5.6)

where z is the distance between the object and image planes, and D is the imaging aper-
ture4. This expression makes sense physically, because in the time period wspeckle/V
the speckles have first translated a relevant distance to start decorrelating, which is pre-
cisely what the time τc describes. Since there are no lenses in our numerical setup, our
‘aperture’ (D) is the illuminated area, which is our entire cylinder.

5.3.2. RESULTS
We may compare our results with these expressions by first noting that all expressions
for K in Eqs. (5.2)-(5.4) depend only on the ratio τc /T . Upon substituting Eq. (5.5), we
see that the analytical results for K all depend on the quantity w/V T . This is consistent
with our independent finding that d = V T is the relevant parameter for studying K (V ),
as was evidenced by Fig. 5.3. We view this finding as evidence that τc does indeed scale
inversely with V , cf. Eq. (5.5).

SPECKLE CONTRAST DEPENDENCE ON DECORRELATION TIME

Having written K (τc /T ) as K (w/d), Eqs. (5.2)-(5.4) may be used to fit our simulation
results with fitting parameters w and β. Fig. 5.4 shows the same data as shown in Figs.
5.2-5.3, but now with the x-axis rescaled to (τc /T )/w = d−1. This scale was chosen to
resemble the usual τc /T scale [17, 20], but deviates because we used w to fit our data
with known V . Consequently, τc in Eq. (5.5) is not well-defined, as it differs for each
fit (by up to a factor two). For the fit of Eq. (5.4) we have used the exact solution of the
integral. For the fit of the Lorentzian model β= 1 is used, because the fit would result in
β > 1, resulting in non-physical K > 1 at low velocities. Finally, all three models would

4Note that the speckle size is determined fully by the imaging system, and not by the scattering system being
observed (e.g., inter-particle distance) [20].
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have been bad if we had fit them across the whole domain; therefore, only the region of
large τc /T contributes to the fit.

From the figure, we note that the Lorentzian model describes our results poorly,
whereas the other models do an excellent job for large τc /T ∼ d−1 (low V ). This is consis-
tent with the fact that we have flow at a constant velocity, whereas the Lorentzian model
is more appropriate for Brownian motion [17]. The Gaussian and constant-velocity mod-
els resemble each other more closely, as they are both for ordered motion.

However, β describes the reduction of K due to the finite pixel size, whereas we have
infinitesimal pixels. Therefore, we may not use β as a fitting parameter, and actually
should just take β = 1, as is shown in Fig. 5.5. Note that β has a negligible influence at
small τc /T ∼ d−1 (high V ), and mostly results in a vertical shift at large d−1 (low V ). The
main difference here is that the analytical models have their asymptote at K = 1, whereas
our simulations yield a value slightly below one. The reason is that our simulations im-
plement multiscattering, which reduces K . However, in our rather dilute simulations,
single scattering still contributes significantly (∼90%), resulting in only a slightly lower
value for K . The analytical models do not incorporate this effect, and thus β provides a
first order approximation to including multiscattering analytically.

Next, it may be seen that the Gaussian model performs slightly better across the
whole domain than the constant-velocity model, although our simulations do have a
constant velocity. A possible explanation could have been that particles move in and out
of the laser’s view, which results in a small amount of speckle boiling. However, simu-
lations without cyclic BCs (in which we have purely translating speckle) have revealed a
less than 1% difference in the results; thus speckle boiling is not the cause.

Related to that, all models describe the results at small τc /T ∼ d−1 (high V ) poorly,
as K seems to saturate in the simulations, which is why the fits were made for large d−1.
However, fitting the models at small d−1 instead does not yield a good fit (not shown);
therefore, the models cannot describe the simulations in this regime. In an experiment,
the effect of static scatterers would be to increase the minimum contrast value [20],
which is precisely the effect we observe. However, the simulations do not have any static
scatterers. Hypotheses for the difference are effects of single versus multiscattering, and
related thereto the diluteness of our flow. More specifically, the theoretical models do
not incorporate multiscattering, but its contribution to the simulated intensity is still
minor in the present simulations regardless. Therefore, a more likely explanation is the
diluteness of our simulations in combination with the major contribution from singly
scattered light. The combination causes interferometric fringes to appear on our cam-
era. Although local contrast analysis (i.e., windowing) diminishes their influence, they
do have the effect of increasing K and are not affected by the blurring at high velocities
(low d−1) [24]. Alternatively, it could also well be that the theoretical models are inad-
equate in this regime, as they, too, make assumptions on the scattered field’s statistics.
Future research will need to point out which of the above hypotheses is the case. Never-
theless, our results are meaningful at large d−1, which is the regime that is most difficult
to study experimentally due to requiring a camera with a small integration time.

SCALING OF THE DECORRELATION TIME WITH VELOCITY

Finally, it is of prime interest to study the obtained value for the fitted w , as there exists
disagreement in the literature. The hypothesised expressions for w in and just above of
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Figure 5.4: Speckle contrast versus (τc /T )/w = d−1. The data points are the same as in Fig. 5.3. The
values of w and β of models (5.2)-(5.4) are fit (exception: in the Lorentzian model β = 1 is used),
using only the data points with d−1 ≥ 3 ·104.

Figure 5.5: Speckle contrast versus (τc /T )/w = d−1. The data points are the same as in Fig. 5.3. The
value of w of models (5.2)-(5.4) are fit, using only the data points with d−1 ≥ 3 ·104, and using β= 1.
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Table 5.1: Used fit parameters of models (5.2)-(5.4).

used in Fig. 5.4 used in Fig. 5.5
Model w (µm) β (-) w (β= 1) (µm)
Lorentzian - - 17.5±0.2
Gaussian 12.6±0.2 0.970±0.004 11.8±0.1
const. vel. 23.8±0.3 0.955±0.004 21.8±0.2

Eq. (5.6) yield: wλ = 0.0847 µm and wspeckle = 13.3 µm × 65.5 µm. wspeckle is given two
values, as our aperture5 is rectangular with aspect ratio 5, and thus our speckles, too, are
rectangular with aspect ratio 1/5. [24] However, in the direction of motion the speckles
have width wspeckle = 13.3 µm, which is the only relevant length scale for decorrelating
speckles due to translational speckle in that direction.

Tab. 5.1 shows the obtained values of w and β from the fits in Figs. 5.4–5.5, with
which we can compare wλ and wspeckle. It is clear that wλ is off by several orders of
magnitude, and thus is inadequate. wspeckle, on the other hand, is strikingly close to our
results, and in particular to the Gaussian, being also the best fit. Thus w ≈ 1.06wspeckle in
combination with the Gaussian model best describes our simulation results6. Although
this does not proof the correctness of Eq. (5.6), for which future research should investi-
gate the influence of λ, z and D , it does make wspeckle an extremely likely candidate.

5.4. CONCLUSIONS
In summary, we have presented results of our new computer code, which simulates how
a plane wave of coherent light scatters off of a collection of moving particles using Mie
theory to form a dynamic interferometric speckle pattern (i.e., LSI). By mimicking the
finite integration time T of a real camera, we have shown how the speckle contrast K
depends on particle velocity V and on T . Existing theoretical models describe how K
depends on the speckle decorrelation time τc and on T , and it is believed that τc = w/V ;
although the value of w is still disagreed upon in the literature. We provide evidence
that τc does indeed scale inversely with V , and that wspeckle = λz/D (multiplied by an
O(1) constant) is a very likely candidate for w . The Gaussian correlation model does
an excellent job at describing our simulation results for large τc /T (low V ), but deviates
considerably for low τc /T (high V ), for which we provide several hypotheses for future
research. However, the Lorentzian model is unsuitable for ordered flow (i.e., advection).
Other optical scattering techniques, which use photon correlation, also have the contin-
uing discussion about decomposing flow into advection and Brownian motion [31].

The strength of numerical experiments, once validated, is that all circumstances may
be simulated and studied. Future research should study the effect of all relevant param-
eters – and in particular those that are difficult to reach experimentally – which our code
can provide. These results will help develop LSI as a quantitative non-invasive measure-
ment technique for velocimetry in turbid media (e.g., blood flow7).

5Our aperture is the illuminated area on the cylinder, as was discussed below Eq. (5.6).
6But the scaling factor is bound to depend on many parameters that should still be studied.
7Although, patient-specific calibration might always remain necessary [20].
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6
TOWARDS DETECTING

ATHEROSCLEROSIS

The disease atherosclerosis causes stenosis inside the patient’s arteries, which often even-
tually turns lethal. Our goal is to detect a stenosis in a non-invasive manner, preferably
in an early stage. To that end, we study whether and how Laser Speckle Contrast Imag-
ing (LSCI) can be deployed. We start out by using computational fluid dynamics on a
patient-specific stenosed carotid artery to reveal the flow profile in the region surrounding
the stenosis, which compares well with particle image velocimetry experiments. We then
use our own fully interferometric dynamic light scattering routines, to simulate the process
of LSCI of the carotid artery. Our approach offers an advantage over the established Monte
Carlo techniques, because they cannot incorporate dynamics. From the simulated speckle
images, we extract a speckle contrast time series at different sites inside the artery, of which
we then compute the frequency spectrum. We observe an increase in speckle boiling in sites
where the flow profile is more complex, e.g., containing regions of backflow. In the region
surrounding the stenosis the measured speckle contrast is considerably lower due to the
higher local velocity, and the frequency signature becomes notably different with promi-
nent higher-order frequency modes that were absent in the other sites. Although future
work is still required to make our new approach more quantitative and more applicable
in practice, we have provided a first insight into how a stenosis might be detected in-vivo
using LSCI.

This chapter was published previously: Van As, K., Dellevoet, S. F. L. J., Boterman, J., Kleijn, C. R., Bhattacharya,
N. & Kenjeres, S. (2022). Toward detecting atherosclerosis using dynamic laser speckle contrast imaging: A nu-
merical study. Journal of Applied Physics, 131(18), 184902.
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6.1. INTRODUCTION
The prevalence of atherosclerosis in the human species has been recorded right from
pre-agricultural hunter-gatherer populations. The presence of atherosclerotic plaque
(arterial) inside the carotid artery, causes stenosis, which increases the risk factor for is-
chemic stroke or transient ischemic attacks. The common non-invasive ways of examin-
ing a patient for carotid artery stenosis are Magnetic Resonance Angiography (MRA) and
computed tomographic angiography [1], which require expensive equipment. Ultra-
sound techniques, like duplex ultrasonography [1] and photoacoustic imaging [2] may
also be used; although being non-invasive, they offer different levels of discomfort to
the patient. One optical technique that shows promise in providing an alternate way to
screen patients is laser-speckle-based blood flow monitoring.

Speckle is the random interference pattern which arises when coherent light illu-
minates diffuse media and meets at the detector plane with varying path-length differ-
ences due to different trajectories traversed in the media. The speckle pattern contains
useful information about the dynamics of the scatterers, because any motion of, or in-
side, a medium affects the speckle pattern. Speckle correlation is maintained when all
scatterers have the same vectorial velocity and thus maintaining all interparticle dis-
tances (“translating speckle”), but decorrelates due to the relative motion of the scatter-
ers (“speckle boiling”) [3].

Specifically for blood flow embedded in tissue, each of the layers that the light travels
through affect the detected light by the varying transmission, reflection and absorption
properties. Furthermore, each patient will be different, e.g., depending upon health,
age and ethnicity of the patient. All these different scattering properties yield a static
contribution to the measured speckle patterns. However, the temporal dynamics of the
underlying flow or the moving scatterers will be imprinted in the temporal evolution of
the speckle patterns, which may subsequently be studied [4, 5]. A recent paper has used
optical speckle image velocimetry to quantitatively reconstruct the velocity profile in
blood vessels [6], but their work is still invasive in nature. However, when using speckle
patterns no invasive imaging is necessary for the specific case of the carotid artery [7],
largely simplifying the required equipment. The latter makes speckle decorrelation a
promising candidate as a technique to study the flow of turbid media [8–10], such as
blood [11]. However, to be able to derive useful information from speckle images, the
physical process of light-tissue interaction needs to be studied first.

To that end, many different models have previously been used to study light propa-
gation in tissue, such as simulating a photon random walk using the Monte Carlo tech-
nique [12–14], approximating the light transport as a diffusive process [15–19], or using
the Mie-Percus-Yevick equations to model the scattering from blood [20]. For in-vivo
blood flow monitoring, there have been numerous studies based on speckle-based tech-
niques, such as Laser Speckle Contrast Imaging (LSCI) and complementary techniques
like multi-exposure LSCI [7, 21]. In applications where direct imaging is possible, such
as surface microvasculature, methods based on motion history image (MHI) analysis
[22, 23] or laser speckle optical flow imaging (LSOFI) [24] may be used. In principle,
one should be able to quantitatively derive properties of the underlying flow from the
measured speckle patterns (e.g., the velocity), even in cases where direct imaging is not
possible such as deeper embedded vessels (e.g., the carotid artery). One metric that is
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affected by the speckle dynamics is the speckle contrast K that is simply the ratio of
the intensity’s standard deviation to its mean. Although it is now widely accepted in
literature that K scales inversely with velocity, the exact quantitative relationship still
remains elusive [25–28] (see Chap. 5). Consequently, quantitative measurements still
rely on combining multiple measurement techniques [6]. Nevertheless, with our goal of
detecting atherosclerosis, we may bypass these challenges and use LSCI to qualitatively
describe features of the underlying (blood) flow.

In our previous work, we had developed a new numerical procedure to simulate how
a plane wave of monochromatic coherent light (i.e., a laser) scatters off of an ensem-
ble of particles [29] (see Chap. 2). Our algorithm is based on Mie theory, which gives
the exact solution to how light scatters off of a sphere, that we have then adapted to in-
clude multiscattering. Although simplifications were made to make this approach com-
putationally feasible, the advantage of our new approach is that we carefully track the
phases. Consequently, we can simulate instantaneous speckle images containing all the
interferometric information an experimental speckle pattern would also contain, allow-
ing us to simulate the temporal dynamics, whereas the popular Monte Carlo approach
yields statistical averages [12]. Using our new code, we had performed simulations us-
ing a sinusoidal- and a real heartbeat-modulated flow on both plug flow and Poiseuille
flow in a cylinder (see Chap. 4). From the results, we have first shown that we could
reconstruct the original heartbeat frequency from the dynamic speckle patterns. Then
we proceeded to show the effect of speckle boiling on the frequency spectrum of the
speckles: speckle boiling caused by particles entering and leaving the laser beam and
speckle boiling caused by the flow profile (i.e., Poiseuille flow) both have the effect of
adding white noise1 to the frequency spectra. When both origins of speckle boiling were
present, their individual white noise effects added cumulatively. This is the primary ad-
vantage of performing simulations: we were able to simulate precise conditions that are
unattainable in experiments, which allowed us to study the physics of speckle boiling in
detail. The speckle boiling did not interfere with our ability to extract the original heart-
beat frequency from the dynamic speckle, as we had obtained a signal-to-noise ratio of
about 50.

In this work we proceed to apply our computer model to the geometry of a carotid
artery of a patient who suffers from atherosclerosis, i.e., there is a stenosis in the internal
carotid artery (ICA). To that end, we have first coupled our light scattering code to an ex-
isting Computational Fluid Dynamics (CFD) code: OpenFOAM [30]. We then simulated
the flow inside the artery, and have compared our results to simulations performed in
Ansys Fluent [31–33] and experimental results based on Particle Image Velocimetry (PIV)
[32, 34]. Finally, we simulated the light scattering in five different regions in the artery
and we use LSCI and spectral analysis to study how we can detect a stenosis.

6.2. GENERIC APPROACH
The goal is to study atherosclerosis using LSCI. In LSCI, an object is illuminated by a laser
(i.e., a plane wave of coherent monochromatic light), as is illustrated in Fig. 6.1a. The
light scatters off of all particles it encounters, and the scattered light is measured with

1That is, it is frequency-independent noise that may be filtered using Fourier analysis and a threshold filter.
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(a) (b)

Figure 6.1: (a) Sketch of the laser speckle imaging process. Laser light hits an artery locally,
scatters off of the flowing red blood cells, and forms a dynamic speckle pattern at a camera.
The artery is a 3D model of a stenosed carotid artery. (b) The chosen sites on which we perform
our numerical LSCI experiments.

a camera. Due to the interference of the scattered light with itself, a dynamic random
interference pattern is formed as a result: a dynamic speckle pattern. Information about
the underlying flow system is contained in the dynamics of the speckle pattern.

We model this setup numerically, such that we can perform numerical experiments.
We use a CT-scanned 3D model of an atherosclerosis patient’s carotid artery [35] as our
geometry (see Fig. 6.1a). We use a CFD code to simulate the motion of tiny particles
that represent red blood cells. A separate optics code simulates how the laser’s light scat-
ters off of these dynamic particles, and mimics the measurement of a camera that has
been placed at a right angle relative to the incoming light. Details of these two codes are
discussed in Secs. 6.3 and 6.5.

We perform numerical experiments on the artery at five different locations. These
five sites are shaped cylindrically (i.e., the shape of the illuminated volume of a laser
beam shining through), and they are at the following locations (see Fig. 6.1b): nearby the
inlet (A), right before the bifurcation (B), right before the sclerosed region in the ICA (C),
inside the sclerosed region (D), and opposite of site C in the ECA (E). The red circles in
the figure show the location of the sites, as well as the size of the laser spot used. Details
of this process are discussed in Sec. 6.4.
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6.3. COMPUTATIONAL FLUID DYNAMICS (CFD)
6.3.1. APPROACH

The fluid flow inside the artery is computed using a CFD code. For our simulations,
we have used the open source software OpenFOAM v2.4, and we validate our results
to simulations performed in the proprietary CFD code Ansys Fluent [31–33] and exper-
imental stereoscopic PIV results [32, 34]. The arterial geometry is discretized using a
tetrahedral mesh of 3.5 million cells. In these cells, the incompressible Navier-Stokes
equations are solved for the velocity and pressure fields using the finite volume method.
These equations are combined using OpenFOAM’s implementation of the PIMPLE al-
gorithm with an iterative predictor-corrector method [36]. The convective terms are
discretized using a second-order accurate linear upwind differencing scheme (LUDS),
while the other spatial terms use a second-order accurate central differencing scheme
(CDS). For the temporal discretization, the first-order Euler forward method is used with
timestep ∆t = 0.067 s.

Many small (radius 4 µm) spherical particles are injected in the inlet to represent
red blood cells. They are injected at a rate of 104 particles per second. Their motion
in the computed fluid flow is calculated using LPT (see Sec. 1.4), in which we consider
the small particles as perfect tracer spheres that do not affect the underlying flow. All
physical parameters used in our CFD simulations are listed in Tab. 6.1.

At the two outlets we impose a fixed flow rate boundary condition for the velocity
field, in which the flow rate at the two outlets is enforced to have the same ratio (60:40)
as the outlet areas. At the arterial wall we impose a no-slip condition for the velocity and
a zero normal gradient for the pressure. At the inlet of the common carotid artery we
impose a time-dependent flow rate Q(t ), such that the velocity u at the inlet is:

u⃗ (⃗r , t )|inlet =− Q(t )

A|inlet
v (⃗r )n̂|inlet, (6.1)

where A|inlet is the surface area of the inlet and n̂ is the unit vector pointing outwards
orthogonal to the surface area. At the inlet, we use the exact solution for flow inside an
infinite cylinder (i.e., Poiseuille flow), v (⃗r ) = c

(
1− r 2/R2

)
, which is a parabolic profile.

R is the mean radius of the nearly-circular inlet, and the normalization constant c is
chosen such that v (⃗r ) integrates to unity over the inlet’s surface area.

Table 6.1: Summary of the parameters relevant to CFD.

Kinematic viscosity fluid ν= 8.28 ·10−6 m2/s
Density fluid ρ = 1157.2 kg ·m−3

Mean radius arterial inlet R|inlet = 9 mm
Frontal area arterial inlet A|inlet = 2.63 cm2

Reynolds number at inlet Re|inlet = 2uR/ν= 331.1
Flow period T = 1.34 s
Womersley number at inlet α|inlet = 6.77
Particle radius a = 4.00 µm
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Figure 6.2: The imposed flow rate at the arterial inlet, representing a simplified heart-
beat signal. In this paper, we present flow results at the three labeled times, being at the
maximum (t1), the average (t2) and the minimum (t3) input flow rate.

The input signal, Q(t ), and the extraction times2 that we have used, is shown in Fig.
6.2. The signal is the same as the one used in the experiments that we compare our
results in this section with. By the experimental limitations of the pump, the signal is
not an exact heartbeat signal, but it does have the same distinct features such as a major
oscillation followed by a minor oscillation.

Initially, we start with a zero velocity inside the entire artery. Several flow periods
are needed for the entire flow to adapt to the inflow before a temporal equilibrium is
reached, which takes a time of the order of the flow-through time for incompressible
flow. To be on the safe side, we first simulate the flow for 10 periods before we start
gathering any data for our simulations.

Although real blood behaves as a non-Newtonian fluid due to the large particle den-
sity and the corresponding particle interactions, we use an incompressible Newtonian
model to better match the experimental situation [35]. These experiments use PIV to
obtain the velocity field inside the arterial geometry. The experimental artery was cre-
ated by 3D-printing the arterial model, followed by casting a plastic phantom out of it.
The scale compared to a real artery is approximately 21:10. The fluid was an aqueous
glycerol solution seeded with hollow refractive-index-matched glass particles, varying
in size between 2 and 20 µm diameter.

2The precise extraction time of the OpenFOAM simulation data differs slightly from Fluent and PIV due to
OpenFOAM’s dynamic timestepping, but this difference is insignificant for the comparison of the flow pro-
files.
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Figure 6.3: Normalised flow profiles of the planar velocity V /V0 at two different slices
at maximum inlet velocity (t = t1 in Fig. 6.2). Comparison between OpenFOAM simula-
tions (a), Fluent simulations (b) and PIV experiments (c).

6.3.2. RESULTS

The simulated flow profile at time t = t1 (when the inlet velocity is maximum) is shown
in Fig. 6.3a for two different slices3. The colour scale indicates the velocity relative to the
inlet velocity. There is a small stagnation point right above the bifurcation. The narrow-
ing of the ECA results locally in a twice as high velocity. The same is true for the narrow
stenosis in the ICA. Right before the stenosis is a region in which the velocity is lower, and
in which a local circulation forms, which is a characteristic flow pattern for detecting a
stenosis.

3The top slice has origin (0.201, 0.1453, 0.3902) and normal vector (100, -0.5415, 0.3794). The bottom slice has
origin (0.2054, 0.1389, 0.3455) and normal vector (-100, 1.3, -0.119). Note that these slices are basically just
YZ-planes, but rotated ever so slightly to better correspond with the experimental orientation of the artery.
TecPlot360X-2017 was used to extract the slices and plot the contours.
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Figure 6.4: Normalised flow profiles of the planar velocity V /V0 at two different slices at
average inlet velocity (t = t2 in Fig. 6.2). Comparison between OpenFOAM simulations
(a), Fluent simulations (b) and PIV experiments (c).

At an average inlet velocity, such as is shown in Fig. 6.4a, not much changes. The
velocity relative to the inlet velocity is everywhere very similar. At the left side of the
ICA, a streak starts to form, which becomes much more prominent at the lowest inlet
velocity in Fig. 6.5a. We presume that this is caused by the inertial forces of the preceding
circulation (i.e., the circular flow in the region right before the stenosis). That is, as the
inlet velocity (V0) decreases, the velocity (V ) decreases everywhere, but the ratio V /V0

does not decrease as fast directly adjacent to the circulation.

A comparison with Ansys Fluent simulations and PIV measurements is shown in (b)
and (c) of Figs. 6.3-6.5. Both simulations show the same flow features, both qualitatively
and quantitatively. Although the resolution of the PIV measurements is less than that
of the simulations, we can still see the same distinct flow features and a mostly quan-
titatively matching velocity. Fig. 6.6 shows a more quantitative comparison along one
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Figure 6.5: Normalised flow profiles of the planar velocity V /V0 at two different slices
at minimum inlet velocity (t = t3 in Fig. 6.2). Comparison between OpenFOAM simula-
tions (a), Fluent simulations (b) and PIV experiments (c).

cross-sectional line4, just after the bifurcation. In those figures, y∗ is the zero-centered
spatial coordinate along the line, normalised by the mean diameter of the arterial inlet.
When comparing the ECA (i.e., y∗ < 0 in Fig. 6.6), both simulations compare reason-
ably well with the PIV experiments; Fluent seems to perform better at a higher velocity
(t = t1), whereas OpenFOAM does so at lower velocities (t = t3). In the ICA (y∗ > 0),
the PIV measurements deviate considerably. More specifically, the planar velocity inside
the circulation is lower in the PIV measurements and/or its circulation region is larger.
Since a circulation is rather sensitive to the local geometry, this may well be explained
by manufacturing imperfections of the mold used by the PIV experiments. Nevertheless,
we expect that our fluid simulations are adequate for our LSI conclusions in Sec. 6.5.

4The cross-sectional line is the intersection of the top slice (see the previous footnote) with the plane with
origin (0.2007, 0.1407, 0.3690) and normal vector (0, -21.45, -97.67).
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Figure 6.6: Velocity profile along the cross-sectional line shown in the top figures of
Figs. 6.3-6.5. y∗ is the zero-centered spatial coordinate along the line, normalised by the
mean diameter of the arterial inlet. The profiles are shown at maximum inlet velocity
(a), at average inlet velocity (b) and at minimum inlet velocity (c).

6.4. COUPLING FLUIDS TO OPTICS

To study LSCI, we need to simulate how coherent light scatters off of the particles of
which we calculated the motion in the previous section. This task will be performed by
a separate optics code, which will be discussed in the next section. The advantage of
using two separate codes, is that they are mutually independent: the optics code can use
a set of particle positions as its input data, originating from any source – from any CFD
simulation or experiment. However, the two codes will need to be coupled.

To that end, we extract the particle positions from our CFD simulations in the sites
discussed in Sec. 6.2. These sites are cylindrically shaped, to mimic a laser beam illu-
minating a subset of the total number of particles. The laser spot size was chosen such
that there are on average approximately 100 particles within the illuminated volume. In
that manner, a similar scattered light intensity may be expected on the camera for each
numerical experiment. The extracted particle positions are then converted to the input
format required by the optics code.

Only the particles that are directly inside the illuminated volume are extracted, and
thus only they contribute to the (multiply) scattered light in our simulations. This only
includes the small dynamic particles that were injected into the flow. In practice one
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Figure 6.7: To mimic the integration time of a camera, we sample instantaneous data at
a short interval ∆tint. This process is repeated at distant intervals (∆t apart) to obtain
temporal data. (Figure reprinted from our previous paper [29].)

may expect a contribution by static scatterers inside the arterial wall and inside the tis-
sue around it as well. When this will be incorporated in the future, one may expect the
speckle dynamics to become more complex, manifesting in having additional frequency
modes in the Fourier spectra [37].

To study dynamic speckle imaging numerically, we deploy a trick. Each execution of
the optics code is instantaneous, meaning we take the scatterers to be static while the
light diffracts (i.e., the speed of light is “infinite” compared to that of the blood flow).
To mimic the finite integration time tint of a camera, which is a relevant parameter in
dynamic LSCI [25, 26], we perform ns,int of such scattering simulations in very rapid suc-
cession [29]. This process is illustrated in Fig. 6.7. Finally, all simulated intensities are
summed to obtain one single (blurred) speckle image. We call this process microstep-
ping. This process is then repeated a short while (∆t ) later repetitively at the data sam-
pling rate, fs = 1/∆t , in order to obtain temporal data. All settings (as are summarised in
Tab. 6.2) were chosen based on our previous results: the speckle contrast (see Eq. (6.2))
is sensitive to changes in scatterer velocity at our chosen camera integration time [28],
and the number of integration samples is a compromise between computational time
and an ∼1% numerical integration error [29]. Altogether, 400 scattering simulations are
performed for each flow period.

However, to perform the microstepping we must first acquire the particle positions
at each of the short ∆tint intervals, required by the optics code. The timestep in the CFD
simulations was chosen such that the flow data is available at precisely the required rate
( fs ). Then, for each time (∆t apart), the CFD simulation is restarted to simulate mere
microseconds of flow progression with a timestep ∆tint = 2.5 µs for a time period of tint.
Finally, all particle positions are extracted, and the optics code is executed repetitively.
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6.5. SPECKLE IMAGING

6.5.1. APPROACH: OPTICS CODE DESCRIPTION
Our in-house optics code, which has been previously described in detail in Sec. 2.1 [29],
is fully interferometric, includes multiscattering, and is based on Mie theory. Mie the-
ory describes the scattering of a monochromatic plane wave by a single homogeneous
spherical particle [38–41]. Using a far-field assumption, the scattered wave of each scat-
terer behaves locally in a distant region as a plane wave again. This is valid in a suffi-
ciently dilute system, or in a system containing sufficiently small particles [29]. Although
this assumption is not satisfied for true blood flow, it does enable us to incorporate mul-
tiple scattering, which otherwise would have been computationally infeasible due to its
O(N 3) numerical complexity, where N is the number of particles in the illuminated vol-
ume. During multiple scattering each particle iteratively scatters to each other particle,
including backscattering, until successive scattering orders contribute negligibly to the
final result. Finally, all scattered light is added interferometrically at a two-dimensional
grid of infinitesimal points (i.e., at our “camera”), and the intensity is computed by squar-
ing the electromagnetic field. Note that no imaging system (such as lenses) is being sim-
ulated, as that is unnecessary to numerically obtain (dynamic) speckle images.

The assumptions made, allow us to simulate dynamic laser speckle within a reason-
able amount of time, while incorporating as much of the physics as possible. There exist
alternative methods to our Mie calculation routine, such as the T-matrix method [42]
which yield an exact result to the multiple scattering problem. However, since our dy-
namic simulations require O (104) instantaneous simulations, this is presently not prac-
tical with the available computational resources. Much more details about our code and
its validity were presented in all previous chapters. The optics simulation parameters of
the current work are summarised in Tab. 6.3.

6.5.2. APPROACH: POST-PROCESSING SPECKLE
An example of an instantaneous (simulated) speckle image is shown inside Fig. 6.1a.
Within such speckle images, information about the underlying scatterers is contained.
One metric for quantifying that information is the speckle contrast [27, 43]:

K = σI

〈I 〉 , (6.2)

where I is the intensity, σI denotes its (spatial) standard deviation, and 〈I 〉 is the mean
(spatial) intensity. For fully developed (instantaneous) speckle, the speckle contrast is

Table 6.2: Summary of the simulation parameters relevant to data acquisition.

Total simulation time 35 periods
Data sampling rate fs = 20 samples/period
- corresponding frame rate (FPS) ≃ 26.8 Hz
Camera integration/exposure time ∆tint = 50 µs
No. integration samples ns,int = 25
Velocity of extracted particles range: 0 - 1.2 m/s
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theoretically precisely [44] K = 1. However, when light depolarizes due to multiple scat-
tering such as is the case in tissue, K will become less than one [45].

However, as the scatterers move, we do not obtain instantaneous speckle, but rather
slightly blurred speckle patterns due to the finite integration time of the camera (see
Sec. 6.4). The blurring causes σI to decrease, while not affecting 〈I 〉, yielding a speckle
contrast value K < 1. The amount of blurring is directly correlated with the velocity of
the scatterers; thus introducing a dependency of K on the velocity of the underlying flow
system, which makes K a useful metric for studying a flow system using dynamic speckle
imaging.

Unfortunately, a truly quantitative relation between K and the velocity remains elu-
sive [25, 46]. In ideal situations, the model that assumes Gaussian statistics for the auto-
covariance of the temporal speckle fluctuations seems to perform well [25, 28]. However,
in realistic situations K is affected by disturbances, such as the speckle boiling caused by
the scatterers entering/leaving the imaging plane (i.e., out-of-plane motion) and enter-
ing/leaving the illuminated volume. The speckle contrast is also bound to a minimum
value due to the influence of static scatterers [26], and the influence of multiple scat-
tering. Therefore, any quantitative measurement with laser speckle contrast imaging
currently requires calibration [26]. Fortunately, K is still very useful for relative measure-
ments: i.e., we might not know the precise velocity, but we can observe changes and
differences, which gives us information about the underlying flow.

To that end, we should first obtain accurate values of K . Due to the existence of
large-scale interferometric fringes, we cannot simply compute K over the entire image,
as those fringes arbitrarily increase σI and therefore K . These fringes are the conse-
quence of our rather dilute simulations [29], but the following has been reported to be
relevant for experiments just as well [47]. The solution is to use local speckle contrast
analysis (LSCA), in which the image is first subdivided in a total of Nx ×Ny tiny square
windows, then Ki , j is computed in each subdivision, and finally K is simply the average
of all Ki , j :

K = 1

Nx Ny

Ny−1∑
i=0

Nx−1∑
j=0

Ki , j . (6.3)

We had found previously that for our simulated 128×128 pixels camera [see Tab. 6.3],
windows of about 8× 8 pixels each yielded the best results for our simulations, with a
maximum convergence error of ∼2.6% [29].

Table 6.3: Summary of the optics parameters.

Refractive index nsphere = 1.52
nmedium = 1

Wavelength λ= 532 nm
Particle radius a = 4.00 µm
No. of pixels (camera) M = 128×128
Physical size of the camera “chip” 1.5 mm × 1.5 mm
Distance artery ↔ camera 25 cm
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Finally, we study dynamic speckle patterns, meaning we can compute K at our data
sampling rate fs [see Tab. 6.2]. The result is a time series K (t ) which contains informa-
tion about the flow dynamics. Since we study flow in the carotid artery, it is prevalent
that the periodicity of the heartbeat should reflect in the K (t ) signal as well. Therefore,
it is also useful to calculate the frequency spectrum of K (t ) using the FFT; however, it
should be noted that the frequency spectrum of K (t ) will not equal the frequency spec-
trum of the underlying velocity, since K (t ) does not scale linearly with velocity [25, 28].
Rather, the frequency spectrum of K (t ) will have roughly the same major (i.e., first-order
and second-order) frequency modes as the frequency spectrum of the velocity, but it will
have additional higher-order frequency modes due to the non-linearity of the relation-
ship [29].

6.5.3. RESULTS
The speckle contrast K was computed in each of the five sites (see Sec. 6.4) over the
course of 35 flow periods (see Tab. 6.2). The resulting frequency spectra are shown in
Figs. 6.8 for each site, with the original speckle contrast time series shown in the inset of
each figure. For quick reference, the input signal (flow rate Q versus time t ) is shown in
the Fig. 6.8a, together with an inset showing the location of each of the five sites.

Site A (see Fig. 6.8b) is just a little downstream of the inlet. In this region, the flow is
still behaving nicely as there are no physical obstructions. Therefore, you would expect
a rather clean signal that closely represents the inflow function, Q(t ).

However, speckle contrast K does not scale linearly with velocity v and thus not lin-
early with flow rate Q either. Rather, a low K corresponds with a low standard deviation
of the intensity pattern σI , which implies that over the course of the camera integration
time ∆tint much blurring occurs. In turn, this implies a high velocity v ; therefore, a high
v corresponds to a low K . Consequently, the time series (shown in the insets) paint an
upside-down image of the local mean velocity.

When a Gaussian autocovariance of the temporal fluctuations is assumed, an equa-
tion for the relation between K and the speckle decorrelation time τc may be derived [25]
that compares reasonably well with our previous simulations in Chap. 5 [28]. However,
there is no agreement in literature how to convert τc into velocity v , making the exact re-
lationship elusive [25, 46]. Regardless, we have found in Chap. 4 from simulating a sine
input signal (which is just a single peak in the frequency spectrum) that the frequency
spectrum of the speckle contrast time series has higher-order peaks at multiples of the
dominant frequency [29]. These higher-order frequencies are caused by the non-linear
relationship between K and velocity v that manifests in the broadening of the troughs
and narrowing of the crests of K (t ) relative to the input signal. Consequently, it is not
useful to directly compare the frequency spectra of K to the frequency spectrum of the
input signal5. Instead, we will compare all sites with site A, as site A is located just a little
downstream of the inlet, where the flow is not yet disturbed.

In the frequency spectrum of site A (see Fig. 6.8b), the dominant frequency peak is at
0.75 Hz, which corresponds to the flow period (see Tab. 6.1). There are also higher-order
frequency peaks at multiples of the main frequency, partly due to the complex input sig-
nal and partly due to the non-linear relationship between K and velocity v . There is an

5For this reason we omit showing the input’s frequency spectrum to prevent confusion.
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Figure 6.8: Speckle contrast time series (inset) and its frequency spectrum (main figure)
for each of the five sites. In (a), the (0.75 Hz) input signal of Fig. 6.2 and the location of
the five sites in its inset from Fig. 6.1b is reproduced for quick reference. In (b)-(f), the
five frequency spectra are ordered according to their location in the artery.
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additional peak at the near-zero frequency, which is also present for all other sites.This is
merely a simulation artefact in OpenFOAM caused by particles getting stuck inside the
walls (thereby slowly increasing the number of particles inside the illuminated volume),
and should thus be ignored when studying the dynamic evolution of speckle. Finally,
between all peaks there is noise that is not present in the input signal. In Chap. 4 [29],
we have proven that this noise is fully caused by speckle boiling due to the relative mo-
tion between the particles (i.e., the flow profile inside an artery is more like Poiseuille
flow than plug flow), and particles entering and leaving the illuminated volume. In the
present work, there is an additional third cause of speckle boiling, being out-of-plane
motion of particles.

Site B (see Fig. 6.8c) is located at the bifurcation of the artery. In this region one
would expect additional speckle boiling as there is more relative motion between the
particles: some go left, and some go right. Relative to site A, this manifests as more noise
that is mostly visible at the higher frequencies. In site B there is also a larger particle
buildup than in any other site due to the bifurcation (and the earlier-mentioned simula-
tion artefact), but the sole effect is a larger peak at the near-zero frequency. In general,
the signature of site B’s frequency spectrum is very similar to that of site A: the ratio be-
tween the first-, second- and third-order peaks is very close. The only indication that the
flow at site B is different (i.e., it is a bifurcation) is the increased amount of noise due to
speckle boiling.

Site E (see Fig. 6.8e) is in the ECA. From the fluid dynamics results, it can be seen
that the flow in this region is fairly normal: there is a Poiseuille-like flow profile without
vortices and backflow. As a consequence, the signature of site E’s frequency spectrum
is very similar to that of site A as well: the main frequency mode is well-represented,
and the higher-order frequency modes have the same relative peak height. Relative to
site A, the velocity is higher at site E, which also nicely follows from the optics since a
lower mean K is measured in site E. Therefore, the speckle measurement can detect the
increased velocity and the normal flow profile in site E.

Site C (see Fig. 6.8d) is the equivalent of site E, but in the ICA. The mean velocity
in site C is similar to that in site E (see Figs. 6.3-6.5), which results in similar values for
K . Like in site E, the main frequency mode is also well-represented. However, there
are clear differences in the frequency signatures. The higher-order frequency modes are
suppressed in site C, because its K (t ) does not have the expected broad troughs and nar-
row crests as much as the K (t ) of site E does have. This implies less extreme temporal
velocity fluctuations in site C. From Figs. 6.3-6.5 it can be seen that there is a circulation
region (with backflow) in site C. The circulating flow’s inertia acts as a buffer when the
inflow velocity decreases, thus smoothing the crests of K (t ). Finally, the amount of noise
(caused by speckle boiling) is similar in sites C, A and E, which indicates a flow profile
that behaves ‘nicely’. Therefore, the same amount of noise in combination with the sup-
pression of the second-order frequency mode might be characteristic for flow regions
containing vortices/backflow.

Finally, site D (see Fig. 6.8f) is located inside the stenosis. Firstly, the measured values
of K (t ) are considerably lower than those in the other sites, which makes sense, because
the center velocity in this region is roughly 4.5 times greater than the mean inflow ve-
locity (see Figs. 6.3-6.5), which is roughly double the center velocity of the other sites.
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Secondly, the main frequency mode is still prominently visible, but the signal-to-noise
ratio went down considerably. This is caused by the measured K being rather low, in
which the sensitivity to changes in velocity v is low [25, 28]. A better measurement may
be performed by using a lower camera integration time ∆tint; however, we did not want
to do that as we were interested in seeing what a (medical) device would measure when
it would ‘scan’ the artery without changing the device parameters. Thirdly, the frequency
signature is considerably different than in all other sites. As for the preceding site C, the
second-order frequency mode is suppressed. Unique to site D is that the higher-order
frequency modes actually became much more prominent, at least relative to the main
frequency mode, as has also been found previously in experimental work [35]. Presum-
ably, this is a downstream effect of the preceding unsteady flow region, which introduces
flow features with a higher frequency as the unsteadiness causes the flow to no longer
follow the input signal precisely. Therefore, characteristic for the stenosis are a lower K ,
more noise, a slightly suppressed second-order frequency mode, and more prominent
higher-order frequency modes (relative to the main frequency mode).

6.6. SUMMARY AND CONCLUSIONS
In this work we set out to study atherosclerosis using dynamic Laser Speckle Contrast
Imaging (LSCI), which should eventually result in the development of new medical mea-
surement devices. To that end, we have developed a fully-modular numerical routine to
simulate dynamic LSCI of any flow system, comprising a separate fluid dynamics and a
separate optics code that are subsequently coupled. The fluid dynamics code6 simulates
the flow and injected particles in an arbitrary geometry. The optics code is based on Mie
theory and uses the particle positions as its input to simulate how a coherent plane wave
(i.e., a laser beam) scatters off of the ensemble of particles, including multiple scattering.
The finite camera integration time of a real camera is mimicked by averaging over many
instantaneous simulations at a short interval, thus providing us with blurred speckle that
yields information about the dynamics of the underlying flow system. All speckle images
are processed by computing the speckle contrast (for a duration of 35 flow periods) and
its frequency spectrum, which we then study: “If this was an actual measurement of a
(medical) device, can we detect specific flow features?”

We have applied our whole numerical routine to the case of a carotid artery suffering
from atherosclerosis in the internal carotid artery (ICA), to which a heartbeat-like input
signal was applied. Our fluid dynamics simulations compare well with experiments. The
velocity is higher in narrow regions, such as the stenosis. Directly downstream and up-
stream of the stenosis there is a flow region with circulation. Depending on the present
input flow rate during the heartbeat cycle, the circulation varies in strength. At the bi-
furcation of the artery there is a stagnation point. In other parts of the artery, the flow
behaves ‘nicely’, with a Poiseuille-like flow profile.

We then used our optics code on five sites in the artery: (A) near the inlet, (B) at the
bifurcation, (C) inside the circulation and (D) in the stenosis in the ICA, and (E) in the
external carotid artery (ECA). By comparing sites B and E to site A, we found virtually
the same frequency signature, with just some more noise in site B caused by the bifurca-

6In our work we have used OpenFOAM [30], but in principle any CFD code may be used.
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tion. In sites C and D, however, the frequency signature was different. Before the stenosis
(site C), the noise remains unchanged, but the second-order frequency mode gets sup-
pressed, presumably by the inertia of the circulating flow. Inside the stenosis (site D),
the speckle contrast decreases rapidly due to the higher velocity, and the frequency sig-
nature changes considerably: there is much more noise, and the higher-order frequency
modes become more prominent while the second-order frequency mode is slightly sup-
pressed. In other words, the signal is much more complex than in other regions in the
artery due to the upstream circulation before the stenosis, which spectral analysis of the
speckle contrast is able to detect.

In conclusion, we have shown that more complex flow characteristics are reflected in
the speckle contrast time series as obtained from dynamic LSCI. Therefore, spectral anal-
ysis of the speckle contrast can distinguish regions with complex flow. Consequently, the
stenosis – and thus the disease atherosclerosis – can be detected with dynamic LSCI.

We are confident that our approach should be adaptable to in-vivo situations, as we
have previously used speckle imaging for an in-vivo carotid artery [7]. To that end, future
work should definitely study the region around the stenosis in more detail: what does the
transition in frequency signature from upstream to all the way downstream of the steno-
sis look like precisely? Can we also detect the early stages of atherosclerosis in which the
stenosis is not yet as large? Will the angle of measurement influence the results? And
how will the patient’s skin (i.e., static scatterers) affect the measurements? Finally, given
the success of dynamic LSCI to detect flow features in our present context, it would be
interesting to study many different kinds of flow to determine what other applications
dynamic LSCI might have to study in particular flow systems that are currently difficult
to measure, e.g., due to the opaque nature of said flow.
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7
CONCLUSIONS AND OUTLOOK

In this research thesis, we set out to investigate means in which light may be used as
a technique for medical diagnosis applications, particularly focusing on diagnosis of
blood flow related diseases. Prime advantages of light measurement techniques are that
they are non-invasive, usable in-vivo and real-time, potentially accurate, and all while
being cheap as well. These are all very desirable properties for medical measurement
techniques.

Light is already used for medical diagnosis – e.g., to measure a heartbeat using Pho-
toplethysmography (PPG) – but it yields much greater potential than is currently being
used. For example, performing velocimetry measurements may in the future yield more
than just the signature of a heartbeat: it may potentially be used to detect a sclerosed
artery prematurely, enabling the timely treatment of diseases like atherosclerosis. Our
research question is:

Can we perform velocimetry measurements using light scattered
by in-vivo flowing blood for medical diagnosis purposes?

To that end, we have studied the interferometric scattering of light by an ensemble of
dynamic spherical particles, which represent red blood cells flowing through an artery.
We take a numerical simulation approach, as this enables us to vary input parameters
easily at will. By performing numerical experiments – i.e., generating an output for each
set of input parameters – we are able to find relationships between input and output,
and thus able to tell what a certain output implies about the underlying system being
measured.

We have developed a multi-physics computer code in Chap. 2: (i) the Computational
Fluid Dynamics (CFD) code is able to simulate the movement of tracer particles in any
flow, including complex arterial flows; (ii) the optics code is based on Mie theory. It takes
the particle positions from the CFD code, and computes the instantaneous scattering of
a plane wave of coherent light1, including multiscattering, and computes the intensity

1I.e., of a laser beam.
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as would be measured by a physical camera. The result is a speckle pattern, which is
characteristic for interferometric scattering by randomly distributed scatterers.

In order to study real measurements of dynamic systems, we must mimic the finite
exposure time of a physical camera, as we need to obtain a numerical result that rep-
resents a physical measurement. We achieve that by taking the mean of many optics
simulations that are performed in very rapid succession, essentially blurring the light
measurement2. By repeating the optics code simulations for each fluid time step, we
obtain a time series of speckle patterns.

To make our dynamic simulations computationally feasible, we have made several
simplifications; most notably, we assume that particles are sufficiently small and far
apart to be considered to be in each other’s far-field3. Although simplifications evidently
affect the obtained speckle patterns, they do not restrict us from obtaining meaningful
results, especially regarding the dynamics of the underlying scatterers.

Using our combined multi-physics code, we can perform Laser Speckle Contrast
Imaging (LSCI) simulations. To that end, we use the speckle contrast as a metric to ana-
lyze the speckle patterns, which equals the ratio of the signal’s standard deviation to its
mean. However, there exist large-scale intensity fluctuations4 that affect the computed
speckle contrast. By computing the speckle contrast using windowing5, we negate their
influence, enabling us to obtain results representing the physical reality.

7.1. CONCLUSIONS, DISCUSSION AND REMAINING QUESTIONS
Using our newly developed numerical framework, we are able to perform simulations to
help answering our research question. First, we subdivide the question into three main
parts, the first being:

Can we use Laser Speckle Contrast Imaging (LSCI) to measure the frequency signature
of a flow modulated by a pulsatile heartbeat-like signal?

In Chap. 4 we have studied plug flow and laminar flow in a simple cylindrical geom-
etry, representing an artery. Plug flow is representative for a non-Newtonian fluid (such
as blood) in a large artery, whereas laminar Poiseuille flow is a more appropriate model
for blood flow in a small artery. Suspended in the flow are spherical tracer particles, rep-
resenting red blood cells.

To model a heartbeat, we firstly modulated the flow rate using a sinusoidal input sig-
nal. From a Fourier analysis of the computed speckle contrast evolution, the original
input frequency could successfully be reconstructed. In Poiseuille flow, unlike plug flow,
there is a relative motion between the scatterers, which results in a speckle phenomenon
called speckle boiling. Very insightful was that we found that speckle boiling introduces
a uniform spectral noise to the Fourier spectrum, which could easily be filtered out, al-
lowing for the same quality of reconstruction as we obtained for plug flow.

2See Sec. 4.2.1.
3That is, scattered waves are spherical waves. We assume that these spherical waves are locally just plane

waves, which is true for small particles that are sufficiently far apart.
4These are caused by interference at length scales that are not of interest to us.
5See Sec. 4.2.4 and Fig. 4.3c.
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Secondly, we modelled a more realistic scenario of a heartbeat-shaped input signal,
comprising multiple frequencies. Once again, we could successfully reconstruct the in-
put frequencies and found good agreement with earlier experimental results.

As a first conclusion: yes, LSCI is able to detect the frequency signature of a temporally
modulated flow, allowing for the reconstruction of the temporal input signal (e.g., mea-
suring a heartbeat).

However, we still have a deviation to that conclusion left to resolve. For the heartbeat-
shaped input signal, we could correctly reconstruct the first- and second-order frequency
modes, but higher-order modes started to deviate. In fact, we may only expect the exact
same frequency signature from our speckle contrast measurements, if there is a linear
relationship between velocity and speckle contrast. Our results indicate otherwise. We
found that when the velocity is low, the speckle contrast drops sharply from one towards
zero, whereas for high velocities it approaches the asymptotic value of zero slowly. So
what exactly is the relationship between speckle contrast and velocity?

This naturally leads us to our next research question in Chap. 5:

Can we use LSCI to measure the velocity of
the underlying scatterers in a turbid flow?

Particle Image Velocimetry (PIV) is a very popular technique for velocimetry that can
only be used in situations where direct imaging is possible. Therefore, studying (light)
techniques that can perform indirect imaging, such as LSCI, are of prime interest for ve-
locimetry in such turbid media. Using the same geometry as before, we have studied the
effect of fluid velocity V and camera integration time T on the measured speckle contrast
K . Our first finding is that V and T are irrelevant individually, but rather are intertwined
through the quantity d = V T , which is the distance scatterers have travelled during the
camera integration time. This makes sense, since K scales with the amount of blurring
in the measured speckle image, which is determined by the amount of movement – and
thus by d .

While there exist analytical models that describe how K depends on the speckle
decorrelation time τc , it remained elusive how τc depends on d and, therefore, how K
depends on d . By fitting several analytical models to our simulation results, we have
found that the Gaussian model in Eq. (5.3) performs best. In particular, at low values of
d the models performs very well, whereas at high values of d the model starts to deviate
from our numerical findings. Future research will need to determine whether this is a
simulation artefact, or whether this is physics still to be studied.

Through comparison with the Gaussian model, we have found in Eq. (5.6) that

τc

T
≈ 1.06

wspeckle

d
, wspeckle =

λz

D
, (7.1)

where wspeckle is the characteristic size of a speckle, which depends on the wavelength
λ, and on the imaging system: camera distance z and aperture width D . The number
1.06 is a O(1) fitting constant, that likely appears by the lack of a ‘perfect’ definition for
τc and wspeckle; a topic for future research is to determine whether this number depends
on other yet unknown parameters. Regardless of that, our numerical experiments have
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provided further evidence to resolve a long-standing disagreement in the literature re-
garding how K and τc depend on V .

Another very important implication of our findings, is that there exists a region in
which K is most sensitive to changes in velocity. This means that a small change in ve-
locity results in a large change in K , which results in the desirable property of achieving
a more accurate measurement of slightly differing velocities. Based on our simulation
results, we hypothesize that the ‘region of high-sensitivity’ is governed by the equation6:

d = crohs ·wspeckle → T = crohs ·
λz

V D
, (7.2)

where ideally7 crohs ∈ [1,10] for all values of V in the velocity field being measured8. How-
ever, whereas we have studied the effect of d thoroughly, future research should still
check the veracity of this expression as a whole through (numerical) experiments on the
imaging parameters z, D and λ. Nevertheless, this expression makes sense physically:
K measures the ‘blurring’ of a speckle image due to scatterer movement, which should
have the largest effect when the distance travelled d during time T is a bit larger than the
size of a typical speckle wspeckle.

The consequence of this expression is that by choosing T , z, D and λ cleverly, it
should almost always be possible to perform measurements in the high-sensitivity range,
provided that an estimate of the typical V can be made beforehand. Should that be im-
possible, then a device could be designed that varies these quantities dynamically, until
the measured V satisfies the expected high-sensitivity range through Eq. (7.2). The re-
sult would be more accurate velocimetry measurements, in turbid media, that are less
prone to measurement uncertainties than without the usage of Eq. (7.2).

In conclusion: yes, LSCI may be used to measure the velocity of the scatterers in a turbid
flow.

While our present research reveals a quantitative relationship between K and V , and
what values for the imaging parameters are required to perform accurate measurements,
future research will be required to determine the influence of other parameters on their
relationship.

Now that we can reliably measure velocities, and changes in velocity, we take the step
towards the medical application of detecting atherosclerosis in Chap. 6:

Can we detect atherosclerosis from light
scattered by in-vivo flowing blood?

In the arteries of a patient suffering from atherosclerosis, a plaque forms inside the
artery at the arterial wall, causing narrowing and stiffening of the artery. Should the
disease go undetected and thus untreated, the plaque will grow larger. Eventually, the

6From our simulations we know that d ∈ [
10−5m,10−4m

]
is our ‘region of high-sensitivity’. Now, since K =

K (τc /T ) and τc /T = w/d , it follows that K retains the same value as long as d ∼ w ; hence our hypothesis.
7However, as discussed above, our simulation results start to deviate from the Gaussian expression for high

values of d ; therefore, until future research resolves that, it will be safest to choose crohs ∈ [1,5], as in this
region the Gaussian expression matches our results within our experimental standard deviations.

8This may not always be possible for any given situation. Should it be impossible, then the values should be
tweaked such that the velocities of greatest interest are around the optimal value: crohs ≈ 2.



7.1. CONCLUSIONS, DISCUSSION AND REMAINING QUESTIONS

7

115

plaque could come loose and could result in a complete blockage downstream, e.g.,
causing a stroke. Hence early detection of atherosclerosis is pivotal to a patient’s chances.
Since the flow profile in the sclerosed region will be different than elsewhere, a technique
that is able to measure the disturbed flow field will also be able to detect suspicious
regions, which LSCI can do cheaply. We would expect a locally higher velocity in the
sclerosed region with possibly a vortex upstream as the stenosis grows larger. Far more
expensive techniques, such as MRI, may subsequently be used to determine whether a
suspicious region is indeed atherosclerosis.

Figure 7.1: Carotid
artery with five sites.

To that end, we use a model of a complex patient-specific carotid
artery that is suffering from atherosclerosis in the internal carotid
artery. We have simulated the flow using Computational Fluid Dy-
namics (CFD), and subsequently validated our obtained flow pro-
files against other simulations and physical experiments, obtaining a
good match. We have coupled the CFD code to our own optics code
fully modularly, which now permits us to simulate dynamic LSCI on
any flow geometry. Inside the artery, we choose to study five specific
characteristic sites shown in Fig. 7.1: (A) near the inlet, (B) at the
bifurcation, (C) inside the circulation and (D) in the stenosis in the
internal carotid artery, and (E) in the external carotid artery.

Site (A) is near the inlet, and serves as our reference, where the flow has a ‘nice’
Poiseuille flow profile. In the external artery in site (E) we found virtually the same fre-
quency signature9 as in site (A), as we would expect since there is a Poiseuille flow profile
in site (E) as well, but the values of the speckle contrast in site (E) are lower than in site
(A) due to the higher velocity in site (E). In site (B) we have found virtually the same fre-
quency signature as in site (A), but with a ∼10% reduction of the second-order frequency
mode and with more added noise to the signal, caused by more relative motion between
the particles around the bifurcation and consequently more speckle boiling.

In site (C) we find less extreme and slower velocity fluctuations, resulting in a sup-
pressed second-order frequency mode with a similar amount of spectral noise, com-
pared to site (A). We observe that the circulation’s strength varies over the course of a
heartbeat cycle, i.e., the circulation’s inertia keeps the flow going at the times when the
input flow rate decreases. The consequence of less extreme and slower velocity fluctu-
ations is the suppression of higher-order frequency modes, since the slow fluctuations
tend to be more sine-like, which comprises a single frequency. Therefore, suppression
of higher-order frequency modes is characteristic for a circulation region.

In site (D), where the artery is more narrow, we obtain roughly double the centre ve-
locity of the other sites and consequently the measured frequency signature is consider-
ably different: (i) there is much more spectral noise, and (ii) the second-order frequency
mode is slightly suppressed, whereas (iii) higher-order frequency modes become more
prominent. We would not expect more speckle boiling in this region, as there should
not necessarily be much more relative motion between the particles; however, the high
velocity results in low speckle contrast values. From Eq. (7.2) we find that these mea-
surements have crohs ≈ 3 · 101, which is outside the region of high-sensitivity, and thus

9By which we mean that the relative height of the higher-order frequency modes is the same, at least until the
signal-to-noise ratio becomes too small from the fifth-order frequency mode and above.
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causes the spectral noise.10 Finally, the introduction of new higher-order frequency flow
features is presumably caused by the unsteadiness of the preceding circulation region.

In conclusion: yes, LSCI holds great promise for detecting atherosclerosis, because mea-
surements from the sclerosed region show a considerably different frequency signature
than elsewhere in the carotid artery.

When a stenosis has a buildup of sufficiently much plaque, a circulation region will
form before it. In said region, the circulation’s inertia will suppress the higher-order fre-
quency modes, while its unsteadiness creates more prominent higher-order frequency
modes inside the downstream stenosis. Furthermore, inside the narrowed stenosis, there
will be a higher velocity, which can be detected through a lower mean speckle contrast
value. All these detection features combined enables us to detect a sclerosed artery – or
at least label a region as suspicious, after which a more precise yet far more expensive
technique such as MRI can determine whether it is indeed atherosclerosis. While the
circumstances of our simulations are not yet identical to the true in-vivo situation, we
are confident that future research will show how to adapt our findings to in-vivo, as we
have previously already used speckle imaging for an in-vivo carotid artery successfully11.

Our above conclusions enable us to answer our main research question, or at least
within the confines of the specific applications we have studied.

In conclusion: yes, we can perform velocimetry measurements using light scattering from
turbid media, for which we have revealed an ideal parameter range that should be used.

And, since this includes in-vivo flowing blood:

Yes, we can use this technique for medical diagnosis purposes, such as detecting (periodic)
movements (e.g., measuring a heartbeat) or diseases detectable through velocimetry or
through the appearance of complex flows (e.g., atherosclerosis).

Our main contribution is the development of a numerical simulation framework ca-
pable of studying LSCI on any flow system, which thus far has already shown the poten-
tial that LSCI has to become a truly versatile, cheap, in-vivo, and non-invasive technique
for medical diagnosis purposes.

10By tweaking the measuring parameters cf. Eq. (7.2), we can obtain a different result, however, we chose to
keep the same parameters in every site, as that is what a measurement device would measure by ‘scanning’
past the artery.

11See: Nemati, M., Kenjeres, S., Urbach, H. P. & Bhattacharya, N., Fractality of pulsatile flow in speckle images.
Journal of Applied Physics 119 (2016).
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7.2. OUTLOOK
We have shown the great potential of Laser Speckle Contrast Imaging (LSCI) through its
ability to measure a heartbeat, perform velocimetry measurements in turbid media, and
to identify suspicious regions in the carotid artery to detect the disease atherosclerosis.
While we have taken huge steps towards those ends, future research is still required to
put our research into practice.

Firstly, we have made several assumptions in developing our numerical model, the
first being a far-field assumption in which we assume that the scatterers are ‘sufficiently
far apart’. This assumption does not hold for the red blood cell density in blood; however,
it does hold in our simulations as our simulations simulate dilute blood due to computa-
tional constraints.12 The primary consequence of the diluteness of our simulation is that
the effect of multiscattering is less prevalent than it would be in reality. Multiscattering
has the effect of reducing the speckle contrast, most notably for static speckle: our sim-
ulations in Chap. 5 yield a speckle contrast value of approximately 1.0 at a zero velocity
(i.e., static scattering), whereas similar experiments13 find a lower speckle contrast at a
zero flow velocity. However, this effect decreases relatively at higher velocities, and thus
we expect this assumption to not have a great effect on our dynamic simulations when
compared to other noise factors.

Another assumption is that the scatterers are spherically shaped, whereas in reality
red blood cells have a very distinct shape. By their azimuthal symmetry, spherical par-
ticles only use the polar angle to determine the strength of the scattering, while on the
other hand red blood cells have a rather complex angular scattering behavior. In our
application – the carotid artery – it is fair to assume that this effect on the final results
is small, since the red blood cells are mostly aligned with one another, and its effect
should statistically largely cancel out by the large number of particles being considered.
It would, however, be good if future research studies the effect of the shape of the par-
ticles14, especially in applications involving narrow arteries in which the red blood cells
become elongated, resembling cylinders more closely than spheres.

Secondly, many improvements to our model can only be made, if we can overcome
the computational time constraints. To that end, we had already precomputed the scat-
tering matrix, which greatly reduced the time complexity of our algorithm at the expense
of a greatly increased memory complexity. Next, we could consider implementing a
connection matrix, which holds information about the distance between each pair of
scatterers. A scattered wave falls off with r 2, therefore it is reasonable to assume that
multiscattering caused by distant particles will have a negligible effect on the camera’s
measurement. A connection matrix is a computationally cheap method of excluding the

12It would be interesting to see the effect of the far-field assumption, which is possible by deploying the T-
matrix method to eliminate the far-field assumption. However, this is as of present way too expensive to
compute in a dynamic system of hundreds of particles, but perhaps a comparison could be made in a static
system for comparison purposes.

13E.g., G. B. Loozen, Monitoring pulsating flow with dynamic speckle fields. MSc thesis, TUDelft (2015).
14Particle shape can be taken into account using the T-matrix method, which we haven’t used, since it is not

computationally feasible for our dynamic simulations with many scatterers.
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interaction of certain pairs of distant particles. However, we ought to be careful here: the
scattering matrix depends on the scattering angle, which may (in our situation) differ
by a factor ∼1000 in amplitude depending on the angle between the two scatterers (see
Fig. 2.4). Consequently, a particle being ∼30 times further away than another particle
might still contribute more to the final measurement. Fortunately, the scattering ma-
trix is known, and this may thus be taken into consideration by constructing a weighted
connection matrix.

Another computational improvement would be to refine the multiscattering conver-
gence criterion. Currently, we consider the multiscattering iterations to be converged
if for the interaction of each pair of particles the amplitude of the scattered light at the
location of every other particle is negligible compared to the amplitude of the incoming
plane wave. This criterion is way too strict, since many interactions will have become
negligble many iterations before the last interaction becomes negligible. The solution
could be similar to the above suggested weighted connection matrix: the matrix could
be adapted dynamically with successive multiscattering iterations by turning ‘off’ the
negligible interactions.

Thirdly, our computational model may be expanded to include more relevant in-vivo
effects. For example, the skin around the artery will act like a collection of static scatter-
ers, which is expected to have the effect of introducing an offset to the speckle contrast15.
To get around this, we can probably redefine our region of sensitivity in Eq. (7.2) to be
a bit more strict, or as a worst case, patient-specific calibration may unfortunately be
required. Future research should identify what precisely the influence of static scatter-
ers depends on, and possibly come up with an automatic calibration procedure (e.g.,
through a more advanced multiexposure algorithm).

Next, an important future question is in which stage we can detect atherosclerosis,
more specifically: can we already detect atherosclerosis in its earlier stages? It is known
that the arterial wall undergoes a pulsatile radial motion (i.e., widening and narrowing)
during a heartbeat cycle. However, as an artery becomes more sclerosed, it stiffens, re-
ducing said radial motion. Therefore, if we are able to measure the amount of radial
motion, we might have a new way to detect atherosclerosis, in addition to our findings
from Chap. 6.

In order to improve the capability of dynamic LSCI to detect atherosclerosis, the re-
gion around the stenosis should be studied in more detail. In other words, by scanning a
device along an artery, how would the measurement of that device transition as it scans
along a sclerosed artery? In Chap. 6 we had found that our measurement in the circula-
tion region before the stenosis was notably different than elsewhere. With further study,
this could potentially become another characteristic of the various stages of atheroscle-
rosis, or it could potentially even provide a new cheap way of measuring vorticity in var-
ious other turbid media.

Furthermore, we know that LSCI is primarily sensitive to transverse motion, as that
results in translating speckle and some speckle boiling, whereas the out-of-plane motion
only results in speckle boiling. Our findings in Chap. 5 work, because we were measuring

15See: Boas, D. A., & Dunn, A. K. (2010). Laser speckle contrast imaging in biomedical optics. Journal of
biomedical optics, 15(1).
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mostly translating speckle by measuring at a 90◦ angle. In a real in-vivo application, the
doctor may very well be holding the measuring device at a different angle. Although
for measuring the carotid artery the measurement angle should automatically always be
near 90◦, we should still study the effect of the angle of measurement. After all, it is not
yet known whether even small angle differences may already have a big impact on the
results.

LSCI being primarily sensitive to transverse motion, allows us to measure the two-
dimensional transverse velocity field. As was discussed in Chap. 4, regional laser Doppler
techniques are sensitive to the third dimension: the out-of-plane motion. Therefore, it
should be explored whether combining these two techniques can provide an accurate
flowmetry technique for turbid media.

Fourthly, the more generic Laser Speckle Imaging (LSI) method should be capable of
measuring more than a heartbeat or the velocity, especially if we start considering other
metrics than LSCI’s speckle contrast. Light scattering depends on the refractive index of
the scatterers, and for red blood cells their refractive index happen to depend on their
oxygen content. Therefore, LSI should be adoptable to blood perfusion measurements.
Additionally, the shape of red blood cells will also affect the scattered light, as we had
already discussed above. With further research, LSI could thus potentially be used to
measure the dynamic morphology of red blood cells.

Finally, as our technique is further developed, different applications will likely be at-
tainable. These could include, but are not limited to: guided drug delivery, measuring
breathing (i.e., movement of the lungs), the oil industry, and other industrial process-
ing applications. Wherever the radiation and detection of radiation is possible behind
opaque media, LSI should be usable for flow detection, with the limitation being the ab-
sorptivity of the medium. In particular, applications with complex flows in turbid media
are all good candidates for LSI.
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MIE THEORY – THE DETAILS

This appendix gives some more details to the arguments given in Sec. 1.1, which was
the derivation of Mie theory. Consequently, this appendix is not meant to be read as a
stand-alone text.

A.1. WHY ARE TERMS OMITTED FROM THE EXPANSION?
Instead of writing Eqs. (1.21-1.24), we can include the ignored terms, like such:
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A.1.1. EXTRACT THE COEFFICIENTS USING ORTHOGONALITY
Define the functional inner product of two vectors as:

〈a⃗, b⃗〉 =
∫ 2π

0

∫ π

0
a⃗ · b⃗ sin(θ)dθdϕ, (A.5)

then it is possible to show that under this inner product all M⃗pmn and M⃗p ′m′n′ are orthog-

onal1 (same for N⃗ ), and all M⃗ with all N⃗ , i.e., the Vector Spherical Harmonics (VSHs) are

1That is, the functional inner product equals 0 ∀(p ̸= p ′∪m ̸= m′∪n ̸= n′). Here, p refers to either e or o.
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linearly independent if tested using this inner product. This permits the coefficients to
be extracted individually, e.g.:

〈E⃗s , M⃗omn〉 = En amn 〈M⃗ (3)
omn , M⃗omn〉 , (A.6)

where M⃗omn may have any Bessel function, since it is merely a constant in the integral
of Eq. (A.5), as it only depends on the radial coordinate.

It is, however, not trivial to apply this functional inner product to the Boundary Con-
ditions (BCs) Eqs. (1.10-1.13), as the BCs are anisotropic. However, since E⃗ · (c1θ̂+ c2ϕ̂)
for any {c1,c2} satisfies the tangential BC and since M⃗ · r̂ = 0, it immediately follows that
the functional inner product with M⃗ noρ will satisfy the tangential BC too. That is, c1 and
c2 above must be the same for both E⃗1 and E⃗2 to satisfy the BC. This is only the case if the
ρ-dependent terms (which are material-dependent!) of M⃗ are excluded, which we call
per definition M⃗ noρ . This does not affect the orthogonality, since the ρ-dependent part
is merely a constant in the integral of Eq. (A.5). So, we may write:

〈E⃗1, M⃗ noρ
emn〉ρ=y = En wmn 〈M⃗ (1)

emn , M⃗ noρ
emn〉ρ=y = En qmn 〈M⃗ (3)
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emn〉ρ=x = 〈E⃗s , M⃗ noρ

emn〉ρ=x ,
(A.7)

where M⃗ (1)
emn was chosen for convenience, because the incident field does not possess

the term, and x ≡ k2a and y ≡ k1a are as used in Eq. (1.26) (and below it) and represent
the sphere’s boundary in ρ-space. Henceforth, the superscript noρ will be left out, but it
is always present on the VSH with which we take the functional inner product.

N⃗ is a different story: when applying Eq. (A.6) using some N⃗ , E⃗ · r̂ is involved and we
cannot ‘simply’ use the tangential BC, Eq. (1.12):

〈E⃗1, N⃗omn〉ρ=y = En vmn 〈N⃗ (1)
omn , N⃗omn〉ρ=y ̸= En pmn 〈N⃗ (3)

omn , N⃗omn〉ρ=x = 〈E⃗s , N⃗omn〉ρ=x ,
(A.8)

because (
c0E⃗1 · r̂ + c1E⃗1 · θ̂+ c2E⃗1 · ϕ̂

)∣∣
ρ=y ̸=

(
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)∣∣
ρ=x ,

which would only hold if ϵ1 = ϵ2 in Eq. (1.10). In Bohren & Huffman2 this problem is not
mentioned anywhere, although the solution is lurking from deep within the derivation.
As it turns out, the r̂ -component of N⃗ satisfies orthogonality on its own, i.e.,

〈(N⃗pmn · r̂
)

r̂ , N⃗p ′m′n′〉 = 0 ∀(p ̸= p ′∪m ̸= m′∪n ̸= n′). (A.9)

So, whereas the θ̂ and ϕ̂ components need each other, r̂ can do the job on its own. Now,
since

(
N⃗ · r̂

)
r̂ satisfies orthogonality alone, it then follows by the linearity of the func-

tional inner product Eq. (A.5), that N⃗ r = N⃗ − (
N⃗ · r̂

)
r̂ must too3. N⃗ r is a shorthand nota-

tion to fix the inequality in Eq. (A.8):

〈E⃗1, N⃗ r
omn〉ρ=y = En vmn 〈N⃗ (1)

omn , N⃗ r
omn〉ρ=y = En pmn 〈N⃗ (3)

omn , N⃗ r
omn〉ρ=x = 〈E⃗s , N⃗ r

omn〉ρ=x ,
(A.10)

2Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles. John Wiley & Sons.
3Note that N⃗ r is just N⃗ with its r̂ -component set to 0. Here, the superscript r stands for ‘reduced’.
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A.1.2. FIND THE COEFFICIENTS
Now that we have a way to extract individual coefficients, we can do so for all coefficients
for both E⃗ and H⃗ , which will yield exactly enough equations to solve the problem. Since
the process is identical for every coefficient, let us solely observe what happens to vmn

and pmn . These coefficients belong to the VSH N⃗omn (in the equations for E⃗ , Eqs. (A.1
and A.3)) and is not contained within the incident field Eq. (1.19)4. We can use Eq. (A.10)
and its equivalent for H⃗ :

En vmn 〈N⃗ (1)
omn , N⃗ r

omn〉ρ=y = En pmn 〈N⃗ (3)
omn , N⃗ r

omn〉ρ=x , (A.11)

k1

iωµ1
En vmn 〈M⃗ (1)

omn , M⃗omn〉ρ=y =
k2

iωµ2
En pmn 〈M⃗ (3)

omn , M⃗omn〉ρ=x . (A.12)

If we now use the form of the VSHs, cf. Eqs. (1.16 and 1.17), and the definition of the func-
tional inner product Eq. (A.5), it follows that the only common factors, are the material-
dependent terms:

〈N⃗ (1)
omn , N⃗ r

omn〉ρ=y

〈N⃗ (3)
omn , N⃗ r

omn〉ρ=x

= ψ′
n(y)/y

ξ′n(x)/x
,

〈M⃗ (1)
omn , M⃗omn〉ρ=y

〈M⃗ (3)
omn , M⃗omn〉ρ=x

= ψn(y)/y

ξn(x)/x
, (A.13)

where ψn and ξn are the Ricatti-Bessel functions as introduced in Eqs. (1.29 and 1.30).
Upon substitution we may then write:

pmn

vmn
= x

y

ψ′
n(y)

ξ′n(x)
, (A.14)

pmn

vmn
= x

y

k1µ2

k2µ1

ψn(y)

ξn(x)
= µ2

µ1

ψn(y)

ξn(x)
= x2

y2

ϵ1

ϵ2

ψn(y)

ξn(x)
, (A.15)

from which it is seen that, unless we have very specific material properties5, pmn = vmn =
0. A similar derivation will yield that pmn = qmn = vmn = wmn = 0 and amn = bmn =
cmn = dmn = 0 if m ̸= 1. In other words, all coefficients for the VSHs which are not con-
tained within the incident field are 0. By analogy, if there is no force to hit a string, the
string will not start vibrating spontaneously. Physically, we require a source term for
things to get into motion. Also, by linear independence, hitting string #1 cannot cause
any string other than string #1 to vibrate.

A.2. DERIVING THE MIE COEFFICIENTS
In the case that m = 1, the incident field will provide a source for two VSHs (for every n).
Using the notation of the previous section together with the expansions as given in Eqs.
(1.21-1.24), the BCs for an and cn read:

〈E⃗s , N⃗ r
e1n〉ρ=x +〈E⃗i , N⃗ r

e1n〉ρ=x = 〈E⃗1, N⃗ r
e1n〉ρ=y , (A.16)

〈H⃗s , M⃗e1n〉ρ=x +〈H⃗i , M⃗e1n〉ρ=x = 〈H⃗1, M⃗e1n〉ρ=y , (A.17)

4Finding the non-zero Mie coefficients in which the incident field does contribute is performed in Sec. A.2.
5These very specific material properties do not serve a physical problem, since nothing in nature can have an

infinite accuracy, which would be required in order to ever satisfy those material properties.
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which after cancelling En and i may be reduced to

an 〈N⃗ (3)
e1n , N⃗ r

e1n〉ρ=x +dn 〈N⃗ (1)
e1n , N⃗ r

e1n〉ρ=y = 〈N⃗ (1)
e1n , N⃗ r

e1n〉ρ=x , (A.18)

an
k2

µ2
〈M⃗ (3)

e1n , M⃗e1n〉ρ=x +dn
k1

µ1
〈M⃗ (1)

e1n , M⃗e1n〉ρ=y =
k2

µ2
〈M⃗ (1)

e1n , M⃗e1n〉ρ=x . (A.19)

Now, upon applying relations similar to Eq. (A.13), the functional inner products are
replaced like such:

an yξ′n(x)+dn xψ′
n(y) = yψ′

n(x), (A.20)

anµ1ξn(x)+dnµ2ψn(y) =µ1ψn(x), (A.21)

where y = mx could be used to rewrite these relations into the same form as used by the
book of Bohren & Huffman.

Finally, two similar equations may be derived for the coefficients bn and cn . Upon
solving this system of equations, the Mie coefficients as given in Eqs. (1.31 and 1.32) will
follow.
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OPTOFLUIDS CODE

IMPLEMENTATION

In this appendix, we will explain the inner workings of our developed codes at a more
technical and practical level. All codes are made publicly available, as listed in the List
of Publications on page 137. In the following sections, we’ll first discuss the fluids code,
then the optics code, and finally the workflow of how they are coupled.

B.1. FLUIDS

In Chaps. 4 and 5, we did not use a dedicated Computational Fluid Dynamics (CFD)
code to simulate the fluid flow. Instead, we generated random particle positions based
on a realistic volume distribution (see Sec. 2.2.1), and evolved their positions over time
using exact solutions (see Sec. 1.3).

In Chap. 6, we have used OpenFOAM v2.4.x, as obtained from the official GitHub
repository May 29th 2015 [1]. Additionally, we have used the pyFoam and swak4Foam
add-ons (e.g., to use Python to set the initial particle positions based on the realistic
volume distribution). PyFoam was obtained June 9th 2015 using the official subversion
repository [2]. Swak4Foam was obtained May 29th 2015 using the official subversion
repository [3].

The choice for OpenFOAM is rather arbitrary: any CFD code could be used (e.g.,
Ansys Fluent), provided that it can simulate blood, as well as newer versions of Open-
FOAM. OpenFOAM was initially chosen for two reasons: (1) our past experience and
(2) the open-source character of OpenFOAM, making it easier to couple the optics code
with the fluids code. The latter turned out to be an unnecessary requirement, because
there is no reason to design the code as a monolithic code: the optics code depends on
the fluids code’s output, but the fluids code does not need any feedback from the optics
code (unlike in, e.g., fluid-structure interaction problems).
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B.2. OPTICS

B.2.1. CLASSES / DATA STRUCTURE
Fig. B.1 shows a class UML diagram for the optics part of our code. The classes are
primarily a way to store the parameters of the algorithm in a convenient way. Sphere-
Manager provides an interface for the algorithm to access the spheres. Sphere permits
easy storage of per-sphere information (see Fig. 2.3 and the surrounding text). Camera
holds information about the camera’s pixels and accumulates the electric field.

The modules are the computational machinery of the algorithm. main is the start-
ing point of the code, which can be an external code (see Sec. B.3). MieAlgorithmFF
performs the algorithm as described in Sec. 2.1. bhmie is the algorithm from Bohren
& Huffman [4], adapted to our needs (see Sec. 2.1.1). IO is responsible for the Input &
Output (I/O) part of the code: read the input parameters, read the particle positions and
write the intensity to a file.

To greatly speed up the code, the value of the scattering matrix was approximated
through interpolation based on precomputed values (see Sec. 2.1.5). This was achieved
by creating a new ScatteringStrategy class, abstracted through an adapter interface.
Through an input file, either a FullBHMie or an InterpolationScatteringStrategy object
is instantiated, which is subsequently used by MieAlgorithmFF to either recompute or
interpolate the scattering matrix respectively.

Figure B.1: Class UML diagram for the MSFF code. The code consists of both modulated programming and
Object-Oriented Programming (OOP) codes. Modules are shown as just a name. Objects are shown as a class:
name, variables, and methods. The normal arrows show how modules depend on each other with the source
of the arrow being the owner. The striped arrow shows a dependency without ownership. MieAlgorithmFF
also owns an instance of a child of ScatteringStrategy, which is not depicted in the figure.

B.2.2. PSEUDOCODE OF THE ALGORITHMS
Our implemented algorithms are shown in Algs. 1-5 in pseudocode. Alg. 1 shows the
main procedure of our code. The other algorithms are procedures called by either the
main procedure or by other procedures. In each algorithm, the appropriate equations
from this thesis are referenced where they are computed.
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Algorithm 1: Global structure of the MieAlgorithmFF module. See Fig. 2.2 in
particular.

Input: A set of particles {⃗r , a,m}, k⃗i , and the camera (size, position, orientation)
Result: The intensity profile on the camera written to a file

1 init(): read input files and instantiate classes
2 Do Alg. 2: initialScatter(): p = 1,2 scattering order
3 Do Alg. 3: multiScatter(): p > 2 scattering order
4 Do Alg. 4: scatter2Camera(): scatter the accumulated field Eq. (2.8) to the

camera, cf. Eq. (2.7).
5 output(): compute the resulting intensity Eq. (2.9) and write to an output file

Algorithm 2: Global structure of the initialScatter algorithm

Input: SphereManager, k⃗i , E⃗i

Result: Computed [S] (to be used by ‘multiScatter’) and updated the E⃗ ’s of all
spheres

1 forall particles, i do
2 Allocate all arrays
3 end
4 forall ‘via’ particles, i do
5 // Compute the p = 1 field:

6 Compute E⃗ 0
i i = E⃗i e ikzi , cf. Eq. (1.47)

7 Store it directly into the accumulator E⃗ accum
i i

8 // Compute the p = 2 field:
9 forall ‘target’ particles, j ̸= i do

10 Compute the scattering angle, θs , from the incident field via i to j .
11 end
12 Call bhmie({θs }) to find all [S] j i i

13 forall ‘target’ particles, j ̸= i do
14 Use [S] j i i to scatter the field: from E⃗ 0

i i to E⃗ 1
j i = E⃗ 1

j i 0, cf. Alg. 5.

15 Accumulate to E⃗ accum
j i (cf. Eq. (2.8)).

16 end
17 // Prepare for multiscattering:
18 forall ‘target’ particles, j ̸= i do
19 forall ‘source’ particles, l < j ∩ l ̸= i do
20 Compute the scattering angle, θs , from l via i to j .
21 end
22 end
23 Call bhmie({θs }) to find all [S] j i l

24 Call bhmie(π) to find the backscattering matrix [S]bs ≃ [S] j i j

25 end
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Algorithm 3: Global structure of the multiScatter algorithm

Input: SphereManager
Result: Computed all E⃗ ’s of all spheres. E⃗ accum

j i will be scattered to the camera

1 forall scattering orders, p do
2 forall ‘via’ particles, i do
3 Call spherei .nextIteration()
4 end
5 forall ‘via’ particles, i do
6 forall ‘target’ particles, j do
7 forall ‘source’ particles, l do

8 Use [S] j i l to scatter the field: from E⃗ p−1
i l to E⃗ p

j i l , cf. Alg. 5

9 Accumulate to E⃗ p
j i cf. Eq. (2.3).

10 end
11 end
12 end
13 forall i , j do
14 Accumulate to E⃗ accum

j i cf. Eq. (2.8).

15 end
16 If converged, then break the p-loop. Else continue.
17 end

Algorithm 4: Global structure of the scatter2Camera algorithm

Input: SphereManager, Camera
Result: The camera now has a measured electric field for every pixel, c

1 forall ‘via’ particles, i do
2 forall ‘source’ particles, l do
3 forall camera pixels, c do
4 Compute the scattering angle, θs , from l via i to c.
5 end
6 end
7 Call bhmie({θs }) to find all [S]ci l

8 forall ‘source’ particles, l do
9 forall camera pixels, c do

10 Use [S]ci l to scatter the field: from E⃗ accum
i l to E⃗ci l , cf. Alg. 5

11 end

12 Call camera.addEField(E⃗ci l ) to slowly accumulate to E⃗ scattered
c cf. Eq. (2.7)

13 end
14 end

15 Optionally add E⃗ 0
c (which is incident on the camera, but not part of the scattered

field)
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Algorithm 5: Global structure of the S2E function

Input: [S], E⃗i , r⃗ , k⃗i

Output: E⃗s

Result: Scattered an incoming PW to a scattered PW, cf. Eq. (2.4)
1 Find {Êi∥, Êi⊥, Ês∥} using clever cross products
2 Compute Ei⊥ and Ei∥ by projection
3 Compute Es⊥ and Es∥, cf. Eq. (1.44)

4 Compute E⃗s = Es⊥Êi⊥+Es∥Ês∥}

5 Include the e ikr /(−ikr) term of Eq. (1.44)

B.3. OPTOFLUIDS: COMBINING THE WORKFLOW
In an OptoFluids simulation, the previously explained fluids and optics codes are ex-
ecuted in sequence. The magic glue is provided by the coupling and post-processing
scripts which fully automate a full OptoFluids simulation. These are programmed in
Bash (.sh) and Python (.py). The entire workflow is displayed in Algs. 6-12 as pseu-
docode, which are all ultimately ran through Alg. 6.

Algorithm 6: Overarching workflow, runAll.sh
Input: Input file with the required OptoFluids variables
Result: The fluids and optics codes are ran in succession

1 Enter the ‘fluids’ directory
2 Execute runAll.sh (Alg. 7 or Alg. 8)
3 Return to the root directory
4 Execute coupling script (Alg. 9)
5 Enter the ‘optics’ directory
6 Execute runAll.sh (Alg. 10)
7 Return to the root directory
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Algorithm 7: CFD: fluids/runAll.sh : exact solution version

Input: Input file with the required OptoFluids variables, and a setup CFD
geometry and simulation parameters

Result: Computed particle positions for each timestep.
1 Generate N particles at random positions, either through a uniform or through a

specified volume distribution (see Sec. 2.2.1)
2 forall timestamps do
3 forall particles do
4 Compute the particle’s position at the current timestamp, using the

specified exact solution (see Sec. 1.3)
5 end
6 end

Algorithm 8: CFD: fluids/runAll.sh : OpenFOAM version

Input: Input file with the required OptoFluids variables, and a setup CFD
geometry and simulation parameters

Result: Computed velocity and pressure fields and particle positions for each
major timestep, ∆t .

1 Perform some sanity checks
2 Prepare the case (e.g., generate the mesh and prepare OpenFOAM input files)
3 Copy the "case" template to "case_IC" (‘IC’ stands for ‘Initial Condition’)
4 Run the "case_IC" simulation until a steady state is reached; this will serve as the

initial condition for the actual simulation, below
5 Delete everything but the last timestep from "case_IC", and rename it to time 0
6 Copy "case_IC" to "case_run"
7 Run "case_run" for the duration specified in the OptoFluids input file
8 Copy "case_run" to "case_us" (‘us’ stands for ‘microsecond’)
9 forall Timestamps in "case_run" do

10 Write ‘timestamp’ as starting time, ∆tint as timestep, and tint as duration to
‘system/controlDict’ (see Fig. 4.2)

11 Perform the microstepping simulation
12 end
13 Optional: post-processing if the specific case needs it

Algorithm 9: Coupling: convert the CFD output to the optics input

Input: All particle position files (from the fluids simulation)
Result: All particle position files in the data format required by the optics code
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Algorithm 10: Optics: optics/runAll.sh : Laser Speckle Imaging (LSI)

Input: All particle position files and other optics parameters
Result: An intensity file for each input particle position file

1 Substitute all optics parameters into the optics code’s input file
2 forall particle position files do
3 Substitute the particle position filename into the optics code’s template input

file, and save it as a temporary input file
4 Run Alg. 1: MieAlgorithmFF
5 Remove the temporary input file
6 end
7 Run Alg. 11: post-processing the output of MieAlgorithmFF

Algorithm 11: Optics: post-processing the file- and data structure

Input: The file structure of a finished MieAlgorithmFF simulation
Result: A new output file structure and data structure, that is easier to process

further. The mean ‘blurred’ intensity is computed by averaging over the
camera integration time; for each major timestep, ∆t , that result is saved
to a separate intensity file.

1 Convert the camera’s 3D (x,y,z)-coordinates into 2D (u,v)-coordinates
2 Restructure the 1D list of camera coordinates into a 2D array
3 forall intensity output files do
4 Restructure the 1D list of intensity values into a 2D array, based on the

camera’s (u,v)-coordinates
5 end
6 Create one directory per major timestamp (from timestep ∆t , see Fig. 4.2)
7 Sort the microstepped ∆tint intensity files into the appropriate major timestamp

directory
8 forall major timestamp directories, mimic the camera integration time do
9 For each camera pixel: compute the average intensity from all intensity files

10 Save the averaged data into a new ‘blurred’ mean intensity file
11 end
12 Optional: run Alg. 12 to further post-process the data into results

Algorithm 12: Optics: compute the speckle contrast

Input: Intensity files in the post-processed 2D array format from Alg. 11
Result: Metrics, such as the speckle contrast

1 Compute the speckle contrast of the (blurred) intensity files, cf. Eq. (4.6)
2 Compute the Fourier transform of the speckle contrast data
3 Plot the speckle contrast and its Fourier transform
4 Optional: plot colored contour plots of the (blurred) intensity files
5 Optional: turn the contour plots into a video to visualize speckle motion
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