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Abstract: Floods are common and inevitable natural disasters. Achieve Sustainable Development
Goal (SDG) 11.5 is a critical challenge for coastal cities, especially those in deltaic lowlands such as in
the case of Guangzhou, China. Regarding the spatial planning and design of such urban regions, it is
crucial to study the impacts of flooding in compact or decentralized spatial development pathways.
This reinforces the understanding of the relationship between strategic decisions for spatial planning
and flood mitigation. However, the lack of a computer model to assess spatial evolution paths
is a significant limitation. The non-dominated Sorting Genetic Algorithm II (NSGA-II) explores
the possibility of a compact built-up land layout in 2030. The results showed that, concerning the
2030 decentralized scenario, the 2030 compact scenario presents a large increase in the integrated
fitness function value from 0.618 to 0.771 (the increase is equivalent to 0.153 or about 24.75%).
In addition, different development scenarios were constructed by setting different target weights.
Compared to the decentralized scenario results, the fitness function values of the optimization results
of each scenario showed better results at different levels. They could also serve as a reference for
other similar coastal areas to achieve SDG 11.5 by 2030.

Keywords: spatial evolution path; Guangzhou estuary area; multi-objective optimization; flood
disaster; SDG 11.5

1. Introduction

Floods are common and inevitable natural disasters, especially in low-lying coastal
regions [1]. The annual losses in flood-prone areas worldwide are uncalculated, but
the number will increase drastically in the coming years due to climate change and
urbanization [2–4]. Over the next 80 years, the global land area exposed to coastal flooding
will increase by about 48% due to climate change, thus threatening tens of millions of
people and affecting 20% of the global gross domestic product (GDP) [5].

Currently, 60% of the world’s population lives in coastal areas within 100 km of the
coast, and 23 of the world’s 30 large cities are located in coastal areas [6,7]. Due to compound
events such as storm surges, precipitation, and subsidence, coastal flooding is a critical
factor of the safe development of delta estuaries, especially in lowland floodplain areas [4,8].
According to a new assessment that analyzed the coastal flood impact using new elevation
and high-resolution population data, asset damage and casualties are significantly increased
in delta lowland floodplains [9,10]. Thus, with the far-reaching influence of coastal flood
disasters and the compressed timelines of mitigation and adaptation, delta lowland cities
should take aggressive action to respond quickly [11].
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To deal with these challenges, international institutes, researchers, and governments
have continued to conduct extensive research. The Sustainable Development Goals (SDG)
promulgated by the United Nations (UN) aim to create better conditions for a safe, thriving,
prosperous, and inclusive urban environment by 2030. The core aim of SDG 11.5 is to
significantly reduce the number of deaths and the number of people affected by disasters,
and to substantially decrease the direct economic losses caused by disasters, including
water-related disasters, relative to the global GDP, with a focus on protecting the poor and
people in vulnerable situations. The increase in the resilience of coastal cities will lead to a
decrease in the damage losses and casualties due to flooding. It is the key aspect of SDG
11.5 that coastal cities must implement during spatial planning [12].

To achieve SDG 11.5 by 2030 in lowland floodplain areas, flood impact assessments
at different scales have attracted the attention of domestic and foreign researchers. For in-
stance, Hirabayashi et al. (2013), Vousdoukas et al. (2018), and Wang et al. (2019) published
studies on the change in flood risk due to climatic alterations, socioeconomic networks, and
road networks, respectively, at the global, European, and Chinese scales [13–15]. Lin et al.
(2020) explored multi-scenario flood risk assessment in the Guangzhou, China, estuary area
using the future land use (FLUS) model [16]. Further research has focused on the formula-
tion of policies via the creation of disaster prevention and mitigation procedures [17–19].
However, a few researchers have attempted to establish a compact and decentralized
spatial evolution path in delta lowland cities for the future, which will result in a conflict
between spatial expansion and flood risk management. This conflict means that the layout
of development areas must balance some contradictory objectives, e.g., maximizing the
probability of built-up land development and minimizing the exposure to coastal flooding.

Fast urbanization in flood-prone areas, such as the Greater Bay Area with megacities
like Guangzhou, will face huge challenges due to coastal flooding. Thus, this paper
proposes a new, compact and decentralized decision-making support tool for spatial
evolution pathways. It can provide a more comprehensive and systemic understanding of
the flooding problem. In the field of operations research, economist Pareto proposed, for the
first time, the incomparable multi-objective optimization problem to solve the disagreement
between different objectives. It was used to solve complex engineering problems [20,21].
Midwood and Dawson (2015) built a multi-objective optimization function by developing
an algorithm that minimizes flood exposure risk, heat island exposure risk, transportation
costs, and encroachment on green spaces to reach new residential areas in the Tees Valley
area [22]. Caparros-Midwood et al. (2017) developed a framework for spatial optimization
that synergizes multiple objectives in response to growing populations, increasing climate-
related risks, and reduced greenhouse gas emissions [23].

Therefore, the application of the multi-objective optimization theory is a key approach
to the identification of priority development areas in delta lowland cities. However, less
research has been carried out on determining how to effectively consider the coastal flood
risk faced by the development of delta lowland cities on compact and decentralized spatial
evolution paths, as well as the optimal spatial layout for coordination with other urban
development goals.

Although the multi-objective optimization method can, theoretically, solve the spatial
optimization problem, it suffers from the issues of large data size and high dimensionality.
If the traditional solution method, for example linear programming, is used to enumerate
the possible spatial layout combinations, the computational time complexity will grow
exponentially with the data dimensionality [24]. Thus, this approach is unable to provide ef-
fective multi-objective spatial optimization solutions within the government decision cycle.

To solve such issues, scientists have proposed the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) method, which is inspired by natural genetic mechanisms [25].
NSGA-II continuously generates diverse new individuals via the crossover and mutation
of the genomes of individuals in a population, and it selects and filters the population
from one generation to another to promote continuous evolution toward the optimal
solution. This method reduces the number of solution space searches, as well as the model



Land 2024, 13, 351 3 of 21

simulation time complexity of the system. In addition, the NSGA-II genetic coding method
can correspond to urban spatial information, thus leading to a robust algorithm, and the
results, after repetitive compilation, are consistent [26]. Therefore, the application of NSGA-
II can couple compact development conditions and is beneficial to improving the efficiency
and accuracy of solving such problems.

The objective of this research is to use Python and ArcGIS to envisage a decision-
making support tool to compare compact and decentralized spatial evolution paths to
help the Guangzhou estuary area achieve SDG 11.5 by 2030. Under the complexity and
uncertain impact of the environment, this decision-making support tool provides a new
perspective on the use of computer model reasoning, and it can overcome the limitations of
the use of human reasoning alone. In addition, this computer model designs a new criterion
of spatial optimization that can extend the knowledge of decision-makers to consider more
comprehensive factors. The criterion considers both the safety and sustainability needs of
the future development in the Guangzhou estuary area. Considering the ecological value
and the regional spatial planning goals, and under the constraints of compact development,
the basic principles of the high probability of built-up land development and low coastal
flood exposure are constructed using the objective function.

In addition, different goal-oriented urban development scenarios are designed by
setting different target weights to explore the possibility of a new compact land layout. The
rate of urbanization is an important factor influencing future urban spatial changes, and
high and slow rate development scenarios are set up in this study. The optimization results
of the different scenarios are compared with decentralized land layout scenarios to select
the ideal development path. The research results can provide a scientific basis for policy
formulation and decision-making in response to coastal flooding in the Guangzhou estuary.
They can also serve as a reference for other similar coastal areas to achieve SDG 11.5 by
2030, which may reduce casualties and property damage due to failure of development
path decisions.

The remainder of this paper is arranged as follows. In Section 2, the material and
methods, as well as the methodology of this work, are presented. The results and their
analysis are presented in Section 3. Finally, Section 4 concludes this article and proposes
some future ideas for enhancement.

2. Materials and Methods
2.1. Study Area

Guangzhou is located at longitude 112◦57′ to 114◦3′ east and latitude 22◦26′ to 23◦56′

north at the mouth of the Pearl River Delta in China, as shown in Figure 1. It is one of
the four national central cities under construction in China, and has a regional area of
7434 km2. The Guangzhou estuary is located in the low-lying area of the Pearl River Delta
plain [27]. The region has a subtropical monsoon climate influenced by subtropical cyclones
and significant interactions between sea and land systems [28]. Typhoons cause landfalls
every summer, resulting in frequent coastal flooding disasters in the Guangzhou estuary
area [29].

Moreover, in the context of China’s construction of the Guangdong–Hong Kong–
Macao Greater Bay Area, the urban expansion of Guangzhou toward the estuary has
become an inevitable trend. Kang et al. (2015), at the Pearl River Delta scale, assessed the
impact of future storm surge gain on the loss of arable land in the region, and found that
the Guangzhou estuary will be one of the most severely affected areas in the future [28]. In
fact, this region is at the highest risk of coastal flood exposure due to future sea level rise. In
February 2019, the State Council released the Outline of Planning for the Guangdong–Hong
Kong–Macao Greater Bay Area, which emphasizes that “spatial planning with a focus on
disaster mitigation and prevention” is one of the key issues for future work in the region.
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2.2. Data

Real built-up land data from 2015 and FLUS-based simulation data for 2030 obtained
by Lin et al. (2020), which have high simulation accuracy, were adopted in this study [16].

The probability of built-up land development was calculated using the neural network-
based occurrence probability calculation module of the FLUS model [30]. A random sample
was chosen for training, and the 2015 Guangzhou land use data were applied for sampling;
a sampling proportion of 10% of the overall sample size and the training data from the
research of Lin et al. (2020) were used [16]. The number of hidden layers of the neural
network was set at 15 levels based on experience and related studies [31].

Referring to the parameter settings of previous experiments and consultations with
experts in related fields, the high estimate area of coastal flood exposure was set to 0.1 in
this experiment, the low estimate area was set to 1, and other areas, namely those not in the
2030 once-a-century coastal flood exposure area, were set to 0 [22].

The cost of land conversion was sourced from the dissertation of Dr. Xun Liang of Sun
Yat-sen University, who obtained the land conversion cost of the Pearl River Delta region
by consulting experts in this field and by applying a spatial simulation; he verified that the
model using the parameter had a good simulation effect and could effectively reflect the
land use change pattern of the region [32].

The cost of spatial planning was sourced from the Pearl River Delta Master Plan
(2014–2020). The value was set to 1 within urban development zones, namely those in
which new built-up land has been encouraged, and 0 outside of them; this data have
been used to delineate urban cluster borders in the Pearl River Delta. The results of the
2017–2035 Guangzhou Master Plan were used to determine the restricted development
areas of permanent basic agricultural land and the Ecological Protection Red Line.

As shown in Figure 2, these data were evenly converted into 100 × 100 m raster data
using the resampling feature of the ArcGIS platform.
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2.3. Method
2.3.1. New Criterion Definition

The new criterion for achieving SDG 11.5 took into account the safety and sustainabil-
ity needs of the Guangzhou estuary. The high probability of construction land development
and low coastal flood exposure were considered the basic principles. Moreover, the ecologi-
cal value and the impact of regional spatial planning objectives were determined as the
basis of the objective function definition.

First, freshly developed land is closely related to the surrounding environment, and a
good probability of the development of built-up land is advantageous for development and
construction. Thus, the maximization of the probability of built-up land development was
chosen as one of the requirements for the construction of the multi-objective optimization
function. Second, in the development and construction process of the Guangzhou estuary
area, new built-up land is established while considering its exposure to coastal flooding,
thus yielding the minimization of coastal flood exposure as one of the main constraints for
the construction of the multi-objective optimization function.

Moreover, in the selection process of new built-up land, the conversion from land
use types with different ecological values has different costs; thus, the minimization of
the land conversion cost was chosen as one of the requirements for the construction of
the multi-objective optimization function. Finally, in the selection process of new built-up
land, the planned development area is used as an important spatial development guidance
goal. Spatial planning cost maximization was thus selected as another requirement for the
construction of the multi-objective optimization function. Therefore, the multi-objective
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NSGA-II spatial optimization function of the Guangzhou estuary area is the result of the
summation of four cost functions, and it is represented as follows:

E =
N

∑
i=1

M

∑
j=1

xij dij +
N

∑
i=1

M

∑
j=1

xij (1 − Pij) +
N

∑
i=1

M

∑
j=1

xij (1 − Pmn) +
N

∑
i=1

M

∑
j=1

xij Pij, (1)

where E represents the value of the integrated fitness function, E1 represents the probability
of new built-up land development, E2 represents the exposure to coastal flooding, E3
represents the cost of land conversion, and E4 represents the cost of spatial planning. The
specific requirements of each objective are as follows.

(1) Objective 1: Maximize the probability of built-up land

E1 =
N

∑
i=1

M

∑
j=1

xij dij, (2)

If cellij is not used, then the value of xij is set as 0; otherwise, if cellij is used, then the
value of xij is set as 1. Moreover, ij is the selected spatial location and dij is the development
probability of the construction site.

(2) Objective 2: Minimize the exposure to coastal flooding

E2 =
N

∑
i=1

M

∑
j=1

xij (1 − Pij), (3)

If cellij is not used, then the value of xij is set as 0; otherwise, if cellij is used, then the
value of xij is set as 1. Moreover, Pij is the cost of exposure to coastal flooding. If Zij ∈ Z,
Zij = 1, Z is the inundation range for the low estimate scenario. If Zij ∈ z, Zij = 0.1, z is the
inundation range for the high estimate scenario.

(3) Objective 3: Minimize the cost of land conversion

E3 =
N

∑
i=1

M

∑
j=1

xij (1 − Pmn), (4)

If cellij is not used, then the value of xij is set as 0; otherwise, if cellij is used, then the
value of xij is set as 1. Moreover, m is the current land use type, n is the land use type to be
converted, and Pmn is the conversion cost.

(4) Objective 4: Maximize the cost of spatial planning

E4 =
N

∑
i=1

M

∑
j=1

xij Pij, (5)

If cellij is not used, then the value of xij is set as 0; otherwise, if cellij is used, then the
value of xij is set as 1. Moreover, Pij indicates whether the selection point is within the
spatial planning area.

(5) Constraints

Xi−1,j + Xi+1,j + Xi,j−1 + Xi,j+1 ≥ 2, (6)

to avoid the disorderly expansion of built-up land, at least two adjacent sides of the
proposed built-up land area must be built-up land to proceed.

TP (Xij) = 0, if Xij ∈ Ω, (7)

where TP (Xij) denotes the spatial conversion probability of the land use type, and Ω
represents the spatial control area of basic agricultural land, water, etc.
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2.3.2. Construction of the Compact and Decentralized Spatial Evolution Paths

The compact spatial evolution path, which includes a compact selection rule for
exploring new layouts of built-up land, can help to mitigate flooding in urbanizing deltas.
Furthermore, to explore a compact layout with better performance, this study used NSGA-
II spatial optimization algorithm to investigate the possibility of a compact built-up land
layout in 2030.

The decentralized spatial evolution path through FLUS model simulation has high
simulation accuracy in Lin et al. (2020) [16]. The FLUS model, operating through the CA
model, distributes different land use types based on complex competitions and interactions.
This process can achieve decentralized spatial evolution.

In the construction of NSGA-II spatial optimization algorithms, the Python language
has been widely used in intelligent algorithm experimental simulations due to its flexible
editing constructs and simple language style. Python is currently considered one of
the most popular programming languages worldwide. The ArcGIS platform, a classical
spatial analysis operation platform with powerful spatial data processing and computing
capabilities, has been widely used in ArcGIS simulation, spatial information integration,
and other fields. In this study, the data material needed to be pre-processed; the data
were converted to ASCII code through the ArcGIS platform, and were then imported
into the Python platform for calculation. As shown in Figure 3, the calculation procedure
mainly included six processes: (1) compact selection, (2) crossover operation, (3) mutation
operation, (4) non-dominated sorting, (5) crowding degree calculation, and (6) termination
output. They are defined as follows.

(1) Compact selection

To ensure the compactness of the new construction sites, the multi-objective NSGA-II
spatial optimization algorithm could select only non-restricted development areas, and at
least two adjacent construction sites could be selected as new sites. Randomly, the points
selected based on the original construction sites were coded as 1, whereas those not selected
were coded as 0. The individual was added to the initial population while the number of
newly selected sites approached the target value. The aforementioned rule was extended
until the number of selected individuals met the initial population size requirement.

(2) Crossover operation

The number of crossed individuals is determined by multiplying the crossover rate by
the overall population size. The selected individuals are paired two by two. In the process
of the crossover operation on chromosomes of paired individuals, and due to the traditional
single- and double-point crossover, excellent genomes are easily destroyed because of the
large chromosome alteration.

As a result, the crossover mechanism was appropriately adjusted in this study to
increase the flexibility of the crossover operation while reducing the damage to superior
individuals’ genes by randomly selecting two crossover points. Furthermore, to efficiently
improve the population evolution, a comparison operator was used to calculate the inte-
grated fitness function values of the new individuals generated after crossover versus the
original individuals. Individuals with high integrated fitness function values were selected
for the new population based on the results.

(3) Mutation operation

The number of points to mutate is calculated by multiplying the mutation rate by
the number of new points required for each individual. Under the traditional random
variation mechanism, an individual’s chromosomal quality may deteriorate, necessitating
an iterative search for the optimal solution; which may also lead to convergence failure.
Therefore, a comparison operator was also placed at this level in the mutation operation.
A randomly selected desired mutation point scenario is investigated from left to right
and from top to bottom at that gene point location until a new gene point with a better
integrated fitness function value than the original gene point is found. Then, the mutation



Land 2024, 13, 351 8 of 21

operation can be performed. If no better gene point is found even after searching all the
gene points, no further mutation is performed at that point.
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(4) Non-dominated sorting operation

Once the new population is obtained after the crossover and variation operations,
the previous and the newly generated populations are merged. Non-dominated sorting is
performed on the merged population to obtain the stratified group of individuals. They are
selected into the new population of the next generation according to the non-dominated
stratum until the individuals of a stratum exceed the population size after being added to
the new population. At this level, the group of individuals of that stratum is subjected to
crowding degree calculation.

(5) Crowding degree calculation and the selection of outstanding individuals

The crowding degree calculation of four objectives is performed for the portion that
exceeds the number of individuals in the population. Moreover, the crowding degree value
size is ranked, and the individuals with a higher crowding degree are selected into the
new population of the next generation one by one until the new population of individuals
reaches the population size requirement.
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(6) Termination output

Based on multiple experiments and previous research experience (Li and Parrott,
2016) [26], the termination condition was set as 150 generations. The comprehensive fitness
function values of the population individuals were calculated and ranked from largest to
smallest. The individual in the population with the largest integrated fitness function value
was selected as the optimal solution and inserted into the ArcGIS platform for display. The
data were converted into raster data by the “ASCII to Raster” tool and displayed together
with water bodies and current construction sites.

2.3.3. Design of Scenarios for Compact Spatial Evolution Path

The simulation scenarios for compact spatial evolution path were designed in the
following steps.

(1) Different target weighting scenarios

Faced with uncertainty regarding the spatial development strategy of the Guangzhou
estuary, different goal-oriented spatial optimization scenarios were explored. They were
designed with different combinations of objective weights to test the applicability of
the proposed multi-objective spatial layout optimization, as well as to provide different
development paths for the sustainable development of the region. The BAU scenario was
defined by setting the weight of each objective to 0.25. There were 6364 new built-up land
rosters for the BAU scenario (2015–2030).

The specific scenarios were designed as follows, as shown in Table 1:

- Scenario A entails giving the highest priority to the probability of the built-up land
development objective. The weight of built-up land development was set to 0.5, while
the weights of coastal flood exposure, the land conversion cost, and spatial planning
cost were set to 0.17, 0.17, and 0.16, respectively;

- − Scenario B consists of giving the highest priority to the coastal flood exposure
objective with a weight of 0.5, and the weights of the probability of built-up land
development, the land conversion cost, and the spatial planning cost were set to 0.17,
0.17, and 0.16, respectively;

- Scenario C consists of prioritizing the land conversion cost objective with the weight
of 0.5, and the weights of the probability of built-up land development, coastal flood
exposure, and the spatial planning cost were set to 0.17, 0.17, and 0.16, respectively;

- Scenario D prioritizes the spatial planning cost objective with a weight of 0.5, and the
weights of the probability of built-up land development, coastal flood exposure, and
the spatial planning cost were set to 0.17, 0.17, and 0.16, respectively;

- Scenario E prioritizes the probability of built-up land development and coastal flood
exposure objectives, the weights of which were both set to 0.4. The weights of the land
conversion cost and spatial planning were both set to 0.1;

- Finally, Scenario F prioritizes the land conversion and spatial planning cost by setting
their weights to 0.4, while the weights of the two remaining parameters are set to 0.1.

Table 1. Spatial optimization scenarios of different target weight combinations.

Scenario The Probability of
Built-Up Land

The Exposure to
Coastal Flooding

The Cost of
Land Conversion

The Cost of
Spatial

Planning

A 0.5 0.17 0.17 0.16
B 0.17 0.5 0.17 0.16
C 0.17 0.17 0.5 0.16
D 0.17 0.17 0.16 0.5
E 0.4 0.4 0.1 0.1
F 0.1 0.1 0.4 0.4
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2.3.4. Overview of the Performance of the Computer Simulation Experiment

This experiment used Python as the simulation platform for coding multi-objective
NSGA-II algorithms. The simulation was performed on an HP G7 workstation consisting of
an Intel® Core™ i7 CPU with 8 GB of RAM. The pattern of built-up land in the Guangzhou
estuary from 2015 to 2030 served as the experimental object of the multi-objective NSGA-II
spatial optimization.

3. Results
3.1. Analysis of the Simulation Results
3.1.1. Analysis of the Integrated Fitness Function Values for the BAU Scenario

(1) The integrated fitness function value of the best solution

The base year of 2015 was considered for the construction land in the Guangzhou
estuary area, and the multi-objective NSGA-II algorithm built using the Python platform
was used to optimize the spatial layout of new construction land in 2030. The integrated
fitness values of the individuals in the population were ranked using the previously de-
scribed approach, and the individual with the highest value was selected as the alternative
optimal solution. In the process of population iteration, the integrated fitness function
value was increased from the initial population in the 1st generation to convergence in
the 150th generation. Specifically, the integrated fitness function value began from a value
equal to 0.601 in the 1st generation, reached the value of 0.767 in the 15th generation, then
exhibited a slow growth process, and converged after 140 generations. Referring to the
executed simulations, the integrated fitness function value converged to 0.768 at the end of
the 150th generation.

Regarding the analysis in terms of individual objectives, the first objective, i.e., the
built-up land development probability, represents the spatial distribution of the suitability
of new built-up land under the existing urban environmental conditions. It improved from
0.101 to 0.134 and converged after just 15 generations; this was basically synchronized with
the convergence of the integrated fitness function value.

The second objective is the exposure to coastal flooding, which reflects the exposure of
new construction land to future coastal flooding. Its value increased from 0.242 to 0.247 and
reached a steady state in the 12th generation before converging after a small fluctuation.

The third objective is the land conversion cost, which represents the ease of conversion
from other land use types to built-up land. It increased from 0.139 to 0.184 and began
to converge in the 15th generation. This result is suitable for the convergence rate of the
integrated fitness function.

Finally, the fourth objective is the spatial planning cost, which represents the spatial
location of the new construction land in the original plan. It improved from 0.111 to 0.202
and began to converge in the 20th generation, slightly after the convergence of the overall
fitness function.

Based on the spatial layout optimization process, the new built-up land was found
to be more dispersed in the initial population optimization solution. With the iteration of
the population, the originally scattered new built-up land gradually converged to a more
concentrated location, and the local spatial optimization was adjusted until finally reaching
the convergence state, as shown in Figures 4 and 5.

(2) Analysis of the distribution of solution sets

Analysis of the distribution of each target value in the evolution of the population, as
shown in Figure 4c–f, is as follows.

First, the initial populations of the value of the probability of built-up land develop-
ment were in the lower range overall. In contrast, the 5th generation population showed a
large increase in the interval and overall mean of the distribution of this target value. The
interval of the distribution improved from about 0.108 to 0.110 to about 0.114 to 0.120. The
mean value improved from about 0.108 to about 0.117. Although the overall mean value
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was still increasing and gradually reaching convergence, the interval of the population was
shrinking and finally concentrated around about 0.135.

Second, the objective related to coastal flooding exposure showed rapid growth over
the first 10 generations, a large population expansion within this target value range be-
tween generations 1 to 5, followed by a rapid contraction and minor fluctuations between
generations 60 and 150. Specifically, during the overall population evolution, the coastal
flooding exposure was highly unstable. There was some non-synergy with other objectives,
which required a constant search to find the ideal optimal solution. There was a slight
pullback between generations 15 and 20, with mean values between 0.247 and 0.248, and
then they slowly converged.

Furthermore, the objective of land conversion cost had a similar trend to the probability
of built-up land development. With a significant increase in the mean value in the first
10 generations, the distribution of individuals in the population in the interval of this target
value also expanded and then gradually contracted, and then converged to about 0.185.
Due to the wide distribution of agricultural land around the Guangzhou estuary area near
the built-up land, the process of population evolution facilitated the search for spatial
layout options for land conversion at a low cost.

Finally, in terms of spatial planning cost, the mean value increased significantly over
the first 10 generations. Then, it continued to grow until 15 generations later, when it
showed a slow growth trend and eventually converged at around 0.201. Compared to other
objectives, the spatial planning cost resulted in the largest increase in the mean value of
the population from the initial population to the final convergence, with an increase of
approximately 0.09. It indicated that spatial planning had a large impact on the spatial
layout of new built-up land.
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3.1.2. Analysis of the Distribution of the 150th Generation Solution Set of the BAU Scenario

In the solution set of all Pareto fronts, the distribution of different targets presented
different patterns, as shown in Figure 6. The value of the probability of built-up land
development was at about 0.13455 to 0.13470, and the overall distribution was more
balanced, indicating that there was more variability in this target.
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The value of the exposure to coastal flooding was mainly distributed between about
0.24757 and 0.24780, with a relatively large range of variation intervals, indicating that this
target has been coordinated with other targets to a greater extent.

The distribution of land conversion cost and spatial planning cost was between
(0.18381 to 0.18433) and (0.20151 to 0.20205). Some solutions were aligned to produce
a diversity of spatially optimized solutions through coordination with other objectives.

3.1.3. Comparison of the Results of the Compact Spatial Evolution Path of the BAU
Scenario and the Decentralized Spatial Evolution Path of the FLUS Simulation Scenario

As a new compact and decentralized spatial evolution paths decision-making support
tool, computer model reasoning can enrich the hypothesis scenario to generate a possible
ensemble. The use of the new criterion of spatial optimization provides a new perspective
for deliberating on new priority development areas. In addition, this approach considers
more comprehensive factors that will help decision-makers raise awareness about the
complexity and uncertain impact of the environment. Furthermore, with the guidance of
the new spatial optimization criterion, it is possible to find solutions that are more conducive
to meeting the requirements of the decision objectives than the FLUS simulation results.

The method’s effectiveness was verified after running the multi-objective NSGA-II
spatial optimization algorithm and performing the spatial optimization solution of the
BAU scenario. Individuals in the 150 generations were ranked, and the one with the
highest values was selected for comparison with the FLUS simulation scenario. The results
show that the multi-objective NSGA-II spatial optimization algorithm achieved a large
improvement over the FLUS simulation scenario in terms of the integrated fitness function
values (an increase of 0.153 from 0.618 to 0.771, thus reflecting an improvement of about
24.75%) as compared to the FLUS simulation scenario, as shown in Figure 7.
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For each objective fitness function, the multi-objective NSGA-II spatial optimization
exhibited several degrees of improvement over the FLUS simulation scenario; however,
the magnitude varied widely. Among these objectives, the increases in the values of the
probability of built-up land development and the coastal flood exposure fitness function
were small. On the one hand, in the FLUS model simulation process, the probability
of built-up land development and the original areas with a high probability of built-up
land development were preferentially selected. Although multi-objective NSGA-II spatial
optimization was carried out, the space available for adjustment was limited, and the
probability of built-up land development was found to increase from about 0.126 to about
0.139. On the other hand, the study area of the Guangzhou estuary is extensive, and the
coastal flooded area is mainly distributed in the lowland area of the river network. The
coastal flood exposure area of the new construction land was found to be at a low level
compared to the overall quantity. In the multi-objective NSGA-II spatial optimization
process, although the construction land exposed to coastal flooding was reduced, the value
of the coastal flood exposure fitness function was marginally improved from 0.241 to 0.247
when averaged with the overall base value of new construction land.

The fitness function values of the land conversion cost and the spatial planning cost
were found to improve more significantly, from 0.134 to 0.184 and from 0.118 to 0.200,
respectively. In terms of the land conversion cost and based on the spatial constraints of
permanent basic agricultural land protection and the ecological protection control line, the
spatial optimization preferentially selected a low conversion cost. As the agricultural land
in the estuary region is the main spatial pattern of agricultural land, this objective was
greatly improved as compared to the FLUS simulation scenario. In terms of the spatial
planning cost, as the spatial development area is planned to be adjacent to the existing
construction land, this area can be selected as the priority for new land development in 2030
in the optimized layout; thus, this achieved the most significant performance improvement
(about 0.82) among the four objectives as compared with the FLUS simulation scenario.
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3.1.4. Spatial Optimization Results for Scenarios with Different Target Weights

Based on the analysis of the experimental results and in contrast to the results of
the FLUS simulation scenario (the decentralized spatial evolution path), the fitness func-
tion values of the optimal solutions searched within the 150 generations were found to
be improved for each scenario to different degrees, as shown in Figure 6. The results
prove the effectiveness of the multi-objective NSGA-II spatial optimization method, as
shown in Figure 8. Specifically, among the scenarios with a single-objective priority, as
compared to the FLUS simulation scenario, the value of the integrated fitness function
of Scenario D increased the most, from 0.570 to 0.800. The main reason for this is that
the spatial planning area was within the range in which new construction land could be
selected, and when the weight of this objective increased, points in the spatial planning
area were preferentially selected.

Figure 8. The comparison of the results of the scenarios with different target weights and the FLUS
simulation scenario.
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In contrast to the results discussed previously, based on the comparison of the FLUS
simulation scenario to the value of the integrated fitness function for Scenario A, the increase
became smaller as the value increased from 0.581 to 0.702. The main reason for this is that
the FLUS simulation made this target a priority factor, and even if the weight was increased
for this target, there would be limited room for further improvement. In Scenario C, the
probability of built-up land development was decreased, and a better overall spatial layout
solution was obtained by coordinating other target values. The reduction of the land
conversion cost will help protect forest land and water bodies as compared to higher land
conversion costs, and will give priority to agricultural land suitable for development within
the spatial planning scope based on the protection of permanent basic agricultural land.
In addition, in Scenario B, the increase of the integrated fitness function value was also
smaller, with an increase from 0.733 to 0.842. The main reason for this is that the extent of
coastal flood exposure coverage is limited, as is the amount (eventually, the total amount)
of new construction land exposed to coastal flooding. Thus, even if the weight of this
target is increased, the increase will be restricted, but it is important for reducing the future
coastal flood exposure of new construction land.

For the dual-objective priority scenario, the value of the integrated fitness function
for Scenario E was only increased by about 0.093 as compared to the FLUS simulation
scenario. This is due to the low sensitivity to changes in the land conversion cost and the
coastal flood exposure. Regarding Scenario F, the value of the integrated fitness function
was increased by 0.210 as compared to the FLUS simulation scenario.

3.1.5. Spatial Optimization Results of the Urbanization Rate Scenarios under the Influence
of Different Policies

Compared to that of the BAU scenario, the integrated fitness function value of the
high-speed development scenario was found to decrease by about 0.009, while that of
the slow development scenario increased by about 0.011. This indicates that controlling
the scale of urban expansion via the spatial planning policy can effectively reduce the
negative impacts of urbanization in the Guangzhou estuary, as shown in Table 2 and
Figure 9. From the analysis of the fitness function values of each objective, compared with
the BAU scenario, the costs of the probability of the development of built-up land, exposure
to coastal flooding, land conversion, and spatial planning were reduced by about 0.003,
0.001, 0.003, and 0.005, respectively. This new built-up land will be selected in areas facing
coastal flood exposure or a low development probability, those converted from forested
land and water bodies where the land conversion cost is higher, or those outside the spatial
planning area. In contrast, in the mitigation development scenario, as compared to the
normal development scenario, the changes in the development probability of built-up land
and the coastal flood exposure were not significant. The land conversion cost and the
spatial planning cost were both about 0.005 higher, which is favorable for protecting forest
land and water bodies with ecological and environmental benefits.

Table 2. The results for scenarios with the urbanization rate scenarios.

Scenario The Probability of
Built-Up Land

The Exposure to
Coastal Flooding

The Cost of Land
Conversion

The Cost of
Spatial Planning

The Value of the
Integrated Fitness
Function

BAU 0.135 0.248 0.184 0.202 0.768
The high-speed
development 0.132 0.247 0.182 0.197 0.759

The slow
development 0.135 0.248 0.189 0.207 0.779



Land 2024, 13, 351 17 of 21

Land 2024, 13, 351 17 of 22 
 

0.001, 0.003, and 0.005, respectively. This new built-up land will be selected in areas facing 
coastal flood exposure or a low development probability, those converted from forested 
land and water bodies where the land conversion cost is higher, or those outside the 
spatial planning area. In contrast, in the mitigation development scenario, as compared to 
the normal development scenario, the changes in the development probability of built-up 
land and the coastal flood exposure were not significant. The land conversion cost and the 
spatial planning cost were both about 0.005 higher, which is favorable for protecting forest 
land and water bodies with ecological and environmental benefits. 

Table 2. The results for scenarios with the urbanization rate scenarios. 

Scenario The Probability of 
Built-Up Land 

The Exposure to 
Coastal Flooding 

The Cost of Land 
Conversion 

The Cost of 
Spatial Planning 

The Value of the 
Integrated Fitness 
Function 

BAU 0.135 0.248 0.184 0.202 0.768
The high-speed 
development  

0.132 0.247 0.182 0.197 0.759

The slow 
development 

0.135 0.248 0.189 0.207 0.779

 
Figure 9. The results of the spatial optimization of the urbanization rate scenarios. 

3.2. Model Robustness Verification 
The NSGA-II algorithm, a classical heuristic algorithm, has certain uncertainties in 

the optimal solution search process that can affect the validity of the spatial optimization 
solution. Therefore, the stability of the results of the multi-objective NSGA-II optimization 
model must be verified. Thus, the assumption considered in this study was that each 
objective weight was 0.25. Five repetitive experiments were conducted using the same 
simulation environment, the optimal solution was computed for each experiment, and the 
matrix data were converted into raster space data that were converted, once again, into 
vector space data through the ArcGIS platform. Using the Overlay function in the ArcGIS 

Figure 9. The results of the spatial optimization of the urbanization rate scenarios.

3.2. Model Robustness Verification

The NSGA-II algorithm, a classical heuristic algorithm, has certain uncertainties in
the optimal solution search process that can affect the validity of the spatial optimization
solution. Therefore, the stability of the results of the multi-objective NSGA-II optimization
model must be verified. Thus, the assumption considered in this study was that each
objective weight was 0.25. Five repetitive experiments were conducted using the same
simulation environment, the optimal solution was computed for each experiment, and
the matrix data were converted into raster space data that were converted, once again,
into vector space data through the ArcGIS platform. Using the Overlay function in the
ArcGIS toolbox, the spatial distribution and the number of overlapping parts in the results
of the five repeated simulation experiments were determined. The results show that the
overlapping portion of the optimal solution found in the five simulations accounted for
90.21% of the totally new area in 2030, as shown in Figure 10.
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In summary, it was proved that the multi-objective NSGA-II algorithm developed
in this study can search for an effective optimized layout with strong robustness via
continuous evolutionary iterations. Therefore, as an effective spatial optimization aid
for decision-making, it can provide a scientific basis for planners and relevant govern-
ment spatial planning departments to identify priority development areas in urbanized
coastal areas.

4. Discussion
4.1. Review of Simulation Results

Applying the proposed framework to optimize built-up land layout in 2030, improve-
ments were observed for each scenario to different degrees between the compact spatial
evolution path and the decentralized spatial evolution path. Based on scenarios with differ-
ent target weights, and regardless of the single- or multiple-objective priority, the change in
the target development probability of construction land was not found to be significantly
affected by the weights in both the single-objective-first and multi-objective-first scenarios.
Therefore, it is likely that the future spatial development strategy of the Guangzhou estuary
region will favor the spatial layout scenario that meets the spatial planning objectives via
the reduction of coastal flood exposure and the decrease of the land conversion cost.

Additionally, reducing the scale of future urban expansion by controlling the urbaniza-
tion rate leads to the increased probability of built-up land development and the increased
effectiveness of spatial planning policy implementation. Simultaneously, this aims to re-
duce future coastal flood exposure and land conversion costs. This is an effective strategy to
enhance the value of the future comprehensive spatial fitness function. It also demonstrates
the effectiveness of the algorithm developed in this study for different optimization needs
and multi-objective spatial optimization.

In summary, the multi-objective NSGA-II spatial optimization model constructed in
this study achieved good spatial optimization results under complex environments and
constraints. It can also provide a scientific basis for governments and planners to formulate
spatial optimization policies.

4.2. Flood Adaptation Strategies and Policies

After the design of each objective weight to define different development scenarios, the
spatial optimization results can help decision-makers determine the priority development
areas using different scenarios for the future Guangzhou estuary area. However, even with
the support of a multi-objective spatial optimization decision mechanism, the coastal flood
exposure of all construction sites cannot be circumvented by using only multi-objective
spatial optimization results, regardless of which development scenario is implemented
for future urban spatial development. Therefore, further development of coastal flood
response strategies is required.

From the long-term perspective, to achieve SDG 11.5, the Guangzhou estuary must
generate multi-scale solutions and spatial form. This long-term vision should be achieved
through spatial design to support spatial transformation as an integrated activity. As one
powerful approach, backcasting can help designers and policymakers organize this ambi-
tious vision more realistically [33]. The achievement of SDG 11.5 requires the utilization
of knowledge about natural and urban systems to formulate short-term strategic projects
and actions to explore possible solutions and new knowledge. By arranging these strategic
projects and actions at adaptive transformation path points, designers and policymakers
can implement these solutions step by step to achieve SDG 11.5.

In some areas in the Guangzhou estuary that must face unavoidable coastal flooding
impacts, flood risk management is carried out by both engineering and non-engineering
strategies. By incorporating the concepts of resilient cities and nature-based solutions into
the spatial planning of the area, its safety can be enhanced by raising the ground elevation
of the construction area and building dikes in flood-hazard-affected areas. Multi-scale
solutions based on the natural environment of the river network and the coast of the
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Guangzhou estuary can also be arranged to allow the region to effectively cope with the
increasingly severe coastal flooding. The protection of floodplains and the construction of
coastal mangroves, sand dunes, and salt marsh systems will be considered propriety strate-
gies to deal with coastal flooding. As one of the critical tools used in the decision-making
process, the model developed in this research can be used to explore the possible priority
development areas in the future, providing new knowledge to bridge the gap between
the limited experience of experts and the best spatial planning solutions. In summary, the
experience of spatial planning and flood management policies in the Guangzhou estuary
can serve as an example to help similar coastal cities deal with coastal flooding to achieve
SDG 11.5 by 2030.

4.3. Limitations and Future Work

As this research was focused on coastal flooding, the challenge of waterlogging was
not considered in the computational model. Moreover, due to the lack of a dike system,
which is an essential element of a flood defense system, it was not included in this study.
In an urban environment, multi-objective NSGA-II spatial optimization without flood risk
management may cause certain inevitable deviations in the placement of key development
areas. In addition, as in the case of other similar research, the simulation parameters used in
this study were characterized by some uncertainty. Thus, more research must be conducted
in the future, when more solid data will be available, to obtain more precise outputs. In
addition, according to different target preferences, other SDG can be included in multi-
objective NSGA-II spatial optimization function design to achieve better sustainability in
different spatial development areas.

5. Conclusions

The achievement of flood mitigation in urbanizing deltas is crucial for coastal cities,
especially those in low-lying areas. To achieve SDG 11.5, a new compact and decentralized
spatial evolution path decision-making support tool was developed to explore new priority
development areas driven by economic development as projected in 2030. By considering
the safety and sustainability needs of the future development of the Guangzhou estuary
area, the multi-objective genetic algorithm explores the possibility of a new built-up layout
in 2030. The results show that, with reference to the 2030 BAU scenario (the compact
spatial evolution path), comparing the FLUS simulation scenario (the decentralized spatial
evolution path) to the multi-objective NSGA-II spatial optimization scenario revealed an
increase in the integrated fitness function value for the second scenario from 0.618 to 0.771
(an increase equivalent to 0.153 or about 24.75%). In addition, different development
scenarios were constructed by setting different target weights. When compared to those of
the FLUS simulation scenarios, the fitness function values of the optimization results of each
scenario exhibited better results at different levels. This demonstrated that the Guangzhou
estuary area adopted a compact spatial evolution path and may reap additional benefits.

From the perspective of achieving SDG 11.5 in the flood mitigation path of coastal
cities, the multi-objective NSGA-II spatial optimization model allows for the identification
of priority development areas in 2030. As a powerful tool in spatial planning decision-
making, it provides not only a comprehensive understanding of the conflict between urban
sprawl and the expansion of the flooded area in 2030, but also a new perspective from
which to extend the edge of knowledge to explore the possible new built-up land layout to
achieve SDG 11.5.
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